WO2021174619A1 - 玻璃基板内部二维码深度计算系统及计算方法 - Google Patents

玻璃基板内部二维码深度计算系统及计算方法 Download PDF

Info

Publication number
WO2021174619A1
WO2021174619A1 PCT/CN2020/081999 CN2020081999W WO2021174619A1 WO 2021174619 A1 WO2021174619 A1 WO 2021174619A1 CN 2020081999 W CN2020081999 W CN 2020081999W WO 2021174619 A1 WO2021174619 A1 WO 2021174619A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
dimensional code
length
adjacent
camera
Prior art date
Application number
PCT/CN2020/081999
Other languages
English (en)
French (fr)
Inventor
王昌奇
姚林昌
黄继欣
王威
成学平
Original Assignee
深圳市杰普特光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市杰普特光电股份有限公司 filed Critical 深圳市杰普特光电股份有限公司
Publication of WO2021174619A1 publication Critical patent/WO2021174619A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/22Measuring arrangements characterised by the use of optical techniques for measuring depth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • G06T7/557Depth or shape recovery from multiple images from light fields, e.g. from plenoptic cameras

Definitions

  • This application relates to the field of liquid crystal display technology, and in particular to a calculation system and method for calculating the depth of a two-dimensional code inside a glass substrate.
  • the glass cover needs to undergo a series of processes such as production, polishing, pressurization, inkjet, and assembly.
  • the most cutting-edge process is to print the dot matrix two-dimensional code (Data Matrix) into the glass by laser, making it difficult for the naked eye to distinguish and a dedicated reading code at the same time The machine can complete the recognition.
  • Data Matrix dot matrix two-dimensional code
  • a method for calculating the depth of a two-dimensional code inside a glass substrate includes:
  • S200 Calculate the focus feedback value of each image of the two-dimensional code. Obtain the two-image distance between the real image of the two-dimensional code and the virtual image of the two-dimensional code according to a plurality of the focus feedback values and a plurality of the accumulated displacement lengths.
  • S300 Obtain the thickness and refractive index of the glass substrate.
  • the depth of the two-dimensional code to the first surface is obtained according to the thickness, the refractive index and the distance between the two images.
  • the step of obtaining the depth of the two-dimensional code from the first surface according to the thickness, the refractive index and the two-image distance in S300 is to combine the thickness, the refractive index and the The two-image distance is brought into a depth formula, and the depth formula is:
  • s is the depth of the two-dimensional code from the first surface.
  • D is the thickness of the glass substrate.
  • n is the refractive index of the glass substrate.
  • d is the distance between the two images.
  • S200 includes:
  • S210 Find the first image corresponding to the largest focus feedback value from the real image group, and find the clearest second image from the real image group.
  • S220 Acquire a first adjacent image and a second adjacent image that are adjacent to the first image, and acquire a third adjacent image and a fourth adjacent image that are adjacent to the second image.
  • S230 Acquire the cumulative displacement length corresponding to the first image, the first adjacent image, and the second adjacent image, respectively.
  • the cumulative displacement lengths of the first image, the first adjacent image, and the second adjacent image in a one-to-one correspondence are a first length, a first adjacent length, and a second adjacent length, respectively.
  • the focus feedback values corresponding to the first image, the first adjacent image, and the second adjacent image are obtained respectively.
  • the focus feedback values corresponding to the first image, the first neighboring image, and the second neighboring image are a first focus feedback value, a first neighboring feedback value, and a second neighboring feedback value, respectively.
  • the cumulative displacement length corresponding to the second image, the third adjacent image, and the fourth adjacent image is obtained respectively.
  • the cumulative displacement lengths of the second image, the third adjacent image, and the fourth adjacent image in a one-to-one correspondence are a second length, a third adjacent length, and a fourth adjacent length, respectively.
  • the focus feedback values corresponding to the second image, the third adjacent image, and the fourth adjacent image are respectively obtained in a one-to-one correspondence.
  • the focus feedback values corresponding to the second image, the third adjacent image, and the fourth adjacent image are a second focus feedback value, a third adjacent focus feedback value, and a fourth adjacent focus feedback value, respectively.
  • the first data fitting is performed to obtain the real image cumulative displacement length corresponding to the real image of the two-dimensional code 202. Taking the second length, the third proximity length, and the fourth proximity length as the abscissa, and the second focus feedback value, the third proximity feedback value, and the fourth proximity feedback value as the vertical The second data fitting is performed on the coordinates, and the cumulative displacement length of the virtual image corresponding to the virtual image of the two-dimensional code 202 is obtained.
  • the difference between the accumulated displacement length of the real image and the accumulated displacement length of the virtual image is performed to obtain the distance between the two images.
  • the first data fitting and the second data fitting both adopt parabolic fitting.
  • the first data fitting corresponds to a first parabola.
  • the abscissa of the vertex corresponding to the first parabola is the cumulative displacement length of the real image.
  • the second data fitting corresponds to a second parabola.
  • the abscissa of the vertex corresponding to the second parabola is the cumulative displacement length of the virtual image.
  • the method for calculating the depth of the two-dimensional code inside the glass substrate further includes:
  • S010 includes:
  • the position of the camera is adjusted in translation and rotation in S012.
  • a two-dimensional code depth calculation system inside a glass substrate includes a base, a fixture, a first position adjustment device, a camera, a second position adjustment device, a point light source and a controller.
  • the jig is used to fix the glass substrate.
  • the first position adjusting device is arranged on the base.
  • the jig is fixed to the first position adjusting device.
  • the camera of the camera is configured to face the glass substrate.
  • the second position adjusting device is arranged on the base.
  • the camera is fixed to the second position adjustment device.
  • the point light source is fixedly arranged on the camera. And the light emitting direction of the point light source is parallel to the shooting direction of the camera of the camera.
  • the first position adjustment device, the position adjustment device and the camera are respectively connected to the controller.
  • the controller is used for adjusting the position of the glass substrate through the first position adjusting device.
  • the controller is also used for the second position adjusting device to adjust the position of the camera, so that the camera focuses on the two-dimensional code.
  • the controller is used to control the camera to take an image of the two-dimensional code, and the controller is used to collect the image and record the position of the camera.
  • the first position adjusting device is used to adjust the position of the glass substrate on the x-y plane.
  • the two-dimensional code depth calculation system inside the glass substrate further includes a box.
  • the box body encloses enough to form a first space.
  • the controller is stored in the first space.
  • the box body is fixed to the base.
  • the box body includes side walls. The side wall is perpendicular to the base.
  • the second position adjustment device includes: a height adjustment device, a plane adjustment device, and an angle adjustment device.
  • the height adjusting device is fixedly arranged on the side wall.
  • the plane adjusting device is fixedly arranged on the plane adjusting device.
  • the angle adjusting device is fixed to the plane adjusting device.
  • the camera is fixed to the angle adjustment device.
  • the height adjustment device, the plane adjustment device and the angle adjustment device are respectively connected to the controller.
  • the controller is used for controlling the plane adjusting device to adjust the position of the camera on the x-y plane, so that the two-dimensional code is within the field of view of the camera.
  • the controller is used for controlling the angle adjusting device to adjust the xz or yz rotation angle of the camera so that the shooting direction of the camera of the camera is perpendicular to the x-y plane.
  • the controller is used for controlling the height adjusting device to adjust the position of the camera along the z axis.
  • the controller is configured to control the camera to take the two-dimensional code once every time a specific distance between the camera and the glass substrate is shortened.
  • the controller is used to collect multiple images of the two-dimensional code and record the accumulated displacement length of the camera multiple times.
  • the plurality of accumulated displacement lengths correspond to a plurality of images of the two-dimensional code in a one-to-one correspondence.
  • the images of the multiple two-dimensional codes are divided into a real image group and a virtual image group.
  • the images of the real image group and the virtual image group both change from blurry to clear to blurry.
  • the two-dimensional code reading device inside the glass substrate further includes a central control device.
  • the central control device is connected with the controller.
  • the central control device is used to collect a plurality of images of the two-dimensional code and a plurality of the accumulated displacement lengths. And obtain the depth of the two-dimensional code to the surface of the glass substrate close to the camera according to the images of the plurality of two-dimensional codes and the plurality of accumulated displacement lengths.
  • the central control device includes a collector, a filter, a fitter and a calculator.
  • the collector is used to connect with the controller.
  • the collector is used to collect a plurality of images of the two-dimensional code and a plurality of the accumulated displacement lengths.
  • the filter is connected to the collector.
  • the filter is used to receive a plurality of images of the two-dimensional code and a plurality of the accumulated displacement lengths, and calculate a focus feedback value of the image of each of the two-dimensional codes.
  • the filter is used to filter the clearest first image from the real image group and the clearest second image from the real image group.
  • the filter is used to obtain a first adjacent image and a second adjacent image that are adjacent to the first image.
  • the filter is used to obtain a third adjacent image and a fourth adjacent image that are adjacent to the second image.
  • the filter is also used to obtain the cumulative displacement length corresponding to the first image, the first adjacent image, and the second adjacent image, respectively, and the first image and the first adjacent image
  • the accumulated displacement lengths corresponding to the second adjacent image one-to-one are a first length, a first adjacent length, and a second adjacent length, respectively.
  • the filter is also used to obtain the focus feedback values corresponding to the first image, the first adjacent image, and the second adjacent image, respectively, and the first image and the first adjacent image
  • the focus feedback values corresponding to the second neighboring image one-to-one are a first focus feedback value, a first neighboring feedback value, and a second neighboring feedback value, respectively, and the filter is also used to obtain the second image respectively ,
  • the cumulative displacement length of the third adjacent image and the fourth adjacent image in a one-to-one correspondence are a second length, a third adjacent length, and a fourth adjacent length, respectively.
  • the filter is also used to obtain the focus feedback values corresponding to the second image, the third adjacent image, and the fourth adjacent image, respectively.
