WO2021174502A1 - 一种磁流变液制动器及其控制方法 - Google Patents

一种磁流变液制动器及其控制方法 Download PDF

Info

Publication number
WO2021174502A1
WO2021174502A1 PCT/CN2020/078056 CN2020078056W WO2021174502A1 WO 2021174502 A1 WO2021174502 A1 WO 2021174502A1 CN 2020078056 W CN2020078056 W CN 2020078056W WO 2021174502 A1 WO2021174502 A1 WO 2021174502A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake
magnetorheological fluid
braking
pressure oil
excitation coil
Prior art date
Application number
PCT/CN2020/078056
Other languages
English (en)
French (fr)
Inventor
任峰
蒋正英
Original Assignee
任峰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 任峰 filed Critical 任峰
Publication of WO2021174502A1 publication Critical patent/WO2021174502A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D57/00Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders
    • F16D57/002Liquid-resistance brakes; Brakes using the internal friction of fluids or fluid-like media, e.g. powders comprising a medium with electrically or magnetically controlled internal friction, e.g. electrorheological fluid, magnetic powder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/78Features relating to cooling

Definitions

  • the invention relates to a magnetorheological fluid brake system, more specifically a magnetorheological fluid brake system and device, which is suitable for various passenger vehicles, engineering vehicles and commercial vehicles.
  • the brake system of traditional vehicles is still mainly in the form of friction.
  • the engine intake manifold generates vacuum.
  • the vacuum booster uses the vacuum to assist the operation of the driver’s brake pedal and uses the brake master cylinder.
  • the brake pressure is generated, and the brake cylinder of each wheel is subjected to pressure conditions through the hydraulic control unit and the electronic control unit, thereby adjusting the braking force of each wheel.
  • the principle of hydraulic brake is that when braking, the driver steps on the brake pedal to make the brake fluid in the master cylinder enter the brake cylinder of each wheel brake through the brake pipeline, and the piston in the cylinder makes The brake shoe and the friction plate are opened, and the friction plate contacts the brake drum to generate friction, which prevents the wheel connected to the brake drum from rotating, thereby generating braking force.
  • EHB electronic hydraulic brake system
  • EMB electronic mechanical brake system
  • the traditional structure diagram is shown in the figure.
  • the traditional magnetorheological brake still has a brake disc, and its principle has not deviated from the friction principle.
  • the magnetic field is applied by the variable fluid, and the magnetorheological fluid becomes solid, which hinders the relative movement between the brake disc and the housing, thereby generating resistance.
  • the power is cut off, the magnetic field disappears and the braking torque disappears.
  • the invention utilizes the characteristics of the pump and the valve characteristics of the magnetorheological fluid to adjust the viscosity of the magnetorheological fluid, thereby generating back pressure in the pump body, and then generating a braking torque on the shaft.
  • the present invention provides a new type of magnetorheological fluid brake, which has the characteristics of small structure, low energy consumption, large braking torque, fast response, low cost, and mass production.
  • a magnetorheological fluid brake includes a main casing 8, an inner rotor 15, an outer rotor 14, a left casing 4, a heat exchanger 9, a sealing part and a flow distribution channel;
  • the outer rotor 14 and the inner rotor 15 are provided with the shaft 1 passing through the inner rotor 15;
  • the left housing 4 is arranged on the left side of the main housing 8, and a distribution channel is arranged inside the left housing 4;
  • the heat exchanger 9 is arranged on the main housing 8 Right side; it is characterized by:
  • the distribution channel includes a high-pressure oil passage 21 and a low-pressure oil passage 5; the fuel filling port (7) is connected with the high-pressure oil passage (21), and the low-pressure oil passage (5) is connected with the oil discharge port (6); the high-pressure oil passage (21) is connected A high-pressure oil port (28) is provided, and a low-pressure oil port (26) is provided in the low-pressure oil passage (5); the high-pressure oil port (28) and the low-pressure oil port (26) are connected through the flow passage; the high-pressure oil port (28) A first excitation coil module (27) is provided in the interior, a second excitation coil module (29) is provided in the low-pressure oil port (28), and a third excitation coil module (30) and a fourth excitation coil module are provided in the overcurrent channel. Coil module (31);
  • the bearing end cover (11) is connected to the main housing (8) by screws (12), the connecting disk (34) is connected with the shaft (1) by splines, and the wheel fixing bolts (35) are installed on the connecting disk (34),
  • the wheel is connected to the brake by a fixing bolt (35), the bolt (36) is fixed on the shaft (1), and the connecting plate (34) is positioned axially; the silicon steel plate (38) is fixed on the right side of the inner and outer rotors, through the sinker
  • the head screw is connected with the main housing (8).
  • the sealing portion includes a first sealing ring 16 arranged inside the left housing (4), a second sealing ring 20 arranged inside the main housing (8), and an oil seal (2) arranged outside the shaft.
  • the brake further includes a first bushing 13 and a second bushing 19 arranged on the outside of the shaft.
  • the brake further includes a coolant inlet (32) and a coolant outlet (33).
  • the excitation coil module includes an excitation coil for providing excitation to the magnetorheological fluid; and an inner flow channel for the magnetic fluid to pass through.
  • the inner flow channel is a single-hole flow channel or a multi-hole flow channel.
  • a steel plate (44) is sealed on the right side of the inner rotor 15 and the outer rotor 14.
