WO2021174484A1 - Décodage amélioré pour code de polarisation - Google Patents

Décodage amélioré pour code de polarisation Download PDF

Info

Publication number
WO2021174484A1
WO2021174484A1 PCT/CN2020/077977 CN2020077977W WO2021174484A1 WO 2021174484 A1 WO2021174484 A1 WO 2021174484A1 CN 2020077977 W CN2020077977 W CN 2020077977W WO 2021174484 A1 WO2021174484 A1 WO 2021174484A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
bits
determining
signal
group
Prior art date
Application number
PCT/CN2020/077977
Other languages
English (en)
Inventor
Kai Zhu
Yu Chen
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to PCT/CN2020/077977 priority Critical patent/WO2021174484A1/fr
Priority to JP2022553122A priority patent/JP2023517030A/ja
Priority to EP20922929.3A priority patent/EP4115546A4/fr
Priority to CN202080100606.6A priority patent/CN115516786A/zh
Priority to US17/908,983 priority patent/US20230163877A1/en
Publication of WO2021174484A1 publication Critical patent/WO2021174484A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/13Linear codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2906Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes using block codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/45Soft decoding, i.e. using symbol reliability information
    • H03M13/451Soft decoding, i.e. using symbol reliability information using a set of candidate code words, e.g. ordered statistics decoding [OSD]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/09Error detection only, e.g. using cyclic redundancy check [CRC] codes or single parity bit

