WO2021172720A1 - 자율 무인항공 이동체 및 이의 제어 방법 - Google Patents
자율 무인항공 이동체 및 이의 제어 방법 Download PDFInfo
- Publication number
- WO2021172720A1 WO2021172720A1 PCT/KR2020/018249 KR2020018249W WO2021172720A1 WO 2021172720 A1 WO2021172720 A1 WO 2021172720A1 KR 2020018249 W KR2020018249 W KR 2020018249W WO 2021172720 A1 WO2021172720 A1 WO 2021172720A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- unmanned aerial
- aerial vehicle
- autonomous unmanned
- spilled oil
- movement
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000009792 diffusion process Methods 0.000 claims abstract description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000000356 contaminant Substances 0.000 claims abstract description 15
- 238000001514 detection method Methods 0.000 claims description 15
- 239000003344 environmental pollutant Substances 0.000 claims description 14
- 231100000719 pollutant Toxicity 0.000 claims description 14
- 238000004891 communication Methods 0.000 claims description 4
- 239000003921 oil Substances 0.000 description 81
- 230000008569 process Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 230000006870 function Effects 0.000 description 9
- 230000004044 response Effects 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000003305 oil spill Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000010743 number 2 fuel oil Substances 0.000 description 1
- 239000010747 number 6 fuel oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C39/00—Aircraft not otherwise provided for
- B64C39/02—Aircraft not otherwise provided for characterised by special use
- B64C39/024—Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D47/00—Equipment not otherwise provided for
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/026—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by measuring distance between sensor and object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/02—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
- G01B11/06—Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/10—UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
Definitions
- the present invention relates to an autonomous unmanned aerial vehicle equipped with a lidar and a method for controlling the same.
- An object of the present invention is to provide an autonomous unmanned aerial vehicle including lidar and a control method thereof.
- an autonomous unmanned aerial vehicle is a lidar for detecting contaminants on water; and a navigation unit for controlling operation of the autonomous unmanned aerial vehicle.
- the lidar tracks the movement path or diffusion path of the contaminant
- the operation unit moves the autonomous unmanned aerial vehicle along the movement path or the diffusion path, and monitors a specific water area according to a set program.
- An autonomous unmanned aerial vehicle control method includes detecting contaminants in water; tracking the movement path of the pollutant by zooming out the pollutant when the pollutant is detected in the water; ZOOM IN searching for a specific part of the contaminants; and acquiring a sample of the ZOOM IN searched area.
- the autonomous unmanned aerial vehicle according to the present invention can quickly detect spilled oil, including lidar, and track the movement/diffusion path of the spilled oil, so that the initial response can be quickly made, thereby minimizing damage caused by the spilled oil.
- FIG. 1 is a diagram schematically illustrating a leak detection process using an autonomous unmanned aerial vehicle according to an embodiment of the present invention.
- FIG. 2 is a view showing a leaked oil detection method according to an embodiment of the present invention.
- FIG 3 is a view showing a process for obtaining the thickness of the spilled oil according to an embodiment of the present invention.
- FIG. 5 is a diagram illustrating a process of detecting a movement path of spilled oil.
- FIG. 6 is a diagram illustrating a zoom in/out function according to an embodiment of the present invention.
- FIG. 7 is a flowchart illustrating an operation of a lidar according to an embodiment of the present invention.
- FIG. 8 is a diagram illustrating an autonomous unmanned aerial vehicle system according to an embodiment of the present invention.
- FIG. 9 is a block diagram illustrating the configuration of an autonomous unmanned aerial vehicle according to an embodiment of the present invention.
- the present invention relates to an autonomous unmanned aerial vehicle and a control method thereof, and an autonomous unmanned aerial vehicle including a lidar, for example, a drone, is used to detect oil spilled on water (spilled oil) and Effective initial response can be attempted by identifying movement and diffusion routes.
- an autonomous unmanned aerial vehicle including a lidar, for example, a drone, is used to detect oil spilled on water (spilled oil) and Effective initial response can be attempted by identifying movement and diffusion routes.
- the autonomous unmanned aerial vehicle may detect and monitor contaminants present in water in addition to spilled oil.
- the autonomous unmanned aerial vehicle may not only detect spilled oil, but may also obtain a sample of spilled oil and provide it to the manager of the control center.
- FIG. 1 is a diagram schematically illustrating a leak detection process using an autonomous unmanned aerial vehicle according to an embodiment of the present invention
- FIG. 2 is a diagram illustrating a leak detection method according to an embodiment of the present invention
- 3 is a view showing a process for obtaining the thickness of the spilled oil according to an embodiment of the present invention
- 4 is a view showing characteristics according to the type of spilled oil
- FIG. 5 is a diagram illustrating a process of detecting a movement path of spilled oil
- the autonomous unmanned aerial vehicle for example, a drone may include a lidar.
- the lidar may output a beam in the water direction to detect the water.
- the lidar is mounted on the autonomous unmanned aerial vehicle, there is no limitation on the mounting structure and method.
- the autonomous unmanned aerial vehicle is programmed to autonomously monitor a designated sea area, and may be communicatively connected to a control center. That is, the autonomous unmanned aerial vehicle may transmit the detection result of the designated sea area to the control center in real time or at a predetermined period, and return to the base when a predetermined time elapses.
