WO2021172179A1 - Optical film, polarizing plate, and organic electroluminescence image display device - Google Patents

Optical film, polarizing plate, and organic electroluminescence image display device Download PDF

Info

Publication number
WO2021172179A1
WO2021172179A1 PCT/JP2021/006251 JP2021006251W WO2021172179A1 WO 2021172179 A1 WO2021172179 A1 WO 2021172179A1 JP 2021006251 W JP2021006251 W JP 2021006251W WO 2021172179 A1 WO2021172179 A1 WO 2021172179A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
group
film
resin
light
Prior art date
Application number
PCT/JP2021/006251
Other languages
French (fr)
Japanese (ja)
Inventor
恵美子 御子柴
笠原 健三
真紀子 齊藤
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to KR1020227018850A priority Critical patent/KR20220097949A/en
Priority to CN202180016225.4A priority patent/CN115136045A/en
Priority to JP2022503321A priority patent/JPWO2021172179A1/ja
Publication of WO2021172179A1 publication Critical patent/WO2021172179A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/315Compounds containing carbon-to-nitrogen triple bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers

Definitions

  • the present invention relates to an optical film, a polarizing plate, and an organic electroluminescence image display device. More specifically, when applied to an image display device, the present invention has high transparency, prevents light leakage, and is light resistant under harsher environmental conditions.
  • the present invention relates to an optical film or the like having excellent properties and durability.
  • organic electroluminescence hereinafter, also referred to as "organic EL" image display device
  • organic EL organic electroluminescence
  • an antireflection film combining a ⁇ / 4 retardation film and a polarizer is used.
  • a cyclic olefin resin hereinafter, also referred to as “COP”
  • COP cyclic olefin resin
  • reflection leakage occurs at a specific wavelength due to the influence of its wavelength dispersibility. Therefore, in order to suppress reflection leakage, it is necessary to incorporate a layer containing a dye that absorbs light of a specific wavelength (hereinafter, also referred to as “specific wavelength light absorption layer”) in the display.
  • the specific wavelength light absorption layer may be provided anywhere in the display, and may be provided as the ⁇ / 4 retardation film.
  • Patent Document 1 describes a method of adding a dye that absorbs light having a wavelength of about 400 nm to an adhesive layer in order to protect an organic EL element
  • Patent Document 2 improves the brightness and visibility of an organic EL image display device.
  • a method of adding a dye that selectively absorbs light in the vicinity of 470 nm and around 600 nm to the pressure-sensitive adhesive is disclosed.
  • a dye or a UV absorber is mainly added to the pressure-sensitive adhesive, but since the pressure-sensitive adhesive layer is thin, it is difficult to uniformly add the compound for expressing the function.
  • Patent Document 3 describes that a plurality of dye compounds may be put into any layer of the functional layer in order to block ultraviolet rays from the outside and a part of visible light.
  • Patent Document 4 describes that an indole compound is contained in a thickener or the like, and Patent Document 5 describes that a dye compound having a specific structure having a cyano group and an ester group is added to a resin or a functional layer.
  • Patent Document 5 describes that a dye compound having a specific structure having a cyano group and an ester group is added to a resin or a functional layer.
  • the present invention has been made in view of the above problems and situations, and the problem to be solved is that when applied to an image display device, it has high transparency, prevents light leakage, and is light resistant under more severe environmental conditions. It is an object of the present invention to provide an optical film having excellent properties and durability, a polarizing plate provided with the optical film, and an organic electroluminescence image display device.
  • the present inventor is an optical film containing a thermoplastic resin in the process of examining the cause of the above problems, and by containing a compound having a specific structure, the image display device can be used.
  • an optical film having high transparency, preventing light leakage, and having excellent light resistance and durability under harsh environmental conditions can be obtained.
  • An optical film containing a thermoplastic resin An optical film containing a compound having a structure represented by the following general formula (1).
  • Z represents a heteroaryl group having two or more heteroatoms, and may have a substituent.
  • thermoplastic resin is a cyclic olefin resin or an acrylic resin.
  • Items 1 to 6 are characterized in that the compound having the structure represented by the general formula (1) is contained in the range of 0.01 to 20% by mass with respect to the thermoplastic resin.
  • the optical film according to any one of the above.
  • optical film according to any one of items 1 to 7, further comprising a functional layer.
  • optical film according to any one of items 1 to 9, wherein the optical film is a ⁇ / 4 retardation film.
  • a polarizing plate comprising the optical film according to any one of items 1 to 10.
  • An organic electroluminescence image display device comprising the optical film according to any one of items 1 to 10 or the polarizing plate according to item 11.
  • an organic electroluminescent image display device can be provided.
  • a cyclic olefin resin film may be used from the viewpoints of low hygroscopicity and good dimensional stability.
  • the cyclic olefin resin film exhibits flat wavelength dispersion characteristics, it is used as a ⁇ / 4 retardation film for a circular polarizing plate in, for example, an organic electroluminescence (hereinafter, also referred to as “organic EL”) image display device.
  • organic EL organic electroluminescence
  • the reflected light tends to leak in a specific wavelength region (region on the short wavelength side). If the leakage of such reflected light is remarkable, the tint of the reflected light tends to be deteriorated.
  • the present inventors considered adding a dye compound that absorbs light in the wavelength region to the film. Since the organic EL image display device is used even in a high temperature and high humidity environment, it is required to suppress deterioration of the organic EL element due to external light. Further, since the dye compound is also deteriorated by the incident light, the light resistance of the compound itself is also required.
  • the cyano group can lower the energy level of the highest occupied molecular orbital (HOMO), that is, lower the oxidation potential, and thus suppress photooxidation.
  • HOMO highest occupied molecular orbital
  • Sectional drawing which shows the structure of the polarizing plate 100 Disassembled sectional view of the organic EL image display device 200
  • the optical film of the present invention is an optical film containing a thermoplastic resin, and is characterized by containing a compound having a structure represented by the general formula (1). This feature is a technical feature common to or corresponding to the following embodiments.
  • Z in the structure represented by the general formula (1) is a group of either the structure represented by claim 2 or claim 3. Is preferable from the viewpoint of obtaining an optical film having an excellent balance between prevention of light leakage and light resistance.
  • the energy level of the highest occupied molecular orbital of the compound having the structure represented by the general formula (1) is ⁇ 5.85 eV or less from the viewpoint of obtaining an optical film having excellent durability.
  • the thermoplastic resin is a cyclic olefin resin or an acrylic resin from the viewpoint of preventing light leakage and obtaining an optical film having excellent light resistance and durability.
  • the cyclic olefin resin has a polar group, the energy level of the highest occupied orbital of the dye and the energy level of the resin are less likely to interact with each other, and deterioration of light resistance and durability can be suppressed.
  • the compound having the structure represented by the general formula (1) is contained in the range of 0.01 to 20% by mass with respect to the thermoplastic resin. If it is less than 0.01% by mass, the effect of the present invention is small, and if it exceeds 20% by mass, precipitation from the film (also referred to as bleed-out) is likely to occur under high temperature and high humidity.
  • the optical film has a functional layer
  • the functional layer contains a compound having a structure represented by the general formula (1).
  • the functional layer include a hard coat layer, an adhesive layer, a smooth layer, a light scattering layer, and the like, but a hard coat layer is preferable from the viewpoint of imparting scratch resistance to the optical film.
  • the optical film of the present invention is preferably a ⁇ / 4 retardation film, and by incorporating it in a polarizing plate, it is possible to provide a circular polarizing plate for antireflection.
  • the organic electroluminescence image display device of the present invention is characterized by comprising the optical film or the polarizing plate of the present invention.
  • the optical film of the present invention is an optical film containing a thermoplastic resin, and is characterized by containing a compound having a structure represented by the following general formula (1).
  • the energy level of the highest occupied molecular orbital (referred to as HOMO) can be lowered by using a compound having a structure represented by the general formula (1).
  • HOMO the energy level of the highest occupied molecular orbital
  • the oxidation potential can be lowered and photooxidation can be suppressed. That is, it has the effect of improving the light resistance of the dye compound.
  • Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian, USA is used as the software for calculating the molecular orbital.
  • the optical film of the present invention is preferably transparent, and "transparent” means a spectrophotometer (for example, “Plastic-How to obtain total light transmittance and total light reflectance”" in accordance with JIS K 7375: 2008. It means that the light transmittance is 80% or more when measured using Hitachi High-Tech Science U-3300).
  • Compound having a structure represented by the general formula (1) A compound having a structure represented by the general formula (1) according to the present invention (hereinafter, also referred to as “dye compound”) has the following structure.
  • Z represents a heteroaryl group having two or more heteroatoms, and may have a substituent.
  • Z is any group represented by the following structural formula, and may further have a substituent.
  • R represents a substituent.
  • Z is any group represented by the following structural formula from the viewpoint of exhibiting the effect of the present invention.
  • R represents a substituent.
  • R represents a substituent, for example, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n).
  • a halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
  • an alkyl group methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n).
  • cycloalkyl group cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.
  • alkenyl group vinyl group, allyl group, etc.
  • cycloalkenyl group (2-cyclopentene- 1-yl, 2-cyclohexene-1-yl group, etc.)
  • alkynyl group ethynyl group, propargyl group, etc.
  • aromatic hydrocarbon ring group phenyl group, p-tolyl group, naphthyl group, etc.
  • aromatic heterocycle Group (2-pyrrole group, 2-furyl group, 2-thienyl group, pyrrol group, imidazolyl group, oxazolyl group, thiazolyl group, benzoimidazolyl group, benzoxazolyl group, 2-benzothiazolyl group, pyra
  • the molecular weight of the dye compound is not particularly limited, but it is preferably not too large, for example, preferably 100 to 1000, in order to facilitate intermolecular penetration of the cyclic olefin resin or acrylic resin.
  • the molecular weight of the dye compound can be calculated from the formula amount of the chemical structural formula by specifying the chemical structure by, for example, an NMR (Nuclear Magnetic Resonance) apparatus or the like.
  • the maximum absorption wavelength of the dye compound is preferably in the range of 370 to 460 nm, and more preferably in the range of 400 to 440 nm.
  • the optical film easily absorbs light in the wavelength region appropriately. Therefore, for example, the optical film is used as a ⁇ / 4 retardation film in an organic EL image display device. If so, the leakage of reflected light in the wavelength region can be further suppressed.
  • the maximum absorption wavelength of the dye compound can be determined by measuring the absorption spectrum of the dye compound in dichloromethane using an ultraviolet visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation.
  • the dye compound may be obtained synthetically or a commercially available product may be used.
  • the synthesis of the exemplary dye compound 12 can be synthesized by the following scheme.
  • the content of the dye compound is preferably in the range of 0.01 to 20% by mass with respect to the cyclic olefin resin.
  • the content of the dye compound is 0.01% by mass or more, light in a specific wavelength region is appropriately absorbed to improve light resistance while suppressing leakage of reflected light in, for example, an organic EL image display device.
  • the content of the dye compound is more preferably in the range of 0.015 to 10% by mass with respect to the cyclic olefin resin.
  • thermoplastic resin material according to the present invention is not limited as long as it can be treated as a film after film formation.
  • thermoplastic resin used for polarizing plates include cellulose ester resins such as triacetyl cellulose (TAC), cellulose acetate propionate (CAP), and diacetyl cellulose (DAC), and cycloolefin polymers (hereinafter referred to as cycloolefin polymers).
  • Cyclic olefin resins such as COP and cycloolefin resins
  • polypropylene resins such as polypropylene (PP)
  • acrylic resins such as polymethylmethacrylate (PMMA)
  • PET polyethylene terephthalate
  • Cellulose acetate can be applied.
  • cyclic olefin resins and acrylic resins are preferable from the viewpoint of optical properties including phase difference and physical properties such as durability.
  • Cycloolefin-based resin contained in the optical film of the present invention is a polymer of a cycloolefin monomer, or a cycloolefin monomer and another copolymerizable monomer. It is preferably a copolymer of.
  • the cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, and is a cycloolefin monomer having a structure represented by the following general formula (A-1) or (A-2). More preferably.
  • R 1 to R 4 independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group.
  • p represents an integer of 0 to 2. However, all of R 1 to R 4 do not represent hydrogen atoms at the same time, R 1 and R 2 do not represent hydrogen atoms at the same time, and R 3 and R 4 do not represent hydrogen atoms at the same time. do.
  • the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 in the general formula (A-1) is preferably, for example, a hydrocarbon group having 1 to 10 carbon atoms, and is preferably a carbon atom. More preferably, it is a hydrocarbon group having a number of 1 to 5.
  • the hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom. Examples of such linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds, thioether bonds and the like.
  • Examples of the hydrocarbon group having 1 to 30 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group and the like.
  • Examples of the polar groups represented by R 1 to R 4 in the general formula (A-1) include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group and a cyano group. Is included. Of these, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable, and an alkoxycarbonyl group and an aryloxycarbonyl group are preferable from the viewpoint of ensuring solubility during solution film formation.
  • P in the general formula (A-1) is preferably 1 or 2 from the viewpoint of increasing the heat resistance of the optical film. This is because when p is 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to be improved.
  • R 5 represents an alkylsilyl group having a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms.
  • R 6 represents a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, or a halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom).
  • p represents an integer of 0 to 2.
  • R 5 in the general formula (A-2) preferably represents a hydrocarbon group having 1 to 5 carbon atoms, and more preferably represents a hydrocarbon group having 1 to 3 carbon atoms.
  • R 6 in the general formula (A-2) preferably represents a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group, and from the viewpoint of ensuring solubility during solution film formation, the alkoxycarbonyl group and aryl Oxycarbonyl groups are more preferred.
  • P in the general formula (A-2) preferably represents 1 or 2 from the viewpoint of enhancing the heat resistance of the optical film. This is because when p represents 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to improve.
  • a cycloolefin monomer having a structure represented by the general formula (A-2) is preferable from the viewpoint of improving the solubility in an organic solvent.
  • an organic compound loses its symmetry and thus its crystallinity is lowered, so that its solubility in an organic solvent is improved.
  • R 5 and R 6 in the general formula (A-2) are substituted with only the ring-constituting carbon atom on one side with respect to the axis of symmetry of the molecule, the symmetry of the molecule is low, that is, the general formula (A-). Since the cycloolefin monomer having the structure represented by 2) has high solubility, it is suitable for producing an optical film by a solution casting method.
  • the content ratio of the cycloolefin monomer having the structure represented by the general formula (A-2) in the polymer of the cycloolefin monomer is the total of all the cycloolefin monomers constituting the cycloolefin resin. For example, it can be 70 mol% or more, preferably 80 mol% or more, and more preferably 100 mol%.
  • a cycloolefin monomer having a structure represented by the general formula (A-2) is contained in a certain amount or more, the orientation of the resin is increased, so that the retardation value is likely to increase.
  • copolymerizable monomers copolymerizable with cycloolefin monomers examples include copolymerizable monomers capable of ring-opening copolymerization with cycloolefin monomers and addition copolymerization with cycloolefin monomers. Possible copolymerizable monomers and the like are included.
  • ring-opening copolymerizable copolymerizable monomers examples include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene and dicyclopentadiene.
  • Examples of copolymerizable monomers that can be added and copolymerized include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon monomers, and (meth) acrylates.
  • Examples of unsaturated double bond-containing compounds include olefin compounds having 2 to 12 (preferably 2 to 8) carbon atoms, and examples thereof include ethylene, propylene and butene.
  • Examples of vinyl-based cyclic hydrocarbon monomers include vinyl cyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene.
  • Examples of (meth) acrylates include alkyl (meth) acrylates having 1 to 20 carbon atoms such as methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate.
  • the content ratio of the cycloolefin monomer in the copolymer of the cycloolefin monomer and the copolymerizable monomer is, for example, 20 to 80 mol% with respect to the total of all the monomers constituting the copolymer. It can be preferably 30 to 70 mol%.
  • the cycloolefin-based resin is obtained by polymerizing a cycloolefin monomer having a norbornene skeleton, preferably a cycloolefin monomer having a structure represented by the general formula (A-1) or (A-2). It is a polymer obtained by copolymerization, and examples thereof include the following.
  • the catalyst used for the addition polymerization of the above (5) to (7) for example, those described in paragraphs 0058 to 0063 of JP-A-2005-227606 can be used.
  • the alternating copolymerization reaction of (7) above can be carried out, for example, by the method described in paragraphs 0071 and 0072 of JP-A-2005-227606.
  • the polymers of the above (1) to (3) and (5) are preferable, and the polymers of the above (3) and (5) are more preferable.
  • the cycloolefin-based resin has a structural unit represented by the following general formula (B-1) in that the glass transition temperature of the obtained cycloolefin-based resin can be increased and the light transmittance can be increased. It is preferable that at least one of the structural units represented by the following general formula (B-2) is contained, and only the structural unit represented by the general formula (B-2) is included, or the general formula (B-1) is used. It is more preferable to include both the structural unit represented and the structural unit represented by the general formula (B-2).
  • the structural unit represented by the general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-1), and is represented by the general formula (B-2).
  • the structural unit is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-2).
  • R 1 ⁇ R 4 and p are respectively the same as R 1 ⁇ R 4 and p of the general formula (A-1).
  • R 5 ⁇ R 6 and p are respectively the same as R 5 ⁇ R 6 and p in the general formula (A-2).
  • the cycloolefin resin according to the present invention may be a commercially available product.
  • Examples of commercially available cycloolefin resins include Arton G (eg, G7810, etc.), Arton F, Arton R (eg, R4500, R4900, R5000, etc.) and Arton RX manufactured by JSR Corporation. included.
  • the intrinsic viscosity [ ⁇ ] inh of the cycloolefin resin is preferably in the range of 0.2 to 5 cm 3 / g, and more preferably in the range of 0.3 to 3 cm 3 / g when measured at 30 ° C. It is preferably in the range of 0.4 to 1.5 cm 3 / g, more preferably in the range of 0.4 to 1.5 cm 3 / g.
  • the number average molecular weight (Mn) of the cycloolefin resin is preferably in the range of 8000 to 100,000, more preferably in the range of 10,000 to 80,000, and further preferably in the range of 12,000 to 50,000.
  • the weight average molecular weight (Mw) of the cycloolefin resin is preferably in the range of 20000 to 300,000, more preferably in the range of 30,000 to 250,000, and even more preferably in the range of 40,000 to 200,000.
  • the number average molecular weight and the weight average molecular weight of the cycloolefin resin can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
  • the number average molecular weight and the weight average molecular weight are within the above ranges, the heat resistance, water resistance, chemical resistance, mechanical properties, and molding processability as a film of the cycloolefin resin are good. Become.
  • the glass transition temperature (Tg) of the cycloolefin resin is usually 110 ° C. or higher, preferably in the range of 110 to 350 ° C., more preferably in the range of 120 to 250 ° C., and 120 to 220 ° C. It is more preferable that the range is.
  • Tg is 110 ° C. or higher, deformation under high temperature conditions can be easily suppressed.
  • the Tg is 350 ° C. or lower, the molding process becomes easy, and the deterioration of the resin due to the heat during the molding process is also easily suppressed.
  • the content of the cycloolefin resin is preferably 70% by mass or more, more preferably 80% by mass or more with respect to the film.
  • the acrylic resin according to the present invention is a polymer of an acrylic acid ester or a methacrylic acid ester, and also includes a copolymer with another monomer.
  • the acrylic resin according to the present invention also includes a methacrylic resin.
  • the resin is not particularly limited, but the methyl methacrylate unit is in the range of 50 to 99% by mass, and other monomer units copolymerizable therewith are in the range of 1 to 50% by mass. Is preferable.
  • Hydroxyalkyl acrylates such as hydroxyethyl acrylates, ⁇ , ⁇ -unsaturated acids such as acrylic acid and methacrylic acid, acrylamides such as acryloylmorpholin and N-hydroxyphenylmethacrylate, N-vinylpyrrolidone, maleic anhydride, fumaric acid and itaconic acid.
  • Unsaturated group-containing divalent carboxylic acids such as, styrene, aromatic vinyl compounds such as ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitriles such as acryloyl nitrile and methacrylic nitrile, maleic anhydride, maleimide, N-substituted maleimide, etc.
  • Glutalimide, glutaric anhydride and the like can be mentioned.
  • Examples of the copolymerizable monomer forming a unit excluding glutarimide and glutaric anhydride from the above unit include a monomer corresponding to the above unit. That is, alkyl methacrylate having an alkyl number of 2 to 18 carbons, alkyl acrylate having an alkyl number of 1 to 18 carbon atoms, hydroxyalkyl acrylate such as isobornyl methacrylate and 2-hydroxyethyl acrylate, acrylic acid, methacrylic acid and the like.
  • Unsaturated group-containing divalent carboxylic acids such as ⁇ , ⁇ -unsaturated acid, acrylic morpholine, acrylamide such as N-hydroxyphenylmethacrylic acid, N-vinylpyrrolidone, maleic acid, fumaric acid, and itaconic acid, styrene, ⁇ -methylstyrene.
  • aromatic vinyl compounds such as, acrylonitrile, ⁇ , ⁇ -unsaturated nitriles such as methacrylic acid, maleic anhydride, maleimide, N-substituted maleimide, and the like.
  • the glutarimide unit can be formed, for example, by reacting an intermediate polymer having a (meth) acrylic acid ester unit with a primary amine (imidizing agent) to imidize it (see JP-A-2011-26563). .).
  • the glutaric anhydride unit can be formed, for example, by heating an intermediate polymer having a (meth) acrylic acid ester unit (see Japanese Patent No. 4961164).
  • the acrylic resin according to the present invention contains isobornyl methacrylate, acryloylmorpholine, N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, styrene, hydroxyethyl methacrylate, and anhydride from the viewpoint of mechanical strength. It is particularly preferred that maleic acid, maleimide, N-substituted maleimide, glutaric anhydride or glutarimide are included.
  • the acrylic resin according to the present invention has the viewpoint of controlling dimensional changes with respect to changes in the temperature and humidity atmosphere of the environment, peelability from a metal support during film production, drying properties of an organic solvent, heat resistance, and mechanical strength.
  • the weight average molecular weight (Mw) is preferably in the range of 50,000 to 1,000,000, more preferably in the range of 100,000 to 1,000,000, and in the range of 200,000 to 800,000. It is particularly preferable to have.
  • the heat resistance and mechanical strength are excellent, and if it is 1 million or less, the peelability from the metal support and the drying property of the organic solvent are excellent.
  • the method for producing the acrylic resin according to the present invention is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
  • the polymerization initiator ordinary peroxide-based and azo-based ones can be used, and redox-based ones can also be used.
  • the polymerization temperature may be in the range of 30 to 100 ° C. for suspension or emulsion polymerization and in the range of 80 to 160 ° C. for massive or solution polymerization.
  • polymerization can also be carried out using an alkyl mercaptan or the like as a chain transfer agent.
  • the glass transition temperature Tg of the acrylic resin is preferably in the range of 80 to 120 ° C. from the viewpoint of maintaining the mechanical strength of the film.
  • acrylic resin according to the present invention a commercially available one can also be used.
  • Delpet 60N, 80N, 980N, SR8200 (all manufactured by Asahi Kasei Chemicals Co., Ltd.), Dianar BR52, BR80, BR83, BR85, BR88, EMB-143, EMB-159, EMB-160, EMB-161, Examples thereof include EMB-218, EMB-229, EMB-270, EMB-273 (all manufactured by Mitsubishi Rayon Co., Ltd.), KT75, TX400S, IPX012 (all manufactured by Denki Kagaku Kogyo Co., Ltd.) and the like. Two or more kinds of acrylic resins can be used in combination.
  • the acrylic resin according to the present invention preferably contains an additive, and as an example of the additive, the acrylic particles (rubber elastic particles) described in International Publication No. 2010/001668 are used as the mechanical strength of the film. It is preferably contained for improvement and adjustment of the dimensional change rate.
  • the acrylic particles rubber elastic particles described in International Publication No. 2010/001668 are used as the mechanical strength of the film. It is preferably contained for improvement and adjustment of the dimensional change rate.
  • Examples of commercially available products of such a multilayer structure acrylic granular composite include "Metabrene W-341" manufactured by Mitsubishi Rayon, "Kaneka” manufactured by Kaneka, “Paraloid” manufactured by Kureha, and Roamand.
  • Examples include “Acryloid” manufactured by Haas, “Stafyroid” manufactured by Aika, Chemisnow MR-2G, MS-300X (above, manufactured by Soken Kagaku Co., Ltd.) and “Parapet SA” manufactured by Kuraray. Can be used alone or in combination of two or more.
