WO2021176110A2 - Rotary internal combustion engine - Google Patents

Rotary internal combustion engine Download PDF

Info

Publication number
WO2021176110A2
WO2021176110A2 PCT/ES2020/000029 ES2020000029W WO2021176110A2 WO 2021176110 A2 WO2021176110 A2 WO 2021176110A2 ES 2020000029 W ES2020000029 W ES 2020000029W WO 2021176110 A2 WO2021176110 A2 WO 2021176110A2
Authority
WO
WIPO (PCT)
Prior art keywords
rotors
chamber
engine according
lobes
cylindrical
Prior art date
Application number
PCT/ES2020/000029
Other languages
Spanish (es)
French (fr)
Other versions
WO2021176110A3 (en
Inventor
Manuel Muñoz Saiz
Original Assignee
Munoz Saiz Manuel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES201900235U external-priority patent/ES1237025Y/en
Priority claimed from ES202000192U external-priority patent/ES1250705Y/en
Application filed by Munoz Saiz Manuel filed Critical Munoz Saiz Manuel
Priority to CA3138428A priority Critical patent/CA3138428A1/en
Priority to EP20923043.2A priority patent/EP3964688A4/en
Publication of WO2021176110A2 publication Critical patent/WO2021176110A2/en
Publication of WO2021176110A3 publication Critical patent/WO2021176110A3/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • F01C1/123Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with tooth-like elements, extending generally radially from the rotor body cooperating with recesses in the other rotor, e.g. one tooth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • F01C11/004Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons

Definitions

  • FIELD OF THE INVENTION Thermal engines that use fossil fuels, bi-fuel, hydrogen or mixed, etc. Useful in hybrid vehicles due to its simplicity, low weight and size, being able to use the electric motor only in the city.
  • STATE OF THE ART. It is documented that up to 1910 more than 2000 rotary engines had been patented, only the Wankel engine having been partially successfully highlighted, which despite its advantages as a rotary presents difficulties in design, manufacture, maintenance, high cost, high oil consumption and is affected by wear, causing loss of fluidity over time, they need a very strict or delicate fuel application timing and the rotors and eccentric rotating elements generate vibrations or oscillations. Its rotational speed is limited to about 9000 rpm. Subsequently they have been studied mainly by Audi, Curt ⁇ s Wright, Daimler-Benz, Ford, General Motors, John Deere, Mazda, NSU, Nissan and Rotary Power International among others. DESCRIPTION OF THE INVENTION.
  • valves, vanes, cams, alternative elements, or eccentric rotating elements there are no oscillations, vibrations, knocking or friction, allowing very high rpm and the use of ceramic materials, magnesium and aluminum alloys with anodizing hard.
  • the pairs of rotors rotating in the opposite direction counteract gyroscopic effects, avoiding gyroscopic precession and vibrations. Even in the Wankel engine the rotors and other parts rotate eccentrically. For most of the advantages or properties mentioned this engine is unique and hard to beat.
  • the rotary internal combustion engine of the invention consists of using two or more interconnected cylindrical chambers, inside which cylindrical elliptical rotors rotate, or cylindrical rotors with elliptical, semi-elliptical, circular, semi-circular, or elliptical lobes, lobes or teeth, semi-elliptical, circular or semi-circular whose outermost peripheral zone has a curvature equal to that of the casing, trapezoidal or trapezoidal with their curved side faces, partially annular or cam-like, which mesh or interrelated with the rotors, or with the lobes or teeth of the rotors, contiguous or with cavities arranged around them, but maintaining a separation between them and their casings of between 0.2 and 3mm.
  • the teeth of the partially annular rotors mesh in cavities that are also partially annular of the adjoining rotors whose forward and / or reverse faces have a concave or convex curvature, that of the teeth of a conventional gear, the curvature reversed to that of the teeth. of said conventional gears, hook or claw shape, dovetail corner or circle segment.
  • Engines can be made up of:
  • One face carries the inlet orifice and the other the outlet of said orifice or housing chamber.
  • the partitions can be formed by two halves inside which the hollow chamber with an inlet and an outlet orifice, b) Through external conduits sending continuous flow Fig.
  • Elliptical or cylindrical rotors with one or two peripheral lobes or cylindrical rotors with partially annular lobes that dovetail with other lobe rotors or with peripheral cavities can be used.
  • the rotors of every two pairs of rotors use two axes common to them.
  • the pressurized air can be sent through a conduit to a carburetor or mixing chamber at high or medium pressure from the compression chamber, discharging it into the combustion chamber through an intermediate chamber that acts as a valve.
  • a conduit to a carburetor or mixing chamber at high or medium pressure from the compression chamber, discharging it into the combustion chamber through an intermediate chamber that acts as a valve.
  • pairs of rotors of different sizes will be used.
  • the two pairs of each motor can be of a different type.
  • the discharge of the fluid under pressure from the first pair of rotors is done through one of the rotors that acts as a valve, it opens when the peripheral cavity of one of the rotors coincides or passes over the mouth of the outlet conduit.
  • the second pair is out of phase so that the initial expansion-exhaust chamber coincides with the maximum compression flow outlet of the first. It can also have a selector valve between both pairs, or the discharge moment can be regulated through a channel made in one of the rotors of the second pair, which will allow discharge when the combustion-expansion chamber is of minimum dimensions.
  • the compressed air or mixture can be stored in an external chamber from which it is discharged into the combustion chamber at the moment when it is created or unblocked by the rotor.
  • the shafts are supported at each of their ends by a bearing. These bearings are supported axially on the steps of the rotor shafts and may protrude from the lateral faces of the chambers or may be internal to them.
  • the exit of gases from the exhaust chamber can be carried out a) Directly through some ports, b) Through the rotor that acts as a valve during its rotation or c) Through a conduit and through the intermediate storage chamber integrated in the rotor.
  • Secondary chambers can use cams instead of cylindrical rotors with peripheral cavities.
  • the engines can use fans or turbines in the uncovered inner central area of the chambers and rotors, useful to support and / or propel the aircraft, the blades of the fans act as support for the rotors, being attached to these and to the shafts.
  • Materials with low coefficient of expansion, invar., Etc., and magnesium or aluminum alloys with small amounts of copper, silicon, magnesium and / or zinc can be used to which hard anodized aluminum oxide is applied, of approximately from 50 to 150 microns, these anodized ones produce one half integrated with the aluminum material and the other half as an external layer, providing in addition to its low weight, ease of manufacture and machining, great hardness, great resistance to abrasion and valid up to temperatures 2000 ° K.
  • Advanced ceramic materials of high temperature, toughness and hardness can be used such as: Alumina (A2O3), Zirconia, (ZrO ?.), Silicon Carbide (SiC), Aluminum Titanate (AI2TIO5), Silicon Nitride, (S ⁇ 3N4), etc. alloys of these with metals and for coatings. Aluminum, Silicon and even Zirconium will be used for their abundance and low cost.
  • Hard anodized or ceramic coatings can be reinforced or thicker in higher temperature areas.
  • Asymmetric or single lobe rotors are fitted with higher density holes, drills or bolts for internal balancing or compensation, avoiding oscillations or vibrations, this can be done during manufacture.
  • helical gears can be made of steel or thermoplastic materials and for higher temperatures thermosetting plastics reinforced and mixed, or not, with synthetic fibers, which reduce weight and noise.
  • Engines can use an overpressurized chamber between rotors and housings, and / or add a rotary valve over the intake and / or exhaust port, reducing leakage when the ports are plugged.
  • Said overpressure chamber is especially useful on the rotor and intake port.
  • Rings, projections or projections of metal or semi-rigid material or high temperature polymer can be added around the intake port that act as gaskets, of the orifices at the ends of the ducts for the transfer of air or compressed mixture, in the sides and tangential edges of the teeth or lobes of the cylindrical rotors and in the vicinity of the edges of the rotors, and in the generatrices of the rotors and radially or diametrically at their bases, embedded in circular or shaped channels dovetail. In the case of rubbing, these wear without causing deterioration of the rubbing areas.
  • These projections can be made of the same material as the rotors or ducts. They are very useful in compressor elements and between the ends of the ducts and the surface of the rotors where less separation can be allowed and can be manually adjustable from the outside making them mobile.
  • Engines that use a single valve or peripheral chamber and can produce intake-compression and expansion-exhaust in alternating cycles.
  • F.I high thermal insulation allows adiabatic operation, without heat transfer, which makes better use of the heat produced and does not need or reduces cooling, achieving higher performance.
  • Liquid or air cooling can also be used by adding fins.
  • the separation between the rotors and their casings can be set according to the materials used so that as the temperature increases the separations are adjusted to values between 0.2 and 3mm, for this, different materials can be used in the rotors and in their casings or by applying more cooling at certain points.
  • the pairs of rotors rotate in the opposite direction, compensating or balancing, and avoiding or counteracting their gyroscopic effect.
  • the bearings can be placed in the external zone of the main chambers separated by seals, retainers or gaskets.
  • gears or toothed belts with their shafts or of the teeth or lobes with their rotors may carry dovetail elements or fusible keys, which are divided or fractured in the event of seizure of the rotors or other elements.
  • the ducts can carry a check valve which opens by pressing the pressurized flow on a ball, bulen or reed, and closes by the effect of centrifugal force instead of a spring, for this it is convenient to direct the ducts radially or with a small inclination with respect to said radial direction.
  • Pressurized air can be transferred to the combustion chamber through the rotor and inside the shafts.
  • High temperature semi-liquid or pasty lubricants can be used in some areas between rotors and housings.
  • the ports are located peripherally and radially or on the sides of the chambers.
  • the energy of the exhaust gases is recovered with turbines or turbochargers.
  • a variant uses two pairs of cylindrical chambers, each with a rotor with a single tooth, both teeth are tongue-and-groove synchronously driven by two gears.
  • Two-stroke engines can be made, but it is not very practical since the four-stroke engines used in the present invention are very simple. You can add a flywheel.
  • the system can be applied to engines with eccentric cylindrical rotors, to the Wankel engine and to the piston or reciprocating engines, removing segments, lubrication, etc. but it is not useful since the motors of the invention are simpler.
  • Figure 1 shows a schematic and partially sectioned view of the body of an engine with improvements to the system of the invention.
