WO2021174400A1 - 消息重传方法及相关装置 - Google Patents

消息重传方法及相关装置 Download PDF

Info

Publication number
WO2021174400A1
WO2021174400A1 PCT/CN2020/077498 CN2020077498W WO2021174400A1 WO 2021174400 A1 WO2021174400 A1 WO 2021174400A1 CN 2020077498 W CN2020077498 W CN 2020077498W WO 2021174400 A1 WO2021174400 A1 WO 2021174400A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
message
spatial filtering
spatial
path loss
Prior art date
Application number
PCT/CN2020/077498
Other languages
English (en)
French (fr)
Inventor
颜矛
黄煌
高宽栋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080097516.6A priority Critical patent/CN115152307A/zh
Priority to EP20923276.8A priority patent/EP4090122A4/en
Priority to PCT/CN2020/077498 priority patent/WO2021174400A1/zh
Publication of WO2021174400A1 publication Critical patent/WO2021174400A1/zh
Priority to US17/899,681 priority patent/US20220416958A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/189Transmission or retransmission of more than one copy of a message
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of wireless communication technology, and in particular to a message retransmission method and related devices.
  • the carrier frequency used for communication is relatively high (ie, high frequency), for example, the carrier frequency exceeds 3 GHz or 6 GHz.
  • the carrier frequency exceeds 3 GHz or 6 GHz.
  • the higher the carrier frequency the greater the loss suffered by the wireless signal in the transmission process (that is, the path loss).
  • a new antenna technology with higher antenna gain is adopted to increase the distance and efficiency of signal transmission.
  • the human body In actual communication, the human body is relatively close to the UE, which causes the MPE to be greatly restricted. Even if the UE can support a larger EIRP, due to safety regulations, only a lower EIRP can be used to send signals. For example, when the UE is in the process of accessing the network, when transmitting a message to the network device, it needs to transmit at a power that satisfies the MPE constraint. In this way, the output power of the UE is severely limited, and it is easy to cause signal transmission failure, so that the UE cannot access the network or the access delay is relatively long.
  • the present application provides a message retransmission method and related devices, which can increase the transmission power of user equipment.
  • the present application provides a message retransmission method, including: a user equipment sends a first message to a network device at a first power through a first spatial filtering; and the user equipment retransmits a first message to the network device through N second spatial filtering.
  • a message retransmission method including: a user equipment sends a first message to a network device at a first power through a first spatial filtering; and the user equipment retransmits a first message to the network device through N second spatial filtering.
  • the first message is a message sent by the user equipment to the network device during the random access process.
  • the first message is message 1, message 3 or physical uplink control channel (PUCCH).
  • PUCCH physical uplink control channel
  • One second spatial filtering may correspond to one beam direction, and one second spatial filtering may also correspond to multiple beam directions.
  • the user equipment may retransmit the first message to the network equipment in n different beam directions through N second spatial filtering, where n is a positive integer greater than or equal to 2, and n ⁇ N.
  • the N second spatial filters include at least one spatial filter that is different from the first spatial filter; or the n beam directions include at least one beam direction that is different from the beam direction corresponding to the first spatial filter.
  • the beam direction corresponding to the first spatial filtering may be the beam direction with the highest efficiency and the lowest path loss, and the user equipment continues to retransmit the first message in the beam direction, which can increase the received power of the first message at the network device.
  • any one of the N second spatial filters is different from the first spatial filter, or any one of the n beam directions is different from the beam direction used by the first spatial filter to send the first message.
  • the user equipment can try to retransmit the first message to the network device in more beam directions, thereby helping to increase the probability of the first message being sent successfully.
  • N is 1, and n>N. That is, the user equipment retransmits the first message to the network equipment in n different beam directions through a second spatial filtering.
  • the one second spatial filtering corresponds to n beam directions.
  • at least one second spatial filter retransmits the first message to the network device in multiple different beam directions. That is, among the N second spatial filters, at least one second spatial filter corresponds to multiple beam directions.
  • N ⁇ 2 and N n.
  • Each spatial filter in the N second spatial filters corresponds to a beam direction, and each spatial filter in the N second spatial filters has a different beam direction for sending the first message.
  • the user equipment respectively retransmits the first message to the network equipment in different N beam directions through N second spatial filtering.
  • the user equipment retransmits the first message to the network device through N second spatial filtering, the first message still fails to be sent. Then the user equipment can retransmit the first message again.
  • the first message is message 1
  • the second power rise times corresponding to the transmit power of each of the P second spatial filters in the N second spatial filters are greater than those corresponding to the first power.
  • the number of first power rises; P is a positive integer, P ⁇ N.
  • the user equipment switches to retransmit message 1 in n beam directions, and in the beam directions corresponding to the P second spatial filtering among the n beam directions
  • Performing power upscaling can increase the transmit power of each second spatial filtering in the P second spatial filtering. It helps to increase the total power of N second spatial filtering, thereby increasing the probability of successful message 1 transmission.
  • the user equipment may retransmit the message 1 again, and retransmit the message 1 through N'third spatial filters, where N' ⁇ N.
  • the N′ third spatial filters may not perform power upscaling, that is, the number of power boosts corresponding to the transmission power of the N′ third spatial filters is equal to the second power boosting times.
  • the first power is determined according to the first power boost step size and the first power boost times; each of the P second spatial filters The transmission power of the second spatial filtering is determined according to the second power boost step size and the second power boost times corresponding to the transmission power of the second spatial filtering.
  • the second power-up step size is determined according to the first power-up step size.
  • the network device only needs to configure one power-up step size as the first power-up step size, which can save wireless transmission resources.
  • the user equipment only needs to calculate the second power boost step size once for the P second spatial filtering, which can reduce the amount of data processing of the user equipment.
  • the second power increase step a of the second spatial filter A in the P second spatial filters is determined according to the configuration information of the network device, and in the P second spatial filters, except for the second spatial filter
  • the second power-up step size of the second spatial filtering other than the filter A is determined according to the second power-up step size a.
  • the network device can better control the transmission power of the user equipment by configuring the second power increase step size in the P second spatial filtering.
  • the second spatial filtering A is any one of the P second spatial filtering. Two spatial filtering.
  • the method further includes: the user equipment obtains the path loss measurement value of each second spatial filtering in the P second spatial filtering; P The path loss measurement value of each second spatial filtering in the second spatial filtering is used to determine the path loss value of each second spatial filtering in the P second spatial filtering, each of the P second spatial filtering The path loss value of the second spatial filtering is used to determine the transmission power of the second spatial filtering to retransmit the first message;
  • the path loss values of the P second spatial filtering are the same, and the path loss value is determined by the user equipment according to the path loss measurement values of the P second spatial filtering.
  • the second path loss value obtained in this way takes into account the P For the path loss measurement values of each second spatial filtering in the second spatial filtering, the transmission power determined according to the second path loss value is more reasonable; or
  • the path loss values of the P second spatial filtering are different, and the path loss value of each second spatial filtering in the P second spatial filtering is determined according to the path loss measurement value of the second spatial filtering.
  • the second path loss value used to calculate the transmission power of each second spatial filtering can accurately reflect the path loss corresponding to the second spatial filtering, so that the transmission power calculated by the user equipment can be more accurate.
  • the path loss values of the P second spatial filtering are the same, and the path loss value is the smallest value among the path loss measurement values of the P second spatial filtering; or the path loss value is the P second spatial filtering Among the path loss measurement values, any one of the path loss measurement values that is less than the path loss threshold. In this way, the transmission power of the UE can be appropriately prevented from being too high, and the interference caused by the uplink message sent by the UE to the network can be reduced.
  • the first message is message 3
  • the second cumulative power adjustment corresponding to each of the P second spatial filters in the N second spatial filters corresponds to the second cumulative power adjustment corresponding to the first spatial filtering.
  • the cumulative power adjustment is different.
  • the user equipment adjusts the cumulative power adjustment values of P second spatial filtering to adjust the corresponding P second spatial filtering.
  • the transmit power in the beam direction of the P so as to realize the power boost for the beam directions corresponding to the P second spatial filtering. It is helpful to increase the total power of N second spatial filtering, thereby increasing the probability of successful message 3 transmission.
  • the first message is PUCCH
  • the second cumulative power adjustment corresponding to each of the P second spatial filters in the N second spatial filters corresponds to the first corresponding to the first spatial filtering.
  • the accumulated power adjustment is different.
  • the user equipment when the user equipment switches from sending PUCCH in one beam direction to sending PUCCH in n beam directions, the user equipment adjusts the beams corresponding to the P second spatial filtering by adjusting the cumulative power adjustment value of the P second spatial filtering The transmit power in the direction, so as to realize the power boost for the beam directions corresponding to the P second spatial filtering. It is helpful to increase the total power of N second spatial filtering, thereby increasing the probability of successful PUCCH transmission.
  • the first message is message 1, message 3, or PUCCH.
  • the method before the user equipment retransmits the first message to the network device through N second spatial filtering, the method further includes: the user equipment confirms that the transmission power of the first message retransmitted through the first spatial filtering exceeds the maximum allowable exposure
  • the corresponding power threshold the power threshold is less than or equal to the maximum power corresponding to the maximum allowable exposure.
  • the user equipment switches to retransmit the first message to the network device in multiple beam directions, so that the total transmission power of the user equipment for sending the first message is greater than
  • the first power can thereby enable the transmission power of the user equipment to exceed the maximum allowable exposure corresponding to the maximum power limit, increase the probability of successful transmission of the first message, and thus speed up the speed of the user equipment to access the network.
  • the first message is message 1, message 3, or PUCCH.
  • the present application provides a message retransmission device, including a transceiving unit and a processing unit.
  • the transceiving unit is configured to: send a first message to a network device at a first power through first spatial filtering; and through N second spatial domains
  • the filter retransmits the first message to the network device, and the N second spatial filters include at least one spatial filter different from the first spatial filter, and N is a positive integer.
  • the first message is a message sent by the user equipment to the network device during the random access process.
  • the first message is message 1, message 3, or PUCCH.
  • the first message is message 1
  • the second power rise times corresponding to the transmit power of each of the P second spatial filters in the N second spatial filters are greater than those corresponding to the first power.
  • the number of first power rises; P is a positive integer, P ⁇ N.
  • the message retransmission device in this embodiment may be, for example, a user equipment, or a chip or functional module of the user equipment.
  • the transceiver unit includes a receiving unit and a sending unit.
  • the message retransmission device is a communication chip
  • the transceiver unit may be an input/output circuit or port of the communication chip.
  • the transceiver unit can be a transmitter and a receiver, or the transceiver unit can be a transmitter and a receiver.
  • the first power is determined by the processing unit according to the first power boost step size and the first power boost times; each of the P second spatial filters The transmission power of the second spatial filtering is determined by the processing unit according to the second power boost step size and the second power boost times corresponding to the transmission power of the second spatial filtering.
  • the second power boost step is determined by the processing unit according to the first power boost step.
  • the network device only needs to configure one power boost step as the first power boost step, which can save wireless transmission resources.
  • the user equipment only needs to calculate the second power boost step size once for the P second spatial filtering, which can reduce the amount of data processing of the user equipment.
  • the second power increase step a of the second spatial filter A in the P second spatial filtering is determined by the processing unit according to the configuration information of the network device, and in the P second spatial filtering, except for the first
  • the second power boost step size of the second spatial filter other than the second spatial filter A is determined by the processing unit according to the second power boost step size a.
  • the network device can better control the transmission power of the user equipment by configuring the second power increase step size in the P second spatial filtering.
  • the second spatial filtering A is any one of the P second spatial filtering. Two spatial filtering.
  • the processing unit is configured to obtain the path loss measurement value of each second spatial filtering in the P second spatial filtering; the path loss measurement value of each second spatial filtering in the P second spatial filtering, using To determine the path loss value of each second spatial filtering in the P second spatial filtering, the path loss value of each second spatial filtering in the P second spatial filtering is used to determine the retransmission of the second spatial filtering.
  • the transmission power of a message
  • the path loss values of the P second spatial filtering are the same, and the path loss value is determined by the processing unit according to the path loss measurement values of the P second spatial filtering.
  • the second path loss value obtained in this way takes into account the P For the path loss measurement values of each second spatial filtering in the second spatial filtering, the transmission power determined according to the second path loss value is more reasonable; or
  • the path loss values of the P second spatial filtering are different, and the path loss value of each second spatial filtering in the P second spatial filtering is determined by the processing unit according to the path loss measurement value of the second spatial filtering.
  • the second path loss value used to calculate the transmission power of each second spatial filtering can accurately reflect the path loss corresponding to the second spatial filtering, so that the transmission power calculated by the user equipment can be more accurate.
  • the path loss values of the P second spatial filtering are the same, and the path loss value is the smallest value among the path loss measurement values of the P second spatial filtering; or the path loss value is the P second spatial filtering Among the path loss measurement values, any one of the path loss measurement values that is less than the path loss threshold. This can balance the interference brought to the network.
  • the first message is message 3
  • the second cumulative power adjustment corresponding to each of the P second spatial filters in the N second spatial filters corresponds to the second cumulative power adjustment corresponding to the first spatial filtering.
  • the cumulative power adjustment is different.
  • the user equipment adjusts the cumulative power adjustment values of P second spatial filtering to adjust the corresponding P second spatial filtering.
  • the transmit power in the beam direction of the P so as to realize the power boost for the beam directions corresponding to the P second spatial filtering. It is helpful to increase the total power of N second spatial filtering, thereby increasing the probability of successful message 3 transmission.
  • the first message is a physical uplink control channel (PUCCH)
  • the second accumulation corresponding to each of the P second spatial filters in the N second spatial filters is The power adjustment is different from the first accumulated power adjustment corresponding to the first spatial filtering.
  • the user equipment when the user equipment switches from sending PUCCH in one beam direction to sending PUCCH in n beam directions, the user equipment adjusts the beams corresponding to the P second spatial filtering by adjusting the cumulative power adjustment value of the P second spatial filtering The transmit power in the direction, so as to realize the power boost for the beam directions corresponding to the P second spatial filtering. It is helpful to increase the total power of N second spatial filtering, thereby increasing the probability of successful PUCCH transmission.
  • PUCCH physical uplink control channel
  • the first message is message 1, message 3, or PUCCH.
  • the processing unit is further configured to confirm that the transmission power of the first message retransmitted through the first spatial filtering exceeds the power threshold corresponding to the maximum allowable exposure, and the power threshold is less than or equal to the maximum power corresponding to the maximum allowable exposure.
  • the user equipment switches to retransmit the first message to the network device in multiple beam directions, so that the total transmission power of the user equipment for sending the first message is greater than
  • the first power can thereby enable the transmission power to break through the maximum allowable exposure corresponding to the maximum power limit, increase the probability of successful transmission of the first message, and thus can accelerate the speed of the user equipment accessing the network.
  • the first message is message 1, message 3, or PUCCH.
  • the present application provides a communication device.
  • the communication device is a user equipment or a terminal device, and includes a processor and a memory.
  • the memory is used to store computer instructions.
  • the method of any one of the embodiments is executed.
  • the present application also provides a communication device.
  • the communication device includes a processor, a memory, and a transceiver.
  • the transceiver is used to receive signals or send signals; the memory is used to store program codes; and the processor is used to slave the memory.
  • the calling program code executes the method as in the first aspect.
  • the memory is used to store a computer program or instruction, and the processor is used to call and run the computer program or instruction from the memory.
  • the communication device executes the message of the first aspect. Any implementation of the retransmission method.
  • processors there are one or more processors, and one or more memories.
  • the memory may be integrated with the processor, or the memory and the processor may be provided separately.
  • the transceiver may include a transmitter (transmitter) and a receiver (receiver).
  • the present application provides a device including a processor, and the processor is coupled with a memory, and when the processor executes a computer program or instruction in the memory, the method of any one of the implementation manners in the first aspect is executed.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the device is user equipment.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • the present application provides a communication device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor; the processor runs the code instructions to execute the corresponding instructions as shown in the first aspect. Methods.
  • the present application provides a system including the above-mentioned user equipment and network equipment.
  • this application provides a computer program product
  • the computer program product includes: a computer program (also called code, or instruction), when the computer program is run, the computer executes any one of the above-mentioned first aspects The method in the possible implementation mode.
  • the present application provides a computer-readable storage medium.
  • the computer-readable medium stores a computer program (also called code, or instruction) when it runs on a computer, so that the computer executes the above-mentioned first aspect Any one of the possible implementation methods.
  • the present application provides a communication device, including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive signals through the input circuit and transmit signals through the output circuit, so that the method in any one of the possible implementation manners of the first aspect is implemented.
  • the above-mentioned communication device may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times. This application does not limit the specific implementation of the processor and various circuits.
  • the present application also provides a chip including a processor and an interface, configured to execute a computer program or instruction stored in a memory, and execute the message retransmission method of any one of the foregoing embodiments.
  • FIG. 1 is a network architecture diagram of a network system involved in an embodiment of this application
  • Figure 2 is a schematic flow diagram of the random access process of the UE for the application
  • FIG. 3A is a schematic diagram of a scenario in a random access process of a UE
  • 3B is a schematic diagram of a scenario involved in a message retransmission method according to an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a message retransmission method according to an embodiment of the application.
  • FIG. 5A is a schematic structural diagram of a communication device according to an embodiment of the application.
  • FIG. 5B is a schematic diagram of another scenario involved in the message retransmission method according to an embodiment of the application.
  • FIG. 5C is a schematic diagram of another scenario involved in the message retransmission method according to an embodiment of the application.
  • FIG. 6 is a schematic diagram of another flow of a message retransmission method according to an embodiment of the application.
  • FIG. 7 is a schematic diagram of modules of a message retransmission device according to an embodiment of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as implying or implying relative importance or implicitly specifying the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, “plurality” means two or more.
  • FIG. 1 is a network architecture diagram of a network system 100 according to an embodiment of the application.
  • the network system includes a network device 10 and a UE20.
  • the network device 10 is a device that communicates with wireless user equipment through one or more cells in the access network.
  • the network device may be, for example, a long term evolution (LTE) system or an advanced long term evolution (LTE-A).
  • LTE long term evolution
  • LTE-A advanced long term evolution
  • the UE 20 may be a device that provides voice and/or data connectivity to the user.
  • it may include a handheld device with a wireless connection function or a processing device connected to a wireless modem.
  • the user equipment can communicate with the core network via a radio access network (RAN), and exchange voice and/or data with the RAN.
  • RAN radio access network
  • UE20 may include wireless user equipment, mobile user equipment, device-to-device (D2D) user equipment, vehicle-to-everything (V2X) user equipment, machine-to-machine/machine-type communication ( machine-to-machine/machine-type communications, M2M/MTC) user equipment, Internet of things (IoT) user equipment, subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station) , Remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or user equipment (user device) and so on.
  • IoT Internet of things
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • Remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user agent user agent
  • user equipment user device
  • it may include mobile phones (or “cellular” phones), computers with mobile user equipment, portable, pocket-sized, hand-held, mobile devices built into computers, and the like.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the UE 20 may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • vehicle-mounted user equipment if they are located on the vehicle (for example, placed in the vehicle or installed in the vehicle), can be considered as vehicle-mounted user equipment.
  • vehicle-mounted user equipment is also called an on-board unit (OBU). ), the application embodiment does not limit this.
  • OBU on-board unit
  • Random access refers to an information interaction mechanism or interaction process for a device (such as a UE) that does not access the network to establish a connection with the network in an LTE or 5G communication system with access control. Random access is divided into contention-based random access and non-contention random access.
  • Random access based on competition is usually divided into 4 steps, and each step corresponds to a message, namely message 1 (message 1, Msg1), message 2 (message 2, Msg2), message 3 (message 3, Msg3), and message 4 ( message 4, Msg4), each message carries different signaling or information.
  • message 1 messagesage 1, Msg1
  • message 2 messagessage 2, Msg2
  • message 3 messagesage 3, Msg3
  • message 4 message 4, Msg4
  • Fig. 2 is a schematic flowchart of a random access process of a UE.
  • the random access procedure of the UE includes the following steps:
  • the network device sends a message 2 to the UE.
  • S206 The UE sends a message 3 to the network device
  • the network device sends a message 4 to the UE.
  • message 1 is a random access preamble (preamble or sequence).
  • Message 1 is carried through a physical random access channel (PRACH).
  • PRACH physical random access channel
  • Message 1 is used by a device (such as a UE) to be connected to the network to initiate a connection request, a handover request, a synchronization request, or a scheduling request to the network device.
  • Message 2 is a random access response (RAR) message.
  • Message 2 is the response of the network device to the received message 1.
  • Message 2 includes at least one of the following information: the index of message 1 (random access preamble identity, RAPID), uplink scheduling grant (uplink grant), timing advance, temporary cell-radio network temporary identification (temporary cell radio network temporary) identity, TC-RNTI) and so on.
  • the network device can respond to multiple Msg1 in the same message 2 at the same time.
  • Message 3 is also called the first uplink scheduled transmission.
  • Message 3 is transmitted based on UL grant scheduling in message 2, or retransmission based on Downlink Control Information (DCI) scrambled by TC-RNTI.
  • DCI Downlink Control Information
  • the transmission content of message 3 is a high-level message, for example, a connection establishment request message.
  • the connection establishment request message may specifically be the identification information of the user who initiated the connection request.