  • the volume average particle diameter of the acrylic particles is 0.35 ⁇ m or less, preferably in the range of 0.01 to 0.35 ⁇ m, and more preferably in the range of 0.05 to 0.30 ⁇ m.
  • the particle size is above a certain level, the film can be easily stretched under heating, and when the particle size is below a certain level, the transparency of the obtained film is not easily impaired.
  • the optical film of the present invention preferably has a flexural modulus (JIS K7171) of 1.5 GPa or less.
  • This flexural modulus is more preferably 1.3 GPa or less, still more preferably 1.2 GPa or less.
  • This flexural modulus varies depending on the type and amount of acrylic resin and rubber elastic particles in the film. For example, the larger the content of rubber elastic particles, the smaller the flexural modulus.
  • the acrylic resin the flexural modulus is generally smaller when a copolymer of alkyl methacrylate and alkyl acrylate or the like is used than when a homopolymer of alkyl methacrylate is used.
  • the optical film of the present invention may further contain components other than the above as long as the effects of the present invention are not impaired.
  • other components include matting agents, UV absorbers, phase difference adjusters (phase difference increasing agents, phase difference reducing agents), plasticizers, antioxidants, light stabilizers, antistatic agents, release agents, and boosters. Contains thickeners.
  • the optical film contains a matting agent from the viewpoint of imparting unevenness to the surface of the optical film and imparting appropriate slipperiness.
  • the matting agent is fine particles.
  • the fine particles may be inorganic fine particles or resin fine particles.
  • inorganic fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate.
  • fine particles of inorganic compounds such as calcium phosphate.
  • the inorganic fine particles are preferably silicon dioxide fine particles from the viewpoint that it is difficult to increase the haze of the optical film and the friction coefficient can be effectively lowered.
  • silicon dioxide fine particles examples include Aerosil 200V, Aerosil R972V, and Aerosil R812 (all manufactured by Nippon Aerosil Co., Ltd.).
  • resin fine particles examples include fine particles such as silicone resin, fluororesin, and acrylic resin. Of these, silicone resin fine particles are preferable, and resin fine particles having a three-dimensional network structure are particularly preferable. Examples of the resin fine particles include Tospearl 103, 105, 108, 120, 145, 3120 and 240 (all manufactured by Toshiba Silicone Co., Ltd.).
  • the average particle size of the primary particles of the fine particles is preferably in the range of 0.005 to 0.4 ⁇ m, more preferably in the range of 0.01 to 0.3 ⁇ m.
  • These fine particles may be contained as secondary aggregates having a particle size in the range of 0.05 to 0.3 ⁇ m.
  • the content of the fine particles is preferably in the range of 0.01 to 3.0% by mass, more preferably in the range of 0.01 to 2.0% by mass with respect to the optical film.
  • the coefficient of dynamic friction on the surface of the optical film is preferably in the range of 0.2 to 1.0.
  • the in-plane retardation Ro measured in an environment with a measurement wavelength of 550 nm and 23 ° C. and 55% RH is in the range of 100 to 170 nm. Is preferable, and the range is more preferably in the range of 130 to 150 nm.
  • Ro is defined by the following formula.
  • the in-plane slow-phase axis of the optical film can be confirmed by an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics).
  • the angle of the in-plane slow axis of the optical film with respect to the width direction of the optical film is preferably in the range of 40 to 50 °, more preferably in the range of 43 to 47 °. Is.
  • Ro can be measured by the following method.
  • the optical film is humidity-controlled for 24 hours in an environment of 23 ° C. and 55% RH.
  • the average refractive index of this film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer.
  • the phase difference Ro of the optical film can be adjusted, for example, by the monomer composition of the cycloolefin resin and the stretching conditions.
  • the optical film Since the optical film is preferably formed by a solution casting method, it may further contain a residual solvent.
  • the amount of residual solvent is preferably 700 ppm or less, more preferably 30 to 700 ppm with respect to the optical film.
  • the content of the residual solvent can be adjusted by the drying conditions of the dope cast on the support in the process of manufacturing the optical film.
  • the amount of residual solvent in the optical film can be measured by headspace gas chromatography.
  • a sample is sealed in a container, heated, and the gas in the container is promptly injected into a gas chromatograph with the container filled with volatile components, and mass spectrometry is performed to identify the compound.
  • the volatile components are quantified while doing so.
  • the headspace method it is possible to observe all peaks of volatile components by gas chromatography, and by using an analysis method that utilizes electromagnetic interaction, volatile substances and monomers can be detected with high accuracy. Quantification can also be performed.
  • the thickness of the optical film of the present invention is not particularly limited, but is preferably in the range of 10 to 80 ⁇ m, and more preferably in the range of 10 to 60 ⁇ m.
  • the optical film of the present invention comprises 1) a step of preparing a dope containing the cycloolefin resin or acrylic resin, the dye compound, and a solvent, and 2) the obtained dope. It can be produced through a step of casting on a support and then drying and peeling to obtain a cast film, and 3) a step of stretching the obtained cast film. Further, the optical film of the present invention further comprises 4) a step of drying the stretched cast film, 5) a step of cutting both ends of the obtained optical film and embossing the film, and 6) a winding step. It may be manufactured through.
  • step 1) (dope preparation step) Cycloolefin resin or acrylic resin and dye compound are dissolved or dispersed in a solvent to prepare a dope.
  • the solvent used for doping contains at least an organic solvent (good solvent) capable of dissolving a cycloolefin resin.
  • good solvents include chlorine-based organic solvents such as methylene chloride; non-chlorine-based organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran. Of these, methylene chloride is preferable.
  • the solvent used for doping may further contain a poor solvent.
  • poor solvents include straight-chain or branched-chain aliphatic alcohols having 1 to 4 carbon atoms. When the ratio of alcohol in the dope is high, the film-like substance tends to gel and peels off from the metal support easily.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, ethanol is preferable because of its dope stability, relatively low boiling point, and good drying property.
  • the dope obtained in the step 2) (casting step) is cast on the support.
  • Dope casting can be performed by discharging from a casting die.
  • the solvent is evaporated until the dope cast on the support can be peeled off from the support by a peeling roll.
  • Examples of the method of evaporating the solvent include a method of blowing wind on the cast dope, a method of transferring heat from the back surface of the support with a liquid, and a method of transferring heat from the front and back surfaces with radiant heat.
  • the cast film obtained by evaporating the solvent is peeled off with a peeling roll.
  • the amount of residual solvent in the cast film on the support at the time of peeling may be in the range of 50 to 120% by mass, for example, depending on the drying conditions and the length of the support. If peeling is performed with a large amount of residual solvent, the cast film is too soft and the flatness during peeling tends to be impaired, and wrinkles and vertical streaks due to peeling tension are likely to occur.
  • the amount of residual solvent is determined.
  • the amount of residual solvent is defined by the following formula.
  • Residual solvent amount (mass%) (mass before heat treatment of casting film-mass after heat treatment of casting film) / (mass after heat treatment of casting film) ⁇ 100
  • the heat treatment for measuring the amount of residual solvent is a heat treatment at 115 ° C. for 1 hour.
  • step 3 stretching step
  • the casting film obtained by peeling from the support is stretched.
  • Stretching may be performed according to the required optical characteristics, and it is preferable to stretch in one or more of the width direction (TD direction), the transport direction (MD direction), and the oblique direction.
  • TD direction width direction
  • MD direction transport direction
  • oblique direction oblique direction
  • the draw ratio depends on the required optical characteristics, but when used as a ⁇ / 4 retardation film, it is preferably in the range of 1.05 to 4.0 times, preferably 1.5 to 3.0 times. More preferably, it is in the range.
  • the stretch ratio is defined as the stretch direction size of the film after stretching / the stretch direction size of the film before stretching.
  • the stretching temperature (drying temperature during stretching) is preferably in the range of (Tg + 2) to (Tg + 50) ° C., preferably in the range of (Tg + 2) to (Tg + 50) ° C., where Tg is the glass transition temperature of the cycloolefin resin, as described above. It is more preferably in the range of (Tg + 30) ° C.
  • Tg glass transition temperature of the cycloolefin resin, as described above. It is more preferably in the range of (Tg + 30) ° C.
  • the stretching temperature it is preferable to measure the atmospheric temperature such as (a) the temperature inside the stretching machine in the same manner as described above.
  • the amount of residual solvent in the film-like material at the start of stretching is preferably about the same as the amount of residual solvent in the film-like material at the time of peeling, and is preferably in the range of, for example, 20 to 30% by mass, 25. More preferably, it is in the range of about 30% by mass.
  • Stretching of the film-like object in the TD direction can be performed, for example, by fixing both ends of the film-like object with clips or pins and widening the distance between the clips or pins in the traveling direction (tenter method).
  • Stretching of the film-like material in the MD direction can be performed, for example, by a method (roll method) in which a plurality of rolls are provided with a peripheral speed difference and the roll peripheral speed difference is utilized between the rolls.
  • a tenter method in which both ends of the casting film are gripped by a clip or the like and stretched is preferable in order to improve the flatness and dimensional stability of the film.
  • step 4 drying step
  • the stretched casting film is further dried to obtain an optical film.
  • Drying of the cast film can be performed, for example, while transporting the cast film by a plurality of transport rolls (for example, a plurality of transport rolls arranged in a staggered pattern when viewed from the side surface).
  • the drying means is not particularly limited, and hot air, infrared rays, heating rolls or microwaves are used. Hot air drying is preferable from the viewpoint of simplicity.
  • step 5 cutting / embossing step
  • Both ends of the obtained optical film in the width direction are cut. Both ends of the optical film can be cut by a slitter.
  • embossing is performed on both ends of the optical film in the width direction.
  • the embossing process can be performed by pressing a heated embossing roller against both ends of the optical film. Fine irregularities are formed on the surface of the embossing roller, and by pressing the embossing roller against both ends of the optical film, irregularities are formed on both ends.
  • the obtained optical film is wound up to obtain a roll body.
  • the method of winding the optical film may be any method using a winder that is generally used, and is a method of controlling tension such as a constant torque method, a constant tension method, a taper tension method, and a program tension control method with a constant internal stress. There is.
  • the winding length of the optical film in the roll body is preferably in the range of 1000 to 7200 m.
  • the width of the optical film is preferably in the range of 1000 to 3000 mm.
  • the optical film of the present invention preferably has a functional layer, and the functional layer may contain a compound having a structure represented by the general formula (1).
  • the functional layer include a hard coat layer, an antistatic layer, an antireflection layer, a slippery layer, an adhesive layer, an antiglare layer, a barrier layer, etc., but when incorporated into an organic EL image display device, scratch resistance It is preferable to provide a hard coat layer in order to improve the above.
  • the hard coat layer used in the present invention is preferably contained with an active ray-curable resin because it is excellent in mechanical film strength (scratch resistance, pencil hardness). That is, it is a layer containing a resin as a main component, which is cured through a cross-linking reaction by irradiation with active rays (also referred to as active energy rays) such as ultraviolet rays and electron beams.
  • active ray-curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active ray-curable resin layer is formed by curing by irradiating with an active ray such as ultraviolet rays or an electron beam.
  • the active ray-curable resin include an ultraviolet curable resin and an electron beam curable resin, and the resin cured by ultraviolet irradiation is particularly excellent in mechanical film strength (scratch resistance, pencil hardness). It is preferable from the point of view.
  • the ultraviolet curable resin include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet ray.
  • a curable epoxy resin or the like is preferably used, and among them, an ultraviolet curable acrylate resin is preferable.
  • Adekaoptomer N series Sunrad H-601, RC-750, RC-700, RC-600, RC-500, RC-611, RC-612 (all manufactured by Sanyo Kasei Kogyo Co., Ltd.).
  • the above-mentioned active ray-curable resin may be used alone or in combination of two or more.
  • the hard coat layer contains a photopolymerization initiator in order to accelerate the curing of the active ray-curable resin.
  • Specific examples of the photopolymerization initiator include alkylphenone-based, acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, ⁇ -amyloxime ester, thioxanthone and the like, and derivatives thereof. It is not particularly limited to these.
  • photopolymerization initiator examples thereof include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan Ltd. as preferable examples.
  • the thickness of the hard coat layer is preferably in the range of 0.1 to 50 ⁇ m, preferably in the range of 1 to 20 ⁇ m, from the viewpoint of improving the hard coat property and improving the transparency of the optical film. More preferred.
  • the method for forming the hard coat layer is not particularly limited. For example, after preparing a coating liquid for forming a hard coat layer containing each of the above components, the coating liquid is applied with a wire bar or the like, and the coating liquid is cured by heat or ultraviolet rays. , A method of forming a hard coat layer and the like. It is preferable that the hard coat layer contains a compound having a structure represented by the general formula (1) according to the present invention from the viewpoint of further improving light resistance and imparting scratch resistance. It is preferably contained in the range of 0.1 to 40% by mass, more preferably in the range of 0.1 to 20% by mass, based on the ultraviolet curable resin.
  • the polarizing plate of the present invention has a polarizing element and an optical film of the present invention arranged on at least one surface thereof.
  • FIG. 1 is a cross-sectional view showing the configuration of the polarizing plate 100.
  • the polarizing plate 100 of the present invention comprises a polarizing element 101, an optical film 102 of the present invention arranged on one surface thereof, an opposing film 103 arranged on the other surface, and polarized light. It may have two adhesive layers 104 arranged between the child 101 and the optical film 102 and between the polarizer 101 and the opposing film 103.
  • the polarizer 101 is an element that allows only light on a plane of polarization in a certain direction to pass through, and is a polyvinyl alcohol-based stretched film doped with iodine or a dichroic dye.
  • the thickness of the polarizer 101 is in the range of 5 to 40 ⁇ m, preferably in the range of 5 to 30 ⁇ m, and particularly preferably in the range of 5 to 20 ⁇ m.
  • the optical film 102 can function as a retardation film, for example, a ⁇ / 4 retardation film used for a circularly polarizing plate of an organic EL image display device.
  • the angle formed by the in-plane slow-phase axis of the optical film 102 with respect to one side of the outer shape of the rectangular film is preferably in the range of 30 to 60 °, more preferably 45 °. ..
  • the one side corresponds to the width direction of the long optical film 102.
  • the angle formed by the in-plane slow-phase axis of the optical film 102 and the absorption axis (or transmission axis) of the polarizer 101 is preferably in the range of 30 to 60 °, more preferably 45 °.
  • the optical film 102 may further have other layers (for example, a hard coat layer, a low refractive index layer, and an antireflection layer) arranged on the surface opposite to the polarizer 101, depending on the application.
  • the optical film 102 may further have an easy-adhesion layer (not shown) arranged on the surface on the side of the polarizer 101.
  • the opposing film 103 may be the optical film of the present invention or another optical film (that is, a protective film). More preferably, the optical film of the present invention is used and the hard coat layer is provided on the outermost surface.
  • Examples of commercially available protective films include commercially available cellulose ester films (eg, Konica Minolta Tuck KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC6UY, KCUEK, KC6UY, KC4UY KC8UY-HA, KC2UA, KC4UA, KC6UA, KC8UA, KC2UAH, KC4UAH, KC6UAH, manufactured by Konica Minolta Co., Ltd. The above includes Fuji Film Co., Ltd.).
  • cellulose ester films eg, Konica Minolta Tuck KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC
  • cycloolefin-based film As a commercially available cycloolefin-based film, various grades of cycloolefin polymer (COP) molded product-Zeonor film (R) manufactured by Zeon Corporation are preferably used.
  • COP cycloolefin polymer
  • R molded product-Zeonor film
  • the thickness of the opposing film 103 can be, for example, in the range of 5 to 100 ⁇ m, preferably in the range of 40 to 80 ⁇ m.
  • the adhesive layer 104 may be arranged between the polarizer 101 and the optical film 102, and between the polarizer 101 and the opposing film 103, respectively.
  • the adhesive layer 104 may be a layer obtained from a water-based adhesive described later, or may be a cured product layer of an ultraviolet curable adhesive.
  • the thickness of the adhesive layer 104 is not particularly limited, but may be, for example, in the range of 0.01 to 10 ⁇ m, preferably about 0.01 to 5 ⁇ m.
  • the polarizing plate 100 may have a long shape or a sheet shape obtained by cutting a long polarizing plate along the width direction.
  • the polarizing plate When an aluminum reflective material is laminated on the optical film of the polarizing plate via an adhesive layer, the reflectance of light having a wavelength of 460 nm of the polarizing plate is T 1 (%), and the reflectance of light having a wavelength of 650 nm is T 2 When (%), the polarizing plate preferably satisfies the following formula (2).
  • Equation (2) 0 ⁇ T 1 / T 2 ⁇ 2.6
  • T 1 / T 2 is less than 2.6
  • the reflectance of light having a wavelength of 460 nm is not too high, that is, leakage of reflected light in the vicinity of the wavelength can be suppressed. Therefore, for example, reflection in an organic EL image display device.
  • the color of light can be improved.
  • T 1 / T 2 is more than 0, for example, the light emission in the wavelength region in the organic EL image display device is not easily obstructed by the dye compound, so that the decrease in brightness can be suppressed. More preferably, T 1 / T 2 is 2.5 or less.
  • the color difference ⁇ E (a * b * ) of the polarizing plate is preferably less than 25, more preferably less than 20.
  • the tint of the reflected light in the organic EL image display device can be improved.
  • the T 1 / T 2 of the polarizing plate and the color difference ⁇ E (a * b * ) can be measured by the following procedure.
  • the pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive.
  • the T 1 / T 2 of the polarizing plate and the color difference ⁇ E (a * b * ) can be adjusted by the type and content of the dye compound represented by the general formula (1).
  • the polarizing plate 100 can be obtained through a step of bonding the polarizing element 101 and the optical film 102 of the present invention via an adhesive.
  • an adhesive a water-based adhesive or an ultraviolet curable adhesive is used.
  • water-based adhesive examples include a water-based adhesive containing a polyvinyl alcohol-based resin (such as a completely saponified polyvinyl alcohol aqueous solution).
  • the ultraviolet curable adhesive composition may be a photoradical polymerization type composition, a photocationic polymerization type composition, or a hybrid type composition in which they are used in combination.
  • Examples of the photoradical polymerization type composition include a radically polymerizable compound containing a polar group such as a hydroxy group or a carboxy group described in JP-A-2008-09329, and a radically polymerizable compound containing no polar group. Compositions containing) are included.
  • the radically polymerizable compound is preferably a compound having an ethylenically unsaturated bond capable of radical polymerization.
  • Preferred examples of compounds having a radically polymerizable ethylenically unsaturated bond include compounds having a (meth) acryloyl group.
  • Examples of compounds having a (meth) acryloyl group include N-substituted (meth) acrylamide-based compounds and (meth) acrylate-based compounds.
  • (Meta) acrylamide means acryamide or methacrylamide.
  • Examples of the photocationic polymerization type composition include ( ⁇ ) a cationically polymerizable compound, ( ⁇ ) a photocationic polymerization initiator, and ( ⁇ ) a wavelength longer than 380 nm as disclosed in JP-A-2011-028234. Includes a photosensitizer that exhibits maximum absorption of light, and an ultraviolet curable adhesive composition containing a ( ⁇ ) naphthalene-based photosensitizer.
  • a step of performing a pretreatment for easy adhesion on the adhesive surface of the optical film and the opposing film pretreatment step
  • a polarizer and the optical film (or the opposing film) are attached. It can be obtained through a step of bonding via an ultraviolet adhesive and a step of 3) irradiating the laminated product obtained by bonding with ultraviolet rays to cure the ultraviolet adhesive (curing step).
  • Pretreatment step Easy adhesion treatment is performed on the bonding surface between the optical film and the polarizer of the opposing film.
  • Examples of the easy-adhesion treatment include corona treatment and plasma treatment.
  • An ultraviolet curable adhesive is applied to at least one of a polarizing element and an optical film (or an opposing film).
  • the method of applying the ultraviolet curable adhesive is not particularly limited, and may be, for example, a doctor blade, a wire bar, a die coater, a comma coater, a gravure coater, or the like.
  • the polarizer and the optical film or the opposing film are bonded together via an ultraviolet curable adhesive.
  • both sides of the laminated laminate are sandwiched between pressure rollers and the like to pressurize.
  • the material of the pressure roller metal or rubber can be used.
  • the laminate bonded via the ultraviolet curable adhesive is irradiated with ultraviolet rays to cure the ultraviolet curable adhesive.
  • the polarizer and the optical film or the opposing film are adhered to each other via an ultraviolet curable adhesive.
  • the curing of the ultraviolet curable adhesive on one side of the polarizer and the curing of the ultraviolet curable adhesive on the other side of the polarizer may be performed sequentially or at the same time. From the viewpoint of increasing the production efficiency of the polarizing plate, it is preferable that the curing of the ultraviolet curable adhesive on one side of the polarizer and the curing of the ultraviolet curable adhesive on the other side of the polarizer are performed at the same time.
  • It irradiation condition of the ultraviolet ray may be any conditions that ultraviolet curable adhesive is cured, for example, be integrated light quantity in the range of 50 ⁇ 1500mJ / cm 2 is preferably in the range of 100 ⁇ 500mJ / cm 2 Is more preferable.
  • the line speed at the time of manufacturing the polarizing plate depends on the curing time of the adhesive, but is preferably in the range of, for example, 1 to 500 m / min, and more preferably in the range of 5 to 300 m / min.
  • the line speed is 1 m / min or more, the productivity can be easily increased and the damage to the optical film and the opposing film can be further reduced.
  • the line speed is 500 m / min or less, the ultraviolet curable adhesive is sufficiently cured, and good adhesiveness can be easily obtained.
  • a high temperature environment may occur due to irradiation with ultraviolet rays or heating to promote curing. Further, even when the adhesive is a water-based adhesive, a high temperature environment may occur due to heating for promoting adhesion or drying the adhesive.
  • the optical film of the present invention is excellent in light resistance and durability, it is possible to obtain a polarizing plate in which light leakage is suppressed even in an environment where the temperature is high when the polarizer and the optical film are bonded. Can be done. By suppressing the light leakage of the polarizing plate, it is possible to suppress a slight light leakage due to the reflection of external light at the time of black display in the organic EL image display device having the polarizing plate.
  • optical film of the present invention can be used as an optical film (phase difference film, protective film) of an image display device such as an organic EL image display device or a liquid crystal display device.
  • the optical film of the present invention can be preferably used as a retardation film ( ⁇ / 4 retardation film) of an organic EL image display device.
  • FIG. 2 is an exploded cross-sectional view of the organic EL image display device 200.
  • the organic EL image display device 200 has an organic EL element 300 (display cell), a polarizing plate 100 (circular polarizing plate), and an adhesive layer 400 arranged between them.
  • the organic EL element 300 has a metal electrode 302, a light emitting layer 303, a transparent electrode (ITO, etc.) 304, and a sealing layer 305 in this order on a substrate 301 such as glass or polyimide.
  • the metal electrode 302 may be composed of a reflective electrode and a transparent electrode.
  • the metal electrode 302 can function as a cathode.
  • the metal electrode 302 in order to facilitate electron injection and increase the luminous efficiency, it is preferable to use a substance having a small work function, and Mg-Ag and Al-Li are usually used.
  • the light emitting layer 303 is a laminate of organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or such a light emitting layer. It may be a laminate of an electron injection layer composed of a perylene derivative or the like, a hole injection layer thereof, a light emitting layer, a laminate of an electron injection layer, or the like.
  • the transparent electrode 304 can function as an anode.
  • the transparent electrode 304 can usually be made of a transparent conductor such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • the polarizing plate 100 is arranged on the surface of the organic EL element 300 on the visual side.
  • the polarizing plate 100 is the above-mentioned polarizing plate 100 (see FIG. 1), and the optical film 102 ( ⁇ / 4 retardation film) is arranged so as to be located between the organic EL element 301 and the polarizer 101.
  • the angle formed by the transmission axis (or absorption axis) of the polarizer 101 and the in-plane slow phase axis of the optical film 102 is preferably 45 ° (or 135 °).
  • the opposing film 103 further has a hard coat layer (not shown) arranged on the surface on the visual side (the surface opposite to the polarizer 101).
  • the hard coat layer can not only prevent scratches on the surface of the organic EL image display device, but also reduce the warp of the polarizing plate 100. Further, an antireflection layer may be further formed on the hard coat layer.
  • the adhesive layer 400 is arranged between the organic EL element 300 and the polarizing plate 100, and these are adhered to each other.
  • the adhesive constituting the adhesive layer 400 include a heat-curable adhesive (epoxy-based heat-curable adhesive, urethane-based heat-curable adhesive, acrylic-based heat-curable adhesive, etc.), hot-melt adhesive, and the like. (Rubber-based hot-melt adhesive, polyester-based hot-melt adhesive, polyolefin-based hot-melt adhesive, ethylene-vinyl acetate resin-based hot-melt adhesive, polyurethane resin hot-melt adhesive, etc.) are included.