  • the steel plate (44) is provided with a first channel (39) and a second channel (41); it is connected to the oil inside the main housing
  • the channel forms a channel connecting the high-voltage zone and the low-voltage zone, and a fifth excitation coil module (40) and a sixth excitation coil module (42) are arranged on the channel.
  • a magnetorheological fluid brake control method When braking is not required, the brake does not work, all excitation coils are not energized, and the shaft (1) of the brake drives the inner rotor (15) to rotate, and the inner rotor (15) is connected to the outer rotor.
  • the rotor (14) meshes for free rotation, and the brake does not generate braking force;
  • the third excitation coil module (30) When braking is required, when the brake receives a braking signal, the third excitation coil module (30) is energized, the viscosity of the magnetorheological fluid gradually increases, the damping gradually increases, and the flow channel is blocked to realize the high pressure and low pressure area. Disconnected; the first excitation coil module (27) is energized, the current is increased from small to large, the high-pressure oil port (28) is gradually closed, the internal back pressure of the brake gradually increases, and the braking force is gradually increased to achieve braking Effect;
  • the fourth excitation coil module (31) When the vehicle is driving in the reverse direction, the fourth excitation coil module (31) is energized, the viscosity of the magnetorheological fluid gradually increases, the damping gradually increases, and the overcurrent channel is blocked to disconnect the high and low pressure areas; the second excitation coil The module (29) is energized, the current increases from small to large, and the low-pressure oil port (26) is gradually closed, and the internal back pressure of the brake gradually increases, which in turn causes the braking force to gradually increase to achieve the braking effect.
  • the invention utilizes the characteristics of the magnetorheological fluid valve and applies the valve to generate high back pressure to perform braking.
  • the braking principle has no friction, large braking torque, fast response (millisecond order), and greatly improves braking.
  • the security of the system is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not braking torque, fast response (millisecond order), and greatly improves braking. The security of the system.
  • the present invention is completely different in principle and structure. Its use of coil current to control is better than EHB's on-off valve control, avoiding the shortcomings of inaccurate flow control of mechanical valves, and replacing high-pressure accumulators.
  • the energy device reduces the complexity and cost of the system; because EMB directly uses the motor to push the pressure block to brake, it consumes a lot of energy and generates a lot of heat. The energy consumption of this solution is relatively low, and the heat dissipation is more than that of EMB. easy.
  • the response time of magnetorheology from Newtonian fluid to viscoelastic solid is relatively sensitive, which is millimeter level.
  • the traditional ABS system has the disadvantages of pressure fluctuation and response lag.
  • the patented braking system can be continuously and quickly controlled, and the sensor can match the ground load. Change to achieve accurate, fast, and high-quality braking without pressure pulsation. And can realize the ABS braking process, thereby replacing the current ABS system and reducing costs.
  • This braking system can be applied to pure electric vehicles.
  • Each wheel of the system can be installed with one set. Therefore, this braking system belongs to redundant braking, and the failure of individual brakes will not cause the braking force of the whole vehicle to disappear.
  • the vehicle can be braked through the recovered braking energy when the power supply of the whole vehicle fails.
  • Figure 1 is a schematic diagram of the structure of a magnetorheological fluid brake in the prior art
  • Figure 2 is a schematic diagram of the control principle of the magnetorheological fluid brake control system of the present invention
  • FIG. 3 is a schematic diagram of the structure of the magnetorheological fluid brake in the first embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the main housing in the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a radial cross-section of the left housing in the first embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the system magnetorheological fluid channel and control principle in the first embodiment of the present invention.
  • Figure 7 is a structural diagram in the fourth embodiment of the present invention.
  • Main housing 8 outer rotor 14, inner rotor 15, left housing 4, shaft 1, oil seal 2, bearing 3, low-pressure oil passage 5, high-pressure oil passage 21, oil outlet 6, oil filler 7, heat exchanger 9 , Heat exchanger screw 10, bearing end cover 11, bearing end cover screw 12, bearing 17, oil seal 18, first bushing 13, first sealing ring 16, shaft second bushing 19, second sealing ring 20, connection Bolt 22, high and low pressure oil port passage 23, low pressure distribution oil passage 24, high pressure distribution oil passage 25, low pressure oil port 26, first excitation coil module 27, high pressure oil port 28, second excitation coil module 29, third Excitation coil module 30, fourth excitation coil module 31, coolant inlet 32, coolant outlet 33, wheel fixing bolt 35, fixing screw 36, excitation coil 37, silicon steel sheet (or other high-permeability material) 38, connection The disk 34, the wheel fixing bolt 35, the bolt 36, the steel plate 44, the first hole 39, the second hole 41, the fifth excitation coil module 40, and the sixth excitation coil module 42.
  • the shaft 1 is supported by the bearing 3 and the bearing 17.
  • the left side of the bearing is sealed by the oil seal 2 and the right side is positioned by the bushing 13.
