WO2021174390A1 - 深度获取组件及电子设备 - Google Patents

深度获取组件及电子设备 Download PDF

Info

Publication number
WO2021174390A1
WO2021174390A1 PCT/CN2020/077476 CN2020077476W WO2021174390A1 WO 2021174390 A1 WO2021174390 A1 WO 2021174390A1 CN 2020077476 W CN2020077476 W CN 2020077476W WO 2021174390 A1 WO2021174390 A1 WO 2021174390A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
module
field effect
lasers
control signal
Prior art date
Application number
PCT/CN2020/077476
Other languages
English (en)
French (fr)
Inventor
余力强
崔振威
陈微
蒋艳锋
刘俊哲
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20923651.2A priority Critical patent/EP4099049A4/en
Priority to CN202080093606.8A priority patent/CN114981679A/zh
Priority to PCT/CN2020/077476 priority patent/WO2021174390A1/zh
Priority to JP2022552627A priority patent/JP7467657B2/ja
Publication of WO2021174390A1 publication Critical patent/WO2021174390A1/zh
Priority to US17/899,925 priority patent/US20230006418A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • H01S5/06216Pulse modulation or generation

Definitions

  • This application relates to the field of electrical technology, in particular to a depth acquisition component and electronic equipment.
  • terminal equipment With the development of terminal equipment, terminal equipment can gradually realize depth image shooting.
  • the principle of the terminal device to achieve depth image shooting can be shown in FIG.
  • a terminal device with depth image shooting may include a light emitting end and a light receiving end.
  • the light emitting end usually includes a laser light source for outputting light.
  • a rotating mirror microwaveelectromechanical systems mirror, MEMS mirror
  • the light beam emitted by the laser light source is realized by the rotating mirror Angle scanning, and then illuminate the object to be measured at different angles to achieve depth ranging with a certain angle of view.
  • the rotating mirror in the prior art has a large size, resulting in a larger size of the light emitting end, higher power consumption and higher cost.
  • the embodiments of the present application provide a depth acquisition component and electronic equipment, which can provide device support for realizing a small-size and low-power light emitting end.
  • the embodiments of the present application provide a depth acquisition component, including a laser drive array and a laser array; the laser array includes multiple lasers; the laser drive array includes one or more control units, and each control unit is used to control the laser Selection of one or more lasers in the array; wherein, the control unit includes: a first switch module, a capacitive module and a first connection terminal; the first connection terminal is used to connect the positive terminal of the laser; the first switch module is used to The first control signal realizes the selection of the laser corresponding to the control unit; one end of the first switch module is electrically connected to the voltage input end of the laser drive array, and the other end of the first switch module is electrically connected to the first connection end; One end is electrically connected to the first connection end, and the other end of the capacitive module is grounded.
  • the control unit includes: a first switch module, a capacitive module and a first connection terminal; the first connection terminal is used to connect the positive terminal of the laser; the first switch module is used to The first control signal realizes the
  • one or more control units are provided in the charging circuit of the laser drive array. Based on the first switch module and the capacitive module in the control unit, the flexible selection of the laser corresponding to the control unit can be flexibly realized, thereby This makes it possible to realize scanning laser emission to the laser array based on the laser drive array, without additional scanning devices such as rotating mirrors, so as to provide circuit support for the realization of small-size, low-power, and low-cost light emitting ends.
  • the first switch module includes: a field effect tube, an inductive electric device, and a unidirectional energization device; the field effect tube, an inductive electric device, and a unidirectional energization device are connected in series; the gate terminal of the field effect tube is used for receiving The first control signal; the negative terminal of the unidirectional energization device is connected to the first connection terminal.
  • Connecting inductive electrical devices in series in the charging loop to form an LC circuit model can not only improve the charging efficiency, but also reduce the requirements for the input voltage of the voltage input terminal.
  • the first pulse current generation unit includes a second connection terminal, the first pulse current generation unit is used for controlling the periodic discharge of the second connection terminal according to the pulse period of the second control signal; the second connection terminal is used for connecting the negative electrode of the laser. In this way, pulsed current can be generated in the laser, so that the laser can emit pulsed light.
  • the first pulse current generating unit further includes: a first field effect module and a driving module corresponding to the first field effect module.
  • the driving module corresponding to the first field effect module is used for receiving the second control signal; the first field effect module is used for controlling the periodic discharge of the second connection terminal according to the pulse period of the second control signal.
  • each control unit is used to control one laser.
  • the control logic for each control unit to control a laser is simple, and the control of the laser can be conveniently realized.
  • each control unit is used to select a row of lasers, and the anode of the row of lasers is electrically connected;
  • the laser drive circuit also includes one or more second switch modules; each second switch module is used to To realize the selection of a row of lasers, the second switch module is electrically connected to the negative electrode of the row of lasers; wherein, one or more second switch modules and one or more first switch modules of the control unit are used to cooperate with each other to realize the control of any laser choose. In this way, the selection of any laser can be realized based on the cooperation of the first switch module and the second switch module.
  • the optical drive circuit further includes one or more second pulse current generation units; the second pulse current generation unit is connected to one or more second switch modules, and the second pulse current generation unit is used for The pulse period of the third control signal controls the periodic discharge of the lasers corresponding to one or more second switch modules.
  • the second pulse current generating unit further includes: a second field effect module and a driving module corresponding to the second field effect module; the driving module corresponding to the second field effect module is used to receive the third control signal; The second field effect module is used for controlling the periodic discharge of one or more lasers connected to the second switch module according to the pulse period of the third control signal. In this way, flexible control of lasers in units of rows can be achieved.
  • the second switch module includes: a third field effect module and a driving module corresponding to the third field effect module; the driving module corresponding to the third field effect module is used to receive the fourth control signal; the third field effect module The module is used to control the periodic discharge of the laser corresponding to the third field effect module according to the pulse period of the fourth control signal.
  • the capacitive module includes a capacitor.
  • an embodiment of the present application provides a laser driving circuit, including: one or more control units, and a voltage input terminal.
  • control unit includes: a first switch module, a capacitive module, and a first connection terminal; the first connection terminal is used to connect the anode of the laser; the first switch module is used to select the laser corresponding to the control unit according to the first control signal One end of the first switch module is electrically connected to the voltage input end, the other end of the first switch module is electrically connected to the first connection end; one end of the capacitive module is electrically connected to the first connection end, and the other end of the capacitive module is grounded.
  • one or more control units are provided in the charging circuit of the laser drive circuit.
  • the flexible selection of the laser corresponding to the control unit can be flexibly realized, thereby This makes it possible to realize scanning laser emission to the laser array based on the laser driving circuit, without additional scanning equipment such as rotating mirrors, so as to provide circuit support for the realization of small-size, low-power, low-cost light emitting ends.
  • the first switch module includes: a field effect tube, an inductive electric device, and a unidirectional energization device; the field effect tube, an inductive electric device, and a unidirectional energization device are connected in series; the gate terminal of the field effect tube is used for receiving The first control signal; the negative terminal of the unidirectional energization device is connected to the first connection terminal.
  • Connecting inductive electric devices in series in the charging circuit to form an LC circuit model can not only improve the charging efficiency, but also reduce the requirements for the input voltage at the voltage input terminal.
  • the first pulse current generation unit includes a second connection terminal, the first pulse current generation unit is used for controlling the periodic discharge of the second connection terminal according to the pulse period of the second control signal; the second connection terminal is used for connecting the negative electrode of the laser. In this way, pulsed current can be generated in the laser, so that the laser can emit pulsed light.
  • the first pulse current generating unit further includes: a first field effect module and a driving module corresponding to the first field effect module.
  • the driving module corresponding to the first field effect module is used for receiving the second control signal; the first field effect module is used for controlling the periodic discharge of the second connection terminal according to the pulse period of the second control signal.
  • each control unit is used to control one laser.
  • the control logic for each control unit to control a laser is simple, and the control of the laser can be conveniently realized.
  • each control unit is used to select a row of lasers, and the anode of the row of lasers is electrically connected;
  • the laser drive circuit also includes one or more second switch modules; each second switch module is used to To realize the selection of a row of lasers, the second switch module is electrically connected to the negative electrode of the row of lasers; wherein, one or more second switch modules and one or more first switch modules of the control unit are used to cooperate with each other to realize the control of any laser choose. In this way, the selection of any laser can be realized based on the cooperation of the first switch module and the second switch module.
  • the optical drive circuit further includes one or more second pulse current generation units; the second pulse current generation unit is connected to one or more second switch modules, and the second pulse current generation unit is used for The pulse period of the third control signal controls the periodic discharge of the lasers corresponding to one or more second switch modules.
  • the second pulse current generating unit further includes: a second field effect module and a driving module corresponding to the second field effect module; the driving module corresponding to the second field effect module is used to receive the third control signal; The second field effect module is used for controlling the periodic discharge of one or more lasers connected to the second switch module according to the pulse period of the third control signal. In this way, flexible control of lasers in units of rows can be achieved.
  • the second switch module includes: a third field effect module and a driving module corresponding to the third field effect module; the driving module corresponding to the third field effect module is used to receive the fourth control signal; the third field effect module The module is used to control the periodic discharge of the laser corresponding to the third field effect module according to the pulse period of the fourth control signal.
  • the capacitive module includes a capacitor.
  • the present application provides an electronic device, including: the above-mentioned first aspect and each possible depth acquisition component of the first aspect.
  • electronic devices may include, but are not limited to: terminal devices such as mobile phones, tablet computers, desktop computers, notebooks, cameras, and wearable devices.
  • Fig. 1 is a schematic diagram of a scene of image depth acquisition
  • Figure 2 is a schematic diagram of a possible scanning structure
  • Figure 3 is a scanning schematic diagram of a depth measurement technique
  • Fig. 4 is a schematic diagram of scanning an illuminated scene
  • Figure 5 is a schematic diagram of another illuminated scene scanning
  • Figure 6 is a schematic diagram of another illuminated scene scanning
  • Figure 7 is a schematic diagram of the first laser selection scene
  • Figure 8 is a schematic diagram of the second laser selection scene
  • Figure 9 is a schematic diagram of the third laser selection scene
  • Figure 10 is a schematic diagram of the fourth laser selection scene
  • Figure 11 is a schematic diagram of the fifth laser selection scene