  • the light emitting layer 303 is formed of an extremely thin film having a thickness of about 10 nm. Therefore, the light emitting layer 303 also transmits light almost completely like the transparent electrode 304. As a result, the light that is incident from the outside of the organic EL image display device 200 when it is not emitting light, passes through the sealing layer 305, the transparent electrode 304, and the light emitting layer 303 and reaches the metal electrode 302 is reflected by the metal electrode 302. It passes through the light emitting layer 303, the transparent electrode 302, and the sealing layer 305 again, and tries to come out to the surface side of the organic EL device 200. At this time, the optical film 102 suppresses the light reflected by the metal electrode 302 from leaking to the surface side of the organic EL image display device 200, thereby reducing the reflection of external light.
  • the phase is reversed by 180 degrees and becomes circularly polarized light in the opposite direction.
  • the reflected light is incident on the optical film 102, it is converted into linearly polarized light perpendicular to the transmission axis of the polarizer 101 (parallel to the absorption axis), so that the reflected light is absorbed by the polarizer 101 and emitted to the outside. Can be suppressed.
  • an optical film 102 containing a specific dye compound is used.
  • the optical film 102 (the cycloolefin-based resin film containing no dye compound could not be converted into the desired linearly polarized light) is perpendicular to the transmission axis of the polarizer 101 even for light in a specific wavelength region ( It can be converted to linearly polarized light (parallel to the absorption axis).
  • the optical film 102 is excellent in light resistance even if it contains a dye compound, and display unevenness due to this can be suppressed.
  • Example 1 1. Optical film material (1) Cycloolefin resin ⁇ Synthesis of cycloolefin resin 1 >> 100 parts by mass of purified toluene and 100 parts by mass of norbornene carboxylic acid methyl ester (see structural formula A below) were put into a reaction vessel. Then, 25 mmol% of ethylhexanoate-Ni dissolved in toluene (vs. monomer mass), 0.225 mol% of tri (pentafluorophenyl) boron (vs. monomer mass), and 0.25 mol% of triethylaluminum dissolved in toluene (vs.).
  • the monomer mass was put into a reaction vessel and reacted for 18 hours with stirring at room temperature. After completion of the reaction, the reaction mixture was poured into excess ethanol to form a polymer precipitate. The precipitate was purified and the obtained solid was dried in vacuum at 65 ° C. for 24 hours to obtain a cycloolefin resin (P-1) (weight average molecular weight Mw: 140,000, Tg: 140 ° C.). The weight average molecular weight was measured by the method described above.
  • the calculation of the energy level of HOMO by the molecular orbital calculation of the exemplary dye compound and the comparative compound having the structure represented by the general formula (1) is calculated by using B3LYP as a general function and 6-31G (d) as a basis function. It can be calculated by using the molecular orbital calculation software using the above, and the software is not particularly limited, and any of them can be used in the same manner.
  • the calculation was performed using Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian, USA as software for calculating the molecular orbital.
  • Gaussian 09 Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.
  • the HOMO energy level values of the calculation results are shown in Table I.
  • the maximum absorption wavelength of the above compound was determined by measuring the absorption spectrum of the dye compound in dichloromethane using an ultraviolet-visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation, and is shown in Table II.
  • the "maximum absorption wavelength” in the invention means a wavelength (nm) showing the maximum and maximum absorbance (absorption intensity) in the absorption spectrum of the compound obtained when the absorption spectrum of the compound is measured.
  • Fine particles (Aerosil R812: manufactured by Nippon Aerosil Co., Ltd., primary average particle size: 7 nm, apparent specific gravity 50 g / L): 4 parts by mass
  • Dichloromethane 48 parts by mass
  • Ethanol 48 parts by mass
  • Cycloolefin resin 1 100 parts by mass Dichloromethane: 302 parts by mass Ethanol: 18 parts by mass
  • Example dye compound 1 0.1 parts by mass Fine particle additive: 10 parts by mass
  • the prepared dope is cast from a casting die on an endless metal support driven at a speed of 30 m / min, and a dry air of 40 ° C. is blown on the support to provide a self-supporting casting film. It was dried until a (film-like substance) was obtained. Then, the mixture was cooled to 10 ° C., and the cast film was peeled off from the support. Then, the peeled cast film was dried at 110 ° C. for 30 minutes, and then stretched at 170 ° C. in the direction of 45 ° (diagonal direction) with respect to the width direction at a stretching ratio of 2 times.
  • an optical film 101 having a film thickness of 40 ⁇ m and having an in-plane delayed phase axis in a direction of about 45 ° with respect to the width direction was obtained. It was confirmed that the optical film 101 is a film having a retardation value Ro of 145 nm and functioning as a ⁇ / 4 plate by the above-mentioned retardation value evaluation method.
  • the light transmittance was measured using a spectrophotometer (Hitachi High-Tech Science U-3300) according to JIS K 7375: 2008 "Plastic-How to determine total light transmittance and total light reflectance”. When the light transmittance was 80% or more, it was set as “ ⁇ ”, and when it was less than 80%, it was set as “ ⁇ ”.
  • the optical film produced above was subjected to a light resistance test.
  • the prepared film was continuously irradiated with light from a xenon lamp (60 W / m 2 ) for 100 hours, and the absorbance of the thin film before (0 hours) and after (100 hours) irradiation was measured with a spectrophotometer.
  • the dye residual rate was measured according to (1).
  • Dye residual rate (%) ⁇ (A 100 ) / (A 0 ) ⁇ ⁇ 100 (However, A 0 is the absorbance before irradiation with the xenon lamp, and A 100 is the absorbance after irradiation with the xenon lamp.)
  • the "absorbance" represents the absorbance of each compound at the maximum absorption wavelength, and the higher the dye residual ratio, the more difficult the compound is decomposed by light and the higher the light resistance. The light resistance was evaluated according to the following criteria.
  • Dye residual rate is 65% or more
  • the optical film of the present invention is excellent in light transmittance, light resistance and durability by using a dye compound having a structure represented by the general formula (1) according to the present invention. it is obvious.
  • the composition for coating was prepared by mixing and stirring well.
  • the obtained coating composition was applied on a 25 ⁇ m-thick COP substrate with a wire bar, dried, and UV-cured to produce an optical film 201 having a functional layer (hard coat layer) with a thickness of 5 ⁇ m. ..
  • the optical films 202 to 212 were produced in the same manner except that the exemplary dye compounds were changed as shown in Table IV.
  • the optical films 201 to 212 produced were evaluated for light resistance and durability in the same manner as in Example 1. The results are shown in Table IV.
  • the optical film of the present invention has a light transmittance similar to that of Example 1 by using a compound having a structure represented by the general formula (1) according to the present invention in the functional layer. It is clear that it is excellent in light resistance and durability.
  • Example 3 The polarizing plate was prepared and evaluated using the optical films prepared in Examples 1 and 2.
  • Preparation of polarizing plate 301> Preparation of Polarizer A long polyvinyl alcohol film with a thickness of 60 ⁇ m is continuously conveyed via a guide roll and immersed in a dyeing bath (30 ° C.) containing iodine and potassium iodide for dyeing treatment. After 5 times stretching treatment, in an acidic bath (60 ° C.) to which boric acid and potassium iodide were added, a total of 5 times stretching treatment and cross-linking treatment were carried out, and iodine having a thickness of 12 ⁇ m was obtained. -The PVA-based polarizer was dried in a dryer at 50 ° C. for 30 minutes to obtain a polarizer having a moisture content of 4.9%.
  • UV curable Adhesive The following components were mixed to obtain a liquid UV curable adhesive (UV adhesive).
  • the optical film 101 is bonded to one surface of the produced polarizing element, and the TAC film, which is an opposing film, is bonded to the other surface by a roll-to-roll method via an ultraviolet curable adhesive. rice field.
  • the bonding is performed so that the slow axis (or phase advance axis) of the optical film 101 and the absorption axis (or transmission axis) of the polarizer coincide with each other (the in-plane slow axis of the optical film 101 and the absorption axis of the polarizer).
  • the angle between the two was 45 °).
  • the ultraviolet curable adhesive was cured to obtain a polarizing plate 301. Since the polarizing plate 301 is manufactured by a roll-to-roll method, the elongated polarizing plate is finally cut along the width direction to obtain a sheet-shaped polarizing plate 301.
  • the produced polarizing plate 301 is attached to a portion of a commercially available organic EL image display device on which the polarizing plate on the visual side is peeled off so that the optical film 101 side of the polarizing plate is on the organic EL element side, and the organic EL image is displayed.
  • the device 301 was manufactured.
  • ⁇ Light leakage evaluation> The organic EL image display device produced above is stored in an environment of 60 ° C. and 90% RH for 500 hours, then placed at room temperature and humidity (23 ° C. and 55% RH) for 24 hours, and displayed in black in a dark room. The appearance of display unevenness due to light leakage from the screen at that time was visually observed and evaluated according to the following criteria. ⁇ : No display unevenness due to light leakage ⁇ : Some display unevenness is observed due to light leakage ⁇ : Display unevenness clearly occurs due to light leakage
  • the optical film of the present invention has high transparency, prevents light leakage, and is excellent in light resistance and durability under harsh environmental conditions, so that it can be suitably used for polarizing plates and organic electroluminescence image display devices.
  • Polarizing plate 101 Polarizer 102 Optical film 103 Opposing film 104 Adhesive layer 200 Organic EL image display device 300 Organic EL element 301 Substrate 302 Metal electrode 303 Light emitting layer 304 Transparent electrode 305 Sealing layer 400 Adhesive layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention addresses the problem of providing: an optical film that, when applied to an image display device, prevents light leakage despite having high transparency, and also has excellent light resistance and durability under harsh environmental conditions; and a polarizing plate and organic electroluminescence image display device that are provided with the optical film. The optical film according to the present invention contains a thermoplastic resin, and is characterized by containing a compound having a structure represented by general formula (1). (In the formula, Z represents a heteroaryl group having two or more heteroatoms, and is optionally substituted.)

Description

光学フィルム、偏光板及び有機エレクトロルミネッセンス画像表示装置Optical film, polarizing plate and organic electroluminescence image display device
 本発明は、光学フィルム、偏光板及び有機エレクトロルミネッセンス画像表示装置に関し、より詳しくは、画像表示装置に適用した場合、高い透明性を有しながら、光漏れを防ぎ、さらに厳しい環境条件下における耐光性及び耐久性に優れる光学フィルム等に関する。 The present invention relates to an optical film, a polarizing plate, and an organic electroluminescence image display device. More specifically, when applied to an image display device, the present invention has high transparency, prevents light leakage, and is light resistant under harsher environmental conditions. The present invention relates to an optical film or the like having excellent properties and durability.
 有機エレクトロルミネッセンス(以下、「有機EL」ともいう。)画像表示装置ではその内部の金属板による外光反射が顕著で、λ/4位相差フィルムと偏光子を組み合わせた反射防止フィルムが使われている。位相差フィルムの材料として環状オレフィン系樹脂(以下、「COP」ともいう。)を使用するとその波長分散性の影響により特定の波長が反射漏れを起こす。そこで反射漏れを抑制するために特定の波長の光を吸収する色素を含有する層(以下、「特定波長光吸収層」ともいう。)をディスプレイ内に組み込む必要がある。当該特定波長光吸収層はディスプレイ内であればどこに設けてもよく、当該λ/4位相差フィルムとして設けてもよい。 In an organic electroluminescence (hereinafter, also referred to as "organic EL") image display device, external light reflection by the metal plate inside the device is remarkable, and an antireflection film combining a λ / 4 retardation film and a polarizer is used. There is. When a cyclic olefin resin (hereinafter, also referred to as “COP”) is used as the material of the retardation film, reflection leakage occurs at a specific wavelength due to the influence of its wavelength dispersibility. Therefore, in order to suppress reflection leakage, it is necessary to incorporate a layer containing a dye that absorbs light of a specific wavelength (hereinafter, also referred to as “specific wavelength light absorption layer”) in the display. The specific wavelength light absorption layer may be provided anywhere in the display, and may be provided as the λ / 4 retardation film.
 しかしながら、樹脂に直接色素を添加して位相差フィルムを作製すると、樹脂との相互作用があり、色素の光劣化が促進されることがある。 However, when a dye is directly added to the resin to prepare a retardation film, there is an interaction with the resin, and photodegradation of the dye may be promoted.
 例えば、特許文献1には、有機EL素子を守るために400nm付近の波長の光を吸収する色素を粘着層に添加する方法や、特許文献2では有機EL画像表示装置の輝度や視認性を良くするために470nm付近と600nm付近の光を選択的に吸収する色素を粘着剤に添加する方法などが開示されている。 For example, Patent Document 1 describes a method of adding a dye that absorbs light having a wavelength of about 400 nm to an adhesive layer in order to protect an organic EL element, and Patent Document 2 improves the brightness and visibility of an organic EL image display device. A method of adding a dye that selectively absorbs light in the vicinity of 470 nm and around 600 nm to the pressure-sensitive adhesive is disclosed.
 これらの技術では主に粘着剤に色素又はUV吸収剤を添加するが、粘着層が薄いため、機能を発現させるための化合物を均一に添加することが困難である。 In these techniques, a dye or a UV absorber is mainly added to the pressure-sensitive adhesive, but since the pressure-sensitive adhesive layer is thin, it is difficult to uniformly add the compound for expressing the function.
 また、特許文献3では、外部からの紫外線及び一部の可視光線を遮断するために、複数の色素化合物を機能性層の任意の層に入れてもよいことが記載されている。さらに、特許文献4では、インドール化合物を増粘剤等に含有することや、特許文献5では、シアノ基とエステル基を有する特定構造の色素化合物を樹脂や機能性層に添加することが記載されているが、いずれの色素化合物も耐光性が十分ではないという問題があった。 Further, Patent Document 3 describes that a plurality of dye compounds may be put into any layer of the functional layer in order to block ultraviolet rays from the outside and a part of visible light. Further, Patent Document 4 describes that an indole compound is contained in a thickener or the like, and Patent Document 5 describes that a dye compound having a specific structure having a cyano group and an ester group is added to a resin or a functional layer. However, there is a problem that all the dye compounds do not have sufficient light resistance.
特開2017-165941号公報Japanese Unexamined Patent Publication No. 2017-165941 特許第5599740号公報Japanese Patent No. 5599740 特開2017-198991号公報JP-A-2017-198991 国際公開第2017/15996号International Publication No. 2017/15996 特開2018-200463号公報Japanese Unexamined Patent Publication No. 2018-200463
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、画像表示装置に適用した場合、高い透明性を有しながら、光漏れを防ぎ、さらに厳しい環境条件下における耐光性及び耐久性に優れる光学フィルム、それを具備した偏光板及び有機エレクトロルミネッセンス画像表示装置を提供することである。 The present invention has been made in view of the above problems and situations, and the problem to be solved is that when applied to an image display device, it has high transparency, prevents light leakage, and is light resistant under more severe environmental conditions. It is an object of the present invention to provide an optical film having excellent properties and durability, a polarizing plate provided with the optical film, and an organic electroluminescence image display device.
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、熱可塑性樹脂を含有する光学フィルムであって、特定の構造の化合物を含有することによって、画像表示装置に適用した場合、高い透明性を有しながら、光漏れを防ぎ、さらに厳しい環境条件下における耐光性及び耐久性に優れる光学フィルムが得られることを見出した。 In order to solve the above problems, the present inventor is an optical film containing a thermoplastic resin in the process of examining the cause of the above problems, and by containing a compound having a specific structure, the image display device can be used. When applied, it has been found that an optical film having high transparency, preventing light leakage, and having excellent light resistance and durability under harsh environmental conditions can be obtained.
 すなわち、本発明に係る上記課題は、以下の手段により解決される。 That is, the above problem according to the present invention is solved by the following means.
 1.熱可塑性樹脂を含有する光学フィルムであって、
 下記一般式(1)で表される構造を有する化合物を含有することを特徴とする光学フィルム。
1. 1. An optical film containing a thermoplastic resin.
An optical film containing a compound having a structure represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、Zはヘテロ原子を2つ以上有するヘテロアリール基を表し、置換基を有してもよい。) (In the formula, Z represents a heteroaryl group having two or more heteroatoms, and may have a substituent.)
 2.前記Zが、下記構造式で表されるいずれかの基であることを特徴とする第1項に記載の光学フィルム。 2. The optical film according to item 1, wherein Z is any group represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(上記構造式で表される基は更に置換基を有してもよい。また、Rは置換基を表す。) (The group represented by the above structural formula may further have a substituent. In addition, R represents a substituent.)
 3.さらに、前記Zが、下記構造式で表されるいずれかの基であることを特徴とする第2項に記載の光学フィルム。 3. The optical film according to item 2, wherein Z is any group represented by the following structural formula.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
(上記構造式で表される基は更に置換基を有してもよい。また、Rは置換基を表す。) (The group represented by the above structural formula may further have a substituent. In addition, R represents a substituent.)
 4.前記一般式(1)で表される構造を有する化合物の最高被占軌道のエネルギー準位が、-5.85eV以下であることを特徴とする第1項から第3項までのいずれか一項に記載の光学フィルム。 4. Any one of the first to third terms, wherein the energy level of the highest occupied molecular orbital of the compound having the structure represented by the general formula (1) is −5.85 eV or less. The optical film described in.
 5.前記熱可塑性樹脂が、環状オレフィン系樹脂又はアクリル樹脂であることを特徴とする第1項から第4項までのいずれか一項に記載の光学フィルム。 5. The optical film according to any one of items 1 to 4, wherein the thermoplastic resin is a cyclic olefin resin or an acrylic resin.
 6.前記環状オレフィン系樹脂が、極性基を有することを特徴とする第5項に記載の光学フィルム。 6. The optical film according to Item 5, wherein the cyclic olefin resin has a polar group.
 7.前記一般式(1)で表される構造を有する化合物が、前記熱可塑性樹脂に対して、0.01~20質量%の範囲内で含有されることを特徴とする第1項から第6項までのいずれか一項に記載の光学フィルム。 7. Items 1 to 6 are characterized in that the compound having the structure represented by the general formula (1) is contained in the range of 0.01 to 20% by mass with respect to the thermoplastic resin. The optical film according to any one of the above.
 8.更に、機能性層を有することを特徴とする第1項から第7項までのいずれか一項に記載の光学フィルム。 8. The optical film according to any one of items 1 to 7, further comprising a functional layer.
 9.前記機能性層が、前記一般式(1)で表される構造を有する化合物を含有することを特徴とする第8項に記載の光学フィルム。 9. The optical film according to Item 8, wherein the functional layer contains a compound having a structure represented by the general formula (1).
 10.前記光学フィルムが、λ/4位相差フィルムであることを特徴とする第1項から第9項までのいずれか一項に記載の光学フィルム。 10. The optical film according to any one of items 1 to 9, wherein the optical film is a λ / 4 retardation film.
 11.第1項から第10項までのいずれか一項に記載の光学フィルムを具備することを特徴とする偏光板。 11. A polarizing plate comprising the optical film according to any one of items 1 to 10.
 12.第1項から第10項までのいずれか一項に記載の光学フィルム又は第11項に記載の偏光板を具備することを特徴とする有機エレクトロルミネッセンス画像表示装置。 12. An organic electroluminescence image display device comprising the optical film according to any one of items 1 to 10 or the polarizing plate according to item 11.
 本発明の上記手段により、画像表示装置に適用した場合、高い透明性を有しながら、光漏れを防ぎ、さらに厳しい環境条件下における耐光性及び耐久性に優れる光学フィルム、それを具備した偏光板及び有機エレクトロルミネッセンス画像表示装置を提供することができる。 When applied to an image display device by the above means of the present invention, an optical film having high transparency, preventing light leakage, and having excellent light resistance and durability under harsh environmental conditions, and a polarizing plate provided with the optical film. And an organic electroluminescent image display device can be provided.
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。 The mechanism of expression or mechanism of action of the effect of the present invention has not been clarified, but it is inferred as follows.
 λ/4位相差フィルムとしては、吸湿性が低く、良好な寸法安定性を有するなどの観点から、環状オレフィン系樹脂フィルムが用いられることがある。 As the λ / 4 retardation film, a cyclic olefin resin film may be used from the viewpoints of low hygroscopicity and good dimensional stability.
 しかしながら、環状オレフィン系樹脂フィルムは、フラットな波長分散特性を示すため、例えば有機エレクトロルミネッセンス(以下、「有機EL」ともいう。)画像表示装置における円偏光板用のλ/4位相差フィルムとして用いた際に、特定の波長領域(短波長側の領域)では反射光が漏れやすい。そのような反射光の漏れが顕著であると、反射光の色味が低下しやすい。 However, since the cyclic olefin resin film exhibits flat wavelength dispersion characteristics, it is used as a λ / 4 retardation film for a circular polarizing plate in, for example, an organic electroluminescence (hereinafter, also referred to as “organic EL”) image display device. At that time, the reflected light tends to leak in a specific wavelength region (region on the short wavelength side). If the leakage of such reflected light is remarkable, the tint of the reflected light tends to be deteriorated.
 上記のような反射光による色味の低下を抑制するために、本発明者らは、当該波長領域の光を吸収する色素化合物をフィルムに添加することを検討した。有機EL画像表示装置は、高温、高湿の環境下でも用いられるため、外光による有機EL素子の劣化を抑制することが求められる。また、入射光により色素化合物も劣化するため、化合物自身の耐光性も求められる。 In order to suppress the deterioration of color due to the reflected light as described above, the present inventors considered adding a dye compound that absorbs light in the wavelength region to the film. Since the organic EL image display device is used even in a high temperature and high humidity environment, it is required to suppress deterioration of the organic EL element due to external light. Further, since the dye compound is also deteriorated by the incident light, the light resistance of the compound itself is also required.
 そこで、このような問題を解決するために、特定構造の色素化合物を用いれば、光劣化を抑制でき、さらには、特定の熱可塑性樹脂と組み合わせれば、全体として耐久性の向上したλ/4位相差フィルムが作製できるものと考えた。 Therefore, in order to solve such a problem, if a dye compound having a specific structure is used, photodegradation can be suppressed, and further, when combined with a specific thermoplastic resin, λ / 4 with improved durability as a whole. We thought that a retardation film could be produced.
 検討の結果、前記特定構造の色素化合物として、ジシアノ基を有する構造とすると、シアノ基は最高被占軌道(HOMO)のエネルギーレベルを下げる、すなわち酸化電位を下げることができるため、光酸化を抑制できること、したがって色素化合物の耐光性を向上させる効果があることを見出した。そして色素化合物の前記最高被占軌道(HOMO)のエネルギーレベルと熱可塑性樹脂の当該エネルギーレベルが相互作用しにくい樹脂種類を選択すれば、さらに耐光性や耐久性の劣化を抑制できることを見出した。 As a result of the examination, if the dye compound having the specific structure has a dicyano group, the cyano group can lower the energy level of the highest occupied molecular orbital (HOMO), that is, lower the oxidation potential, and thus suppress photooxidation. We have found that it can be done, and therefore has the effect of improving the light resistance of the dye compound. Then, they have found that if a resin type in which the energy level of the highest occupied molecular orbital (HOMO) of the dye compound and the energy level of the thermoplastic resin do not easily interact with each other is selected, deterioration of light resistance and durability can be further suppressed.
偏光板100の構成を示す断面図Sectional drawing which shows the structure of the polarizing plate 100 有機EL画像表示装置200の分解断面図Disassembled sectional view of the organic EL image display device 200
 本発明の光学フィルムは、熱可塑性樹脂を含有する光学フィルムであって、前記一般式(1)で表される構造を有する化合物を含有することを特徴とする。この特徴は、下記実施態様に共通する又は対応する技術的特徴である。 The optical film of the present invention is an optical film containing a thermoplastic resin, and is characterized by containing a compound having a structure represented by the general formula (1). This feature is a technical feature common to or corresponding to the following embodiments.
 本発明の実施態様としては、本発明の効果発現の観点から、前記一般式(1)で表される構造中のZが、請求項2又は請求項3で表される構造のいずれかの基であることが、光漏れの防止と耐光性のバランスに優れる光学フィルムが得られる観点から好ましい。 In an embodiment of the present invention, from the viewpoint of exhibiting the effect of the present invention, Z in the structure represented by the general formula (1) is a group of either the structure represented by claim 2 or claim 3. Is preferable from the viewpoint of obtaining an optical film having an excellent balance between prevention of light leakage and light resistance.