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to devices, methods, devices and computer readable storage media of enhanced decoding for polarization code.
  • RM Reed Muller
  • example embodiments of the present disclosure provide a solution of enhanced decoding for polarization code.
  • a first device comprising at least one processor; and at least one memory including computer program codes; the at least one memory and the computer program codes are configured to, with the at least one processor, cause the first device at least to determine a likelihood sequence associated with a signal sequence received from a second device via a communication channel between the second device and the first device; generate a set of candidate sequences of the signal by processing the likelihood sequence with a first operation; determine a reference sequence by processing the likelihood sequence with a second operation different from the first operation; and determine a target sequence of the signal from the set of candidate sequences at least partially based on the reference sequence.
  • a method comprises determining a likelihood sequence associated with a signal sequence received from a second device via a communication channel between the second device and the first device; generating a set of candidate sequences of the signal by processing the likelihood sequence with a first operation; determining a reference sequence by processing the likelihood sequence with a second operation different from the first operation; and determining a target sequence of the signal from the set of candidate sequences at least partially based on the reference sequence.
  • an apparatus comprises means for determining a likelihood sequence associated with a signal sequence received from a second device via a communication channel between the second device and the first device; means for generating a set of candidate sequences of the signal by processing the likelihood sequence with a first operation; means for determining a reference sequence by processing the likelihood sequence with a second operation different from the first operation; and means for determining a target sequence of the signal from the set of candidate sequences at least partially based on the reference sequence.
  • a computer readable medium having a computer program stored thereon which, when executed by at least one processor of a device, causes the device to carry out the method according to the second aspect.
  • FIG. 1 illustrates an example environment in which example embodiments of the present disclosure can be implemented
  • FIG. 2 shows a flowchart of an example method of enhanced decoding for polarization code according to some example embodiments of the present disclosure
  • FIG. 3 shows a flowchart of an example method of Enhanced decoding for polarization code according to some example embodiments of the present disclosure
  • FIG. 4 shows a flowchart of an example method of Enhanced decoding for polarization code according to some example embodiments of the present disclosure
  • FIGs. 5A-5B shows results of simulations according the embodiments of the present disclosure
  • FIG. 6 shows an example of the SNR dependant threshold number according the embodiments of the present disclosure
  • FIG. 7 shows an example of the difference distribution among the coded bit sequence according the embodiments of the present disclosure
  • FIG. 8 shows the BLER performance corresponding to the step that using CRC bits to correct up to 2 errors with fixed threshold T according the embodiments of the present disclosure
  • FIG. 9 shows a simplified block diagram of a device that is suitable for implementing example embodiments of the present disclosure.
  • Fig. 10 shows a block diagram of an example computer readable medium in accordance with some embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an example embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • 5G fifth generation
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the future fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR Next Generation NodeB (gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • gNB Next Generation NodeB
  • RRU Remote Radio Unit
  • RH radio header
  • RRH remote radio head
  • relay a
  • An RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) .
  • a relay node may correspond to DU part of the IAB node.
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (IoT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • the terminal device may also correspond to Mobile Termination (MT) part of the integrated access and backhaul (IAB) node (a.k.a. a relay node) .
  • MT Mobile Termination
  • IAB integrated access and backhaul
  • the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
  • a user equipment apparatus such as a cell phone or tablet computer or laptop computer or desktop computer or mobile IoT device or fixed IoT device
  • This user equipment apparatus can, for example, be furnished with corresponding capabilities as described in connection with the fixed and/or the wireless network node (s) , as appropriate.
  • the user equipment apparatus may be the user equipment and/or or a control device, such as a chipset or processor, configured to control the user equipment when installed therein. Examples of such functionalities include the bootstrapping server function and/or the home subscriber server, which may be implemented in the user equipment apparatus by providing the user equipment apparatus with software configured to cause the user equipment apparatus to perform from the point of view of these functions/nodes.
  • FIG. 1 shows an example communication network 100 in which embodiments of the present disclosure can be implemented.
  • the communication network 100 comprises a receiving device 110 (hereafter also referred to as a first device 110 or a network device 110) and a transmitting device 120 (hereafter also referred to as a second device 120 or a terminal device 120) .
  • the transmitting device 120 may communicate with the receiving device 110.