  • Figure 12 is a schematic diagram of a laser array structure
  • Figure 13 is a schematic diagram of a laser array drive circuit
  • Figure 14 is a schematic diagram of another laser array structure
  • Figure 15 is a schematic diagram of a possible laser array drive circuit
  • FIG. 16 is a schematic diagram of a laser driving circuit according to an embodiment of the application.
  • FIG. 17 is a schematic diagram of another laser driving circuit according to an embodiment of the application.
  • FIG. 18 is a schematic diagram of another laser driving circuit according to an embodiment of the application.
  • FIG. 19 is a working sequence diagram of a laser driving circuit according to an embodiment of the application.
  • Figure 20 is a schematic diagram of a square wave pulse signal
  • FIG. 21 is a schematic diagram of another laser driving circuit according to an embodiment of the application.
  • FIG. 22 is a schematic diagram of another laser driving circuit according to an embodiment of the application.
  • FIG. 23 is a schematic diagram of a circuit of a first switch module according to an embodiment of the application.
  • FIG. 24 is a schematic diagram of a possible circuit of the first switch module
  • FIG. 25 is a schematic diagram of the working principle of a depth acquisition component according to an embodiment of the application.
  • “at least one” refers to one or more, and “multiple” refers to two or more.
  • “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an "or” relationship.
  • the way the terminal equipment obtains depth images can be divided into two categories according to whether laser light sources are needed: passive ranging sensing and active depth sensing.
  • passive ranging sensing method the terminal device does not need to use a laser light source to emit light.
  • active depth sensing the terminal device needs to use a laser light source to emit light.
  • Binocular stereo vision (or called red green blue (RGB) binocular) technology can be used in passive ranging sensing.
  • two images of the same scene can be acquired at the same time by two cameras separated by a certain distance, the corresponding pixels in the two images can be found through the stereo matching algorithm, and the disparity information can be calculated according to the triangulation principle.
  • the disparity information is passed Conversion can be used to characterize the depth information of objects in the scene.
  • the depth image of the scene can also be obtained by shooting a group of images of different angles in the same scene.
  • the depth information can also be indirectly estimated by analyzing the characteristics of the image's luminosity, light and dark features.
  • the calculation of the image depth is usually related to the pixel points of the image. Therefore, the acquisition of the depth image is usually based on a color image.
  • the measurement principle can be described in Figure 1, and the acquisition of the depth image can be independent of the acquisition of the color image.
  • the technologies used may include: time of flight (TOF), structured light, and so on.
  • TOF technology may include indirect time of flight (ITOF) and direct time of flight (DTOF) technologies.
  • Table 1 shows the comparison of ITOF technology, DTOF technology, RGB binocular technology and structured light technology in image depth acquisition.
  • the ITOF technology, RGB binocular technology and structured light technology with smaller power consumption and hardware size have shorter measurement distances.
  • the DTOF technology with longer measurement distance has larger power consumption and hardware size.
  • the more important part is to realize the scanning of the object to be measured by the laser source.
  • the light emitted by the laser source needs to scan a certain spatial angle.
  • Figure 2 shows a schematic diagram of the implementation of a DTOF technology in LIDAR.
  • the light beam from the laser light source first passes through the MEMS mirror, and then the MEMS mirror realizes angular scanning, and then illuminates at different angles.
  • the object to be measured is returned to the receiving sensor to achieve depth ranging with a certain field of view angle.
  • FIG. 3 shows a schematic diagram of three scans of the scanning process in the DTOF technology of autonomous driving.
  • the spatial angle of the laser beam emitted by the laser source is ⁇
  • the divergence angle of the laser beam is ,
  • the field of view (FOV) of the laser and the DTOF system is ⁇ .
  • the realization of laser source scanning in DTOF technology is further analyzed.
  • the essence of laser source scanning is to realize the block scanning of the illuminated scene.
  • FIG. 4 shows schematic diagrams of three scanning processes of the illuminated scene.
  • the output light 005 emitted by the laser source in the transmitting terminal 006 can realize the scanning and illumination of one of the M*N scene blocks, and the receiving terminal 013 can receive and return from one of the scene blocks. Then, the depth of one of the scene blocks can be calculated based on the round-trip time between the output light 005 and the input light 012.
  • a possible way may be: separately lighting the M*N lasers of the laser array, and each laser can realize scanning and illuminating one of the scenes.
  • Fig. 7, Fig. 8, Fig. 9, Fig. 10 and Fig. 11 show schematic diagrams of scanning the illuminated scene based on the M*N laser array.
  • the driver array 003 can respectively drive one or more lasers of the laser array 002 to light up, and the lighted laser can realize scanning of the area corresponding to the laser.
  • the lighted laser can realize scanning of the area corresponding to the laser.
  • one laser can be turned on at a time to realize scanning of a scene.
  • a row of lasers can be lighted at the same time to realize scanning and illumination of a row of scenes.
  • all lasers can be lighted at the same time to achieve full scanning and illumination of the illuminated scene.
  • the hollow connection point represents the cross without electrical connection. That is, the P electrode and the N electrode of each laser are independent of each other, so that the unused field effect tube can be used as a switch to control each laser individually to realize flexible selection of lasers.
  • FIG. 13 shows a laser array and driving circuit corresponding to that shown in FIG. 12.
  • the discharge circuit can be used (because of the unidirectional conduction characteristic of the laser, the positive end of the laser is usually
  • the circuit formed by the connected electric devices is called the charging circuit, and the circuit formed by the electric devices connected to the negative end of the laser is called the charging circuit.)
  • a field effect tube 131 and a gate driver 132 of the field effect tube 131 are set based on the control signal.
  • the control signal generated by the generating module can control the turning off or turning on of the field effect tube 131.
  • the field effect tube 131 is turned on, the laser 130 is grounded, and current flows through the laser 130 to realize lighting.
  • the N poles of all lasers in the laser array are connected together.
  • a laser array with N-pole connection is shown.
  • the hollow connection points represent crosses without electrical connections, and the solid connection points represent crosses with electrical connections.
  • a field effect tube and a corresponding gate driver are set in the discharge circuit of each laser, and then based on The control signal controls the turn-off or turn-on of the field effect tube.
  • each field effect tube is turned on, and all lasers have current flowing through them, all lasers will light up.
  • the driving scheme of Fig. 15 cannot realize flexible selection of lasers.
  • the embodiment of the present application provides a laser drive circuit, which does not control the laser in the discharge loop, but in the charging loop of the laser drive circuit, one or more control units are provided, based on the first switch in the control unit Modules and capacitive modules can form a charging and discharging circuit, so as to realize flexible selection of lasers, so that the laser array can be scanned based on the laser drive circuit, without additional scanning equipment such as rotating mirrors, which can achieve small size And the light transmitting end of low power consumption provides circuit support.
  • the charging circuit setting control unit can not only flexibly gate the laser, but also can be better than the discharge circuit in other aspects.
  • the pulse current of the discharge circuit is high peak (for example, up to 60A), high repetition frequency (for example, up to 5MHz), and low rise/fall time (for example, as low as 1ns).
  • Electrical switches put forward very high requirements, and these performance requirements result in the use of GaN-based MOS transistors for switch selection, which will result in high costs and large volumes of switches. Especially when the M*N array is large, this contradiction becomes more prominent.
  • the control unit in the charging circuit can greatly release the requirements for the switch, thereby reducing the size and cost of the switch circuit.
  • the electrical connection described in the embodiment of the present application may include: a connection realized by a wire, electromagnetic, or electrical device, and electric current may flow between two devices that are electrically connected.
  • the switch module described in the embodiment of the present application may be a field effect transistor (FET).
  • the field effect transistor may include a junction field-effect transistor (JFET), a metal oxide semiconductor field effect transistor (metal oxide semiconductor FET, MOSFET), and a V-groove field effect transistor (V-groove metal -oxide semiconductor FET, VMOSFET), MOSFET can include N-type metal oxide semiconductor field effect transistor (NMOSFET, referred to as NMOS tube) and P-type metal oxide semiconductor field effect transistor (PMOSFET, referred to as PMOS tube).
  • the switch module may also be an integrated chip or other device used to implement similar functions of a field effect tube, which is not specifically limited in the embodiment of the present application.
  • the capacitive module described in the embodiment of the present application has energy storage characteristics, and can be charged and discharged according to the condition of the circuit.
  • the capacitive module may be a capacitor, a capacitor component, or a chip or device that can realize a function similar to a capacitor, which is not specifically limited in the embodiment of the present application.
  • the inductive electrical device described in the embodiment of the present application may be an inductor, an inductance component, or a chip or device capable of implementing functions similar to an inductor, which is not specifically limited in the embodiment of the present application.
  • the unidirectional power-on device described in the embodiment of the present application may be a diode, a diode component, or a chip or device capable of realizing a unidirectional conduction function, which is not specifically limited in the embodiment of the present application.
  • FIG. 16 shows a schematic circuit diagram of a laser driving circuit according to an embodiment of the present application. As shown in FIG. 16, a schematic diagram of a laser driving circuit including a control unit 160 and a voltage input terminal 161 is shown.
  • control unit includes: a first switch module 1601, a capacitive module 1602, and a first connection terminal 1603; the first connection terminal 1603 is used to connect the anode of the laser.
  • the control unit 160 is arranged in the charging circuit of the laser driving circuit. Specifically, one end of the first switch module 1601 is electrically connected to the voltage input terminal 161, and the other end of the first switch module 1602 is electrically connected to the first connection terminal 1603; The switch module 1601 is used to select the laser 162 corresponding to the control unit according to the first control signal; one end of the capacitive module 1602 is electrically connected to the first connection end 1603, and the other end of the capacitive module 1602 is grounded.
  • the laser 162 may be included in the laser array corresponding to the laser driver, and the laser driving circuit of the embodiment of the present application may not include the laser 162.
  • the purpose of showing the laser 162 in FIG. 16 is to explain the embodiments of the present application more clearly.
  • the working principle does not constitute a limitation on the laser drive circuit of the embodiment of the present application.
  • the first switch module 1602 may include a gate terminal, a drain terminal, and a source terminal.
  • the gate terminal may be used to receive a first control signal, and the first control signal may be a square wave, a sine wave, or other information capable of controlling the first switch module 1602 to turn on or off.
  • the gate terminal and the source terminal can be adapted to connect the voltage input terminal 161 and the first connection terminal 1602 according to actual applications.
  • the working principle of the laser driving circuit corresponding to FIG. 16 is: when the first control signal controls the first switch module 1601 to turn on, the capacitive module 1602 is charged, and if the voltage at the second connection terminal 1603 is greater than the turn-on voltage of the laser 162, the laser 162 When there is current passing through, the laser 162 is selected to light up.
  • the laser driving circuit further includes a first pulse current generating unit 163.
  • the first pulse current generating unit 163 includes a second connection terminal 1631.
  • the first pulse current generation unit is used to control the second connection terminal 1631 to periodically discharge according to the pulse period of the second control signal; the second connection terminal 1631 is used to connect the negative electrode of the laser .