 また、前記一般式(1)で表される構造を有する化合物の最高被占軌道のエネルギー準位が、-5.85eV以下であることが、耐久性に優れる光学フィルムが得られる観点から好ましい。 Further, it is preferable that the energy level of the highest occupied molecular orbital of the compound having the structure represented by the general formula (1) is −5.85 eV or less from the viewpoint of obtaining an optical film having excellent durability.
 さらに、前記熱可塑性樹脂が、環状オレフィン系樹脂又はアクリル樹脂であることが、光漏れの防止と耐光性及び耐久性に優れる光学フィルムが得られる観点から好ましい。中でも、前記環状オレフィン系樹脂が、極性基を有することが、色素の最高被占軌道のエネルギーレベルと樹脂の当該エネルギーレベルが相互作用しにくく、さらに耐光性や耐久性の劣化を抑制できる。 Further, it is preferable that the thermoplastic resin is a cyclic olefin resin or an acrylic resin from the viewpoint of preventing light leakage and obtaining an optical film having excellent light resistance and durability. Above all, when the cyclic olefin resin has a polar group, the energy level of the highest occupied orbital of the dye and the energy level of the resin are less likely to interact with each other, and deterioration of light resistance and durability can be suppressed.
 本発明においては、前記一般式(1)で表される構造を有する化合物が、前記熱可塑性樹脂に対して、0.01~20質量%の範囲内で含有されることが好ましい。0.01質量%未満では本発明の効果が小さく、20質量%を超えると、高温高湿下において、フィルムからの析出(ブリードアウトともいう。)が発生しやすい。 In the present invention, it is preferable that the compound having the structure represented by the general formula (1) is contained in the range of 0.01 to 20% by mass with respect to the thermoplastic resin. If it is less than 0.01% by mass, the effect of the present invention is small, and if it exceeds 20% by mass, precipitation from the film (also referred to as bleed-out) is likely to occur under high temperature and high humidity.
 さらに、前記光学フィルムが、機能性層を有することが好ましく、当該機能性層が、前記一般式(1)で表される構造を有する化合物を含有することが好ましい。機能性層としては、ハードコート層、接着層、平滑層又は光散乱層等を挙げることができるが、ハードコート層であることが前記光学フィルムに耐傷性を付与する観点から好ましい。 Further, it is preferable that the optical film has a functional layer, and it is preferable that the functional layer contains a compound having a structure represented by the general formula (1). Examples of the functional layer include a hard coat layer, an adhesive layer, a smooth layer, a light scattering layer, and the like, but a hard coat layer is preferable from the viewpoint of imparting scratch resistance to the optical film.
 本発明の光学フィルムは、λ/4位相差フィルムであることが好ましく、偏光板に具備することで、反射防止用の円偏光板を提供することができる。 The optical film of the present invention is preferably a λ / 4 retardation film, and by incorporating it in a polarizing plate, it is possible to provide a circular polarizing plate for antireflection.
 また、本発明の有機エレクトロルミネッセンス画像表示装置は、本発明の光学フィルム又は偏光板を具備することを特徴とする。 Further, the organic electroluminescence image display device of the present invention is characterized by comprising the optical film or the polarizing plate of the present invention.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its constituent elements, and modes and modes for carrying out the present invention will be described in detail. In the present application, "-" is used to mean that the numerical values described before and after the value are included as the lower limit value and the upper limit value.
 ≪本発明の光学フィルムの概要≫
 本発明の光学フィルムは、熱可塑性樹脂を含有する光学フィルムであって、下記一般式(1)で表される構造を有する化合物を含有することを特徴とする。
<< Outline of the optical film of the present invention >>
The optical film of the present invention is an optical film containing a thermoplastic resin, and is characterized by containing a compound having a structure represented by the following general formula (1).
 本発明によれば、一般式(1)で表される構造を有する化合物を用いることで、最高被占軌道(highest occupied molecular orbital:HOMOという。)のエネルギー準位下げることができる。HOMOのエネルギー準位下げることによって、酸化電位を下げることができ、光酸化を抑制することができる。つまり、色素化合物の耐光性を向上する効果がある。 According to the present invention, the energy level of the highest occupied molecular orbital (referred to as HOMO) can be lowered by using a compound having a structure represented by the general formula (1). By lowering the energy level of HOMO, the oxidation potential can be lowered and photooxidation can be suppressed. That is, it has the effect of improving the light resistance of the dye compound.
 一般式(1)で表される構造を有する化合物の分子軌道計算によるHOMOの算出は、計算手法として、汎関数としてB3LYP、基底関数として6-31G(d)を用いた分子軌道計算用ソフトウェアを用いて算出することができ、ソフトウェアに特に限定はなく、いずれを用いても同様に求めることができる。 To calculate HOMO by calculating the molecular orbital of a compound having a structure represented by the general formula (1), use software for molecular orbital calculation using B3LYP as a general function and 6-31G (d) as a basis function as a calculation method. It can be calculated by using it, and the software is not particularly limited, and it can be calculated in the same manner by using any of them.
 本発明においては、分子軌道計算用ソフトウェアとして、米国Gaussian社製のGaussian09(Revision C.01,M.J.Frisch,et al,Gaussian,Inc.,2010.)を用いる。 In the present invention, Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian, USA is used as the software for calculating the molecular orbital.
 また、本発明の光学フィルムは透明であることが好ましく、「透明」とは、JIS K 7375:2008「プラスチック-全光線透過率及び全光線反射率の求め方」に従って、分光光度計(例えば、日立ハイテクサイエンス製U-3300)を用いて測定したときに、光透過率が80%以上であることをいう。 Further, the optical film of the present invention is preferably transparent, and "transparent" means a spectrophotometer (for example, "Plastic-How to obtain total light transmittance and total light reflectance"" in accordance with JIS K 7375: 2008. It means that the light transmittance is 80% or more when measured using Hitachi High-Tech Science U-3300).
 以下、本発明の構成要素を詳細に説明する。 Hereinafter, the components of the present invention will be described in detail.
 〔1〕一般式(1)で表される構造を有する化合物
 本発明に係る一般式(1)で表される構造を有する化合物(以下、「色素化合物」ともいう。)は下記構造を有する。
[1] Compound having a structure represented by the general formula (1) A compound having a structure represented by the general formula (1) according to the present invention (hereinafter, also referred to as “dye compound”) has the following structure.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
(式中、Zはヘテロ原子を2つ以上有するヘテロアリール基を表し、置換基を有してもよい。) (In the formula, Z represents a heteroaryl group having two or more heteroatoms, and may have a substituent.)
 さらに式中、Zは下記構造式で表されるいずれかの基であり、さらに置換基を有してもよい。下記構造式において、Rは置換基を表す。 Further, in the formula, Z is any group represented by the following structural formula, and may further have a substituent. In the following structural formula, R represents a substituent.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 中でも、前記Zが下記構造式で表されるいずれかの基であることが、本発明の効果を発現する観点から、より好ましい。下記構造式において、Rは置換基を表す。 Above all, it is more preferable that Z is any group represented by the following structural formula from the viewpoint of exhibiting the effect of the present invention. In the following structural formula, R represents a substituent.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 上記Rは置換基を表し、例えば、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子等)、アルキル基(メチル基、エチル基、n-プロピル基、イソプロピル基、tert-ブチル基、n-オクチル基、2-エチルヘキシル基等)、シクロアルキル基(シクロヘキシル基、シクロペンチル基、4-n-ドデシルシクロヘキシル基等)、アルケニル基(ビニル基、アリル基等)、シクロアルケニル基(2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル基等)、アルキニル基(エチニル基、プロパルギル基等)、芳香族炭化水素環基(フェニル基、p-トリル基、ナフチル基等)、芳香族複素環基(2-ピロール基、2-フリル基、2-チエニル基、ピロール基、イミダゾリル基、オキサゾリル基、チアゾリル基、ベンゾイミダゾリル基、ベンゾオキサゾリル基、2-ベンゾチアゾリル基、ピラゾリノン基、ピリジル基、ピリジノン基、2-ピリミジニル基、トリアジン基、ピラゾール基、1,2,3-トリアゾール基、1,2,4-トリアゾール基、オキサゾール基、イソオキサゾール基、1,2,4-オキサジアゾール基、1,3,4-オキサジアゾール基、チアゾール基、イソチアゾール基、1,2,4-チオジアゾール基、1,3,4-チアジアゾール基等)、シアノ基、ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基(メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、n-オクチルオキシ基、2-メトキシエトキシ基等)、アリールオキシ基(フェノキシ基、2-メチルフェノキシ基、4-tert-ブチルフェノキシ基、3-ニトロフェノキシ基、2-テトラデカノイルアミノフェノキシ基等)、アシルオキシ基(ホルミルオキシ基、アセチルオキシ基、ピバロイルオキシ基、ステアロイルオキシ基、ベンゾイルオキシ基、p-メトキシフェニルカルボニルオキシ基等)、アミノ基(アミノ基、メチルアミノ基、ジメチルアミノ基、アニリノ基、N-メチル-アニリノ基、ジフェニルアミノ基等)、アシルアミノ基(ホルミルアミノ基、アセチルアミノ基、ピバロイルアミノ基、ラウロイルアミノ基、ベンゾイルアミノ基等)、アルキル及びアリールスルホニルアミノ基(メチルスルホニルアミノ基、ブチルスルホニルアミノ基、フェニルスルホニルアミノ基、2,3,5-トリクロロフェニルスルホニルアミノ基、p-メチルフェニルスルホニルアミノ基等)、メルカプト基、アルキルチオ基(メチルチオ基、エチルチオ基、n-ヘキサデシルチオ基等)、アリールチオ基(フェニルチオ基、p-クロロフェニルチオ基、m-メトキシフェニルチオ基等)、スルファモイル基(N-エチルスルファモイル基、N-(3-ドデシルオキシプロピル)スルファモイル基、N,N-ジメチルスルファモイル基、N-アセチルスルファモイル基、N-ベンゾイルスルファモイル基、N-(N′-フェニルカルバモイル)スルファモイル基等)、スルホ基、アシル基(アセチル基、ピバロイルベンゾイル基等)、カルバモイル基(カルバモイル基、N-メチルカルバモイル基、N,N-ジメチルカルバモイル基、N,N-ジ-n-オクチルカルバモイル基、N-(メチルスルホニル)カルバモイル基等)等の各基が挙げられる。 The above R represents a substituent, for example, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n). -Octyl group, 2-ethylhexyl group, etc.), cycloalkyl group (cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.), alkenyl group (vinyl group, allyl group, etc.), cycloalkenyl group (2-cyclopentene- 1-yl, 2-cyclohexene-1-yl group, etc.), alkynyl group (ethynyl group, propargyl group, etc.), aromatic hydrocarbon ring group (phenyl group, p-tolyl group, naphthyl group, etc.), aromatic heterocycle Group (2-pyrrole group, 2-furyl group, 2-thienyl group, pyrrol group, imidazolyl group, oxazolyl group, thiazolyl group, benzoimidazolyl group, benzoxazolyl group, 2-benzothiazolyl group, pyrazolinone group, pyridyl group, pyridinone Group, 2-pyrimidinyl group, triazine group, pyrazole group, 1,2,3-triazole group, 1,2,4-triazole group, oxazole group, isooxazole group, 1,2,4-oxadiazol group, 1 , 3,4-oxadiazol group, thiazole group, isothiazole group, 1,2,4-thiodiazol group, 1,3,4-thiadiazol group, etc.), cyano group, hydroxy group, nitro group, carboxy group, alkoxy Group (methoxy group, ethoxy group, isopropoxy group, tert-butoxy group, n-octyloxy group, 2-methoxyethoxy group, etc.), aryloxy group (phenoxy group, 2-methylphenoxy group, 4-tert-butylphenoxy) Group, 3-nitrophenoxy group, 2-tetradecanoylaminophenoxy group, etc.), acyloxy group (formyloxy group, acetyloxy group, pivaloyloxy group, stearoyloxy group, benzoyloxy group, p-methoxyphenylcarbonyloxy group, etc.) , Amino group (amino group, methylamino group, dimethylamino group, anilino group, N-methyl-anilino group, diphenylamino group, etc.), acylamino group (formylamino group, acetylamino group, pivaloylamino group, lauroylamino group, benzoyl) Amino group, etc.), alkyl and arylsulfonylamino groups (methylsulfonylamino group, butylsulfonylamino group, phenylsulfonylamino group, 2,3,5-trichlorophenylsulfonylamino group, p-methylphenylsulfonylamino) Groups, etc.), mercapto groups, alkylthio groups (methylthio group, ethylthio group, n-hexadecylthio group, etc.), arylthio groups (phenylthio group, p-chlorophenylthio group, m-methoxyphenylthio group, etc.), sulfamoyl group (N-ethyl) Sulfamoyl group, N- (3-dodecyloxypropyl) sulfamoyl group, N, N-dimethylsulfamoyl group, N-acetylsulfamoyl group, N-benzoyl sulfamoyl group, N- (N'-phenyl) Carbamoyl) sulfamoyl group, etc.), sulfo group, acyl group (acetyl group, pivaloylbenzoyl group, etc.), carbamoyl group (carbamoyl group, N-methylcarbamoyl group, N, N-dimethylcarbamoyl group, N, N-di- Examples thereof include n-octylcarbamoyl group, N- (methylsulfonyl) carbamoyl group, etc.).
 以下、本発明に係る一般式(1)で表される構造を有する色素化合物を例示するが、本発明はこれに限定されるものではない。 Hereinafter, a dye compound having a structure represented by the general formula (1) according to the present invention will be exemplified, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 上記色素化合物の分子量は、特に限定されないが、環状オレフィン系樹脂やアクリル樹脂の分子間に入り込みやすくするためには、大きすぎないことが好ましく、例えば、100~1000であることが好ましい。色素化合物の分子量は、例えば、NMR(Nuclear Magnetic Resonance:核磁気共鳴)装置などで化学構造を特定し、当該化学構造式の式量から算出することができる。 The molecular weight of the dye compound is not particularly limited, but it is preferably not too large, for example, preferably 100 to 1000, in order to facilitate intermolecular penetration of the cyclic olefin resin or acrylic resin. The molecular weight of the dye compound can be calculated from the formula amount of the chemical structural formula by specifying the chemical structure by, for example, an NMR (Nuclear Magnetic Resonance) apparatus or the like.
 色素化合物の極大吸収波長は、370~460nmの範囲であることが好ましく、400~440nmの範囲であることがより好ましい。色素化合物の極大吸収波長が上記範囲内であると、光学フィルムが、当該波長領域の光を適度に吸収しやすいため、例えば、光学フィルムを有機EL画像表示装置におけるλ/4位相差フィルムとして用いた場合に、当該波長領域の反射光の漏れを一層抑制しうる。色素化合物の極大吸収波長は、株式会社島津製作所製紫外可視分光光度計UV-2450を用いて、色素化合物のジクロロメタン中での吸収スペクトルを測定することによって求めることができる。 The maximum absorption wavelength of the dye compound is preferably in the range of 370 to 460 nm, and more preferably in the range of 400 to 440 nm. When the maximum absorption wavelength of the dye compound is within the above range, the optical film easily absorbs light in the wavelength region appropriately. Therefore, for example, the optical film is used as a λ / 4 retardation film in an organic EL image display device. If so, the leakage of reflected light in the wavelength region can be further suppressed. The maximum absorption wavelength of the dye compound can be determined by measuring the absorption spectrum of the dye compound in dichloromethane using an ultraviolet visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation.
 色素化合物は、合成して得てもよいし、市販品を用いてもよい。例えば、例示色素化合物12の合成は、以下のスキームで合成することができる。 The dye compound may be obtained synthetically or a commercially available product may be used. For example, the synthesis of the exemplary dye compound 12 can be synthesized by the following scheme.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 100mL3頭コルベンに化合物(12-1)1.5g、マロノニトリル0.697gを測り取り、トルエン40mLを加えて溶解した。次にモルホリン0.817gを滴下した後、昇温して4時間加熱還流した。反応終了後、溶媒を減圧除去し、メタノールを10mL加えて、懸濁状態で攪拌した。析出物をろ過、乾燥して、例示色素化合物12の粉体1.89g(収率96%)を得た。構造はNMRにより確認した。 Weighed 1.5 g of compound (12-1) and 0.697 g of malononitrile in 100 mL of 3-headed corben, and added 40 mL of toluene to dissolve it. Next, 0.817 g of morpholine was added dropwise, the temperature was raised, and the mixture was heated under reflux for 4 hours. After completion of the reaction, the solvent was removed under reduced pressure, 10 mL of methanol was added, and the mixture was stirred in a suspended state. The precipitate was filtered and dried to obtain 1.89 g (yield 96%) of the powder of Exemplified Dye Compound 12. The structure was confirmed by NMR.
 色素化合物の含有量は、環状オレフィン系樹脂に対して0.01~20質量%の範囲であることが好ましい。色素化合物の含有量が0.01質量%以上であると、特定の波長領域の光を適度に吸収させて、例えば、有機EL画像表示装置における反射光の漏れを抑制しつつ、耐光性を向上する効果が得られる。色素化合物の含有量が20質量%以下であると、ブリードアウトを生じにくくしうるだけでなく、光学フィルムの特定の波長領域の光の吸収が高まりすぎないため、輝度の低下も抑制しうる。色素化合物の含有量は、同様の観点から、環状オレフィン系樹脂に対して0.015~10質量%の範囲であることがより好ましい。 The content of the dye compound is preferably in the range of 0.01 to 20% by mass with respect to the cyclic olefin resin. When the content of the dye compound is 0.01% by mass or more, light in a specific wavelength region is appropriately absorbed to improve light resistance while suppressing leakage of reflected light in, for example, an organic EL image display device. The effect of When the content of the dye compound is 20% by mass or less, not only can bleed-out be less likely to occur, but also the absorption of light in a specific wavelength region of the optical film does not increase too much, so that a decrease in brightness can be suppressed. From the same viewpoint, the content of the dye compound is more preferably in the range of 0.015 to 10% by mass with respect to the cyclic olefin resin.
 〔2〕熱可塑性樹脂
 本発明に係る熱可塑性樹脂材料としては、製膜後フィルムとして扱えるものであれば限定はない。例えば、偏光板用途として使用されている熱可塑性樹脂としては、トリアセチルセルロース(TAC)、セルロースアセテートプロピオネート(CAP)、ジアセチルセルロース(DAC)などのセルロースエステル系樹脂やシクロオレフィンポリマー(以下、COP、シクロオレフィン系樹脂ともいう。)などの環状オレフィン系樹脂、ポリプロピレン(PP)などのポリプロピレン系樹脂、ポリメチルメタクリレート(PMMA)などのアクリル系樹脂、及びポリエチレンテレフターレート(PET)などのポリエステル系樹脂が適用できる。
[2] Thermoplastic Resin The thermoplastic resin material according to the present invention is not limited as long as it can be treated as a film after film formation. For example, examples of the thermoplastic resin used for polarizing plates include cellulose ester resins such as triacetyl cellulose (TAC), cellulose acetate propionate (CAP), and diacetyl cellulose (DAC), and cycloolefin polymers (hereinafter referred to as cycloolefin polymers). Cyclic olefin resins such as COP and cycloolefin resins), polypropylene resins such as polypropylene (PP), acrylic resins such as polymethylmethacrylate (PMMA), and polyesters such as polyethylene terephthalate (PET). Cellulose acetate can be applied.
 中でも、位相差等を含む光学特性及び耐久性等の物理特性の観点から、環状オレフィン系樹脂やアクリル系樹脂が、好ましい。 Among them, cyclic olefin resins and acrylic resins are preferable from the viewpoint of optical properties including phase difference and physical properties such as durability.
 〔2.1〕シクロオレフィン系樹脂
 本発明の光学フィルムに含有されるシクロオレフィン系樹脂は、シクロオレフィン単量体の重合体、又はシクロオレフィン単量体とそれ以外の共重合性単量体との共重合体であることが好ましい。
[2.1] Cycloolefin-based resin The cycloolefin-based resin contained in the optical film of the present invention is a polymer of a cycloolefin monomer, or a cycloolefin monomer and another copolymerizable monomer. It is preferably a copolymer of.
 シクロオレフィン単量体としては、ノルボルネン骨格を有するシクロオレフィン単量体であることが好ましく、下記一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体であることがより好ましい。 The cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, and is a cycloolefin monomer having a structure represented by the following general formula (A-1) or (A-2). More preferably.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(A-1)中、R1~R4は、各々独立して、水素原子、炭素原子数1~30の炭化水素基、又は極性基を表す。pは、0~2の整数を表す。ただし、R1~R4の全てが同時に水素原子を表すことはなく、R1とR2が同時に水素原子を表すことはなく、R3とR4が同時に水素原子を表すことはないものとする。 In the general formula (A-1), R 1 to R 4 independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group. p represents an integer of 0 to 2. However, all of R 1 to R 4 do not represent hydrogen atoms at the same time, R 1 and R 2 do not represent hydrogen atoms at the same time, and R 3 and R 4 do not represent hydrogen atoms at the same time. do.
 一般式(A-1)においてR1~R4で表される炭素原子数1~30の炭化水素基としては、例えば、炭素原子数1~10の炭化水素基であることが好ましく、炭素原子数1~5の炭化水素基であることがより好ましい。炭素原子数1~30の炭化水素基は、例えば、ハロゲン原子、酸素原子、窒素原子、硫黄原子又はケイ素原子を含む連結基をさらに有していても良い。そのような連結基の例には、カルボニル基、イミノ基、エーテル結合、シリルエーテル結合、チオエーテル結合等の2価の極性基が含まれる。炭素原子数1~30の炭化水素基の例には、メチル基、エチル基、プロピル基及びブチル基等が含まれる。 The hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 in the general formula (A-1) is preferably, for example, a hydrocarbon group having 1 to 10 carbon atoms, and is preferably a carbon atom. More preferably, it is a hydrocarbon group having a number of 1 to 5. The hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom. Examples of such linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds, thioether bonds and the like. Examples of the hydrocarbon group having 1 to 30 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group and the like.
 一般式(A-1)においてR1~R4で表される極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基及びシアノ基が含まれる。中でも、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基が好ましい。 Examples of the polar groups represented by R 1 to R 4 in the general formula (A-1) include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group and a cyano group. Is included. Of these, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable, and an alkoxycarbonyl group and an aryloxycarbonyl group are preferable from the viewpoint of ensuring solubility during solution film formation.
 一般式(A-1)におけるpは、光学フィルムの耐熱性を高める観点から、1又は2であることが好ましい。pが1又は2であると、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。 P in the general formula (A-1) is preferably 1 or 2 from the viewpoint of increasing the heat resistance of the optical film. This is because when p is 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to be improved.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(A-2)中、R5は、水素原子、炭素数1~5の炭化水素基、又は炭素数1~5のアルキル基を有するアルキルシリル基を表す。R6は、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基、又はハロゲン原子(フッ素原子、塩素原子、臭素原子若しくはヨウ素原子)を表す。pは、0~2の整数を表す。 In the general formula (A-2), R 5 represents an alkylsilyl group having a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms. R 6 represents a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, or a halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom). p represents an integer of 0 to 2.
 一般式(A-2)におけるR5は、炭素数1~5の炭化水素基を表すことが好ましく、炭素数1~3の炭化水素基を表すことがより好ましい。 R 5 in the general formula (A-2) preferably represents a hydrocarbon group having 1 to 5 carbon atoms, and more preferably represents a hydrocarbon group having 1 to 3 carbon atoms.
 一般式(A-2)におけるR6は、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基及びアリールオキシカルボニル基を表すことが好ましく、溶液製膜時の溶解性を確保する観点から、アルコキシカルボニル基及びアリールオキシカルボニル基がより好ましい。 R 6 in the general formula (A-2) preferably represents a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group, and from the viewpoint of ensuring solubility during solution film formation, the alkoxycarbonyl group and aryl Oxycarbonyl groups are more preferred.
 一般式(A-2)におけるpは、光学フィルムの耐熱性を高める観点から、1又は2を表すことが好ましい。pが1又は2を表すと、得られる重合体がかさ高くなり、ガラス転移温度が向上しやすいためである。 P in the general formula (A-2) preferably represents 1 or 2 from the viewpoint of enhancing the heat resistance of the optical film. This is because when p represents 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to improve.