  • the focus feedback values corresponding to the second image, the third adjacent image, and the fourth adjacent image are a second focus feedback value, a third adjacent focus feedback value, and a fourth adjacent focus feedback value, respectively.
  • the fitter is connected to the filter.
  • the fitter is configured to receive the first length, the first proximity length, the second proximity length, the first focus feedback value, the first proximity feedback value, and the second proximity feedback value , The second length, the third proximity length, the fourth proximity length, the second focus feedback value, the third proximity feedback value, and the fourth proximity feedback value.
  • the fitter is configured to use the first length, the first proximity length, and the second proximity length as abscissas, and use the first focus feedback value, the first proximity feedback value and the first Second, the adjacent feedback value is the ordinate to perform the first data fitting to obtain the real image cumulative displacement length corresponding to the real image of the two-dimensional code.
  • the fitter is configured to use the second length, the third proximity length, and the fourth proximity length as abscissas, and the second focus feedback value, the third proximity feedback value, and the first
  • the fourth adjacent feedback value is the ordinate to perform the second data fitting to obtain the cumulative displacement length of the virtual image corresponding to the virtual image of the two-dimensional code.
  • the fitter is used to make the difference between the cumulative displacement length of the real image and the cumulative displacement length of the virtual image to obtain the two-image distance.
  • the calculator is connected to the fitter.
  • the calculator is also used to receive the two-image distance.
  • the calculator is used to receive external data.
  • the external data includes the thickness and refractive index of the glass substrate.
  • the calculator is used to obtain the depth of the two-dimensional code from the first surface according to the thickness, the refractive index and the distance between the two images.
  • the method for calculating the depth of the two-dimensional code inside the glass substrate includes controlling the camera to approach the glass substrate in a direction perpendicular to the first surface of the glass substrate. Each time a predetermined distance is shortened between the camera and the first surface. The camera captures the two-dimensional code once to obtain multiple images of the two-dimensional code. And record the accumulated displacement length of the camera many times. The plurality of accumulated displacement lengths correspond to a plurality of images of the two-dimensional code in a one-to-one correspondence. As the cumulative displacement length increases, the images of the multiple two-dimensional codes are divided into a real image group and a virtual image group. The images of the real image group and the virtual image group both change from blurry to clear and then blurry.
  • Calculate the focus feedback value of the image of each two-dimensional code Obtain the two-image distance between the real image of the two-dimensional code and the virtual image of the two-dimensional code according to a plurality of the focus feedback values and a plurality of the accumulated displacement lengths. Obtain the thickness and refractive index of the glass substrate. The depth of the two-dimensional code to the first surface is obtained according to the thickness, the refractive index and the distance between the two images.
  • the two-image distance between the real image of the two-dimensional code and the virtual image of the two-dimensional code can be obtained.
  • the two-image distance between the real image of the two-dimensional code and the virtual image of the two-dimensional code is related to the thickness, the refractive index, and the depth of the two-dimensional code to the first surface.
  • the method for calculating the depth of the two-dimensional code inside the glass substrate can obtain the result according to the thickness, the refractive index, and the distance between the two images.
  • the depth of the two-dimensional code to the first surface.
  • FIG. 1 is a method flow chart of the method for calculating the depth of the two-dimensional code inside the glass substrate provided in an embodiment of the application;
  • FIG. 2 is a schematic diagram of the structure of the two-dimensional code depth calculation system inside the glass substrate provided in an embodiment of the application;
  • FIG. 3 is a diagram of the relationship between multiple images and accumulated displacement length provided in an embodiment of the application.
  • FIG. 4 is a schematic diagram of a method for calculating the depth of a two-dimensional code inside the glass substrate provided in an embodiment of the application;
  • FIG. 5 is a method flowchart of the method for calculating the depth of the two-dimensional code inside the glass substrate provided in another embodiment of the application;
  • Fig. 6 is a fitting curve diagram provided in another embodiment of the application.
  • FIG. 7 is a schematic diagram of electrical connections of the two-dimensional code depth calculation system inside the glass substrate provided in an embodiment of the application.
  • the first position adjustment device 40 is the first position adjustment device 40
  • the first space 901 is the first space 901
  • connection and “connection” mentioned in this application include direct and indirect connection (connection) unless otherwise specified.
  • connection connection
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. touch.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or diagonally above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • An embodiment of the present application provides a method for calculating the depth of a two-dimensional code inside a glass substrate, including:
  • the camera 50 controlling the camera 50 to approach the glass substrate 200 in a direction perpendicular to the first surface 201 of the glass substrate 200. Every time a predetermined distance between the camera 50 and the first surface 201 is shortened, the camera 50 photographs the two-dimensional code 202 once to obtain a plurality of images of the two-dimensional code 202. And the accumulated displacement length of the camera 50 is recorded multiple times. The plurality of accumulated displacement lengths correspond to a plurality of images of the two-dimensional code 202 in a one-to-one correspondence. As the cumulative displacement length increases, the images of the multiple two-dimensional codes 202 are divided into a real image group and a virtual image group. The images of the real image group and the virtual image group both change from blurry to clear and then blurry.
  • the two-dimensional code 202 is disposed in the glass substrate 200.
  • the two-dimensional code 202 includes a real image and a virtual image.
  • the virtual image is formed on the side of the glass substrate 200 away from the camera 50.
  • the reason why the dot matrix is bright around and the center is dark in the initial image of the two-dimensional code 202 is because the two-dimensional code 202 is dark.
  • the cone around the dot matrix reflects coaxial light into the camera 50, while no light from the center of the dot matrix can enter the camera 50.
  • the reason why the dot matrix is dark and the center is bright in the image of the two-dimensional code 202 is because the middle position of the two-dimensional code 202 reflects the coaxial light back to the camera for imaging, and the cone around the dot matrix is not Light can enter the camera. Based on this, it is inferred that the position of the white dot pattern with a bright center and dark surroundings is the best focus position of the two-dimensional code.
  • the bottom surface of the glass substrate 200 is opposite to the first surface 202.
  • the virtual image is formed on one side of the bottom surface of the glass substrate 200.
  • the pattern change of the two-dimensional code dot matrix in the image of the virtual image is also a change from dark to bright in the center. Similarly, it can be inferred that the position of the white dot pattern is the best focus position of the mirrored two-dimensional code.
  • the accumulated displacement length corresponding to the point farthest away from the first surface 201 of the camera 50 is zero.
  • the camera 50 is approximately close to the first surface 201, the greater the cumulative displacement length is.
  • the real image group and the virtual image group use a graphic on the lower surface of the glass as a boundary graphic.
  • S200 Calculate the focus feedback value of each image of the two-dimensional code 202.
  • the two-image distance between the real image of the two-dimensional code 202 and the virtual image of the two-dimensional code 202 is obtained according to a plurality of the focus feedback values and a plurality of the accumulated displacement lengths.
  • S300 Obtain the thickness and refractive index of the glass substrate 200.
  • the depth from the two-dimensional code 202 to the first surface 201 is obtained according to the thickness, the refractive index, and the distance between the two images.
  • the embodiment of the present application provides a method for calculating the depth of the two-dimensional code inside the glass substrate, and multiple images are taken for the two-dimensional code 202 through the camera 50.
  • the sharpness of the image reflects the focus.
  • the two-image distance between the real image of the two-dimensional code 202 and the virtual image of the two-dimensional code 202 can be obtained.
  • the two-image distance between the real image of the two-dimensional code 202 and the virtual image of the two-dimensional code 202 is related to the thickness, the refractive index, and the depth of the two-dimensional code 202 to the first surface 201 related.
  • the method for calculating the depth of the two-dimensional code inside the glass substrate can obtain the result according to the thickness, the refractive index, and the distance between the two images.
  • the depth from the two-dimensional code 202 to the first surface 201.
  • the step of obtaining the depth of the two-dimensional code 202 from the first surface 201 according to the thickness, the refractive index, and the two-image distance The rate and the two-image distance are brought into the depth formula, and the depth formula is:
  • s is the depth of the two-dimensional code 202 from the first surface 201.
  • D is the thickness of the glass substrate 200.
  • n is the refractive index of the glass substrate 200.
  • d is the distance between the two images.
  • the distance d 1 from the best focus position #1 of the two-dimensional code in the glass to the upper surface of the glass is:
  • the distance d 2 from the best focus position #2 of the two-dimensional code reflected on the bottom surface of the glass to the upper surface of the glass is:
  • S200 includes:
  • S210 Find the first image corresponding to the largest focus feedback value from the real image group, and find the clearest second image from the real image group.
  • S220 Acquire a first adjacent image and a second adjacent image that are adjacent to the first image, and acquire a third adjacent image and a fourth adjacent image that are adjacent to the second image.
  • S230 Acquire the cumulative displacement length corresponding to the first image, the first adjacent image, and the second adjacent image, respectively.
  • the cumulative displacement lengths of the first image, the first adjacent image, and the second adjacent image in a one-to-one correspondence are a first length, a first adjacent length, and a second adjacent length, respectively.
  • the focus feedback values corresponding to the first image, the first adjacent image, and the second adjacent image are obtained respectively.
  • the focus feedback values corresponding to the first image, the first nearby image, and the second nearby image are a first focus feedback value, a first nearby feedback value, and a second nearby feedback value, respectively.
  • the cumulative displacement length corresponding to the second image, the third adjacent image, and the fourth adjacent image is obtained respectively.
  • the cumulative displacement lengths of the second image, the third adjacent image, and the fourth adjacent image in a one-to-one correspondence are a second length, a third adjacent length, and a fourth adjacent length, respectively.