  • Message 3 is used to resolve competition. If multiple different devices use the same message 1 for random access, messages 3 and 4 can jointly determine whether there is a conflict between the multiple different devices.
  • Message 4 is used for contention resolution.
  • Message 4 usually includes a common control channel service data unit (CCCH SDU) carried in Msg3. If the network device detects the CCCH SDU sent by itself in the message 4, it considers that the competitive random access is successful, and continues the next communication process.
  • CCCH SDU common control channel service data unit
  • message A and message B are needed.
  • the message A includes the random access preamble and the first data information (for example, similar to the above-mentioned message 1 and message 3 respectively), and the message B includes contention resolution and uplink scheduling (for example, similar to the above-mentioned contention-based random access 4-step random access Incoming message 2 and message 4).
  • the UE when it successfully receives the message 4, it may send a physical uplink control channel (PUCCH) to the network device to feed back whether the message 4 is successfully received.
  • PUCCH physical uplink control channel
  • the transmit power is the output power measured on all or part of the supported frequencies, frequency bands or bandwidths within a given time or period.
  • the measurement time is at least 1 ms, and for another example, the measurement time is at least one time slot corresponding to a certain word carrier interval.
  • FIG. 3A is a schematic diagram of a scenario in the random access process of the UE.
  • the dashed beam of UE31 represents the maximum transmit power of the UE under the MPE limitation.
  • the UE 31 sends message 1, message 3, or PUCCH to the network device 32 under the MPE restriction, it is likely that the sending of message 1, message 3 or PUCCH may fail. Then the UE needs to perform multiple retransmission cancellations, which will affect the UE's access time for a long time.
  • the UE's MPE restriction conditions also include Equivalent Isotropically Radiated Power (EIRP).
  • EIRP Equivalent Isotropically Radiated Power
  • the constraint condition of the transmission power may refer to the output power, or EIRP, or the output power and EIRP (each corresponding to a different constraint value).
  • the output power does not exceed 23dBm.
  • the output power does not exceed 23 dBm and the EIRP does not exceed 43 dBm.
  • the specific MPE constraint value can refer to the rules formulated by various countries and regions.
  • the "transmission power” mentioned in this application may be output power or EIRP.
  • the embodiment of the present application provides a message retransmission method.
  • the UE transmits the first message at the first power through the first spatial filtering.
  • the first message is a message sent by the UE to the network device during the random access process.
  • the first message is message 1, message 3, or PUCCH.
  • the UE fails to send the first message at the first power, the UE retransmits the first message in n beam directions through N spatial filtering, where N, n are positive integers, n ⁇ 2, n ⁇ N.
  • FIG. 3B is a schematic diagram of a scenario of a message retransmission method according to an embodiment of the application. As shown in FIG.
  • the UE 31 sends the first message to the network device 32 in multiple beam directions.
  • the UE fails to transmit the first message, it switches to sending the first message in multiple beam directions, which increases the total transmission power of the UE to send the first message, thereby increasing the probability of the first message being sent successfully and improving the UE The speed of access to the network.
  • FIG. 4 is a schematic flowchart of a message retransmission method according to an embodiment of the application.
  • Message retransmission methods include:
  • the UE sends a first message to a network device at a first power through a first spatial domain filter.
  • the UE sends the first message to the network device in one beam direction through the first spatial filtering.
  • the first message is message 1, message 3, or PUCCH.
  • the first power is the output power of the UE on all or part of the supported frequencies, frequency bands, or bandwidths within the set time period.
  • the set time period may correspond to a time period greater than or equal to 1 ms, for example. For example, 1 second(s).
  • S402 The UE confirms that the first message needs to be retransmitted.
  • the UE monitors the physical downlink control channel (PDCCH) after sending the first message, if the RAR sent by the network device to the UE is not received within the specified RAR window, then The UE may confirm that the transmission of the first message failed, and confirm that message 1 needs to be retransmitted. If the UE confirms that the random access fails, the UE can also confirm that message 1 needs to be retransmitted.
  • PDCCH physical downlink control channel
  • any one or more of the following factors will cause random access failure: network device detection message 1 failure, UE failure to receive message 2, network device detection message 3 failure, UE detection message 4 failure , The UE detects that the message 4 is sent successfully but the conflict detection fails.
  • the UE When the first message is message 3, if the UE confirms that message 3 has failed to be sent, the UE confirms that message 3 needs to be retransmitted.
  • the UE When the first message is PUCCH, if the UE confirms that the PUCCH transmission fails, the UE confirms that the PUCCH needs to be retransmitted.
  • the UE retransmits the first message to the network device through N second spatial filtering, where N is a positive integer.
  • the beam is a communication resource.
  • the beam forming technology may be beamforming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology.
  • the transmit beam may refer to the distribution of signal strength formed in different directions in space after a signal is transmitted through an antenna.
  • the transmit beam of the UE can be divided into multiple beam directions according to the signal strength distribution formed in different directions in space after the signal is transmitted through the antenna, and each beam direction can correspond to one or more antenna ports.
  • one or more antenna ports corresponding to one beam direction can also be regarded as an antenna port set.
  • the embodiment of the beam in the communication protocol can still be a spatial filter.
  • one beam direction of a transmission beam can correspond to a spatial domain transmission filter, or multiple beam directions can correspond to a spatial filter.
  • the UE can retransmit the first message to the network device in n different beam directions through N second spatial filtering, where n is a positive integer greater than or equal to 2, and n ⁇ N.
  • One second spatial filtering corresponds to one or more beam directions.
  • the user equipment switches to retransmit the first message in multiple beam directions, which can increase the total transmission power of the first message, thereby increasing the number of successful transmission of the first message. probability. For example, by retransmitting the first message in multiple beam directions, the UE can make the sum of the transmission power of the N second spatial filtering greater than the first power.
  • the N second spatial filters include at least one spatial filter different from the first spatial filter; or the n beam directions include at least one beam direction different from the beam direction in which the UE sends the first message through the first spatial filter.
  • Each second spatial filtering may be understood as a set of weights, and the set of weights may include at least one of the digital weight F, the analog weight, and the G mixed modulus weight FG.
  • the UE’s antenna retransmits the first message to the network device in different n beam directions through N second spatial filtering. It can be understood that the UE’s antenna retransmits to the network device in different n beam directions through N sets of weights.
  • Each set of weights can correspond to one beam direction or multiple beam directions.
  • FIG. 5A is a schematic structural diagram of a communication device according to an embodiment of the application.
  • the communication device 500 includes a processor 501, a memory 502, and a transceiver 503.
  • the processor 501 is coupled with the memory 502.
  • the memory 502 is used to store computer instructions.
  • the transceiver 503 includes one or more of a transmitter 5031, a receiver 5032, and an antenna 5033.
  • the transmitter 5031 may be used to send information to the network device through the antenna 5033.
  • the receiver 5032 is used to receive information through the antenna 5033.
  • the memory 502 may be integrated with the processor 501, or the memory 502 and the processor 501 may be provided separately.
  • the message retransmission method in the embodiment of the present application may be implemented by the communication device 500 in the embodiment of the present application. That is, the above steps S401-S403 can be executed by the communication device 500 in the embodiment of the present application.
  • the transceiver 503 is used to perform sending and receiving operations in the method embodiment
  • the processor 501 is used to implement other operations besides sending and receiving
  • the memory 502 is used to store related computer programs or instructions; for example, the processor 501
  • the memory 502 reads computer instructions to cause the device 500 to perform the following operations: the transmitter 5031 sends the first message to the network device at the first power through the first spatial filtering; the processor 501 confirms that the first message needs to be retransmitted; the transmitter 5031 passes N The second spatial filtering retransmits the first message to the network device.
  • the communication device 500 in the embodiment of the present application may be, but is not limited to, a user equipment, or a chip or a functional module in the user equipment, for example.
  • the antenna 5033 includes one or more antenna arrays.
  • the antenna 5033 includes antenna array 1 to antenna array N.
  • An antenna array includes K antenna elements.
  • the antenna array may also be called an antenna panel (Panel).
  • One antenna array can send the first message in one beam direction, and one antenna array can also send signals in multiple beam directions.
  • a spatial filtering can be understood as a digital weight F, an analog weight G, or a mixed modulus weight FG used by an antenna array to form a beam.
  • the antenna array 1 forms a beam with digital weights [F 1,1 ;...;F 1,K ], then [F 1,1 ;...;F 1,K ] is a spatial filter F 1 .
  • the spatial filtering corresponding to the antenna array corresponds to one beam direction; when an antenna array sends information to the network device in multiple beam directions, the corresponding spatial filtering corresponding to the antenna array corresponds to more Beam directions.
  • at least one second spatial filter retransmits the first message in multiple different beam directions. That is, among the N second spatial filters, at least one second spatial filter corresponds to multiple beam directions.
  • the antenna array 1 passes the second spatial filtering F 1 and retransmits the first message in the beam direction 1; ...; the antenna array N of the UE50 passes the second spatial filtering F N , in the beam direction n-1 And beam direction n to retransmit the first message.
  • F 1 [F 1,1 ;...;F 1,K ]
  • F N [F N,1 ;...;F N,K ].
  • N is 1, and n>N.
  • the communication device 500 retransmits the first message in different n beam directions through a second spatial filtering.
  • FIG. 5B is a schematic diagram of another scenario of a message retransmission method according to an embodiment of the application.
  • N>1 and N n.
  • the N second spatial filters have a one-to-one correspondence with the N beam directions.
  • the UE retransmits the first message in different N beam directions through N second spatial filtering.
  • FIG. 5C is a schematic diagram of another scenario of the message retransmission method according to an embodiment of the application.
  • Antenna array 1 retransmits the first message in beam direction 1 through the second spatial filtering F 1 ;
  • antenna array 2 retransmits the first message in beam direction 2 through the second spatial filtering F 2 , ...; UE500 antenna array N
  • the first message is retransmitted in the beam direction N.
  • F 1 [F 1,1 ;...;F 1,K ]
  • F 1 [F 2,1 ;...;F 2,K ]
  • ...,F N [F N,1 ;...;F N ,K ].
  • the synchronization signal (synchronization signal, SS) associated with the first message sent in at least two beam directions is different; or the physical broadcast channel block (physical broadcast channel block) associated with the first message sent in at least two beam directions , PBCH blocks) are different; or the channel state information reference signals (CSI-RS) associated with the first messages sent in at least two beam directions are different.
  • the coverage of the first message can be increased, and the probability that the first message is successfully sent can be increased.
  • the first messages sent in at least two beam directions have the same associated SS/PBCH block.
  • the first message sent in n beam directions has fewer associated SS/PBCH blocks, and the network device detects the first message from the associated SS/PBCH block, which facilitates the network device to detect the first message.
  • the content of the first message sent in the n beam directions is completely the same.
  • signals in multiple directions may form a quasi-coherent superposition or a quasi-coherent superposition in space, which improves the strength of the received signal and increases the probability of success of the first message.
  • the beam direction corresponding to the first spatial filtering may be the beam direction with the highest efficiency and the lowest path loss. Then the UE continues to retransmit the first message in this beam direction, which can improve the reception of the first message at the network device. power.
  • any one of the N second spatial filtering is different from the first spatial filtering, or any one of the n beam directions is the same as the UE passing the first spatial filtering in S401.
  • the beam direction for sending the first message is different. In this way, the UE can try to retransmit the first message to the network device in more beam directions, thereby helping to increase the probability of the first message being sent successfully.
  • the UE retransmits the first message to the network device through N second spatial filtering, the first message still fails to be sent. Then the UE can retransmit the first message again.
  • the UE sends the first message to the network device at the first power through the first spatial filtering; when the UE confirms that the transmission of the first message fails, the UE sends the first message to the network in n 1 beam directions through N 1 second spatial filtering.
  • the device retransmits the first message, where N 1 and n 1 are positive integers, n 1 ⁇ N1, and n 1 ⁇ 2.
  • n 1 beam directions at least one beam direction is different from the beam direction in which the UE sends the first message through the first spatial filtering in step S401.
  • N 2 , n 2 are positive integers, n 2 ⁇ N 2 , N 2 >n 1 . n 2 beams in at least one direction beam in any direction with a beam direction n 1 different beams directions. It can be seen that when the UE reconfirms that the transmission of the first message has failed, it can switch to retransmit the first message in more beam directions, so that the total power of N 2 third spatial filters is greater than that of N 1 second spatial filters. Total power, which can further increase the total power of the first message.
  • the UE when the UE fails to send the first message to the network device in the n i beam direction through the N i i+1th spatial filtering , the UE can pass the Ni+1 i+2 spatial filtering in the n i+ The first message is retransmitted to the network device in one beam direction.
  • i, N i+1 , n i+1, N i , and n i are positive integers, N i+1 ⁇ N i , n i+1 > n i .
  • the UE sends the first message to the network device through N second spatial filtering and the codebook of the first message.
  • the UE may send the first message to the network device in n different beam directions through N second spatial filtering and the codebook of the first message.
  • the UE sends the first message to the network device in each of the n beam directions according to the codebook of the first message.
  • the codebook of the first message may be determined according to the communication protocol, or may be determined according to the configuration information sent by the network device. In this way, the signals in multiple beam directions can form a coherent superposition at the network device, which improves the probability of the first message being sent successfully, thereby improving the speed of the UE accessing the network.
  • the UE may determine the amplitude and phase of the message 1 sent in each beam direction of the n beam directions, so that the signal containing the message 1 sent in multiple beam directions can be coherent at the receiving end. Overlay, increase the probability of the first message being sent successfully.
  • the output power corresponding to each of the N second spatial filters and the EIRP meets the constraints of MPE, and the total output power corresponding to the N second spatial filters and the EIRP meets the constraints of MPE.
  • the constraints of MPE are not limited to MPE.
  • the first message may be message 1, message 3, or PUCCH.
  • the method for determining the second power when the first message is message 1, message 3, or PUCCH is respectively introduced below.
  • the first message is message 1.
  • the first power is determined according to the number of times of the first power increase, the first power increase step size, and the first path loss value. It should be noted that the first power is determined according to the number of first power rises, the first power rise step length, and the first path loss value. The length and the first path loss value are determined, and the parameter used to determine the first power may further include parameters other than the first power boost number, the first power boost step size, and the first path loss value.
  • the first power P PRACH can be obtained as follows.
  • P PRACH min ⁇ P CMAX,c (i),PREAMBLE_RECEIVED_TARGET_POWER+PL c ⁇ ;
  • PREAMBLE_RECEIVED_TARGET_POWER preambleReceivedTargetPower+(PREAMBLE_POWER_RAMPING_COUNTER-1) ⁇ PREAMBLE_POWER_RAMPING_STEP+DELTA_PREAMBLE;
  • P CMAX,c (i) is the maximum transmission power allowed by the UE, and i is used to indicate the beam direction corresponding to the first transmission power.
  • PREAMBLE_RECEIVED_TARGET_POWER is the preamble reception target power;
  • PL c is the path loss, which corresponds to the first path loss in this embodiment;
  • preambleReceivedTargetPower is the initial reception target power,
  • DELTA_PREAMBLE is the power offset value corresponding to the random access preamble format, and
  • PREAMBLE_POWER_RAMPING_COUNTER is the number of preamble power rises , Corresponds to the first number of power upscaling in this embodiment;
  • PREAMBLE_POWER_RAMPING_STEP is the leading power upscaling step size, and in this embodiment corresponds to the first power upscaling step size.
  • the first power boost times and the boost step length may be determined by the UE according to configuration information sent by the network device, or may be determined by the UE according to a communication protocol.
  • the first path loss value is determined by the user equipment according to the path loss measurement value of the path loss reference signal received by the UE from the network device through the first spatial filtering.
  • the UE sends the message 1 to the network device multiple times in the first beam direction through the first spatial filtering. Each time the transmission fails, the UE may send the message 1 again after the power is boosted in the first beam direction.
  • the first number of power boosts can be understood as the number of times the UE sends Message 1 in the first beam direction, or the number of times the power is boosted when sending Message 1.
  • the first power increase step length can be understood as the power of each power increase.
  • the first power can be understood as the power obtained after the UE performs power up for the last time.
  • step S402 the transmit power of each second spatial filter in the P second spatial filters of the N second spatial filters is based on the second power boost times and the first number of times corresponding to the transmit power of the second spatial filter. At least one of the second power increase step size and the second path loss value of the second spatial filtering is determined.
  • the second power boost times, the second power boost step size, and the second path loss value corresponding to each second spatial filtering in the P second spatial filtering can be understood as the second power adjustment used to determine the second spatial filtering parameter.
  • P is a positive integer, P ⁇ N.
  • the transmit power of each second spatial filtering is based on the second power boost times of the second spatial filtering, the second power boost step size of the second spatial filtering, and the second path of the second spatial filtering.
  • the determination of the loss value does not limit the transmission power of each second spatial filtering to be determined only according to the second power boost times, the second power boost step length, and the second path loss value.
  • the second power adjustment parameter used to determine the second power may also include parameters other than the second power boost number, the second power boost step size, and the second path loss value.
  • the second power adjustment parameters corresponding to each of the P second spatial filters may be the same or different. Any one of the P second spatial filters may correspond to one beam direction, or may correspond to multiple beam directions. If one second spatial filter in the P second spatial filters corresponds to multiple beam directions, the transmit power of the second spatial filter is the transmit power of any one of the beam directions.
  • the UE may obtain the weighting factor of the second spatial filtering according to the second power adjustment parameter of each second spatial filtering in the P second spatial filtering, and obtain the second power of the second spatial filtering according to the weighting factor .
  • the second power rise times corresponding to the transmit power of each second spatial filter in the P second spatial filters are greater than the first power rise times.
  • the user equipment when the transmission of message 1 fails or the random access fails, the user equipment switches to retransmit message 1 in n beam directions, and filters corresponding beams in the P second spatial domains in the n beam directions
  • the power increase in the direction can increase the transmit power of each second spatial filter in the P second spatial filters. It helps to increase the total power of N second spatial filtering, thereby increasing the probability of successful message 1 transmission.
  • the UE can retransmit Message 1 again.
  • these N'third spatial filters may not perform power uplift, that is, The number of power rises corresponding to the transmission power of the N′ third spatial filtering is equal to the second number of power rises.
  • the second power boost times may be determined by the UE according to configuration information sent by the network device, or determined by the UE according to a communication protocol, or determined by the UE in other ways. For example, the UE may determine the second number of power-ups based on one or more of the distance from the biological body, the second path loss, and the second power-up step length. This application does not limit the method for determining the second power boost times.
  • the second power boost step size of at least one second spatial filter is greater than the first power boost step size. In this way, the UE can raise the second power to a greater extent, thereby increasing the probability of successful message 1 transmission.
  • the second power increase step size of each second spatial filter of the P second spatial filters is the same.
  • the configuration information sent by the network device includes information indicating the first power boost step size.
  • the UE obtains the first power up step size according to the configuration information, and determines the second power up step size according to the first power up step size.
  • This second power increase step size can be used to determine the transmit power corresponding to each second spatial filter in the P second spatial filters.
  • the network device only needs to configure one power increase step size, and the configuration information that the network device needs to configure is reduced, which can save wireless transmission resources.
  • the UE only needs to calculate the second power boost step size once for the P second spatial filtering, which can reduce the amount of data processing of the UE.
  • the configuration information sent by the network device includes information indicating the first power up step size and information indicating the second power up step size.
  • the UE obtains the first power up step size and the second power up step size according to the configuration information.
  • the first power boost step size is used to determine the first power
  • the second power boost step size is used to determine the transmit power corresponding to each second spatial filter in the P second spatial filters. In this way, the network device can better control the transmission power of the UE by configuring the second power boost step size in the P second spatial filtering.
  • the second power increase step size of the P second spatial filtering is different.
  • the configuration information sent by the network device includes information used to indicate that a second power-up step size of a second spatial filtering is the second power-up step size a.
  • the UE obtains the second power boost wavelength a of the second spatial filter A in the P second spatial filters according to the configuration information, and determines the second spatial filter except the second spatial filter A according to the second power boost step a The second power rise step.
  • the P second spatial filters correspond to P power upscaling steps, and the second spatial filter A is any one of the P second spatial filters.
  • the first second power raising step size is PREAMBLE_POWER_RAMPING_STEP_1
  • PREAMBLE_POWER_RAMPING_STEP_1 is the second power raising step size a.
  • PREAMBLE_POWER_RAMPING_STEP_k k ⁇ PREAMBLE_POWER_RAMPING_STEP_1.
  • the configuration information sent by the network device includes information used to indicate the first power increase step size of the first spatial filtering.
  • the UE obtains the first power boost step size of the first spatial domain filtering according to the configuration information, and then calculates the second power boost corresponding to each second spatial filtering in the P second spatial domain filters according to the first power boost step size. Stride.
  • the network device only needs to configure one power increase step size, and the configuration information that the network device needs to configure is reduced, which can save wireless transmission resources.
  • the UE only needs to calculate the second power boost step size once for the P second spatial filtering, which can reduce the amount of data processing of the UE.
  • the second power boost step size of the second spatial filter 1 is the same as the first power boost step size, and the UE determines P according to the second power boost step size of the second spatial filter 1 In the second spatial filtering, the second power increase step size of other second spatial filtering except the second spatial filtering 1.
  • the UE determines the second power boost step size of the second spatial filtering in the P second spatial filtering, except for the second spatial filter 1, please refer to The foregoing manner of determining the second power increase step size of the second spatial filtering other than the second spatial filtering A according to the second power increase step size a.
  • the configuration information sent by the network device includes information indicating the first power boost step size of the first spatial filtering, and information indicating the second power boost step size of each of the P second spatial filters. . Then, the UE may obtain the first power boost step size of the first spatial filtering and the second power boost step size of each second spatial filtering in the P second spatial filtering according to the network configuration information.
  • the UE may first determine the path loss measurement value of each second spatial filtering in the P second spatial filtering. Specifically, the user equipment may determine the path loss measurement value of each second spatial filtering according to the power loss of the reference signal received by the UE from each of the P second spatial filtering.
  • the second path loss values of the P second spatial filtering are the same. That is, the second path loss value in the power adjustment parameter of each second spatial filtering in the P second spatial filtering is the same.
  • the second path loss value is determined by the user equipment according to the P second spatial filtering path loss measurement values.
  • the UE can use the arithmetic average or weighted average of the P second spatial filtering path loss measurement values as the second path loss value.