  • the communication network 100 may include any suitable number of network devices and terminal devices.
  • the receiving device may also be referred to the terminal device 120 and the transmitting device may also be referred to as the network device 110.
  • the network 100 may be a Code Division Multiple Access (CDMA) network, a Time Division Multiple Address (TDMA) network, a Frequency Division Multiple Access (FDMA) network, an Orthogonal Frequency-Division Multiple Access (OFDMA) network, a Single Carrier-Frequency Division Multiple Access (SC-FDMA) network or any others.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Address
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • Communications discussed in the network 100 may conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like.
  • NR New Radio Access
  • LTE Long Term Evolution
  • LTE-A LTE-Evolution
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
  • the techniques described herein may be used for
  • RM code and Polar code are used in 5G NR to protect uplink and downlink control signaling at physical layer.
  • CRC-SCL Cycle Redundant Check assisted Successive Cancellation List
  • the choice of list size 8 is absolutely insufficient for hyper critical communication systems, which generally target at 6-8 nines, i.e. 99.9999%-99.999999%. In this situation, there should be less than 3 bits of CRC for verification purpose in last step of decoding.
  • a 3-bit long CRC is extremely weak in terms of robustness and correctness.
  • partial CRC bits are devoted for different purposes, e.g, tree-pruning, i.e. performing CRC check during the traversal of binary tree so that some paths having very small probabilities to be correct can be pruned. This will save some complexities. As a consequence, the number of CRC bits used in ‘final check’ will be less than 6 bits.
  • the size of payload generated from industrial machinery is generally not larger than 20 bits, excluding CRC.
  • the embodiments in accordance with the present disclosure propose an enhanced decoding for polarization code, i.e. Decision Feedback Successive Cancellation List (DF-SCL) decoding scheme, especially for the RM code and the Polar code.
  • DFSCL Decision Feedback Successive Cancellation List
  • the decoding at receiver side can be enhanced to less rely on CRC during decoding to ensure the decoding path is correct, all 6 bits CR can be dedicated for final decision making for choosing the decoding path. This could, for example, dramatically improve the overall performance of uplink control channel. It should be understood that the solution of the present disclosure is not limited to be used for the uplink control channel.
  • FIG. 2 shows a flowchart of an example method 200 of enhanced decoding according to some example embodiments of the present disclosure.
  • the method 200 can be implemented at the receiving device 110 as shown in FIG. 1.
  • the method 200 will be described with reference to FIG. 1.
  • the signal sequence In a transmission of a signal sequence from the transmitting device 120 to the receiving device 110, the signal sequence should be encoded based on the specific coding pattern before the transmission to avoid the security risk during the transmission.
  • the receiving device 110 When the receiving device 110 receives the encoded signal sequence, the receiving device 110 should decode the encoded signal sequence, to obtain the original signal sequence.
  • the receiving device 110 determines a likelihood sequence associated with a signal sequence received from a transmitting device 120 via a communication channel between the receiving device 110 and the transmitting device 120.
  • the encoded analog signal sequence received by antenna is first going through sampling and frequency conversion to baseband.
  • An Analog to Digital Converter (ADC) transforms the continuous waveform into discrete symbols. These digital symbols are properly equalized and OFDM-demodulated.
  • the input to baseband decoding chain is a series of Polar-encoded and digital modulated (QPSK, QAM) symbols.
  • This input can be firstly demodulated by a soft demodulator, the output is log-likelihood ratio (LLR) sequence denoted as y.
  • LLR log-likelihood ratio
  • y ⁇ y 0 , y 1 , y 2 , ..., y n-2 , y n-1 , ⁇ (1)
  • each element can be referred to a likelihood of a binary value 0 or a binary value 1 for the corresponding bit of the original signal sequence.
  • Equation (2) is the log-ratio of two conditional probabilities conditioned on the received y, vector u may be represented the hypotheses of originally transmitted bits. It is to be understood that LLR can also be defined the other way around with numerator and denominator swapped.
  • sequence y can be input into a de-interleaver to reverse the effect of interleaving and a input LLR of a Polar decoder, vector z, can be obtained as below:
  • both the sequence y and z can be regarded as the likelihood sequence associated with a signal sequence received from a transmitting device 120, i.e. the input of the Polar decoder.
  • the receiving device 110 generates a set of candidate sequences of the signal by processing the likelihood sequence with a first operation.
  • the first operation may be referred to a binary tree algorithm.
  • each element of the likelihood sequence may represent a likelihood of the binary value 1 or 0 for each bit of the original signal sequence. Based on the likelihood sequence, a binary tree can be constructed by processing each element of the likelihood sequence successively.
  • the receiving device 110 may determine a plurality of the decoding path, i.e. the path metrics. For example, there is a path metric computed for each possible path.
  • the individual path metric may represent the likelihood of taking a particular path from one node of binary tree to another.
  • new path metrics keeps being generated.
  • a maximum number of L path metrics can be held, where L is the list size.