  • the focus feedback values corresponding to the second image, the third adjacent image, and the fourth adjacent image are respectively obtained in a one-to-one correspondence.
  • the focus feedback values corresponding to the second image, the third adjacent image, and the fourth adjacent image are a second focus feedback value, a third adjacent focus feedback value, and a fourth adjacent focus feedback value, respectively.
  • the first data fitting is performed to obtain the real image cumulative displacement length corresponding to the real image of the two-dimensional code 202. Taking the second length, the third proximity length, and the fourth proximity length as the abscissa, and the second focus feedback value, the third proximity feedback value, and the fourth proximity feedback value as the vertical The second data fitting is performed on the coordinates, and the cumulative displacement length of the virtual image corresponding to the virtual image of the two-dimensional code 202 is obtained.
  • the difference between the accumulated displacement length of the real image and the accumulated displacement length of the virtual image is performed to obtain the distance between the two images.
  • the first data fitting and the second data fitting both adopt parabolic fitting.
  • the first data fitting corresponds to a first parabola.
  • the abscissa of the vertex corresponding to the first parabola is the cumulative displacement length of the real image.
  • the second data fitting corresponds to a second parabola.
  • the abscissa of the vertex corresponding to the second parabola is the cumulative displacement length of the virtual image.
  • the predetermined distance traveled by the camera 50 is adjusted by motor control, and the predetermined distance in FIG. 3 is 20 um. In Fig. 6 to improve accuracy, the predetermined distance is 10um.
  • the predetermined distance is 10um.
  • the first length is 210um
  • the first proximity length is 200um
  • the second proximity length is 220um.
  • the first focus feedback value is 200
  • the first proximity feedback value is 161
  • the second proximity feedback value is 173.
  • the second length is 540um
  • the third proximity length is 530um
  • the fourth proximity length is 550um.
  • the second focus feedback value is 169
  • the third proximity focus feedback value is 156
  • the fourth proximity focus feedback value is 164.
  • the cumulative displacement length of the real image is 210.9um.
  • the cumulative displacement length of the virtual image is 542.2um.
  • the distance between the two images is 321.3um.
  • the method for calculating the depth of the two-dimensional code inside the glass substrate further includes:
  • S010 includes:
  • the position of the camera 50 is adjusted in translation and rotation in S012.
  • an embodiment of the present application provides a two-dimensional code depth calculation system 10 inside a glass substrate, including a base 20, a fixture 30, a first position adjustment device 40, a camera 50, a second position adjustment device 60, and The light source 70 and the controller 80.
  • the jig 30 is used to fix the glass substrate 200.
  • the first position adjusting device 40 is disposed on the base 20.
  • the jig 30 is fixed to the first position adjusting device 40.
  • the camera head of the camera 50 is configured to face the glass substrate 200.
  • the second position adjusting device 60 is disposed on the base 20.
  • the camera 50 is fixed to the second position adjusting device 60.
  • the point light source 70 is fixedly arranged on the camera 50.
  • the light emitting direction of the point light source 70 is parallel to the shooting direction of the camera of the camera 50.
  • the first position adjusting device 40, the position adjusting device and the camera 50 are respectively connected to the controller 80.
  • the controller 80 is used for adjusting the position of the glass substrate 200 through the first position adjusting device 40.
  • the controller 80 is also used for the second position adjusting device 60 to adjust the position of the camera 50 so that the camera 50 can focus on the two-dimensional code 202.
  • the controller 80 is used to control the camera 50 to take an image of the two-dimensional code 202, and the controller 80 is used to collect the image and record the position of the camera 50.
  • the two-dimensional code depth calculation system 10 inside the glass substrate adjusts the position of the glass substrate 200 through the first position adjustment device 40, and adjusts the camera through the second position adjustment device 60 50, so that the camera 50 can focus on the two-dimensional code 202.
  • the two-dimensional code depth calculation system 10 inside the glass substrate collects the image and records the position of the camera 50.
  • the first position adjusting device 40 is used to adjust the position of the glass substrate 200 on the x-y plane.
  • the two-dimensional code depth calculation system inside the glass substrate further includes a box body 90.
  • the box 90 encloses enough to form a first space 901.
  • the controller 80 is housed in the first space 901.
  • the box body 90 is fixed to the base 20.
  • the box body 90 includes side walls. The side wall is perpendicular to the base 20.
  • the second position adjustment device 60 includes: a height adjustment device 610, a plane adjustment device 620, and an angle adjustment device 630.
  • the height adjusting device 610 is fixedly arranged on the side wall.
  • the plane adjusting device 620 is fixedly disposed on the plane adjusting device 620.
  • the angle adjusting device 630 is fixed to the plane adjusting device 620.
  • the camera 50 is fixed to the angle adjustment device 630.
  • the controller 80 is configured to control the plane adjusting device 620 to adjust the position of the camera 50 on the x-y plane, so that the two-dimensional code 202 is within the field of view of the camera 50.
  • the controller 80 is used to control the angle adjusting device 630 to adjust the xz or yz angle of the camera 50 so that the shooting direction of the camera of the camera 50 is perpendicular to the x-y plane.
  • the controller 80 is used to control the height adjustment device 610 to adjust the position of the camera 50 along the z axis.
  • the controller 80 is used to control the camera 50 to take the two-dimensional code 202 once every time a certain distance between the camera 50 and the glass substrate 200 is shortened.
  • the controller 80 is used to collect multiple images of the two-dimensional code 202 and record the accumulated displacement length of the camera 50 multiple times.
  • the plurality of accumulated displacement lengths correspond to a plurality of images of the two-dimensional code 202 in a one-to-one correspondence. As the cumulative displacement length increases, the images of the multiple two-dimensional codes 202 are divided into a real image group and a virtual image group.
  • the images of the real image group and the virtual image group both change from blurry to clear to blurry.
  • the two-dimensional code reading device 10 inside the glass substrate further includes a central control device 100.
  • the central control device 100 is connected to the controller 80.
  • the central control device 100 is used to collect multiple images of the two-dimensional code 202 and multiple cumulative displacement lengths. And according to the images of the plurality of two-dimensional codes 202 and the plurality of accumulated displacement lengths, the depth of the two-dimensional code 202 to the surface of the glass substrate 200 close to the camera 50 is obtained.
  • the central control device 100 includes a collector 110, a filter 120, a fitter 130, and a calculator 140.
  • the collector 110 is used to connect with the controller 80.
  • the collector 110 is used to collect a plurality of images of the two-dimensional code 202 and a plurality of the accumulated displacement lengths.
  • the filter 120 is connected to the collector 110.
  • the filter 120 is configured to receive a plurality of images of the two-dimensional code 202 and a plurality of the accumulated displacement lengths, and calculate the focus feedback value of each image of the two-dimensional code 202.
  • the filter 120 is used to filter the clearest first image from the real image group and the clearest second image from the real image group.
  • the filter 120 is used to obtain a first adjacent image and a second adjacent image adjacent to the first image.
  • the filter 120 is used to obtain a third adjacent image and a fourth adjacent image that are adjacent to the second image.
  • the filter 120 is also used to obtain the cumulative displacement length corresponding to the first image, the first adjacent image, and the second adjacent image, respectively, and the first image, the first adjacent image
  • the accumulated displacement lengths of the image and the second adjacent image in a one-to-one correspondence are a first length, a first adjacent length, and a second adjacent length, respectively.
  • the filter 120 is also used to obtain the focus feedback values corresponding to the first image, the first adjacent image, and the second adjacent image, respectively, and the first image, the first adjacent image
  • the focus feedback values corresponding to the image and the second neighboring image one-to-one are a first focus feedback value, a first neighboring feedback value, and a second neighboring feedback value, respectively.
  • the filter 120 is further configured to obtain the cumulative displacement length corresponding to the second image, the third adjacent image, and the fourth adjacent image, respectively.
  • the cumulative displacement lengths of the second image, the third adjacent image, and the fourth adjacent image in a one-to-one correspondence are a second length, a third adjacent length, and a fourth adjacent length, respectively.
  • the filter 120 is further configured to obtain the focus feedback values corresponding to the second image, the third adjacent image, and the fourth adjacent image, respectively.
  • the focus feedback values corresponding to the second image, the third adjacent image, and the fourth adjacent image are a second focus feedback value, a third adjacent focus feedback value, and a fourth adjacent focus feedback value, respectively.
  • the fitter 130 is connected to the filter 120.
  • the fitter 130 is configured to receive the first length, the first proximity length, the second proximity length, the first focus feedback value, the first proximity feedback value, and the second proximity length. Feedback value, the second length, the third proximity length, the fourth proximity length, the second focus feedback value, the third proximity feedback value, and the fourth proximity feedback value.
  • the fitter 130 is configured to use the first length, the first proximity length, and the second proximity length as abscissas, and use the first focus feedback value, the first proximity feedback value, and the The second proximity feedback value is the ordinate to perform the first data fitting to obtain the real image cumulative displacement length corresponding to the real image of the two-dimensional code 202.
  • the fitter 130 is configured to use the second length, the third proximity length, and the fourth proximity length as the abscissa, and the second focus feedback value, the third proximity feedback value, and the The fourth proximity feedback value is the ordinate to perform second data fitting to obtain the cumulative displacement length of the virtual image corresponding to the virtual image of the two-dimensional code 202.
  • the fitter 130 is used to make a difference between the accumulated displacement length of the real image and the accumulated displacement length of the virtual image to obtain the distance between the two images.
  • the calculator 140 is connected to the fitter 130.
  • the calculator 140 is also used to receive the two-image distance.
  • the calculator 140 is used to receive external data.
  • the external data includes the thickness and refractive index of the glass substrate 200, and the calculator 140 is used to obtain the distance between the two-dimensional code 202 and the first image according to the thickness, the refractive index, and the distance between the two images.
  • the depth of surface 201 includes the thickness and refractive index of the glass substrate 200, and the calculator 140 is used to obtain the distance between the two-dimensional code 202 and the first image according to the thickness, the refractive index, and the distance between the two images.