- the lidar of the autonomous unmanned aerial vehicle may emit a beam to the water surface, and the spilled oil may be detected through the reflected wave. Specifically, since the intensity or arrival time of the reflected beams is different when the beam is reflected from the water and when the light is reflected from the spilled oil as shown in FIG. 2, the lidar uses this intensity or the arrival time It can be detected whether the spilled oil is present.
- the lidar can detect the shape or width of the spilled oil by removing the reflected wave reflected from the water among the reflected beams.
- the lidar can also detect the thickness of the spilled oil.
- the lidar measures the distance between the lidar and the outflow oil through the reflected wave reflected from the outflow oil as shown in FIG. 3, and through the reflected wave reflected from the water near the outflow oil Measuring the distance between the lidar and the water phase, it is possible to detect the thickness of the spilled oil through the difference between the measured distances.
- the lidar can also detect the type of the spilled oil.
- the type of the effluent oil In general, light crude oil, bunker A oil, and bunker C oil exist as the type of the effluent oil. As shown in FIG. 4 , since different characteristics appear depending on the type of oil, the lidar may also detect the type of oil based on these data. Of course, this type of oil may be detected by analysis at the control center through sampling as will be described later.
- the autonomous unmanned aerial vehicle or a control center communicating with the autonomous unmanned aerial vehicle may track the movement path or diffusion path of the spilled oil. For example, when the autonomous unmanned aerial vehicle detects the spilled oil while moving as shown in FIG. 5 , the movement path or diffusion path of the spilled oil may be tracked. In another aspect, the autonomous unmanned aerial vehicle may move along the movement/diffusion path.
- the autonomous unmanned aerial vehicle or the control center may predict the expected movement/diffusion path or diffusion path of the spilled oil in consideration of surrounding conditions such as wind, waves, and fog.
- the autonomous unmanned aerial vehicle or the control center may also calculate the movement/spread speed. When the expected movement/diffusion path, movement/diffusion speed, etc. are calculated in this way, as will be described later, a warning that the spilled oil will arrive soon to a ship or a person present in the sea area on the movement/diffusion path may be provided.
- the autonomous unmanned aerial vehicle may implement a ZOOM IN/OUT function to intensively observe a part of the contaminated sea area according to a preset condition.
- the autonomous unmanned aerial vehicle may perform a zoom IN function when detecting spilled oil to track the movement/diffusion path of the spilled oil, and perform a zoom OUT function to precisely observe a specific part of the spilled oil.
- the autonomous unmanned aerial vehicle when it is set to take intensive monitoring, automatically executes a ZOOM IN function when the width of the spilled oil exceeds the preset value. You can focus on a specific part.
- Detection of such spilled oil, tracking the movement/diffusion path of the spilled oil, determining the type of spilled oil, detecting the expected movement/diffusion route, implementing the ZOOM IN/OUT function, and sampling can be implemented in an artificial intelligence method. That is, the lidar may not monitor the spilled oil in one predetermined order, but may autonomously operate according to the state of the spilled oil or the surrounding environment.
- the lidar detects the movement/diffusion path of the spilled oil after detecting the spilled oil, intensively detects a specific area through ZOOM IN/OUT, collects a sample, and returns to the base. can Then, the type of the spilled oil and the expected movement/diffusion path may be detected.
- the lidar sequentially performs spill oil detection, movement/diffusion path detection, and expected movement/diffusion path detection, and after the wind or storm subsides, the lidar zooms.
- a specific area may be detected through IN/OUT, and the autonomous unmanned aerial vehicle may collect a sample and return to the base. Then, the type of the spilled oil can be detected.
- the autonomous unmanned aerial vehicle may collect a sample and return to the base directly without performing another step.
- the autonomous unmanned aerial vehicle or the control center may control the autonomous unmanned aerial vehicle to be alternately performed from a stage after the current progress state.
- FIG. 7 An example of the overall operation of the autonomous unmanned aerial vehicle is shown in FIG. 7 .
- the autonomous unmanned aerial vehicle may take off from a base, for example, a control center (S700) and monitor a designated sea area (S702).
- a control center S700
- S702 a designated sea area
- the autonomous unmanned aerial vehicle returns to the base after a preset time elapses (S716).
- the autonomous unmanned aerial vehicle zooms out in the designated sea area (S706) and tracks the movement/diffusion path of the spilled oil (S708), search The result may be reported to the control center (S714).
- the autonomous unmanned aerial vehicle may ZOOM IN the leaked oil for precise search, and may report the search result to the control center (S710).
- the autonomous unmanned aerial vehicle may return to the base after acquiring the sample of the spilled oil (S712) (S716).
- the autonomous unmanned aerial vehicle may sample the spilled oil of the zoomed-in area.
- the autonomous unmanned aerial vehicle tracks the movement/diffusion path of the spilled oil through ZOOM OUT, precisely detects the spilled oil through ZOOM IN, and acquires a sample of the spilled oil to return to the base.
- the autonomous unmanned aerial vehicle may perform different steps for different pollutants through artificial intelligence control.
- FIG. 8 is a diagram illustrating an autonomous unmanned aerial vehicle system according to an embodiment of the present invention.
- a plurality of autonomous unmanned aerial vehicles may detect contaminants, for example, spilled oil while flying over their own sea area.