 一般式(A-2)で表される構造を有するシクロオレフィン単量体は、有機溶媒への溶解性を向上させる点から好ましい。一般的に有機化合物は対称性を崩すことによって結晶性が低下するため、有機溶媒への溶解性が向上する。一般式(A-2)におけるR5及びR6は、分子の対称軸に対して片側の環構成炭素原子のみに置換されているので、分子の対称性が低く、すなわち、一般式(A-2)で表される構造を有するシクロオレフィン単量体は溶解性が高いため、光学フィルムを溶液流延法によって製造する場合に適している。 A cycloolefin monomer having a structure represented by the general formula (A-2) is preferable from the viewpoint of improving the solubility in an organic solvent. In general, an organic compound loses its symmetry and thus its crystallinity is lowered, so that its solubility in an organic solvent is improved. Since R 5 and R 6 in the general formula (A-2) are substituted with only the ring-constituting carbon atom on one side with respect to the axis of symmetry of the molecule, the symmetry of the molecule is low, that is, the general formula (A-). Since the cycloolefin monomer having the structure represented by 2) has high solubility, it is suitable for producing an optical film by a solution casting method.
 シクロオレフィン単量体の重合体における一般式(A-2)で表される構造を有するシクロオレフィン単量体の含有割合は、シクロオレフィン系樹脂を構成する全シクロオレフィン単量体の合計に対して例えば、70モル%以上、好ましくは80モル%以上、より好ましくは100モル%とし得る。一般式(A-2)で表される構造を有するシクロオレフィン単量体を一定以上含むと、樹脂の配向性が高まるため、位相差(リターデーション)値が上昇しやすい。 The content ratio of the cycloolefin monomer having the structure represented by the general formula (A-2) in the polymer of the cycloolefin monomer is the total of all the cycloolefin monomers constituting the cycloolefin resin. For example, it can be 70 mol% or more, preferably 80 mol% or more, and more preferably 100 mol%. When a cycloolefin monomer having a structure represented by the general formula (A-2) is contained in a certain amount or more, the orientation of the resin is increased, so that the retardation value is likely to increase.
 以下、一般式(A-1)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物1~14に示し、一般式(A-2)で表される構造を有するシクロオレフィン単量体の具体例を例示化合物15~34に示す。 Hereinafter, specific examples of the cycloolefin monomer having the structure represented by the general formula (A-1) are shown in Examples Compounds 1 to 14, and the cycloolefin single having the structure represented by the general formula (A-2) is shown. Specific examples of the merits are shown in Exemplified Compounds 15 to 34.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 シクロオレフィン単量体と共重合可能な共重合性単量体の例には、シクロオレフィン単量体と開環共重合可能な共重合性単量体、及びシクロオレフィン単量体と付加共重合可能な共重合性単量体等が含まれる。 Examples of copolymerizable monomers copolymerizable with cycloolefin monomers include copolymerizable monomers capable of ring-opening copolymerization with cycloolefin monomers and addition copolymerization with cycloolefin monomers. Possible copolymerizable monomers and the like are included.
 開環共重合可能な共重合性単量体の例には、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン及びジシクロペンタジエン等のシクロオレフィンが含まれる。 Examples of ring-opening copolymerizable copolymerizable monomers include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene and dicyclopentadiene.
 付加共重合可能な共重合性単量体の例には、不飽和二重結合含有化合物、ビニル系環状炭化水素単量体及び(メタ)アクリレート等が含まれる。不飽和二重結合含有化合物の例には、炭素原子数2~12(好ましくは2~8)のオレフィン系化合物が含まれ、その例には、エチレン、プロピレン及びブテン等が含まれる。ビニル系環状炭化水素単量体の例には、4-ビニルシクロペンテン及び2-メチル-4-イソプロペニルシクロペンテン等のビニルシクロペンテン系単量体が含まれる。(メタ)アクリレートの例には、メチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート及びシクロヘキシル(メタ)アクリレート等の炭素原子数1~20のアルキル(メタ)アクリレートが含まれる。 Examples of copolymerizable monomers that can be added and copolymerized include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon monomers, and (meth) acrylates. Examples of unsaturated double bond-containing compounds include olefin compounds having 2 to 12 (preferably 2 to 8) carbon atoms, and examples thereof include ethylene, propylene and butene. Examples of vinyl-based cyclic hydrocarbon monomers include vinyl cyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene. Examples of (meth) acrylates include alkyl (meth) acrylates having 1 to 20 carbon atoms such as methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate.
 シクロオレフィン単量体と共重合性単量体との共重合体におけるシクロオレフィン単量体の含有割合は、共重合体を構成する全単量体の合計に対して例えば、20~80mol%、好ましくは30~70mol%とし得る。 The content ratio of the cycloolefin monomer in the copolymer of the cycloolefin monomer and the copolymerizable monomer is, for example, 20 to 80 mol% with respect to the total of all the monomers constituting the copolymer. It can be preferably 30 to 70 mol%.
 シクロオレフィン系樹脂は、前述のとおり、ノルボルネン骨格を有するシクロオレフィン単量体、好ましくは一般式(A-1)又は(A-2)で表される構造を有するシクロオレフィン単量体を重合又は共重合して得られる重合体であり、その例には、以下のものが含まれる。 As described above, the cycloolefin-based resin is obtained by polymerizing a cycloolefin monomer having a norbornene skeleton, preferably a cycloolefin monomer having a structure represented by the general formula (A-1) or (A-2). It is a polymer obtained by copolymerization, and examples thereof include the following.
 (1)シクロオレフィン単量体の開環重合体
 (2)シクロオレフィン単量体と、それと開環共重合可能な共重合性単量体との開環共重合体
 (3)上記(1)又は(2)の開環(共)重合体の水素添加物
 (4)上記(1)又は(2)の開環(共)重合体をフリーデルクラフツ反応により環化した後、水素添加した(共)重合体
 (5)シクロオレフィン単量体と、不飽和二重結合含有化合物との飽和共重合体
 (6)シクロオレフィン単量体のビニル系環状炭化水素単量体との付加共重合体及びその水素添加物
 (7)シクロオレフィン単量体と、(メタ)アクリレートとの交互共重合体
 上記(1)~(7)の重合体は、いずれも公知の方法、例えば、特開2008-107534号公報や特開2005-227606号公報に記載の方法で得ることができる。例えば、上記(2)の開環共重合に用いられる触媒や溶媒は、例えば、特開2008-107534号公報の段落0019~0024に記載のものを使用できる。上記(3)及び(6)の水素添加に用いられる触媒は、例えば、特開2008-107534号公報の段落0025~0028に記載のものを使用できる。上記(4)のフリーデルクラフツ反応に用いられる酸性化合物は、例えば、特開2008-107534号公報の段落0029に記載のものを使用できる。上記(5)~(7)の付加重合に用いられる触媒は、例えば、特開2005-227606号公報の段落0058~0063に記載のものを使用できる。上記(7)の交互共重合反応は、例えば、特開2005-227606号公報の段落0071及び0072に記載の方法で行うことができる。
(1) Ring-opening polymer of cycloolefin monomer (2) Ring-opening copolymer of cycloolefin monomer and copolymerizable copolymer with ring-opening copolymerization (3) The above (1) Alternatively, a hydrogenated product of the ring-opened (co) polymer of (2) (4) The ring-opened (co) polymer of (1) or (2) above was cyclized by the Friedercrafts reaction and then hydrogenated ( Co) Polymer (5) Saturated copolymer of cycloolefin monomer and unsaturated double bond-containing compound (6) Addition copolymer of vinyl-based cyclic hydrocarbon monomer of cycloolefin monomer (7) Alternating copolymer of cycloolefin monomer and (meth) acrylate The polymers of (1) to (7) above are all known methods, for example, Japanese Patent Application Laid-Open No. 2008-. It can be obtained by the method described in Japanese Patent Application Laid-Open No. 107534 and Japanese Patent Application Laid-Open No. 2005-227606. For example, as the catalyst and solvent used for the ring-opening copolymerization of (2) above, those described in paragraphs 0019 to 0024 of JP-A-2008-107534 can be used, for example. As the catalyst used for hydrogenation of (3) and (6) above, for example, those described in paragraphs 0025 to 0028 of JP-A-2008-107534 can be used. As the acidic compound used in the Friedel-Crafts reaction of (4) above, for example, those described in paragraph 0029 of JP-A-2008-107534 can be used. As the catalyst used for the addition polymerization of the above (5) to (7), for example, those described in paragraphs 0058 to 0063 of JP-A-2005-227606 can be used. The alternating copolymerization reaction of (7) above can be carried out, for example, by the method described in paragraphs 0071 and 0072 of JP-A-2005-227606.
 中でも、上記(1)~(3)及び(5)の重合体が好ましく、上記(3)及び(5)の重合体がより好ましい。すなわち、シクロオレフィン系樹脂は、得られるシクロオレフィン系樹脂のガラス転移温度を高くし、かつ光透過率を高くすることができる点で、下記一般式(B-1)で表される構造単位と下記一般式(B-2)で表される構造単位の少なくとも一方を含むことが好ましく、一般式(B-2)で表される構造単位のみを含むか、又は一般式(B-1)で表される構造単位と一般式(B-2)で表される構造単位の両方を含むことがより好ましい。一般式(B-1)で表される構造単位は、前述の一般式(A-1)で表されるシクロオレフィン単量体由来の構造単位であり、一般式(B-2)で表される構造単位は、前述の一般式(A-2)で表されるシクロオレフィン単量体由来の構造単位である。 Among them, the polymers of the above (1) to (3) and (5) are preferable, and the polymers of the above (3) and (5) are more preferable. That is, the cycloolefin-based resin has a structural unit represented by the following general formula (B-1) in that the glass transition temperature of the obtained cycloolefin-based resin can be increased and the light transmittance can be increased. It is preferable that at least one of the structural units represented by the following general formula (B-2) is contained, and only the structural unit represented by the general formula (B-2) is included, or the general formula (B-1) is used. It is more preferable to include both the structural unit represented and the structural unit represented by the general formula (B-2). The structural unit represented by the general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-1), and is represented by the general formula (B-2). The structural unit is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-2).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 一般式(B-1)中、Xは、-CH=CH-又は-CH2CH2-を表す。R1~R4及びpは、それぞれ一般式(A-1)のR1~R4及びpと同義である。 In the general formula (B-1), X represents -CH = CH- or -CH 2 CH 2- . R 1 ~ R 4 and p are respectively the same as R 1 ~ R 4 and p of the general formula (A-1).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 一般式(B-2)中、Xは、-CH=CH-又は-CH2CH2-を表す。R5~R6及びpは、それぞれ一般式(A-2)のR5~R6及びpと同義である。 In the general formula (B-2), X represents -CH = CH- or -CH 2 CH 2- . R 5 ~ R 6 and p are respectively the same as R 5 ~ R 6 and p in the general formula (A-2).
 本発明に係るシクロオレフィン系樹脂は、市販品であっても良い。シクロオレフィン系樹脂の市販品の例には、JSR(株)製のアートン(Arton)G(例えば、G7810等)、アートンF、アートンR(例えば、R4500、R4900及びR5000等)、及びアートンRXが含まれる。 The cycloolefin resin according to the present invention may be a commercially available product. Examples of commercially available cycloolefin resins include Arton G (eg, G7810, etc.), Arton F, Arton R (eg, R4500, R4900, R5000, etc.) and Arton RX manufactured by JSR Corporation. included.
 シクロオレフィン系樹脂の固有粘度〔η〕inhは、30℃の測定において、0.2~5cm3/gの範囲であることが好ましく、0.3~3cm3/gの範囲であることがより好ましく、0.4~1.5cm3/gの範囲であることがさらに好ましい。 The intrinsic viscosity [η] inh of the cycloolefin resin is preferably in the range of 0.2 to 5 cm 3 / g, and more preferably in the range of 0.3 to 3 cm 3 / g when measured at 30 ° C. It is preferably in the range of 0.4 to 1.5 cm 3 / g, more preferably in the range of 0.4 to 1.5 cm 3 / g.
 シクロオレフィン系樹脂の数平均分子量(Mn)は、8000~100000の範囲であることが好ましく、10000~80000の範囲であることがより好ましく、12000~50000の範囲であることがさらに好ましい。シクロオレフィン系樹脂の重量平均分子量(Mw)は、20000~300000の範囲であることが好ましく、30000~250000の範囲であることがより好ましく、40000~200000の範囲であることがさらに好ましい。シクロオレフィン系樹脂の数平均分子量や重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)にてポリスチレン換算にて測定することができる。 The number average molecular weight (Mn) of the cycloolefin resin is preferably in the range of 8000 to 100,000, more preferably in the range of 10,000 to 80,000, and further preferably in the range of 12,000 to 50,000. The weight average molecular weight (Mw) of the cycloolefin resin is preferably in the range of 20000 to 300,000, more preferably in the range of 30,000 to 250,000, and even more preferably in the range of 40,000 to 200,000. The number average molecular weight and the weight average molecular weight of the cycloolefin resin can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
 <ゲルパーミエーションクロマトグラフィー>
 溶媒:   メチレンクロライド
 カラム:  Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
 カラム温度:25℃
 試料濃度: 0.1質量%
 検出器:  RI Model 504(GLサイエンス社製)
 ポンプ:  L6000(日立製作所(株)製)
 流量:   1.0mL/min
 校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~2800000の範囲内の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。
<Gel Permeation Chromatography>
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Three made by Showa Denko KK were connected and used)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Science)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 mL / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) A calibration curve with 13 samples in the range of Mw = 500 to 2800000 was used. The 13 samples are preferably used at approximately equal intervals.
 固有粘度〔η〕inh、数平均分子量及び重量平均分子量が上記範囲にあると、シクロオレフィン系樹脂の耐熱性、耐水性、耐薬品性、機械的特性、及びフィルムとしての成形加工性が良好となる。 When the intrinsic viscosity [η] inh, the number average molecular weight and the weight average molecular weight are within the above ranges, the heat resistance, water resistance, chemical resistance, mechanical properties, and molding processability as a film of the cycloolefin resin are good. Become.
 シクロオレフィン系樹脂のガラス転移温度(Tg)は、通常、110℃以上であり、110~350℃の範囲であることが好ましく、120~250℃の範囲であることがより好ましく、120~220℃の範囲であることがさらに好ましい。Tgが110℃以上であると、高温条件下での変形を抑制しやすい。一方、Tgが350℃以下であると、成形加工が容易となり、成形加工時の熱による樹脂の劣化も抑制しやすい。 The glass transition temperature (Tg) of the cycloolefin resin is usually 110 ° C. or higher, preferably in the range of 110 to 350 ° C., more preferably in the range of 120 to 250 ° C., and 120 to 220 ° C. It is more preferable that the range is. When Tg is 110 ° C. or higher, deformation under high temperature conditions can be easily suppressed. On the other hand, when the Tg is 350 ° C. or lower, the molding process becomes easy, and the deterioration of the resin due to the heat during the molding process is also easily suppressed.
 シクロオレフィン系樹脂の含有量は、フィルムに対して70質量%以上であることが好ましく、80質量%以上であることがより好ましい。 The content of the cycloolefin resin is preferably 70% by mass or more, more preferably 80% by mass or more with respect to the film.
 〔2.2〕アクリル系樹脂
 本発明に係るアクリル系樹脂は、アクリル酸エステル又はメタアクリル酸エステルの重合体であって、ほかのモノマーとの共重合体も含まれる。
[2.2] Acrylic Resin The acrylic resin according to the present invention is a polymer of an acrylic acid ester or a methacrylic acid ester, and also includes a copolymer with another monomer.
 したがって、本発明に係るアクリル系樹脂には、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位が50~99質量%の範囲内、及びこれと共重合可能なほかの単量体単位が1~50質量%の範囲内からなるものが好ましい。 Therefore, the acrylic resin according to the present invention also includes a methacrylic resin. The resin is not particularly limited, but the methyl methacrylate unit is in the range of 50 to 99% by mass, and other monomer units copolymerizable therewith are in the range of 1 to 50% by mass. Is preferable.
 共重合で形成されるアクリル系樹脂を構成するほかの単位としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、メタクリル酸イソボルニル、2-ヒドロキシエチルアクリレート等のヒドロキシアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、アクリロイルモルホリン、N-ヒドロキシフェニルメタクリルアミド等のアクリルアミド、N-ビニルピロリドン、マレイン酸、フマル酸、イタコン酸等の不飽和基含有2価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタルイミド、グルタル酸無水物等が挙げられる。 Other units constituting the acrylic resin formed by copolymerization include alkylmethacrylate having an alkyl number of 2 to 18, alkylacrylate having an alkyl number of 1 to 18, isobornyl methacrylate, and 2-. Hydroxyalkyl acrylates such as hydroxyethyl acrylates, α, β-unsaturated acids such as acrylic acid and methacrylic acid, acrylamides such as acryloylmorpholin and N-hydroxyphenylmethacrylate, N-vinylpyrrolidone, maleic anhydride, fumaric acid and itaconic acid. Unsaturated group-containing divalent carboxylic acids such as, styrene, aromatic vinyl compounds such as α-methylstyrene, α, β-unsaturated nitriles such as acryloyl nitrile and methacrylic nitrile, maleic anhydride, maleimide, N-substituted maleimide, etc. Glutalimide, glutaric anhydride and the like can be mentioned.
 上記単位より、グルタルイミド及びグルタル酸無水物を除いた単位を形成する共重合可能な単量体としては、上記単位に対応した単量体が挙げられる。すなわち、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、メタクリル酸イソボルニル、2-ヒドロキシエチルアクリレート等のヒドロキシアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、アクリロイルモルホリン、Nヒドロキシフェニルメタクリルアミド等のアクリルアミド、N-ビニルピロリドン、マレイン酸、フマル酸、イタコン酸等の不飽和基含有2価カルボン酸、スチレン、α-メチルスチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、等の単量体が挙げられる。 Examples of the copolymerizable monomer forming a unit excluding glutarimide and glutaric anhydride from the above unit include a monomer corresponding to the above unit. That is, alkyl methacrylate having an alkyl number of 2 to 18 carbons, alkyl acrylate having an alkyl number of 1 to 18 carbon atoms, hydroxyalkyl acrylate such as isobornyl methacrylate and 2-hydroxyethyl acrylate, acrylic acid, methacrylic acid and the like. Unsaturated group-containing divalent carboxylic acids such as α, β-unsaturated acid, acrylic morpholine, acrylamide such as N-hydroxyphenylmethacrylic acid, N-vinylpyrrolidone, maleic acid, fumaric acid, and itaconic acid, styrene, α-methylstyrene. Examples thereof include aromatic vinyl compounds such as, acrylonitrile, α, β-unsaturated nitriles such as methacrylic acid, maleic anhydride, maleimide, N-substituted maleimide, and the like.
 また、グルタルイミド単位は、例えば、(メタ)アクリル酸エステル単位を有する中間体ポリマーに1級アミン(イミド化剤)を反応させてイミド化することにより形成できる(特開2011-26563号公報参照。)。 Further, the glutarimide unit can be formed, for example, by reacting an intermediate polymer having a (meth) acrylic acid ester unit with a primary amine (imidizing agent) to imidize it (see JP-A-2011-26563). .).
 グルタル酸無水物単位は、例えば、(メタ)アクリル酸エステル単位を有する中間体ポリマーを加熱することにより形成することができる(特許第4961164号公報参照。)。 The glutaric anhydride unit can be formed, for example, by heating an intermediate polymer having a (meth) acrylic acid ester unit (see Japanese Patent No. 4961164).
 本発明に係るアクリル系樹脂には、上記の構成単位の中でも、機械的強度の観点から、メタクリル酸イソボルニル、アクリロイルモルホリン、N-ヒドロキシフェニルメタクリルアミド、N-ビニルピロリドン、スチレン、ヒドロキシエチルメタクリレート、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物又はグルタルイミドが含まれることが、特に好ましい。 Among the above-mentioned structural units, the acrylic resin according to the present invention contains isobornyl methacrylate, acryloylmorpholine, N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, styrene, hydroxyethyl methacrylate, and anhydride from the viewpoint of mechanical strength. It is particularly preferred that maleic acid, maleimide, N-substituted maleimide, glutaric anhydride or glutarimide are included.
 本発明に係るアクリル系樹脂は、環境の温湿度雰囲気の変化に対する寸法変化を制御する観点や、フィルム生産時の金属支持体からの剥離性、有機溶媒の乾燥性、耐熱性及び機械的強度の改善の観点から、重量平均分子量(Mw)が5万~100万の範囲内であることが好ましく、10万~100万の範囲内であることがより好ましく、20万~80万の範囲内であることが特に好ましい。 The acrylic resin according to the present invention has the viewpoint of controlling dimensional changes with respect to changes in the temperature and humidity atmosphere of the environment, peelability from a metal support during film production, drying properties of an organic solvent, heat resistance, and mechanical strength. From the viewpoint of improvement, the weight average molecular weight (Mw) is preferably in the range of 50,000 to 1,000,000, more preferably in the range of 100,000 to 1,000,000, and in the range of 200,000 to 800,000. It is particularly preferable to have.
 5万以上であれば、耐熱性及び機械的強度が優れ、100万以下であれば、金属支持体からの剥離性及び有機溶媒の乾燥性に優れる。 If it is 50,000 or more, the heat resistance and mechanical strength are excellent, and if it is 1 million or less, the peelability from the metal support and the drying property of the organic solvent are excellent.
 本発明に係るアクリル系樹脂の製造方法としては、特に制限はなく、懸濁重合、乳化重合、塊状重合、あるいは溶液重合等の公知の方法のいずれを用いても良い。ここで、重合開始剤としては、通常のパーオキサイド系及びアゾ系のものを用いることができ、また、レドックス系とすることもできる。重合温度については、懸濁又は乳化重合では30~100℃の範囲内、塊状又は溶液重合では80~160℃の範囲内で実施しうる。得られた共重合体の還元粘度を制御するために、アルキルメルカプタン等を連鎖移動剤として用いて重合を実施することもできる。 The method for producing the acrylic resin according to the present invention is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used. Here, as the polymerization initiator, ordinary peroxide-based and azo-based ones can be used, and redox-based ones can also be used. The polymerization temperature may be in the range of 30 to 100 ° C. for suspension or emulsion polymerization and in the range of 80 to 160 ° C. for massive or solution polymerization. In order to control the reducing viscosity of the obtained copolymer, polymerization can also be carried out using an alkyl mercaptan or the like as a chain transfer agent.
 アクリル系樹脂のガラス転移温度Tgは、80~120℃の範囲内であることが、フィルムの機械的強度を保持する観点から、好ましい。 The glass transition temperature Tg of the acrylic resin is preferably in the range of 80 to 120 ° C. from the viewpoint of maintaining the mechanical strength of the film.
 本発明に係るアクリル系樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N、980N、SR8200(以上、旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88、EMB-143、EMB-159、EMB-160、EMB-161、EMB-218、EMB-229、EMB-270、EMB-273(以上、三菱レイヨン(株)製)、KT75、TX400S、IPX012(以上、電気化学工業(株)製)等が挙げられる。アクリル系樹脂は2種以上を併用することもできる。 As the acrylic resin according to the present invention, a commercially available one can also be used. For example, Delpet 60N, 80N, 980N, SR8200 (all manufactured by Asahi Kasei Chemicals Co., Ltd.), Dianar BR52, BR80, BR83, BR85, BR88, EMB-143, EMB-159, EMB-160, EMB-161, Examples thereof include EMB-218, EMB-229, EMB-270, EMB-273 (all manufactured by Mitsubishi Rayon Co., Ltd.), KT75, TX400S, IPX012 (all manufactured by Denki Kagaku Kogyo Co., Ltd.) and the like. Two or more kinds of acrylic resins can be used in combination.
 本発明に係るアクリル系樹脂は、添加剤を含有することが好ましく、添加剤の一例としては、国際公開第2010/001668号に記載のアクリル粒子(ゴム弾性体粒子)を、フィルムの機械的強度向上や寸法変化率の調整のために含有することが好ましい。このような多層構造アクリル系粒状複合体の市販品の例としては、例えば、三菱レイヨン社製の「メタブレンW-341」、カネカ社製の「カネエース」、クレハ社製の「パラロイド」、ロームアンドハース社製の「アクリロイド」、アイカ社製の「スタフィロイド」、ケミスノーMR-2G、MS-300X(以上、綜研化学(株)製)及びクラレ社製の「パラペットSA」などが挙げられ、これらは、単独ないし2種以上を用いることができる。 The acrylic resin according to the present invention preferably contains an additive, and as an example of the additive, the acrylic particles (rubber elastic particles) described in International Publication No. 2010/001668 are used as the mechanical strength of the film. It is preferably contained for improvement and adjustment of the dimensional change rate. Examples of commercially available products of such a multilayer structure acrylic granular composite include "Metabrene W-341" manufactured by Mitsubishi Rayon, "Kaneka" manufactured by Kaneka, "Paraloid" manufactured by Kureha, and Roamand. Examples include "Acryloid" manufactured by Haas, "Stafyroid" manufactured by Aika, Chemisnow MR-2G, MS-300X (above, manufactured by Soken Kagaku Co., Ltd.) and "Parapet SA" manufactured by Kuraray. Can be used alone or in combination of two or more.