Abstract

一种玻璃基板(200)内部二维码(202)深度计算系统及计算方法。玻璃基板(200)内部二维码(202)深度计算方法包括控制相机(50)沿垂直于玻璃基板(200)的第一表面(201)的方向靠近玻璃基板(200)。相机(50)多次拍摄二维码(202),以得到多个二维码(202)的图像。并多次记录相机(50)的累计位移长度,计算每个二维码(202)的图像的聚焦反馈值。图像的清晰反映了聚焦情况。根据多个聚焦反馈值和多个累计位移长度得到二维码(202)的实像和二维码(202)的虚像之间的两像距离。根据成像原理,二维码(202)的实像和二维码(202)的虚像之间的两像距离与厚度、折射率和二维码(202)到第一表面(201)的深度有关。因此,玻璃基板(200)内部二维码(202)深度计算方法在获取厚度、折射率和两像距离后,根据厚度、折射率和两像距离即可得到二维码(202)到第一表面(201)的深度。

Description

玻璃基板内部二维码深度计算系统及计算方法 技术领域
本申请涉及液晶显示技术领域,特别是涉及一种玻璃基板内部二维码深度计算系统及计算方法。
背景技术
随着手机盖板玻璃行业的飞速发展,玻璃盖板需进行经历生产、抛光、加压、喷墨、组装等一系列的工艺。为了更好地溯源每一块玻璃盖板、同时不影响产品美观性,最前沿的工艺是将点阵型二维码(Data Matrix)通过激光打印至玻璃内部,使肉眼难以分辨的同时专用的读码机可以完成识别。
为有效衡量这种隐藏于玻璃内部的二维码其肉眼可以分辨的程度,以及考量激光打码对玻璃强度的影响,测量二维码深度的需求应运而生。因此怎样才能测量出二维码在玻璃基板内部的深度是亟待解决的问题。
发明内容
基于此,有必要针对怎样才能测量出二维码在玻璃基板内部的深度的问题,提供一种玻璃基板内部二维码深度计算系统及计算方法。
一种玻璃基板内部二维码深度计算方法,包括:
S100,控制相机沿垂直于所述玻璃基板的第一表面的方向靠近所述玻璃基板。所述相机与所述第一表面之间每缩短预定距离,所述相机拍摄一次所述二维码,以得到多个所述二维码的图像。并多次记录所述相机的累计位移长度。多个所述累计位移长度与多个所述二维码的图像一一对应。随所述累计位移长 度的增大,多个所述二维码的图像划分为实像组和虚像组。所述实像组和所述虚像组的图像均由模糊到清晰再到模糊变化。
S200,计算每个所述二维码的图像的聚焦反馈值。根据多个所述聚焦反馈值和多个所述累计位移长度得到所述二维码的实像和所述二维码的虚像之间的两像距离。
S300,获取所述玻璃基板的厚度和折射率。并根据所述厚度、所述折射率和所述两像距离得到所述二维码到所述第一表面的深度。
在一个实施例中,S300中根据所述厚度、所述折射率和所述两像距离得到所述二维码距离所述第一表面的深度的步骤为将所述厚度、所述折射率和所述两像距离带入深度公式,所述深度公式为:
Figure PCTCN2020081999-appb-000001
其中,s为所述二维码距离所述第一表面的深度。D为所述玻璃基板的厚度。n为所述玻璃基板的折射率。d为所述两像距离。
在一个实施例中,S200包括:
S210,从所述实像组找到最大的所述聚焦反馈值对应的第一图像,从所述实像组找到最清晰的第二图像。
S220,获取与所述第一图像临近的第一临近图像和第二临近图像,获取与所述第二图像临近的第三临近图像和第四临近图像。
S230,分别获取所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述累计位移长度。所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述累计位移长度分别为第一长度、第一临近长度和第二临近长度。
分别获取所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述聚焦反馈值。所述第一图像、所述第一临近图像和所述第二临近图像一 一对应的所述聚焦反馈值分别为第一聚焦反馈值、第一临近反馈值和第二临近反馈值。
分别获取所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述累计位移长度。所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述累计位移长度分别为第二长度、第三临近长度和第四临近长度。
分别获取所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述聚焦反馈值。所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述聚焦反馈值分别为第二聚焦反馈值、第三临近聚焦反馈值和第四临近聚焦反馈值。
S240,以所述第一长度、所述第一临近长度和所述第二临近长度为横坐标,以所述第一聚焦反馈值、所述第一临近反馈值和所述第二临近反馈值为纵坐标,进行第一数据拟合得到所述二维码202的实像对应的实像累计位移长度。以所述第二长度、所述第三临近长度和所述第四临近长度为横坐标,以所述第二聚焦反馈值、所述第三临近反馈值和所述第四临近反馈值为纵坐标进行第二数据拟合,得到所述二维码202的虚像对应的虚像累计位移长度。
S250,将所述实像累计位移长度和所述虚像累计位移长度做差得到所述两像距离。
在一个实施例中,在S240所述第一数据拟合和所述第二数据拟合均采用抛物线拟合。所述第一数据拟合对应得到第一抛物线。,所述第一抛物线对应的顶点的横坐标即为所述实像累计位移长度。所述第二数据拟合对应得到第二抛物线。所述第二抛物线对应的顶点的横坐标即为所述虚像累计位移长度。
在一个实施例中,在S100之前,所述玻璃基板内部二维码深度计算方法还包括:
S010,将所述玻璃基板调整至所述相的拍摄范围内。
在一个实施例中,在S010包括:
S011,对所述玻璃基板的位置进行粗调节。
S012,对所述相机的位置进行调节。
在一个实施例中,在S012对所述相机的位置进行平动调节和转动调节。
一种玻璃基板内部二维码深度计算系统,包括底座、治具、第一位置调节装置、相机、第二位置调节装置、点光源和控制器。所述治具用于固定所述玻璃基板。所述第一位置调节装置设置于所述底座。所述治具固定于所述第一位置调节装置。所述相机的摄像头用于朝向所述玻璃基板设置。所述第二位置调节装置设置于所述底座。所述相机固定于所述第二位置调节装置。所述点光源,固定设置于所述相机。且所述点光源的出光方向平行于所述相机的摄像头的拍摄方向。
所述第一位置调节装置、所述位置调节装置和所述相机分别与所述控制器连接。所述控制器用于通过所述第一位置调节装置调节所述玻璃基板的位置。所述控制器还用于所述第二位置调节装置调节所述相机的位置,以使所述相机对焦所述二维码。所述控制器用于控制所述相机拍摄所述二维码的图像,所述控制器用于采集所述图像和记录所述相机的位置。
在一个实施例中,所述第一位置调节装置用于调节所述玻璃基板在x-y平面的位置。所述玻璃基板内部二维码深度计算系统还包括箱体。所述箱体围够形成第一空间。所述控制器收纳于所述第一空间。所述箱体固定于所述底座。所述箱体为包括侧壁。所述侧壁垂直于所述底座。所述第二位置调节装置包括:高度调节装置、平面调节装置和角度调节装置。
所述高度调节装置固定设置于所述侧壁。所述平面调节装置固定设置于所述平面调节装置。所述角度调节装置固定于所述平面调节装置。所述相机固定于所述角度调节装置。所述高度调节装置、所述平面调节装置和所述角度调节 装置分别与所述控制器连接。所述控制器用于控制所述平面调节装置调节所述相机在所述x-y平面的位置,以使所述二维码在所述相机的视野范围内。所述控制器用于控制所述角度调节装置调节所述相机的xz转角或yz转角,以使所述相机的摄像头的摄取方向垂直于x-y平面。所述控制器用于控制所述高度调节装置调节所述相机沿z轴的位置。
在一个实施例中,所述控制器用于控制所述相机与所述玻璃基板之间每缩短特定距离,所述相机拍摄一次所述二维码。所述控制器用于采集多个所述二维码的图像和多次记录所述相机的累计位移长度。多个所述累计位移长度与多个所述二维码的图像一一对应。随所述累计位移长度的增大,多个所述二维码的图像划分为实像组和虚像组。所述实像组和所述虚像组的图像均由模糊到清晰再到模糊变化所述的玻璃基板内部二维码读码装置还包括中央控制装置。所述中央控制装置与所述控制器连接。所述中央控制装置用于采集多个所述二维码的图像和多个所述累计位移长度。并根据所述多个所述二维码的图像和多个所述累计位移长度得到所述二维码到所述玻璃基板靠近所述相机的表面的深度。
在一个实施例中,所述中央控制装置包括采集器、筛选器、拟合器和计算器。
所述采集器用于与所述控制器连接。所述采集器用于采集多个所述二维码的图像和多个所述累计位移长度。
所述筛选器与所述采集器连接。所述筛选器用于接收多个所述二维码的图像和多个所述累计位移长度,并计算每个所述二维码的图像的聚焦反馈值。所述筛选器用于从所述实像组筛选出最清晰的第一图像和从所述实像组筛选出最清晰的所述第二图像。所述筛选器用于获取与所述第一图像临近的第一临近图像和第二临近图像。所述筛选器用于获取与所述第二图像临近的第三临近图像和第四临近图像。所述筛选器还用于分别获取所述第一图像、所述第一临近图 像和所述第二临近图像一一对应的所述累计位移长度,所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述累计位移长度分别为第一长度、第一临近长度和第二临近长度。
所述筛选器还用于分别获取所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述聚焦反馈值,所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述聚焦反馈值分别为第一聚焦反馈值、第一临近反馈值和第二临近反馈值,所述筛选器还用于分别获取所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述累计位移长度。所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述累计位移长度分别为第二长度、第三临近长度和第四临近长度。所述筛选器还用于分别获取所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述聚焦反馈值。所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述聚焦反馈值分别为第二聚焦反馈值、第三临近聚焦反馈值和第四临近聚焦反馈值。