- the autonomous unmanned aerial vehicle may communicate with another autonomous unmanned aerial vehicle, and may communicate with a ship.
- the autonomous unmanned aerial vehicle may provide the detection result or information transmitted from the control center to the other autonomous unmanned aerial vehicle or ship.
- the autonomous unmanned aerial vehicle acquires the expected movement path of the spilled oil
- information that the spilled oil will move to the corresponding sea area may be transmitted to another autonomous unmanned aerial vehicle that detects the sea on the predicted movement path.
- the other autonomous unmanned aerial vehicle may transmit information that the spilled oil will arrive soon to a vessel operating in its area.
- the vessel can adequately avoid spillage.
- information such as guidance on the expected movement route may be directly provided from the control center to the other autonomous unmanned aerial vehicle.
- the autonomous unmanned aerial vehicle may warn people on the shoreline with sound or light that the spilled oil will soon arrive, photograph the people on the shoreline, and transmit it to the control center.
- FIG. 9 is a block diagram illustrating the configuration of an autonomous unmanned aerial vehicle according to an embodiment of the present invention.
- the autonomous unmanned aerial vehicle includes a control unit 900 , a lidar 902 , a communication unit 904 , an AI unit 906 , a ZOOM IN/OUT unit 908 , and a navigation unit 910 .
- a sample acquisition unit 912 may be included.
- a warning unit 914 may be included.
- a storage unit 916 may be included.
- LiDAR 902 can detect contaminants at sea, particularly spilled oil.
- the lidar 902 may detect at least one of the presence of spilled oil, a movement/diffusion path of the spilled oil, a type of spilled oil, an expected movement/diffusion path of the spilled oil, and a distance to the spilled oil.
- the communication unit 904 is a communication connection path with the control center and other autonomous unmanned aerial vehicles or ships.
- the AI unit 906 autonomously controls a series of operations such as operation according to the surrounding environment, for example, wind, movement/diffusion path detection of spilled oil, expected movement/diffusion route of spilled oil, ZOOM IN/OUT operation, sample acquisition, etc. can do.
- the AI unit 906 may autonomously change the order of such a series of operations according to the surrounding environment, concentrate a specific operation, or omit a specific operation.
- the AI unit 906 may autonomously perform different operations according to whether the pollutant is spilled oil or another substance, that is, according to the type of the pollutant.
- the ZOOM IN/OUT unit 908 may perform a ZOOM IN or ZOOM OUT function to detect spilled oil.
- the operation unit 910 controls a series of operations such as take-off, operation, and return of the autonomous unmanned aerial vehicle. Also, the operation unit 910 may move the autonomous unmanned aerial vehicle along a movement/diffusion path of the spilled oil.
- the sample acquisition unit 912 serves to acquire a sample of the spilled oil.
- the warning unit 914 may provide information to a vessel or person in its area that an oil spill is imminent or a warning to avoid.
- the storage unit 916 may store various data such as a detection result.
- the controller 900 may control overall operations of the components of the autonomous unmanned aerial vehicle.
- each component may be identified as a respective process.
- the process of the above-described embodiment can be easily understood from the point of view of the components of the apparatus.
- the technical contents described above may be implemented in the form of program instructions that can be executed through various computer means and recorded in a computer-readable medium.
- the computer-readable medium may include program instructions, data files, data structures, etc. alone or in combination.
- the program instructions recorded on the medium may be specially designed and configured for the embodiments or may be known and available to those skilled in the art of computer software.
- Examples of the computer-readable recording medium include magnetic media such as hard disks, floppy disks and magnetic tapes, optical media such as CD-ROMs and DVDs, and magnetic such as floppy disks.
- - includes magneto-optical media, and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
- Examples of program instructions include not only machine language codes such as those generated by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
- a hardware device may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
라이다를 포함한 자율 무인항공 이동체 및 이의 제어 방법이 개시된다. 상기 자율 무인항공 이동체는 수상의 오염물질을 탐지하는 라이다 및 상기 자율 무인항공 이동체의 운항을 제어하는 운항부를 포함한다. 여기서, 상기 라이다는 상기 오염물질의 이동 경로 또는 확산 경로를 추적하고, 상기 운항부는 상기 이동 경로 또는 확산 경로를 따라 상기 자율 무인항공 이동체를 이동시키며 설정된 프로그램에 따라 특정 수상 영역을 감시한다.
Description
본 발명은 라이다를 장착한 자율 무인항공 이동체 및 이의 제어 방법에 관한 것이다.
대한민국공개특허공보 제10-2015-0089740A와 같은 종래 기술이 존재하나, 종래에는 해상에 유출유가 발생하면, 유출유의 이동 경로 등을 빨리 파악할 수가 없어서 초등 대응에 늦었으며, 그 결과 생태계를 심하게 파괴시키는 문제를 야기시켰다.
본 발명은 라이다를 포함한 자율 무인항공 이동체 및 이의 제어 방법을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 자율 무인항공 이동체는 수상의 오염물질을 탐지하는 라이다; 및 상기 자율 무인항공 이동체의 운항을 제어하는 운항부를 포함한다. 여기서, 상기 라이다는 상기 오염물질의 이동 경로 또는 확산 경로를 추적하고, 상기 운항부는 상기 이동 경로 또는 확산 경로를 따라 상기 자율 무인항공 이동체를 이동시키며 설정된 프로그램에 따라 특정 수상 영역을 감시한다.