  • path metrics are sorted in ascending/descending order and compared with each other, new path metrics get into the top of this list, whereas path metrics at the bottom of list may be eliminated.
  • the receiving device 110 may determine the set of candidate sequences based on the plurality of the decoding path.
  • the receiving device 110 determines a reference sequence by processing the likelihood sequence with a second operation.
  • the second operation may be referred to a hard decision algorithm.
  • the reference sequence may be generated by processing each element of the likelihood sequence with a predetermined pattern of the hard decision algorithm.
  • a decision value can be predetermined. Based on the decision value, a first group of elements and a second group of elements may be determined from the likelihood sequence. For example, each element of the first group of elements may have a value exceeding the decision value and each element of the second group of elements may have a value being lower than the decision value. Then the values of the first group of elements can be binarized to be a first group of bits and the value of the second group of the elements can be binarized to be a first second of bits.
  • the decision value is zero, it can be defined that the elements in the likelihood sequence having a value exceeding zero are binarized to be 1, and the other elements in the likelihood sequence having a value being lower than zero are binarized to be 0, which can be represented mathematically in Equation (4) as below:
  • y i may be represented as the i th element in the likelihood sequence y in the Equation (1) and v i may be represented as the i th element in a bit sequence v generated by processing the likelihood sequence y with a hard decision algorithm.
  • y i may be represented as the i th element in the likelihood sequence y in the Equation (1) and v i may be represented as the i th element in a bit sequence v generated by processing the likelihood sequence y with a hard decision algorithm.
  • the receiving device 110 may determine the reference sequence based on the first group of bits and the second group of bits. That is, the new bit sequence v generated by processing the likelihood sequence y with a hard decision algorithm can be read as:
  • the receiving device 110 determines a target sequence of the signal from the set of candidate sequences at least partially based on the reference sequence.
  • the target sequence of the signal may be referred to the final decoding signal sequence, i.e. the original signal sequence before encoding.
  • the CRC may be used for checking which decoding path is correct in a decoding procedure. For example, all CRC bits may be used for the final check to choose a final decoding signal sequence from a list of decoding paths.
  • the path determination including the final step of selecting the most-likely from the set of candidate sequences, is made to be fully relying on the proposed path metric. Hence, it is possible to use none of CRC bits for path determination. Instead, partial of implemented CRC can be used for further error correction to improve the BLER performance.
  • FIG. 3 shows a flowchart of an example method 300 of enhanced decoding according to some example embodiments of the present disclosure.
  • the method 300 can be implemented at the receiving device 110 as shown in FIG. 1. For the purpose of discussion, the method 300 will be described with reference to FIG. 1.
  • the receiving device 110 may encode the set of candidate sequences with a set of encoding parameters.
  • the set of the encoding parameters are used for encoding the signal transmitted by the transmitting device 120.
  • the set of the encoding parameters and corresponding encoding pattern may be pre-configured and known for both the receiving side and the transmitting device.
  • the receiving device 110 may re-encoding it with the encoding parameters used for encoding the signal transmitted by the transmitting device 120.
  • One of the re-encoded bit sequence may be represent as:
  • v′ ⁇ v′ 0 , v′ 1 , v′ 2 , ..., v′ m-2 , v′ m-1 ⁇ (6)
  • the receiving device 110 may compare each bit of a re-encoded bit sequence with the corresponding bit of the reference sequence, i.e. the bit sequence v, which is generated by processing the likelihood sequence y with a hard decision algorithm, as described above. For example, if the re-encoded bit sequence is v’ shown in the Equation (6) , the first bit v′ 0 in the re-encoded bit sequence v’ may be compared with the first bit v 0 in the bit sequence v, the second bit v′ 1 in the re-encoded bit sequence v’ may be compared with the first bit v 1 in the bit sequence v, and so on.
  • the receiving device 110 may determine the number of first bits in a first encoded candidate sequence in the set of encoded candidate sequences.
  • the first bits have values different from those of corresponding bits in the reference sequence.
  • the number of first bits in a re-encoded bit sequence having a value different from those of corresponding bits in the reference sequence may be counted. For example, if the re-encoded bit sequence is v’ shown in the Equation (6) and the value of the first bit v′ 0 in the re-encoded bit sequence v’ does not equal to the value of the first bit v 0 in the bit sequence v, the counter will become 1. The number of differences is recorded as N:
  • the receiving device 110 may determine a target sequence based on a threshold number T for the bit differences between a re-encoded bit sequence and the reference sequence.
  • the receiving device 110 may determine the first encoded candidate sequence as the target sequence.
  • this re-encoded bit sequence may be considered as a correct decoding path in the re-encoded candidate sequences, i.e. as the target sequence of the signal.
  • the CRC bits are not used for choosing the correct decoding path in the list at all. That is, the reliance on CRC is weakened or even completely eliminated in the decoding procedure at the receiving side. As described above, the CRC bits may be used for further error correction to improve the BLER performance.