  • Figures 2 to 3, 4, 5, and 9 to 14 show schematic and partially sectioned views of variants of pairs of intake-compression or expansion-exhaust chambers.
  • Figure 3a shows a schematic and perspective view of the motor of Figure 3.
  • Figures 6, 7 and 8 show schematic views of rotary motor diagrams with external feedback circuits.
  • Figure 15 shows a schematic elevation view of a variant of motor as part of a fan
  • Figure 16 shows the duty cycle of one of the engines.
  • Figure 17 shows a schematic view of a variant with two pairs of chambers and their rotors.
  • Figure I shows an embodiment of an engine with two pairs of chambers each with two cylindrical rotors with lobes and peripheral tongue and groove cavities, one for admission-compression (la and Ib) and the other for explosion-expansion-escape, (lf and Ig), separated by the partition (29) with a through hole between both faces, between the inlet hole (s) and the outlet hole (z) that serves for accommodation and / or transfer of the compressed fluid and to determine the moment of discharge in the next couple.
  • Rotors or lobes are used as valves. The transfer between pairs can also be done through external conduits. Shows spark plug (7) and injector (18).
  • the shafts carry the steps (20) and are supported on the bearings (19) and these on the covers (87, lf, lg) avoiding axial displacement of the rotors.
  • Figure 2 shows a motor similar to that of figure 1, it differs in that it carries two equal chambers (Im and In) and a double rotor in each one and without a separating partition.
  • the rotor on the left consists of the upper cylindrical section (Rml) with the tooth (2p) that meshes in the upper section of the right or adjacent rotor (Rnl) between them, the compression intake chamber is created, and its lower cylindrical section (Rm2 ) in which the tooth (2q) of the lower section of the right or adjacent rotor (Rn2) engages between them, the expansion-exhaust chamber is created.
  • the compressed air in the cavity by the tooth passes from the compression chamber to the explosion or expansion chamber through an opening in the central area as in Figures 10, 15 or 19, with the corresponding phase shift.
  • Figure 3 has only one couple of attached chambers, (lm and In) there is no separating partition between the intake-compression and expansion-exhaust zones, the two upper halves or portions (Rpl and Rql produce the admission and compression of the mixture or air and at the end of compression it is applied to the two lower halves or expansion portions and escape.
  • the hook next to the intake chamber (Ca) produces the intake and the opposite of the same rotor the final compression (Fe) of the compression chamber (Ce).
  • one hook provides the expansion and the other the exhaust.
  • the rotors are single lobe, their masses are compensated internally and it is emptied to reduce weight or holes (30) are made. It shows the inlet nozzle (8) and the outlet nozzle (9) is in the exhaust expansion zone.
  • the lobes can be similar to those of Figure 2A, even without the hooks at their ends.
  • Figure 3a shows the couple of attached chambers, (lm and In) of figure 20A, also without a separating partition, the two upper halves or portions (Rpl and Rql) produce the admission and compression of the mixture or air and at the end of the compression is applied to the two lower halves or portions Rp2 and Rq2). Shows the phase shift between the compression intake part and the exhaust expansion part.
  • the rotors of Figures 2 to 3a may be twisted in order to vary the final moment of compression with that of explosion or start of expansion.
  • Figure 4 shows a motor formed by two pairs of chambers with the bearings inside the rotors.
  • the compression chamber is larger or larger than the exhaust expansion chamber, but it may be smaller.
  • the partition wall carries the inlet (s) and the outlet (z) of the duct that connects the two pairs of rotors. You may only need the retainer (91).
  • Figure 5 shows a motor made up of two pairs of chambers with the bearings on the outside of the rotors.
  • the compression chamber (la and Ib) is of greater dimension or volume than the exhaust expansion chamber (lf and lg).
  • the partition wall carries the inlet (s) and the outlet (z) of the duct that connects the two pairs of rotors.
  • the rotors (4) of the compression chamber act simultaneously as drive gears and together with their shafts (3) synchronize the movement of the four rotors.
  • the bearings (19) are covered by the casing (87a) and rest on the steps or stops (20) of the shaft.
  • the pair of rotors of the exhaust expansion chamber can be any of those used in the rest of the patent. Add the spark plug (7) and the injector (18). These need greasing in the gears or rotors of the compression chambers but they are not high temperature.
  • Figure 6 shows the cylindrical chambers of an engine (85) and the independent cover (87) of the gears (4) of an engine whose exhaust gases are applied to the centrifugal turbine (81) through the conduit (80) and with the axis (3a) common to both, is They reheat by recovering the energy of the gases.
  • Figure 7 shows the cylindrical chambers of an engine (85) and housing (87) of the toothed belt (24) of an engine whose exhaust gases are applied to the axial turbine (86) and through the shaft (3a) common to both are fed back, recovering the energy of the gases.
  • Figure 8 shows the cylindrical chambers of an engine (85) and the cover (87) of the gears (4) the exhaust gases (80) are applied to a turbocharger formed by a turbine (81) that drives the compressor (82) , which sends pressurized air through the duct (83) to a heat exchanger (84) and from this to the combustion chamber or carburetor (72), the energy of the exhaust gases compresses and sends the air to the intake the motor.
  • a turbocharger formed by a turbine (81) that drives the compressor (82) , which sends pressurized air through the duct (83) to a heat exchanger (84) and from this to the combustion chamber or carburetor (72), the energy of the exhaust gases compresses and sends the air to the intake the motor.
  • Figure 9 shows an engine formed by two pairs of chambers, the intake-compression pair with the main chamber (la) with a cylindrical rotor with one or two lobes and these the semi-rigid joints (2p) and a minor or secondary one (Ib ) with a rotor that has one or two peripheral cavities where the main chamber rotor lobe is housed during its rotation.
  • the mixture or compressed air is discharged when the discharge duct is uncovered through the peripheral cavity of the chamber rotor (Ib), leading to the second pair of explosion-expansion-exhaust chambers (lf and lg), where ignition occurs with the spark plug (7).
  • FIG. 10 shows an engine formed by two pairs of chambers, the intake-compression pair (la. Ib), with a cylindrical rotor with two hook or claw-type lobes in chamber (la) with the gaskets (2q) and the other rotor with the cavities complementary to said hooks.
  • the mixture or compressed air is discharged into the second pair of expansion-exhaust chambers, (lfy 1g) where ignition occurs by means of the spark plug (7).
  • Figure 11 shows an engine formed by two pairs of chambers, the intake-compression pair (la, Ib), with a cylindrical rotor with a hook or claw-type lobe in the chamber (la) with the seals (2q) and the other rotor with the cavity complementary to said hook.
  • the mixture or compressed air is discharged into the second pair of expansion-exhaust chambers, (lf and lg) where the ignition occurs by means of the spark plug (7).
  • Figure 12 shows an engine formed by two pairs of chambers, the intake-compression pair with the main chamber (la) with a cylindrical rotor with a semicircular lobe and a minor or secondary (Ib) with a rotor with a peripheral cavity where the main rotor lobe is housed during its rotation.
  • the mixture or compressed air is discharged by (x) or by (y) when the discharge duct is opened through the peripheral cavity of the chamber rotor (Ib), leading to the second pair of explosion-expansion-escape chambers, (lf and lg). It is very efficient if the discharge is done in the combustion chamber (Ce) shown between the lobe and the rotors. Use two different types of rotor pairs.
  • Figure 13 shows an engine made up of two pairs of chambers, the intake-compression pair (la, Ib) with the chamber (la) with a cylindrical rotor with two partially annular lobes, each with faces or ends in the shape of a hook or claw.
  • the compressed fluid is discharged into the second pair of explosion-expansion-exhaust chambers, (If, lg), igniting with a spark plug not shown in the figure.
  • Figure 14 shows an engine made up of two pairs of chambers, the two-chamber intake-compression pair, one with a four-lobed rotor and the other with six cavities for housing the lobes of the first, main or larger ( la) and minor (Ib).
  • the mixture or compressed air is discharged into the second pair of explosion-expansion-exhaust chambers, (If and lg), where the ignition is produced by means of a spark plug not shown in the figure.
  • the chamber pairs in Figures 13 and 14 are more typical of continuous flow engines and may have a compression chamber and intermediate storage.
  • Figure 15 shows a two-chamber motor (Ir and It) similar to that used in figure 1, whose interior areas are uncovered and carry fans (53) whose blades are part of the rotors, being attached to these and to the shafts, rotating on their axes supported on the supports (54). It is valid to support and / or propel aircraft. Chambers and gears are fairings.
  • Figure 16 shows the duty cycle of these engines as a function of the pressure and volume applied to them, after admission adiabatic compression occurs, continuing the explosion of the applied air-fuel mixture (Qp) increasing the pressure to constant volume and then adiabatic expansion applying motive force and / or work to the rotor shaft.
  • the exhaust yields part of the energy that has not been used (Qo) in the form of heat. Either its energy is fed back to the engine intake by means of a turbocharger or directly and mechanically to the shaft by means of a centrifugal or axial turbine.
  • Figure 17 shows two contiguous and interconnected cylindrical chambers (1m and 1n) with each other, inside which cylindrical rotors (Rm1 and Rn1) rotate tongue and groove Driven synchronized by two gears, with a single tooth each, in the first chamber the air drawn in through the nozzle (8) is compressed by the intake chamber (Ca), created between the rotor tooth and the casing, between the housing and the opposite side of the tooth compresses the air in the compression chamber (Ce), exiting through (Fe).
  • the compressed air through the check limiting valve (29rs) passes to a temporary storage chamber (35) and from here it is sent synchronously to the explosion, expansion and exhaust chamber where the toothed rotors (Rm2 and Rn2).
  • Some eccentric or asymmetric rotors without compensation holes carry internal balancing or compensation, and this is done during manufacture.
  • the compression chambers of the engines of Figures 9 to 14 can be of different dimensions or volumes than those of the exhaust expansion, and in the continuous flow the rotors do not need to be synchronized, they can have an intermediate chamber and the outlet duct compression due to its small size facilitates compression.
  • the air is transferred from the maximum compression chamber to the combustion chamber or the minimum volume chamber of the exhaust expansion chamber, and its outlet and inlet ports or mouths are applied indistinctly on the front or side of the engines.
  • the motors use two identical gears.
  • the angular velocity must be the same.
  • the inlet and outlet nozzles can be covered with an attenuating housing.
  • a manual adjustment can reduce the approach in the critical areas of the rotors.
  • the rotors can be hollow to reduce the weight of the motors.