본 발명의 일 실시예에 따른 자율 무인항공 이동체 제어 방법은 수상에서 오염물질을 탐지하는 단계; 상기 수상에서 상기 오염물질이 탐지된 경우 상기 오염물질을 ZOOM OUT 탐색하여 상기 오염물질의 이동 경로를 추적하는 단계; 상기 오염물질 중 특정 부분을 ZOOM IN 탐색하는 단계; 및 상기 ZOOM IN 탐색된 영역의 샘플을 취득하는 단계를 포함한다.
본 발명에 따른 자율 무인항공 이동체는 라이다를 포함하여 유출유를 빠르게 탐지하고 상기 유출유의 이동/확산 경로를 추적할 수 있으므로, 초동 대응이 빠르게 이루어질 수 있어서 유출유로 인한 피해를 최소화할 수 있다.
도 1은 본 발명의 일 실시예에 따른 자율 무인항공 이동체를 이용한 유출유 탐지 과정을 개략적으로 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 유출유 탐지 방법을 도시한 도면이다.
도 3은 본 발명의 일 실시예에 따른 유출유의 두께를 구하는 과정을 도시한 도면이다.
도 4는 유출유의 종류에 따른 특성을 도시한 도면이다.
도 5는 유출유의 이동 경로를 탐지하는 과정을 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 zoom in/out 기능을 도시한 도면이다.
도 7은 본 발명의 일 실시예에 따른 라이다의 동작을 도시한 순서도이다.
도 8은 본 발명의 일 실시예에 따른 자율 무인항공 이동체 시스템을 도시한 도면이다.
도 9는 본 발명의 일 실시예에 따른 자율 무인항공 이동체의 구성을 도시한 블록도이다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다. 또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
본 발명은 자율 무인항공 이동체 및 이의 제어 방법에 관한 것으로서, 라이다(Lidar)를 포함하는 자율 무인항공 이동체, 예를 들어 드론을 이용하여 수상에 유출된 기름(유출유)을 탐지하고 상기 유출유의 이동 및 확산 경로를 파악하여 효과적인 초동 대응을 시도할 수 있다. 물론, 상기 자율 무인항공 이동체가 유출유 외에도 수상에 존재하는 오염물질을 탐지하고 감시할 수 있다.
또한, 상기 자율 무인항공 이동체는 유출유의 단순한 탐지만 하는 것이 아니라, 유출유의 샘플을 취득하여 관제센터의 관리자에게 제공할 수도 있다.
이하, 본 발명의 다양한 실시예들을 첨부된 도면을 참조하여 상술하겠다. 다만, 설명의 편의를 위하여 오염물질을 유출유로 가정하나, 이로 제한되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 자율 무인항공 이동체를 이용한 유출유 탐지 과정을 개략적으로 도시한 도면이고, 도 2는 본 발명의 일 실시예에 따른 유출유 탐지 방법을 도시한 도면이며, 도 3은 본 발명의 일 실시예에 따른 유출유의 두께를 구하는 과정을 도시한 도면이다. 도 4는 유출유의 종류에 따른 특성을 도시한 도면이고, 도 5는 유출유의 이동 경로를 탐지하는 과정을 도시한 도면이며, 도 6은 본 발명의 일 실시예에 따른 zoom in/out 기능을 도시한 도면이다. 도 7은 본 발명의 일 실시예에 따른 라이다의 동작을 도시한 순서도이다.
도 1을 참조하면, 본 실시예의 자율 무인항공 이동체, 예를 들어 드론은 라이다를 포함할 수 있다. 이 때, 상기 라이다는 수상을 탐지할 수 있도록 수상 방향으로 빔을 출력할 수 있다. 한편, 상기 라이다가 상기 자율 무인항공 이동체에 장착되는 한 장착 구조 및 방법에는 제한이 없다.
일 실시예에 따르면, 상기 자율 무인항공 이동체는 지정 해역을 자율 감시하도록 프로그램되어 있으며, 관제센터와 통신 연결될 수 있다. 즉, 상기 자율 무인항공 이동체는 지정 해역의 탐지 결과를 실시간 또는 정해진 주기로 상기 관제센터로 전송하며, 소정 시간이 경과하면 기지로 복귀할 수 있다.
탐지 과정을 살펴보면, 상기 자율 무인항공 이동체의 라이다가 수상으로 빔을 발사하며, 반사파를 통하여 유출유를 탐지할 수 있다. 구체적으로는, 도 2에 도시된 바와 같이 수상에서 빔이 반사될 때와 유출유에서 빛이 반사될 때 반사빔들의 세기 또는 도달 시간이 다르므로, 상기 라이다는 이러한 세기 또는 도달시간을 이용하여 상기 유출유가 존재하는 지를 탐지할 수 있다.
일 실시예에 따르면, 상기 라이다는 반사빔들 중 수상에서 반사된 반사파를 제거하여 유출유의 형태 또는 폭 등을 탐지할 수 있다.
또한, 상기 라이다는 유출유의 두께도 탐지할 수 있다. 예를 들어, 상기 라이다는 도 3에 도시된 바와 같이 상기 유출유로부터 반사된 반사파를 통하여 상기 라이다와 상기 유출유 사이의 거리를 측정하고, 상기 유출유 근방의 수상에서 반사된 반사파를 통하여 상기 라이다와 상기 수상 사이의 거리를 측정하며, 상기 측정된 거리들의 차이를 통하여 상기 유출유의 두께를 검출할 수 있다.