  • the receiving device 110 may perform a cycle redundant check for the target decoded sequence with a checking code having an allowed number of bits for a transmission of the signal.
  • the CRC is a linear block code, a well-designed code with length of P may correct t errors:
  • This error correction will be extremely beneficial for small blocks because of the limited amount of redundancy level. In this way, an additional error correction capability may be obtained, which could lead to further lower block error rate.
  • the CRC bits may also be used for the final check. For example, if a plurality re-encoded sequences can be selected from the candidate sequences after a bitwise comparison with the reference sequence.
  • FIG. 4 shows a flowchart of an example method 400 of enhanced decoding for polarization code according to some example embodiments of the present disclosure.
  • the method 400 can be implemented at the receiving device 110 as shown in FIG. 1. For the purpose of discussion, the method 400 will be described with reference to FIG. 1.
  • the receiving device 110 may encode the set of candidate sequences with a set of encoding parameters.
  • the set of the encoding parameters are used for encoding the signal transmitted by the transmitting device 120.
  • the step 410 is basically same with the step 310 shown in FIG. 3.
  • a set of re-encoded bit sequence may be obtained and one of the re-encoded bit sequences may be represent as v′ in Equation (6) .
  • the receiving device 110 may select, based on the reference sequence, a subset of encoded candidate sequences from the set of encoded candidate sequences.
  • the number of first bits in each encoded candidate sequence in the subset is lower than a threshold number and the first bits have values different from those of corresponding bits in the reference sequence.
  • the receiving device 110 may determine, after the comparison of each re-encoded bit sequence with the reference sequence, multiple re-encoded bit sequences (i.e. a subset of encoded candidate sequences from the set of encoded candidate sequences) that include a number of bits N having different bit values being lower than a threshold number T, the step 420 of the method 400 is substantially same with the steps 320-330 of the method 300.
  • the threshold number of the method 400 may be slightly greater as that of method 300.
  • the setting of the threshold number will be discussed in the following section, so a detailed description is not provided here.
  • the receiving device 110 may further perform a cycle redundant check on the subset of encoded candidate sequences with a checking code having an allowed number of bits allowed for a transmission of the signal and, at 440, the receiving device 110 may determine the target sequence based on a result of the cycle redundant check.
  • the reason behind this solution described with reference to FIGs. 2-4 can be analyzed as follows.
  • the encoded codewords belong to a mathematical space corresponding to each information bit sequence. Then different information bit sequence would correspond to different codeword space.
  • the codeword is a special bit sequence, other than random bit sequence because it should fall into a specific space.
  • the hard-decided bit sequence corresponding to the demodulated symbols comes from a codeword and it should belong to certain space. The smaller number of differences the better it falls into a space. If the number of differences is more than a threshold, it means the received block is contaminated and does not belong to any space, so it is erroneously decoded.
  • FIGs. 5A-5B shows results of simulations according the embodiments of the present disclosure.
  • FIG. 5A with a Probability Distribution Function (PDF) figure, shows the distribution of the number of differences, i.e. the new metric descried above, of the correct blocks (curve 511) and incorrect blocks (curve 512) . It can be seen that they are very distinct and can be separated very well.
  • FIG. 5B with a Cumulative Distribution Function (CDF) figure, shows its performance with curve 513 and 514, repectively. As shown in FIGs.
  • PDF Probability Distribution Function
  • CDF Cumulative Distribution Function
  • the probability density of performing a correct decoding with respect to various number of differences between the reference bit sequence v and the encoded candidate bit sequence v’ can be formulated as:
  • a same T is used for all payload size, SNR, i.e. fixed threshold. It is also possible in another case to configure threshold T dynamically.
  • the configuration of the threshold T may be considered jointly with SNR to dynamically balance the sensitivity of the new metric used in DF-SCL and block error rate.
  • a lower threshold may be configured to suppress the erroneous decision incurred during DF-SCL decoding.
  • a higher threshold could be used to reduce the block error rate.
  • FIG. 6 shows an example of the SNR dependant threshold number.
  • FIG. 7 shows an example of the difference distribution among the coded bit sequence, i.e. the codeword.
  • coded bit sequence i.e. the codeword.
  • sampling from the demodulated symbols and/or the re-encoded bits to reduce the computing complexity. For example, only 1/5 bits are used to calculate the said differences. This would result in similar detection performance.
  • BLER block error rate
  • the solution of the present disclosure allows all CRC bits being devoted to final check, i.e. select the best path out of all candidate paths.
  • the proposed scheme considers partial or full differences between the hard decision of the demodulated LLRs and the re-encoding of decoded bits. In this way, the decoding at receiver side can be enhanced to less rely on CRC during decoding. This could dramatically improve the overall performance of the channel. Meanwhile, since RM code and Polar code belong to the same code family, thus the decoding method proposed in the present disclosure may be used to decode both of them. This also means that the enhancement to improve one code will also benefit the other.