  • the second path loss value obtained in this way takes into account the P second spatial filtering For each of the path loss measurement values of the second spatial filtering, the transmission power determined according to the second path loss value is more reasonable.
  • the UE may also use the largest path loss measurement value among the P second spatial filtering path loss measurement values as the second path loss value.
  • the second path loss value is larger, and the power to be compensated is larger, so that the transmission power of the UE can be made larger, which is beneficial to improve the UE access success rate.
  • the UE may also use the smallest path loss measurement value among the P second spatial filtering path loss measurement values as the second path loss value, which can balance the interference brought to the network.
  • the UE may also use any of the path loss measurement values of the P second spatial filtering that is less than the path loss threshold as the path loss value.
  • the path loss threshold is determined according to the configuration information sent by the network device. If the path loss measurement values of the P second spatial filtering path loss measurement values do not exist in the path loss measurement value of the path loss threshold, then the smallest path loss measurement value among the P second spatial filtering path loss measurement values Value as the second path loss value. In this way, the transmission power of the UE can be appropriately prevented from being too high, and the interference caused by the uplink message sent by the UE to the network can be reduced.
  • the second path loss may also be determined according to the path loss measurement values of the P second spatial filtering in other manners. This application does not limit how to determine the second path loss value according to the path loss measurement values of the P second spatial filtering.
  • the UE may determine that the difference between the path loss measurement values of the N or P second spatial filtering meets the preset or network device configuration requirements. For example, among the path loss measurement values of N or P second spatial filtering, the difference between the maximum path loss measurement value and the minimum path loss measurement value does not exceed X dB, where X is the preset value, or X is the network Threshold configured by the device. In this way, the difference between the transmission powers of N spatial filtering can be reduced, so that higher transmission efficiency can be obtained.
  • the path loss values of the P second spatial filtering are different, and the path loss value of each second spatial filtering in the P second spatial filtering is based on the second spatial filtering
  • the path loss measurement is determined.
  • the path loss value of each second spatial filtering in the P second spatial filtering is determined according to the respective path loss measurement value of each second spatial filtering. In this way, the second path loss value used to calculate the transmission power of each second spatial filtering can accurately reflect the path loss corresponding to the second spatial filtering, so that the transmission power calculated by the UE can be more accurate.
  • the first message is message 3.
  • the first power is determined according to the first path loss value and the first accumulated power adjustment.
  • the first cumulative power adjustment is determined by the UE according to the configuration information sent by the network device.
  • the method for determining the first power can be specifically referred to in 3GPP TS38.213, the physical uplink shared channel transmission power corresponding to message 3 [PUSCH transmission power, P PUSCH, b, f, c (i, j, q d , l)] Determine the way.
  • the first power is determined based on the first path loss value and the first cumulative power adjustment, and it is not limited to the first power only determined based on the first path loss value and the first cumulative power adjustment, and is used to determine the first path loss value and the first cumulative power adjustment.
  • the power parameter may also include parameters other than the first path loss value and the first accumulated power adjustment.
  • step S402 the transmit power of each second spatial filter in the P second spatial filters of the N second spatial filters is adjusted according to the second cumulative power adjustment of the second spatial filter and the second spatial filter The second path loss value is determined.
  • the second cumulative power adjustment of the second spatial filtering of each second spatial filtering and the second path loss value of the second spatial filtering can be understood as the second power adjustment parameter used to determine the transmission power of the second spatial filtering.
  • the power adjustment parameters corresponding to each of the P second spatial filters may be the same or different. If one second spatial filter in the P second spatial filters corresponds to multiple beam directions, the transmit power of the second spatial filter is the transmit power of any one of the beam directions.
  • the method for determining the second path loss value may refer to the method for determining the second path loss value when the first message is message 1, which will not be repeated here.
  • the second cumulative power adjustment of any one of the P second spatial filters is different from the first cumulative power adjustment.
  • the UE adjusts the beams corresponding to the P second spatial filtering by adjusting the cumulative power adjustment value of the P second spatial filtering
  • the transmit power in the direction so as to realize the power boost for the beam directions corresponding to the P second spatial filtering. It is helpful to increase the total power of N second spatial filtering, thereby increasing the probability of successful message 3 transmission.
  • the second cumulative power adjustment of each second spatial filter of the P second spatial filters may be the same.
  • the UE may obtain a first cumulative power adjustment and a second cumulative power adjustment b.
  • the UE may use the second cumulative power adjustment b as the second cumulative power adjustment for each second spatial filtering in the P second spatial filtering.
  • the second accumulated power adjustment of each second spatial filter of the P second spatial filters may be different.
  • the UE can obtain one first accumulated power adjustment and P second accumulated power adjustments.
  • the P second cumulative power adjustments are the second power adjustments of the P second spatial filters respectively.
  • the UE may obtain a first cumulative power adjustment and a second cumulative power adjustment b.
  • the UE adjusts the second cumulative power b as the second cumulative power adjustment of the second spatial filter B in the P second spatial filters, and determines the P second spatial filters according to the second power adjustment b.
  • the second cumulative power adjustment of the second spatial filtering except for the second spatial filtering B.
  • the first accumulated power adjustment and the second accumulated power adjustment obtained by the UE may be determined according to configuration information sent by the network device, or may be determined by the UE itself.
  • the first cumulative power adjustment is determined according to the power raised when the UE sends the message 1 and/or the first power adjustment value.
  • the second accumulated power adjustment is determined according to the first accumulated power adjustment and/or the second power adjustment value.
  • the UE may obtain a first power adjustment value and a second power adjustment value.
  • the UE determines the first cumulative power adjustment according to the first power adjustment value and the power raised when the UE sends the message 1, and determines P second cumulative power adjustments of the second spatial filtering according to the second power adjustment value and the first cumulative power adjustment.
  • the UE may obtain a first power adjustment value and a second power adjustment value.
  • the UE obtains P different second power adjustment values according to the one second power adjustment value.
  • the P second power adjustment values have a one-to-one correspondence with the P second spatial filtering.
  • the second cumulative power adjustment of each second spatial filter in the P second spatial filters is determined according to the first cumulative power adjustment and the second power adjustment value corresponding to the second spatial filter.
  • the first power adjustment value and the second power adjustment value obtained by the UE may be determined according to configuration information sent by the network device, or may be determined by the UE itself.
  • the second power adjustment value may be a power adjustment value corresponding to power control (transmit power control) in the PDCCH received by the UE, or may be a power adjustment value for switching beams.
  • the UE can determine the power adjustment value of the handover beam according to the configuration information sent by the network device, or can determine the power adjustment value of the handover beam by itself.
  • the UE can retransmit Message 3 again.
  • these N'third spatial filters may not perform power uplift, that is, these N'
  • the cumulative power adjustment corresponding to the transmission power of the third spatial filtering is equal to the second cumulative power adjustment.
  • the transmit power of each second spatial filtering is determined according to the second path loss value of the second spatial filtering and the second cumulative power adjustment of the second spatial filtering, and the transmit power of the second spatial filtering is not limited. It is only determined based on the second path loss value and the second accumulated power adjustment, and the parameter used to determine the transmission power of the second spatial filtering may further include parameters other than the second path loss value and the second accumulated power adjustment.
  • the first message is PUCCH.
  • the first power is determined according to the first path loss value and the first accumulated power adjustment. It should be noted that the first power is determined based on the first path loss value and the first cumulative power adjustment, and it is not limited to the first power only determined based on the first path loss value and the first cumulative power adjustment, and is used to determine the first path loss value and the first cumulative power adjustment.
  • the power parameter may also include parameters other than the first path loss value and the first accumulated power adjustment.
  • the method for determining the target physical uplink control channel transmission power [PUCCH transmission power, P O_PUCCH, b, f, c (q u )] for the method for determining the first power. .
  • the transmit power of each second spatial filtering in the P second spatial filtering of the N second spatial filtering is adjusted according to the second path loss value of the second spatial filtering and the second cumulative power of the second spatial filtering Sure.
  • the second accumulated power adjustment is different from the first accumulated power adjustment.
  • the UE when the UE switches from sending PUCCH in one beam direction to sending PUCCH in n beam directions, the UE adjusts the cumulative power adjustment value of the P second spatial filtering to adjust the beam direction corresponding to the P second spatial filtering. Transmit power, so as to realize the power boost for the beam directions corresponding to the P second spatial filtering. It is helpful to increase the total power of N second spatial filtering, thereby increasing the probability of successful PUCCH transmission.
  • the determination method of the first path loss value please refer to the determination method of the first path loss value when the first message is message 3, and the determination method of the second path loss value when the foregoing first message is message 3. The method of determining the loss value will not be repeated here.
  • the first cumulative power adjustment is determined according to the power raised when the UE sends message 1, the power raised when sending message 3, and the first power adjustment value.
  • the second accumulated power adjustment is determined according to the first accumulated power adjustment and the second power adjustment value.
  • first cumulative power and the second cumulative power please refer to the relevant description of the first cumulative power and the second cumulative power when the first message is message 3 above. To avoid redundancy, the details are not repeated here.
  • the transmit power of each second spatial filtering is determined according to the second path loss value of the second spatial filtering and the second cumulative power adjustment of the second spatial filtering, and the transmit power of the second spatial filtering is not limited. It is only determined based on the second path loss value and the second accumulated power adjustment, and the parameter used to determine the transmission power of the second spatial filtering may further include parameters other than the second path loss value and the second accumulated power adjustment.
  • FIG. 6 is a schematic diagram of another flow of a message retransmission method according to an embodiment of this application.
  • Message retransmission methods include:
  • the UE sends a first message to a network device at a first power through first spatial filtering.
  • the first message is message 1, message 3, or PUCCH.
  • the first message is Message 1, Message 3, or PUCCH
  • the determination method of the first power please refer to the above-mentioned embodiment for the determination method of the first power, which will not be repeated here.
  • the UE confirms that the first message needs to be retransmitted.
  • the UE confirms that the transmission power of the first message retransmitted through the first spatial filtering exceeds the power threshold corresponding to the maximum allowable exposure, and the power threshold is less than or equal to the maximum power corresponding to the maximum allowable exposure.
  • the power threshold may be equal to the maximum power corresponding to the maximum allowable exposure, or may be slightly smaller than the maximum power corresponding to the maximum allowable exposure.
  • the UE when the UE confirms that the first message needs to be retransmitted, it first calculates the required transmission power if the first message is retransmitted through the first spatial filtering. If the retransmission of the first message through the first spatial domain filtering exceeds the power threshold, the UE will switch to retransmit the first message through N second spatial domain filtering.
  • the transmit power required by the UE to retransmit the first message through the first spatial filtering is the sum of the first power and the first power increase step.
  • the UE The transmission power required to retransmit the first message through the first spatial filtering is the sum of the first power and the first power adjustment value.
  • the transmission power required by the UE to retransmit the first message through the first spatial filtering Is the sum of the first power and the first power adjustment value.
  • the UE retransmits the first message to the network device through N second spatial filtering, where N is a positive integer.
  • N second spatial filters correspond to n beam directions, n is a positive integer, and n>N.
  • the UE switches to retransmit the first message to the network device in multiple beam directions, so that the total transmission power of the UE to send the first message is greater than the first message. Therefore, the transmission power of the UE can break through the maximum allowable exposure corresponding to the maximum power limit, and the probability that the first message is successfully sent can be increased, thereby accelerating the speed of the UE accessing the network.
  • the information transmission method of this embodiment can also be implemented by the communication device 500 of the foregoing embodiment. That is, the communication device 500 executes steps S601 to S604. Specifically, the processor 501 reads computer instructions from the memory 502 to perform the following operations: the transmitter 5031 sends the first message to the network device at the first power through the first spatial filtering; the processor 501 confirms that the first message needs to be retransmitted, and confirms The first power exceeds the power threshold corresponding to the maximum allowable exposure, and the transmitter 5031 retransmits the first message to the network device through N second spatial filtering.
  • steps S601, S602, and S604 please refer to the relevant description of steps S401, S402, and S403 in the foregoing embodiment.
  • the other supplementary descriptions in the foregoing embodiments are also applicable to this embodiment, and in order to avoid redundancy, they will not be repeated here.
  • the difference between the transmit power of each spatial domain in the N second spatial domain filtering meets the preset or network device configuration requirement. For example, the difference between the maximum transmission power and the minimum transmission power in the N second spatial filtering does not exceed Y dB, where Y is a preset value, or Y is a threshold configured by a network device. In this way, the difference between the transmission power of N spatial filtering is reduced, and a higher performance gain can be obtained.
  • FIG. 7 is a schematic diagram of modules of a message retransmission device according to an embodiment of the application.
  • the message retransmission device 700 includes: a transceiving unit 701 and a processing unit 702.
  • the transceiving unit 701 may include a transmitting unit and a receiving unit, which are respectively used to perform the sending and receiving operations in the method embodiment, and the processing unit 702 is used to implement addition to sending and receiving Other operations besides receiving, for example: the transceiver unit 701 is configured to send the first message to the network device at the first power through the first spatial filtering; and to retransmit the first message to the network device through the N second spatial filtering, the Nth
  • the second spatial filtering includes at least one spatial filtering different from the first spatial filtering, and N is a positive integer.
  • the first message is a message sent by the UE to the network device during the random access process.
  • the first message is message 1, message 3, or PUCCH.
  • the switch is switched to retransmit the first message in multiple beam directions, which helps increase the total transmission power of the first message, thereby increasing the success rate of the first message. probability.
  • the first message is message 1
  • the second power rise times corresponding to the transmit power of each of the P second spatial filters in the N second spatial filters are greater than those corresponding to the first power.
  • the number of first power rises; P is a positive integer, P ⁇ N.
  • the message retransmission device 700 in this embodiment may be, for example, a user equipment, or a chip or functional module of the user equipment. Or the message retransmission device 700 of this embodiment is deployed in the apparatus 500 of this embodiment of the application.
  • the transceiver 503 in the foregoing embodiment may be used as the transceiving unit 701
  • the processor 501 in the foregoing embodiment may be used as the processing unit 702.
  • the first power is determined by the processing unit 702 according to the first power boost step size and the first power boost times; in the P second spatial filtering
  • the transmission power of each second spatial filtering is determined by the processing unit 702 according to the second power boost step size and the second power boost times corresponding to the transmission power of the second spatial filtering.
  • the second power boost step is determined by the processing unit 702 according to the first power boost step.
  • the network device only needs to configure one power boost step as the first power boost step, which can save wireless transmission resources.
  • the processing unit 702 only needs to calculate the second power increase step size once for the P second spatial filtering, which can reduce the data processing amount of the processing unit 702.
  • the second power increase step a of the second spatial filter A in the P second spatial filters is determined according to the configuration information of the network device, and in the P second spatial filters, except for the second spatial filter
  • the second power-up step size of the second spatial filtering other than the filter A is determined according to the second power-up step size a.
  • the network device can better control the transmission power by configuring the second power boost step size in the P second spatial filtering.
  • the second spatial filtering A is any one of the P second spatial filtering. .
  • the path loss values of the P second spatial filtering path loss values are the same, and the path loss value is the minimum value among the path loss measurement values of the P second spatial filtering; or the path loss value is Among the P path loss measurement values of the second spatial filtering, any path loss measurement value that is less than the path loss threshold value.
  • processing unit 702 is further configured to obtain the path loss measurement value of each second spatial filtering in the P second spatial filtering; the path loss measurement value of each second spatial filtering in the P second spatial filtering , Used to determine the path loss value of each second spatial filtering in the P second spatial filtering, and the path loss value of each second spatial filtering in the P second spatial filtering is used to determine the second spatial filtering re Transmission power of the first message;
  • the path loss values of the P second spatial filtering are the same, and the path loss value is determined by the UE according to the path loss measurement values of the P second spatial filtering.
  • the second path loss value obtained in this way takes into account the P first For the path loss measurement values of each second spatial filtering in the second spatial filtering, the transmission power determined according to the second path loss value is more reasonable; or
  • the path loss values of the P second spatial filtering are different, and the path loss value of each second spatial filtering in the P second spatial filtering is determined according to the path loss measurement value of the second spatial filtering. In this way, the second path loss value used to calculate the transmission power of each second spatial filtering can accurately reflect the path loss corresponding to the second spatial filtering, so that the transmission power calculated by the processing unit 702 can be more accurate.
  • the first message is message 3
  • the second cumulative power adjustment corresponding to each of the P second spatial filters in the N second spatial filters corresponds to the second cumulative power adjustment corresponding to the first spatial filtering.
  • the cumulative power adjustment is different.
  • adjust the transmission of the beam directions corresponding to the P second spatial filtering by adjusting the cumulative power adjustment value of the P second spatial filtering Power, so as to realize the power boost for the beam directions corresponding to the P second spatial filtering. It is helpful to increase the total power of N second spatial filtering, thereby increasing the probability of successful message 3 transmission.
  • the first message is PUCCH
  • the second cumulative power adjustment corresponding to each of the P second spatial filtering in the N second spatial filtering is corresponding to the first spatial filtering corresponding to the first spatial filtering.
  • the accumulated power adjustment is different.
  • the UE when the UE switches from sending PUCCH in one beam direction to sending PUCCH in n beam directions, the UE adjusts the cumulative power adjustment value of the P second spatial filtering to adjust the beam direction corresponding to the P second spatial filtering. Transmit power, so as to realize the power boost for the beam directions corresponding to the P second spatial filtering. It is helpful to increase the total power of N second spatial filtering, thereby increasing the probability of successful PUCCH transmission.
  • the first message is message 1, message 3, or PUCCH.
  • the processing unit 702 is further configured to confirm that the transmission power of the first message retransmitted through the first spatial filtering exceeds the power threshold corresponding to the maximum allowable exposure, and the power threshold is less than or equal to the maximum power corresponding to the maximum allowable exposure. In this way, when the first power is about to exceed or has exceeded the maximum power corresponding to the maximum allowable exposure, switch to retransmit the first message to the network device in multiple beam directions, so that the total transmission power for sending the first message is greater than the first power, Thereby, the transmission power can break through the limit of the maximum power corresponding to the maximum allowable exposure, and the probability of the first message being successfully transmitted is improved.
  • the first message is message 1, message 3, or PUCCH.
  • the embodiment of the present application also provides a communication device.
  • the communication device is a user equipment or a terminal device, and includes a processor and a memory.
  • the memory is used to store computer instructions.
  • the message retransmission method of the embodiment is executed.
  • An embodiment of the present application further provides a device.
  • the device includes a processor, and the processor is coupled with a memory.
  • the processor executes the computer program or instruction in the memory, the message of any of the above embodiments is caused to be The retransmission method is executed.
  • the device further includes a memory.
  • the device further includes a communication interface, and the processor is coupled with the communication interface.
  • the device is user equipment.
  • the communication interface may be a transceiver, or an input/output interface.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device is a chip or a chip system.
  • the communication interface may be an input/output interface, interface circuit, output circuit, input circuit, pin or related circuit on the chip or chip system.
  • the processor can also be embodied as a processing circuit or a logic circuit.
  • An embodiment of the present application also provides a communication device.
  • the communication device includes a processor and an interface circuit.
  • the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code instructions to execute the method of any of the foregoing embodiments.
  • An embodiment of the present application also provides a system, which includes the above-mentioned user equipment and network equipment.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes: a computer program (also called code, or instruction), which when the computer program is executed, causes the computer to execute the message retransmission method of any of the above embodiments .
  • the embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable medium stores a computer program (also called code, or instruction), which when it runs on a computer, causes the computer to execute any of the above-mentioned embodiments. Message retransmission method.
  • An embodiment of the application also provides a communication device, including: an input circuit, an output circuit, and a processing circuit.
  • the processing circuit is used to receive signals through the input circuit and transmit signals through the output circuit, so that the message retransmission method of any of the above embodiments is realized.
  • the above-mentioned communication device may be a chip
  • the input circuit may be an input pin
  • the output circuit may be an output pin
  • the processing circuit may be a transistor, a gate circuit, a flip-flop, and various logic circuits.
  • the input signal received by the input circuit may be received and input by, for example, but not limited to, a receiver
  • the signal output by the output circuit may be, for example, but not limited to, output to the transmitter and transmitted by the transmitter
  • the circuit can be the same circuit, which is used as an input circuit and an output circuit at different times. This application does not limit the specific implementation of the processor and various circuits.
  • This application provides a computer-readable storage medium in which computer instructions are stored, and the computer instructions instruct user equipment to execute the message retransmission method of any of the foregoing embodiments.
  • processors mentioned in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), or may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • DSPs Digital Signal Processors
  • CPU Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or integrated. To another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is realized in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .
  • the modules in the device of the embodiment of the present application may be combined, divided, and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种消息重传方法及相关装置。消息重传方法包括:用户设备通过第一空域滤波以第一功率向网络设备发送消息1;用户设备通过N个第二空域滤波向网络设备重传消息1,其中,P个第二空域滤波中的每个第二空域滤波的发送功率对应的第二功率抬升次数大于第一功率对应的第一功率抬升次数;N个第二空域滤波中包括至少一个与第一空域滤波不同的空域滤波,其中,N、P均为正整数,P≤N。