  • the laser driving circuit may further include a first pulse current generating unit 163.
  • the first pulse current generating unit 163 may periodically discharge the second connection terminal 1631.
  • the second connection terminal 1631 is periodically discharged If the laser 162 connected to the second connection end 1631 is selected, current will periodically flow through the laser 162, that is, pulse current will flow through the laser 162, so that the laser 162 can generate pulsed light.
  • the first pulse current generating unit 163 further includes: a first field effect module 1632 and a driving module 1633 corresponding to the first field effect module.
  • the driving module 1633 corresponding to the first field effect module is used for receiving the second control signal; the first field effect module 1632 is used for controlling the periodic discharge of the second connection terminal according to the pulse period of the second control signal.
  • the second control signal may be a pulse signal, and the second control signal may control the first field effect module 1632 to periodically turn off or turn on.
  • the first field effect module 1632 is turned on, the second connection terminal 1631 is grounded , Realize discharge.
  • a resistance can be added between the first field effect module 1632 and the ground terminal according to actual application scenarios to reduce the current flowing through the laser 162 when the first field effect module 1632 is turned on. This is not specifically limited.
  • FIG. 17 shows a schematic circuit diagram of another laser driving circuit according to an embodiment of the present application. As shown in FIG. 17, a schematic diagram of a laser driving circuit including M*N control units 170 is shown. M and N can be set according to actual application scenarios, which are not specifically limited in the embodiment of the present application.
  • each control unit 170 is used to control one laser
  • M*N lasers correspond to M*N control units 170
  • the negative electrodes (or N poles) of the M*N lasers are all connected.
  • the switch module, the capacitive module, and the connection terminal for connecting the anode of the laser in the control unit 170 can refer to the description of the embodiment in FIG. 16, which is not repeated here.
  • the capacitive module of each control unit 170 in the embodiment of the present application can be set as a capacitive module array, and the switch module can be set as a switch array, and the electrical connection described in the embodiment of the present application is realized by using an adaptive process.
  • the embodiment of the present application does not limit the specific form of the laser driving circuit.
  • the first control signal 0002 can control the on and off of the switch modules in each control unit 170, so as to control the selection of the laser.
  • control unit 170 is arranged in the charging circuit of the laser drive circuit, the conduction of the switch module in any control unit 170 will not cause erroneous current generation in other lasers. Therefore, multiple Flexible drive of the laser.
  • the laser driving circuit may further include a pulse current generating unit 172.
  • a pulse current generating unit 172 For the pulse current generating unit 172, reference may be made to the description of the embodiment in FIG. 16, which will not be repeated here.
  • the second control signal 0001 can control the field effect tube of the pulse current generating unit 172 to be turned on periodically, so that in the selected laser, the input voltage 0102, the capacitive module in the turned-on control unit 170, and the turned-on control unit 170 are selected.
  • the controlled laser forms a discharge circuit, and a pulse current flows through the laser, so that the laser can be selected to light up.
  • the laser driving circuit may further include a plurality of pulse current generating units 172.
  • multiple lasers may be illuminated at the same time, and multiple currents converge in the field effect tube of the pulse current generating unit 172, which may cause overcurrent in the pulse current generating unit 172, resulting in the pulse current generating unit. 172's damage.
  • multiple pulse current generating units 172 are provided in the laser driving circuit, and the multiple pulse current generating units 172 are controlled by the second control signal 0001 in common, so as to achieve the shunting effect, and the pulse current generating unit 172 Protect it.
  • the number of pulse current generating units 172 can be set according to actual application scenarios, which is not specifically limited in the embodiment of the present application.
  • FIG. 19 shows a working timing diagram of the laser driving circuit corresponding to FIG. 17 or FIG. 18.
  • the second control signal 0001 can be a pulse signal to assist the laser to generate pulse current.
  • the first control signal 0002 can be a rectangular wave, which can be used to gate the laser, control the scanning frequency of the laser, and select different scanning modes.
  • the high level of each cycle of the first control signal 0002 can make the switch module SN in a control unit turn on, the pulse current can flow in the laser LDN controlled by the SN, and the voltage level of the voltage input terminal can control the peak value of the pulse current . Therefore, the laser LDN can emit pulsed light 0016.
  • the second control signal 0001 may be a square wave pulse signal.
  • Figure 20 shows a schematic diagram of a square wave pulse signal.
  • the pulse repetition frequency f can be selected from 1kHz to 1GHz, such as 200KHz; the pulse width ⁇ can be selected from 1ns to 1ms, such as 5ns; the pulse duty cycle can be 0.01% to 50 The range of% is optional, for example, it can be 1%.
  • the amplitude Ipeak of the pulse current can be selected from 0 to 50A, for example, it can be 20A.
  • the duty cycle can be ⁇ /(1/f), that is, ⁇ f.
  • the first control signal 0002 may adopt program setting, circuit construction, etc., to realize the conduction of the switch modules in multiple control units according to actual application scenarios, which is not specifically limited in the embodiment of the present application.
  • FIG. 21 shows a schematic circuit diagram of another laser driving circuit according to an embodiment of the present application.
  • a schematic diagram of a laser driving circuit including M control units 210 and N second switch modules 211 is shown.
  • M and N can be set according to actual application scenarios, which are not specifically limited in the embodiment of the present application.
  • each control unit 210 in the laser array driven by the laser driving circuit, the anode of each row of lasers is electrically connected, and each control unit 210 can realize the selection of a row of lasers.
  • the negative electrode of each column of lasers is electrically connected, and each second switch module 211 can realize the selection of one column of lasers. Then, according to the cooperation of the M control units 210 and the N second switch modules 211, any laser can be selected.
  • the laser driving circuit of FIG. 21 may further include one or more second pulse current generating units 212, and the second pulse current generating unit 212 may be connected to one or more second switch modules 211, so that the Pulse current flows in the laser.
  • the working principle of the laser driving module corresponding to FIG. 21 is similar to the working principle of the above-mentioned embodiment, except that the selection of the laser in FIG. 21 is realized based on the cooperation of M control units 210 and N second switch modules 211, which will not be repeated here.
  • the working principle of the laser driving module in FIG. 21 will be described in detail.
  • FIG. 22 shows a schematic circuit diagram of another laser driving circuit according to an embodiment of the present application.
  • the switch module used to realize column selection is omitted in FIG. 22.
  • the negative electrode of each column of lasers After the negative electrode of each column of lasers is electrically connected, it can be connected to the pulse current generating unit, so that flexible control of lasers in units of rows can be realized.
  • the laser driving circuit of FIG. 22 can be one or more rows of lasers at a time.
  • FIG. 23 shows a schematic diagram of a first switch module according to an embodiment of the present application.
  • the first switch module 230 includes: a field effect tube 2301, an inductive electric device 2302, and a unidirectional power supply device 2303.
  • the field effect tube 2301, the inductive electrical device 2302, and the unidirectional power device 2303 are connected in series; the gate terminal of the field effect tube is used to receive the first control signal; the negative terminal of the unidirectional power device is connected to the first connection terminal.
  • the first switch module of the embodiment of the present application is arranged in the charging circuit of the laser driving circuit, which may cause a large power loss in the charging circuit. Therefore, the first switch module can be adapted to reduce the power loss of the charging circuit.
  • a resistor is connected in series in the charging circuit to reduce the peak charging current of the charging circuit.
  • the resistance R itself also has power consumption, which leads to charging. The power consumption of the loop is still large.
  • inductive devices are connected in series in the charging circuit to form an LC circuit model, which can improve the charging efficiency and reduce the requirement on the input voltage of the voltage input terminal.
  • a unidirectional energization device is connected in series on the circuit to ensure the unidirectional flow of the pulse current.
  • the laser driving circuit of the embodiment of the present application may be applied to a depth acquisition component of a terminal device.
  • the depth acquisition component may include a laser drive array and a laser array as shown in Figure 17, Figure 18, Figure 21 or Figure 22; the laser array includes multiple lasers; the laser drive array includes one or more control units, and each control unit is used for Control the selection of one or more lasers in the laser array; wherein the control unit includes: a first switch module, a capacitive module and a first connection terminal; the first connection terminal is used to connect the positive terminal of the laser; the first switch module is used To realize the selection of the laser corresponding to the control unit according to the first control signal; one end of the first switch module is electrically connected to the voltage input end of the laser drive array, and the other end of the first switch module is electrically connected to the first connection end; One end of the module is electrically connected to the first connection end, and the other end of the capacitive module is grounded.
  • the control unit includes: a first switch module, a capacitive module and a first connection terminal; the first connection terminal is used to connect the positive terminal of the laser; the first switch module is used To realize
  • one or more control units are provided in the charging circuit of the laser drive array. Based on the first switch module and the capacitive module in the control unit, the flexible selection of the laser corresponding to the control unit can be flexibly realized, thereby This makes it possible to realize scanning laser emission to the laser array based on the laser drive array, without additional scanning devices such as rotating mirrors, so as to provide circuit support for the realization of small-size, low-power, and low-cost light emitting ends.
  • the terminal device may include a mobile phone, a tablet computer, or a wearable electronic device with wireless communication function (such as a smart watch), a camera, and the like.
  • Figure 25 shows a schematic diagram of the working principle of a depth acquisition component.
  • the depth acquisition component may include a sending end 006 and a receiving end 013.
  • the transmitting end 006 may include a driver array 002, a laser array 003, and a lens 004.
  • the driver array 002, the laser array 003 and the lens 004 can be placed on the base of the transmitting end.
  • the driver array 002 may include any laser driving circuit in the above-mentioned embodiments.
  • the transceiver synchronization and control circuit 001 sends a pulse electric signal to the driver array 002, the driver array 002 amplifies the pulse electric signal into a pulse current 0015, and then outputs the pulse current 0015 to the laser array 003.
  • the laser array 003 converts light pulses into light pulses 0016.
  • the light pulse 0016 passes through the lens 004, the beam is adjusted to the expected beam shape (including the divergence angle, the spot size, and the beam angle), and then the output light 005 is emitted.
  • the sensor at the receiving end 013 includes input light 012, lens 011, optical filter 010, single photon avalanche diode (SPAD) array 008, quenching and time-to-analog converter, TDC 007, the embodiments of the present application may not involve the improvement of the receiving end, and the specific structure and content of the receiving end 013 are not repeated here.
  • SBA single photon avalanche diode
  • the distance for acquiring the depth image can be greater than 10m, and the power consumption can be less than 1W, so that the requirements for hardware size and power consumption in the mobile phone can be met.
  • the depth acquisition component of the embodiment of the present application does not include a rotating mirror, there is no reliability problem of the rotating mirror solution, and the reliability is high.
  • the laser when the laser is flexibly selected, specific application scenarios can be combined.
  • a still object such as a depth image of a building, a landscape, or a posing object
  • one laser may be turned on at a time to achieve block-by-block scanning.
  • moving objects such as moving people and objects