  • an apparatus capable of performing the method 200 may comprise means for performing the respective steps of the method 200.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus comprises means for determining a likelihood sequence associated with a signal sequence received from a second device via a communication channel between the second device and the first device; means for generating a set of candidate sequences of the signal by processing the likelihood sequence with a first operation; means for determining a reference sequence by processing the likelihood sequence with a second operation different from the first operation; and means for determining a target sequence of the signal from the set of candidate sequences at least partially based on the reference sequence.
  • the means for determining the likelihood sequence may comprise means for receiving an encoded sequence of the signal from the second device; and means for determining the likelihood sequence based on a demodulation of the encoded sequence.
  • the means for determining the set of candidate sequences may comprise means for constructing a binary tree associated with the likelihood sequence based on the first operation; means for determining a plurality of decoding paths for the signal by performing a traversal procedure of the binary tree; and means for determining the set of candidate sequences based on the plurality of decoding paths.
  • the means for determining the reference sequence may comprise means for determining, from the likelihood sequence, a first group of elements and a second group of elements based on a decision value for the second operation, each element in the first group having a value exceeding the decision value, each element in the second group having a value being lower than the decision value; means for binarizing values of the first group of elements to be a first group of bits; means for binarizing values of the second group of elements to be a second group of bits different from the first group of bits; and means for determining the reference sequence based on the first group of bits and the second group of bits.
  • the means for determining the target decoded sequence may comprise means for encoding the set of candidate sequences with a set of encoding parameters, the set of the encoding parameters being used for encoding the signal transmitted by the second device; means for determining the number of first bits in a first encoded candidate sequence in the set of encoded candidate sequences, the first bits having values different from those of corresponding bits in the reference sequence; and means for determine a target sequence of the signal from the set of candidate sequences at least partially based on the reference sequence.
  • the apertures may comprise means for performing a cycle redundant check for the target sequence with a checking code having an allowed number of bits for a transmission of the signal.
  • the means for determining the target decoded sequence may comprise means for encoding the set of candidate sequences with a set of encoding parameters, the set of encoding parameters being used for encoding the signal transmitted by the second device; means for selecting, based on the reference sequence, a subset of encoded candidate sequences from the set of encoded candidate sequences, the number of first bits in each encoded candidate sequence in the subset being lower than a threshold number, the first bits having values different from those of corresponding bits in the reference sequence; means for performing a cycle redundant check on the subset of encoded candidate sequences with a checking code having an allowed number of bits allowed for a transmission of the signal; and means for determining the target sequence based on a result of the cycle redundant check.
  • FIG. 9 is a simplified block diagram of a device 900 that is suitable for implementing embodiments of the present disclosure.
  • the device 900 may be provided to implement the communication device, for example the receiving device 110 as shown in FIG. 1.
  • the device 900 includes one or more processors 910, one or more memories 940 coupled to the processor 910, and one or more transmitters and/or receivers (TX/RX) 940 coupled to the processor 910.
  • TX/RX transmitters and/or receivers
  • the TX/RX 940 is for bidirectional communications.
  • the TX/RX 940 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 910 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 900 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 920 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 924, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 922 and other volatile memories that will not last in the power-down duration.
  • a computer program 930 includes computer executable instructions that are executed by the associated processor 910.
  • the program 930 may be stored in the ROM 920.
  • the processor 910 may perform any suitable actions and processing by loading the program 930 into the RAM 920.
  • the embodiments of the present disclosure may be implemented by means of the program 930 so that the device 900 may perform any process of the disclosure as discussed with reference to FIGs. 2-4.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 930 may be tangibly contained in a computer readable medium which may be included in the device 900 (such as in the memory 920) or other storage devices that are accessible by the device 900.
  • the device 900 may load the program 930 from the computer readable medium to the RAM 922 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • FIG. 10 shows an example of the computer readable medium 1000 in form of CD or DVD.
  • the computer readable medium has the program 930 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, device, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 300 and 400 as described above with reference to FIGs. 2-4.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, device or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