Abstract

The invention relates to a rotary internal combustion engine, consisting of two or more interconnected cylindrical chambers inside of which rotate elliptical cylindrical rotors or cylindrical rotors with elliptical lobes or teeth, which mesh or engage interconnectedly with contiguous rotors, or with the lobes or teeth thereof, or with cavities disposed around same, but maintaining a separation of approximately 0.2-3 mm between the rotors and their cases, the rotors being synchronously actuated by gears or toothed belts. The rotors have conical, axial or mixed bearings, tiered support shafts, and seals between the joints of the cases and the joints of the cases with the shafts. The rotors or the lobes of the cylindrical rotors pull and compress the air suctioned and trapped between the rotor or lobes and the case of the main chamber, discharging it into the combustion chamber. The shafts can form a single piece with the rotors.

Description

MOTOR ROTATIVOS DE COMBUSTIÓN INTERNA INTERNAL COMBUSTION ROTARY ENGINES
CAMPO DE LA INVENCIÓN.- Er¡ motores térmicos que usan combustibles fósiles, biacombustibies, hidrógeno o mixtos, etc. Útiles en vehículos híbridos por su sencillez, bajo peso y tamaño, pudiendo usar el motor eléctrico solo en la ciudad. ESTADO DE LA TÉCNICA.- Está documentado que hasta el 1910 se habían patentado mas de 2000 motores rotativos, habiendo destacado parcialmente con éxito solamente el motor Wankel, el cual a pesar de sus ventajas como rotativo presenta dificultades de diseño, fabricación, mantenimiento, alto coste, gran consumo de aceite y es afectado por el desgaste, produciéndose pérdida de esfanqueídad con el tiempo, necesitan una sincronización de aplicación del combustible muy estricta o delicada y los rotores y elementos giratorios excéntricos generan vibraciones u oscilaciones. Su velocidad de giro está limitada a unas 9000 rpm. Posteriormente han sido estudiados principalmente por Audi, Curtís Wright, Daimler-Benz, Ford, General Motors, John Deere, Mazda, NSU, Nissan y Rotary Power Internacional entre otros. DESCRIPCIÓN DE LA INVENCIÓN. FIELD OF THE INVENTION.- Thermal engines that use fossil fuels, bi-fuel, hydrogen or mixed, etc. Useful in hybrid vehicles due to its simplicity, low weight and size, being able to use the electric motor only in the city. STATE OF THE ART.- It is documented that up to 1910 more than 2000 rotary engines had been patented, only the Wankel engine having been partially successfully highlighted, which despite its advantages as a rotary presents difficulties in design, manufacture, maintenance, high cost, high oil consumption and is affected by wear, causing loss of fluidity over time, they need a very strict or delicate fuel application timing and the rotors and eccentric rotating elements generate vibrations or oscillations. Its rotational speed is limited to about 9000 rpm. Subsequently they have been studied mainly by Audi, Curtís Wright, Daimler-Benz, Ford, General Motors, John Deere, Mazda, NSU, Nissan and Rotary Power International among others. DESCRIPTION OF THE INVENTION.
Objetivo de la invención. Object of the invention.
Obtener un motor rotativo útil en todo tipo de vehículos en aviación, marina, ferrocarril, carretera y en general en toda la industria, el cual mejora las características de los motores existentes. Al utilizar una pequeña separación entre la carcasa y los dientes o lóbulos de los rotores, y altas o medias rpm, no se producen fugas ostensibles, ni se necesita lubricación en dicha zona interna, pudiendo considerarse este motor como un híbrido, combinación o paso intermedio entre los motores alternativos y las turbinas de gas, aportando y mejorando la mayoría de las ventajas de ambos: Sencillez, pocos elementos, economía, resistencia, fiabilidad, alta relación de compresión, elevada relación potencia/peso, gran potencia, alto rendimiento, alta eficiencia termodinámica (relación consumo/peso), altas revoluciones, buen aprovechamiento del combustible, la recuperación energía gases escape es muy simple, sin solape entre la admisión y el escape, evita la mezcla de los gases con el aire de admisión, con una mejor, mas perfecta y ecológica combustión y bajas emisiones, de fácil o nula refrigeración, que admite grandes y muy pequeñas dimensiones, por su sencillez, usando el eje y el rotor como una sola pieza solo se necesitarían dos piezas dentro de las cámaras Fig. 2. Ai no utilizar válvulas, paletas, levas, elementos alternativos, ni elementos giratorios excéntricos, no se producen oscilaciones, vibraciones, golpeteos ni rozamientos permitiendo muy altas rpm y el uso de materiales cerámicos, magnesio y aleaciones de aluminio con anodizados duros. A estas ventajas se añaden otras propias de los motores rotativos. Las parejas de rotores girando en sentido contrario contrarrestan los efectos giroscópicos, evitando la precesión giroscópica y vibraciones. Incluso en el motor Wankel los rotores y otras piezas giran excéntricamente. F.n la mayoría de las ventajas o propiedades mencionadas este motor es único y difícil de superar. Obtain a rotary engine useful in all types of vehicles in aviation, marine, rail, road and in general throughout the industry, which improves the characteristics of existing engines. By using a small gap between the casing and the teeth or lobes of the rotors, and high or medium rpm, there are no noticeable leaks, nor is lubrication needed in said internal area, and this engine can be considered as a hybrid, combination or intermediate step between reciprocating engines and gas turbines, providing and improving most of the advantages of both: simplicity, few elements, economy, resistance, reliability, high compression ratio, high power / weight ratio, high power, high performance, high thermodynamic efficiency (consumption / weight ratio), high revolutions, good fuel efficiency, exhaust gas energy recovery is very simple, without overlap between intake and exhaust, avoids mixing of gases with intake air, with a better , more perfect and ecological combustion and low emissions, easy or nil cooling, which admits large and very small dimensions, due to its simplicity, using the shaft and rotor As a single piece, only two pieces would be needed inside the chambers. Fig. 2. If you do not use valves, vanes, cams, alternative elements, or eccentric rotating elements, there are no oscillations, vibrations, knocking or friction, allowing very high rpm and the use of ceramic materials, magnesium and aluminum alloys with anodizing hard. To these advantages are added others typical of rotary engines. The pairs of rotors rotating in the opposite direction counteract gyroscopic effects, avoiding gyroscopic precession and vibrations. Even in the Wankel engine the rotors and other parts rotate eccentrically. For most of the advantages or properties mentioned this engine is unique and hard to beat.
Problemas a resolver Problems to solve
Los motores actuales son ruidosos, producen vibraciones, tienen muchas pérdidas, son pesados, necesitan muchas piezas y mantenimiento, producen mucha contaminación y por lo tanto son poco ecológicos. Los rotativos como el Wankel son muy afectados por el desgaste y producen vibraciones Today's engines are noisy, they produce vibrations, they have a lot of losses, they are heavy, they need many parts and maintenance, they produce a lot of pollution and therefore they are not very ecological. Rotaries such as the Wankel are highly affected by wear and tear and produce vibrations
El motor rotativo de combustión interna de la invención, consiste en utilizar dos o mas cámaras cilindricas intercomunicadas entre sí, en cuyo interior giran unos rotores cilindrico elípticos, o cilindricos con lóbulos o dientes elípticos, semielipticos, circulares, semicirculares, o bien lóbulos elípticos, semielipticos, circulares o semicirculares cuya zona periférica mas externa tiene una curvatura igual a la de la carcasa, trapeciales o trapeciales con sus caras laterales curvas, parcialmente anulares o a modo de levas, los cuales engranan o machihembran interrelacionados con los rotores, o con los lóbulos o dientes de los rotores, contiguos o con unas cavidades dispuestas alrededor de los mismos, pero manteniendo una separación entre ellos y sus carcasas de entre 0.2 y 3mm. aproximadamente, accionados sincronizados mediante unos engranajes, correas dentadas o cadenas, ubicados en una caja de engranajes contigua e independiente extema a las cámaras cilindricas. Con los cojinetes cónicos, axiales o mixtos, ejes escalonados de soporte, y retenes entre las uniones de las carcasas y de estas con los ejes. Los rotores o los lóbulos de los rotores cilindricos arrastran y comprimen el aire aspirado y atrapado entre dichos rotores o lóbulos y la carcasa de la cámara principal, descargándolo en la cámara de combustión. Los ejes pueden formar una única pieza con sus rotores. The rotary internal combustion engine of the invention consists of using two or more interconnected cylindrical chambers, inside which cylindrical elliptical rotors rotate, or cylindrical rotors with elliptical, semi-elliptical, circular, semi-circular, or elliptical lobes, lobes or teeth, semi-elliptical, circular or semi-circular whose outermost peripheral zone has a curvature equal to that of the casing, trapezoidal or trapezoidal with their curved side faces, partially annular or cam-like, which mesh or interrelated with the rotors, or with the lobes or teeth of the rotors, contiguous or with cavities arranged around them, but maintaining a separation between them and their casings of between 0.2 and 3mm. approximately, actuated synchronously by means of gears, toothed belts or chains, located in an adjacent and independent gearbox external to the cylindrical chambers. With conical, axial or mixed bearings, stepped support shafts, and seals between the joints of the casings and of these with the shafts. The rotors or lobes of the cylindrical rotors drag and compress the air drawn in and trapped between said rotors or lobes and the main chamber casing, discharging it into the combustion chamber. The shafts can form a single piece with their rotors.
Los dientes de los rotores parcialmente anulares engranan en cavidades también parcialmente anulares de los rotores contiguos cuyas caras de avance y/o de retroceso tienen una curvatura cóncava o convexa, la de los dientes de un engranaje convencional, la curvatura invertida a la de los dientes de dichos engranajes convencionales, forma de gancho o garra, de esquina de cola de milano o de segmento de círculo. The teeth of the partially annular rotors mesh in cavities that are also partially annular of the adjoining rotors whose forward and / or reverse faces have a concave or convex curvature, that of the teeth of a conventional gear, the curvature reversed to that of the teeth. of said conventional gears, hook or claw shape, dovetail corner or circle segment.
Los motores pueden estar constituidos por: Engines can be made up of:
Una o mas parejas de cámaras cilindricas, de igual o distinto tamaño con dos rotores accionados por dos engranajes o correas dentadas, una o mas parejas de admisión-compresión, que pueden proporcionar altas presiones, que descargan en una o mas parejas de expansión escape, estando dichas parejas interconectadas: a) Por un tabique (29) con un orificio pasante entre ambas caras (29a), que sirve para alojamiento y/o trasvase del fluido comprimido y para determinar el momento de su desfasaje y descarga en la pareja siguiente. Una cara porta el orificio de entrada y la otra el de salida de dicho orificio o cámara de alojamiento. Los tabiques pueden estar formados por dos mitades en cuyo interior porta la cámara hueca con un orificio de entrada y otro de salida, b) Por conductos externos enviando flujo continuo Fig. 9-14 y c) Una abertura o comunicación entre sendas cámaras por su zona central o similar al motor de la figural, I, 12, etc. Una variante porta solo una pareja de cámaras, figuras 2 y 3, no existe tabique, las dos mitades o porciones superiores producen la admisión y compresión de la mezcla o aire y al final de la compresión se aplica a las dos mitades o porciones inferiores de expansión y escape en el momento de la explosión y cuando inician la expansión. En el de la figura 2 el gancho derecho produce la admisión y el derecho siguiente la compresión. De forma parecida en la mitad inferior un gancho proporciona la expansión y el otro el escape. En este caso por ser los rotores de un solo lóbulo se vacía y compensa interiormente. One or more pairs of cylindrical chambers, of equal or different size with two rotors driven by two gears or toothed belts, one or more pairs of admission-compression, which can provide high pressures, which discharge in one or more exhaust expansion couples, said couples being interconnected: a) By a partition (29) with a through hole between both faces (29a), which serves for housing and / or transfer of the compressed fluid and to determine the moment of its phase shift and discharge in the next couple. One face carries the inlet orifice and the other the outlet of said orifice or housing chamber. The partitions can be formed by two halves inside which the hollow chamber with an inlet and an outlet orifice, b) Through external conduits sending continuous flow Fig. 9-14 and c) An opening or communication between the two chambers in its area central or similar to the motor of figural, I, 12, etc. A variant carries only one pair of chambers, figures 2 and 3, there is no partition, the two upper halves or portions produce the admission and compression of the mixture or air and at the end of the compression it is applied to the two lower halves or portions of expansion and escape at the time of the explosion and when the expansion begins. In the one in figure 2, the right hook produces the admission and the right following the compression. Similarly in the lower half one hook provides the expansion and the other the escapement. In this case, since they are single-lobe rotors, it is emptied and compensated internally.