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种深度获取组件及电子设备,包括激光器驱动阵列(002)和激光器阵列(003);激光器阵列(003)中包括多个激光器(162);激光器驱动阵列(002)包括一个或多个控制单元(160),各控制单元(160)用于控制激光器阵列(003)中的一个或多个激光器(162)的选择;一个或多个控制单元(160)设置在激光器驱动阵列(002)的充电回路中,基于控制单元(160)中的第一开关模块(1601)、容性模块(1602)可以灵活的实现对控制单元(160)对应的激光器(162)的灵活选择,从而使得基于激光器驱动电路可以实现对激光器阵列(003)的扫描激光发射,不需要额外设置转镜等扫描设备,从而可以为实现小尺寸、小功耗、低成本的光发射端提供电路支持。

Description

深度获取组件及电子设备 技术领域
本申请涉及电学技术领域,尤其涉及一种深度获取组件及电子设备。
背景技术
随着终端设备的发展,终端设备逐渐可以实现深度图像拍摄。终端设备实现深度图像拍摄的原理可以如图1所示,终端设备11发射光,光到达拍摄目标12后返回终端设备11,终端设备11根据光往返的时间实现深度信息的采集。
通常的,具备深度图像拍摄的终端设备中可以包括光发射端和光接收端。在光发射端中通常包括用于输出光的激光光源,为了实现激光光源的扫描,需要在发射端中设置转镜(micro electro mechanical systems mirror,MEMS mirror),激光光源发出的光束通过转镜实现角度扫描,然后照射到不同角度上的待测物体,实现一定视场角度的深度测距。
但是现有技术中的转镜尺寸较大,导致光发射端的尺寸较大、功耗和成本较高。
发明内容
本申请实施例提供一种深度获取组件及电子设备,可以为实现小尺寸和小功耗的光发射端提供器件支持。
第一方面,本申请实施例提供了一种深度获取组件,包括激光器驱动阵列和激光器阵列;激光器阵列中包括多个激光器;激光器驱动阵列包括一个或多个控制单元,各控制单元用于控制激光器阵列中的一个或多个激光器的选择;其中,控制单元包括:第一开关模块、容性模块和第一连接端;第一连接端用于连接激光器的正极端;第一开关模块用于根据第一控制信号实现对控制单元对应的激光器的选择;第一开关模块的一端与激光器驱动阵列的电压输入端电连接,第一开关模块的另一端与第一连接端电连接;容性模块的一端与第一连接端电连接,容性模块的另一端接地。本申请实施例在激光器驱动阵列的充电回路中,设置了一个或多个控制单元,基于控制单元中的第一开关模块、容性模块可以灵活的实现对控制单元对应的激光器的灵活选择,从而使得基于激光器驱动阵列可以实现对激光器阵列的扫描激光发射,不需要额外设置转镜等扫描设备,从而可以为实现小尺寸、小功耗、低成本的光发射端提供电路支持。
一种可能的设计中,第一开关模块包括:场效应管、感性电器件和单向导通电器件;场效应管、感性电器件和单向导通电器件串联连接;场效应管的栅端用于接收第一控制信号;单向导通电器件的负极端与第一连接端连接。在充电回路串联感性电器件,组成LC电路模型,既可以提高充电效率,同时可以降低对电压输入端的输入电压的要求。
一种可能的设计中,还包括:一个或多个第一脉冲电流产生单元。第一脉冲电流产生单元包括第二连接端,第一脉冲电流产生单元用于根据第二控制信号的脉冲周期控制第二连接端周期性放电;第二连接端用于连接激光器负极。这样,可以在激光器 中产出脉冲电流,从而使得激光器可以发射脉冲光。
一种可能的设计中,第一脉冲电流产生单元还包括:第一场效应模块和第一场效应模块对应的驱动模块。第一场效应模块对应的驱动模块用于接收第二控制信号;第一场效应模块用于根据第二控制信号的脉冲周期控制第二连接端周期性放电。
一种可能的设计中,多个激光器的负极端电连接,每个控制单元用于控制一个激光器。每个控制单元控制一个激光器的控制逻辑简单,可以便捷的实现对激光器的控制。
一种可能的设计中,每个控制单元用于实现对一行激光器的选择,且一行激光器的正极电连接;激光器驱动电路还包括一个或多个第二开关模块;每个第二开关模块用于实现一列激光器的选择,第二开关模块与一列激光器的负极电连接;其中,一个或多个第二开关模块和一个或多个控制单元的第一开关模块用于互相配合实现对任一激光器的选择。这样,可以基于第一开关模块和第二开关模块的配合实现对任一激光器的选择。
一种可能的设计中,光器驱动电路还包括一个或多个第二脉冲电流产生单元;第二脉冲电流产生单元与一个或多个第二开关模块连接,第二脉冲电流产生单元用于根据第三控制信号的脉冲周期控制一个或多个第二开关模块对应的激光器周期性放电。
一种可能的设计中,第二脉冲电流产生单元还包括:第二场效应模块和第二场效应模块对应的驱动模块;第二场效应模块对应的驱动模块用于接收第三控制信号;第二场效应模块用于根据第三控制信号的脉冲周期控制一个或多个第二开关模块连接的激光器周期性放电。这样,可以实现以行为单位的激光器的灵活控制。
一种可能的设计中,第二开关模块包括:第三场效应模块和第三场效应模块对应的驱动模块;第三场效应模块对应的驱动模块用于接收第四控制信号;第三场效应模块用于根据第四控制信号的脉冲周期控制第三场效应模块对应的激光器周期性放电。
一种可能的设计中,容性模块包括电容。
第二方面,本申请实施例提供了一种激光器驱动电路,包括:一个或多个控制单元、以及电压输入端。
其中,控制单元包括:第一开关模块、容性模块和第一连接端;第一连接端用于连接激光器正极;第一开关模块用于根据第一控制信号实现对控制单元对应的激光器的选择;第一开关模块的一端与电压输入端电连接,第一开关模块的另一端与第一连接端电连接;容性模块的一端与第一连接端电连接,容性模块的另一端接地。本申请实施例在激光器驱动电路的充电回路中,设置了一个或多个控制单元,基于控制单元中的第一开关模块、容性模块可以灵活的实现对控制单元对应的激光器的灵活选择,从而使得基于激光器驱动电路可以实现对激光器阵列的扫描激光发射,不需要额外设置转镜等扫描设备,从而可以为实现小尺寸、小功耗、低成本的光发射端提供电路支持。
一种可能的设计中,第一开关模块包括:场效应管、感性电器件和单向导通电器件;场效应管、感性电器件和单向导通电器件串联连接;场效应管的栅端用于接收第一控制信号;单向导通电器件的负极端与第一连接端连接。在充电回路串联感性电器件,组成LC电路模型,既可以提高充电效率,同时可以降低对电压输入端的输入电 压的要求。
一种可能的设计中,还包括:一个或多个第一脉冲电流产生单元。第一脉冲电流产生单元包括第二连接端,第一脉冲电流产生单元用于根据第二控制信号的脉冲周期控制第二连接端周期性放电;第二连接端用于连接激光器负极。这样,可以在激光器中产出脉冲电流,从而使得激光器可以发射脉冲光。
一种可能的设计中,第一脉冲电流产生单元还包括:第一场效应模块和第一场效应模块对应的驱动模块。第一场效应模块对应的驱动模块用于接收第二控制信号;第一场效应模块用于根据第二控制信号的脉冲周期控制第二连接端周期性放电。
一种可能的设计中,多个激光器的负极端电连接,每个控制单元用于控制一个激光器。每个控制单元控制一个激光器的控制逻辑简单,可以便捷的实现对激光器的控制。
一种可能的设计中,每个控制单元用于实现对一行激光器的选择,且一行激光器的正极电连接;激光器驱动电路还包括一个或多个第二开关模块;每个第二开关模块用于实现一列激光器的选择,第二开关模块与一列激光器的负极电连接;其中,一个或多个第二开关模块和一个或多个控制单元的第一开关模块用于互相配合实现对任一激光器的选择。这样,可以基于第一开关模块和第二开关模块的配合实现对任一激光器的选择。
一种可能的设计中,光器驱动电路还包括一个或多个第二脉冲电流产生单元;第二脉冲电流产生单元与一个或多个第二开关模块连接,第二脉冲电流产生单元用于根据第三控制信号的脉冲周期控制一个或多个第二开关模块对应的激光器周期性放电。
一种可能的设计中,第二脉冲电流产生单元还包括:第二场效应模块和第二场效应模块对应的驱动模块;第二场效应模块对应的驱动模块用于接收第三控制信号;第二场效应模块用于根据第三控制信号的脉冲周期控制一个或多个第二开关模块连接的激光器周期性放电。这样,可以实现以行为单位的激光器的灵活控制。
一种可能的设计中,第二开关模块包括:第三场效应模块和第三场效应模块对应的驱动模块;第三场效应模块对应的驱动模块用于接收第四控制信号;第三场效应模块用于根据第四控制信号的脉冲周期控制第三场效应模块对应的激光器周期性放电。
一种可能的设计中,容性模块包括电容。
第三方面,本申请提供一种电子设备,包括:如上述第一方面和第一方面的各可能的深度获取组件。
其中,电子设备可以包括但不限于:如手机、平板电脑、台式电脑、笔记本、相机、可穿戴设备等终端设备。
上述第三方面以及上述第三方面的各可能的设计中所提供的电子设备,其有益效果可以参见上述第一方面和第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
附图说明
图1为一种图像深度获取的场景示意图;
图2为一种可能的扫描结构示意图;
图3为一种深度测量技术的扫描示意图;
图4为一种被照射场景扫描示意图;
图5为另一种被照射场景扫描示意图;
图6为又一种被照射场景扫描示意图;
图7为第一种激光器选择场景示意图;
图8为第二种激光器选择场景示意图;
图9为第三种激光器选择场景示意图;
图10为第四种激光器选择场景示意图;
图11为第五种激光器选择场景示意图;
图12为一种激光器阵列结构示意图;
图13为一种激光器阵列驱动电路示意图;
图14为另一种激光器阵列结构示意图;
图15为一种可能的激光器阵列驱动电路示意图;
图16为本申请实施例的一种激光器驱动电路示意图;
图17为本申请实施例的另一种激光器驱动电路示意图;
图18为本申请实施例的又一种激光器驱动电路示意图;
图19为本申请实施例的一种激光器驱动电路工作时序图;
图20为一种方波脉冲信号示意图;
图21为本申请实施例的另一种激光器驱动电路示意图;
图22为本申请实施例的另一种激光器驱动电路示意图;
图23为本申请实施例的一种第一开关模块电路示意图;
图24为一种可能的第一开关模块电路示意图;
图25为本申请实施例的一种深度获取组件的工作原理示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
另外,本申请实施例中,术语“第一”、“第二”、“第三”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请实施例,例如能够以除了在这里图示或描述的那些以外的顺序实施。