所述拟合器与所述筛选器连接。所述拟合器用于接收所述第一长度、所述第一临近长度、所述第二临近长度、所述第一聚焦反馈值、所述第一临近反馈值、所述第二临近反馈值、所述第二长度、所述第三临近长度、所述第四临近长度、所述第二聚焦反馈值、所述第三临近反馈值和所述第四临近反馈值。所述拟合器用于以所述第一长度、所述第一临近长度和所述第二临近长度为横坐标,以所述第一聚焦反馈值、所述第一临近反馈值和所述第二临近反馈值为纵坐标进行第一数据拟合,得到所述二维码的实像对应的实像累计位移长度。所述拟合器用于以所述第二长度、所述第三临近长度和所述第四临近长度为横坐标,以所述第二聚焦反馈值、所述第三临近反馈值和所述第四临近反馈值为纵坐标进行第二数据拟合,得到所述二维码的虚像对应的虚像累计位移长度。所述拟合器用于将所述实像累计位移长度和所述虚像累计位移长度做差得到两像 距离。
所述计算器与所述拟合器连接。所述计算器还用于接收所述两像距离。所述计算器用于接收外部数据。所述外部数据包括所述玻璃基板的厚度和折射率。所述计算器用于根据所述厚度、所述折射率和所述两像距离得到所述二维码距离所述第一表面的深度。
本申请实施例提供的所述玻璃基板内部二维码深度计算方法,包括控制相机沿垂直于所述玻璃基板的第一表面的方向靠近所述玻璃基板。所述相机与所述第一表面之间每缩短预定距离。所述相机拍摄一次所述二维码,以得到多个所述二维码的图像。并多次记录所述相机的累计位移长度。多个所述累计位移长度与多个所述二维码的图像一一对应。随所述累计位移长度的增大,多个所述二维码的图像划分为实像组和虚像组。所述实像组和所述虚像组的图像均由模糊到清晰再到模糊变化。计算每个所述二维码的图像的聚焦反馈值。根据多个所述聚焦反馈值和多个所述累计位移长度得到所述二维码的实像和所述二维码的虚像之间的两像距离。获取所述玻璃基板的厚度和折射率。并根据所述厚度、所述折射率和所述两像距离得到所述二维码到所述第一表面的深度。
所述玻璃基板内部二维码深度计算方法,通过所述相机为所述二维码拍摄多张图像。图像的清晰反映了聚焦情况。根据所述图像的聚焦反馈值和所述累计位移长度即可得到二维码的实像和所述二维码的虚像之间的两像距离。根据成像原理,二维码的实像和所述二维码的虚像之间的两像距离与所述厚度、所述折射率和所述二维码到所述第一表面的深度有关。因此,所述玻璃基板内部二维码深度计算方法在获取所述厚度、所述折射率和所述两像距离后,根据所述厚度、所述折射率和所述两像距离即可得到所述二维码到所述第一表面的深度。
附图说明
图1为本申请一个实施例中提供的所述玻璃基板内部二维码深度计算方法的方法流程图;
图2为本申请一个实施例中提供的所述玻璃基板内部二维码深度计算系统的结构示意图;
图3为本申请一个实施例中提供的多个图像与累计位移长度关系图;
图4为本申请一个实施例中提供的所述玻璃基板内部二维码深度计算方法的原理图;
图5为本申请另一个实施例中提供的所述玻璃基板内部二维码深度计算方法的方法流程图;
图6为本申请另一个实施例中提供的拟合曲线图;
图7为本申请一个实施例中提供的所述玻璃基板内部二维码深度计算系统的电气连接示意图。
附图标号:
玻璃基板内部二维码深度计算系统10
底座20
玻璃基板200
第一表面201
二维码202
治具30
第一位置调节装置40
相机50
第二位置调节装置60
点光源70
控制器80
箱体90
第一空间901
侧壁902
高度调节装置610
平面调节装置620
角度调节装置630
中央控制装置100
采集器110
筛选器120
拟合器130
计算器140
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施的限制。
本文中为部件所编序号本身,例如“第一”、“第二”等,仅用于分所描述的对象,不具有任何顺序或技术含义。而本申请所说“连接”、“联接”,如无特别说明,均包括直接和间接连接(联接)。在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示 的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
请一并参见图1和图2,本申请实施例提供一种玻璃基板内部二维码深度计算方法,包括:
S100,控制相机50沿垂直于所述玻璃基板200的第一表面201的方向靠近所述玻璃基板200。所述相机50与所述第一表面201之间每缩短预定距离,所述相机50拍摄一次所述二维码202,以得到多个所述二维码202的图像。并多次记录所述相机50的累计位移长度。多个所述累计位移长度与多个所述二维码202的图像一一对应。随所述累计位移长度的增大,多个所述二维码202的图像划分为实像组和虚像组。所述实像组和所述虚像组的图像均由模糊到清晰再到模糊变化。
所述二维码202设置于所述玻璃基板200中。所述二维码202包括实像和虚像。虚像形成于所述玻璃基板200远离所述相机50的一侧。
请一并参见图3,根据几何光学对二维码在相机面成像进行分析,开始的所述二维码202的图像中点阵周围亮、中心暗的原因是因为所述二维码202的点阵周围的锥形将同轴光反射进入所述相机50,而点阵中心无光线可以进入所述相机50。相对应的,所述二维码202的图像中点阵周围暗、中心亮的原因是因 为所述二维码202的中间位置将同轴光反射回相机成像,而点阵周围的锥形无光线可以进入相机。据此,推断出中心亮、周围暗的白点图案位置为二维码的最佳聚焦位置。
所述玻璃基板200的底面与所述第一表面202相对设置。所述虚像形成于所述玻璃基板200的底面的一侧。所述虚像的图像中二维码点阵的图案变化,也是中心由暗至亮的变化。相似地,可以推断出白点图案位置处为镜像二维码的最佳聚焦位置。
在一个实施例中,所述相机50远离所述第一表面201最远的点对应的所述累计位移长度为0。所述相机50约靠近所述第一表面201,所述累计位移长度越大。所述实像组和所述虚像组以玻璃下表面的图形为分界图形。
S200,计算每个所述二维码202的图像的聚焦反馈值。根据多个所述聚焦反馈值和多个所述累计位移长度得到所述二维码202的实像和所述二维码202的虚像之间的两像距离。
S300,获取所述玻璃基板200的厚度和折射率。并根据所述厚度、所述折射率和所述两像距离得到所述二维码202到所述第一表面201的深度。
本申请实施例提供所述玻璃基板内部二维码深度计算方法,通过所述相机50为所述二维码202拍摄多张图像。图像的清晰反映了聚焦情况。根据所述图像的聚焦反馈值和所述累计位移长度即可得到二维码202的实像和所述二维码202的虚像之间的两像距离。根据成像原理,二维码202的实像和所述二维码202的虚像之间的两像距离与所述厚度、所述折射率和所述二维码202到所述第一表面201的深度有关。因此,所述玻璃基板内部二维码深度计算方法在获取所述厚度、所述折射率和所述两像距离后,根据所述厚度、所述折射率和所述两像距离即可得到所述二维码202到所述第一表面201的深度。
在一个实施例中,S300中根据所述厚度、所述折射率和所述两像距离得到 所述二维码202距离所述第一表面201的深度的步骤为将所述厚度、所述折射率和所述两像距离带入深度公式,所述深度公式为:
Figure PCTCN2020081999-appb-000002
其中,s为所述二维码202距离所述第一表面201的深度。D为所述玻璃基板200的厚度。n为所述玻璃基板200的折射率。d为所述两像距离。
请一并参见所述深度公式的推导过程为:
玻璃内二维码的最佳聚焦位置#1和其实际位置之间的距离Δl′ 1即为:
Figure PCTCN2020081999-appb-000003
玻璃内二维码最佳聚焦位置#1距离玻璃上表面的距离d 1即为:
Figure PCTCN2020081999-appb-000004
而二维码经玻璃底面反射像的最佳聚焦位置#2和其实际位置之间的距离Δl′ 2即为:
Figure PCTCN2020081999-appb-000005
二维码经玻璃底面反射像的最佳聚焦位置#2距离玻璃的上表面的距离d 2即为:
Figure PCTCN2020081999-appb-000006
还知:d=d 2-d 1  (6)
由式子(5)和(6)计算出:
Figure PCTCN2020081999-appb-000007
Figure PCTCN2020081999-appb-000008
将(8)进行变形得到所述深度公式。
请一并参见图5和图6,在一个实施例中,S200包括:
S210,从所述实像组找到最大的所述聚焦反馈值对应的第一图像,从所述实像组找到最清晰的第二图像。
S220,获取与所述第一图像临近的第一临近图像和第二临近图像,获取与 所述第二图像临近的第三临近图像和第四临近图像。
S230,分别获取所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述累计位移长度。所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述累计位移长度分别为第一长度、第一临近长度和第二临近长度。
分别获取所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述聚焦反馈值。所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述聚焦反馈值分别为第一聚焦反馈值、第一临近反馈值和第二临近反馈值。
分别获取所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述累计位移长度。所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述累计位移长度分别为第二长度、第三临近长度和第四临近长度。
分别获取所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述聚焦反馈值。所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述聚焦反馈值分别为第二聚焦反馈值、第三临近聚焦反馈值和第四临近聚焦反馈值。
S240,以所述第一长度、所述第一临近长度和所述第二临近长度为横坐标,以所述第一聚焦反馈值、所述第一临近反馈值和所述第二临近反馈值为纵坐标,进行第一数据拟合得到所述二维码202的实像对应的实像累计位移长度。以所述第二长度、所述第三临近长度和所述第四临近长度为横坐标,以所述第二聚焦反馈值、所述第三临近反馈值和所述第四临近反馈值为纵坐标进行第二数据拟合,得到所述二维码202的虚像对应的虚像累计位移长度。
S250,将所述实像累计位移长度和所述虚像累计位移长度做差得到所述两像距离。