Pueden utilizarse rotores cilindrico elípticos o cilindricos con uno o dos lóbulos periféricos o cilindricos con unos rotores con lóbulos parcialmente anulares que machihembran con otros rotores lobulares o con cavidades periféricas Fig. 1 y 9 a la 14. Los rotores de cada dos parejas de rotores utilizan dos ejes comunes a las mismas. Elliptical or cylindrical rotors with one or two peripheral lobes or cylindrical rotors with partially annular lobes that dovetail with other lobe rotors or with peripheral cavities can be used. Fig. 1 and 9 to 14. The rotors of every two pairs of rotors use two axes common to them.
El aire a presión se puede enviar mediante un conducto a un carburador o cámara de mezcla a una presión alta o media procedente de la cámara de compresión, descargándolo en la cámara de combustión a través de una cámara intermedia que actúa de válvula. Preferentemente se utilizarán parejas de rotores de distinto tamaño. Las dos parejas de cada motor pueden ser de tipo distinto entre sí. The pressurized air can be sent through a conduit to a carburetor or mixing chamber at high or medium pressure from the compression chamber, discharging it into the combustion chamber through an intermediate chamber that acts as a valve. Preferably, pairs of rotors of different sizes will be used. The two pairs of each motor can be of a different type.
La descarga del fluido a presión desde la primera pareja de rotores se hace a través de uno de los rotores que hace de válvula, abre al coincidir o pasar la cavidad periférica de uno de los rotores sobre la boca del conducto de salida. La segunda pareja está desfasada para que coincida la cámara de expansión-escape inicial con la salida de flujo de máxima compresión de la primera. También puede tener una válvula selectora entre ambas parejas, o puede regularse el momento de descarga a través de un canal realizado en uno de los rotores de la segunda pareja, el cual permitirá la descarga cuando la cámara de combustión-expansión es de mínimas dimensiones. En todos los casos el aire o mezcla comprimida puede almacenarse en una cámara externa desde la cual se descarga en la cámara de combustión en el momento en que esta se crea o es desobturada por el rotor. The discharge of the fluid under pressure from the first pair of rotors is done through one of the rotors that acts as a valve, it opens when the peripheral cavity of one of the rotors coincides or passes over the mouth of the outlet conduit. The second pair is out of phase so that the initial expansion-exhaust chamber coincides with the maximum compression flow outlet of the first. It can also have a selector valve between both pairs, or the discharge moment can be regulated through a channel made in one of the rotors of the second pair, which will allow discharge when the combustion-expansion chamber is of minimum dimensions. In all cases, the compressed air or mixture can be stored in an external chamber from which it is discharged into the combustion chamber at the moment when it is created or unblocked by the rotor.
Los ejes son soportados de cada uno de sus extremos por un cojinete. Estos cojinetes se apoyan axialmente en los escalones de los ejes de los rotores y pueden sobresalir de las caras laterales de las cámaras o pueden ser interiores a las mismas. The shafts are supported at each of their ends by a bearing. These bearings are supported axially on the steps of the rotor shafts and may protrude from the lateral faces of the chambers or may be internal to them.
La salida de gases de la cámara de escape se puede efectuar a) Directamente por unas lumbreras, b) A través del rotor que actúa de válvula durante su giro o c) Por un conducto y a través de la cámara intermedia de almacenaje integrada en el rotor. The exit of gases from the exhaust chamber can be carried out a) Directly through some ports, b) Through the rotor that acts as a valve during its rotation or c) Through a conduit and through the intermediate storage chamber integrated in the rotor.
Las cámaras secundarias pueden usar levas en vez de rotores cilindricos con cavidades periféricas. Secondary chambers can use cams instead of cylindrical rotors with peripheral cavities.
Los motores pueden usar unos fanes o turbinas en zona central interior descubierta de las cámaras y rotores, útiles para sustentar y/o propulsar las aeronaves, los alabes de los fanes hacen de soporte de los rotores, estando unidos a estos y a los ejes. The engines can use fans or turbines in the uncovered inner central area of the chambers and rotors, useful to support and / or propel the aircraft, the blades of the fans act as support for the rotors, being attached to these and to the shafts.
Se usan encendidos convencionales, electrónicos, láser o de bujía incandescente, en o junto a la cámara de combustión los cuales pueden ser obturados por el propio rotor dejándolos descubiertos en el momento en que se crea la cámara de combustión y/o se inyecta el combustible. En lugar de la bujía de filamento puede usarse un filamento cuyo material se mantiene incandescente como consecuencia de la combustión intermitente. Conventional, electronic, laser or glow plug ignitions are used in or next to the combustion chamber which can be blocked by the rotor itself, leaving them uncovered when the combustion chamber is created and / or the fuel is injected. . Instead of the filament plug, a filament whose material remains incandescent as a result of intermittent combustion can be used.
Pueden usarse materiales de bajo coeficiente de dilatación, invar., etc., y aleaciones de magnesio o de aluminio con pequeñas cantidades de cobre, silicio, magnesio y/o zinc a las cuales se les aplican anodizados duros de oxido de aluminio, de aproximadamente de 50 a 150 mieras, dichos anodizados producen una mitad integrada con el material de aluminio y la otra mitad como capa externa, proporcionando además de su bajo peso, facilidad de fabricación y mecanizado, gran dureza, gran resistencia a la abrasión y válidos hasta temperaturas de 2000°K. Pueden usarse materiales cerámicos avanzados de alta temperatura, tenacidad y dureza como: La Alúmina (A2O3), Zirconia, (ZrO?.), Carburo de silicio (SiC), Titanato de Aluminio (AI2TÍO5), Nitruro de Silicio, (SÍ3N4), etc. aleaciones de estos con metales y para revestimientos. Se usarán por su abundancia y bajo coste el Aluminio, el Silicio e incluso el Zirconio. Los anodizados duros o los revestimientos cerámicos pueden reforzarse o ser de mayor grosor en las zonas de mayor temperatura. Materials with low coefficient of expansion, invar., Etc., and magnesium or aluminum alloys with small amounts of copper, silicon, magnesium and / or zinc can be used to which hard anodized aluminum oxide is applied, of approximately from 50 to 150 microns, these anodized ones produce one half integrated with the aluminum material and the other half as an external layer, providing in addition to its low weight, ease of manufacture and machining, great hardness, great resistance to abrasion and valid up to temperatures 2000 ° K. Advanced ceramic materials of high temperature, toughness and hardness can be used such as: Alumina (A2O3), Zirconia, (ZrO ?.), Silicon Carbide (SiC), Aluminum Titanate (AI2TIO5), Silicon Nitride, (SÍ3N4), etc. alloys of these with metals and for coatings. Aluminum, Silicon and even Zirconium will be used for their abundance and low cost. Hard anodized or ceramic coatings can be reinforced or thicker in higher temperature areas.
A los rotores asimétricos o con un solo lóbulo se le aplican unos orificios, taladros o unos bulones de mayor densidad para la compensación o equilibrado interno, evitando oscilaciones o vibraciones, esto puede hacerse durante la fabricación. Asymmetric or single lobe rotors are fitted with higher density holes, drills or bolts for internal balancing or compensation, avoiding oscillations or vibrations, this can be done during manufacture.
Los engranajes generalmente helicoidales pueden ser de acero o de materiales termoplásticos y para mayores temperaturas plásticos termoestables reforzados y mezclados, o no, con fibras sintéticas, los cuales reducen el peso y los ruidos. Generally helical gears can be made of steel or thermoplastic materials and for higher temperatures thermosetting plastics reinforced and mixed, or not, with synthetic fibers, which reduce weight and noise.
Los motores pueden utilizar una cámara sobrepresurizada entre los rotores y las carcasas, y/o añadir una válvula rotativa sobre la lumbrera de admisión y/o escape, reduciendo las fugas cuando las lumbreras están obturadas. Dicha cámara de sobrepresión es especialmente útil sobre el rotor y lumbrera de admisión. Engines can use an overpressurized chamber between rotors and housings, and / or add a rotary valve over the intake and / or exhaust port, reducing leakage when the ports are plugged. Said overpressure chamber is especially useful on the rotor and intake port.
Se pueden añadir unos anillos, resaltes o sobresalientes de metal o material semirrígido o polímero de alta temperatura alrededor de la lumbrera de admisión que actúan a modo de juntas, de los orificios en los extremos de los conductos de transvase del aire o mezcla comprimida, en los laterales y aristas tangenciales de los dientes o de los lóbulos de los rotores cilindricos y en la proximidad de las aristas de los rotores, y en las generatrices de los rotores y radial o diametralmente en sus bases, embutidos en unos canales circulares o en forma de cola de milano. En el caso de rozar estos se desgastan sin producir deterioro de las zonas de roce. Estos resaltes pueden ser del mismo material de los rotores o conductos. Son muy útiles en elementos compresores y entre los extremos de los conductos y la superficie de los rotores en donde se puede permitir menor separación y ser ajustable manualmente desde el exterior haciéndolos móviles. Rings, projections or projections of metal or semi-rigid material or high temperature polymer can be added around the intake port that act as gaskets, of the orifices at the ends of the ducts for the transfer of air or compressed mixture, in the sides and tangential edges of the teeth or lobes of the cylindrical rotors and in the vicinity of the edges of the rotors, and in the generatrices of the rotors and radially or diametrically at their bases, embedded in circular or shaped channels dovetail. In the case of rubbing, these wear without causing deterioration of the rubbing areas. These projections can be made of the same material as the rotors or ducts. They are very useful in compressor elements and between the ends of the ducts and the surface of the rotors where less separation can be allowed and can be manually adjustable from the outside making them mobile.
Los motores que utilizan una sola válvula o cámara periférica y pueden producir la admisión-compresión y la expansión-escape en ciclos alternos. Engines that use a single valve or peripheral chamber and can produce intake-compression and expansion-exhaust in alternating cycles.
F.I alto aislamiento térmico permite un funcionamiento adiabático, sin transferencia de calor, con lo cual se aprovecha mejor el calor producido y no se necesita refrigeración o se reduce esta, consiguiéndose un mayor rendimiento. F.I high thermal insulation allows adiabatic operation, without heat transfer, which makes better use of the heat produced and does not need or reduces cooling, achieving higher performance.
También puede usarse refrigeración por líquido o por aire añadiendo unas aletas.Liquid or air cooling can also be used by adding fins.
La separación entre los rotores y sus carcasas puede fijarse según los materiales utilizados de modo que al aumentar la temperatura las separaciones se ajusten a los valores de entre 0.2 y 3mm, para ello se pueden utilizar distintos materiales en los rotores y en sus carcasas o aplicando mayor refrigeración en ciertos puntos. The separation between the rotors and their casings can be set according to the materials used so that as the temperature increases the separations are adjusted to values between 0.2 and 3mm, for this, different materials can be used in the rotors and in their casings or by applying more cooling at certain points.
En los motores las parejas de rotores giran en sentido contrario, compensando o equilibrándose, y evitando o contrarrestando su efecto giroscópico. In engines, the pairs of rotors rotate in the opposite direction, compensating or balancing, and avoiding or counteracting their gyroscopic effect.
Los cojinetes pueden colocarse en la zona externa de las cámaras principales separados por sellos, retenes o juntas de estanqueidad. The bearings can be placed in the external zone of the main chambers separated by seals, retainers or gaskets.
En los lóbulos o dientes de los rotores y de los engranajes que se machihembran las longitudes de sus arcos serán iguales, realizándose de acuerdo con el tratado de Artobolevskí. De este modo aunque exista contacto no habrá rozamiento In the lobes or teeth of the rotors and gears that are tongue-and-groove the lengths of its arches will be equal, being carried out in accordance with the Artobolevskí treatise. In this way, even if there is contact, there will be no friction.
En la unión de los engranajes o correas dentadas con sus ejes o de los dientes o lóbulos con sus rotores pueden portar unos elementos colas de milano o chavetas fusibles, que se seccionan o fracturan en caso de agarrotamiento de los rotores o otros elementos. At the junction of the gears or toothed belts with their shafts or of the teeth or lobes with their rotors, they may carry dovetail elements or fusible keys, which are divided or fractured in the event of seizure of the rotors or other elements.
Los conductos pueden portar una válvula de retención la cual abre al presionar el flujo presurizado sobre una bola, bulen o lengüeta, y cierra por el efecto de la fuerza centrifuga en lugar de un muelle, para ello es conveniente direccíonar los conductos radialmente o con una pequeña inclinación respecto a dicha dirección radial. The ducts can carry a check valve which opens by pressing the pressurized flow on a ball, bulen or reed, and closes by the effect of centrifugal force instead of a spring, for this it is convenient to direct the ducts radially or with a small inclination with respect to said radial direction.