终端设备获取深度图像的方式中,按照是否需要激光光源可以分为两类:被动测 距传感和主动深度传感。被动测距传感的方式中,终端设备不需要利用激光光源发射光。主动深度传感的方式中,终端设备需要利用激光光源发射光。
被动测距传感中可以利用双目立体视觉(或称为红绿蓝(red green blue,RGB)双目)技术。一种可能的实现中,可以通过两个相隔一定距离的摄像机同时获取同一场景的两幅图像,通过立体匹配算法找到两幅图像中对应的像素点,根据三角原理计算出视差信息,视差信息通过转换可用于表征场景中物体的深度信息。另一种可能的实现中,基于立体匹配算法,还可以通过拍摄同一场景下不同角度的一组图像来获得该场景的深度图像。除此之外,深度信息还可以通过对图像的光度特征、明暗特征等特征进行分析间接估算得到。
可以理解,在被动测距传感器的方式中,图像深度的计算通常与图像的像素点相关,因此,深度图像的获取通常基于彩色图像。
主动测距传感的方式中,测量原理可以如图1对应的描述,深度图像的获取可以独立于彩色图像的获取。主动深度传感的方式中,采用的技术可以包括:飞行时间(time of flight,TOF)、结构光等。TOF技术可以包括直接飞行时间(indirect time of flight,ITOF)和直接飞行时间(direct time of flight,DTOF)技术。
表1示出了图像深度获取中ITOF技术、DTOF技术、RGB双目技术和结构光技术的对比情况。
表1
Figure PCTCN2020077476-appb-000001
可见,功耗和硬件尺寸较小的ITOF技术、RGB双目技术和结构光技术的测量距离较近。测量距离较远的DTOF技术,功耗和硬件尺寸较大。
由于手机等移动终端本身的尺寸和功耗限制,目前功耗和硬件尺寸较大的DTOF技术不能应用于手机等移动终端。
而随着手机等移动终端的发展,手机等移动终端对深度图像中距离的要求越来越高,因此,希望在手机等移动终端中实现DTOF技术,并且实现该DTOF技术的DTOF的硬件的尺寸和功耗要较小,以满足手机等移动终端对硬件尺寸和功耗的要求。
DTOF技术的实现中,较为重要的部分是实现激光源对待测物体的扫描。
示例性的,在将DTOF技术应用于自动驾驶的光学雷达(light detection and ranging,LIDAR)的深度测距中,激光源发出的光需要扫描一定空间角度。
示例性的,图2示出了LIDAR中一种DTOF技术中的实现方式示意图,为实现激光器光源的扫描,激光器光源出来的光束先经过MEMS mirror,通过MEMS mirror实现角度扫描,然后照射不同角度上的待测物体,再回到收端传感器,进而实现一定视场角度的深度测距。
例如,图3示出了自动驾驶的DTOF技术中扫描过程的三次扫描示意图。在每次扫描中,假设该激光源发出的激光束被扫描的空间角度为θ,激光束自身的发散角为
Figure PCTCN2020077476-appb-000002
,则该激光器和DTOF系统的视场角度(Field of View,FOV)为θ×
Figure PCTCN2020077476-appb-000003
但是,图2中的DTOF技术实现中,由于需要设置转镜,导致硬件尺寸较大,且由于转镜需要频繁转动,还可能存在功耗大、可靠性低和设备寿命短的问题,不能应用于对硬件尺寸和功耗均要求较小的设备中。
进一步对DTOF技术中的激光源扫描的实现进行分析,激光源扫描的本质是实现对被照射场景的分块扫描。
示例性的,图4、图5和图6示出了被照射场景的三次扫描过程示意图。
如图4至图6所示,在将被照射场景0300进行M*N(M和N均为正整数)分块的扫描中,通过调整发射端006发出的输出光005的角度,可以实现对M*N个场景分块的分别扫描。每次扫描中,发射端006中的激光源发射的输出光005可以实现对M*N个场景分块的其中一个场景分块的扫描照射,接收端013可以接收从该其中一个场景分块返回的输入光012,进而可以基于输出光005和输入光012的往返时长,计算该其中一个场景分块的深度。
对被照射场景实现M*N分块的扫描中,可能采用的方式可以是:对激光器阵列的M*N个激光器分别点亮,每个激光器可以实现对其中一块场景的扫描照射。
示例性的,图7、图8、图9、图10和图11示出了基于M*N的激光器阵列实现对被照射场景扫描的示意图。
如图7至图11所示,驱动器整列003可以分别驱动激光器阵列002的一个或多个激光器点亮,点亮的激光器可以实现该激光器对应的区域的扫描。例如图7、图8和图9中,可以每次点亮一个激光器,实现对一块场景的扫描。图10中,可以同时点亮一行激光器,实现对一行场景的扫描照射。图11中,可以同时点亮全部激光器,实现对被照射场景的完全扫描照射。
即基于对激光器整列中激光器的灵活选择,实现对被照射场景的灵活扫描照射。
实现对激光器的灵活选择时,一种可能想到的方案是,将激光器阵列中的M*N个激光器分别独立设置,如图12所示的激光器阵列中,空心连接点代表没有电连接的交叉,即每个激光器的P电极和N电极是相互独立的,从而可以利用不用的场效应管作为开关,单独控制每个激光器,实现对激光器的灵活选择。
示例性的,图13示出了一种对应于如图12所示的激光器阵列和驱动电路,对于其中一个激光器130,可以在其放电回路(因为激光器的单向导通特性,通常将激光器正极端连接的电器件构成的回路称为充电回路,将激光器负极端连接的电器件构成的回路称为充电回路)中设置场效应管131,以及该场效应管131的栅极驱动器132,基于控制信号产生模块产生的控制信号可以控制场效应管131的关断或开通,在场效应管131开通时,激光器130接地,激光器130中有电流通过,实现点亮。
但是,图13所示的激光器阵列和驱动电路中,因为采用独立的激光器,因此M*N个分区的激光器和M*N个场效应晶体管的尺寸都将非常大,不能胜任如手机等对尺寸要求非常高的应用场景。
能够适用于手机等对尺寸要求较高的激光器阵列中,通常激光器阵列中所有激光器的N极都连接在一起。如图14所示,示出了一种N极相连的激光器阵列,空心连接点代表没有电连接的交叉,实心连接点代表有电连接的交叉。
针对图14的激光器阵列,结合图13的激光器控制思路,一种可能想到的方案是:如图15所示,在每个激光器的放电回路中设置场效应管和对应的栅极驱动器,进而基于控制信号控制场效应管的关断或开通。
但是,因为每个激光器的N极连在一起,每个场效应管开通,全部的激光器中都有电流通过,全部激光器都会点亮,图15的驱动方案不能实现对激光器的灵活选择。
基于此,本申请实施例提供了激光器驱动电路,不在放电回路中对激光器进行控制,而是在激光器驱动电路的充电回路中,设置了一个或多个控制单元,基于控制单元中的第一开关模块、容性模块可以组成充放电回路,从而可以实现对激光器的灵活选择,从而使得基于激光器驱动电路可以实现对激光器阵列的扫描,不需要额外设置转镜等扫描设备,从而可以为实现小尺寸和小功耗的光发射端提供电路支持。
具体应用中,充电回路设置控制单元不仅可以对激光器进行灵活选通,在其他方面也可以较大程度优于在放电回路。
例如,DTOF实现中,放电回路的脉冲电流是高峰值(例如高达60A),高重频(例如高达5MHz),低的上升/下降时间(例如低至1ns),这对设置在放电回路中的电开关提出非常高的要求,这些性能要求导致开关选择需要采用GaN基MOS管,这将导致开关的成本高,体积大。特别是M*N的阵列较大时,这个矛盾更加突出。
而在充电回路中不需要很高重频(例如典型30Hz~120Hz);充电回路的峰值电流可调整至远低于实际工作的脉冲电流;充电时间不需要ns量级,只要到ms量级即可满足要求。因此将控制单元置于充电回路可以极大释放对开关的要求,从而降低开关电路的尺寸和成本。
下面,首先对本申请实施例中的各词汇进行说明。
本申请实施例所描述的电连接可以包括:利用导线、电磁、或电器件等实现的连接,电连接的两个设备之间可以流过电流。
本申请实施例所描述的开关模块可以为场效应管(field effect transistor,FET)。例如,该场效应管可以包括结型场效应晶体管(junction field-effect transistor,JFET)、金属氧化物半导体场效应晶体管(metal oxide semiconductor FET,MOSFET)和V型槽场效应晶体管(V-groove metal-oxide semiconductor FET,VMOSFET)三种,MOSFET可以包括N型金属氧化物半导体场效晶体管(NMOSFET,简称NMOS管)和P型金属氧化物半导体场效晶体管(PMOSFET,简称PMOS管)两种。开关模块也可以为集成芯片等用于实现场效应管相似功能的器件,本申请实施例对此不作具体限定。
本申请实施例所描述的容性模块具有储能特性,可以根据电路的情况进行充放电。示例性的,容性模块可以是电容、电容组件或能够实现电容相似功能的芯片、器件等, 本申请实施例对此不做具体限定。
本申请实施例所描述的感性电器件可以是电感、电感组件或能够实现电感相似功能的芯片、器件等,本申请实施例对此不做具体限定。
本申请实施例所描述的单向导通电器件可以是二极管、二极管组件或能够实现单向导通功能的芯片、器件等,本申请实施例对此不做具体限定。
图16示出了本申请实施例的一种激光器驱动电路的电路示意图。如图16所示,示出了包含一个控制单元160以及电压输入端161的激光器驱动电路示意图。
其中,控制单元包括:第一开关模块1601、容性模块1602和第一连接端1603;第一连接端1603用于连接激光器正极。
控制单元160设置在激光器驱动电路的充电回路中,具体的,第一开关模块1601的一端与电压输入端161电连接,第一开关模块1602的另一端与第一连接端1603电连接;第一开关模块1601用于根据第一控制信号实现对控制单元对应的激光器162的选择;容性模块1602的一端与第一连接端1603电连接,容性模块1602的另一端接地。
可以理解,激光器162可以包含于激光器驱动器对应的激光器阵列中,本申请实施例的激光器驱动电路可以不包含激光器162,图16中示出激光器162的目的是为了更清楚的解释本申请实施例的工作原理,不构成对本申请实施例的激光器驱动电路的限定。
本申请实施例中,第一开关模块1602可以包括栅端、漏端和源端。栅端可以用于接收第一控制信号,第一控制信号可以为方波、正弦波等能够控制第一开关模块1602开通或关断的信息。栅端和源端可以根据实际应用适应连接电压输入端161和第一连接端1602。