  • the heat exchanger 9 is connected with the main housing 8 by the screw 10, and the left side of the bearing 17 is passed by the bushing.
  • the sleeve 19 and the bearing end cover 11 are positioned and sealed by an oil seal 18.
  • the bearing end cover 11 is connected to the main housing 8 by screws 12, the bearing end cover 11 is connected to the main housing 8 by screws 12, and the connecting plate 34 is connected to
  • the shaft 1 is connected by spline, or corresponding fixed connection according to the specific model.
  • the wheel fixing bolt 35 is installed on the connecting plate, and the wheel is connected with the brake through the fixing bolt 35.
  • the bolt 36 is fixed on the shaft 1 and connected to the connecting plate 34. Perform axial positioning; the silicon steel plate 38 is fixed on the right side of the inner and outer rotors, and is connected to the main housing 8 by countersunk screws.
  • the brake controller When the brake controller receives the slow braking command from the vehicle controller, the brake controller sends a command to control the brake to brake.
  • the high-pressure port and the low-pressure port of the brake are connected through the high and low pressure oil passages, and all the excitation coils are not energized.
  • the brake input shaft drives the inner rotor to rotate, and the inner rotor engages with the outer rotor for free rotation. The brake does not generate braking force.
  • the third excitation coil module 30 When the brake receives the braking signal, the third excitation coil module 30 is energized, and the magnetorheological fluid gradually changes from liquid to solid, completely sealing the high and low pressure oil passages, and disconnecting the high and low pressure areas; the first excitation coil module Group 27 is energized and controlled by the brake controller.
  • the current increases from small to large, and the high-pressure oil port 28 gradually closes, causing the internal back pressure of the brake to increase, which in turn causes the braking force to gradually increase until the high-pressure port is completely closed and the braking force reaches the maximum.
  • the fourth excitation coil module 31 When the vehicle is driving in the reverse direction, the fourth excitation coil module 31 is energized to completely seal the high and low pressure oil passages, and the high and low pressure areas are disconnected; the second excitation coil module 29 is energized and controlled by the brake controller, and the current is controlled by the small When it reaches large, the magnetorheological fluid gradually changes from a liquid to a viscoelastic solid, and the low-pressure oil port 26 is gradually closed, causing the internal back pressure of the brake to increase, which in turn causes the braking force to gradually increase, until the low-pressure oil port 26 is completely closed, and the braking force reaches maximum.
  • the magnetorheological fluid circulates through the heat exchanger 9, and the vehicle coolant circulates through the inlet 32 of the heat exchanger 9 and then circulates through the outlet 33 to dissipate the heat generated by the brake.
  • the left side of the connecting disk 34 is equipped with cooling fan blades. When the vehicle is running, the connecting disk rotates with the wheels to dissipate heat from the brake.
  • Heat dissipation can use the vehicle's own heat dissipation system for heat dissipation, or an independent heat dissipation system can be set up by adding a radiator, a heat dissipation fan, a circulating water pump, a heat dissipation motor, and opening a heat dissipation water circulation channel on the brake housing, which is flexible according to the thermal balance. Layout.
  • the inner rotor 15 of the brake meshes with the outer rotor 14.
  • the inner rotor is installed on the shaft 1 through torsion splines to ensure that sufficient torque can be transmitted; when braking, the shaft drives the inner rotor to rotate, and the inner rotor drives the outer rotor in the main housing 8 internal rotation.
  • the left housing 4 and the main housing 8 are connected together. The positioning is performed by the positioning stop and the cylindrical pin, and the bolts are used for connection to ensure that the eccentricity of the main housing 8 and the inner and outer rotors is accurate.
  • the left housing 4 has a flow distribution channel. , Forming a flow distribution mechanism, so that the inner rotor, outer rotor, and left housing form a low-pressure cavity and a high-pressure cavity.
  • the low-pressure cavity communicates with the low-pressure oil port through the oil passage, and the high-pressure cavity communicates with the high-pressure oil port; the high-pressure oil port and refueling Port 7 communicates, low-pressure oil port communicates with oil discharge port 6; at the same time, the high-pressure oil port and low-pressure oil port are connected through the oil passage.
  • the brake can be not only an internal meshing rotor, but also an external meshing rotor, a one-axis screw pump rotor, a two-axis spiral rotor magnetorheological fluid brake, and a three-axis spiral rotor magnetorheological fluid. Brakes, etc.
  • the channel in the excitation coil module has a single-hole or porous structure, and the outside of the excitation coil is magnetically isolated to prevent external interference.
  • the inside of the coil is made of high-permeability materials to make full use of the magnetic field.
  • a steel plate 44 is sealed on the right side of the stator and rotor.
  • the steel plate 44 is provided with a first hole 39 and a second hole 41.
  • the oil passage opened in the main housing forms a passage connecting the high-pressure area and the low-pressure area, and a fifth excitation coil module 40 and a sixth excitation coil module 42 are arranged on the passage.
  • a cross-section excitation coil module can be set on the left side of the stator and rotor to adjust the viscosity of the magnetorheological fluid inside the brake cavity and adjust the size of the braking force.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)