El aire presurizado puede transferirse a la cámara de combustión a través del rotor y por el interior de los ejes. Pressurized air can be transferred to the combustion chamber through the rotor and inside the shafts.
En algunas zonas entre rotores y carcasas se pueden utilizar lubricantes semilíquidos o pastosos de alta temperatura. High temperature semi-liquid or pasty lubricants can be used in some areas between rotors and housings.
Las lumbreras se sitúan periférica y radialmente o en los laterales de las cámaras. La energía de los gases de escape se recupera con turbinas o turbocompresores. Una variante usa dos parejas de cámaras cilindricas, cada una con un rotor con un único diente, ambos dientes se machihembran de forma sincronizada arrastrados por dos engranajes. The ports are located peripherally and radially or on the sides of the chambers. The energy of the exhaust gases is recovered with turbines or turbochargers. A variant uses two pairs of cylindrical chambers, each with a rotor with a single tooth, both teeth are tongue-and-groove synchronously driven by two gears.
Se pueden realizar motores de dos tiempos, pero no es muy práctico ya que son muy sencillos los de cuatro tiempos utilizados en la presente invención. Puede añadir un volante de inercia. El sistema se puede aplicar a motores con rotores cilindricos excéntricos, al motor Wankel y al de pistones o alternativos quitando segmentos, engrase, etc. pero no resulta utii ya que los motores de la invención son más sencillos. Two-stroke engines can be made, but it is not very practical since the four-stroke engines used in the present invention are very simple. You can add a flywheel. The system can be applied to engines with eccentric cylindrical rotors, to the Wankel engine and to the piston or reciprocating engines, removing segments, lubrication, etc. but it is not useful since the motors of the invention are simpler.
BREVE DESCRIPCIÓN DE LOS DIBUJOS BRIEF DESCRIPTION OF THE DRAWINGS
La figura 1 muestra una vista esquematizada y parcialmente seccionada del cuerpo de un motor con mejoras del sistema de la invención. Figure 1 shows a schematic and partially sectioned view of the body of an engine with improvements to the system of the invention.
Las figuras 2 a la 3, 4, 5, y 9 a la 14 muestran vistas esquematizadas y parcialmente seccionadas de variantes de parejas de cámaras de admisión-compresión o expansión-escape. figura 3a muestra una vista esquematizada y en perspectiva del motor de la figura 3. Figures 2 to 3, 4, 5, and 9 to 14 show schematic and partially sectioned views of variants of pairs of intake-compression or expansion-exhaust chambers. Figure 3a shows a schematic and perspective view of the motor of Figure 3.
Las figuras 6, 7 y 8 muestran vistas esquematizadas de diagramas de motores rotativos con circuitos de realimentación extemos al mismo. Figures 6, 7 and 8 show schematic views of rotary motor diagrams with external feedback circuits.
La figura 15 muestra una vista esquematizada y en alzado de una variante de motor formando parte de un fan Figure 15 shows a schematic elevation view of a variant of motor as part of a fan
La figura 16 muestra el ciclo de trabajo de uno de los motores. Figure 16 shows the duty cycle of one of the engines.
La figura 17 muestra una vista esquematizada de una variante con dos parejas de cámaras y sus rotores. Figure 17 shows a schematic view of a variant with two pairs of chambers and their rotors.
DESCRIPCIÓN MÁS DETALLADA DE LA INVENCIÓN La figura I muestra un modo de realización de un motor de dos parejas de cámaras cada una con dos rotores cilindricos con lóbulos y cavidades periféricas de machihembrado, una de admisión-compresión (la y Ib) y la otra de explosión-expansión- escape, (lf y Ig), separadas por el tabique (29) con un orificio pasante entre ambas caras, entre el orificio de entrada (s) y el de salida (z) que sirve para alojamiento y/o trasvase del fluido comprimido y para determinar el momento de descarga en la pareja siguiente. Se usan como válvulas los rotores o lóbulos, La transferencia entre parejas también puede hacerse mediante conductos externos. Muestra la bujía (7) y el inyector (18). Los dos engranajes (4) que soportan los dos ejes de los cuatro rotores, portan la cubierta (87) y los cojinetes inferiores en la figura, están cubiertos con la carcasa (87a) y son válidos para todos los motores de dos cámaras o parejas de cámaras. Con dichas cubiertas puede ser necesario solo el retén (91). Los ejes portan los escalones (20) se soportan en los cojinetes (19) y estos en las cubiertas (87, lf, lg) evitando el desplazamiento axial de los rotores. MORE DETAILED DESCRIPTION OF THE INVENTION Figure I shows an embodiment of an engine with two pairs of chambers each with two cylindrical rotors with lobes and peripheral tongue and groove cavities, one for admission-compression (la and Ib) and the other for explosion-expansion-escape, (lf and Ig), separated by the partition (29) with a through hole between both faces, between the inlet hole (s) and the outlet hole (z) that serves for accommodation and / or transfer of the compressed fluid and to determine the moment of discharge in the next couple. Rotors or lobes are used as valves. The transfer between pairs can also be done through external conduits. Shows spark plug (7) and injector (18). The two gears (4) that support the two shafts of the four rotors, carry the cover (87) and the lower bearings in the figure, are covered with the casing (87a) and are valid for all motors with two chambers or pairs. of cameras. With such covers, only the retainer (91) may be required. The shafts carry the steps (20) and are supported on the bearings (19) and these on the covers (87, lf, lg) avoiding axial displacement of the rotors.
Para no repetir, en todos los motores los rotores, lóbulos o dientes de los rotores arrastran y comprimen el aire aspirado y atrapado entre los rotores o los lóbulos y la carcasa de la cámara principal, descargándolo en la cámara de combustión. In order not to repeat, in all engines the rotors, lobes or teeth of the rotors drag and compress the air sucked in and trapped between the rotors or lobes and the main chamber casing, discharging it into the combustion chamber.
La figura 2 muestra un motor similar al de la figura 1, difiere en que porta dos cámaras iguales (Im y In) y un rotor doble en cada una y sin tabique separador. El rotor de la izquierda consta del tramo cilindrico superior (Rml) con el diente (2p) que engrana en el tramo superior del rotor derecho o contiguo (Rnl) entre ambos se crea la cámara de admisión compresión, y su tramo cilindrico inferior (Rm2) en el cual engrana el diente (2q) del tramo inferior del rotor derecho o contiguo (Rn2) entre ambos se crea la cámara de expansión-escape. El aire comprimido en la cavidad por ei diente pasa de la cámara de compresión a la de explosión o expansión por una abertura en zona central como en las figuras 10, 15 o 19, con el correspondiente desfasaje. Figure 2 shows a motor similar to that of figure 1, it differs in that it carries two equal chambers (Im and In) and a double rotor in each one and without a separating partition. The rotor on the left consists of the upper cylindrical section (Rml) with the tooth (2p) that meshes in the upper section of the right or adjacent rotor (Rnl) between them, the compression intake chamber is created, and its lower cylindrical section (Rm2 ) in which the tooth (2q) of the lower section of the right or adjacent rotor (Rn2) engages between them, the expansion-exhaust chamber is created. The compressed air in the cavity by the tooth passes from the compression chamber to the explosion or expansion chamber through an opening in the central area as in Figures 10, 15 or 19, with the corresponding phase shift.
La figura 3 porta solo una pareja de cámaras adjuntas, (lm y In) no existe tabique separador entre zonas admisión-compresión y expansión-escape, las dos mitades o porciones superiores (Rpl y Rql producen la admisión y compresión de la mezcla o aire y al final de la compresión se aplica a las dos mitades o porciones inferiores de expansión y escape. El gancho junto a la cámara de admisión (Ca) produce la admisión y el opuesto del mismo rotor la compresión final (Fe) de la cámara de compresión (Ce). De forma parecida en la mitad inferior y con desfasaje respecto a los de admisión un gancho proporciona la expansión y el otro el escape. En este caso por ser los rotores de un solo lóbulo se compensan sus masas interiormente y se vacía para reducir peso o se realizan los orificios (30). Muestra la tobera de entrada (8) y la de salida (9) esta en la zona de expansión escape. Los lóbulos pueden ser similares a los de la figura 2A, incluso sin los ganchos de sus extremos. Figure 3 has only one couple of attached chambers, (lm and In) there is no separating partition between the intake-compression and expansion-exhaust zones, the two upper halves or portions (Rpl and Rql produce the admission and compression of the mixture or air and at the end of compression it is applied to the two lower halves or expansion portions and escape. The hook next to the intake chamber (Ca) produces the intake and the opposite of the same rotor the final compression (Fe) of the compression chamber (Ce). In a similar way in the lower half and with a phase shift with respect to the intake ones, one hook provides the expansion and the other the exhaust. In this case, since the rotors are single lobe, their masses are compensated internally and it is emptied to reduce weight or holes (30) are made. It shows the inlet nozzle (8) and the outlet nozzle (9) is in the exhaust expansion zone. The lobes can be similar to those of Figure 2A, even without the hooks at their ends.
La figura 3a muestra la pareja de cámaras adjuntas, (lm y In) de la figura 20A igualmente sin tabique separador, las dos mitades o porciones superiores (Rpl y Rql) producen la admisión y compresión de la mezcla o aire y al final de la compresión se aplica a las dos mitades o porciones inferiores Rp2 y Rq2). Muestra el desfasaje entre la parte de admisión compresión y la de expansión escape. Figure 3a shows the couple of attached chambers, (lm and In) of figure 20A, also without a separating partition, the two upper halves or portions (Rpl and Rql) produce the admission and compression of the mixture or air and at the end of the compression is applied to the two lower halves or portions Rp2 and Rq2). Shows the phase shift between the compression intake part and the exhaust expansion part.
Los rotores de las figuras 2 a la 3a pueden estar torsionados con el fin de variar el momento final de la compresión con el de la explosión o inicio de la expansión. The rotors of Figures 2 to 3a may be twisted in order to vary the final moment of compression with that of explosion or start of expansion.
La figura 4 muestra un motor formado por dos parejas de cámaras con los cojinetes en el interior de los rotores. La cámara de compresión es de mayores dimensiones o volumen que la de expansión escape, pero puede ser menor. El tabique de separación porta la entrada (s) y la salida (z) del conducto que pone en comunicación sendas parejas de rotores. Puede necesitar solo el retén (91). Figure 4 shows a motor formed by two pairs of chambers with the bearings inside the rotors. The compression chamber is larger or larger than the exhaust expansion chamber, but it may be smaller. The partition wall carries the inlet (s) and the outlet (z) of the duct that connects the two pairs of rotors. You may only need the retainer (91).
La figura 5 muestra un motor formado por dos parejas de cámaras con los cojinetes en el exterior de los rotores. La cámara de compresión (la y Ib) es de mayor dimensión o volumen que la de expansión escape (lf y lg). El tabique de separación porta la entrada (s) y la salida (z) del conducto que pone en comunicación sendas parejas de rotores. Los rotores (4) de la cámara de compresión actúan simultáneamente como engranajes impulsores y junto con sus ejes (3) sincronizan el movimiento de los cuatro rotores. Los cojinetes (19) están cubiertos por la carcasa (87a) y se apoyan en los escalones o topes (20) del eje. La pareja de rotores de la cámara de expansión escape pueden ser cualquiera de los utilizados en el resto de la patente. Añade la bujía (7) y el inyector (18). Estos necesitan engrase en los engranajes o rotores de las cámaras de compresión pero no son de alta temperatura. Figure 5 shows a motor made up of two pairs of chambers with the bearings on the outside of the rotors. The compression chamber (la and Ib) is of greater dimension or volume than the exhaust expansion chamber (lf and lg). The partition wall carries the inlet (s) and the outlet (z) of the duct that connects the two pairs of rotors. The rotors (4) of the compression chamber act simultaneously as drive gears and together with their shafts (3) synchronize the movement of the four rotors. The bearings (19) are covered by the casing (87a) and rest on the steps or stops (20) of the shaft. The pair of rotors of the exhaust expansion chamber can be any of those used in the rest of the patent. Add the spark plug (7) and the injector (18). These need greasing in the gears or rotors of the compression chambers but they are not high temperature.
La figura 6 muestra las cámaras cilindricas de un motor (85) y la cubierta independiente (87) de los engranajes (4) de un motor cuyos gases de escape se aplican a la turbina centrífuga (81) por el conducto (80) y con el eje (3a) común a ambos, se rcalimentan recuperando la energía de los gases. Figure 6 shows the cylindrical chambers of an engine (85) and the independent cover (87) of the gears (4) of an engine whose exhaust gases are applied to the centrifugal turbine (81) through the conduit (80) and with the axis (3a) common to both, is They reheat by recovering the energy of the gases.