Des modes de réalisation de la présente divulgation concernent des dispositifs, des procédés, des appareils et des supports de stockage lisibles par ordinateur de décodage amélioré pour un code de polarisation. Le procédé consiste à déterminer une séquence de probabilité associée à une séquence de signal reçue en provenance d'un second dispositif par l'intermédiaire d'un canal de communication entre le second dispositif et le premier dispositif ; à générer un ensemble de séquences candidates du signal par traitement de la séquence de probabilité à l'aide d'une première opération ; à déterminer une séquence de référence par traitement de la séquence de probabilité à l'aide d'une seconde opération différente de la première opération ; et à déterminer une séquence cible du signal à partir de l'ensemble de séquences candidates au moins partiellement en fonction de la séquence de référence. De cette manière, le décodage au niveau du côté récepteur peut être amélioré afin de moins dépendre du CRC pendant le décodage. Ceci pourrait améliorer considérablement la performance globale du canal.
PCT/CN2020/077977 2020-03-05 2020-03-05 Décodage amélioré pour code de polarisation WO2021174484A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/077977 WO2021174484A1 (fr) 2020-03-05 2020-03-05 Décodage amélioré pour code de polarisation
JP2022553122A JP2023517030A (ja) 2020-03-05 2020-03-05 両極性符号のための拡張復号
EP20922929.3A EP4115546A4 (fr) 2020-03-05 2020-03-05 Décodage amélioré pour code de polarisation
CN202080100606.6A CN115516786A (zh) 2020-03-05 2020-03-05 用于极化码的增强解码
US17/908,983 US20230163877A1 (en) 2020-03-05 2020-03-05 Enhanced Decoding for Polarization Code