Abstract

一种磁流变液制动器及其控制方法,当不需要制动时,制动器不工作,所有励磁线圈均不通电,当需要制动时,制动器接到缓速制动信号时,励磁线圈模组通电,电流由小到大,油口逐渐关闭,制动器内部背压随之逐步增大,进而导致制动力逐渐增大,达到制动效果,利用泵的特性与磁流变液的阀门特性,调节磁流变液的粘度,从而对泵体内产生背压,进而对轴产生制动力矩,从而进行制动,制动力矩大,响应快,极大的提高了制动系统的安全性。

Description

一种磁流变液制动器及其控制方法 技术领域
本发明涉及一种磁流变液制动系统,更具体地说是一种磁流变液制动系统及装置,适合各种乘用车辆、工程车辆、商用车辆。
背景技术
目前传统车辆的制动系统仍然以摩擦形式的制动系统为主,发动机进气歧管产生真空度,真空助力器利用真空度对驾驶员制动踏板的操作辅助助力,并通过制动主缸产生制动压力,并通过液压控制单元和电子控制单元对各个轮的制动分泵进行压力条件,从而调节各个轮的制动力。液压制动器的原理是当制动时,驾驶员踩下制动踏板,使制动总泵内的制动液通过制动管路分别进入各车轮制动器的制动分泵,分泵中的活塞使制动蹄及摩擦片张开,摩擦片与制动鼓接触产生摩擦力,阻止与制动鼓连接的车轮转动,从而产生制动力。目前比较先进的有电子液压制动系统(EHB)和电子机械制动系统(EMB),电子液压制动系统主要的问题是电磁阀开关控制方式进行压力调节,容易造成较大的噪音,使用大流量高压蓄能器提高了车辆布置和匹配的复杂性。电子机械制动系统制动时直接由电机输出功率产生制动力,峰值功率需求较大,同时振动和高温对电机提出了很高的要求。
这些制动器都是通过摩擦进行制动的,当频繁制动时会导致摩擦片过热,摩擦片容易失效,从而导致制动效果变差和制动失灵。此外,传统的制动系统的缺点:制动管路存在液压波动,不能精确进行制动控制和线性控制要求。
如图1所示,传统的结构图如图所示,传统磁流变制动器仍然有制动盘,其原理还没有脱离摩擦原理,如下图1所示,其原理是当线圈通电后对磁流变液施加磁场,磁流变液变成固态,阻碍了制动盘和壳体之间的相对运动,从而产生阻力。当断电后,磁场消失,制动力矩消失。
本发明利用泵的特性与磁流变液的阀门特性,调节磁流变液的粘度,从而对泵体内产生背压,进而对轴产生制动力矩。
发明内容
本发明为了解决上述问题,提供一种新型的磁流变液制动器,它具有结构小、能耗小、制动力矩大、响应快、成本低、可批量生产等特点。
为了实现上述目的,本发明采用如下技术方案:
一种磁流变液制动器,包括主壳体8,内转子15、外转子14、左壳体4、换热器9、密封部 和配流通道;所述的主壳体8内依次设置有外转子14和内转子15,轴1穿设置于内转子15;左壳体4设置在主壳体8左侧,左壳体4内部设置有配流通道;换热器9设置在主壳体8右侧;其特征在于:
配流通道包括高压油道21和低压油道5;加油口(7)与高压油道(21)连通,低压油道(5)与排油口(6)连通;高压油道(21)中设置有高压油口(28),低压油道(5)中设置有低压油口(26);高压油口(28)和低压油口(26)通过过流通道连通;高压油口(28)内设置有第一励磁线圈模组(27),低压油口(28)内设置有第二励磁线圈模组(29),过流通道内设置有第三励磁线圈模组(30)和第四励磁线圈模组(31);
轴承端盖(11)通过螺钉(12)与主壳体(8)连接,连接盘(34)与轴(1)用花键连接,连接盘(34)上安装有车轮固定螺栓(35),车轮通过固定螺栓(35)与制动器进行连接,螺栓(36)固定在轴(1)上,并对连接盘(34)进行轴向定位;硅钢板(38)固定在内外转子右侧,通过沉头螺钉与主壳体(8)相连。
优选的,所述的密封部包括设置在左壳体(4)内侧的第一密封圈16、主壳体(8)内侧的第二密封圈20和设置在轴外侧的油封(2)。