게다가, 상기 라이다는 상기 유출유의 종류도 검출할 수 있다. 일반적으로, 상기 유출유의 종류로는 light crude oil, bunker A oil 및 bunker C oil이 존재한다. 도 4에 도시된 바와 같이 오일의 종류에 따라 다른 특성이 나타나므로, 상기 라이다는 이러한 데이터를 기반으로 하여 오일의 종류도 검출할 수 있다. 물론, 이러한 오일의 종류는 후술하는 바와 같이 샘플 채취를 통하여 관제센터에서 분석하여 검출될 수도 있다.
일 실시예에 따르면, 상기 자율 무인항공 이동체 또는 상기 자율 무인항공 이동체와 교신하는 관제센터는 상기 유출유의 이동 경로 또는 확산 경로를 추적할 수 있다. 예를 들어, 상기 자율 무인항공 이동체가 도 5에 도시된 바와 같이 이동하면서 상기 유출유를 탐지하면, 상기 유출유의 이동 경로 또는 확산 경로를 추적할 수 있다. 다른 관점에서는, 상기 자율 무인항공 이동체는 상기 이동/확산 경로를 따라서 이동할 수 있다.
다른 실시예에 따르면, 상기 자율 무인항공 이동체 또는 상기 관제센터는 바람, 파도, 안개 등의 주변 상황을 고려하여 상기 유출유의 예상 이동/확산 경로 또는 확산 경로를 예측할 수 있다. 물론, 상기 자율 무인항공 이동체 또는 상기 관제센터는 상기 이동/확산 속도도 산출할 수 있다. 이렇게 예상 이동/확산 경로, 이동/확산 속도 등이 산출되면, 후술하는 바와 같이 이동/확산 경로 상의 해역에 존재하는 선박 또는 사람에게 유출유가 곧 도달할 것이라는 경고를 안내할 수 있다.
또 다른 실시예에 따르면, 상기 자율 무인항공 이동체는 오염 해역 중 기설정된 조건에 맞춰 일부 해역을 집중해서 관촬하도록 ZOOM IN/OUT 기능을 구현할 수 있다. 예를 들어, 상기 자율 무인항공 이동체는 유출유 탐지시 ZOOM IN 기능을 수행하여 상기 유출유의 이동/확산 경로를 추적하고, ZOOM OUT 기능을 수행하여 상기 유출유의 특정 부분을 정밀 관찰할 수 있다.
다른 예로, 상기 유출유의 폭이 기설정된 값을 초과하면 집중 관촬하도록 설정된 경우, 상기 자율 무인항공 이동체는 상기 유출유의 폭이 상기 기설정된 값을 초과하면 자동으로 ZOOM IN 기능을 실행시켜 상기 유출유 중 특정 부분을 집중 관찰할 수 있다.
이러한 유출유의 탐지, 유출유의 이동/확산 경로 추적, 유출유의 종류 결정, 예상 이동/확산 경로 검출, ZOOM IN/OUT 기능 구현, 샘플 채취는 인공지능 방식으로 구현될 수 있다. 즉, 상기 라이다는 하나의 정해진 순서로 유출유를 감시하는 것이 아니라, 유출유의 상태 또는 주변 환경 상태에 따라 자율적으로 동작할 수 있다.
예를 들어, 바람이나 풍랑이 강하지 않은 경우, 상기 라이다는 유출유 탐지 후 유출유의 이동/확산 경로를 탐지하고, ZOOM IN/OUT을 통하여 특정 영역을 집중 탐지하며, 샘플 채취하여 기지로 복귀할 수 있다. 그런 후, 상기 유출유의 종류 및 상기 예상 이동/확산 경로가 검출될 수 있다.
다른 예로, 바람이나 풍랑이 강한 경우, 상기 라이다는 유출유 탐지, 유출유의 이동/확산 경로 탐지, 예상 이동/확산 경로 검출을 순차적으로 수행하고, 바람이나 풍랑이 잦아든 후 상기 라이다가 ZOOM IN/OUT을 통하여 특정 영역을 탐지하고, 상기 자율 무인항공 이동체가 샘플을 채취하여 기지로 복귀할 수 있다. 그런 후, 상기 유출유의 종류가 검출될 수 있다.
또 다른 예로, 상기 자율 무인항공 이동체가 고장나거나 연료가 다 소진되어가는 경우, 상기 자율 무인항공 이동체가 다른 단계를 수행하지 않고 상기 자율 무인항공 이동체가 샘플을 채취하여 기지로 바로 복귀할 수 있다. 이 경우, 상기 자율 무인항공 이동체 또는 상기 관제센터는 현재 진행 상태 후의 단계부터 교대된 자율 무인항공 이동체가 수행하도록 제어할 수도 있다.
이러한 상기 자율 무인항공 이동체의 전체적인 동작의 일 예가 도 7에 보여진다.
도 7을 살펴보면, 상기 자율 무인항공 이동체가 기지, 예를 들어 관제센터로부터 이륙하여(S700) 지정 해역을 감시할 수 있다(S702).