Description

消息重传方法及相关装置 技术领域
本申请涉及无线通信技术领域,尤其涉及一种消息重传方法及相关装置。
背景技术
在5G新空口(new radio,NR)无线通信技术中,通信所用的载波频率比较高(即,高频),例如载波频率超过3GHz或6GHz。载波频率越高,无线信号在传输过程中遭受的损失越大(即成为路径损耗)。鉴于此,采用了更高天线增益的新天线技术,增加信号传输的距离和效率。
然而,无线信号在介质中传输时,传播介质在衰减无线信号的同时,也会从中获取到能量,导致介质物理特性的变化,例如导致温度升高。尤其是无线信号在生物中穿过时,如果无线信号的能量或者能量密度太高,会对生物特征造成影响。鉴于此,监管机构制定了电磁传播方面的安全标准,限制用户设备(user equipment,UE)的最大允许发送功率、总的辐射功率(total radiated power,TRP)、等效全向辐射功率(equivalent isotropic radiated power,EIRP)等做了一些限定。其中EIRP或者最大允许发送功率、总的辐射功率(total radiated power,TRP)等指标,都统称为最大允许曝露(Maximum Permissive Exposure,MPE)。
由于在实际通信当中,人体离UE的距离较近,这就导致MPE会受到较大的限制。即使在UE能够支持更大的EIRP,但是由于安全规定,只能采取更低的EIRP来发送信号。例如,UE在接入网络的过程中,向网络设备传输消息时,需要在满足MPE约束的功率进行发送。这样使得UE输出功率严重受限,容易导致信号传输失败,使得UE无法接入网络,或接入时延较大。
发明内容
本申请提供了一种消息重传方法及相关装置,能够提升用户设备的发送功率。
第一方面,本申请提供一种消息重传方法,包括:用户设备通过第一空域滤波以第一功率向网络设备发送第一消息;用户设备通过N个第二空域滤波向网络设备重传第一消息。
第一消息为随机接入过程中,用户设备向网络设备发送的消息。第一消息为消息1、消息3或物理上行控制信道(physical uplink control channel,PUCCH)。当用户设备确认需要重传第一消息时,例如第一消息发送失败时或者随机接入失败时,用户设备通过N个第二空域滤波向网络设备重传第一消息。
一个第二空域滤波可对应一个波束方向,一个第二空域滤波也可对应多个波束方向。用户设备可通过N个第二空域滤波在不同的n个波束方向向网络设备重传第一消息,n为大于等于2的正整数,n≥N。N个第二空域滤波中包括至少一个与第一空域滤波不同的空域滤波;或者n个波束方向中,包括至少一个与第一空域滤波对应的波束方向不同的波束方向。这样,第一消息发送失败时或者随机接入失败时,用户设备切换为在多个波束方向重传第一消息,有助于增大第一消息的总发送功率,从而能够增加第一消息发送成功的几率,使得用户设备可以更快速地接入网络。
N个第二空域滤波中,存在一个第二空域滤波与第一空域滤波相同;或在n个波束方 向中,存在一个波束方向与第一空域滤波发送第一消息的波束方向相同。这样,第一空域滤波对应的波束方向可能是效率最高、路径损耗最低的波束方向,那么用户设备继续在该波束方向重传第一消息,能够提升第一消息在网络设备处的接收功率。
或者,N个第二空域滤波中的任意一个第二空域滤波都与第一空域滤波不同,或n个波束方向中的任意一个波束方向都与第一空域滤波发送第一消息的波束方向不同。这样用户设备能够尝试在更多的波束方向向网络设备重传第一消息,从而有助于提升第一消息发送成功的几率。
在一些实现方式中,N为1,n>N。也即,用户设备通过一个第二空域滤波在不同的n个波束方向向网络设备重传第一消息。该一个第二空域滤波对应n个波束方向。
在另一些实现方式中,N>1,n>N。N个第二空域滤波中,至少一个第二空域滤波在多个不同的波束方向上向网络设备重传第一消息。也即,N个第二空域滤波中,至少一个第二空域滤波对应多个波束方向。
在又一些实现方式中,N≥2,N=n。N个第二空域滤波中的每个空域滤波对应一个波束方向,N个第二空域滤波中的每个空域滤波发送第一消息的波束方向不同。用户设备通过N个第二空域滤波在不同的N个波束方向分别向网络设备重传第一消息。
进一步地,若用户设备通过N个第二空域滤波向网络设备重传第一消息之后,第一消息仍然发送失败。那么用户设备可再次重传第一消息。
在一些实施方式中,第一消息为消息1,N个第二空域滤波中的P个第二空域滤波中的每个第二空域滤波的发送功率对应的第二功率抬升次数大于第一功率对应的第一功率抬升次数;P为正整数,P≤N。
上述方案中,在消息1发送失败或者随机接入失败时,用户设备切换为在n个波束方向重传消息1,且在该n个波束方向中的P个第二空域滤波对应的波束方向上进行功率抬升,能够提升这P个第二空域滤波中的每个第二空域滤波的发送功率。有助于提升N个第二空域滤波的总功率,从而增大消息1发送成功的几率。
可选地,若用户设备重传消息1失败,则用户设备可再次重传消息1,通过N'个第三空域滤波重传消息1,N'≥N。这N'个第三空域滤波可不进行功率抬升,也即这N'个第三空域滤波的发送功率对应的功率抬升次数等于第二功率抬升次数。
基于上述第一消息为消息1的实施方式,在某些实施方式中,第一功率是根据第一功率抬升步长和第一功率抬升次数确定的;P个第二空域滤波中的每个第二空域滤波的发送功率是根据该第二空域滤波的发送功率对应的第二功率抬升步长和第二功率抬升次数确定的。
可选的,第二功率抬升步长是根据第一功率抬升步长确定的,这样,网络设备只需要配置1个功率抬升步长作为第一功率抬升步长,能够节省无线传输资源。而且,用户设备只需计算为该P个第二空域滤波计算一次第二功率抬升步长,能够降低用户设备的数据处理量。
可选的,P≥2,P个第二空域滤波中的第二空域滤波A的第二功率抬升步长a是根据网络设备配置信息确定的,P个第二空域滤波中,除第二空域滤波A之外的第二空域滤波的第二功率抬升步长是根据第二功率抬升步长a确定的。这样,网络设备能够通过配置P个 第二空域滤波中的的第二功率抬升步长,较好地控制用户设备的发送功率,第二空域滤波A为P个第二空域滤波中的任意一个第二空域滤波。
进一步地,用户设备通过N个第二空域滤波向网络设备重传消息1之前,方法还包括:用户设备获取P个第二空域滤波中的每个第二空域滤波的路径损耗测量值;P个第二空域滤波中的每个第二空域滤波的路径损耗测量值,用于确定P个第二空域滤波中的每个第二空域滤波的路径损耗值,P个第二空域滤波中的每个第二空域滤波的路径损耗值用于确定该第二空域滤波重传第一消息的发送功率;
其中,P个第二空域滤波的路径损耗值是相同的,路径损耗值是用户设备根据P个第二空域滤波的路径损耗测量值确定的,这样得到的第二路径损耗值,考虑到了P个第二空域滤波中的各个第二空域滤波的路径损耗测量值,根据该第二路径损耗值确定的发送功率较合理;或
P个第二空域滤波的路径损耗值是不同的,P个第二空域滤波中的每个第二空域滤波的路径损耗值是根据该第二空域滤波的路径损耗测量值确定的。这样用于计算每个第二空域滤波的发送功率的第二路径损耗值,都能够准确地反映该第二空域滤波对应的路径损耗情况,从而可以使得用户设备计算的发送功率更准确。
可选的,P个第二空域滤波的路径损耗值是相同的,路径损耗值是P个第二空域滤波的路径损耗测量值中的最小值;或路径损耗值是P个第二空域滤波的路径损耗测量值中,任意一个小于路径损耗门限值的路径损耗测量值。这样能够适当避免UE的发送功率过高,降低UE发送上行消息带给网络中的干扰。
在一些实施方式中,第一消息为消息3,N个第二空域滤波中的P个第二空域滤波中的每个第二空域滤波对应的第二累计功率调整与第一空域滤波对应的第一累计功率调整不同。这样,在用户设备从在一个波束方向发送消息3切换至在n个波束方向发送消息3时,用户设备通过调整P个第二空域滤波的累计功率调整值,调整这P个第二空域滤波对应的波束方向的发送功率,从而实现对这P个第二空域滤波对应的波束方向进行功率抬升。有助于提升N个第二空域滤波的总功率,从而增大消息3发送成功的几率。
在一些实施方式中,第一消息为PUCCH,N个第二空域滤波中的P个第二空域滤波中的每个第二空域滤波对应的第二累计功率调整与第一空域滤波对应的第一累计功率调整不同。这样,在用户设备从在一个波束方向发送PUCCH切换至在n个波束方向发送PUCCH时,用户设备通过调整P个第二空域滤波的累计功率调整值,调整这P个第二空域滤波对应的波束方向的发送功率,从而实现对这P个第二空域滤波对应的波束方向进行功率抬升。有助于提升N个第二空域滤波的总功率,从而增大PUCCH发送成功的几率。
在某些实施方式中,N≥2;N个第二空域滤波中,至少两个第二空域滤波发送的第一消息关联的同步信号不同;或N个第二空域滤波中,至少两个第二空域滤波发送的第一消息关联的物理广播信道块不同;或N个第二空域滤波中,至少两个第二空域滤波发送的第一消息关联的信道状态信息参考信号资源不同。这样,能够增加第一消息的覆盖面,增大 第一消息发送成功的几率。第一消息为消息1、消息3或PUCCH。
在某些实施方式中,用户设备通过N个第二空域滤波向网络设备重传第一消息之前,方法还包括:用户设备确认通过第一空域滤波重传第一消息的发送功率超过最大允许曝露对应的功率阈值,功率阈值小于或等于最大允许暴露对应的最大功率。这样,当第一功率即将超过或已超过最大允许暴露对应的最大功率时,用户设备切换至在多个波束方向向网络设备重传第一消息,使得用户设备发送第一消息的总发送功率大于第一功率,从而能够使得用户设备的发送功率突破最大允许暴露对应的最大功率的限制,提升第一消息发送成功的概率,从而能够加快用户设备接入网络的速度。第一消息为消息1、消息3或PUCCH。
第二方面,本申请提供一种消息重传设备,包括收发单元和处理单元,收发单元用于:通过第一空域滤波以第一功率向网络设备发送第一消息;和通过N个第二空域滤波向网络设备重传第一消息,N个第二空域滤波中,包括至少一个与第一空域滤波不同的空域滤波,N为正整数。第一消息为随机接入过程中,用户设备向网络设备发送的消息。第一消息为消息1、消息3或PUCCH。这样,第一消息发送失败时或者随机接入失败时,用户设备切换为在多个波束方向重传第一消息,有助于增大第一消息的总发送功率,从而能够增加第一消息发送成功的几率。
在一些实施方式中,第一消息为消息1,N个第二空域滤波中的P个第二空域滤波中的每个第二空域滤波的发送功率对应的第二功率抬升次数大于第一功率对应的第一功率抬升次数;P为正整数,P≤N。
上述方案中,在消息1发送失败或者随机接入失败时,切换为在n个波束方向重传消息1,且在该n个波束方向中的P个第二空域滤波对应的波束方向上进行功率抬升,能够提升这P个第二空域滤波中的每个第二空域滤波的发送功率。有助于提升N个第二空域滤波的总功率,从而增大消息1发送成功的几率。
本实施方式的消息重传设备例如可以为用户设备,也可以为用户设备的芯片或功能模块。
可选地,收发单元包括接收单元和发送单元。在一种设计中,消息重传设备为通信芯片,收发单元可以为通信芯片的输入输出电路或者端口。
在另一种设计中,收发单元可以为发射器和接收器,或者收发单元为发射机和接收机。
基于上述第一消息为消息1的实施方式,在某些实施方式中,第一功率是处理单元根据第一功率抬升步长和第一功率抬升次数确定的;P个第二空域滤波中的每个第二空域滤波的发送功率是处理单元根据该第二空域滤波的发送功率对应的第二功率抬升步长和第二功率抬升次数确定的。
可选的,第二功率抬升步长是处理单元根据第一功率抬升步长确定的,这样,网络设备只需要配置1个功率抬升步长作为第一功率抬升步长,能够节省无线传输资源。而且,用户设备只需计算为该P个第二空域滤波计算一次第二功率抬升步长,能够降低用户设备的数据处理量。
可选的,P≥2,P个第二空域滤波中的第二空域滤波A的第二功率抬升步长a是处理单 元根据网络设备配置信息确定的,P个第二空域滤波中,除第二空域滤波A之外的第二空域滤波的第二功率抬升步长是处理单元根据第二功率抬升步长a确定的。这样,网络设备能够通过配置P个第二空域滤波中的的第二功率抬升步长,较好地控制用户设备的发送功率,第二空域滤波A为P个第二空域滤波中的任意一个第二空域滤波。
进一步地,处理单元用于,获取P个第二空域滤波中的每个第二空域滤波的路径损耗测量值;P个第二空域滤波中的每个第二空域滤波的路径损耗测量值,用于确定P个第二空域滤波中的每个第二空域滤波的路径损耗值,P个第二空域滤波中的每个第二空域滤波的路径损耗值用于确定该第二空域滤波重传第一消息的发送功率;
其中,P个第二空域滤波的路径损耗值是相同的,路径损耗值是处理单元根据P个第二空域滤波的路径损耗测量值确定的,这样得到的第二路径损耗值,考虑到了P个第二空域滤波中的各个第二空域滤波的路径损耗测量值,根据该第二路径损耗值确定的发送功率较合理;或
P个第二空域滤波的路径损耗值是不同的,P个第二空域滤波中的每个第二空域滤波的路径损耗值是处理单元根据该第二空域滤波的路径损耗测量值确定的。这样用于计算每个第二空域滤波的发送功率的第二路径损耗值,都能够准确地反映该第二空域滤波对应的路径损耗情况,从而可以使得用户设备计算的发送功率更准确。
可选的,P个第二空域滤波的路径损耗值是相同的,路径损耗值是P个第二空域滤波的路径损耗测量值中的最小值;或路径损耗值是P个第二空域滤波的路径损耗测量值中,任意一个小于路径损耗门限值的路径损耗测量值。这样能够平衡带给网络中的干扰。
在一些实施方式中,第一消息为消息3,N个第二空域滤波中的P个第二空域滤波中的每个第二空域滤波对应的第二累计功率调整与第一空域滤波对应的第一累计功率调整不同。这样,在用户设备从在一个波束方向发送消息3切换至在n个波束方向发送消息3时,用户设备通过调整P个第二空域滤波的累计功率调整值,调整这P个第二空域滤波对应的波束方向的发送功率,从而实现对这P个第二空域滤波对应的波束方向进行功率抬升。有助于提升N个第二空域滤波的总功率,从而增大消息3发送成功的几率。
在一些实施方式中,第一消息为物理上行控制信道(physical uplink control channel,PUCCH),N个第二空域滤波中的P个第二空域滤波中的每个第二空域滤波对应的第二累计功率调整与第一空域滤波对应的第一累计功率调整不同。这样,在用户设备从在一个波束方向发送PUCCH切换至在n个波束方向发送PUCCH时,用户设备通过调整P个第二空域滤波的累计功率调整值,调整这P个第二空域滤波对应的波束方向的发送功率,从而实现对这P个第二空域滤波对应的波束方向进行功率抬升。有助于提升N个第二空域滤波的总功率,从而增大PUCCH发送成功的几率。
在某些实施方式中,N≥2;N个第二空域滤波中,至少两个第二空域滤波发送的第一消息关联的同步信号不同;或N个第二空域滤波中,至少两个第二空域滤波发送的第一消息关联的物理广播信道块不同;或N个第二空域滤波中,至少两个第二空域滤波发送的第一消息关联的信道状态信息参考信号资源不同。这样,能够增加第一消息的覆盖面,增大第一消息发送成功的几率。第一消息为消息1、消息3或PUCCH。
在某些实施方式中,处理单元还用于:确认通过第一空域滤波重传第一消息的发送功率超过最大允许曝露对应的功率阈值,功率阈值小于或等于最大允许暴露对应的最大功率。这样,当第一功率即将超过或已超过最大允许暴露对应的最大功率时,用户设备切换至在多个波束方向向网络设备重传第一消息,使得用户设备发送第一消息的总发送功率大于第一功率,从而能够使得发送功率突破最大允许暴露对应的最大功率的限制,提升第一消息发送成功的概率,从而能够加快用户设备接入网络的速度。第一消息为消息1、消息3或PUCCH。
需要说明的是,上述第一方面各实施方式的消息重传方法的补充说明也适用于上述第二方面各实施方式的消息重传设备,为避免冗余,此处不再赘述。
第三方面,本申请提供一种通信设备,该通信设备为用户设备或终端设备,包括处理器和存储器,存储器用于存储计算机指令,处理器执行该存储器中的计算机程序或指令,使得上述第一方面任一实施方式的方法被执行。
第四方面,本申请还提供一种通信设备,通信设备包括处理器、存储器和收发器,收发器,用于接收信号或者发送信号;存储器,用于存储程序代码;处理器,用于从存储器调用程序代码执行如第一方面的方法。该存储器用于存储计算机程序或指令,该处理器用于从存储器中调用并运行该计算机程序或指令,当处理器执行存储器中的计算机程序或指令时,使得该通信设备执行上述第一方面的消息重传方法中的任一种实施方式。
可选的,处理器为一个或多个,存储器为一个或多个。
可选的,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
可选的,收发器中可以包括,发射机(发射器)和接收机(接收器)。
第五方面,本申请提供一种装置,装置包括处理器,处理器与存储器耦合,当处理器执行存储器中的计算机程序或指令时,使得上述第一方面任一实施方式的方法被执行。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为用户设备。当该通信设备为用户设备时,通信接口可以是收发器,或,输入/输出接口。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为芯片或芯片系统。当该装置为芯片或芯片系统时,通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理器也可以体现为处理电路或逻辑电路。
第六方面,本申请提供一种通信设备,通信设备包括处理器和接口电路,接口电路,用于接收代码指令并传输至处理器;处理器运行代码指令以执行如第一方面所示的相应的方法。
第七方面,本申请提供了一种系统,系统包括上述用户设备和网络设备。
第八方面,本申请提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法。
第九方面,本申请提供了一种计算机可读存储介质,计算机可读介质存储有计算机程 序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法。
第十方面,本申请提供了一种通信设备,包括:输入电路、输出电路和处理电路。处理电路用于通过输入电路接收信号,并通过输出电路发射信号,使得第一方面中任一种可能实现方式中的方法被实现。
在具体实现过程中,上述通信设备可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请对处理器及各种电路的具体实现方式不做限定。
第十一方面,本申请还提供一种芯片,包括:处理器和接口,用于执行存储器中存储的计算机程序或指令,执行上述任一实施方式的消息重传方法。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍。
图1为本申请实施例涉及的网络系统的网络架构图;
图2为本申请UE随机接入过程的流程示意图;
图3A为UE随机接入过程中的场景示意图;
图3B为本申请实施例的消息重传方法涉及的场景示意图;
图4为本申请实施例的消息重传方法的流程示意图;
图5A为本申请实施例的通信设备的结构示意图;
图5B为本申请实施例的消息重传方法涉及的另一场景示意图;
图5C为本申请实施例的消息重传方法涉及的又一场景示意图;
图6为本申请实施例的消息重传方法的另一流程示意图;
图7为本申请实施例的消息重传设备的模块示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行清楚、详尽地描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;文本中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或 者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
请参见图1,图1为本申请实施例提供的网络系统100的一种网络架构图。
网络系统包括网络设备10和UE20。
网络设备10为接入网中通过一个或多个小区与无线用户设备通信的设备网络设备例如可以是长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)NR系统中的新空口网络设备gNB。
UE20可以为向用户提供语音和/或数据连通性的设备,例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该用户设备可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音和/或数据。UE20可以包括无线用户设备、移动用户设备、设备到设备通信(device-to-device,D2D)用户设备、车到一切(vehicle-to-everything,V2X)用户设备、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)用户设备、物联网(internet of things,IoT)用户设备、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动用户设备的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该UE20还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种用户设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载用户设备,车载用户设备例如也称为车载单元(on-board unit,OBU),申请实施例对此不作限定。
随机接入(random access,RA)是指在LTE或5G有接入控制的通信系统中,未接入网络的设备(例如UE)与网络建立连接的信息交互机制或者交互过程。随机接入分为基于竞争的随机接入和非竞争的随机接入。
基于竞争的随机接入通常分为4步,每一步对应一个消息,分别为消息1(message 1,Msg1)、消息2(message 2,Msg2)、消息3(message 3,Msg3)、消息4(message 4,Msg4),每个消息分别承载不同的信令或者信息。基于非竞争的随机接入只有前2步。
请参阅图2,图2为UE的随机接入过程的流程示意图。UE的随机接入过程包括以下步骤:
S202、UE向网络设备发送消息1;
S204、网络设备向UE发送消息2;
S206、UE向网络设备发送消息3;
S208、网络设备向UE发送消息4。
具体地,消息1为随机接入前导(preamble或者sequence)。消息1通过物理随机接入信道(physical random access channel,PRACH)承载。消息1用于待接入网络的设备(例如UE)向网络设备发起连接请求、切换请求、同步请求或调度请求。