优选的,所述的制动器还包括设置在轴外侧的第一衬套13和第二衬套19。
优选的,所述的制动器还包括冷却液进口(32)和冷却液出口(33)。
优选的,所述的励磁线圈模组包括用于对磁流变液提供激励的励磁线圈;还包括供磁流体通过的内流道。
优选的,所述的内流道为单孔式流道或多孔式流道。
优选的,在内转子15和外转子14的右侧密封一块钢板(44),钢板(44)上开有第一孔道(39)、第二孔道(41);其与主壳体内开的油道形成高压区与低压区连通的通道,在通道上设置第五励磁线圈模组(40)与第六励磁线圈模组(42)。
一种磁流变液制动器的控制方法,当不需要制动时,制动器不工作,所有励磁线圈均不通电,制动器的轴(1)带动内转子(15)转动、内转子(15)与外转子(14)啮合做自由旋转运动,制动器不产生制动力;
当需要制动时,制动器接到制动信号时,第三励磁线圈模组(30)通电,磁流变液粘度逐步升高,阻尼逐步增大,将过流通道封堵实现高压与低压区断开;第一励磁线圈模组(27)通电,电流由小到大,高压油口(28)逐渐关闭,制动器内部背压随之逐步增大,进而导致制动力逐渐增大,达到制动效果;
当车辆反向行驶时,第四励磁线圈模组(31)通电,磁流变液粘度逐步升高,阻尼逐步增大, 将过流通道封堵实现高压与低压区断开;第二励磁线圈模组(29)通电,电流由小到大,低压油口(26)逐渐关闭,制动器内部背压随之逐步增大,进而导致制动力逐渐增大,达到制动效果。
本发明是利用磁流变液阀门特性,应用阀门产生高背压,从而进行制动,该制动原理没有摩擦,制动力矩大,响应快(毫秒量级),极大的提高了制动系统的安全性。
与EHB相比,本发明从原理上和结构上完全不同,其利用线圈电流的变化进行控制更是优于EHB的开关阀控制,规避了机械阀流量控制不准确的缺点,而且取代了高压蓄能器,降低了系统的复杂程度和成本;EMB由于直接采用电机推动压块进行制动,消耗的能量比较大,并会产生大量的热量,本方案的能耗比较低,而且散热相对EMB更容易。
本制动系统的优势:
1、制动扭矩变化连续,即可以根据电流的连续变化,控制制动力矩的连续变化。
2、利用磁流变的效应进行控制,控制的能耗比较低。
3、磁流变由牛顿流体到粘弹性固体的响应时间比较灵敏,是毫米级。
4、对于制动系统可以实现精准的防抱死制动,传统的ABS系统存在压力波动和响应滞后等缺点,而本专利制动系统,可以连续、快速的控制,并通过传感器匹配地面负载的变化,实现准确、快速、无压力脉动的高品质制动。并可以实现ABS的制动过程,从而替代目前的ABS系统,降低成本。
5、本制动系统可以适用于纯电动汽车。
6、该系统每个车轮可以安装一套,故此,本制动系统属于冗余制动,个别制动器失效不会导致整车制动力消失。
7、通过增加能量回收系统,可在整车供电失效时,可通过回收的制动能量实现车辆的制动。
附图说明
图1是现有技术中磁流变液制动器结构示意图;
图2是本发明磁流变液制动器控制系统控制原理示意图;
图3是本发明实施例一中的磁流变液制动器结构示意图;
图4是本发明实施例一中的主壳体的截面示意图;
图5是本发明实施例一中的左壳体的径向截面示意图;
图6是本发明实施例一中系统磁流变液通道与控制原理图;
图7是本发明实施例四中的结构图
附图标记说明
主壳体8、外转子14、内转子15、左壳体4、轴1、油封2、轴承3、低压油道5、高压油道21、排油口6、加油口7、换热器9、换热器螺钉10、轴承端盖11、轴承端盖螺钉12、轴承17、油封18、第一衬套13、第一密封圈16、轴第二衬套19、第二密封圈20、连接螺栓22、高低压油口通道23、低压配流油道24、高压配流油道25、低压油口26、第一励磁线圈模组27、高压油口28、第二励磁线圈模组29、第三励磁线圈模组30、第四励磁线圈模组31,冷却液进口32、冷却液出口33,车轮固定螺栓35、固定螺钉36、励磁线圈37、硅钢片(或者其他高导磁材料)38、连接盘34、车轮固定螺栓35、螺栓36、钢板44,第一孔道39、第二孔道41、第五励磁线圈模组40、第六励磁线圈模组42。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例一:
轴1通过轴承3和轴承17进行支撑,轴承左侧利用油封2进行密封,右侧通过衬套13进行定位;换热器9通过螺钉10与主壳体8进行连接,轴承17左侧通过衬套19、轴承端盖11进行定位,通过油封18进行密封,轴承端盖11通过螺钉12与主壳体8进行连接,轴承端盖11通过螺钉12与主壳体8进行连接,连接盘34与轴1用花键连接,或者根据具体车型进行相应的固定连接,连接盘上安装有车轮固定螺栓35,车轮通过固定螺栓35与制动器进行连接,螺栓36固定在轴1上,并对连接盘34进行轴向定位;硅钢板38固定在内外转子右侧,通过沉头螺钉与主壳体8相连。
当制动器控制器接到整车控制器的缓速制动指令后制动器控制器发出指令控制制动器进行制动。
制动器不工作时,制动器高压口与低压口经过高低压油道连接,所有励磁线圈不通电,制动器输入轴带动内转子转动、内转子与外转子啮合做自由旋转运动,制动器不产生制动力。
当制动器接到制动信号时,第三励磁线圈模组30通电,磁流变液由液体逐渐变成固 体,将高低压油道完全封死,高压与低压区断开;第一励磁线圈模组27通电,受制动器控制器控制,电流由小到大,高压油口28逐渐关闭,导致制动器内部背压增大,进而导致制动力逐渐增大,直到高压口完全关闭,制动力达到最大。
当车辆反向行驶时,第四励磁线圈模组31通电,将高低压油道完全封死,高压与低压区断开;第二励磁线圈模组29通电,受制动器控制器控制,电流由小到大,磁流变液由液体逐渐变成粘弹性固体,低压油口26逐渐关闭,导致制动器内部背压增大,进而导致制动力逐渐增大,直到低压油口26完全关闭,制动力达到最大。
工作时,磁流变液经过换热器9进行循环,车辆冷却液经过换热器9进口32循环后经由出口33循环,将制动器产生的热量散走。
连接盘34左侧装有散热风扇式叶片,当车辆行驶时,连接盘随车轮转动,也可以对制动器进行散热。
散热可以利用车辆本身自带的散热系统进行散热,也可以设置独立的散热系统,通过增加散热器、散热风扇、循环水泵、散热电机、在制动器壳体上开散热水循环通道,具体根据热平衡进行灵活布置。
制动器内转子15与外转子14内啮合,内转子通过抗扭花键安装在轴1上,保证能够传递足够的扭矩;当制动时轴带动内转子回转,内转子带动外转子在主壳体8内回转。左壳体4与主壳体8连接在一起,通过定位止口和圆柱销进行定位,用螺栓进行联接,保证主壳体8和内外转子偏心距准确,左壳体4内开有配流油道,形成配流机构,使得内转子、外转子、左壳体形成低压腔体与高压腔体,低压腔体通过油道与低压油口相通,高压腔体与高压油口相通;高压油口与加油口7相通,低压油口与排油口6相通;同时高压油口与低压油口通过油道进行连通。
实施例二
在上述实施例结构的基础上,制动器不但可以采用内啮合转子还可以是外啮合转子、一个轴螺旋泵式转子、二轴螺旋式转子磁流变液制动器、三轴螺旋式转子磁流变液制动器等。
实施例三
在上述实施例的基础上,励磁线圈模组内通道为单孔或者多孔结构,励磁线圈外侧做好隔磁处理,防止对外产生干扰,线圈内侧利用高导磁材料制作,充分利用磁场。
实施例四
在定转子右侧密封一块钢板44,钢板44上开有第一孔道39、第二孔道41。其与主壳体内开的油道形成高压区与低压区连通的通道,在通道上设置第五励磁线圈模组40与第六励磁 线圈模组42。通过调节第五励磁线圈模组40与第六励磁线圈模组42内磁流变液的粘度,调节高低压区的通断,进而调节制动器内部的背压,进而调节制动力的大小。此时,在定转子的左侧可以设置断面励磁线圈模组,调节制动器腔体内部磁流变液的粘度,调节制动力的大小。