图16对应的激光器驱动电路的工作原理为:第一控制信号控制第一开关模块1601开通时,容性模块1602充电,若第二连接端1603的电压大于激光器162的导通电压,则激光器162中有电流通过,激光器162被选中点亮。
可选的,如图16所示,激光器驱动电路还包括第一脉冲电流产生单元163。
第一脉冲电流产生单元163包括第二连接端1631,第一脉冲电流产生单元用于根据第二控制信号的脉冲周期控制第二连接端1631周期性放电;第二连接端1631用于连接激光器负极。
在激光器被点亮时,通常需要利用脉冲电流来产生脉冲光。因此本申请实施例中,激光器驱动电路中还可以包括第一脉冲电流产生单元163,第一脉冲电流产生单元163可以使得第二连接端1631周期性放电,在第二连接端1631周期性放电时,如果第二连接端1631连接的激光器162被选中,则激光器162中将周期性流过电流,即激光器162中流过脉冲电流,从而激光器162可以产生脉冲光。
可选的,第一脉冲电流产生单元163还包括:第一场效应模块1632和第一场效应模块对应的驱动模块1633。其中,第一场效应模块对应的驱动模块1633用于接收第二控制信号;第一场效应模块1632用于根据第二控制信号的脉冲周期控制第二连接端周期性放电。
本申请实施例中,第二控制信号可以是脉冲信号,第二控制信号可以控制第一场效应模块1632周期性关断或开通,在第一场效应模块1632开通时,第二连接端1631接地,实现放电。
可以理解,具体应用中,第一场效应模块1632与接地端之间还可以根据实际应用场景增加电阻等,以降低第一场效应模块1632开通时流过激光器162的电流,本申请实施例对此不作具体限定。
图17示出了本申请实施例的另一种激光器驱动电路的电路示意图。如图17所示,示出了包含M*N个控制单元170的激光器驱动电路示意图。M和N可以根据实际的应用场景设定,本申请实施例不作具体限定。
如图17所示,每个控制单元170用于控制一个激光器,M*N个激光器对应M*N个控制单元170,M*N个激光器的负极(或称为N极)全部连接。
控制单元170中的开关模块、容性模块和用于连接激光器正极的连接端可以参照图16的实施例的描述,在此不作赘述。
具体工艺实现中,本申请实施例的各控制单元170的容性模块可以设置为容性模块阵列,开关模块可以设置为开关阵列,并利用适应的工艺实现本申请实施例中所述的电连接关系,本申请实施例对激光器驱动电路的具体形态不作限定。
第一控制信号0002可以控制各控制单元170中的开关模块的开通与关断,从而可以控制激光器的选择。
因为本申请实施例中,控制单元170设置于激光器驱动电路的充电回路中,任一个控制单元170中开关模块的导通,不会导致其他激光器中错误的产生电流,因此,可以实现对多个激光器的灵活驱动。
可选的,如图17所示,激光器驱动电路还可以包括一个脉冲电流产生单元172。脉冲电流产生单元172具体可以参照图16的实施例的描述,在此不作赘述。
第二控制信号0001可以控制脉冲电流产生单元172的场效应管周期性开通,从而在被选中的激光器中,输入电压0102、开通的控制单元170中的容性模块、以及开通的控制单元170所控制的激光器组成放电回路,激光器中流过脉冲电流,从而激光器可以被选中点亮。
可选的,如图18所示,激光器驱动电路还可以包括多个脉冲电流产生单元172。
具体应用中,可能存在多个激光器被同时点亮的情况,则有多条电流汇聚在脉冲电流产生单元172的场效应管中,可能导致脉冲电流产生单元172出现过流,导致脉冲电流产生单元172的损坏。
因此,本申请实施例中,在激光器驱动电路中设置多个脉冲电流产生单元172,多个脉冲电流产生单元172共同有第二控制信号0001控制,从而可以达到分流作用,对脉冲电流产生单元172进行保护。
可以理解,实际应用中,脉冲电流产生单元172的数量可以根据实际应用场景进行设定,本申请实施例对此不作具体限定。
图19示出了图17或图18对应的激光器驱动电路的工作时序图。
如图19所示,第二控制信号0001可以为脉冲信号,用来辅助激光器产生脉冲电 流。第一控制信号0002可以为矩形波,可以用来选通激光器,控制激光器扫描的频率,选择不同的扫描方式。第一控制信号0002每个周期的高电平可以使得一个控制单元中的开关模块SN导通,在该SN控制的激光器LDN中可以流过脉冲电流,电压输入端的电压高低可以控制脉冲电流的峰值。从而激光器LDN可以发出脉冲光0016。
示例性的,第二控制信号0001可以为方波脉冲信号。如图20,示出了一种方波脉冲信号示意图。
方波脉冲信号中,脉冲重复频率f可以为1kHz到1GHz范围可选,例如可以是200KHz;脉冲宽度τ可以为1ns到1ms可选,例如可以是5ns;脉冲占空比可以为0.01%到50%范围可选,例如可以为1%。脉冲电流的幅度Ipeak可以为0到50A可选,例如可以为20A。占空比可以为τ/(1/f),即τ×f。
需要说明的是,第一控制信号0002可以根据实际的应用场景采用程序设定、电路搭建等实现多个控制单元中开关模块的导通,本申请实施例对此不作具体限定。
图21示出了本申请实施例的另一种激光器驱动电路的电路示意图。如图21所示,示出了包含M个控制单元210和N个第二开关模块211的激光器驱动电路示意图。M和N可以根据实际的应用场景设定,本申请实施例不作具体限定。
本申请实施例中,激光器驱动电路所驱动的激光器阵列中,每一行激光器的正极电连接,每个控制单元210可以实现对一行激光器的选择。每一列激光器的负极电连接,每个第二开关模块211可以实现对一列激光器的选择。则根据M个控制单元210和N个第二开关模块211的配合,可以实现对任一个激光器的选择。
可选的,图21的激光器驱动电路中还可以包括一个或多个第二脉冲电流产生单元212,第二脉冲电流产生单元212一个或多个第二开关模块211连接,从而可以实现在被选中的激光器中流过脉冲电流。
图21对应的激光器驱动模块的工作原理与上述实施例的工作原理类似,不同的是图21选择激光器是根据M个控制单元210和N个第二开关模块211的配合实现的,在此不再赘述图21的激光器驱动模块的工作原理。
图22示出了本申请实施例的另一种激光器驱动电路的电路示意图。与图21不同的是,图22中省略了用于实现列选择的开关模块,每一列激光器的负极电连接后,可以与脉冲电流产生单元连接,从而可以实现以行为单位的激光器的灵活控制。或者,可以认为,图22的激光器驱动电路,每次可以一行或多行激光器。
图23示出了本申请实施例的第一开关模块示意图。如图23所示,第一开关模块230包括:场效应管2301、感性电器件2302和单向导通电器件2303。
其中,场效应管2301、感性电器件2302和单向导通电器件2303串联连接;场效应管的栅端用于接收第一控制信号;单向导通电器件的负极端与第一连接端连接。
本申请实施例的第一开关模块设置在激光器驱动电路的充电回路中,可能导致充电回路的功率损耗较大,因此可以对第一开关模块适应处理,以降低充电回路的功率损耗。
一种可能想到的方式中,降低功率损耗的方式可以为:如图24所示,在充电回路 中串联电阻,以降低充电回路的充电峰值电流,但是,电阻R本身也存在功耗,导致充电回路的功耗依然较大。
因此,本申请实施例中,如图23所示,在充电回路串联感性电器件,组成LC电路模型,既可以提高充电效率,同时可以降低对电压输入端的输入电压的要求。同时为了抑制LC电路的反向振荡,在电路上串联单向导通电器件,保证脉冲电流单向流动。
本申请实施例的激光器驱动电路可以应用于终端设备的深度获取组件中。
深度获取组件可以包括如图17、图18、图21或图22中的激光器驱动阵列和激光器阵列;激光器阵列中包括多个激光器;激光器驱动阵列包括一个或多个控制单元,各控制单元用于控制激光器阵列中的一个或多个激光器的选择;其中,控制单元包括:第一开关模块、容性模块和第一连接端;第一连接端用于连接激光器的正极端;第一开关模块用于根据第一控制信号实现对控制单元对应的激光器的选择;第一开关模块的一端与激光器驱动阵列的电压输入端电连接,第一开关模块的另一端与第一连接端电连接;容性模块的一端与第一连接端电连接,容性模块的另一端接地。本申请实施例在激光器驱动阵列的充电回路中,设置了一个或多个控制单元,基于控制单元中的第一开关模块、容性模块可以灵活的实现对控制单元对应的激光器的灵活选择,从而使得基于激光器驱动阵列可以实现对激光器阵列的扫描激光发射,不需要额外设置转镜等扫描设备,从而可以为实现小尺寸、小功耗、低成本的光发射端提供电路支持。
终端设备可以包括手机、平板电脑、或具备无线通讯功能的可穿戴电子设备(如智能手表)、相机等。
图25示出了一种深度获取组件的工作原理示意图。如图25所示,深度获取组件可以包括发送端006和接收端013。
发送端006可以包括驱动器阵列002、激光器阵列003和透镜004。驱动器阵列002、激光器阵列003和透镜004可以放置在发送端底座。
驱动器阵列002可以包括上述实施例中任意的激光器驱动电路。
工作时,收发同步和控制电路001发送脉冲电信号给驱动器阵列002,驱动器阵列002将该脉冲电信号放大为脉冲电流0015,然后将该脉冲电流0015输出给激光器阵列003。激光器阵列003将光脉冲转换为光脉冲0016。光脉冲0016经过透镜004,光束被调整至预想的光束形貌(包括发散角,光斑尺寸,光束角度),然后发射出输出光005。
接收端013的传感器包括输入光012,透镜011,光滤波器010,单光子雪崩增倍光电二极管(single photon avalanche diode,SPAD)阵列008,淬灭和时间数字转换电路(time to analog converter,TDC)007,本申请实施例可以不涉及接收端的改进,在此对接收端013的具体结构和内容不作赘述。
在本申请实施例的深度获取组件应用于手机时,获取深度图像的距离可以大于10m,功耗可以小于1W,从而可以满足手机中对硬件尺寸和功耗的要求。且因为本申请实施例的深度获取组件中,不包括转镜,因此不存在转镜方案的可靠性问题,可靠性较高。
可以理解,本申请实施例中,在灵活选择激光器时,可以结合具体的应用场景。 示例性的,在拍摄静止对象,例如建筑物、风景、摆拍对象的深度图像时,可以每次点亮一个激光器,实现逐块扫描。在拍摄运动对象,例如移动中的人、物时,可以每次点亮多个激光器,实现多块扫描,或一次点亮全部激光器,实现快速深度获取,避免运动对象的位移造成的深度获取误差。
以上的实施方式、结构示意图或仿真示意图仅为示意性说明本申请的技术方案,其中的尺寸比例并不构成对该技术方案保护范围的限定,任何在上述实施方式的精神和原则之内所做的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (10)