 アクリル粒子の体積平均粒子径は0.35μm以下であり、好ましくは0.01~0.35μmの範囲であり、より好ましくは0.05~0.30μmの範囲である。粒子径が一定以上であれば、フィルムを加熱下で伸びやすくでき、粒子径が一定以下であれば、得られるフィルムの透明性を損ないにくい。 The volume average particle diameter of the acrylic particles is 0.35 μm or less, preferably in the range of 0.01 to 0.35 μm, and more preferably in the range of 0.05 to 0.30 μm. When the particle size is above a certain level, the film can be easily stretched under heating, and when the particle size is below a certain level, the transparency of the obtained film is not easily impaired.
 本発明の光学フィルムは、柔軟性の観点から、曲げ弾性率(JIS K7171)が1.5GPa以下であることが好ましい。この曲げ弾性率は、より好ましくは1.3GPa以下であり、さらに好ましくは1.2GPa以下である。この曲げ弾性率は、フィルム中のアクリル系樹脂やゴム弾性体粒子の種類や量などによって変動し、例えば、ゴム弾性体粒子の含有量が多いほど、一般に曲げ弾性率は小さくなる。また、アクリル系樹脂として、メタクリル酸アルキルの単独重合体を用いるよりも、メタクリル酸アルキルとアクリル酸アルキル等との共重合体を用いる方が、一般に曲げ弾性率は小さくなる。 From the viewpoint of flexibility, the optical film of the present invention preferably has a flexural modulus (JIS K7171) of 1.5 GPa or less. This flexural modulus is more preferably 1.3 GPa or less, still more preferably 1.2 GPa or less. This flexural modulus varies depending on the type and amount of acrylic resin and rubber elastic particles in the film. For example, the larger the content of rubber elastic particles, the smaller the flexural modulus. Further, as the acrylic resin, the flexural modulus is generally smaller when a copolymer of alkyl methacrylate and alkyl acrylate or the like is used than when a homopolymer of alkyl methacrylate is used.
 〔3〕他の成分
 本発明の光学フィルムは、本発明の効果を損なわない範囲で上記以外の他の成分をさらに含んでもよい。他の成分の例には、マット剤、紫外線吸収剤、位相差調整剤(位相差上昇剤、位相差低減剤)、可塑剤、酸化防止剤、光安定剤、帯電防止剤、剥離剤、増粘剤が含まれる。中でも、光学フィルムの表面に凹凸を付与し、適度なすべり性を付与する観点などから、光学フィルムは、マット剤を含むことが好ましい。
[3] Other Components The optical film of the present invention may further contain components other than the above as long as the effects of the present invention are not impaired. Examples of other components include matting agents, UV absorbers, phase difference adjusters (phase difference increasing agents, phase difference reducing agents), plasticizers, antioxidants, light stabilizers, antistatic agents, release agents, and boosters. Contains thickeners. Above all, it is preferable that the optical film contains a matting agent from the viewpoint of imparting unevenness to the surface of the optical film and imparting appropriate slipperiness.
 (マット剤)
 マット剤は、微粒子である。微粒子は、無機微粒子であってもよいし、樹脂微粒子であってもよい。無機微粒子の例には、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、及びリン酸カルシウムなどの無機化合物の微粒子が含まれる。中でも、無機微粒子は、光学フィルムのヘイズを増大させにくく、摩擦係数を効果的に下げうる観点などから、二酸化ケイ素微粒子であることが好ましい。
(Matte agent)
The matting agent is fine particles. The fine particles may be inorganic fine particles or resin fine particles. Examples of inorganic fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate. , And fine particles of inorganic compounds such as calcium phosphate. Among them, the inorganic fine particles are preferably silicon dioxide fine particles from the viewpoint that it is difficult to increase the haze of the optical film and the friction coefficient can be effectively lowered.
 二酸化ケイ素微粒子の例には、アエロジル200V、アエロジルR972V、アエロジルR812(以上、日本アエロジル株式会社製)が含まれる。 Examples of silicon dioxide fine particles include Aerosil 200V, Aerosil R972V, and Aerosil R812 (all manufactured by Nippon Aerosil Co., Ltd.).
 樹脂微粒子の例には、シリコーン樹脂、フッ素樹脂、アクリル樹脂などの微粒子が含まれる。中でも、シリコーン樹脂微粒子が好ましく、特に三次元の網状構造を有する樹脂微粒子が好ましい。樹脂微粒子の例には、トスパール103、同105、同108、同120、同145、同3120及び同240(以上、東芝シリコーン株式会社製)が含まれる。 Examples of resin fine particles include fine particles such as silicone resin, fluororesin, and acrylic resin. Of these, silicone resin fine particles are preferable, and resin fine particles having a three-dimensional network structure are particularly preferable. Examples of the resin fine particles include Tospearl 103, 105, 108, 120, 145, 3120 and 240 (all manufactured by Toshiba Silicone Co., Ltd.).
 微粒子の一次粒子の平均粒径は、0.005~0.4μmの範囲であることが好ましく、0.01~0.3μmの範囲であることがより好ましい。これらの微粒子は、粒径0.05~0.3μmの範囲の二次凝集体として含有されていてもよい。 The average particle size of the primary particles of the fine particles is preferably in the range of 0.005 to 0.4 μm, more preferably in the range of 0.01 to 0.3 μm. These fine particles may be contained as secondary aggregates having a particle size in the range of 0.05 to 0.3 μm.
 微粒子の含有量は、光学フィルムに対して0.01~3.0質量%の範囲であることが好ましく、0.01~2.0質量%の範囲であることがより好ましい。また、光学フィルムの表面の動摩擦係数は、0.2~1.0の範囲であることが好ましい。 The content of the fine particles is preferably in the range of 0.01 to 3.0% by mass, more preferably in the range of 0.01 to 2.0% by mass with respect to the optical film. The coefficient of dynamic friction on the surface of the optical film is preferably in the range of 0.2 to 1.0.
 〔4〕光学フィルムの製造方法
 〔4.1〕光学フィルムの物性
 (位相差Ro)
 光学フィルムは、例えば、λ/4位相差フィルムとして用いる観点では、測定波長550nm、23℃55%RHの環境下で測定される面内方向の位相差Roは、100~170nmの範囲であることが好ましく、130~150nmの範囲であることがより好ましい。
[4] Manufacturing method of optical film [4.1] Physical characteristics of optical film (phase difference Ro)
From the viewpoint of using the optical film as, for example, a λ / 4 retardation film, the in-plane retardation Ro measured in an environment with a measurement wavelength of 550 nm and 23 ° C. and 55% RH is in the range of 100 to 170 nm. Is preferable, and the range is more preferably in the range of 130 to 150 nm.
 Roは、下記式で定義される。 Ro is defined by the following formula.
 式(1):Ro=(nx-ny)×d
(式(1)中、nxは、フィルムの面内遅相軸方向(屈折率が最大となる方向)の屈折率を表し、nyは、フィルムの面内遅相軸に直交する方向の屈折率を表し、dは、フィルムの厚さ(nm)を表す。)
 光学フィルムの面内遅相軸は、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)により確認することができる。光学フィルムをλ/4位相差フィルムとして用いる場合、光学フィルムの面内遅相軸の、光学フィルムの幅方向に対する角度は、好ましくは40~50°の範囲、より好ましくは43~47°の範囲である。
Equation (1): Ro = (n x − n y ) × d
(In the equation (1), n x represents the refractive index in the in-plane slow-phase axis direction (the direction in which the refractive index becomes maximum) of the film, and n y is the direction orthogonal to the in-plane slow-phase axis of the film. It represents the refractive index, and d represents the thickness (nm) of the film.)
The in-plane slow-phase axis of the optical film can be confirmed by an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). When the optical film is used as a λ / 4 retardation film, the angle of the in-plane slow axis of the optical film with respect to the width direction of the optical film is preferably in the range of 40 to 50 °, more preferably in the range of 43 to 47 °. Is.
 Roは、以下の方法で測定することができる。 Ro can be measured by the following method.
 1)光学フィルムを23℃55%RHの環境下で24時間調湿する。このフィルムの平均屈折率をアッベ屈折計で測定し、厚さdを市販のマイクロメーターを用いて測定する。 1) The optical film is humidity-controlled for 24 hours in an environment of 23 ° C. and 55% RH. The average refractive index of this film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer.
 2)調湿後のフィルムの、測定波長550nmにおけるリターデーションRoを、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃55%RHの環境下で測定する。 2) The retardation Ro of the film after humidity control at a measurement wavelength of 550 nm was measured in an environment of 23 ° C. and 55% RH using an automatic birefringence meter Axoscan (AxoScan Mueller Matrix Polarimeter: manufactured by Axometrics). taking measurement.
 光学フィルムの位相差Roは、例えば、シクロオレフィン系樹脂の単量体組成や延伸条件によって調整することができる。 The phase difference Ro of the optical film can be adjusted, for example, by the monomer composition of the cycloolefin resin and the stretching conditions.
 (残留溶媒量)
 光学フィルムは、好ましくは溶液流延法で製膜されることから、残留溶媒をさらに含みうる。残留溶媒量は、光学フィルムに対して700ppm以下であることが好ましく、30~700ppmの範囲であることがより好ましい。残留溶媒の含有量は、光学フィルムの製造工程における、支持体上に流延させたドープの乾燥条件によって調整されうる。
(Amount of residual solvent)
Since the optical film is preferably formed by a solution casting method, it may further contain a residual solvent. The amount of residual solvent is preferably 700 ppm or less, more preferably 30 to 700 ppm with respect to the optical film. The content of the residual solvent can be adjusted by the drying conditions of the dope cast on the support in the process of manufacturing the optical film.
 光学フィルムの残留溶媒量は、ヘッドスペースガスクロマトグラフィーにより測定することができる。ヘッドスペースガスクロマトグラフィー法では、試料を容器に封入し、加熱し、容器中に揮発成分が充満した状態で速やかに容器中のガスをガスクロマトグラフに注入し、質量分析を行って化合物の同定を行いながら揮発成分を定量するものである。ヘッドスペース法では、ガスクロマトグラフにより、揮発成分の全ピークを観測することを可能にするとともに、電磁気的相互作用を利用した分析法を用いることによって、高精度で揮発性物質や単量体などの定量も併せて行うことができる。 The amount of residual solvent in the optical film can be measured by headspace gas chromatography. In the headspace gas chromatography method, a sample is sealed in a container, heated, and the gas in the container is promptly injected into a gas chromatograph with the container filled with volatile components, and mass spectrometry is performed to identify the compound. The volatile components are quantified while doing so. In the headspace method, it is possible to observe all peaks of volatile components by gas chromatography, and by using an analysis method that utilizes electromagnetic interaction, volatile substances and monomers can be detected with high accuracy. Quantification can also be performed.
 (厚さ)
 本発明の光学フィルムの厚さは、特に制限されないが、10~80μmの範囲であることが好ましく、10~60μmの範囲であることがより好ましい。
(thickness)
The thickness of the optical film of the present invention is not particularly limited, but is preferably in the range of 10 to 80 μm, and more preferably in the range of 10 to 60 μm.
 〔4.2〕光学フィルムの製造方法
 本発明の光学フィルムは、1)上記シクロオレフィン系樹脂又はアクリル系樹脂、上記色素化合物、及び溶媒を含むドープを準備する工程、2)得られたドープを支持体上に流延した後、乾燥及び剥離して、流延膜を得る工程、及び3)得られた流延膜を延伸する工程、を経て製造されうる。また、本発明の光学フィルムは、さらに、4)延伸された流延膜を乾燥させる工程、5)得られた光学フィルムの両端部を切断し、エンボス加工を施す工程、及び6)巻き取り工程を経て製造されてもよい。
[4.2] Method for Producing Optical Film The optical film of the present invention comprises 1) a step of preparing a dope containing the cycloolefin resin or acrylic resin, the dye compound, and a solvent, and 2) the obtained dope. It can be produced through a step of casting on a support and then drying and peeling to obtain a cast film, and 3) a step of stretching the obtained cast film. Further, the optical film of the present invention further comprises 4) a step of drying the stretched cast film, 5) a step of cutting both ends of the obtained optical film and embossing the film, and 6) a winding step. It may be manufactured through.
 1)の工程(ドープ調製工程)について
 シクロオレフィン系樹脂又はアクリル系樹脂、及び色素化合物を、溶媒に溶解または分散させて、ドープを調製する。
About step 1) (dope preparation step) Cycloolefin resin or acrylic resin and dye compound are dissolved or dispersed in a solvent to prepare a dope.
 ドープに用いられる溶媒は、少なくともシクロオレフィン系樹脂を溶解させうる有機溶媒(良溶媒)を含む。良溶媒の例には、メチレンクロライドなどの塩素系有機溶媒や;酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどの非塩素系有機溶媒が含まれる。中でも、メチレンクロライドが好ましい。 The solvent used for doping contains at least an organic solvent (good solvent) capable of dissolving a cycloolefin resin. Examples of good solvents include chlorine-based organic solvents such as methylene chloride; non-chlorine-based organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran. Of these, methylene chloride is preferable.
 ドープに用いられる溶媒は、貧溶媒をさらに含んでいてもよい。貧溶媒の例には、炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールが含まれる。ドープ中のアルコールの比率が高くなると、膜状物がゲル化しやすく、金属支持体からの剥離が容易になりやすい。炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらのうちドープの安定性、沸点も比較的低く、乾燥性もよいことなどからエタノールが好ましい。 The solvent used for doping may further contain a poor solvent. Examples of poor solvents include straight-chain or branched-chain aliphatic alcohols having 1 to 4 carbon atoms. When the ratio of alcohol in the dope is high, the film-like substance tends to gel and peels off from the metal support easily. Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, ethanol is preferable because of its dope stability, relatively low boiling point, and good drying property.
 2)の工程(流延工程)について
 得られたドープを、支持体上に流延する。ドープの流延は、流延ダイから吐出させて行うことができる。
The dope obtained in the step 2) (casting step) is cast on the support. Dope casting can be performed by discharging from a casting die.
 支持体上に流延されたドープを、支持体から剥離ロールによって剥離可能になるまで、溶媒を蒸発させる。溶媒を蒸発させる方法としては、流延されたドープに風を当てる方法や、支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法などがある。 The solvent is evaporated until the dope cast on the support can be peeled off from the support by a peeling roll. Examples of the method of evaporating the solvent include a method of blowing wind on the cast dope, a method of transferring heat from the back surface of the support with a liquid, and a method of transferring heat from the front and back surfaces with radiant heat.
 その後、溶媒を蒸発させて得られた流延膜を、剥離ロールによって剥離する。 After that, the cast film obtained by evaporating the solvent is peeled off with a peeling roll.
 剥離時の支持体上の流延膜の残留溶媒量は、乾燥条件や支持体の長さなどにもよるが、例えば、50~120質量%の範囲でありうる。残留溶媒量が多い状態で剥離すると、流延膜が柔らか過ぎて、剥離時平面性が損なわれやすく、剥離張力によるシワや縦スジが発生しやすいため、これらの点を考慮して、剥離時の残留溶媒量が決められる。残留溶媒量は、下記式で定義される。 The amount of residual solvent in the cast film on the support at the time of peeling may be in the range of 50 to 120% by mass, for example, depending on the drying conditions and the length of the support. If peeling is performed with a large amount of residual solvent, the cast film is too soft and the flatness during peeling tends to be impaired, and wrinkles and vertical streaks due to peeling tension are likely to occur. The amount of residual solvent is determined. The amount of residual solvent is defined by the following formula.
 残留溶媒量(質量%)=(流延膜の加熱処理前質量-流延膜の加熱処理後質量)/(流延膜の加熱処理後質量)×100
 残留溶媒量を測定する際の加熱処理は、115℃で1時間の加熱処理である。
Residual solvent amount (mass%) = (mass before heat treatment of casting film-mass after heat treatment of casting film) / (mass after heat treatment of casting film) × 100
The heat treatment for measuring the amount of residual solvent is a heat treatment at 115 ° C. for 1 hour.
 3)の工程(延伸工程)について
 支持体から剥離して得られた流延膜を、延伸する。
About step 3) (stretching step) The casting film obtained by peeling from the support is stretched.
 延伸は、求められる光学特性に応じて行えばよく、幅方向(TD方向)、搬送方向(MD方向)、斜め方向のうち一以上の方向に延伸することが好ましい。例えば、λ/4位相差フィルムとして機能する光学フィルムを製造する場合は、斜め方向に延伸することが好ましい。 Stretching may be performed according to the required optical characteristics, and it is preferable to stretch in one or more of the width direction (TD direction), the transport direction (MD direction), and the oblique direction. For example, when producing an optical film that functions as a λ / 4 retardation film, it is preferable to stretch it in an oblique direction.
 延伸倍率は、求められる光学特性にもよるが、例えば、λ/4位相差フィルムとして用いる場合、1.05~4.0倍の範囲であることが好ましく、1.5~3.0倍の範囲であることがより好ましい。 The draw ratio depends on the required optical characteristics, but when used as a λ / 4 retardation film, it is preferably in the range of 1.05 to 4.0 times, preferably 1.5 to 3.0 times. More preferably, it is in the range.
 延伸倍率(倍)は、延伸後のフィルムの延伸方向大きさ/延伸前のフィルムの延伸方向大きさとして定義される。なお、二軸延伸を行う場合は、TD方向とMD方向のそれぞれについて、上記延伸倍率とすることが好ましい。 The stretch ratio (times) is defined as the stretch direction size of the film after stretching / the stretch direction size of the film before stretching. When biaxial stretching is performed, it is preferable to set the stretching ratio in each of the TD direction and the MD direction.
 延伸温度(延伸時の乾燥温度)は、前述と同様に、シクロオレフィン系樹脂のガラス転移温度をTgとしたとき、(Tg+2)~(Tg+50)℃の範囲であることが好ましく、(Tg+5)~(Tg+30)℃の範囲であることがより好ましい。延伸温度が(Tg+2)℃以上であると、溶媒を適度に揮発させやすいため、延伸張力を適切な範囲に調整しやすく、(Tg+50)℃以下であると、溶媒が揮発しすぎないため、延伸性が損なわれにくい。延伸温度は、前述と同様に、(a)延伸機内温度などの雰囲気温度を測定することが好ましい。 The stretching temperature (drying temperature during stretching) is preferably in the range of (Tg + 2) to (Tg + 50) ° C., preferably in the range of (Tg + 2) to (Tg + 50) ° C., where Tg is the glass transition temperature of the cycloolefin resin, as described above. It is more preferably in the range of (Tg + 30) ° C. When the stretching temperature is (Tg + 2) ° C. or higher, the solvent is easily volatilized appropriately, so that the stretching tension can be easily adjusted to an appropriate range. The sex is not easily impaired. As the stretching temperature, it is preferable to measure the atmospheric temperature such as (a) the temperature inside the stretching machine in the same manner as described above.
 延伸開始時の膜状物中の残留溶媒量は、剥離時の膜状物中の残留溶媒量と同程度であることが好ましく、例えば、20~30質量%の範囲であることが好ましく、25~30質量%の範囲であることがより好ましい。 The amount of residual solvent in the film-like material at the start of stretching is preferably about the same as the amount of residual solvent in the film-like material at the time of peeling, and is preferably in the range of, for example, 20 to 30% by mass, 25. More preferably, it is in the range of about 30% by mass.
 膜状物のTD方向(幅方向)の延伸は、例えば、膜状物の両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げる方法(テンター法)で行うことができる。膜状物のMD方向の延伸は、例えば、複数のロールに周速差をつけ、その間でロール周速差を利用する方法(ロール法)で行うことができる。特に、流延膜の両端部をクリップなどで把持して延伸するテンター方式が、フィルムの平面性や寸法安定性を向上させるために好ましい。流延膜をMD方向及びTD方向の両方向に延伸することにより、MD方向及びTD方向に対して斜めに交差する方向に延伸(斜め延伸)することが好ましい。 Stretching of the film-like object in the TD direction (width direction) can be performed, for example, by fixing both ends of the film-like object with clips or pins and widening the distance between the clips or pins in the traveling direction (tenter method). Stretching of the film-like material in the MD direction can be performed, for example, by a method (roll method) in which a plurality of rolls are provided with a peripheral speed difference and the roll peripheral speed difference is utilized between the rolls. In particular, a tenter method in which both ends of the casting film are gripped by a clip or the like and stretched is preferable in order to improve the flatness and dimensional stability of the film. By stretching the flow film in both the MD direction and the TD direction, it is preferable to stretch (diagonally stretch) in a direction that diagonally intersects the MD direction and the TD direction.
 4)の工程(乾燥工程)について
 延伸された流延膜をさらに乾燥させて、光学フィルムを得る。
About step 4) (drying step) The stretched casting film is further dried to obtain an optical film.
 流延膜の乾燥は、例えば、複数の搬送ロール(例えば、側面から見て千鳥状に配置された複数の搬送ロール)によって流延膜を搬送しながら行うことができる。乾燥手段は、特に制限されず、熱風、赤外線、加熱ロールまたはマイクロ波が用いられる。簡便である点から、熱風乾燥が好ましい。 Drying of the cast film can be performed, for example, while transporting the cast film by a plurality of transport rolls (for example, a plurality of transport rolls arranged in a staggered pattern when viewed from the side surface). The drying means is not particularly limited, and hot air, infrared rays, heating rolls or microwaves are used. Hot air drying is preferable from the viewpoint of simplicity.
 5)の工程(切断・エンボス加工工程)について
 得られた光学フィルムの幅方向の両端部を切断する。光学フィルムの両端部の切断は、スリッターによって行うことができる。
About step 5) (cutting / embossing step) Both ends of the obtained optical film in the width direction are cut. Both ends of the optical film can be cut by a slitter.
 次いで、光学フィルムの幅方向の両端部に、エンボス加工(ナーリング加工)を施す。エンボス加工は、加熱されたエンボスローラーを光学フィルムの両端部に押し当てることにより行うことができる。エンボスローラーの表面には細かな凹凸が形成されており、エンボスローラーを光学フィルムの両端部に押し当てることで、両端部に凹凸が形成される。このようなエンボス加工により、次の巻取工程での巻きズレやブロッキング(フィルム同士の貼り付き)を極力抑えることができる。 Next, embossing (knurling) is performed on both ends of the optical film in the width direction. The embossing process can be performed by pressing a heated embossing roller against both ends of the optical film. Fine irregularities are formed on the surface of the embossing roller, and by pressing the embossing roller against both ends of the optical film, irregularities are formed on both ends. By such embossing, winding misalignment and blocking (sticking between films) in the next winding process can be suppressed as much as possible.
 6)の工程(巻き取り工程)について
 そして、得られた光学フィルムを巻き取り、ロール体を得る。
About the step (winding step) of 6) Then, the obtained optical film is wound up to obtain a roll body.
 すなわち、光学フィルムを搬送しながら巻芯に巻き取ることにより、ロール体とする。光学フィルムの巻き取り方法は、一般に使用されているワインダーを用いた方法であればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法などの張力をコントロールする方法がある。 That is, the optical film is wound around the winding core while being conveyed to form a roll body. The method of winding the optical film may be any method using a winder that is generally used, and is a method of controlling tension such as a constant torque method, a constant tension method, a taper tension method, and a program tension control method with a constant internal stress. There is.
 ロール体における光学フィルムの巻長は、1000~7200mの範囲であることが好ましい。光学フィルムの幅は、1000~3000mmの範囲であることが好ましい。 The winding length of the optical film in the roll body is preferably in the range of 1000 to 7200 m. The width of the optical film is preferably in the range of 1000 to 3000 mm.
 〔5〕他の機能性層
 本発明の光学フィルムは、機能性層を有することが好ましく、前記機能性層が、前記一般式(1)で表される構造を有する化合物を含有することが、好ましい。機能性層としては、ハードコート層、帯電防止層、反射防止層、易滑性層、接着層、防眩層、バリアー層等があげられるが、有機EL画像表示装置に組み込む場合は、耐傷性を向上するためにハードコート層を設けることが好ましい。
[5] Other Functional Layers The optical film of the present invention preferably has a functional layer, and the functional layer may contain a compound having a structure represented by the general formula (1). preferable. Examples of the functional layer include a hard coat layer, an antistatic layer, an antireflection layer, a slippery layer, an adhesive layer, an antiglare layer, a barrier layer, etc., but when incorporated into an organic EL image display device, scratch resistance It is preferable to provide a hard coat layer in order to improve the above.