Claims (9)

  1. 一种磁流变液制动器,包括主壳体(8),内转子(15)、外转子(14)、左壳体(4)、换热器(9)、密封部和配流通道;所述的主壳体(8)内依次设置有外转子(14)和内转子(15),轴(1)穿设置于内转子(15);左壳体(4)设置在主壳体(8)左侧,左壳体(4)内部设置有配流通道;换热器(9)设置在主壳体(8)右侧;其特征在于:
    配流通道包括高压油道(21)和低压油道(5);加油口(7)与高压油道(21)连通,低压油道(5)与排油口(6)连通;高压油道(21)中设置有高压油口(28),低压油道(5)中设置有低压油口(26);高压油口(28)和低压油口(26)通过过流通道连通;高压油口(28)内设置有第一励磁线圈模组(27),低压油口(28)内设置有第二励磁线圈模组(29),过流通道内设置有第三励磁线圈模组(30)和第四励磁线圈模组(31);
    轴承端盖(11)通过螺钉(12)与主壳体(8)连接,连接盘(34)与轴(1)用花键连接,连接盘(34)上安装有车轮固定螺栓(35),车轮通过固定螺栓(35)与制动器进行连接,螺栓(36)固定在轴(1)上,并对连接盘(34)进行轴向定位;硅钢板(38)固定在内外转子右侧,通过沉头螺钉与主壳体(8)相连。
  2. 一种如权利要求1所述的磁流变液制动器,其特征在于:
    所述的密封部包括设置在左壳体(4)内侧的第一密封圈(16)、主壳体(8)内侧的第二密封圈(20)和设置在轴外侧的油封(2)。
  3. 一种如权利要求1所述的磁流变液制动器,其特征在于:
    所述的缓速器还包括设置在轴外侧的第一衬套(13)和第二衬套(19)。
  4. 一种如权利要求1所述的磁流变液制动器,其特征在于:
    所述的制动器还包括冷却液进口(32)和冷却液出口(33)。
  5. 一种如权利要求1所述的磁流变液制动器,其特征在于:所述的励磁线圈模组包括用于对磁流变液提供激励的励磁线圈;还包括供磁流体通过的内流道。
  6. 一种如权利要求5所述的磁流变液制动器,其特征在于:
    所述的内流道为单孔式流道或多孔式流道。
  7. 一种如权利要求1所述的磁流变液制动器,其特征在于:
    在内转子15和外转子14的右侧密封一块钢板(44),钢板(44)上开有第一孔道(39)、第二孔道(41);其与主壳体内开的油道形成高压区与低压区连通的通道,在通道上设置第五励磁线圈模组(40)与第六励磁线圈模组(42)。
  8. 一种磁流变液缓速控制系统,其具有如权利要求1-7所述的任意一种磁流变液制动器,其特征在于:
    所述控制系统还具有制动器控制器,用以控制制动。
  9. 一种如权利要求1-7所述的任意一种磁流变液制动器的控制方法,其特征在于:
    当不需要制动时,制动器不工作,所有励磁线圈均不通电,制动器的轴(1)带动内转子(15)转动、内转子(15)与外转子(14)啮合做自由旋转运动,制动器不产生缓速制动力;当需要制动时,制动器接到制动信号时,第三励磁线圈模组(30)通电,磁流变液粘度逐步升高,阻尼逐步增大,将过流通道封堵实现高压与低压区断开;第一励磁线圈模组(27)通电,电流由小到大,高压油口(28)逐渐关闭,制动器内部背压随之逐步增大,进而导致制动力逐渐增大,达到制动效果;
    当车辆反向行驶时,第四励磁线圈模组(31)通电,磁流变液粘度逐步升高,阻尼逐步增大,将过流通道封堵实现高压与低压区断开;第二励磁线圈模组(29)通电,电流由小到大,低压油口(26)逐渐关闭,制动器内部背压随之逐步增大,进而导致制动力逐渐增大,达到制动效果。
PCT/CN2020/078056 2020-03-02 2020-03-05 一种磁流变液制动器及其控制方法 WO2021174502A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010134604.0A CN111075862B (zh) 2020-03-02 2020-03-02 一种磁流变液制动器及其控制方法
CN202010134604.0 2020-03-02

Publications (1)

Publication Number Publication Date
WO2021174502A1 true WO2021174502A1 (zh) 2021-09-10

Family

ID=70324589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078056 WO2021174502A1 (zh) 2020-03-02 2020-03-05 一种磁流变液制动器及其控制方法

Country Status (2)