La figura 7 muestra las cámaras cilindricas de un motor (85) y carcasa (87) de la correa dentada (24) de un motor cuyos gases de escape se aplican a la turbina axial (86) y mediante el eje (3a) común a ambos, se realimentan, recuperando la energía de los gases. Figure 7 shows the cylindrical chambers of an engine (85) and housing (87) of the toothed belt (24) of an engine whose exhaust gases are applied to the axial turbine (86) and through the shaft (3a) common to both are fed back, recovering the energy of the gases.
La figura 8 muestra las cámaras cilindricas de un motor (85) y la cubierta (87) de los engranajes (4) los gases de escape (80) se aplican a un turbocompresor formado por turbina (81) que acciona el compresor (82), el cual envía aire presurizado por el conducto (83) a un cambiador de calor (84) y de este a la cámara de combustión o al carburador (72), la energía de los gases de escape comprime y envía el aire a la admisión del motor. Figure 8 shows the cylindrical chambers of an engine (85) and the cover (87) of the gears (4) the exhaust gases (80) are applied to a turbocharger formed by a turbine (81) that drives the compressor (82) , which sends pressurized air through the duct (83) to a heat exchanger (84) and from this to the combustion chamber or carburetor (72), the energy of the exhaust gases compresses and sends the air to the intake the motor.
La figura 9 muestra un motor formado por dos parejas de cámaras, la pareja de admisión-compresión con la cámara principal (la) con un rotor cilindrico con uno o dos lóbulos y estos las juntas semirrígidas (2p) y una menor o secundaria (Ib) con un rotor que tiene una o dos cavidades periféricas donde se aloja el lóbulo del rotor de la cámara principal durante su giro. La mezcla o aire comprimido se descarga cuando el conducto de descarga queda descubierto mediante la cavidad periférica del rotor de la cámara (Ib), desembocando en la segunda pareja de cámaras de explosíón-expansión-escape, (lfy lg), donde se produce encendido con la bujía (7). Los rotores se compensan con taladros (30) La figura 10 muestra un motor formado por dos parejas de cámaras, la pareja de admisión-compresión (la. Ib), con un rotor cilindrico con dos lóbulos tipo gancho o garra en cámara (la) con las juntas (2q) y el otro rotor con las cavidades complementarias a dichos ganchos. La mezcla o aire comprimido se descarga en la segunda pareja de cámaras de expansión-escape, (lfy 1g) donde ocurre el encendido mediante la bujía (7). Figure 9 shows an engine formed by two pairs of chambers, the intake-compression pair with the main chamber (la) with a cylindrical rotor with one or two lobes and these the semi-rigid joints (2p) and a minor or secondary one (Ib ) with a rotor that has one or two peripheral cavities where the main chamber rotor lobe is housed during its rotation. The mixture or compressed air is discharged when the discharge duct is uncovered through the peripheral cavity of the chamber rotor (Ib), leading to the second pair of explosion-expansion-exhaust chambers (lf and lg), where ignition occurs with the spark plug (7). The rotors are compensated with bores (30) Figure 10 shows an engine formed by two pairs of chambers, the intake-compression pair (la. Ib), with a cylindrical rotor with two hook or claw-type lobes in chamber (la) with the gaskets (2q) and the other rotor with the cavities complementary to said hooks. The mixture or compressed air is discharged into the second pair of expansion-exhaust chambers, (lfy 1g) where ignition occurs by means of the spark plug (7).
La figura 11 muestra un motor formado por dos parejas de cámaras, la pareja de admisión-compresión (la, Ib), con un rotor cilindrico con un lóbulo tipo gancho o garra en cámara (la) con las juntas (2q) y el otro rotor con la cavidad complementaria a dicho gancho. La mezcla o aire comprimido se descarga en la segunda pareja de cámaras de expansión-escape, (lfy lg) donde ocurre el encendido mediante la bujía (7). Figure 11 shows an engine formed by two pairs of chambers, the intake-compression pair (la, Ib), with a cylindrical rotor with a hook or claw-type lobe in the chamber (la) with the seals (2q) and the other rotor with the cavity complementary to said hook. The mixture or compressed air is discharged into the second pair of expansion-exhaust chambers, (lf and lg) where the ignition occurs by means of the spark plug (7).
La figura 12 muestra un motor formado por dos parejas de cámaras, la pareja de admisión-compresión con la cámara principal (la) con un rotor cilindrico con un lóbulo semicircular y una menor o secundaria (Ib) con un rotor con una cavidad periférica donde se aloja el lóbulo del rotor de la principal durante su giro. Puede usar dos lóbulos y dos cavidades, los lóbulos pueden portar las juntas semirígidas (2r). Portan los orificios (30) de equilibrado. La mezcla o aire comprimido se descarga por (x) o por (y) cuando el conducto de descarga se abre mediante la cavidad periférica del rotor de la cámara (Ib), desembocando en la segunda pareja de cámaras de explosión-expansión-escape, (lfy lg). Es muy eficiente si la descarga se realiza en la cámara de combustión (Ce) mostrada entre el lóbulo y los rotores. Usa dos tipos diferentes de parejas de rotores. Figure 12 shows an engine formed by two pairs of chambers, the intake-compression pair with the main chamber (la) with a cylindrical rotor with a semicircular lobe and a minor or secondary (Ib) with a rotor with a peripheral cavity where the main rotor lobe is housed during its rotation. You can use two lobes and two cavities, the lobes can carry the semi-rigid joints (2r). They carry the balancing holes (30). The mixture or compressed air is discharged by (x) or by (y) when the discharge duct is opened through the peripheral cavity of the chamber rotor (Ib), leading to the second pair of explosion-expansion-escape chambers, (lf and lg). It is very efficient if the discharge is done in the combustion chamber (Ce) shown between the lobe and the rotors. Use two different types of rotor pairs.
En las figuras 9 a la 12, la salida del aire comprimido de la cámara compresora lo hace por la zona inferior izquierda de la cámara de la derecha para que el rotor derecho actúe como válvula de paso. Descargándolo sincronizado en la cámara de combustión. In Figures 9 to 12, the compressed air exits from the compressor chamber through the lower left area of the chamber on the right so that the right rotor acts as a bypass valve. Unloading it synchronized in the combustion chamber.
La figura 13 muestra un motor formado por dos parejas de cámaras, la pareja de admisión-compresión (la, Ib) con la cámara (la) con un rotor cilindrico con dos lóbulos parcialmente anulares, cada uno con las caras o extremos en forma de gancho o garra. El fluido comprimido se descarga en la segunda pareja de cámaras de explosión-expansíón- escape, (If, lg), produciéndose el encendido con una bujía no mostrada en la figura. Figure 13 shows an engine made up of two pairs of chambers, the intake-compression pair (la, Ib) with the chamber (la) with a cylindrical rotor with two partially annular lobes, each with faces or ends in the shape of a hook or claw. The compressed fluid is discharged into the second pair of explosion-expansion-exhaust chambers, (If, lg), igniting with a spark plug not shown in the figure.
La figura 14 muestra un motor formado por dos parejas de cámaras, la pareja de admisión-compresión de dos cámaras, una con un rotor de cuatro lóbulos y la otra con seis cavidades para alojamiento de los lóbulos de la primera, la principal o mayor (la) y la menor (Ib). La mezcla o aire comprimido se descarga desembocando en la segunda pareja de cámaras de explosión-expansión-escape, (If y lg), donde se produce el encendido mediante una bujía no mostrada en la figura. Figure 14 shows an engine made up of two pairs of chambers, the two-chamber intake-compression pair, one with a four-lobed rotor and the other with six cavities for housing the lobes of the first, main or larger ( la) and minor (Ib). The mixture or compressed air is discharged into the second pair of explosion-expansion-exhaust chambers, (If and lg), where the ignition is produced by means of a spark plug not shown in the figure.
I^s parejas de cámaras de las figuras 13 y 14 son más típicas de motores de flujo continuo y pueden tener una cámara de compresión y almacenaje intermedia. The chamber pairs in Figures 13 and 14 are more typical of continuous flow engines and may have a compression chamber and intermediate storage.
La figura 15 muestra un motor de dos cámaras (Ir y It) similar al usado en la figura 1, cuyas zonas interiores están descubiertas y portan unos fanes (53) cuyos álabes forman parte de los rotores, estando unidos a estos y a los ejes, girando sobre sus ejes apoyados en los soportes (54). Es válido para sustentar y/o propulsar las aeronaves. Cámaras y engranajes están carenados. Figure 15 shows a two-chamber motor (Ir and It) similar to that used in figure 1, whose interior areas are uncovered and carry fans (53) whose blades are part of the rotors, being attached to these and to the shafts, rotating on their axes supported on the supports (54). It is valid to support and / or propel aircraft. Chambers and gears are fairings.
La figura 16 muestra el ciclo de trabajo de estos motores en función de la presión y volumen aplicados a los mismos, después de la admisión se produce la compresión adiabática, continuando la explosión de la mezcla aire-combustible aplicada (Qp) aumentando la presión a volumen constante y a continuación la expansión adiabática aplicando la fuerza motriz y/o trabajo al eje del rotor. El escape cede en forma de calor parte de la energía que no ha sido utilizada (Qo). O bien se realimenta su energía a la admisión del motor mediante un turbocomprcsor o directa y mecánicamente al eje mediante una turbina centrífuga o axial. Figure 16 shows the duty cycle of these engines as a function of the pressure and volume applied to them, after admission adiabatic compression occurs, continuing the explosion of the applied air-fuel mixture (Qp) increasing the pressure to constant volume and then adiabatic expansion applying motive force and / or work to the rotor shaft. The exhaust yields part of the energy that has not been used (Qo) in the form of heat. Either its energy is fed back to the engine intake by means of a turbocharger or directly and mechanically to the shaft by means of a centrifugal or axial turbine.
La figura 17 muestra dos cámaras cilindricas contiguas e intercomunicadas (1m y 1n) entre sí, en cuyo interior giran machihembrados unos rotores cilindricos (Rm1 y Rn1) arrastrados sincronizados por dos engranajes, con un único diente cada una, en la primera cámara se comprime el aire aspirado a través de la tobera (8) por la cámara de admisión (Ca), creada entre el diente del rotor y la carcasa, entre la carcasa y el lado opuesto del diente se comprime el aire en la cámara de compresión (Ce), saliendo por (Fe). El aire comprimido a través de ia válvula limitadora de retención (29rs) pasa a una cámara de almacenamiento (35) provisional y de aquí se envia sincronizada a la cámara de explosión, expansión y escape donde actúan de forma similar los rotores dentados (Rm2 y Rn2). Figure 17 shows two contiguous and interconnected cylindrical chambers (1m and 1n) with each other, inside which cylindrical rotors (Rm1 and Rn1) rotate tongue and groove Driven synchronized by two gears, with a single tooth each, in the first chamber the air drawn in through the nozzle (8) is compressed by the intake chamber (Ca), created between the rotor tooth and the casing, between the housing and the opposite side of the tooth compresses the air in the compression chamber (Ce), exiting through (Fe). The compressed air through the check limiting valve (29rs) passes to a temporary storage chamber (35) and from here it is sent synchronously to the explosion, expansion and exhaust chamber where the toothed rotors (Rm2 and Rn2).
Algunos rotores excéntricos o asimétricos sin orificios de compensación llevan el equilibrado o la compensación intema, realizándose esto durante su fabricación. Some eccentric or asymmetric rotors without compensation holes carry internal balancing or compensation, and this is done during manufacture.
Las cámaras de comprensión de los motores de las figuras 9 a la 14 pueden ser de distintas dimensiones o volúmenes que los de expansión escape, y en las de flujo continuo no necesitan estar sincronizados los rotores, pueden tener una cámara intermedia y el conducto de salida de la compresión por sus reducidas dimensiones facilita la compresión. The compression chambers of the engines of Figures 9 to 14 can be of different dimensions or volumes than those of the exhaust expansion, and in the continuous flow the rotors do not need to be synchronized, they can have an intermediate chamber and the outlet duct compression due to its small size facilitates compression.
El aire se trasfiere de la cámara de máxima compresión a la de combustión o de mínimo volumen de la cámara de expansión escape, y sus lumbreras o bocas de salida y entrada se aplican indistintamente en la cara frontal o en la lateral de los motores. The air is transferred from the maximum compression chamber to the combustion chamber or the minimum volume chamber of the exhaust expansion chamber, and its outlet and inlet ports or mouths are applied indistinctly on the front or side of the engines.
Los motores utilizan dos engranajes ¡guales. La velocidad angular debe ser la misma. The motors use two identical gears. The angular velocity must be the same.
Para reducir ruidos por fugas las toberas de entrada y salida se pueden cubrir con una carcasa atenuadora. Un ajuste manual puede reducir la aproximación en las zonas criticas de los rotores. Los rotores pueden ser huecos para reducir el peso de los motores. To reduce leakage noise the inlet and outlet nozzles can be covered with an attenuating housing. A manual adjustment can reduce the approach in the critical areas of the rotors. The rotors can be hollow to reduce the weight of the motors.