在一个实施例中,在S240所述第一数据拟合和所述第二数据拟合均采用抛物线拟合。所述第一数据拟合对应得到第一抛物线。,所述第一抛物线对应的顶点的横坐标即为所述实像累计位移长度。所述第二数据拟合对应得到第二抛物线。所述第二抛物线对应的顶点的横坐标即为所述虚像累计位移长度。
在一个实施例中,所述相机50行进的所述预定距离通过电机控制调整,图3中所述预定距离为20um。图6中为提高精度,所述预定距离为10um。
在一个实施例中,所述预定距离为10um。所述第一长度为210um,所述第一临近长度为200um,所述第二临近长度为220um。所述第一聚焦反馈值为200、第一临近反馈值为161和第二临近反馈值为173。
所述第二长度为540um、所述第三临近长度为530um,所述第四临近长度为550um。所述第二聚焦反馈值为169、所述第三临近聚焦反馈值为156和所述第四临近聚焦反馈值为164。
所述第一抛物线公式为:y=-0.33x 2+139.2x-14479。所述实像累计位移长度为210.9um。所述第二抛物线公式为:y=-0.09x 2+97.6x-26291。所述虚像累计位移长度为542.2um。所述两像距离为321.3um。
在一个实施例中,在S100之前,所述玻璃基板内部二维码深度计算方法还包括:
S010,将所述玻璃基板200调整至所述相机50的拍摄范围内。
在一个实施例中,在S010包括:
S011,对所述玻璃基板200的位置进行粗调节。
S012,对所述相机50的位置进行调节。
在一个实施例中,在S012对所述相机50的位置进行平动调节和转动调节。
请一并参见图7,本申请实施例提供一种玻璃基板内部二维码深度计算系统10包括底座20、治具30、第一位置调节装置40、相机50、第二位置调节装置 60、点光源70和控制器80。所述治具30用于固定所述玻璃基板200。所述第一位置调节装置40设置于所述底座20。所述治具30固定于所述第一位置调节装置40。所述相机50的摄像头用于朝向所述玻璃基板200设置。所述第二位置调节装置60设置于所述底座20。所述相机50固定于所述第二位置调节装置60。所述点光源70,固定设置于所述相机50。且所述点光源70的出光方向平行于所述相机50的摄像头的拍摄方向。所述第一位置调节装置40、所述位置调节装置和所述相机50分别与所述控制器80连接。所述控制器80用于通过所述第一位置调节装置40调节所述玻璃基板200的位置。所述控制器80还用于所述第二位置调节装置60调节所述相机50的位置,以使所述相机50对焦所述二维码202。所述控制器80用于控制所述相机50拍摄所述二维码202的图像,所述控制器80用于采集所述图像和记录所述相机50的位置。
本申请实施例提供的所述玻璃基板内部二维码深度计算系统10通过所述第一位置调节装置40调节所述玻璃基板200的位置,并通过所述第二位置调节装置60调节所述相机50的位置,以使所述相机50对焦所述二维码202。所述玻璃基板内部二维码深度计算系统10通过采集所述图像和记录所述相机50的位置。
在一个实施例中,所述第一位置调节装置40用于调节所述玻璃基板200在x-y平面的位置。所述玻璃基板内部二维码深度计算系统还包括箱体90。所述箱体90围够形成第一空间901。所述控制器80收纳于所述第一空间901。所述箱体90固定于所述底座20。所述箱体90为包括侧壁。所述侧壁垂直于所述底座20。所述第二位置调节装置60包括:高度调节装置610、平面调节装置620和角度调节装置630。
所述高度调节装置610固定设置于所述侧壁。所述平面调节装置620固定设置于所述平面调节装置620。所述角度调节装置630固定于所述平面调节装置 620。所述相机50固定于所述角度调节装置630。所述高度调节装置610、所述平面调节装置620和所述角度调节装置630分别与所述控制器80连接。所述控制器80用于控制所述平面调节装置620调节所述相机50在所述x-y平面的位置,以使所述二维码202在所述相机50的视野范围内。所述控制器80用于控制所述角度调节装置630调节所述相机50的xz转角或yz转角,以使所述相机50的摄像头的摄取方向垂直于x-y平面。所述控制器80用于控制所述高度调节装置610调节所述相机50沿z轴的位置。
在一个实施例中,所述控制器80用于控制所述相机50与所述玻璃基板200之间每缩短特定距离,所述相机50拍摄一次所述二维码202。所述控制器80用于采集多个所述二维码202的图像和多次记录所述相机50的累计位移长度。多个所述累计位移长度与多个所述二维码202的图像一一对应。随所述累计位移长度的增大,多个所述二维码202的图像划分为实像组和虚像组。
所述实像组和所述虚像组的图像均由模糊到清晰再到模糊变化所述的玻璃基板内部二维码读码装置10还包括中央控制装置100。所述中央控制装置100与所述控制器80连接。所述中央控制装置100用于采集多个所述二维码202的图像和多个所述累计位移长度。并根据所述多个所述二维码202的图像和多个所述累计位移长度得到所述二维码202到所述玻璃基板200靠近所述相机50的表面的深度。
在一个实施例中,所述中央控制装置100包括采集器110、筛选器120、拟合器130和计算器140。
所述采集器110用于与所述控制器80连接。所述采集器110用于采集多个所述二维码202的图像和多个所述累计位移长度。
所述筛选器120与所述采集器110连接。所述筛选器120用于接收多个所述二维码202的图像和多个所述累计位移长度,并计算每个所述二维码202的 图像的聚焦反馈值。所述筛选器120用于从所述实像组筛选出最清晰的第一图像和从所述实像组筛选出最清晰的所述第二图像。所述筛选器120用于获取与所述第一图像临近的第一临近图像和第二临近图像。所述筛选器120用于获取与所述第二图像临近的第三临近图像和第四临近图像。
所述筛选器120还用于分别获取所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述累计位移长度,所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述累计位移长度分别为第一长度、第一临近长度和第二临近长度。
所述筛选器120还用于分别获取所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述聚焦反馈值,所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述聚焦反馈值分别为第一聚焦反馈值、第一临近反馈值和第二临近反馈值。
所述筛选器120还用于分别获取所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述累计位移长度。所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述累计位移长度分别为第二长度、第三临近长度和第四临近长度。所述筛选器120还用于分别获取所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述聚焦反馈值。所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述聚焦反馈值分别为第二聚焦反馈值、第三临近聚焦反馈值和第四临近聚焦反馈值。
所述拟合器130与所述筛选器120连接。所述拟合器130用于接收所述第一长度、所述第一临近长度、所述第二临近长度、所述第一聚焦反馈值、所述第一临近反馈值、所述第二临近反馈值、所述第二长度、所述第三临近长度、所述第四临近长度、所述第二聚焦反馈值、所述第三临近反馈值和所述第四临近反馈值。所述拟合器130用于以所述第一长度、所述第一临近长度和所述第 二临近长度为横坐标,以所述第一聚焦反馈值、所述第一临近反馈值和所述第二临近反馈值为纵坐标进行第一数据拟合,得到所述二维码202的实像对应的实像累计位移长度。所述拟合器130用于以所述第二长度、所述第三临近长度和所述第四临近长度为横坐标,以所述第二聚焦反馈值、所述第三临近反馈值和所述第四临近反馈值为纵坐标进行第二数据拟合,得到所述二维码202的虚像对应的虚像累计位移长度。所述拟合器130用于将所述实像累计位移长度和所述虚像累计位移长度做差得到两像距离。
所述计算器140与所述拟合器130连接。所述计算器140还用于接收所述两像距离。所述计算器140用于接收外部数据。所述外部数据包括所述玻璃基板200的厚度和折射率,所述计算器140用于根据所述厚度、所述折射率和所述两像距离得到所述二维码202距离所述第一表面201的深度。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种玻璃基板内部二维码深度计算方法,其特征在于,包括:
    S100,控制相机(50)沿垂直于所述玻璃基板(200)的第一表面(201)的方向靠近所述玻璃基板(200),所述相机(50)与所述第一表面(201)之间每缩短预定距离,所述相机(50)拍摄一次所述二维码(202),以得到多个所述二维码(202)的图像,并多次记录所述相机(50)的累计位移长度,多个所述累计位移长度与多个所述二维码(202)的图像一一对应,随所述累计位移长度的增大,多个所述二维码(202)的图像划分为实像组和虚像组,所述实像组和所述虚像组的图像均由模糊到清晰再到模糊变化;
    S200,计算每个所述二维码(202)的图像的聚焦反馈值,根据多个所述聚焦反馈值和多个所述累计位移长度得到所述二维码(202)的实像和所述二维码(202)的虚像之间的两像距离;
    S300,获取所述玻璃基板(200)的厚度和折射率,并根据所述厚度、所述折射率和所述两像距离得到所述二维码(202)到所述第一表面(201)的深度。
  2. 如权利要求1所述的玻璃基板内部二维码深度计算方法,其特征在于,S300中根据所述厚度、所述折射率和所述两像距离得到所述二维码(202)距离所述第一表面(201)的深度的步骤为将所述厚度、所述折射率和所述两像距离带入深度公式,所述深度公式为:
    Figure PCTCN2020081999-appb-100001
    其中,s为所述二维码(202)距离所述第一表面(201)的深度,D为所述玻璃基板(200)的厚度,n为所述玻璃基板(200)的折射率,d为所述两像距离。
  3. 如权利要求1所述的玻璃基板内部二维码深度计算方法,其特征在于,S200包括:
    S210,从所述实像组找到最大的所述聚焦反馈值对应的第一图像,从所述实像组找到最清晰的第二图像;
    S220,获取与所述第一图像临近的第一临近图像和第二临近图像,获取与所述第二图像临近的第三临近图像和第四临近图像;