  1. 一种深度获取组件,其特征在于,包括激光器驱动阵列和激光器阵列;所述激光器阵列中包括多个激光器;所述激光器驱动阵列包括一个或多个控制单元,各所述控制单元用于控制所述激光器阵列中的一个或多个激光器的选择;
    其中,所述控制单元包括:第一开关模块、容性模块和第一连接端;
    所述第一连接端用于连接所述激光器阵列中的一个或多个激光器的正极端;
    所述第一开关模块用于根据第一控制信号实现对所述控制单元对应的激光器的选择;所述第一开关模块的一端与所述激光器驱动阵列的电压输入端电连接,所述第一开关模块的另一端与所述第一连接端电连接;
    所述容性模块的一端与所述第一连接端电连接,所述容性模块的另一端接地。
  2. 根据权利要1所述的深度获取组件,其特征在于,所述第一开关模块包括:场效应管、感性电器件和单向导通电器件;
    所述场效应管、所述感性电器件和所述单向导通电器件串联连接;
    所述场效应管的栅端用于接收所述第一控制信号;
    所述单向导通电器件的负极端与所述第一连接端连接。
  3. 根据权利要求1或2所述的深度获取组件,其特征在于,还包括:一个或多个第一脉冲电流产生单元;
    所述第一脉冲电流产生单元包括第二连接端,所述第一脉冲电流产生单元用于根据所述第二控制信号的脉冲周期控制所述第二连接端周期性放电;所述第二连接端用于连接激光器负极。
  4. 根据权利要求3所述的深度获取组件,其特征在于,所述第一脉冲电流产生单元还包括:第一场效应模块和所述第一场效应模块对应的驱动模块;
    所述第一场效应模块对应的驱动模块用于接收所述第二控制信号;
    所述第一场效应模块用于根据所述第二控制信号的脉冲周期控制所述第二连接端周期性放电。
  5. 根据权利要求1-4任一项所述的深度获取组件,其特征在于,所述多个激光器的负极端电连接,每个所述控制单元用于控制一个激光器。
  6. 根据权利要求1-2任一项所述的深度获取组件,其特征在于,每个所述控制单元用于实现对所述激光器阵列中的一行激光器的选择,所述一行激光器的正极电连接;
    所述激光器驱动电路还包括一个或多个第二开关模块;
    每个所述第二开关模块用于实现所述激光器阵列中的一列激光器的选择,所述第二开关模块与所述一列激光器的负极电连接;
    其中,所述一个或多个第二开关模块和所述一个或多个控制单元的第一开关模块用于互相配合实现对任一激光器的选择。
  7. 根据权利要求6所述的深度获取组件,其特征在于,所述光器驱动电路还包括一个或多个第二脉冲电流产生单元;
    所述第二脉冲电流产生单元与一个或多个所述第二开关模块连接,所述第二脉冲电流产生单元用于根据第三控制信号的脉冲周期控制所述一个或多个所述第二开关模 块对应的激光器周期性放电。
  8. 根据权利要求7所述的深度获取组件,其特征在于,所述第二脉冲电流产生单元还包括:第二场效应模块和所述第二场效应模块对应的驱动模块;
    所述第二场效应模块对应的驱动模块用于接收所述第三控制信号;
    所述第二场效应模块用于根据所述第三控制信号的脉冲周期控制所述一个或多个所述第二开关模块连接的激光器周期性放电。
  9. 根据权利要求6所述的深度获取组件,其特征在于,所述第二开关模块包括:第三场效应模块和所述第三场效应模块对应的驱动模块;
    所述第三场效应模块对应的驱动模块用于接收第四控制信号;
    所述第三场效应模块用于根据所述第四控制信号的脉冲周期控制所述第三场效应模块对应的激光器周期性放电。
  10. 一种电子设备,其特征在于,包括如权利要求1-9任一项所述的深度获取组件,所述电子设备包括下述的一种或多种:手机、平板电脑、可穿戴电子设备、相机。
PCT/CN2020/077476 2020-03-02 2020-03-02 深度获取组件及电子设备 WO2021174390A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20923651.2A EP4099049A4 (en) 2020-03-02 2020-03-02 DEPTH ACQUISITION SET AND ELECTRONIC DEVICE
CN202080093606.8A CN114981679A (zh) 2020-03-02 2020-03-02 深度获取组件及电子设备
PCT/CN2020/077476 WO2021174390A1 (zh) 2020-03-02 2020-03-02 深度获取组件及电子设备
JP2022552627A JP7467657B2 (ja) 2020-03-02 2020-03-02 深度取得部品および電子デバイス
US17/899,925 US20230006418A1 (en) 2020-03-02 2022-08-31 Depth obtaining component and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077476 WO2021174390A1 (zh) 2020-03-02 2020-03-02 深度获取组件及电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/899,925 Continuation US20230006418A1 (en) 2020-03-02 2022-08-31 Depth obtaining component and electronic device