감시 중 물체, 예를 들어 유출유가 탐지되지 않으면, 상기 자율 무인항공 이동체는 기설정 시간이 지난 후 기지로 복귀한다(S716).
반면에, 상기 자율 무인항공 이동체의 라이다가 유출유를 탐지하면, 상기 자율 무인항공 이동체는 상기 지정 해역을 ZOOM OUT 탐색하여(S706) 상기 유출유의 이동/확산 경로를 추적하며(S708), 탐색 결과를 상기 관제센터로 보고할 수 있다(S714).
이어서, 상기 자율 무인항공 이동체는 정밀 탐색을 위하여 상기 유출유를 ZOOM IN 탐색할 수 있고, 탐색 결과를 상기 관제센터로 보고할 수 있다(S710).
계속하여, 상기 자율 무인항공 이동체는 상기 유출유의 샘플을 취득한 후(S712) 기지로 복귀할 수 있다(S716). 예를 들어, 상기 자율 무인항공 이동체는 상기 ZOOM IN된 영역의 유출유를 샘플 채취할 수 있다.
즉, 상기 자율 무인항공 이동체는 유출유가 탐지되면 ZOOM OUT을 통하여 상기 유출유의 이동/확산 경로를 추적하고, ZOOM IN을 통하여 상기 유출유를 정밀 탐지하며, 상기 유출유의 샘플을 취득하여 기지로 복귀할 수 있다.
다른 실시예에 따르면, 상기 자율 무인항공 이동체는 인공 지능 제어를 통하여 다른 오염물질에 대하여는 다른 단계들을 수행시킬 수 있다.
도 8은 본 발명의 일 실시예에 따른 자율 무인항공 이동체 시스템을 도시한 도면이다.
도 8을 참조하면, 복수의 자율 무인항공 이동체들의 자신의 해상 영역을 비행하며 오염물질, 예를 들어 유출유를 탐지할 수 있다.
일 실시예에 따르면, 상기 자율 무인항공 이동체는 다른 자율 무인항공 이동체와 교신할 수 있고, 선박과도 교신할 수 있다. 이 때, 상기 자율 무인항공 이동체는 탐지 결과 또는 관제센터로부터 전송된 정보를 상기 다른 자율 무인항공 이동체 또는 선박으로 제공할 수 있다.
예를 들어, 상기 자율 무인항공 이동체가 상기 유출유의 예상 이동 경로를 획득한 경우 상기 예상 이동 경로 상에서 해상을 탐지하고 있는 다른 자율 무인항공 이동체에 유출유가 해당 해역으로 이동할 것이라 정보를 전달할 수 있다. 이 경우, 상기 다른 자율 무인항공 이동체는 자신의 영역에서 운항하고 있는 선박에게 상기 유출유가 곧 도달할 것이라는 정보를 전달할 수 있다. 따라서, 상기 선박은 적절하게 유출유를 피할 수 있다. 물론, 이러한 예상 이동 경로 안내 등의 정보는 상기 관제센터에서 상기 다른 자율 무인항공 이동체로 직접 제공될 수도 있다.
다른 실시예에 따르면, 상기 자율 무인항공 이동체는 상기 유출유가 탐지된 경우, 해안가 등의 사람들에게 소리나 빛으로 유출유가 곧 도달할 것임을 경고하고 해안가의 사람들을 촬영하여 상기 관제센터로 전송할 수 있다.
도 9는 본 발명의 일 실시예에 따른 자율 무인항공 이동체의 구성을 도시한 블록도이다.
도 9를 참조하면, 본 실시예의 자율 무인항공 이동체는 제어부(900), 라이다(902), 통신부(904), AI부(906), ZOOM IN/OUT부(908), 운항부(910), 샘플 취득부(912), 경고부(914) 및 저장부(916)를 포함할 수 있다.
라이다(902)는 해상의 오염물질, 특히 유출유를 탐지할 수 있다. 예를 들어, 라이다(902)는 유출유의 존재 여부, 유출유의 이동/확산 경로, 유출유의 종류, 유출유의 예상 이동/확산 경로, 유출유까지의 거리 중 적어도 하나를 탐지할 수 있다.
통신부(904)는 관제센터, 다른 자율 무인항공 이동체 또는 선박과의 통신 연결 통로이다.
AI부(906)는 주변 환경, 예를 들어 바람에 따라 운항, 유출유의 이동/확산 경로 탐지, 유출유의 예상 이동/확산 경로, ZOOM IN/OUT 동작, 샘플 취득 등의 일련의 동작을 자율적으로 제어할 수 있다. 예를 들어, AI부(906)는 주변 환경에 따라 자율적으로 이러한 일련의 동작들의 순서를 변경하거나 특정 동작을 집중해서 실행시키거나 특정 동작을 생략할 수 있다.
또한, AI부(906)는 오염물질이 유출유인지 다른 물질인지에 따라, 즉 오염물질의 종류에 따라 자율적으로 다른 동작을 수행시킬 수 있다.
ZOOM IN/OUT부(908)는 유출유를 탐지하기 위하여 ZOOM IN 또는 ZOOM OUT 기능을 수행할 수 있다.
운항부(910)는 상기 자율 무인항공 이동체의 이륙, 운항, 복귀 등의 일련의 동작을 제어한다. 또한, 운항부(910)는 유출유의 이동/확산 경로를 따라 상기 자율 무인항공 이동체를 이동시킬 수 있다.