消息2为随机接入响应(random access response,RAR)消息。消息2是网络设备对接收到的消息1的回应。消息2中包括以下至少一个信息:消息1的索引(random access preamble identity,RAPID)、上行调度授权(uplink grant)、时间提前(timing advance)、临时小区-无线网络临时标识(temporary cell radio network temporary identity,TC-RNTI)等。具体地,网络设备可以在同一个消息2里面,同时针对多个Msg1进行响应。
消息3也称为第一次上行调度传输。消息3是基于消息2中的UL grant调度进行传输,或者是基于TC-RNTI加扰的下行控制信息(Downlink Control Information,DCI)调度的重传。消息3传输内容为高层消息,例如可以是连接建立请求消息。连接建立请求消息具体可以为发起连接请求用户的标识信息。消息3用于解决竞争。若多个不同设备使用相同消息1进行随机接入,通过消息3和消息4可以共同确定这多个不同的设备之间是否有冲突。
消息4用于竞争解决。消息4通常包含Msg3中携带的公共控制信道服务数据单元(common control channel service data unit,CCCH SDU)。如果网络设备在消息4中检测到自己发送的CCCH SDU,则认为竞争随机接入成功,继续进行接下来的通信过程。
为了降低基于竞争的随机接入的接入时间,有2步实现随机接入的方案。在2步实现随机接入的方案中,需要用到消息A和消息B。其中消息A中包括随机接入前导和第一个数据信息(例如分别类似上述消息1和消息3),消息B中包括竞争解决以及上行调度(例如类似上述基于竞争的随机接入4步随机接入中的消息2和消息4)。
进一步地,当UE成功接收到消息4时,可向网络设备发送物理上行控制信道(physical uplink control channel,PUCCH),用于反馈消息4是否接收成功。
发送功率为在给定时间或周期内,在所支持的全部或者部分频率、频段或带宽上测量得到的输出功率。例如,测量时间至少为1ms,再例如,测量的时间至少为与某个字载波 间隔对应的一个时隙。
然而,UE的发送功率受MPE的限制,导致UE的发送功率受限。如图3A所示,图3A为UE随机接入过程中的场景示意图。图3A中,UE31的虚线波束表示在UE在MPE限制下的最大发送功率。这样UE31在MPE限制下向网络设备32发送消息1、消息3或PUCCH时,很可能导致消息1、消息3或PUCCH发送失败。那么UE需要进行多次重传消,这样会导致影响UE接入时间较长。
尤其是,对于某些载波频率位置,UE的MPE限制条件中还包括等效全向辐射(Equivalent Isotropically Radiated Power,EIRP)。例如载频大于3GHz时,发送功率的约束条件可以是指输出功率,或者指EIRP,或者指输出功率和EIRP(各自对应不同的约束值)。例如,载频低于3GHz时,输出功率不超过23dBm。再例如,载频高于3GHz时,输出功率不超过23dBm和EIRP不超过43dBm。具体MPE约束值可以参考各个国家和地区制定的规则。
本申请中所说的“发送功率”可以为输出功率或EIRP。
本申请实施例提供一种消息重传方法。本申请中,UE通过第一空域滤波以第一功率发送第一消息。第一消息随机接入过程中,UE向网络设备发送的消息。第一消息为消息1、消息3或PUCCH。当UE以第一功率发送第一消息失败时,UE通过N个空域滤波在n个波束方向上重传第一消息,N,n为正整数,n≥2,n≥N。请参阅图3B,图3B为本申请实施例的消息重传方法的场景示意图。如图3B所示,UE31在多个波束方向向网络设备32发送第一消息。这样在UE在第一消息传输失败时,切换为在多个波束方向发送第一消息,提升了UE发送第一消息的总发送功率,从而能够增大第一消息的发送成功的几率,提升UE接入网络的速度。
请参阅图4,图4为本申请实施例的消息重传方法的流程示意图。消息重传方法包括:
S401、UE通过第一空域滤波(spatial domain filter)以第一功率向网络设备发送第一消息。
具体地,UE通过第一空域滤波在一个波束方向向网络设备发送第一消息。第一消息为消息1、消息3或PUCCH。
第一功率为设定时间段内,UE在所支持的全部或者部分频率、频段或带宽上的输出功率。该设定时间段例如可以对应大于或等于1ms的时间段。例如1秒(s)。
S402、UE确认需要重传第一消息。
当第一消息为消息1时,若UE发送第一消息之后,监听物理下行控制信道(physical downlink control Channel,PDCCH),如果在指定RAR窗口内没有接收到网络设备发送给该UE的RAR,则UE可确认第一消息发送失败,并确认需要重传消息1。若UE确认随机接入失败,UE也可确认需要重传消息1。
具体地,在随机接入过程中,以下任意一个或者多个因素,都会导致随机接入失败:网络设备检测消息1失败、UE接收消息2失败、网络设备检测消息3失败、UE检测消息 4失败、UE检测消息4发送成功但是冲突检测失败。
当第一消息为消息3时,若UE确认消息3发送失败,则UE确认需要重传消息3。
当第一消息为PUCCH时,若UE确认PUCCH发送失败,则UE确认需要重传PUCCH。
S403、UE通过N个第二空域滤波向网络设备重传第一消息,N为正整数。
波束是一种通信资源。形成波束的技术可以是波束成形技术或者其他技术手段。波束成形技术可以具体为数字波束成形技术,模拟波束成形技术,混合数字/模拟波束成形技术。发射波束可以是指信号经天线发射出去后在空间不同方向上形成的信号强度的分布。
UE的发射波束根据信号经天线发射出去后在空间不同方向上形成的信号强度的分布,可分为多个波束方向,每个波束方向可对应一个或多个天线端口。
可以理解,一个波束方向对应的一个或多个天线端口也可以看作是一个天线端口集。波束在通信协议中的体现还是可以空域滤波器(spatial filter),例如发送波束的一个波束方向可对应一个空域滤波(spatial domain transmission filter),或者多个波束方向对应一个空域滤波。
UE可通过N个第二空域滤波在不同的n个波束方向向网络设备重传第一消息,n为大于等于2的正整数,n≥N。一个第二空域滤波对应一个或多个波束方向。
这样,第一消息发送失败时或者随机接入失败时,用户设备切换为在多个波束方向重传第一消息,能够增大第一消息的总发送功率,从而能够增加第一消息发送成功的几率。例如,UE通过在多个波束方向重传第一消息,可使得N个第二空域滤波的发送功率之和大于第一功率。
N个第二空域滤波中,包括至少一个与第一空域滤波不同的空域滤波;或者n个波束方向中,包括至少一个与UE通过第一空域滤波发送第一消息的波束方向不同的波束方向。
每个第二空域滤波可理解为一组权值,该一组权值可包括数字权值F、模拟权值、G混合模数权值FG中的至少一个。UE的天线通过N个第二空域滤波在不同的n个波束方向向网络设备重传第一消息,则可理解为UE的天线通过N组权值在不同的n个波束方向向网络设备重传第一消息。每组权值可对应一个波束方向或多个波束方向。
请参阅图5A,图5A为本申请实施例的通信设备的结构示意图,通信设备500包括处理器501、存储器502和收发器503。处理器501与存储器502耦合。存储器502用于存储计算机指令。收发器503包括发射机5031、接收机5032和天线5033中一种或多种。发射机5031可以用于通过天线5033向网络设备发送信息。接收机5032用于通过天线5033接收信息。可选的,处理器501为一个或多个,存储器502为一个或多个。可选的,存储器502可以与处理器501集成在一起,或者存储器502与处理器501分离设置。
本申请实施例的消息重传方法可由本申请实施例的通信设备500来实现。也即,上述步骤S401-S403可由本申请实施例的通信设备500执行。收发器503用于执行方法实施例中发送和接收类的操作,处理器501用于实现除发送和接收外的其他操作,存储器502用于存储相关的计算机程序或指令;例如,处理器501从存储器502读取计算机指令使得装置500执行以下操作:发射机5031通过第一空域滤波以第一功率向网络设备发送第一消息;处理器501确认需要重传第一消息;发射机5031通过N个第二空域滤波向网络设备重传 第一消息。
本申请实施例的通信设备500例如可以是但不限于是用户设备,或用户设备中的芯片或功能模块。
天线5033包括一个或多个天线阵列,例如图5A中,天线5033包括天线阵列1~天线阵列N。一个天线阵列包括K个天线振子。天线阵列也可以称为天线面板(Panel)。一个天线阵列可以在一个波束方向发送第一消息,一个天线阵列也可以在多个波束方向发送信号。一个空域滤波可理解为一个天线阵列用于形成波束的数字权值F、模拟权值G或混合模数权值FG。例如,图5A中,天线阵列1通过数字权值[F 1,1;…;F 1,K]形成波束,则[F 1,1;…;F 1,K]为一个空域滤波F 1。一个天线阵列在一个波束方向向网络设备发送信息时,该天线阵列对应的空域滤波对应一个波束方向;一个天线阵列在多个波束方向向网络设备发送信息时,该天线阵列对应的空域滤波对应多个波束方向。
在一些实施例中,N>1,n>N。N个第二空域滤波中,至少一个第二空域滤波在多个不同的波束方向重传第一消息。也即,N个第二空域滤波中,至少一个第二空域滤波对应多个波束方向。如图5A所示,天线阵列1通过第二空域滤波F 1,在波束方向1重传第一消息;……;UE50的天线阵列N,通过第二空域滤波F N,在波束方向n-1和波束方向n重传第一消息。其中,F 1=[F 1,1;…;F 1,K],……,F N=[F N,1;…;F N,K]。
在一些实施例中,N为1,n>N。通信设备500通过一个第二空域滤波在不同的n个波束方向重传第一消息。如图5B所示,图5B为本申请实施例的消息重传方法的另一场景示意图。UE500的一个天线阵列通过该一个第二空域滤波F,在不同的n个波束方向重传第一消息,F=[F 1,……,F k]。
在又一些实施例中,N>1,N=n。N个第二空域滤波与N个波束方向一一对应。UE通过N个第二空域滤波在不同的N个波束方向重传第一消息。如图5C所示,图5C为本申请实施例的消息重传方法的另一场景示意图。天线阵列1通过第二空域滤波F 1,在波束方向1重传第一消息;天线阵列2通过第二空域滤波F 2,在波束方向2重传第一消息,……;UE500的天线阵列N通过第二空域滤波F N,在波束方向N重传第一消息。F 1=[F 1,1;…;F 1,K],F 1=[F 2,1;…;F 2,K],……,F N=[F N,1;…;F N,K]。
需要说明的是,上述实施例中的举例仅用于解释说明,不构成对本申请的限定。
n个波束方向中,至少两个波束方向发送的第一消息关联的同步信号(synchronization signal,SS)不同;或者至少两个波束方向发送的第一消息关联的物理广播信道块(physical broadcast channel block,PBCH block)不同;或者至少两个波束方向发送的第一消息关联的信道状态信息参考信号(CSI-RS)不同。这样,能够增加第一消息的覆盖面,增大第一消息发送成功的几率。
可选的,n个波束方向中,至少两个波束方向发送的第一消息,关联的SS/PBCH block相同。这样,n个波束方向发送的第一消息关联的SS/PBCH block更少,网络设备从关联的SS/PBCH block检测第一消息,便于网络设备检测第一消息。
可选的,n个波束方向发送的第一消息内容完全相同。这样,可能使得多个方向的信号在空间形成准相干叠加或准相干叠加,提升接收信号强度,增大第一消息成功概率。
在一些实施方式中,N个第二空域滤波中,存在一个第二空域滤波与第一空域滤波相 同;或在n个波束方向中,存在一个波束方向与步骤S401中UE通过第一空域滤波发送第一消息的波束方向相同。这样,步骤S401中,第一空域滤波对应的波束方向可能是效率最高、路径损耗最低的波束方向,那么UE继续在该波束方向重传第一消息,能够提升第一消息在网络设备处的接收功率。
在另一些实施方式中,N个第二空域滤波中的任意一个第二空域滤波都与第一空域滤波不同,或n个波束方向中的任意一个波束方向都与S401中UE通过第一空域滤波发送第一消息的波束方向不同。这样UE能够尝试在更多的波束方向向网络设备重传第一消息,从而有助于提升第一消息发送成功的几率。
进一步地,若UE通过N个第二空域滤波向网络设备重传第一消息之后,第一消息仍然发送失败。那么UE可再次重传第一消息。
具体地,例如,UE通过第一空域滤波以第一功率向网络设备发送第一消息;当UE确认第一消息发送失败时,UE通过N 1个第二空域滤波在n 1个波束方向向网络设备重传第一消息,N 1,n 1为正整数,n 1≥N1,n 1≥2。n 1个波束方向中,至少一个波束方向与步骤S401中,UE通过第一空域滤波发送第一消息的波束方向不同。
若UE再次确认第一消息发送失败,则UE在通过N 2个第三空域滤波在n 2个波束方向向网络设备重传第一消息,N 2,n 2为正整数,n 2≥N 2,n 2>n 1。n 2个波束方向中的至少一个波束方向与n 1个波束方向中的任意一个波束方向不同。可以看出,当UE再次确认第一消息发送失败时,可切换至在更多的波束方向重传第一消息,使得N 2个第三空域滤波的总功率大于N 1个第二空域滤波的总功率,这样能够进一步地增大第一消息的总功率。
依此类推,当UE通过N i个第i+1空域滤波在n i个波束方向向网络设备发送第一消息失败,则UE可通过N i+1个第i+2空域滤波在n i+1个波束方向向网络设备重传第一消息。其中,i,N i+1,n i+1,N i,n i为正整数,N i+1≥N i,n i+1>n i。n i+1个波束方向中至少存在一个波束方向,与n i个波束方向中的任一个波束方向不同。这样能够增大UE发送第一消息的总发送功率,使得N i+1个第i+2空域滤波的总功率大于N i个第i+1空域滤波的总功率,从而增大消息发送成功的几率。
在某些实施例中,上述步骤S403中,UE通过N个第二空域滤波和第一消息的码本向网络设备发送第一消息。
具体地,UE可通过N个第二空域滤波和第一消息的码本在不同的n个波束方向向网络设备发送第一消息。也即是说,UE根据第一消息的码本,在n个波束方向中的每个波束方向,向网络设备发送第一消息。第一消息的码本可以是根据通信协议确定的,也可以根据网络设备发送的配置信息确定的。这样,多个波束方向的信号在网络设备处能够形成相干叠加,提升第一消息发送成功的几率,从而能够提升UE接入网络的速度。
或者,上述步骤S403中,UE可性确定n个波束方向中的每个波束方向发送消息1的幅度和相位,以使得多个波束方向发送的包含有消息1的信号,能够在接收端形成相干叠加,提升第一消息发送成功的几率。
在某些实施例中,上述步骤S403中,N个第二空域滤波中的每一个空域滤波对应的输 出功率、EIRP满足MPE的约束,以及N个第二空域滤波对应总的输出功率、EIRP满足MPE的约束。
本申请实施例中,第一消息可为消息1、消息3或PUCCH。下面分别介绍第一消息为消息1、消息3或PUCCH时,第二功率的确定方式。
在某些实施例中,第一消息为消息1。第一功率是根据第一功率抬升次数、第一功率抬升步长和第一路径损耗值确定的。需要说明的是,第一功率是根据第一功率抬升次数、第一功率抬升步长和第一路径损耗值确定的,并不限定第一功率仅根据第一功率抬升次数、第一功率抬升步长和第一路径损耗值确定,用于确定第一功率的参数还可以包括除第一功率抬升次数、第一功率抬升步长和第一路径损耗值之外的参数。例如,可按照如下方式得到第一功率P PRACH
P PRACH=min{P CMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER+PL c};
具体地,PREAMBLE_RECEIVED_TARGET_POWER=preambleReceivedTargetPower+(PREAMBLE_POWER_RAMPING_COUNTER–1)×PREAMBLE_POWER_RAMPING_STEP+DELTA_PREAMBLE;
其中,P CMAX,c(i)为UE允许的最大发送功率,i用于指示该第一发送功率对应的波束方向。PREAMBLE_RECEIVED_TARGET_POWER为前导接收目标功率;PL c为路径损耗,本实施例中对应第一路径损耗;preambleReceivedTargetPower为导初始接收目标功率,DELTA_PREAMBLE为随机接入前导格式对应功率偏移值,PREAMBLE_POWER_RAMPING_COUNTER为前导功率抬升次数,本实施例中对应第一功率抬升次数;PREAMBLE_POWER_RAMPING_STEP为前导功率抬升步长,本实施例中对应第一功率抬升步长。
该第一功率抬升次数和抬升步长可以是UE根据网络设备发送的配置信息确定的,也可以是UE根据通信协议确定的。第一路径损耗值是用户设备根据UE通过该第一空域滤波从网络设备接收到的路径损耗参考信号的路径损耗测量值确定的。
具体地,在步骤S401中,UE通过第一空域滤波在第一波束方向多次向网络设备发送消息1。在每次发送失败时,UE可在第一波束方向进行功率抬升之后再次发送消息1。第一功率抬升次数,可以理解为UE在第一波束方向发送消息1的次数,或者发送消息1时对功率抬升的次数。第一功率抬升步长可理解为每次功率抬升的功率。第一功率可理解为UE最后一次进行功率抬升之后得到的功率。
在步骤S402中,该N个第二空域滤波中的P个第二空域滤波中的每个第二空域滤波的发送功率是根据该第二空域滤波的发送功率对应的第二功率抬升次数、第二功率抬升步长和该第二空域滤波的第二路径损耗值中的至少一个确定的。P个第二空域滤波中的每个第二空域滤波对应的第二功率抬升次数、第二功率抬升步长和第二路径损耗值可理解为用于确定该第二空域滤波的第二功率调整参数。P为正整数,P≤N。
需要说明的是,每个第二空域滤波的发送功率是根据该第二空域滤波的第二功率抬升次数、该第二空域滤波的第二功率抬升步长和该第二空域滤波的第二路径损耗值确定的,并不限定每个第二空域滤波的发送功率仅根据第二功率抬升次数、第二功率抬升步长和第二路径损耗值确定。用于确定第二功率的第二功率调整参数还可以包括除第二功率抬升次 数、第二功率抬升步长和第二路径损耗值之外的参数。
P个第二空域滤波中的各个第二空域滤波对应的第二功率调整参数可以是相同的,也可以是不同的。P个第二空域滤波中的任意一个第二空域滤波可对应一个波束方向,也可以对应多个波束方向。若P个第二空域滤波中的一个第二空域滤波对应多个波束方向,则该第二空域滤波的发送功率为其中任意一个波束方向的发送功率。
可选的,UE可根据P个第二空域滤波中的每个第二空域滤波的第二功率调整参数得到该第二空域滤波的加权因子,根据加权因子得到该第二空域滤波的第二功率。
P个第二空域滤波中的每个第二空域滤波的发送功率对应的第二功率抬升次数大于第一功率抬升次数。
本申请实施例中,在消息1发送失败或者随机接入失败时,用户设备切换为在n个波束方向重传消息1,且在该n个波束方向中的P个第二空域滤波对应的波束方向上进行功率抬升,能够提升这P个第二空域滤波中的每个第二空域滤波的发送功率。有助于提升N个第二空域滤波的总功率,从而增大消息1发送成功的几率。
可选的,若UE重传消息1失败,则UE可再次重传消息1,通过N'个第三空域滤波重传消息1时,这N'个第三空域滤波可不进行功率抬升,也即这N'个第三空域滤波的发送功率对应的功率抬升次数等于第二功率抬升次数。
第二功率抬升次数,可以是UE根据网络设备发送的配置信息确定的,也可以UE是根据通信协议确定的,还可以是UE通过其他方式确定的。例如,UE可根据与生物体的距离、第二路径损耗、第二功率抬升步长中的一项或多项确定第二功率抬升次数。本申请对第二功率抬升次数的确定方式不作限定。
在一些可选的实施例中,P个第二空域滤波中,至少一个第二空域滤波的第二功率抬升步长大于第一功率抬升步长。这样UE能够更大程度地抬升第二功率,从而能够增大消息1发送成功的几率。
在一些实施例中,P个第二空域滤波的各个第二空域滤波的第二功率抬升步长是相同的。
例如,网络设备发送的配置信息包括指示第一功率抬升步长的信息。UE根据该配置信息得到第一功率抬升步长,根据第一功率抬升步长确定第二功率抬升步长。这个第二功率抬升步长能够用于确定P个第二空域滤波中的每个第二空域滤波对应的发射功率。这样,网络设备只需配置一个功率抬升步长,网络设备所需配置的配置信息减少,能够节省无线传输资源。而且,UE只需计算为该P个第二空域滤波计算一次第二功率抬升步长,能够降低UE的数据处理量。
又例如,网络设备发送的配置信息中包括指示第一功率抬升步长的信息和指示第二功率抬升步长的信息。UE根据该配置信息得到第一功率抬升步长和第二功率抬升步长。第一功率抬升步长用于确定第一功率,第二抬升步长用于确定P个第二空域滤波中的每个第二空域滤波对应的发射功率。这样,网络设备能够通过配置P个第二空域滤波中的的第二功率抬升步长,较好地控制UE的发送功率。
在另一些实施例中,P个第二空域滤波的第二功率抬升步长是不同的。
例如,网络设备发送的配置信息中包括用于指示一个第二空域滤波的第二功率抬升步长为第二功率抬升步长a的信息。UE根据配置信息得到P个第二空域滤波中的一个第二空域滤波A的第二功率抬升波长a,并根据第二功率抬升步长a确定除第二空域滤波A之外的第二空域滤波的第二功率抬升步长。P个第二空域滤波对应P个功率抬升步长,第二空域滤波A为P个第二空域滤波中的任意一个第二空域滤波。
其中,第一个第二功率抬升步长为PREAMBLE_POWER_RAMPING_STEP_1,PREAMBLE_POWER_RAMPING_STEP_1为第二功率抬升步长a。UE根据该PREAMBLE_POWER_RAMPING_STEP_1确定第k个第二功率抬升步长PREAMBLE_POWER_RAMPING_STEP_k,k=2,3,…,P。
第k个第二功率抬升步长PREAMBLE_POWER_RAMPING_STEP_k=k×PREAMBLE_POWER_RAMPING_STEP_1。
或者,第k个第二功率抬升步长PREAMBLE_POWER_RAMPING_STEP_k=f(k)+PREAMBLE_POWER_RAMPING_STEP_1,k=1,2,…,P;例如f(k)=k×alpha或者f(k)=alpha×10×round(log10(k)),其中alpha为UE根据网络设备发送的配置信息确定的常数、或者UE自行确定的步长。round为四舍五入。