 〔5.1〕ハードコート層
 本発明に用いられるハードコート層は、活性線硬化樹脂を含有することが機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。すなわち、紫外線や電子線のような活性線(活性エネルギー線ともいう)照射により、架橋反応を経て硬化する樹脂を主たる成分とする層である。活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性線硬化樹脂層が形成される。活性線硬化樹脂としては、紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が特に機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリレート系樹脂、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられ、中でも紫外線硬化型アクリレート系樹脂が好ましい。
[5.1] Hard Coat Layer The hard coat layer used in the present invention is preferably contained with an active ray-curable resin because it is excellent in mechanical film strength (scratch resistance, pencil hardness). That is, it is a layer containing a resin as a main component, which is cured through a cross-linking reaction by irradiation with active rays (also referred to as active energy rays) such as ultraviolet rays and electron beams. As the active ray-curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active ray-curable resin layer is formed by curing by irradiating with an active ray such as ultraviolet rays or an electron beam. NS. Typical examples of the active ray-curable resin include an ultraviolet curable resin and an electron beam curable resin, and the resin cured by ultraviolet irradiation is particularly excellent in mechanical film strength (scratch resistance, pencil hardness). It is preferable from the point of view. Examples of the ultraviolet curable resin include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet ray. A curable epoxy resin or the like is preferably used, and among them, an ultraviolet curable acrylate resin is preferable.
 市販品としては、アデカオプトマーNシリーズ、サンラッドH-601、RC-750、RC-700、RC-600、RC-500、RC-611、RC-612(以上、三洋化成工業(株)製)、アロニックスM-6100、M-8030、M-8060、アロニックスM-215、アロニックスM-315、アロニックスM-313、アロニックスM-327(以上、東亞合成(株)製)、NK-エステルA-TMM-3L、NK-エステルAD-TMP、NK-エステルATM-35E、NKエステルA-DOG、NKエステルA-IBD-2E、A-9300、A-9300-1CL(以上、新中村化学工業(株)製)、PE-3A(共栄社化学製)などが挙げられる。上記活性線硬化樹脂を単独又は2種以上混合しても良い。 Commercially available products include Adekaoptomer N series, Sunrad H-601, RC-750, RC-700, RC-600, RC-500, RC-611, RC-612 (all manufactured by Sanyo Kasei Kogyo Co., Ltd.). , Aronix M-6100, M-8030, M-8060, Aronix M-215, Aronix M-315, Aronix M-313, Aronix M-327 (all manufactured by Toa Synthetic Co., Ltd.), NK-ester A-TMM -3L, NK-ester AD-TMP, NK-ester ATM-35E, NK ester A-DOG, NK ester A-IBD-2E, A-9300, A-9300-1CL (above, Shin-Nakamura Chemical Industry Co., Ltd.) (Manufactured by), PE-3A (manufactured by Kyoeisha Chemical Co., Ltd.) and the like. The above-mentioned active ray-curable resin may be used alone or in combination of two or more.
 また、ハードコート層には活性線硬化樹脂の硬化促進のため、光重合開始剤を含有することが好ましい。光重合開始剤量としては、質量比で、光重合開始剤:活性線硬化樹脂=20:100~0.01:100の範囲で含有することが好ましい。光重合開始剤としては、具体的には、具体的には、アルキルフェノン系、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーケトン、α-アミロキシムエステル、チオキサントン等及び、これらの誘導体を挙げることができるが、特にこれらに限定されるものではない。 Further, it is preferable that the hard coat layer contains a photopolymerization initiator in order to accelerate the curing of the active ray-curable resin. The amount of the photopolymerization initiator is preferably contained in the range of photopolymerization initiator: active ray-curable resin = 20: 100 to 0.01: 100 in terms of mass ratio. Specific examples of the photopolymerization initiator include alkylphenone-based, acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, α-amyloxime ester, thioxanthone and the like, and derivatives thereof. It is not particularly limited to these.
 このような光重合開始剤は市販品を用いてもよく、例えば、BASFジャパン(株)製のイルガキュア184、イルガキュア907、イルガキュア651などが好ましい例示として挙げられる。 Commercially available products may be used as such a photopolymerization initiator, and examples thereof include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan Ltd. as preferable examples.
 ハードコート層の厚さは、ハードコート性の向上と、光学フィルムの透明性の向上という観点から、0.1~50μmの範囲内であることが好ましく、1~20μmの範囲内であることがより好ましい。
 ハードコート層の形成方法は特に制限されず、例えば、上記各成分を含むハードコート層形成用塗布液を調製した後、塗布液をワイヤーバー等により塗布し、熱又は紫外線で塗布液を硬化させ、ハードコート層を形成する方法などが挙げられる。
 ハードコート層中には、本発明に係る一般式(1)で表される構造を有する化合物を含有することが、耐光性をさらに向上し耐傷性を付与する観点から好ましい。前記紫外線硬化樹脂に対して、0.1~40質量%の範囲内で含有することが好ましく、より好ましくは、0.1~20質量%の範囲内である。
The thickness of the hard coat layer is preferably in the range of 0.1 to 50 μm, preferably in the range of 1 to 20 μm, from the viewpoint of improving the hard coat property and improving the transparency of the optical film. More preferred.
The method for forming the hard coat layer is not particularly limited. For example, after preparing a coating liquid for forming a hard coat layer containing each of the above components, the coating liquid is applied with a wire bar or the like, and the coating liquid is cured by heat or ultraviolet rays. , A method of forming a hard coat layer and the like.
It is preferable that the hard coat layer contains a compound having a structure represented by the general formula (1) according to the present invention from the viewpoint of further improving light resistance and imparting scratch resistance. It is preferably contained in the range of 0.1 to 40% by mass, more preferably in the range of 0.1 to 20% by mass, based on the ultraviolet curable resin.
 〔6〕偏光板
 本発明の偏光板は、偏光子と、その少なくとも一方の面に配置された本発明の光学フィルムとを有する。
[6] Polarizing Plate The polarizing plate of the present invention has a polarizing element and an optical film of the present invention arranged on at least one surface thereof.
 図1は、偏光板100の構成を示す断面図である。
 図1に示されるように、本発明の偏光板100は、偏光子101と、その一方の面に配置された本発明の光学フィルム102と、他方の面に配置された対向フィルム103と、偏光子101と光学フィルム102との間、及び、偏光子101と対向フィルム103との間に配置された2つの接着層104とを有しうる。
FIG. 1 is a cross-sectional view showing the configuration of the polarizing plate 100.
As shown in FIG. 1, the polarizing plate 100 of the present invention comprises a polarizing element 101, an optical film 102 of the present invention arranged on one surface thereof, an opposing film 103 arranged on the other surface, and polarized light. It may have two adhesive layers 104 arranged between the child 101 and the optical film 102 and between the polarizer 101 and the opposing film 103.
 (偏光子101について)
 偏光子101は、一定方向の偏波面の光だけを通す素子であり、ヨウ素または二色性色素がドープされたポリビニルアルコール系延伸フィルムである。
(About Polarizer 101)
The polarizer 101 is an element that allows only light on a plane of polarization in a certain direction to pass through, and is a polyvinyl alcohol-based stretched film doped with iodine or a dichroic dye.
 偏光子101の厚さは、5~40μmの範囲、好ましくは5~30μmの範囲であり、特に好ましくは5~20μmの範囲である。 The thickness of the polarizer 101 is in the range of 5 to 40 μm, preferably in the range of 5 to 30 μm, and particularly preferably in the range of 5 to 20 μm.
 (光学フィルム102について)
 光学フィルム102は、位相差フィルム、例えば、有機EL画像表示装置の円偏光板に用いられるλ/4位相差フィルムとして機能しうる。
(About optical film 102)
The optical film 102 can function as a retardation film, for example, a λ / 4 retardation film used for a circularly polarizing plate of an organic EL image display device.
 光学フィルム102の面内において、光学フィルム102の面内遅相軸の、矩形状のフィルムの外形の一辺に対してなす角度は、好ましくは30~60°の範囲、より好ましくは45°である。なお、前記一辺は、長尺状の光学フィルム102の幅方向に対応する。また、光学フィルム102の面内遅相軸と偏光子101の吸収軸(または透過軸)とのなす角度は、好ましくは30~60°の範囲であり、より好ましくは45°である。 In the plane of the optical film 102, the angle formed by the in-plane slow-phase axis of the optical film 102 with respect to one side of the outer shape of the rectangular film is preferably in the range of 30 to 60 °, more preferably 45 °. .. The one side corresponds to the width direction of the long optical film 102. The angle formed by the in-plane slow-phase axis of the optical film 102 and the absorption axis (or transmission axis) of the polarizer 101 is preferably in the range of 30 to 60 °, more preferably 45 °.
 光学フィルム102は、用途に応じて、偏光子101とは反対側の面に配置された他の層(例えば、ハードコート層、低屈折率層、反射防止層をさらに有してもよい。また、光学フィルム102は、偏光子101側の面に配置された易接着層(不図示)をさらに有してもよい。 The optical film 102 may further have other layers (for example, a hard coat layer, a low refractive index layer, and an antireflection layer) arranged on the surface opposite to the polarizer 101, depending on the application. , The optical film 102 may further have an easy-adhesion layer (not shown) arranged on the surface on the side of the polarizer 101.
 (対向フィルム103について)
 対向フィルム103は、本発明の光学フィルムであってもよいし、それ以外の他の光学フィルム(すなわち、保護フィルム)であってもよい。より好ましくは、本発明の光学フィルムを用い、最表面にハードコート層を有する態様である。
(About the opposing film 103)
The opposing film 103 may be the optical film of the present invention or another optical film (that is, a protective film). More preferably, the optical film of the present invention is used and the hard coat layer is provided on the outermost surface.
 市販の保護フィルムの例には、市販のセルロースエステルフィルム(例えば、コニカミノルタタックKC8UX、KC5UX、KC4UX、KC8UCR3、KC4SR、KC4BR、KC4CR、KC4DR、KC4FR、KC4KR、KC8UY、KC6UY、KC4UY、KC4UE、KC8UE、KC8UY-HA、KC2UA、KC4UA、KC6UA、KC8UA、KC2UAH、KC4UAH、KC6UAH、以上コニカミノルタ(株)製、フジタックT40UZ、フジタックT60UZ、フジタックT80UZ、フジタックTD80UL、フジタックTD60UL、フジタックTD40UL、フジタックR02、フジタックR06、以上富士フィルム(株)製)が含まれる。 Examples of commercially available protective films include commercially available cellulose ester films (eg, Konica Minolta Tuck KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC6UY, KCUEK, KC6UY, KC4UY KC8UY-HA, KC2UA, KC4UA, KC6UA, KC8UA, KC2UAH, KC4UAH, KC6UAH, manufactured by Konica Minolta Co., Ltd. The above includes Fuji Film Co., Ltd.).
 市販のシクロオレフィン系フィルムとしては、日本ゼオン社製シクロオレフィンポリマー(COP)成形品-ゼオノアフィルム(R)の各種グレードが好ましく用いられる。 As a commercially available cycloolefin-based film, various grades of cycloolefin polymer (COP) molded product-Zeonor film (R) manufactured by Zeon Corporation are preferably used.
 対向フィルム103の厚さは、例えば、5~100μmの範囲、好ましくは40~80μmの範囲でありうる。 The thickness of the opposing film 103 can be, for example, in the range of 5 to 100 μm, preferably in the range of 40 to 80 μm.
 (接着層104について)
 接着層104は、偏光子101と光学フィルム102との間、及び偏光子101と対向フィルム103との間にそれぞれ配置されうる。
(About the adhesive layer 104)
The adhesive layer 104 may be arranged between the polarizer 101 and the optical film 102, and between the polarizer 101 and the opposing film 103, respectively.
 接着剤層104は、後述する水系接着剤から得られる層であってもよいし、紫外線硬化型接着剤の硬化物層であってもよい。 The adhesive layer 104 may be a layer obtained from a water-based adhesive described later, or may be a cured product layer of an ultraviolet curable adhesive.
 接着剤層104の厚さは、特に限定されないが、例えば、0.01~10μmの範囲であり、好ましくは0.01~5μm程度でありうる。 The thickness of the adhesive layer 104 is not particularly limited, but may be, for example, in the range of 0.01 to 10 μm, preferably about 0.01 to 5 μm.
 偏光板100は、長尺状であってもよいし、長尺状の偏光板を幅方向に沿って切断したシート状であってもよい。 The polarizing plate 100 may have a long shape or a sheet shape obtained by cutting a long polarizing plate along the width direction.
 (物性)
 (T1/T2
 偏光板の光学フィルム上に、粘着剤層を介してアルミニウム反射材を積層したときの、偏光板の波長460nmの光の反射率をT1(%)、波長650nmの光の反射率をT2(%)としたとき、偏光板は、下記式(2)を満たすことが好ましい。
(Physical characteristics)
(T 1 / T 2 )
When an aluminum reflective material is laminated on the optical film of the polarizing plate via an adhesive layer, the reflectance of light having a wavelength of 460 nm of the polarizing plate is T 1 (%), and the reflectance of light having a wavelength of 650 nm is T 2 When (%), the polarizing plate preferably satisfies the following formula (2).
 式(2):0<T1/T2<2.6
 T1/T2が2.6未満であると、波長460nmの光の反射率が高すぎない、すなわち、当該波長近傍の反射光の漏れを抑制できるため、例えば、有機EL画像表示装置における反射光の色味を改善することができる。また、T1/T2が0超であると、例えば、有機EL画像表示装置における上記波長領域の発光が、色素化合物によって阻害されにくいため、輝度の低下を抑制しうる。T1/T2は、2.5以下であることがより好ましい。
Equation (2): 0 <T 1 / T 2 <2.6
When T 1 / T 2 is less than 2.6, the reflectance of light having a wavelength of 460 nm is not too high, that is, leakage of reflected light in the vicinity of the wavelength can be suppressed. Therefore, for example, reflection in an organic EL image display device. The color of light can be improved. Further, when T 1 / T 2 is more than 0, for example, the light emission in the wavelength region in the organic EL image display device is not easily obstructed by the dye compound, so that the decrease in brightness can be suppressed. More preferably, T 1 / T 2 is 2.5 or less.
 (色差ΔE(a**))
 また、偏光板の色差ΔE(a**)は、25未満であることが好ましく、20未満であることがより好ましい。偏光板の色差ΔE(a*b*)が上記範囲内であると、例えば、有機EL画像表示装置における反射光の色味を改善しうる。
(Color difference ΔE (a * b * ))
Further, the color difference ΔE (a * b * ) of the polarizing plate is preferably less than 25, more preferably less than 20. When the color difference ΔE (a * b *) of the polarizing plate is within the above range, for example, the tint of the reflected light in the organic EL image display device can be improved.
 偏光板のT1/T2及び色差ΔE(a**)は、以下の手順で測定することができる。 The T 1 / T 2 of the polarizing plate and the color difference ΔE (a * b * ) can be measured by the following procedure.
 1)偏光板の光学フィルム上に、粘着剤層を介してアルミニウム反射材を積層して、偏光板サンプルとする。粘着剤としては、アクリル系粘着剤とする。 1) An aluminum reflective material is laminated on the optical film of the polarizing plate via an adhesive layer to prepare a polarizing plate sample. The pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive.
 2)得られた偏光板サンプルの分光反射率及び色差ΔE(a**)を、分光測色計(コニカミノルタ社製CM3700d)により、SCI方式で測定する。 2) The spectral reflectance and color difference ΔE (a * b * ) of the obtained polarizing plate sample are measured by a spectrocolorimeter (CM3700d manufactured by Konica Minolta) by the SCI method.
 偏光板のT1/T2及び色差ΔE(a**)は、一般式(1)で表される色素化合物の種類及び含有量によって調整されうる。 The T 1 / T 2 of the polarizing plate and the color difference ΔE (a * b * ) can be adjusted by the type and content of the dye compound represented by the general formula (1).
 (偏光板100の製造方法)
 偏光板100は、偏光子101と本発明の光学フィルム102とを、接着剤を介して貼り合わせる工程を経て得ることができる。接着剤としては、水系接着剤や紫外線硬化型接着剤が用いられる。
(Manufacturing method of polarizing plate 100)
The polarizing plate 100 can be obtained through a step of bonding the polarizing element 101 and the optical film 102 of the present invention via an adhesive. As the adhesive, a water-based adhesive or an ultraviolet curable adhesive is used.
 〈水系接着剤〉
 水系接着剤の例には、ポリビニルアルコール系樹脂を含む水接着剤(完全ケン化型ポリビニルアルコール水溶液など)が含まれる。
<Water-based adhesive>
Examples of the water-based adhesive include a water-based adhesive containing a polyvinyl alcohol-based resin (such as a completely saponified polyvinyl alcohol aqueous solution).
 〈紫外線硬化型接着剤〉
 紫外線硬化型接着剤組成物は、光ラジカル重合型組成物、光カチオン重合型組成物、またはそれらを併用したハイブリッド型組成物でありうる。
<UV curable adhesive>
The ultraviolet curable adhesive composition may be a photoradical polymerization type composition, a photocationic polymerization type composition, or a hybrid type composition in which they are used in combination.
 光ラジカル重合型組成物の例には、特開2008-009329号公報に記載のヒドロキシ基やカルボキシ基などの極性基を含有するラジカル重合性化合物と、極性基を含有しないラジカル重合性化合物とを含む組成物)が含まれる。 Examples of the photoradical polymerization type composition include a radically polymerizable compound containing a polar group such as a hydroxy group or a carboxy group described in JP-A-2008-09329, and a radically polymerizable compound containing no polar group. Compositions containing) are included.
 ラジカル重合性化合物は、ラジカル重合可能なエチレン性不飽和結合を有する化合物であることが好ましい。ラジカル重合可能なエチレン性不飽和結合を有する化合物の好ましい例には、(メタ)アクリロイル基を有する化合物が含まれる。(メタ)アクリロイル基を有する化合物の例には、N置換(メタ)アクリルアミド系化合物、(メタ)アクリレート系化合物が含まれる。(メタ)アクリルアミドは、アクリアミドまたはメタクリアミドを意味する。 The radically polymerizable compound is preferably a compound having an ethylenically unsaturated bond capable of radical polymerization. Preferred examples of compounds having a radically polymerizable ethylenically unsaturated bond include compounds having a (meth) acryloyl group. Examples of compounds having a (meth) acryloyl group include N-substituted (meth) acrylamide-based compounds and (meth) acrylate-based compounds. (Meta) acrylamide means acryamide or methacrylamide.
 光カチオン重合型組成物の例には、特開2011-028234号公報に開示されているような、(α)カチオン重合性化合物、(β)光カチオン重合開始剤、(γ)380nmより長い波長の光に極大吸収を示す光増感剤、及び(δ)ナフタレン系光増感助剤を含む紫外線硬化型接着剤組成物が含まれる。 Examples of the photocationic polymerization type composition include (α) a cationically polymerizable compound, (β) a photocationic polymerization initiator, and (γ) a wavelength longer than 380 nm as disclosed in JP-A-2011-028234. Includes a photosensitizer that exhibits maximum absorption of light, and an ultraviolet curable adhesive composition containing a (δ) naphthalene-based photosensitizer.
 以下、紫外線硬化型接着剤を用いる例について説明する。本発明の偏光板100は、1)光学フィルム及び対向フィルムの接着面に、易接着のための前処理を行う工程(前処理工程)、2)偏光子と光学フィルム(または対向フィルム)とを、紫外線接着剤を介して貼り合わせる工程、及び3)貼り合わせて得られた積層物に紫外線を照射して、紫外線接着剤を硬化させる工程(硬化工程)を経て得ることができる。 Hereinafter, an example of using an ultraviolet curable adhesive will be described. In the polarizing plate 100 of the present invention, 1) a step of performing a pretreatment for easy adhesion on the adhesive surface of the optical film and the opposing film (pretreatment step), and 2) a polarizer and the optical film (or the opposing film) are attached. It can be obtained through a step of bonding via an ultraviolet adhesive and a step of 3) irradiating the laminated product obtained by bonding with ultraviolet rays to cure the ultraviolet adhesive (curing step).
 (1)前処理工程
 光学フィルムと対向フィルムの偏光子との接着面に、易接着処理を行う。易接着処理の例には、コロナ処理、プラズマ処理が含まれる。
(1) Pretreatment step Easy adhesion treatment is performed on the bonding surface between the optical film and the polarizer of the opposing film. Examples of the easy-adhesion treatment include corona treatment and plasma treatment.
 (2)貼り合わせ工程
 紫外線硬化型接着剤を、偏光子と、光学フィルム(または対向フィルム)の少なくとも一方に塗布する。紫外線硬化型接着剤の塗布方法は、特に制限されず、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーターなどでありうる。
(2) Laminating step An ultraviolet curable adhesive is applied to at least one of a polarizing element and an optical film (or an opposing film). The method of applying the ultraviolet curable adhesive is not particularly limited, and may be, for example, a doctor blade, a wire bar, a die coater, a comma coater, a gravure coater, or the like.
 そして、紫外線硬化型接着剤を介して、偏光子と光学フィルムまたは対向フィルムとを貼り合わせる。そして、貼り合わせた積層物の両面を加圧ローラなどで挟んで加圧する。加圧ローラの材質は、金属やゴムを用いることができる。 Then, the polarizer and the optical film or the opposing film are bonded together via an ultraviolet curable adhesive. Then, both sides of the laminated laminate are sandwiched between pressure rollers and the like to pressurize. As the material of the pressure roller, metal or rubber can be used.
 (3)硬化工程
 次いで、紫外線硬化型接着剤を介して貼り合わされた積層物に紫外線を照射して、紫外線硬化型接着剤を硬化させる。それにより、偏光子と光学フィルムまたは対向フィルムとを、紫外線硬化型接着剤を介して接着させる。なお、偏光子の一方の側の紫外線硬化型接着剤の硬化と、偏光子の他方の側の紫外線硬化型接着剤の硬化とは、逐次的に行ってもよいし、同時に行ってもよい。偏光板の製造効率を高める観点では、偏光子の一方の側の紫外線硬化型接着剤の硬化と、偏光子の他方の側の紫外線硬化型接着剤の硬化とは、同時に行うことが好ましい。
(3) Curing Step Next, the laminate bonded via the ultraviolet curable adhesive is irradiated with ultraviolet rays to cure the ultraviolet curable adhesive. As a result, the polarizer and the optical film or the opposing film are adhered to each other via an ultraviolet curable adhesive. The curing of the ultraviolet curable adhesive on one side of the polarizer and the curing of the ultraviolet curable adhesive on the other side of the polarizer may be performed sequentially or at the same time. From the viewpoint of increasing the production efficiency of the polarizing plate, it is preferable that the curing of the ultraviolet curable adhesive on one side of the polarizer and the curing of the ultraviolet curable adhesive on the other side of the polarizer are performed at the same time.
 紫外線の照射条件は、紫外線硬化型接着剤が硬化する条件であればよく、例えば、積算光量が50~1500mJ/cm2の範囲であることが好ましく、100~500mJ/cm2の範囲であることがより好ましい。 It irradiation condition of the ultraviolet ray may be any conditions that ultraviolet curable adhesive is cured, for example, be integrated light quantity in the range of 50 ~ 1500mJ / cm 2 is preferably in the range of 100 ~ 500mJ / cm 2 Is more preferable.
 偏光板の製造時のライン速度は、接着剤の硬化時間によるが、例えば、1~500m/minの範囲であることが好ましく、5~300m/minの範囲であることがより好ましい。ライン速度が1m/min以上であると、生産性を高めやすく、光学フィルムや対向フィルムへのダメージもより少なくすることができる。また、ライン速度が500m/min以下であれば、紫外線硬化型接着剤の硬化が十分となり、良好な接着性が得られやすい。 The line speed at the time of manufacturing the polarizing plate depends on the curing time of the adhesive, but is preferably in the range of, for example, 1 to 500 m / min, and more preferably in the range of 5 to 300 m / min. When the line speed is 1 m / min or more, the productivity can be easily increased and the damage to the optical film and the opposing film can be further reduced. Further, when the line speed is 500 m / min or less, the ultraviolet curable adhesive is sufficiently cured, and good adhesiveness can be easily obtained.
 このように、硬化工程では、紫外線照射や硬化促進のための加熱などにより、高温環境となることがある。また、接着剤が水系接着剤である場合でも、接着促進や接着剤の乾燥のための加熱などにより、高温環境となることがある。 In this way, in the curing process, a high temperature environment may occur due to irradiation with ultraviolet rays or heating to promote curing. Further, even when the adhesive is a water-based adhesive, a high temperature environment may occur due to heating for promoting adhesion or drying the adhesive.