샘플 취득부(912)는 유출유의 샘플을 취득하는 역할을 수행한다.
경고부(914)는 자신의 영역에 있는 선박 또는 사람에게 유출유가 곧 도달할 것이라는 정보 또는 피하라는 경고를 제공할 수 있다.
저장부(916)는 탐지 결과 등의 각종 데이터를 저장할 수 있다.
제어부(900)는 상기 자율 무인항공 이동체의 구성요소들의 동작을 전반적으로 제어할 수 있다.
한편, 전술된 실시예의 구성 요소는 프로세스적인 관점에서 용이하게 파악될 수 있다. 즉, 각각의 구성 요소는 각각의 프로세스로 파악될 수 있다. 또한 전술된 실시예의 프로세스는 장치의 구성 요소 관점에서 용이하게 파악될 수 있다.
또한 앞서 설명한 기술적 내용들은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예들을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 하드웨어 장치는 실시예들의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
상기한 본 발명의 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.
Claims (8)
- 자율 무인항공 이동체에 있어서,수상의 오염물질을 탐지하는 라이다; 및상기 자율 무인항공 이동체의 운항을 제어하는 운항부를 포함하되,상기 라이다는 상기 오염물질의 이동 경로 또는 확산 경로를 추적하고, 상기 운항부는 상기 이동 경로 또는 확산 경로를 따라 상기 자율 무인항공 이동체를 이동시키며 설정된 프로그램에 따라 특정 수상 영역을 감시하는 것을 특징으로 하는 자율 무인항공 이동체.
- 제1항에 있어서, 상기 오염물질은 유출유이되,상기 라이다는 상기 유출유의 이동/확산 경로 추적뿐만 아니라 상기 유출유의 종류 또는 상기 유출유의 예상 이동/확산 경로도 탐지하는 것을 특징으로 하는 자율 무인항공 이동체.
- 제2항에 있어서,관제센터와 교신하는 통신부;상기 유출유의 ZOOM IN 또는 ZOOM OUT을 수행하는 ZOOM IN/OUT부; 및상기 유출유의 샘플을 취득하는 샘플 취득부를 더 포함하되,상기 자율 무인항공 이동체는 상기 ZOOM OUT 기능을 통하여 상기 유출유의 이동/확산 경로를 추적하고, 상기 ZOOM IN된 유출유 부분의 샘플을 채취하는 것을 특징으로 하는 자율 무인항공 이동체.
- 제3항에 있어서,주변 환경 또는 사이 유출유의 상태에 따라 상기 이동체의 운항, 상기 유출유의 이동/확산 경로 추적, 상기 유출유의 예상 이동/확산 경로 탐지, 상기 ZOOM IN/OUT 기능, 샘플 취득 중 적어도 하나의 동작을 순서를 자율적으로 제어하는 AI부를 더 포함하는 것을 특징으로 하는 자율 무인항공 이동체.
- 제4항에 있어서, 상기 AI부는 상기 탐지 결과 상기 오염물질의 종류가 달라지면 상기 자율 무인항공 이동체의 동작을 자율적으로 다르게 제어하는 것을 특징으로 하는 자율 무인항공 이동체.
- 제3항에 있어서,상기 자율 무인항공 이동체의 지정 해상 영역의 선박 또는 사람에게 상기 유출유의 도달을 경고하는 경고부를 더 포함하는 것을 특징으로 하는 자율 무인항공 이동체.
- 제1항에 있어서, 상기 라이다는 반사파들 중 상기 수상으로부터 반사된 반사파를 제거하여 상기 오염물질을 인지하고,상기 오염물질로부터 반사된 반사파로부터 측정된 거리와 상기 오염물질 인근의 물로부터 반사된 반사파로부터 측정된 거리의 차를 통하여 상기 오염물질의 두께를 측정하는 것을 특징으로 하는 자율 무인항공 이동체.