又例如,网络设备发送的配置信息中包括用于指示第一空域滤波的第一功率抬升步长的信息。UE根据该配置信息获得第一空域滤波的第一功率抬升步长,然后根据该第一功率抬升步长,分别计算P个第二空域滤波中的每个第二空域滤波对应的第二功率抬升步长。这样,网络设备只需配置一个功率抬升步长,网络设备所需配置的配置信息减少,能够节省无线传输资源。而且,UE只需计算为该P个第二空域滤波计算一次第二功率抬升步长,能够降低UE的数据处理量。具体地,P个第二空域滤波中的第二空域滤波1的第二功率抬升步长与第一功率抬升步长相同,UE根据第二空域滤波1的第二功率抬升步长,确定P个第二空域滤波中,除第二空域滤波1之外的其他第二空域滤波的第二功率抬升步长。UE根据第二空域滤波1的第二功率抬升步长,确定P个第二空域滤波中,除第二空域滤波1之外的其他第二空域滤波的第二功率抬升步长的方式,请参上述根据第二功率抬升步长a确定除第二空域滤波A之外的第二空域滤波的第二功率抬升步长的方式。
再例如,网络设备发送的配置信息中,包括指示第一空域滤波的第一功率抬升步长的信息、指示P个第二空域滤波中的各个第二空域滤波的第二功率抬升步长的信息。那么UE则可以根据网络配置信息获得第一空域滤波的第一功率抬升步长和P个第二空域滤波中的每个第二空域滤波的第二功率抬升步长。
在步骤S403之前,UE可先确定P个第二空域滤波中的每个第二空域滤波的路径损耗测量值。具体地,用户设备可根据UE从P个第二空域滤波中的每个第二空域滤波接收到的参考信号的功率损耗,确定每个第二空域滤波的路径损耗测量值。
在一些可选的实施例中,P个第二空域滤波的第二路径损耗值是相同的。也即P个第 二空域滤波的中的每个第二空域滤波的功率调整参数中的第二路径损耗值是相同的。该第二路径损耗值是用户设备根据这P个第二空域滤波的路径损耗测量值确定的。
UE可将这P个第二空域滤波的路径损耗测量值的算数平均值或加权平均值作为该第二路径损耗值,这样得到的第二路径损耗值,考虑到了P个第二空域滤波中的各个第二空域滤波的路径损耗测量值,根据该第二路径损耗值确定的发送功率更加合理。
UE也可以将这P个第二空域滤波的路径损耗测量值中的最大的路径损耗测量值作为第二路径损耗值。为了保证网络设备的接收功率,UE确定发送功率时,需根据路劲损耗值对发送功率进行补偿。这样第二路径损耗值较大,所需补偿的功率更大,从而能够使得UE的发送功率更大,有利于提升UE接入成功率。
UE还可以将这P个第二空域滤波的路径损耗测量值中的最小的路径损耗测量值作为该第二路径损耗值,这样能够平衡带给网络中的干扰。
UE还可以将这P个第二空域滤波的路径损耗测量值中,任意一个小于路径损耗门限值的路径损耗测量值作为路径损耗值。路径损耗门限值是根据网络设备发送的配置信息确定的。若这P个第二空域滤波的路径损耗测量值中,不存在于路径损耗门限值的路径损耗测量值,则将这P个第二空域滤波的路径损耗测量值中的最小的路径损耗测量值作为该第二路径损耗值。这样能够适当避免UE的发送功率过高,降低UE发送上行消息带给网络中的干扰。
需要说明的是,在其他实施例中,也可以采用其他方式根据P个第二空域滤波的路径损耗测量值确定第二路径损耗。本申请不限定具体如何根据P个第二空域滤波的路径损耗测量值确定第二路径损耗值。
在步骤S403之前,UE可确定N个或者P个第二空域滤波的路径损耗测量值之间的差异满足预设的或者网络设备配置的要求。例如,N个或者P个第二空域滤波的路径损耗测量值中,最大路径损耗测量值和最小路径损耗测量值之间的差别不超过X dB,其中X为预设的值,或者X为网络设备配置的门限值。这样,能够减少N个空域滤波发送功率之间的差异,从而能够获取更高的发送效率。
在另一些可选的实施例中,P个第二空域滤波的路径损耗值是不同的,P个第二空域滤波中的每个第二空域滤波的路径损耗值是根据该第二空域滤波的路径损耗测量值确定的。也即是说,P个第二空域滤波中的每个第二空域滤波的路径损耗值,是根据每个第二空域滤波各自的路径损耗测量值确定的。这样用于计算每个第二空域滤波的发送功率的第二路径损耗值,都能够准确地反映该第二空域滤波对应的路径损耗情况,从而可以使得UE计算的发送功率更准确。
在某些实施例中,第一消息为消息3。第一消息为消息3时,第一功率是根据第一路径损耗值和第一累计功率调整确定的。第一路径损耗值的确定方式可参见上述第一消息为消息1时,第一路径损耗值的确定方式,此处不再赘述。第一累计功率调整是UE根据网络设备发送的配置信息确定的。第一功率的确定方式具体可参3GPP TS38.213中,消息3对应的物理上行共享信道传输功率[PUSCH transmission power,P PUSCH,b,f,c(i,j,q d,l)]的确定方 式。
需要说明的是,第一功率是根据第一路径损耗值和第一累计功率调整确定的,并不限定第一功率仅根据第一路径损耗值和第一累计功率调整确定,用于确定第一功率的参数还可以包括除第一路径损耗值和第一累计功率调整之外的参数。
在步骤S402中,该N个第二空域滤波中的P个第二空域滤波中的每个第二空域滤波的发送功率是根据该第二空域滤波的第二累计功率调整和该第二空域滤波的第二路径损耗值确定的。每个第二空域滤波的第二空域滤波的第二累计功率调整和该第二空域滤波的第二路径损耗值可理解为用于确定该第二空域滤波的发送功率的第二功率调整参数。P个第二空域滤波中的各个第二空域滤波对应的功率调整参数可以是相同的,也可以是不同的。若P个第二空域滤波中的一个第二空域滤波对应多个波束方向,则该第二空域滤波的发送功率为其中任一个波束方向的发送功率。
第一消息为消息3时,第二路径损耗值的确定方式可参见上述第一消息为消息1时,第二路径损耗值的确定方式,此处不再赘述。
P个第二空域滤波中的任意一个第二空域滤波的第二累计功率调整与第一累计功率调整不同。这样,在UE从在一个波束方向发送消息3切换至在n个波束方向发送消息3时,UE通过调整P个第二空域滤波的累计功率调整值,调整这P个第二空域滤波对应的波束方向的发送功率,从而实现对这P个第二空域滤波对应的波束方向进行功率抬升。有助于提升N个第二空域滤波的总功率,从而增大消息3发送成功的几率。
P个第二空域滤波的各个第二空域滤波的第二累计功率调整可以是相同的。UE可获取一个第一累计功率调整和一个第二累计功率调整b。UE可将该第二累计功率调整b,作为P个第二空域滤波中的每个第二空域滤波的第二累计功率调整。
P个第二空域滤波的各个第二空域滤波的第二累计功率调整可以是不同的。UE可以获取一个第一累计功率调整和P个第二累计功率调整。P个第二累计功率调整分别为P个第二空域滤波的各个第二空域滤波的第二功率调整。或者,UE可获取一个第一累计功率调整和一个第二累计功率调整b。然后UE将该第二累计功率调整b,作为P个第二空域滤波中的第二空域滤波B的的第二累计功率调整,并根据该第二功率调整b,确定P个第二空域滤波中的除第二空域滤波B之外的第二空域滤波的第二累计功率调整。
UE获取的第一累计功率调整和第二累计功率调整可以是根据网络设备发送的配置信息确定的,也可以是UE自行确定的。
具体地,第一累计功率调整是根据UE发送消息1时所抬升的功率和/或第一功率调整值确定的。第二累计功率调整根据第一累计功率调整和/或第二功率调整值确定的。
若P个第二空域滤波的各个第二空域滤波的第二累计功率调整可以是相同的,UE可获取一个第一功率调整值和一个第二功率调整值。UE根据第一功率调整值和UE发送消息1时所抬升的功率确定第一累计功率调整,根据第二功率调整值和第一累计功率调整确定P个第二空域滤波的第二累计功率调整。
若P个第二空域滤波的各个第二空域滤波的第二累计功率调整可以是不同的。UE可获取一个第一功率调整值和一个第二功率调整值。UE根据该一个第二功率调整值得到不同的 P个第二功率调整值。P个第二功率调整值与P个第二空域滤波一一对应。P个第二空域滤波中的每个第二空域滤波的第二累计功率调整是根据第一累计功率调整和该第二空域滤波对应的第二功率调整值确定的。
下面对UE根据该一个第二功率调整值得到不同的P个第二功率调整值的过程进行介绍。
将该P个第二功率调整值分别记为Delta_1,Delta_2,……,Delta_k,k=2,3,…,P。将该一个第二功率调整值作为Delta_1。那么Delta_k=k×Delta_1,或者Delta_k=f(k)+Delta_1,f(k)=k×alpha或者f(k)=alpha×10×round(log10(k))。其中,alpha为网络设备指示信息确定的常数、或者UE功率调整值、round为四舍五入。
其中,UE获取的第一功率调整值和第二功率调整值可以是根据网络设备发送的配置信息确定的,也可以是UE自行确定的。
第二功率调整值可为UE收到的PDCCH中的功率控制(transmit power control)对应的功率调整值,也可以为切换波束的功率调整值。UE可根据网络设备发送的配置信息确定切换波束的功率调整值,也可自行确定切换波束的功率调整值。
若UE重传消息3失败,则UE可再次重传消息3,通过N'个第三空域滤波重传消息3时,这N'个第三空域滤波可不进行功率抬升,也即这N'个第三空域滤波的发送功率对应的累计功率调整等于第二累计功率调整。
需要说明的是,每个第二空域滤波的发送功率根据该第二空域滤波的第二路径损耗值和该第二空域滤波的第二累计功率调整确定,并不限定第二空域滤波的发送功率仅根据第二路径损耗值和第二累计功率调整确定,用于确定第二空域滤波的发送功率的参数还可以包括除第二路径损耗值和第二累计功率调整之外的参数。
在某些实施方式中,第一消息为PUCCH。第一功率是根据第一路径损耗值和第一累计功率调整确定的。需要说明的是,第一功率是根据第一路径损耗值和第一累计功率调整确定的,并不限定第一功率仅根据第一路径损耗值和第一累计功率调整确定,用于确定第一功率的参数还可以包括除第一路径损耗值和第一累计功率调整之外的参数。第一消息为PUCCH时,第一功率的确定方式具体请参3GPP TS38.213中,目标物理上行控制信道传输功率[PUCCH transmission power,P O_PUCCH,b,f,c(q u)]的确定方式。
该N个第二空域滤波中的P个第二空域滤波中的每个第二空域滤波的发送功率根据该第二空域滤波的第二路径损耗值和该第二空域滤波的第二累计功率调整确定。
第二累计功率调整与第一累计功率调整不同。这样,在UE从在一个波束方向发送PUCCH切换至在n个波束方向发送PUCCH时,UE通过调整P个第二空域滤波的累计功率调整值,调整这P个第二空域滤波对应的波束方向的发送功率,从而实现对这P个第二空域滤波对应的波束方向进行功率抬升。有助于提升N个第二空域滤波的总功率,从而增大PUCCH发送成功的几率。
第一路径损耗值的确定方式可参见上述第一消息为消息3时,第一路径损耗值的确定方式,第二路径损耗值的确定方式可参见上述第一消息为消息3时,第二路径损耗值的确定方式,此处不再赘述。
第一累计功率调整是根据UE发送消息1时所抬升的功率、发送消息3时所抬升的功 率和第一功率调整值确定的。第二累计功率调整根据第一累计功率调整和第二功率调整值确定的。
第一累计功率和第二累计功率的相关说明,请参见上述第一消息为消息3时,第一累计功率和第二累计功率的相关说明,为避免冗余,此处不再赘述。
需要说明的是,每个第二空域滤波的发送功率根据该第二空域滤波的第二路径损耗值和该第二空域滤波的第二累计功率调整确定,并不限定第二空域滤波的发送功率仅根据第二路径损耗值和第二累计功率调整确定,用于确定第二空域滤波的发送功率的参数还可以包括除第二路径损耗值和第二累计功率调整之外的参数。
请参阅图6,图6为本申请实施例的消息重传方法的另一流程示意图。消息重传方法包括:
S601、UE通过第一空域滤波以第一功率向网络设备发送第一消息。
第一消息为消息1、消息3或PUCCH。
第一消息分别为消息1、消息3或PUCCH时,第一功率的确定方式请参上述实施例,此处不再赘述。
S602、UE确认需要重传第一消息。
S603、UE确认通过第一空域滤波重传第一消息的发送功率超过最大允许曝露对应的功率阈值,功率阈值小于或等于最大允许暴露对应的最大功率。
该功率阈值可等于最大允许暴露对应的最大功率,也可以略小于最大允许暴露对应的最大功率。
可以理解,当UE确认需要重传第一消息时,先计算若通过第一空域滤波重传第一消息,所需的发送功率。若通过第一空域滤波重传第一消息超过功率阈值,则UE会切换至由N个第二空域滤波重传第一消息。
例如,当第一消息为消息1时,UE通过第一空域滤波重传第一消息需要的发送功率为第一功率与第一功率抬升步长之和,当第一消息为消息3时,UE通过第一空域滤波重传第一消息需要的发送功率为第一功率与第一功率调整值之和,当第一消息为PUCCH时,UE通过第一空域滤波重传第一消息需要的发送功率为第一功率与第一功率调整值之和。
S604、UE通过N个第二空域滤波向网络设备重传第一消息,N为正整数。
具体地,N个第二空域滤波对应n个波束方向,n为正整数,且n>N。
这样,当第一功率即将超过或已超过最大允许暴露对应的最大功率时,UE切换至在多个波束方向向网络设备重传第一消息,使得UE发送第一消息的总发送功率大于第一功率,从而能够使得UE的发送功率突破最大允许暴露对应的最大功率的限制,提升第一消息发送成功的概率,从而能够加快UE接入网络的速度。
可以理解,本实施例的信息传输方法也可由上述实施例的通信设备500来实现。也就由通信设备500执行步骤S601~S604。具体地,处理器501从存储器502读取计算机指令执行以下操作:发射机5031通过第一空域滤波以第一功率向网络设备发送第一消息;处理器501确认需要重传第一消息,和确认第一功率超过最大允许曝露对应的功率阈值,发射机5031通过N个第二空域滤波向网络设备重传第一消息。
需要说明的是,步骤S601、S602、S604的具体实现过程请参见上述实施例中步骤S401、 S402和S403的相关描述。上述各实施例中的其他补充说明也同样适用于本实施例,为避免冗余,此处不再赘述。
在某些实施例中,上述步骤S403或S604中,N个第二空域滤波中每个空域的发送功率之间的差异满足预设或者网络设备配置的要求。例如,N个第二空域滤波中最大的发送功率与最小的发送功率之间的差别不超过Y dB,其中Y为预设的值,或者Y为网络设备配置的门限值。这样,减少N个空域滤波发送功率之间的差异,能够获取更高的性能增益。
请参阅图7,图7为本申请实施例的消息重传设备的模块示意图。消息重传设备700包括:收发单元701和处理单元702,收发单元701可以包括发送单元和接收单元,分别用于执行方法实施例中发送和接收类的操作,处理单元702用于实现除发送和接收外的其他操作,例如:收发单元701用于通过第一空域滤波以第一功率向网络设备发送第一消息;和通过N个第二空域滤波向网络设备重传第一消息,N个第二空域滤波中,包括至少一个与第一空域滤波不同的空域滤波,N为正整数。第一消息为随机接入过程中,UE向网络设备发送的消息。第一消息为消息1、消息3或PUCCH。这样,第一消息发送失败时或者随机接入失败时,切换为在多个波束方向重传第一消息,有助于增大第一消息的总发送功率,从而能够增加第一消息发送成功的几率。
在一些实施方式中,第一消息为消息1,N个第二空域滤波中的P个第二空域滤波中的每个第二空域滤波的发送功率对应的第二功率抬升次数大于第一功率对应的第一功率抬升次数;P为正整数,P≤N。
本申请实施例中,在消息1发送失败或者随机接入失败时,切换为通过N个第二空域滤波重传消息1,且在该N个第二空域滤波的P个第二空域滤波对应的波束方向上进行功率抬升,能够提升这P个第二空域滤波中的每个第二空域滤波的发送功率。有助于提升N个第二空域滤波的总功率,从而增大消息1发送成功的几率。
本实施例的消息重传设备700例如可以为用户设备,也可以为用户设备的芯片或功能模块。或者本实施例的消息重传设备700部署在本申请实施例的装置500。上述实施例中的收发器503可作为收发单元701,上述实施例中的处理器501可作为处理单元702。
基于上述第一消息为消息1的实施方式,在某些实施方式中,第一功率是处理单元702根据第一功率抬升步长和第一功率抬升次数确定的;P个第二空域滤波中的每个第二空域滤波的发送功率是处理单元702根据该第二空域滤波的发送功率对应的第二功率抬升步长和第二功率抬升次数确定的。
可选的,第二功率抬升步长是处理单元702根据第一功率抬升步长确定的,这样,网络设备只需要配置1个功率抬升步长作为第一功率抬升步长,能够节省无线传输资源。而且,处理单元702只需计算为该P个第二空域滤波计算一次第二功率抬升步长,能够降低处理单元702的数据处理量。
可选的,P≥2,P个第二空域滤波中的第二空域滤波A的第二功率抬升步长a是根据网络设备配置信息确定的,P个第二空域滤波中,除第二空域滤波A之外的第二空域滤波的第二功率抬升步长是根据第二功率抬升步长a确定的。这样,网络设备能够通过配置P个 第二空域滤波中的的第二功率抬升步长,较好地控制发送功率,第二空域滤波A为P个第二空域滤波中的任意一个第二空域滤波。
可选的,所述P个第二空域滤波的路径损耗值路径损耗值是相同的,该路径损耗值是P个第二空域滤波的路径损耗测量值中的最小值;或该路径损耗值是P个第二空域滤波的路径损耗测量值中,任意一个小于路径损耗门限值的路径损耗测量值。
进一步地,处理单元702还用于,获取P个第二空域滤波中的每个第二空域滤波的路径损耗测量值;P个第二空域滤波中的每个第二空域滤波的路径损耗测量值,用于确定P个第二空域滤波中的每个第二空域滤波的路径损耗值,P个第二空域滤波中的每个第二空域滤波的路径损耗值用于确定该第二空域滤波重传第一消息的发送功率;
其中,P个第二空域滤波的路径损耗值是相同的,路径损耗值是UE根据P个第二空域滤波的路径损耗测量值确定的,这样得到的第二路径损耗值,考虑到了P个第二空域滤波中的各个第二空域滤波的路径损耗测量值,根据该第二路径损耗值确定的发送功率较合理;或
P个第二空域滤波的路径损耗值是不同的,P个第二空域滤波中的每个第二空域滤波的路径损耗值是根据该第二空域滤波的路径损耗测量值确定的。这样用于计算每个第二空域滤波的发送功率的第二路径损耗值,都能够准确地反映该第二空域滤波对应的路径损耗情况,从而可以使得处理单元702计算的发送功率更准确。
在一些实施方式中,第一消息为消息3,N个第二空域滤波中的P个第二空域滤波中的每个第二空域滤波对应的第二累计功率调整与第一空域滤波对应的第一累计功率调整不同。这样,从在一个波束方向发送消息3切换至在n个波束方向发送消息3时,通过调整P个第二空域滤波的累计功率调整值,调整这P个第二空域滤波对应的波束方向的发送功率,从而实现对这P个第二空域滤波对应的波束方向进行功率抬升。有助于提升N个第二空域滤波的总功率,从而增大消息3发送成功的几率。
在一些实施例中,第一消息为PUCCH,N个第二空域滤波中的P个第二空域滤波中的每个第二空域滤波对应的第二累计功率调整与第一空域滤波对应的第一累计功率调整不同。这样,在UE从在一个波束方向发送PUCCH切换至在n个波束方向发送PUCCH时,UE通过调整P个第二空域滤波的累计功率调整值,调整这P个第二空域滤波对应的波束方向的发送功率,从而实现对这P个第二空域滤波对应的波束方向进行功率抬升。有助于提升N个第二空域滤波的总功率,从而增大PUCCH发送成功的几率。
在某些实施方式中,N≥2;N个第二空域滤波中,至少两个第二空域滤波发送的第一消息关联的同步信号不同;或N个第二空域滤波中,至少两个第二空域滤波发送的第一消息关联的物理广播信道块不同;或N个第二空域滤波中,至少两个第二空域滤波发送的第一消息关联的信道状态信息参考信号资源不同。这样,能够增加第一消息的覆盖面,增大第一消息发送成功的几率。第一消息为消息1、消息3或PUCCH。
在某些实施方式中,处理单元702还用于:确认通过第一空域滤波重传第一消息的发送功率超过最大允许曝露对应的功率阈值,功率阈值小于或等于最大允许暴露对应的最大功率。这样,当第一功率即将超过或已超过最大允许暴露对应的最大功率时,切换至在多个波束方向向网络设备重传第一消息,使得发送第一消息的总发送功率大于第一功率,从 而能够使得发送功率突破最大允许暴露对应的最大功率的限制,提升第一消息发送成功的概率。第一消息为消息1、消息3或PUCCH。
需要说明的是,上述各实施例的消息重传方法的解释说明也适用于上述各实施例的消息重传设备,为避免冗余,此处不再赘述。
本申请实施例还提供一种通信设备,该通信设备为用户设备或终端设备,包括处理器和存储器,存储器用于存储计算机指令,处理器执行该存储器中的计算机程序或指令,使得上述任一实施例的消息重传方法被执行。
本申请实施例还提供一种装置,所述装置包括处理器,所述处理器与存储器耦合,当所述处理器执行所述存储器中的计算机程序或指令时,使得上述任一实施例的消息重传方法被执行。可选地,该装置还包括存储器。可选地,该装置还包括通信接口,处理器与通信接口耦合。
在一种实现方式中,该装置为用户设备。当该通信设备为用户设备时,通信接口可以是收发器,或,输入/输出接口。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
在另一种实现方式中,该装置为芯片或芯片系统。当该装置为芯片或芯片系统时,通信接口可以是该芯片或芯片系统上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理器也可以体现为处理电路或逻辑电路。
本申请实施例还提供一种通信设备,通信设备包括处理器和接口电路,接口电路,用于接收代码指令并传输至处理器;处理器运行代码指令以执行上述任一实施例的方法。
本申请实施例还提供一种系统,系统包括上述用户设备和网络设备。
本申请实施例还提供一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述任一实施例的消息重传方法。
本申请实施例还提供一种计算机可读存储介质,计算机可读介质存储有计算机程序(也可以称为代码,或指令),当其在计算机上运行时,使得计算机执行上述任一实施例的消息重传方法。
本申请实施例还提供一种通信设备,包括:输入电路、输出电路和处理电路。处理电路用于通过输入电路接收信号,并通过输出电路发射信号,使得上述任一实施例的消息重传方法被实现。
在具体实现过程中,上述通信设备可以为芯片,输入电路可以为输入管脚,输出电路可以为输出管脚,处理电路可以为晶体管、门电路、触发器和各种逻辑电路等。输入电路所接收的输入的信号可以是由例如但不限于接收器接收并输入的,输出电路所输出的信号可以是例如但不限于输出给发射器并由发射器发射的,且输入电路和输出电路可以是同一电路,该电路在不同的时刻分别用作输入电路和输出电路。本申请对处理器及各种电路的具体实现方式不做限定。
本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,计算机指令指示用户设备执行上述任一实施例的消息重传方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit, CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各 个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (17)