Country Link
CN (1) CN111075862B (zh)
WO (1) WO2021174502A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114382804A (zh) * 2022-01-25 2022-04-22 江苏省特种设备安全监督检验研究院 一种基于双线圈激励下的双轴独立可控单盘制动器
CN114738400A (zh) * 2022-03-12 2022-07-12 富奥汽车零部件股份有限公司 一种液力缓速器油路控制系统
CN114922920A (zh) * 2022-02-09 2022-08-19 富奥汽车零部件股份有限公司 一种高压摆线转子式磁流变液缓速器电控系统及控制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111207164B (zh) * 2020-03-02 2021-07-09 任峰 一种磁流变液缓速器及其控制方法
CN113931947B (zh) * 2021-10-18 2024-02-23 台州学院 汽车磁流变制动器
CN114922919B (zh) * 2022-02-09 2023-07-04 富奥汽车零部件股份有限公司 一种摆线转子式磁流变液高压缓速器
CN114951548A (zh) * 2022-06-28 2022-08-30 林佰才 一种高效冷却的环保型砂型铸造模具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070181391A1 (en) * 2001-10-25 2007-08-09 St Clair Kenneth A Brake with field responsive material
US7891474B2 (en) * 2008-04-29 2011-02-22 Honda Motor Co., Ltd. Magneto-rheological brake-clutch apparatuses and methods
CN103758896A (zh) * 2014-01-07 2014-04-30 杭州电子科技大学 水冷式磁流变制动器
CN104295639A (zh) * 2014-09-13 2015-01-21 黑龙江工程学院 滚筒式磁流变液缓速装置
CN205173301U (zh) * 2015-11-24 2016-04-20 东北大学 一种磁流变液制动装置
CN210034234U (zh) * 2019-01-23 2020-02-07 漳州职业技术学院 一种汽车前轮磁流变制动器
CN110792704A (zh) * 2019-11-14 2020-02-14 重庆理工大学 内啮合齿轮泵式循环冷却磁流液变制动器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107605995A (zh) * 2017-09-29 2018-01-19 福州大学 一种磁流变液制动器及其工作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070181391A1 (en) * 2001-10-25 2007-08-09 St Clair Kenneth A Brake with field responsive material
US7891474B2 (en) * 2008-04-29 2011-02-22 Honda Motor Co., Ltd. Magneto-rheological brake-clutch apparatuses and methods
CN103758896A (zh) * 2014-01-07 2014-04-30 杭州电子科技大学 水冷式磁流变制动器
CN104295639A (zh) * 2014-09-13 2015-01-21 黑龙江工程学院 滚筒式磁流变液缓速装置
CN205173301U (zh) * 2015-11-24 2016-04-20 东北大学 一种磁流变液制动装置
CN210034234U (zh) * 2019-01-23 2020-02-07 漳州职业技术学院 一种汽车前轮磁流变制动器
CN110792704A (zh) * 2019-11-14 2020-02-14 重庆理工大学 内啮合齿轮泵式循环冷却磁流液变制动器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114382804A (zh) * 2022-01-25 2022-04-22 江苏省特种设备安全监督检验研究院 一种基于双线圈激励下的双轴独立可控单盘制动器
CN114382804B (zh) * 2022-01-25 2023-05-23 江苏省特种设备安全监督检验研究院 一种基于双线圈激励下的双轴独立可控单盘制动器
CN114922920A (zh) * 2022-02-09 2022-08-19 富奥汽车零部件股份有限公司 一种高压摆线转子式磁流变液缓速器电控系统及控制方法
CN114922920B (zh) * 2022-02-09 2023-06-30 富奥汽车零部件股份有限公司 一种高压摆线转子式磁流变液缓速器电控系统及控制方法
CN114738400A (zh) * 2022-03-12 2022-07-12 富奥汽车零部件股份有限公司 一种液力缓速器油路控制系统
CN114738400B (zh) * 2022-03-12 2023-06-30 富奥汽车零部件股份有限公司 一种液力缓速器油路控制系统

Also Published As

Publication number Publication date
CN111075862A (zh) 2020-04-28
CN111075862B (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
WO2021174502A1 (zh) 一种磁流变液制动器及其控制方法
WO2021174496A1 (zh) 一种磁流变液缓速器及其控制方法
US20200114894A1 (en) Device for a hydraulic actuating system
US20220055593A1 (en) Vehicle axle having electric drive motors, an electrohydraulic brake and additional modules such as a transmission, torque vectoring and a parking brake
US20130234501A1 (en) Piston-cylinder device and method for conducting a hydraulic fluid under pressure to an actuating device, actuating device for a vehicle brake system, and a method for actuating an actuating device
US6920846B2 (en) Electric coolant pump having an integrated valve, and method for controlling said valve
US20160221562A1 (en) Electrically-driven pressure regulator and volume-delivery unit
CN102927167B (zh) 基于磁流变液的独立式液力缓速器及其控制方法
CN210733818U (zh) 一种集成式轮毂电机总成及电动车
US5281013A (en) Integrated pressure generating and control device
CN103481871B (zh) 车用冷却液介质式液力缓速装置
CN113423622A (zh) 用于电动车辆和具有3阶(had)至5阶(ad)自主驾驶的车辆的具有两个压力供应单元的冗余制动系统
CN113460008A (zh) 双冗余全解耦的线控制动系统
CN109058328A (zh) 一种集成永磁制动与摩擦制动的车辆轮边复合制动装置
CN102182775A (zh) 用于汽车分布式电子液压制动系统的制动执行机构
JP2007313981A (ja) インホイールモータ車用のブレーキ装置
CN106828468A (zh) 制动双腔副主缸双电机线控液压制动系统
CN106541835A (zh) 一种采用双转子结构的自励式缓速器及其控制方法
CN103057427B (zh) 一种用于电动汽车的磁流变液制动执行装置
CN107685766B (zh) 一种新能源客车智能电动液压助力转向泵
CN101570138A (zh) 三档阀控泵式中小功率车用缓速器
CN109505895B (zh) 一种磁流变液制动器
CN208978615U (zh) 一种减速机构内置的轮毂电机驱动桥
CN109229080A (zh) 一种具有改进型制动器总成的轮毂电机驱动桥
CN202040243U (zh) 用于汽车分布式电子液压制动系统的制动执行机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923359

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17908874

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923359

Country of ref document: EP

Kind code of ref document: A1