    S230,分别获取所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述累计位移长度,所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述累计位移长度分别为第一长度、第一临近长度和第二临近长度,分别获取所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述聚焦反馈值,所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述聚焦反馈值分别为第一聚焦反馈值、第一临近反馈值和第二临近反馈值,分别获取所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述累计位移长度,所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述累计位移长度分别为第二长度、第三临近长度和第四临近长度,分别获取所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述聚焦反馈值,所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述聚焦反馈值分别为第二聚焦反馈值、第三临近聚焦反馈值和第四临近聚焦反馈值;
    S240,以所述第一长度、所述第一临近长度和所述第二临近长度为横坐标,以所述第一聚焦反馈值、所述第一临近反馈值和所述第二临近反馈值为纵坐标进行第一数据拟合,得到所述二维码(202)的实像对应的实像累计位移长度,以所述第二长度、所述第三临近长度和所述第四临近长度为横坐标,以所述第二聚焦反馈值、所述第三临近反馈值和所述第四临近反馈值为纵坐标进行第二数据拟合,得到所述二维码(202)的虚像对应的虚像累计位移长度;
    S250,将所述实像累计位移长度和所述虚像累计位移长度做差得到所述两 像距离。
  4. 如权利要求3所述的玻璃基板内部二维码深度计算方法,其特征在于,在S240所述第一数据拟合和所述第二数据拟合均采用抛物线拟合,所述第一数据拟合对应得到第一抛物线,所述第一抛物线对应的顶点的横坐标即为所述实像累计位移长度,所述第二数据拟合对应得到第二抛物线,所述第二抛物线对应的顶点的横坐标即为所述虚像累计位移长度。
  5. 如权利要求2所述的玻璃基板内部二维码深度计算方法,其特征在于,在S100之前,还包括:
    S010,将所述玻璃基板(200)调整至所述相机(50)的拍摄范围内。
  6. 如权利要求5所述的玻璃基板内部二维码深度计算方法,其特征在于,在S010包括:
    S011,对所述玻璃基板(200)的位置进行粗调节;
    S012,对所述相机(50)的位置进行调节。
  7. 一种玻璃基板内部二维码深度计算系统,其特征在于,包括:
    底座(20);
    治具(30),用于固定所述玻璃基板(200);
    第一位置调节装置(40),设置于所述底座(20),所述治具(30)固定于所述第一位置调节装置(40);
    相机(50),所述相机(50)的摄像头用于朝向所述玻璃基板(200)设置;
    第二位置调节装置(60),设置于所述底座(20),所述相机(50)固定于所述第二位置调节装置(60);
    点光源(70),固定设置于所述相机(50),且所述点光源(70)的出光方向平行于所述相机(50)的摄像头的拍摄方向;
    控制器(80),所述第一位置调节装置(40)、所述位置调节装置和所述相 机(50)分别与所述控制器(80)连接,所述控制器(80)用于通过所述第一位置调节装置(40)调节所述玻璃基板(200)的位置,所述控制器(80)还用于所述第二位置调节装置(60)调节所述相机(50)的位置,以使所述相机(50)对焦所述二维码(202),所述控制器(80)用于控制所述相机(50)拍摄所述二维码(202)的图像,所述控制器(80)用于采集所述图像和记录所述相机(50)的位置。
  8. 如权利要求7所述的玻璃基板内部二维码深度计算系统,其特征在于,所述第一位置调节装置(40)用于调节所述玻璃基板(200)在x-y平面的位置,所述玻璃基板内部二维码深度计算系统还包括箱体(90),所述箱体(90)围够形成第一空间(901),所述控制器(80)收纳于所述第一空间(901),所述箱体(90)固定于所述底座(20),所述箱体(90)为包括侧壁,所述侧壁垂直于所述底座(20),所述第二位置调节装置(60)包括:
    高度调节装置(610),固定设置于所述侧壁;
    平面调节装置(620),固定设置于所述平面调节装置(620);
    角度调节装置(630),固定于所述平面调节装置(620),所述相机(50)固定于所述角度调节装置(630);
    所述高度调节装置(610)、所述平面调节装置(620)和所述角度调节装置(630)分别与所述控制器(80)连接,所述控制器(80)用于控制所述平面调节装置(620)调节所述相机(50)在所述x-y平面的位置,以使所述二维码(202)在所述相机(50)的视野范围内,所述控制器(80)用于控制所述角度调节装置(630)调节所述相机(50)的xz转角或yz转角,以使所述相机(50)的摄像头的摄取方向垂直于x-y平面,所述控制器(80)用于控制所述高度调节装置(610)调节所述相机(50)沿z轴的位置。
  9. 如权利要求8所述的玻璃基板内部二维码深度计算系统,其特征在于, 所述控制器(80)用于控制所述相机(50)与所述玻璃基板(200)之间每缩短特定距离,所述相机(50)拍摄一次所述二维码(202),所述控制器(80)用于采集多个所述二维码(202)的图像和多次记录所述相机(50)的累计位移长度,多个所述累计位移长度与多个所述二维码(202)的图像一一对应,随所述累计位移长度的增大,多个所述二维码(202)的图像划分为实像组和虚像组,所述实像组和所述虚像组的图像均由模糊到清晰再到模糊变化所述的玻璃基板内部二维码读码装置还包括:
    中央控制装置(100),与所述控制器(80)连接,所述中央控制装置(100)用于采集多个所述二维码(202)的图像和多个所述累计位移长度,并根据所述多个所述二维码(202)的图像和多个所述累计位移长度得到所述二维码(202)到所述玻璃基板(200)靠近所述相机(50)的表面的深度。
  10. 如权利要求9所述的玻璃基板内部二维码深度计算系统,其特征在于,所述中央控制装置(100),包括:
    采集器(110),用于与所述控制器(80)连接,所述采集器(110)用于采集多个所述二维码(202)的图像和多个所述累计位移长度;
    筛选器(120),与所述采集器(110)连接,所述筛选器(120)用于接收多个所述二维码(202)的图像和多个所述累计位移长度,并计算每个所述二维码(202)的图像的聚焦反馈值,所述筛选器(120)用于从所述实像组筛选出最清晰的第一图像和从所述实像组筛选出最清晰的所述第二图像,所述筛选器(120)用于获取与所述第一图像临近的第一临近图像和第二临近图像,所述筛选器(120)用于获取与所述第二图像临近的第三临近图像和第四临近图像,所述筛选器(120)还用于分别获取所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述累计位移长度,所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述累计位移长度分别为第一长度、第一临近长 度和第二临近长度,所述筛选器(120)还用于分别获取所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述聚焦反馈值,所述第一图像、所述第一临近图像和所述第二临近图像一一对应的所述聚焦反馈值分别为第一聚焦反馈值、第一临近反馈值和第二临近反馈值,所述筛选器(120)还用于分别获取所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述累计位移长度,所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述累计位移长度分别为第二长度、第三临近长度和第四临近长度,所述筛选器(120)还用于分别获取所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述聚焦反馈值,所述第二图像、所述第三临近图像和所述第四临近图像一一对应的所述聚焦反馈值分别为第二聚焦反馈值、第三临近聚焦反馈值和第四临近聚焦反馈值;
    拟合器(130),与所述筛选器(120)连接,所述拟合器(130)用于接收所述第一长度、所述第一临近长度、所述第二临近长度、所述第一聚焦反馈值、所述第一临近反馈值、所述第二临近反馈值、所述第二长度、所述第三临近长度、所述第四临近长度、所述第二聚焦反馈值、所述第三临近反馈值和所述第四临近反馈值,所述拟合器(130)用于以所述第一长度、所述第一临近长度和所述第二临近长度为横坐标,以所述第一聚焦反馈值、所述第一临近反馈值和所述第二临近反馈值为纵坐标进行第一数据拟合,得到所述二维码(202)的实像对应的实像累计位移长度,所述拟合器(130)用于以所述第二长度、所述第三临近长度和所述第四临近长度为横坐标,以所述第二聚焦反馈值、所述第三临近反馈值和所述第四临近反馈值为纵坐标进行第二数据拟合,得到所述二维码(202)的虚像对应的虚像累计位移长度,所述拟合器(130)用于将所述实像累计位移长度和所述虚像累计位移长度做差得到两像距离;
    计算器(140),与所述拟合器(130)连接,所述计算器(140)还用于接 收所述两像距离,所述计算器(140)用于接收外部数据,所述外部数据包括所述玻璃基板(200)的厚度和折射率,所述计算器(140)用于根据所述厚度、所述折射率和所述两像距离得到所述二维码(202)距离所述第一表面(201)的深度。
PCT/CN2020/081999 2020-03-03 2020-03-30 玻璃基板内部二维码深度计算系统及计算方法 WO2021174619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010138099.7 2020-03-03
CN202010138099.7A CN111445516B (zh) 2020-03-03 2020-03-03 玻璃基板内部二维码深度计算系统及计算方法