  1. 一种消息重传方法,其特征在于,包括:
    用户设备通过第一空域滤波以第一功率向网络设备发送消息1;
    所述用户设备通过N个第二空域滤波向网络设备重传消息1,其中,P个第二空域滤波中的每个第二空域滤波的发送功率对应的第二功率抬升次数大于所述第一功率对应的第一功率抬升次数;所述N个第二空域滤波中,包括至少一个与所述第一空域滤波不同的空域滤波,其中,N、P均为正整数,P≤N。
  2. 根据权利要求1所述的方法,其特征在于,所述第一功率是根据第一功率抬升步长和所述第一功率抬升次数确定的;所述P个第二空域滤波中的每个第二空域滤波的发送功率是根据该第二空域滤波的发送功率对应的第二功率抬升步长和第二功率抬升次数确定的,所述第二功率抬升步长是根据所述第一功率抬升步长确定的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述用户设备通过N个第二空域滤波向网络设备重传消息1之前,所述方法还包括:所述用户设备获取所述P个第二空域滤波中的每个第二空域滤波的路径损耗测量值;
    所述P个第二空域滤波的路径损耗值是相同的,所述路径损耗值是所述用户设备根据所述P个第二空域滤波的路径损耗测量值确定的;或
    所述P个第二空域滤波的路径损耗值是不同的,所述P个第二空域滤波中的每个第二空域滤波的路径损耗值是根据该第二空域滤波的路径损耗测量值确定的;
    所述P个第二空域滤波中的每个第二空域滤波的路径损耗值用于确定该第二空域滤波重传所述第一消息的发送功率。
  4. 根据权利要求3所述的方法,其特征在于,所述P个第二空域滤波的路径损耗值是相同的,
    所述路径损耗值是所述P个第二空域滤波的路径损耗测量值中的最小值;或
    所述路径损耗值是所述P个第二空域滤波的路径损耗测量值中,任意一个小于路径损耗门限值的路径损耗测量值。
  5. 根据权利要求1-4任一项所述的方法,其特征在于,所述N≥2;
    所述N个第二空域滤波中,至少两个第二空域滤波发送的消息1关联的同步信号不同;或
    所述N个第二空域滤波中,至少两个第二空域滤波发送的消息1关联的物理广播信道块不同;或
    所述N个第二空域滤波中,至少两个第二空域滤波发送的消息1关联的信道状态信息参考信号资源不同。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述用户设备通过N个第二空域滤波向网络设备重传消息1之前,所述方法还包括:
    所述用户设备确认通过所述第一空域滤波重传消息1的发送功率超过最大允许曝露对应的功率阈值,所述功率阈值小于或等于所述最大允许暴露对应的最大功率。
  7. 一种消息重传设备,其特征在于,包括收发单元和处理单元,所述收发单元用于:
    通过第一空域滤波以第一功率向网络设备发送消息1;
    通过N个第二空域滤波向网络设备重传消息1,其中,P个第二空域滤波中的每个第二空域滤波的发送功率对应的第二功率抬升次数大于所述第一功率对应的第一功率抬升次数;所述N个第二空域滤波中,包括至少一个与所述第一空域滤波不同的空域滤波,其中,N、P均为正整数,P≤N。
  8. 根据权利要求7所述的消息重传设备,其特征在于,所述第一功率是所述处理单元根据第一功率抬升步长和所述第一功率抬升次数确定的;所述P个第二空域滤波中的每个第二空域滤波的发送功率是所述处理单元根据该第二空域滤波的发送功率对应的第二功率抬升步长和第二功率抬升次数确定的,所述第二功率抬升步长是根据所述第一功率抬升步长确定的。
  9. 根据权利要求7或8所述的消息重传设备,其特征在于,所述处理单元用于:
    获取所述P个第二空域滤波中的每个第二空域滤波的路径损耗测量值;
    所述P个第二空域滤波的路径损耗值是相同的,所述路径损耗值是所述处理单元根据所述P个第二空域滤波的路径损耗测量值确定的;
    所述P个第二空域滤波的路径损耗值是不同的,所述P个第二空域滤波中的每个第二空域滤波的路径损耗值是所述处理单元根据该第二空域滤波的路径损耗测量值确定的;
    所述P个第二空域滤波中的每个第二空域滤波的路径损耗值用于确定该第二空域滤波重传所述第一消息的发送功率。
  10. 根据权利要求9所述的消息重传设备,其特征在于,所述P个第二空域滤波的路径损耗值是相同的,
    所述路径损耗值是所述P个第二空域滤波的路径损耗测量值中的最小值;或
    所述路径损耗值是所述P个第二空域滤波的路径损耗测量值中,任意一个小于路径损耗门限值的路径损耗测量值。
  11. 根据权利要求7-10任一项所述的消息重传设备,其特征在于,所述N≥2;
    所述N个第二空域滤波中,至少两个第二空域滤波发送的消息1关联的同步信号不同;或
    所述N个第二空域滤波中,至少两个第二空域滤波发送的消息1关联的物理广播信道块不同;或
    所述N个第二空域滤波中,至少两个第二空域滤波发送的消息1关联的信道状态信息参考信号资源不同。
  12. 根据权利要求7-11任一项所述的消息重传设备,其特征在于,所述处理单元还用于:
    确认通过所述第一空域滤波重传消息1的发送功率超过最大允许曝露对应的功率阈值,所述功率阈值小于或等于所述最大允许暴露对应的最大功率。
  13. 一种通信设备,其特征在于,包括处理器和存储器,所述存储器用于存储计算机指令,所述处理器执行该计算机指令,使得所述用户设备执行权利要求1-6任一项所述的方法。
  14. 一种装置,其特征在于,所述装置包括处理器,所述处理器与存储器耦合,当所述处理器执行所述存储器中的计算机程序或指令时,使得权利要求1-6中任一项所述的方法被执行。
  15. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,所述计算机指令指示用户设备执行权利要求1-6任一项所述的方法。
  16. 一种芯片,其特征在于,包括:处理器和接口,用于执行存储器中存储的计算机程序或指令,执行如权利要求1至6中任一项所述的方法。
  17. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行权利要求1-6任一项所述的消息重传方法。
PCT/CN2020/077498 2020-03-02 2020-03-02 消息重传方法及相关装置 WO2021174400A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080097516.6A CN115152307A (zh) 2020-03-02 2020-03-02 消息重传方法及相关装置
EP20923276.8A EP4090122A4 (en) 2020-03-02 2020-03-02 MESSAGE RETRANSMISSION METHOD AND RELATED DEVICE
PCT/CN2020/077498 WO2021174400A1 (zh) 2020-03-02 2020-03-02 消息重传方法及相关装置
US17/899,681 US20220416958A1 (en) 2020-03-02 2022-08-31 Message retransmission method and related apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077498 WO2021174400A1 (zh) 2020-03-02 2020-03-02 消息重传方法及相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/899,681 Continuation US20220416958A1 (en) 2020-03-02 2022-08-31 Message retransmission method and related apparatus