Claims

REIVINDICACIONES
1. Motor rotativo de combustión interna del tipo que utiliza una o mas cámaras cilindricas, en cuyo interior giran unos rotores cilindro elípticos o cilindricos, que consiste en dos o mas cámaras cilindricas intercomunicadas entre sí, en cuyo interior giran unos rotores cilindricos o elípticos, o cilindricos con lóbulos o dientes los cuales engranan o machihembran interrelacionados con los rotores, o con los lóbulos o dientes de los rotores, contiguos o con unas cavidades dispuestas alrededor de los mismos, pero manteniendo una separación entre ellos y sus carcasas de entre 0.2 y 3mm. 1. Rotary internal combustion engine of the type that uses one or more cylindrical chambers, inside which elliptical or cylindrical cylinder rotors rotate, consisting of two or more interconnected cylindrical chambers, inside which cylindrical or elliptical rotors rotate, or cylindrical with lobes or teeth which mesh or interrelated with the rotors, or with the lobes or teeth of the rotors, contiguous or with cavities arranged around them, but maintaining a separation between them and their casings of between 0.2 and 3mm.
2. Motor según reivindicación 1, caracterizado porque los dientes de los rotores son parcialmente anulares y engranan con cavidades también parcialmente anulares de los rotores contiguos y sus caras de avance y/o de retroceso tienen la curvatura cóncava o convexa, la de los dientes de un engranaje convencional, la curvatura invertida a la de los dientes de dichos engranajes convencionales, forma de gancho o garra, de esquina de cola de milano o de segmento de círculo. 2. Engine according to claim 1, characterized in that the teeth of the rotors are partially annular and mesh with cavities that are also partially annular of the adjacent rotors and their forward and / or reverse faces have the concave or convex curvature, that of the teeth of a conventional gear, the curvature reversed to that of the teeth of said conventional gears, hook or claw shape, dovetail corner or circle segment.
3. Motor según reivindicación I, caracterizado por utilizar dos cámaras cilindricas principales con dos rotores cilindricos con uno o dos lóbulos o dientes parcialmente anulares, dos engranajes o correas dentadas, dos lumbreras, transfiriendo el aire o mezcla comprimida mediante un conducto externo y la actuación de los rotores como válvulas, descargando por un extremo en unas cavidades que tienen los rotores en un extremo de las cámaras de compresión y combustión-expansión-escape. 3. Engine according to claim I, characterized by using two main cylindrical chambers with two cylindrical rotors with one or two lobes or partially annular teeth, two gears or toothed belts, two ports, transferring the compressed air or mixture through an external conduit and the actuation of the rotors as valves, discharging at one end into cavities that the rotors have at one end of the compression and combustion-expansion-exhaust chambers.
4. Motor según reivindicación I, caracterizado por utilizar parejas de cámaras las cuales se interconectan con conductos externos, y con el desfasaje apropiado usando como válvulas unos rotores o lóbulos, unas levas externas o mediante conductos extemos enviando flujo continuo. 4. Engine according to claim I, characterized by using pairs of chambers which are interconnected with external conduits, and with the appropriate phase shift using rotors or lobes as valves, external cams or through external conduits sending continuous flow.
5. Motor según reivindicación I, caracterizado por utilizar una pareja de cámaras adjuntas (Im y ln) y dos rotores, uno consta de un tramo cilindrico superior (Rml) con un diente (2p) que engrana en el tramo de rotor superior contiguo (Rnl) proporcionando entre ambos la cámara de admisión compresión, y su tramo cilindrico inferior (Rm2) en el cual engrana un diente (2q) del tramo inferior del rotor contiguo (Rn2) proporcionando entre ambos la cámara de expansión-escape, la mezcla o el aire comprimido pasa de la cámara de compresión a la de explosión o expansión por una abertura en la zona central. 5. Engine according to claim I, characterized by using a couple of attached chambers (Im and ln) and two rotors, one consists of an upper cylindrical section (Rml) with a tooth (2p) that meshes with the adjacent upper rotor section ( Rnl) providing between both the compression intake chamber, and its lower cylindrical section (Rm2) in which a tooth (2q) of the lower section of the contiguous rotor engages (Rn2) providing between both the expansion-exhaust chamber, the mixture or The compressed air passes from the compression chamber to the explosion or expansion chamber through an opening in the central area.
6. Motor según reivindicación I, caracterizado porque utiliza solo una pareja de cámaras adjuntas, (Im y ln) no existe tabique, las dos mitades o porciones superiores (Rpl y Rql) producen la admisión y compresión de la mezcla o aire y al final de la compresión se aplica a las dos mitades o porciones inferiores de expansión y escape (Rp2 y Rq2) en el momento de la explosión y cuando inician la expansión, un gancho junto a la cámara de admisión (Ca) produce la admisión y el opuesto del mismo rotor la compresión final (Fe) de la cámara de compresión (Ce), de forma parecida en la mitad inferior y con desfasaje respecto a los de admisión un gancho proporciona la expansión y el otro el escape, en los rotores de un solo lóbulo se compensan sus masas interiormente y se vacían para reducir peso. 6. Engine according to claim I, characterized in that it uses only a couple of attached chambers, (Im and ln) there is no partition, the two upper halves or portions (Rpl and Rql) produce the admission and compression of the mixture or air and at the end of the Compression is applied to the two lower halves or portions of expansion and exhaust (Rp2 and Rq2) at the moment of the explosion and when they initiate expansion, a hook next to the intake chamber (Ca) produces the intake and the opposite thereof rotor the final compression (Fe) of the compression chamber (Ce), in a similar way in the lower half and with phase shift with respect to the intake one hook provides the expansion and the other the exhaust, in the single lobe rotors it is they compensate their masses internally and are emptied to reduce weight.
7. Motor según reivindicación 1, caracterizado porque la salida de los gases de escape se efectúa por lumbreras periféricas radiales o en las caras laterales de las cámaras cilindricas. 7. Engine according to claim 1, characterized in that the exhaust gases exit through radial peripheral ports or on the side faces of the cylindrical chambers.
8. Motor según reivindicación 1, caracterizado porque la salida de los gases de escape desde la cámara de expansión-escape al exterior se efectúa mediante el rotor que actúa de válvula obturando el paso durante su giro. 8. Engine according to claim 1, characterized in that the exit of the exhaust gases from the expansion-exhaust chamber to the outside is carried out by means of the rotor that acts as a valve blocking the passage during its rotation.
9. Motor según reivindicación I, caracterizado porque la salida de los gases de escape desde la cámara de expansión-escape al exterior se hace por un conducto y a través de una cámara intermedia de almacenaje. 9. Engine according to claim I, characterized in that the exhaust gases exit from the expansion-exhaust chamber to the outside through a conduit and through an intermediate storage chamber.
10. Motor según reivindicación I, caracterizado porque los motores usan unos fanes o turbinas en zona interior descubierta de las cámaras y rotores útiles para sustentar y/o propulsar las aeronaves, los álabes de los fanes hacen de soporte de los rotores, estando unidos a estos y a los ejes. 10. Engine according to claim I, characterized in that the engines use fans or turbines in the open interior area of the chambers and rotors useful to support and / or propel the aircraft, the blades of the fans support the rotors, being attached to these already the axes.
11. Motor según reivindicación I, caracterizado por portar un rebaje interior (Ir) en un arco de 30° de la camisa (Ib) junto a la cámara de combustión. 11. Engine according to claim I, characterized by having an internal recess (Ir) in a 30 ° arc of the liner (Ib) next to the combustion chamber.
12. Motor según reivindicación I, caracterizado porque a los rotores con un solo lóbulo se les aplican orificios o taladros de equilibrado. 12. Engine according to claim I, characterized in that balancing holes or bores are applied to the rotors with a single lobe.
13. Motor según reivindicación I, caracterizado porque los motores utilizan una cámara sobrepresurizada entre los rotores y las carcasas. 13. Engine according to claim I, characterized in that the engines use an overpressurized chamber between the rotors and the casings.
14. Motor según reivindicación 1, caracterizado por añadir unos anillos, resaltes o sobresalientes del mismo material o material semirrígido, o polímero de alta temperatura alrededor de las lumbreras, de los orificios en los extremos de los conductos de transvase de] aire o mezcla comprimida, en los laterales y aristas tangenciales de los dientes o de los lóbulos de los rotores cilindricos, en la proximidad de las aristas de los rotores, y en las generatrices de los rotores y radial o diametralmente en sus bases, embutidos en unos canales circulares o en forma de cola de milano que hacen de juntas. 14. Engine according to claim 1, characterized by adding rings, projections or projections of the same material or semi-rigid material, or high temperature polymer around the ports, of the orifices at the ends of the conduits for the transfer of] air or compressed mixture , on the sides and tangential edges of the teeth or lobes of the cylindrical rotors, in the vicinity of the edges of the rotors, and in the generatrices of the rotors and radially or diametrically at their bases, embedded in circular channels or in the shape of a dovetail that make joints.
15. Motor según reivindicación 1, caracterizado porque en la unión de los engranajes con sus ejes o de los dientes o lóbulos con sus rotores portan unos elementos, chavetas o colas de milano que actúan de fusibles. 15. Engine according to claim 1, characterized in that at the junction of the Gears with their shafts or the teeth or lobes with their rotors carry elements, keys or dovetails that act as fuses.
16. Motor según reivindicación I, caracterizado porque en las zonas entre rotores y carcasas se utilizan lubricantes o pastas de alta temperatura. 16. Engine according to claim I, characterized in that high temperature lubricants or pastes are used in the areas between rotors and housings.
17. Motor según reivindicación I, caracterizado porque los motores tienen dos conductos que comunican secuencialmente con una cámara intermedia de uno de los rotores de modo que actúa de válvula y separa la cámara de compresión y expansión. 17. Engine according to claim I, characterized in that the engines have two conduits that communicate sequentially with an intermediate chamber of one of the rotors so that it acts as a valve and separates the compression and expansion chamber.
18. Motor según reivindicación I, caracterizado porque los gases de escape se aplican a una turbina (81 y 86) y mediante un eje (3a) común a ambos se realimenta la energía de los gases de escape al motor. 18. Engine according to claim I, characterized in that the exhaust gases are applied to a turbine (81 and 86) and by means of a shaft (3a) common to both, the energy of the exhaust gases is fed back to the engine.
19. Motor según reivindicación I, caracterizado porque los gases de escape se aplican a una turbina (81) que acciona un compresor (82), enviando el aire presurizado por un conducto (83) a un cambiador de calor (84) y de este al carburador o a la cámara de combustión. 19. Engine according to claim I, characterized in that the exhaust gases are applied to a turbine (81) that drives a compressor (82), sending the pressurized air through a conduit (83) to a heat exchanger (84) and from this carburetor or combustion chamber.
20. Motor según reivindicación I, caracterizado porque se envía aire a presión mediante un conducto a un carburador o cámara de mezcla a una presión alta o media procedente de la cámara de compresión, descargándolo en la cámara de combustión a través de una cámara intermedia que actúa de válvula. 20. Engine according to claim I, characterized in that pressurized air is sent through a conduit to a carburetor or mixing chamber at high or medium pressure from the compression chamber, discharging it into the combustion chamber through an intermediate chamber that acts as a valve.
21. Motor según reivindicación I, caracterizado porque los motores son de materiales de bajo coeficiente de dilatación, ¡nvar y/o aleaciones de magnesio o de aluminio con pequeñas cantidades de cobre, silicio, magnesio y/o zinc a las cuales se les aplican anodizados duros de aproximadamente 50 a 150 mieras, o por utilizar materiales cerámicos: Alúmina (A2O3), Zirconia, (ZrO2), Carburo de silicio (SiC), Titanato de Aluminio (ΑΙ2TiΟ5), Nitruro de Silicio, (SÍ3N4), sus aleaciones y/o revestimientos de los mismos, reforzados o engrosados en zonas de mayor temperatura. 21. Motor according to claim I, characterized in that the motors are made of materials with a low coefficient of expansion, invar and / or magnesium or aluminum alloys with small amounts of copper, silicon, magnesium and / or zinc to which they are applied hard anodized from approximately 50 to 150 microns, or by using ceramic materials: Alumina (A2O3), Zirconia, (ZrO2), Silicon Carbide (SiC), Aluminum Titanate (ΑΙ2TiΟ5), Silicon Nitride, (SÍ3N4), their alloys and / or coatings thereof, reinforced or thickened in higher temperature areas.
22. Motor según reivindicación I, caracterizado porque los cojinetes se colocan externos a las cámaras principales separados por retenes, sellos y/o juntas. 22. Engine according to claim I, characterized in that the bearings are placed external to the main chambers separated by seals, seals and / or gaskets.
23. Motor según reivindicación I, caracterizado porque los lóbulos o dientes de los rotores y de los engranajes machihembrados tienen las longitudes de sus arcos ¡guales. 23. Motor according to claim I, characterized in that the lobes or teeth of the rotors and tongue and groove gears have the same arc lengths.
24. Motor según reivindicación I. caracterizado porque los lóbulos o dientes de los rotores son elípticos, semielípticos. circulares o semicirculares. 24. Engine according to claim I. characterized in that the lobes or teeth of the rotors are elliptical, semi-elliptical. circular or semicircular.
25. Motor según reivindicación 1, caracterizado porque los lóbulos o dientes son elípticos, semielípticos, circulares o semicirculares cuya zona periférica más externa tiene una curvatura igual a la de la carcasa, trapeciales o trapeciales con sus caras laterales curvas, parcialmente anulares o a modo de levas. 25. Engine according to claim 1, characterized in that the lobes or teeth are elliptical, semi-elliptical, circular or semicircular, the outermost peripheral area of which has a curvature equal to that of the casing, trapezoidal or trapezoidal with their lateral faces. curved, partially annular or cam-like.
•26. Motor según reivindicación 1, caracterizado porque los medios de transmisión entre ejes son: engranajes, correas dentadas o cadenas ubicados en una caja de engranajes contigua e independiente externa o interna a las cámaras cilindricas. • 26. Engine according to claim 1, characterized in that the transmission means between shafts are: gears, toothed belts or chains located in a gearbox that is contiguous and independent external or internal to the cylindrical chambers.
27. Motor según reivindicación 1, caracterizado porque los rotores tienen sus ejes escalonados y soportados con cojinetes cónicos, axiales o mixtos. 27. Engine according to claim 1, characterized in that the rotors have their shafts staggered and supported with conical, axial or mixed bearings.
28. Motor según reivindicación I y 27, caracterizado porque entre las uniones de las carcasas y de estas con los ejes, se colocan unas juntas de estanqueidad y retenes. 28. Engine according to claims I and 27, characterized in that between the joints of the casings and of these with the shafts, sealing gaskets and retainers are placed.
29. Motor según reivindicación I, caracterizado porque los lóbulos de los rotores cilindricos arrastran y comprimen el aire aspirado y atrapado entre dichos lóbulos, la carcasa de la cámara principal y el rotor, descargándolo en la cámara de combustión donde se aplica un encendido convencional, electrónico o láser, pasando a continuación a la cámara de expansión y escape. 29. Engine according to claim I, characterized in that the lobes of the cylindrical rotors drag and compress the air sucked in and trapped between said lobes, the main chamber casing and the rotor, discharging it into the combustion chamber where conventional ignition is applied, electronic or laser, then passing to the expansion and exhaust chamber.
30. Motor según reivindicación 1, caracterizado porque los rotores cilindrico elípticos arrastran y comprimen el aire aspirado y atrapado entre dichos rotores y la carcasa de la cámara principal, descargándolo en la cámara de combustión donde se aplica un encendido convencional, electrónico o láser, pasando a continuación a la cámara de expansión y escape. 30. Engine according to claim 1, characterized in that the elliptical cylindrical rotors drag and compress the air sucked in and trapped between said rotors and the main chamber casing, discharging it into the combustion chamber where a conventional, electronic or laser ignition is applied, passing then to the expansion and exhaust chamber.
31. Motor según reivindicación l, caracterizado porque los rotores consisten en dos engranajes, con un único diente cada uno 31. Motor according to claim 1, characterized in that the rotors consist of two gears, with a single tooth each
32. Motor según reivindicación 1. caracterizado porque el aire comprimido en la cámara e compresión se envía a través de una válvula limitadora de retención a una cámara de almacenamiento provisional y de aqui se envía a la cámara de explosión, expansión y escape. 32. Engine according to claim 1. characterized in that the compressed air in the compression chamber is sent through a retention limiting valve to a temporary storage chamber and from here it is sent to the explosion, expansion and exhaust chamber.
PCT/ES2020/000029 2019-04-29 2020-05-27 Rotary internal combustion engine WO2021176110A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3138428A CA3138428A1 (en) 2020-03-09 2020-05-27 Rotary internal combustion engine
EP20923043.2A EP3964688A4 (en) 2019-04-29 2020-05-27 Rotary internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ESU201900235 2019-04-29
ES201900235U ES1237025Y (en) 2019-04-29 2019-04-29 Rotary internal combustion engine
ES202000192U ES1250705Y (en) 2020-03-09 2020-03-09 Rotary internal combustion engine
ESU202000192 2020-03-09