Publications (1)

Publication Number Publication Date
WO2021174390A1 true WO2021174390A1 (zh) 2021-09-10

Family

ID=77614428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077476 WO2021174390A1 (zh) 2020-03-02 2020-03-02 深度获取组件及电子设备

Country Status (5)

Country Link
US (1) US20230006418A1 (zh)
EP (1) EP4099049A4 (zh)
JP (1) JP7467657B2 (zh)
CN (1) CN114981679A (zh)
WO (1) WO2021174390A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238786A1 (ja) * 2022-06-08 2023-12-14 株式会社小糸製作所 発光装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812132A (zh) * 2015-04-14 2015-07-29 常州工程职业技术学院 光伏led阵列模拟光源的设计方法及其装置
US20170350965A1 (en) * 2016-06-01 2017-12-07 Toyota Motor Engineering & Manufacturing North America, Inc. Lidar systems with expanded fields of view on a planar substrate
CN109343025A (zh) * 2018-08-14 2019-02-15 清华大学 一种激光雷达的发射系统、探测系统及探测方法
CN109884653A (zh) * 2019-04-09 2019-06-14 西安交通大学 激光测距装置和激光测距方法
CN110710072A (zh) * 2017-04-12 2020-01-17 感应光子公司 具有结合光束转向的超小型垂直腔表面发射激光发射器的器件

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183598B2 (ja) * 1993-12-14 2001-07-09 三菱電機株式会社 障害物検知装置
JP2016188808A (ja) 2015-03-30 2016-11-04 竹前 義博 レンジセンサとその部品
US10158211B2 (en) 2015-09-22 2018-12-18 Analog Devices, Inc. Pulsed laser diode driver
JP6644348B2 (ja) 2015-11-06 2020-02-12 株式会社リコー 物体検出装置、センシング装置及び移動体装置
JP6819098B2 (ja) 2016-07-01 2021-01-27 株式会社リコー 物体検出装置、センシング装置及び移動体装置
US10048358B2 (en) 2016-12-30 2018-08-14 Panosense Inc. Laser power calibration and correction
JP2019068528A (ja) 2017-09-28 2019-04-25 株式会社リコー 昇圧回路、電源回路、光源駆動回路及び距離計測装置
JP6983355B2 (ja) * 2018-07-18 2021-12-17 エフィシエント パワー コンヴァーション コーポレーション 集積バスブースト回路を有する電流パルス発生器
US11585906B2 (en) 2018-12-26 2023-02-21 Ouster, Inc. Solid-state electronic scanning laser array with high-side and low-side switches for increased channels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812132A (zh) * 2015-04-14 2015-07-29 常州工程职业技术学院 光伏led阵列模拟光源的设计方法及其装置
US20170350965A1 (en) * 2016-06-01 2017-12-07 Toyota Motor Engineering & Manufacturing North America, Inc. Lidar systems with expanded fields of view on a planar substrate
CN110710072A (zh) * 2017-04-12 2020-01-17 感应光子公司 具有结合光束转向的超小型垂直腔表面发射激光发射器的器件
CN109343025A (zh) * 2018-08-14 2019-02-15 清华大学 一种激光雷达的发射系统、探测系统及探测方法
CN109884653A (zh) * 2019-04-09 2019-06-14 西安交通大学 激光测距装置和激光测距方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4099049A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023238786A1 (ja) * 2022-06-08 2023-12-14 株式会社小糸製作所 発光装置

Also Published As

Publication number Publication date
JP7467657B2 (ja) 2024-04-15
US20230006418A1 (en) 2023-01-05
EP4099049A1 (en) 2022-12-07
CN114981679A (zh) 2022-08-30
EP4099049A4 (en) 2023-03-29
JP2023517000A (ja) 2023-04-21

Similar Documents

Publication Publication Date Title
US11962900B2 (en) Multiple fields of view time of flight sensor
WO2017118221A1 (zh) 像素电路及其驱动方法、显示面板
US20200202793A1 (en) Pixel circuit and driving method thereof and display apparatus
CN111223444A (zh) 像素驱动电路及驱动方法、显示装置
JPH08228026A (ja) ダイオード駆動電流源
CN110212405A (zh) 一种激光发射器及其发射方法
US11600966B2 (en) Light source system
WO2021174390A1 (zh) 深度获取组件及电子设备
CN109036283A (zh) 有机发光场效应晶体管的驱动电路及驱动方法、显示装置
US11238764B2 (en) Light emitting control circuit, driving method thereof, array substrate and display device
CN103150994A (zh) 一种发光二极管显示控制电路以及显示屏
CN114333704A (zh) 一种像素驱动电路及其驱动方法、显示面板
CN112967681B (zh) 一种驱动电路、发光组件和显示装置
CN214754672U (zh) 一种激光驱动电路、激光雷达发射模组及激光雷达
JP2018004372A (ja) 光走査装置および距離計測装置
CN106057127A (zh) 显示装置及其驱动方法
WO2022261835A1 (zh) 光发射装置及其控制方法、测距装置、可移动平台
RU2627729C2 (ru) По отдельности управляемая матрица излучающих элементов
CN216055673U (zh) 激光发射模块及激光雷达
CN112098978B (zh) 提高tof相机激光器导通速度、降低驱动功耗的系统及方法
CN114758621A (zh) 单路斜坡型模拟像素驱动电路及其驱动方法
CN210378418U (zh) 一种微米发光二极管矩阵显示器
CN210156316U (zh) 一种新型磁保持继电器驱动电路
CN112992064A (zh) 一种发光电路、发光组件和显示装置
WO2020252877A1 (zh) 一种微米发光二极管矩阵显示器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923651

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022552627

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020923651

Country of ref document: EP

Effective date: 20220901

NENP Non-entry into the national phase

Ref country code: DE