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077977 WO2021174484A1 (fr) 2020-03-05 2020-03-05 Décodage amélioré pour code de polarisation

Publications (1)

Publication Number Publication Date
WO2021174484A1 true WO2021174484A1 (fr) 2021-09-10

Family

ID=77613768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077977 WO2021174484A1 (fr) 2020-03-05 2020-03-05 Décodage amélioré pour code de polarisation

Country Status (5)

Country Link
US (1) US20230163877A1 (fr)
EP (1) EP4115546A4 (fr)
JP (1) JP2023517030A (fr)
CN (1) CN115516786A (fr)
WO (1) WO2021174484A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017215486A1 (fr) * 2016-06-17 2017-12-21 Huawei Technologies Co., Ltd. Appareil et procédés de codage de détection d'erreur
US20180013868A1 (en) * 2016-07-11 2018-01-11 Qualcomm Incorporated Reinforced list decoding
US20180083655A1 (en) 2016-09-20 2018-03-22 Samsung Electronics Co., Ltd. Apparatus and method for parallelized successive cancellation decoding and successive cancellation list decoding of polar codes
CN108702290A (zh) * 2016-01-21 2018-10-23 华为技术有限公司 级联极化编码和滑动窗口极化编码
WO2018192514A1 (fr) * 2017-04-20 2018-10-25 Qualcomm Incorporated Bits figés dynamiques et détection d'erreur pour codes polaires
WO2018214101A1 (fr) 2017-05-25 2018-11-29 Qualcomm Incorporated Suppression du taux de fausses alarmes de codes polaires
US20190165818A1 (en) 2017-11-30 2019-05-30 Fujitsu Limited Decoder, decoding method, and communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702290A (zh) * 2016-01-21 2018-10-23 华为技术有限公司 级联极化编码和滑动窗口极化编码
WO2017215486A1 (fr) * 2016-06-17 2017-12-21 Huawei Technologies Co., Ltd. Appareil et procédés de codage de détection d'erreur
US20180013868A1 (en) * 2016-07-11 2018-01-11 Qualcomm Incorporated Reinforced list decoding
US20180083655A1 (en) 2016-09-20 2018-03-22 Samsung Electronics Co., Ltd. Apparatus and method for parallelized successive cancellation decoding and successive cancellation list decoding of polar codes
WO2018192514A1 (fr) * 2017-04-20 2018-10-25 Qualcomm Incorporated Bits figés dynamiques et détection d'erreur pour codes polaires
WO2018214101A1 (fr) 2017-05-25 2018-11-29 Qualcomm Incorporated Suppression du taux de fausses alarmes de codes polaires
US20190165818A1 (en) 2017-11-30 2019-05-30 Fujitsu Limited Decoder, decoding method, and communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4115546A4
SHARP: "Initial access procedure for NR-U", 3GPP DRAFT; R1-1907213, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051728656 *

Also Published As

Publication number Publication date
US20230163877A1 (en) 2023-05-25
EP4115546A1 (fr) 2023-01-11
CN115516786A (zh) 2022-12-23
JP2023517030A (ja) 2023-04-21
EP4115546A4 (fr) 2023-11-29

Similar Documents

Publication Publication Date Title
US10313057B2 (en) Error detection in wireless communications using sectional redundancy check information
CN110495113B (zh) 将ue id嵌入到冻结位中以供dci盲检测的加扰序列设计
CN109478953B (zh) 用极化码进行盲检测的方法及系统
CN110574292B (zh) 针对极性解码的基于冻结比特的路径修剪和提早终止
US9504042B2 (en) System and method for encoding and decoding of data with channel polarization mechanism
US11196446B2 (en) Method and apparatus for data processing in a communication system
EP1641135B1 (fr) Estimation du canal utilisant une portion non-pilote du signal
US20180083733A1 (en) Receiving Device and Methods Thereof
CN109417440B (zh) 用于连续解码过程的提早终止技术
US20180026662A1 (en) Method for controlling decoding process based on path metric value and computing apparatus and mobile device for controlling the same
JP7371077B2 (ja) セクション式冗長検査を有する制御シグナリングの符号化および復号
US10680659B2 (en) System and method for improved decoding using identified recurring side information
US10826541B2 (en) Convolutional code decoder and convolutional code decoding method
EP3396862A1 (fr) Utilisation de bits de parité et crc pour une terminaison précoce du décodage de code polaire pour des réseaux sans fil
WO2021174484A1 (fr) Décodage amélioré pour code de polarisation
CN112533294B (zh) 一种控制信道的检测方法、装置、通信设备和存储介质
WO2021253443A1 (fr) Optimisation de contrôle de redondance de cycle
US11128313B2 (en) Apparatus and method for decoding signal in wireless communication system
US20220052784A1 (en) Data processing in channel decoding
Bai et al. Near-Optimal Contraction of Voronoi Regions for Pruning of Blind Decoding Results

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922929

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553122

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020922929

Country of ref document: EP

Effective date: 20221005