Publications (1)

Publication Number Publication Date
WO2021174619A1 true WO2021174619A1 (zh) 2021-09-10

Family

ID=71627326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081999 WO2021174619A1 (zh) 2020-03-03 2020-03-30 玻璃基板内部二维码深度计算系统及计算方法

Country Status (2)

Country Link
CN (1) CN111445516B (zh)
WO (1) WO2021174619A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112102469B (zh) * 2020-08-10 2023-07-25 上海联影医疗科技股份有限公司 三维建模系统、扫描系统及其控制方法
CN112652007B (zh) * 2020-12-30 2021-09-10 武汉华工激光工程有限责任公司 透明基板内部二维码深度测量系统和测量方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102168954A (zh) * 2011-01-14 2011-08-31 浙江大学 基于单目摄像机的深度、深度场及物体大小的测量方法
CN102314680A (zh) * 2010-06-29 2012-01-11 索尼公司 图像处理装置、图像处理系统、图像处理方法和程序
CN102937417A (zh) * 2012-11-09 2013-02-20 中国航空工业集团公司北京长城计量测试技术研究所 一种用于物体表面划痕损伤深度的检测设备
US20130148877A1 (en) * 2011-01-21 2013-06-13 Christopher L. Claypool System and method for measurement of through silicon structures
CN103727887A (zh) * 2013-12-16 2014-04-16 大连理工大学 非相干成像玻璃测厚方法
CN209147926U (zh) * 2018-11-28 2019-07-23 北京海研自动化科技有限公司 一种冰箱门体检测系统
CN110502947A (zh) * 2019-08-26 2019-11-26 深圳市杰普特光电股份有限公司 结构光测深系统、测量信息码深度的方法及数据处理方法
CN110686614A (zh) * 2019-10-11 2020-01-14 西安工业大学 一种光学元件亚表面缺陷深度信息的检测装置及检测方法
US20200068119A1 (en) * 2018-06-05 2020-02-27 Applied Materials, Inc. Methods and apparatus for absolute and relative depth measurements using camera focus distance

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102314680A (zh) * 2010-06-29 2012-01-11 索尼公司 图像处理装置、图像处理系统、图像处理方法和程序
CN102168954A (zh) * 2011-01-14 2011-08-31 浙江大学 基于单目摄像机的深度、深度场及物体大小的测量方法
US20130148877A1 (en) * 2011-01-21 2013-06-13 Christopher L. Claypool System and method for measurement of through silicon structures
CN102937417A (zh) * 2012-11-09 2013-02-20 中国航空工业集团公司北京长城计量测试技术研究所 一种用于物体表面划痕损伤深度的检测设备
CN103727887A (zh) * 2013-12-16 2014-04-16 大连理工大学 非相干成像玻璃测厚方法
US20200068119A1 (en) * 2018-06-05 2020-02-27 Applied Materials, Inc. Methods and apparatus for absolute and relative depth measurements using camera focus distance
CN209147926U (zh) * 2018-11-28 2019-07-23 北京海研自动化科技有限公司 一种冰箱门体检测系统
CN110502947A (zh) * 2019-08-26 2019-11-26 深圳市杰普特光电股份有限公司 结构光测深系统、测量信息码深度的方法及数据处理方法
CN110686614A (zh) * 2019-10-11 2020-01-14 西安工业大学 一种光学元件亚表面缺陷深度信息的检测装置及检测方法

Also Published As

Publication number Publication date
CN111445516A (zh) 2020-07-24
CN111445516B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
WO2021174619A1 (zh) 玻璃基板内部二维码深度计算系统及计算方法
JP4779041B2 (ja) 画像撮影システム、画像撮影方法、および画像撮影プログラム
CN108399596B (zh) 深度图像引擎及深度图像计算方法
CN109862345B (zh) 视场角测试方法和系统
JP4857143B2 (ja) カメラ姿勢算出用ターゲット装置およびこれを用いたカメラ姿勢算出方法ならびに画像表示方法
CN111076905B (zh) 一种车载抬头显示虚像像质综合测量方法
TW542936B (en) Imaging system, program used for controlling image data in same system, method for correcting distortion of captured image in same system, and recording medium storing procedures for same method
CN104853105B (zh) 基于可控制镜头倾斜的摄像装置的三维快速自动对焦方法
CN105578024A (zh) 相机对焦方法、对焦装置及移动终端
CN109859155A (zh) 影像畸变检测方法和系统
WO2019232793A1 (zh) 双摄像头标定方法、电子设备、计算机可读存储介质
KR102176963B1 (ko) 수평 시차 스테레오 파노라마를 캡쳐하는 시스템 및 방법
JP2003015218A (ja) 投影型表示装置
JPH08328735A (ja) ハンドポインティング入力装置
JP2015026914A (ja) プログラム、情報処理装置、システム
CN113596276B (zh) 便携式电子设备的扫描方法及系统、电子设备及存储介质
CN110136203B (zh) Tof设备的标定方法及其标定系统
CN105373770A (zh) 图像采集装置、终端和图像采集方法
WO2016127919A1 (zh) 阵列摄像模组和阵列摄像装置及其调焦方法
JP2015072444A (ja) 立体によるピント調整方法及びそのシステム
JP2014115179A (ja) 測長装置、書画カメラおよび測長方法
JPH11101640A (ja) カメラおよびカメラのキャリブレーション方法
CN113840084A (zh) 一种基于球机ptz回传技术实现全景云台操控的方法
CN113923445A (zh) 用于移轴成像条件下的光场相机校准方法及系统
CN107888805A (zh) 一种手机摄像头拍照跟踪装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20922886

Country of ref document: EP

Kind code of ref document: A1