Publications (2)

Publication Number Publication Date
WO2021176110A2 true WO2021176110A2 (en) 2021-09-10
WO2021176110A3 WO2021176110A3 (en) 2021-11-11

Family

ID=77614505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2020/000029 WO2021176110A2 (en) 2019-04-29 2020-05-27 Rotary internal combustion engine

Country Status (2)

Country Link
EP (1) EP3964688A4 (en)
WO (1) WO2021176110A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2130296A1 (en) * 2021-11-05 2023-05-06 Henrik Johansson twin-cylinder converse-rotation machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996899A (en) * 1975-04-03 1976-12-14 Gateway Of Discovery, Inc. Positive displacement continuous combustion engine
US4236496A (en) * 1978-07-24 1980-12-02 Brownfield Louie A Rotary engine
DE3429867A1 (en) * 1984-08-14 1985-10-31 Roland 4100 Duisburg Sonnenberg Rotary piston gas turbine
US4971002A (en) * 1989-01-26 1990-11-20 Le Le K Rotary internal combustion engine
US6988482B2 (en) * 2003-11-26 2006-01-24 Neal Lockett Dual rotor internal combustion engine
DE102009033672B4 (en) * 2009-07-17 2011-06-01 Wilhelm Talhoff Rotary engine
CN107905889A (en) * 2017-11-27 2018-04-13 宋国友 Hinge formula explosive motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE2130296A1 (en) * 2021-11-05 2023-05-06 Henrik Johansson twin-cylinder converse-rotation machine

Also Published As

Publication number Publication date
EP3964688A4 (en) 2023-04-05
WO2021176110A3 (en) 2021-11-11
EP3964688A2 (en) 2022-03-09

Similar Documents

Publication Publication Date Title
US10968820B2 (en) Method of combusting fuel in a rotary internal combustion engine with pilot subchamber and ignition element
ES2606206T3 (en) Rotary internal combustion engine with pilot subchamber
US20050005898A1 (en) Multi-stage modular rotary internal combustion engine
US6539913B1 (en) Rotary internal combustion engine
US8033264B2 (en) Rotary engine
ES2700131T3 (en) Reel slide transfer valve in split-cycle motor
US9896990B2 (en) Internal combustion engine with port communication
US11078834B2 (en) Rotary valve continuous flow expansible chamber dynamic and positive displacement rotary devices
US6526937B1 (en) Economical eccentric internal combustion engine
WO2021176110A2 (en) Rotary internal combustion engine
JPH05506906A (en) rotary engine
US3314401A (en) Two-stroke cycle rotary engine
EA001184B1 (en) J.m. luzhkov's rotary internal combustion engines
ES1237025U (en) Rotary internal combustion engine (Machine-translation by Google Translate, not legally binding)
WO2017204683A1 (en) Six-stroke rotary-vane internal combustion engine
US3626911A (en) Rotary machines
CA3138428A1 (en) Rotary internal combustion engine
ES2585115T3 (en) Wankel engine rotor
ES2848320B2 (en) rotary internal combustion engine
US20050161016A1 (en) Rotary internal combustion engine with adjustable compression stroke
US20090028739A1 (en) Ring turbo-piston engine and ring turbo-piston supercharger
WO2007063152A1 (en) Hypocycloid rotary internal combustion engine
WO2022214716A1 (en) Supply system for rotary engines and internal combustion turbines
RU2212550C2 (en) Internal combustion engine
ES1243790U (en) Rotary internal combustion engine (Machine-translation by Google Translate, not legally binding)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3138428

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020923043

Country of ref document: EP

Effective date: 20211129

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923043

Country of ref document: EP

Kind code of ref document: A2