Publications (1)

Publication Number Publication Date
WO2021174400A1 true WO2021174400A1 (zh) 2021-09-10

Family

ID=77614446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077498 WO2021174400A1 (zh) 2020-03-02 2020-03-02 消息重传方法及相关装置

Country Status (4)

Country Link
US (1) US20220416958A1 (zh)
EP (1) EP4090122A4 (zh)
CN (1) CN115152307A (zh)
WO (1) WO2021174400A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023097593A1 (en) * 2021-12-02 2023-06-08 Qualcomm Incorporated User equipment based power boosting for retransmission of message 3 of random access channel procedure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11825427B2 (en) * 2021-08-20 2023-11-21 Qualcomm Incorporated Techniques for performing physical layer security during full-duplex communications
US20230276373A1 (en) * 2022-02-25 2023-08-31 Qualcomm Incorporated Power control for sounding reference signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019030390A1 (en) * 2017-08-11 2019-02-14 Sony Mobile Communications Inc. RANDOM ACCESS MESSAGE RETRANSMISSION
WO2019032466A1 (en) * 2017-08-07 2019-02-14 Qualcomm Incorporated UPLINK TRANSMISSION POWER CONTROL DURING RANDOM ACCESS PROCEDURES
CN110392442A (zh) * 2018-04-18 2019-10-29 华为技术有限公司 通信方法及装置
CN110583092A (zh) * 2017-05-05 2019-12-17 三星电子株式会社 管理无线通信系统中的随机接入信道配置的装置和方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190008513A (ko) * 2017-07-14 2019-01-24 한국전자통신연구원 랜덤 액세스 절차에서의 상향링크 전력 제어 방법 및 장치
KR20190028334A (ko) * 2017-09-08 2019-03-18 한국전자통신연구원 다중 빔 시스템에서 랜덤 엑세스 메시지 1 전력 램핑 절차, 전송 전력 계산 방법 및 동기화 신호 블록 전송 전력 지시 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110583092A (zh) * 2017-05-05 2019-12-17 三星电子株式会社 管理无线通信系统中的随机接入信道配置的装置和方法
WO2019032466A1 (en) * 2017-08-07 2019-02-14 Qualcomm Incorporated UPLINK TRANSMISSION POWER CONTROL DURING RANDOM ACCESS PROCEDURES
WO2019030390A1 (en) * 2017-08-11 2019-02-14 Sony Mobile Communications Inc. RANDOM ACCESS MESSAGE RETRANSMISSION
CN110392442A (zh) * 2018-04-18 2019-10-29 华为技术有限公司 通信方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TS38.213
HUAWEI, HISILICON: "General discussion of UL power control for NR", 3GPP DRAFT; R1-1700063, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), vol. RAN WG1, no. Spokane, USA; 20170116 - 20170120, 16 January 2017 (2017-01-16), XP051207605 *
See also references of EP4090122A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023097593A1 (en) * 2021-12-02 2023-06-08 Qualcomm Incorporated User equipment based power boosting for retransmission of message 3 of random access channel procedure

Also Published As

Publication number Publication date
EP4090122A4 (en) 2022-12-28
EP4090122A1 (en) 2022-11-16
CN115152307A (zh) 2022-10-04
US20220416958A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
US11973559B2 (en) Retransmission of random access message based on control message from a base station
WO2021174400A1 (zh) 消息重传方法及相关装置
EP3178241B1 (en) Wireless device, network node, and methods therein for sending a message comprising an indication of a restriction of the wireless device
US20220256473A1 (en) Power exposure reporting for wireless networks
CN113068271B (zh) 一种随机接入方法及装置、网络设备、终端
WO2018201869A1 (zh) 一种确定上行信号发射功率的方法及设备
US12010727B2 (en) Enhancing RACH operation in new radio under RF exposure requirements
US11546945B2 (en) Data transmission method and apparatus, and terminal
KR102612875B1 (ko) 무작위 접속의 방법과 장치
US20180317159A1 (en) Methods, Network Nodes and Wireless Device for Handling Access Information
WO2020220323A1 (zh) 随机接入的方法、装置和通信系统
WO2021077343A1 (zh) 无线通信方法和终端设备
WO2020056717A1 (zh) 一种资源关联方法及装置、终端、网络设备
WO2021234213A1 (en) Exchange of maximum permissible exposure related information during handover
US20240040627A1 (en) Wireless comminication method, and electronic device
US20220353767A1 (en) Communication Method and Apparatus
CN112291842A (zh) 一种通信方法及装置
US20220159685A1 (en) Data transmission method and apparatus
US20230403654A1 (en) Exposure control
CN115299121A (zh) 对pucch重复进行功率控制的方法及设备
US20210204327A1 (en) Method for controlling power ramp counter, and terminal device
EP4383829A1 (en) Communication method and communication apparatus
WO2024098987A1 (zh) 信号传输方法和装置
US20220322424A1 (en) Method for processing random access procedure, and terminal device
WO2024040590A1 (zh) 无线通信的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020923276

Country of ref document: EP

Effective date: 20220812

NENP Non-entry into the national phase

Ref country code: DE