- 수상에서 오염물질을 탐지하는 단계;상기 수상에서 상기 오염물질이 탐지된 경우 상기 오염물질을 ZOOM OUT 탐색하여 상기 오염물질의 이동 경로를 추적하는 단계;상기 오염물질 중 특정 부분을 ZOOM IN 탐색하는 단계; 및상기 ZOOM IN 탐색된 영역의 샘플을 취득하는 단계를 포함하는 것을 특징으로 하는 자율 무인항공 이동체 제어 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200024402A KR102191109B1 (ko) | 2020-02-27 | 2020-02-27 | 자율 무인항공 이동체 및 이의 제어 방법 |
KR10-2020-0024402 | 2020-02-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021172720A1 true WO2021172720A1 (ko) | 2021-09-02 |
Family
ID=73780234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/018249 WO2021172720A1 (ko) | 2020-02-27 | 2020-12-14 | 자율 무인항공 이동체 및 이의 제어 방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102191109B1 (ko) |
WO (1) | WO2021172720A1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116907282A (zh) * | 2023-09-14 | 2023-10-20 | 杭州牧星科技有限公司 | 基于人工智能算法的无人靶机超低空飞行控制方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114572399B (zh) * | 2022-05-05 | 2022-07-19 | 西安杰出科技有限公司 | 一种海洋样本采集无人机 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050230527A1 (en) * | 2000-03-10 | 2005-10-20 | Silansky Edward R | Internet linked environmental data collection system and method |
US20070040121A1 (en) * | 2005-08-18 | 2007-02-22 | Itt Manufacturing Enterprises, Inc. | Multi-sensors and differential absorption lidar data fusion |
KR101930923B1 (ko) * | 2017-05-26 | 2018-12-20 | 한국해양과학기술원 | 드론 및 이를 이용한 해양 관측 시스템 |
KR20190092060A (ko) * | 2018-01-30 | 2019-08-07 | 한국해양대학교 산학협력단 | Uwb 기반 유막 검출 장치 및 방법 |
CN110346795A (zh) * | 2019-06-24 | 2019-10-18 | 中国地质大学深圳研究院 | 基于机载sar监测的海上溢油漂移动态预测方法及系统 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150089740A (ko) | 2014-01-28 | 2015-08-05 | 한국전자통신연구원 | 유출유 탐지 장치 및 방법 |
-
2020
- 2020-02-27 KR KR1020200024402A patent/KR102191109B1/ko active IP Right Grant
- 2020-12-14 WO PCT/KR2020/018249 patent/WO2021172720A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050230527A1 (en) * | 2000-03-10 | 2005-10-20 | Silansky Edward R | Internet linked environmental data collection system and method |
US20070040121A1 (en) * | 2005-08-18 | 2007-02-22 | Itt Manufacturing Enterprises, Inc. | Multi-sensors and differential absorption lidar data fusion |
KR101930923B1 (ko) * | 2017-05-26 | 2018-12-20 | 한국해양과학기술원 | 드론 및 이를 이용한 해양 관측 시스템 |
KR20190092060A (ko) * | 2018-01-30 | 2019-08-07 | 한국해양대학교 산학협력단 | Uwb 기반 유막 검출 장치 및 방법 |
CN110346795A (zh) * | 2019-06-24 | 2019-10-18 | 中国地质大学深圳研究院 | 基于机载sar监测的海上溢油漂移动态预测方法及系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116907282A (zh) * | 2023-09-14 | 2023-10-20 | 杭州牧星科技有限公司 | 基于人工智能算法的无人靶机超低空飞行控制方法 |
CN116907282B (zh) * | 2023-09-14 | 2024-01-05 | 杭州牧星科技有限公司 | 基于人工智能算法的无人靶机超低空飞行控制方法 |
Also Published As
Publication number | Publication date |
---|---|
KR102191109B1 (ko) | 2020-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021172720A1 (ko) | 자율 무인항공 이동체 및 이의 제어 방법 | |
CN112098326B (zh) | 针对桥梁病害的自动检测方法和系统 | |
AU2019419781B2 (en) | Vehicle using spatial information acquired using sensor, sensing device using spatial information acquired using sensor, and server | |
WO2019124639A1 (ko) | 무인 장치를 활용한 무선통신 중계시스템 및 그 방법 | |
WO2021060778A1 (ko) | 3차원 공간에 대응되는 맵을 생성하는 차량 및 방법 | |
KR20170043035A (ko) | 수중, 수면 및 수상 복합 검사 시스템 | |
WO2019031701A1 (ko) | 다중 라이다 시스템 및 그 구동방법 | |
WO2021172833A1 (ko) | 물체 인식 장치, 물체 인식 방법 및 이를 수행하기 위한 컴퓨터 판독 가능한 기록 매체 | |
JP2020126637A (ja) | 協同走行を遂行する各車両から取得された各走行イメージを統合する方法及びこれを利用した走行イメージ統合装置 | |
KR20180119445A (ko) | 오염 탐지 시스템, 방법 및 컴퓨터 판독 가능한 기록매체 | |
WO2020141694A1 (en) | Vehicle using spatial information acquired using sensor, sensing device using spatial information acquired using sensor, and server | |
CN111465556A (zh) | 信息处理系统、信息处理方法及程序 | |
CN111190185B (zh) | 一种基于群体智能的水下掩埋雷自主探测方法及系统 | |
WO2019103169A1 (ko) | 빙해 선박의 안전속도 제어 방법 및 이를 탑재한 선박 | |
WO2018161278A1 (zh) | 无人驾驶汽车系统及其控制方法、汽车 | |
WO2022139027A1 (ko) | 인공지능 기반의 선박 과속 판정 장치, 방법 및 그 시스템 | |
KR102368082B1 (ko) | 로봇의 자율 주행 제어 방법 및 그를 위한 시스템 | |
KR102120779B1 (ko) | 무인기를 이용한 해수면 모니터링 방법 및 장치 | |
CN116823604A (zh) | 一种机场禁飞区黑飞处理方法和系统 | |
CN115158606B (zh) | 一种水面救生方法、系统和介质 | |
CN111200823A (zh) | 一种通信补足方法、装置、auv和存储介质 | |
CN114924583A (zh) | 基于无人机巡检的人员行为和车辆轨迹的安全监控方法 | |
CN113885533B (zh) | 一种无人艇的无人驾驶方法及系统 | |
JPWO2018211575A1 (ja) | 制御装置、監視システムおよび監視方法 | |
CN115201809A (zh) | 基于监控视频辅助的vts雷达目标解融合方法、系统和设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20921436 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20921436 Country of ref document: EP Kind code of ref document: A1 |