 これに対して、本発明の光学フィルムは、耐光性及び耐久性に優れるため、偏光子と光学フィルムとの接着時に高温となる環境であっても、光漏れが抑制された偏光板を得ることができる。偏光板の光漏れを抑制することで、当該偏光板を有する有機EL画像表示装置において、黒表示時の外光反射によるわずかな光漏れを抑えることができる。 On the other hand, since the optical film of the present invention is excellent in light resistance and durability, it is possible to obtain a polarizing plate in which light leakage is suppressed even in an environment where the temperature is high when the polarizer and the optical film are bonded. Can be done. By suppressing the light leakage of the polarizing plate, it is possible to suppress a slight light leakage due to the reflection of external light at the time of black display in the organic EL image display device having the polarizing plate.
 〔7〕画像表示装置
 本発明の光学フィルムは、有機EL画像表示装置や液晶表示装置などの画像表示装置の光学フィルム(位相差フィルム、保護フィルム)として用いることができる。中でも、本発明の光学フィルムは、有機EL画像表示装置の位相差フィルム(λ/4位相差フィルム)として好ましく用いることができる。
[7] Image Display Device The optical film of the present invention can be used as an optical film (phase difference film, protective film) of an image display device such as an organic EL image display device or a liquid crystal display device. Above all, the optical film of the present invention can be preferably used as a retardation film (λ / 4 retardation film) of an organic EL image display device.
 〔7.1〕有機EL画像表示装置
 図2は、有機EL画像表示装置200の分解断面図である。
[7.1] Organic EL Image Display Device FIG. 2 is an exploded cross-sectional view of the organic EL image display device 200.
 有機EL画像表示装置200は、有機EL素子300(表示セル)と、偏光板100(円偏光板)と、それらの間に配置された接着層400とを有する。 The organic EL image display device 200 has an organic EL element 300 (display cell), a polarizing plate 100 (circular polarizing plate), and an adhesive layer 400 arranged between them.
 有機EL素子300は、ガラスやポリイミドなどの基板301上に、金属電極302、発光層303、透明電極(ITO等)304、及び封止層305を、この順に有する。金属電極302は、反射電極と透明電極とで構成されていてもよい。 The organic EL element 300 has a metal electrode 302, a light emitting layer 303, a transparent electrode (ITO, etc.) 304, and a sealing layer 305 in this order on a substrate 301 such as glass or polyimide. The metal electrode 302 may be composed of a reflective electrode and a transparent electrode.
 金属電極302は、陰極として機能しうる。金属電極302は、電子注入を容易にして発光効率を上げるには、仕事関数の小さな物質を用いることが好ましく、通常、Mg-Ag、Al-Liが用いられる。 The metal electrode 302 can function as a cathode. For the metal electrode 302, in order to facilitate electron injection and increase the luminous efficiency, it is preferable to use a substance having a small work function, and Mg-Ag and Al-Li are usually used.
 発光層303は、有機薄膜の積層体であり、例えば、トリフェニルアミン誘導体などからなる正孔注入層とアントラセンなどの蛍光性の有機固体からなる発光層との積層体や、このような発光層とペリレン誘導体などからなる電子注入層との積層体、これらの正孔注入層、発光層、電子注入層の積層体などでありうる。 The light emitting layer 303 is a laminate of organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or such a light emitting layer. It may be a laminate of an electron injection layer composed of a perylene derivative or the like, a hole injection layer thereof, a light emitting layer, a laminate of an electron injection layer, or the like.
 透明電極304は、陽極として機能しうる。透明電極304は、通常、酸化インジウムスズ(ITO)などの透明導電体で構成されうる。 The transparent electrode 304 can function as an anode. The transparent electrode 304 can usually be made of a transparent conductor such as indium tin oxide (ITO).
 そして、金属電極302と透明電極304との間に電圧を印加することにより、発光層303に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物質を励起し、励起された蛍光物質が基底状態に戻るときに光を放射して、発光する。 Then, by applying a voltage between the metal electrode 302 and the transparent electrode 304, holes and electrons are injected into the light emitting layer 303, and the energy generated by the recombination of these holes and electrons excites the fluorescent substance. Then, when the excited fluorescent substance returns to the ground state, it emits light and emits light.
 偏光板100は、有機EL素子300の視認側の面に配置されている。偏光板100は、前述の偏光板100であり(図1参照)、光学フィルム102(λ/4位相差フィルム)が、有機EL素子301と偏光子101との間に位置するように配置されている。偏光子101の透過軸(または吸収軸)と光学フィルム102の面内遅相軸とのなす角度は、前述の通り、好ましくは45°(または135°)となるように貼り合わされている。 The polarizing plate 100 is arranged on the surface of the organic EL element 300 on the visual side. The polarizing plate 100 is the above-mentioned polarizing plate 100 (see FIG. 1), and the optical film 102 (λ / 4 retardation film) is arranged so as to be located between the organic EL element 301 and the polarizer 101. There is. As described above, the angle formed by the transmission axis (or absorption axis) of the polarizer 101 and the in-plane slow phase axis of the optical film 102 is preferably 45 ° (or 135 °).
 対向フィルム103は、その視認側の面(偏光子101とは反対側の面)に配置されたハードコート層(不図示)をさらに有することが好ましい。ハードコート層は、有機EL画像表示装置の表面のキズを防止するだけではなく、偏光板100の反りを低減しうる。また、ハードコート層上には、反射防止層がさらに形成されていてもよい。 It is preferable that the opposing film 103 further has a hard coat layer (not shown) arranged on the surface on the visual side (the surface opposite to the polarizer 101). The hard coat layer can not only prevent scratches on the surface of the organic EL image display device, but also reduce the warp of the polarizing plate 100. Further, an antireflection layer may be further formed on the hard coat layer.
 接着層400は、有機EL素子300と偏光板100との間に配置され、これらを接着させる。接着層400を構成する接着剤の例には、熱硬化型接着剤(エポキシ系熱硬化型接着剤、ウレタン系熱硬化型接着剤、アクリル系熱硬化型接着剤など)、ホットメルト接着剤等(ゴム系ホットメルト接着剤、ポリエステル系ホットメルト接着剤、ポリオレフィン系ホットメルト接着剤、エチレン-酢酸ビニル樹脂系ホットメルト接着剤、ポリウレタン樹脂ホットメルト接着剤など)が含まれる。 The adhesive layer 400 is arranged between the organic EL element 300 and the polarizing plate 100, and these are adhered to each other. Examples of the adhesive constituting the adhesive layer 400 include a heat-curable adhesive (epoxy-based heat-curable adhesive, urethane-based heat-curable adhesive, acrylic-based heat-curable adhesive, etc.), hot-melt adhesive, and the like. (Rubber-based hot-melt adhesive, polyester-based hot-melt adhesive, polyolefin-based hot-melt adhesive, ethylene-vinyl acetate resin-based hot-melt adhesive, polyurethane resin hot-melt adhesive, etc.) are included.
 (作用)
 このような有機EL画像表示装置200では、金属電極302と透明電極304とに電圧を印加すると、発光層303に対して、陰極となる金属電極302から電子が注入され、陽極となる透明電極304から正孔が注入され、両者が発光層303で再結合することにより、発光層303の発光特性に対応した可視光線の発光が生じる。発光層303で生じた光は、直接または金属電極302で反射した後、透明電極304及び偏光板100を介して外部に取り出される。
(Action)
In such an organic EL image display device 200, when a voltage is applied to the metal electrode 302 and the transparent electrode 304, electrons are injected into the light emitting layer 303 from the metal electrode 302 serving as a cathode, and the transparent electrode 304 serving as an anode is injected. Holes are injected from the light emitting layer 303, and the two are recombined with each other in the light emitting layer 303, so that visible light emission corresponding to the light emitting characteristics of the light emitting layer 303 is generated. The light generated in the light emitting layer 303 is directly reflected by the metal electrode 302 or then taken out to the outside through the transparent electrode 304 and the polarizing plate 100.
 発光層303は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、発光層303も透明電極304と同様に、光をほぼ完全に透過させる。その結果、非発光時に有機EL画像表示装置200の外部から入射し、封止層305、透明電極304及び発光層303を透過して金属電極302に到達した光は、金属電極302で反射され、再び発光層303、透明電極302、及び封止層305を透過し、有機EL装置200の表面側へと出ようとする。このとき、光学フィルム102は、金属電極302で反射された光が有機EL画像表示装置200の表面側へ漏れ出るのを抑制し、それにより、外光反射を低減することができる。 The light emitting layer 303 is formed of an extremely thin film having a thickness of about 10 nm. Therefore, the light emitting layer 303 also transmits light almost completely like the transparent electrode 304. As a result, the light that is incident from the outside of the organic EL image display device 200 when it is not emitting light, passes through the sealing layer 305, the transparent electrode 304, and the light emitting layer 303 and reaches the metal electrode 302 is reflected by the metal electrode 302. It passes through the light emitting layer 303, the transparent electrode 302, and the sealing layer 305 again, and tries to come out to the surface side of the organic EL device 200. At this time, the optical film 102 suppresses the light reflected by the metal electrode 302 from leaking to the surface side of the organic EL image display device 200, thereby reducing the reflection of external light.
 すなわち、非発光時に、室内照明などにより有機EL画像表示装置200の外部から入射した外光のうち、半分は偏光板100の偏光子101によって吸収されるが、残りの半分は吸収されずに直線偏光として透過し、光学フィルム102(λ/4位相差フィルム)に入射する。光学フィルム102に入射した光は、偏光子101の透過軸と光学フィルム102の面内遅相軸とが45°(または135°)で交差しているため、透過する光は円偏光に変換される。 That is, when the light is not emitted, half of the external light incident from the outside of the organic EL image display device 200 due to indoor lighting or the like is absorbed by the polarizing element 101 of the polarizing plate 100, but the other half is not absorbed and is straight. It is transmitted as polarized light and incident on the optical film 102 (λ / 4 retardation film). Since the light incident on the optical film 102 intersects the transmission axis of the polarizer 101 and the in-plane slow-phase axis of the optical film 102 at 45 ° (or 135 °), the transmitted light is converted into circularly polarized light. NS.
 光学フィルム102から出射された円偏光は、有機EL素子300の金属電極302で鏡面反射される際に、位相が180度反転し、逆回りの円偏光となる。この反射光は、光学フィルム102に入射することにより、偏光子101の透過軸に垂直(吸収軸に平行)な直線偏光に変換されるため、偏光子101で吸収され、外部に出射されるのを抑制できる。 When the circularly polarized light emitted from the optical film 102 is mirror-reflected by the metal electrode 302 of the organic EL element 300, the phase is reversed by 180 degrees and becomes circularly polarized light in the opposite direction. When the reflected light is incident on the optical film 102, it is converted into linearly polarized light perpendicular to the transmission axis of the polarizer 101 (parallel to the absorption axis), so that the reflected light is absorbed by the polarizer 101 and emitted to the outside. Can be suppressed.
 そして、本発明では、特定の色素化合物を含む光学フィルム102を用いる。それにより、光学フィルム102は、(色素化合物を含まないシクロオレフィン系樹脂フィルムでは、所望の直線偏光に変換できなかった。)特定の波長領域の光についても、偏光子101の透過軸に垂直(吸収軸に平行)な直線偏光に変換させることができる。それにより、特定の波長領域の反射光が、偏光子101の透過軸を透過して漏れることに起因する反射光の色味の低下を抑制することができる。また、光学フィルム102は、色素化合物を含んでいても、耐光性に優れ、それによる表示ムラも抑制できる。 Then, in the present invention, an optical film 102 containing a specific dye compound is used. As a result, the optical film 102 (the cycloolefin-based resin film containing no dye compound could not be converted into the desired linearly polarized light) is perpendicular to the transmission axis of the polarizer 101 even for light in a specific wavelength region ( It can be converted to linearly polarized light (parallel to the absorption axis). As a result, it is possible to suppress a decrease in the tint of the reflected light due to the reflected light in a specific wavelength region passing through the transmission axis of the polarizer 101 and leaking. Further, the optical film 102 is excellent in light resistance even if it contains a dye compound, and display unevenness due to this can be suppressed.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In the examples, the indication of "parts" or "%" is used, but unless otherwise specified, it indicates "parts by mass" or "% by mass".
 〔実施例1〕
 1.光学フィルムの材料
 (1)シクロオレフィン系樹脂
 ≪シクロオレフィン系樹脂1の合成≫
 精製トルエン100質量部と、ノルボルネンカルボン酸メチルエステル(下記構造式A参照)100質量部とを、反応釜に投入した。次いで、トルエン中に溶解したエチルヘキサノエート-Ni25mmol%(対モノマー質量)、トリ(ペンタフルオロフェニル)ボロン0.225mol%(対モノマー質量)、及びトルエンに溶解したトリエチルアルミニウム0.25mol%(対モノマー質量)を、反応釜に投入し、室温で撹拌しながら18時間反応させた。反応終了後、過剰のエタノール中に反応混合物を投入し、重合物沈殿を生成させた。沈殿を精製し、得られた固形物を、真空乾燥で65℃24時間乾燥させて、シクロオレフィン系樹脂(P-1)(重量平均分子量Mw:14万、Tg:140℃)を得た。なお、重量平均分子量は、前述の方法で測定した。
[Example 1]
1. 1. Optical film material (1) Cycloolefin resin << Synthesis of cycloolefin resin 1 >>
100 parts by mass of purified toluene and 100 parts by mass of norbornene carboxylic acid methyl ester (see structural formula A below) were put into a reaction vessel. Then, 25 mmol% of ethylhexanoate-Ni dissolved in toluene (vs. monomer mass), 0.225 mol% of tri (pentafluorophenyl) boron (vs. monomer mass), and 0.25 mol% of triethylaluminum dissolved in toluene (vs.). The monomer mass) was put into a reaction vessel and reacted for 18 hours with stirring at room temperature. After completion of the reaction, the reaction mixture was poured into excess ethanol to form a polymer precipitate. The precipitate was purified and the obtained solid was dried in vacuum at 65 ° C. for 24 hours to obtain a cycloolefin resin (P-1) (weight average molecular weight Mw: 140,000, Tg: 140 ° C.). The weight average molecular weight was measured by the method described above.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 (2)色素化合物
 表Iに記載の例示色素化合物及び比較化合物を準備し、HOMOのエネルギー準位(eV)を算出した。
(2) Dye compound The example dye compounds and comparative compounds shown in Table I were prepared, and the energy level (eV) of HOMO was calculated.
 一般式(1)で表される構造を有する例示色素化合物及び比較化合物の分子軌道計算によるHOMOのエネルギー準位の算出は、計算手法として、汎関数としてB3LYP、基底関数として6-31G(d)を用いた分子軌道計算用ソフトウェアを用いて算出することができ、ソフトウェアに特に限定はなく、いずれを用いても同様に求めることができる。 The calculation of the energy level of HOMO by the molecular orbital calculation of the exemplary dye compound and the comparative compound having the structure represented by the general formula (1) is calculated by using B3LYP as a general function and 6-31G (d) as a basis function. It can be calculated by using the molecular orbital calculation software using the above, and the software is not particularly limited, and any of them can be used in the same manner.
 本発明においては、分子軌道計算用ソフトウェアとして、米国Gaussian社製のGaussian09(Revision C.01,M.J.Frisch,et al,Gaussian,Inc.,2010.)を用い、計算を行った。計算結果のHOMOのエネルギー準位の値を表Iに記載した。 In the present invention, the calculation was performed using Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian, USA as software for calculating the molecular orbital. The HOMO energy level values of the calculation results are shown in Table I.
 ≪例示色素化合物合成例≫ << Example of dye compound synthesis >>
 <例示色素化合物9>
Figure JPOXMLDOC01-appb-C000021
<Example dye compound 9>
Figure JPOXMLDOC01-appb-C000021
 100mL3頭コルベンに化合物(9-1)1g、マロノニトリル0.277gを測り取り、トルエン18mLを加えて溶解した。次にモルホリン0.332gを滴下した後、昇温して4時間加熱還流した。反応終了後、溶媒を減圧除去し、メタノールを5mL加えて、懸濁状態で攪拌した。析出物をろ過、乾燥して、例示色素化合物9の粉体0.33g(収率28%)を得た。構造はNMRにより確認した。 1 g of compound (9-1) and 0.277 g of malononitrile were measured in 100 mL of 3-headed corben, and 18 mL of toluene was added to dissolve them. Next, 0.332 g of morpholine was added dropwise, the temperature was raised, and the mixture was heated under reflux for 4 hours. After completion of the reaction, the solvent was removed under reduced pressure, 5 mL of methanol was added, and the mixture was stirred in a suspended state. The precipitate was filtered and dried to obtain 0.33 g (yield 28%) of the powder of Exemplified Dye Compound 9. The structure was confirmed by NMR.
 <例示色素化合物23>
Figure JPOXMLDOC01-appb-C000022
<Example dye compound 23>
Figure JPOXMLDOC01-appb-C000022
 100mL3頭コルベンに化合物(23-1)1g、マロノニトリル0.497gを測り取り、トルエン40mLを加えて溶解した。次にモルホリン0.596gを滴下した後、昇温して4時間加熱還流した。反応終了後、溶媒を減圧除去し、メタノールを5mL加えて、懸濁状態で攪拌した。析出物をろ過、乾燥して、例示色素化合物23の粉体0.24g(収率18%)を得た。構造はNMRにより確認した。 Weighed 1 g of compound (23-1) and 0.497 g of malononitrile in 100 mL of 3-headed corben, and added 40 mL of toluene to dissolve it. Next, 0.596 g of morpholine was added dropwise, the temperature was raised, and the mixture was heated under reflux for 4 hours. After completion of the reaction, the solvent was removed under reduced pressure, 5 mL of methanol was added, and the mixture was stirred in a suspended state. The precipitate was filtered and dried to obtain 0.24 g (yield 18%) of the powder of the exemplary dye compound 23. The structure was confirmed by NMR.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 (吸収極大波長の測定)
 上記化合物の吸収極大波長は、株式会社島津製作所製紫外可視分光光度計UV-2450を用いて、色素化合物のジクロロメタン中での吸収スペクトルを測定することによって求め、表IIに記載した。
 なお、発明における「吸収極大波長」とは、上記化合物の吸収スペクトルを測定したとき得られる化合物の吸収スペクトルにおいて、最大かつ極大の吸光度(吸収強度)を示す波長(nm)をいう。
(Measurement of maximum absorption wavelength)
The maximum absorption wavelength of the above compound was determined by measuring the absorption spectrum of the dye compound in dichloromethane using an ultraviolet-visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation, and is shown in Table II.
The "maximum absorption wavelength" in the invention means a wavelength (nm) showing the maximum and maximum absorbance (absorption intensity) in the absorption spectrum of the compound obtained when the absorption spectrum of the compound is measured.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 2.光学フィルムの作製及び評価
 <光学フィルム101の作製>
 (微粒子添加液の調製)
 下記成分を、ディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散を行った。さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。
2. Fabrication and evaluation of optical film <Manufacture of optical film 101>
(Preparation of fine particle additive liquid)
The following components were stirred and mixed with a dissolver for 50 minutes, and then dispersed with menton golin. Further, the particles were dispersed by an attritor so that the particle size of the secondary particles became a predetermined size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
 微粒子(アエロジルR812:日本アエロジル社製、一次平均粒子径:7nm、見掛け比重50g/L):                  4質量部
 ジクロロメタン:                 48質量部
 エタノール:                   48質量部
Fine particles (Aerosil R812: manufactured by Nippon Aerosil Co., Ltd., primary average particle size: 7 nm, apparent specific gravity 50 g / L): 4 parts by mass Dichloromethane: 48 parts by mass Ethanol: 48 parts by mass
 (ドープの調製)
 下記成分を、十分に攪拌しながら密閉容器に投入した後、80℃まで昇温し、1時間保持した。次いで、これを30℃まで冷却した後、孔径5μmのフィルターでろ過して、ドープA-1を得た。
(Preparation of dope)
The following components were put into a closed container with sufficient stirring, then heated to 80 ° C. and held for 1 hour. Then, this was cooled to 30 ° C., and then filtered through a filter having a pore size of 5 μm to obtain Dope A-1.
 シクロオレフィン系樹脂1:           100質量部
 ジクロロメタン:                302質量部
 エタノール:                   18質量部
 例示色素化合物1:               0.1質量部
 微粒子添加液:                  10質量部
Cycloolefin resin 1: 100 parts by mass Dichloromethane: 302 parts by mass Ethanol: 18 parts by mass Example dye compound 1: 0.1 parts by mass Fine particle additive: 10 parts by mass
 (光学フィルム101の作製)
 30m/minの速度で駆動する無端状の金属支持体上に、調製したドープを流延ダイから流延し、支持体上で40℃の乾燥風を当てて、自己支持性を有する流延膜(膜状物)が得られるまで乾燥させた。その後、10℃まで冷却し、流延膜を支持体から剥離した。その後、剥離した流延膜を110℃で30分間乾燥させた後、170℃で幅方向に対して45°の方向(斜め方向)に延伸倍率2倍で延伸した。それにより、幅方向に対して約45°の方向に面内遅相軸を有する膜厚40μmの光学フィルム101を得た。
 光学フィルム101は、前述の位相差値の評価方法により、位相差値Roは145nmであり、λ/4板として機能するフィルムであることが確認された。
(Manufacturing of Optical Film 101)
The prepared dope is cast from a casting die on an endless metal support driven at a speed of 30 m / min, and a dry air of 40 ° C. is blown on the support to provide a self-supporting casting film. It was dried until a (film-like substance) was obtained. Then, the mixture was cooled to 10 ° C., and the cast film was peeled off from the support. Then, the peeled cast film was dried at 110 ° C. for 30 minutes, and then stretched at 170 ° C. in the direction of 45 ° (diagonal direction) with respect to the width direction at a stretching ratio of 2 times. As a result, an optical film 101 having a film thickness of 40 μm and having an in-plane delayed phase axis in a direction of about 45 ° with respect to the width direction was obtained.
It was confirmed that the optical film 101 is a film having a retardation value Ro of 145 nm and functioning as a λ / 4 plate by the above-mentioned retardation value evaluation method.
 <光学フィルム102~119の作製>
 光学フィルム101の作製において、例示色素化合物を表IIIに記載のように変更した以外は同様にして、光学フィルム102~119を作製した。
<Manufacturing of optical films 102 to 119>
In the production of the optical film 101, the optical films 102 to 119 were produced in the same manner except that the exemplary dye compounds were changed as shown in Table III.
 ≪評価≫
 <光透過率>
 光透過率は、JIS K 7375:2008「プラスチック-全光線透過率及び全光線反射率の求め方」に従って、分光光度計(日立ハイテクサイエンス製U-3300)を用いて測定した。なお、光透過率が80%以上であるときに「〇」とし、80%未満のときは「△」とした。
≪Evaluation≫
<Light transmittance>
The light transmittance was measured using a spectrophotometer (Hitachi High-Tech Science U-3300) according to JIS K 7375: 2008 "Plastic-How to determine total light transmittance and total light reflectance". When the light transmittance was 80% or more, it was set as “◯”, and when it was less than 80%, it was set as “Δ”.
 <耐光性試験>
 上記作製した光学フィルムについて、耐光性試験を行った。
 作製したフィルムにキセノンランプ(60W/m2)の光を連続的に100時間照射し、照射前(0時間)、照射後(100時間)の薄膜の吸光度を分光光度計で測定し、下記式(1)に従って色素残存率を測定した。
 式(1) 色素残存率(%)={(A100)/(A0)}×100
(ただし、A0はキセノンランプ照射前の吸光度、A100はキセノンランプ照射後の吸光度である。)
 なお、「吸光度」とは、各化合物の吸収極大波長における吸光度を表しており、色素残存率が高い程、化合物が光によって分解されにくく、耐光性が高いことを示す。耐光性は、下記基準により評価した。
<Light resistance test>
The optical film produced above was subjected to a light resistance test.
The prepared film was continuously irradiated with light from a xenon lamp (60 W / m 2 ) for 100 hours, and the absorbance of the thin film before (0 hours) and after (100 hours) irradiation was measured with a spectrophotometer. The dye residual rate was measured according to (1).
Equation (1) Dye residual rate (%) = {(A 100 ) / (A 0 )} × 100
(However, A 0 is the absorbance before irradiation with the xenon lamp, and A 100 is the absorbance after irradiation with the xenon lamp.)
The "absorbance" represents the absorbance of each compound at the maximum absorption wavelength, and the higher the dye residual ratio, the more difficult the compound is decomposed by light and the higher the light resistance. The light resistance was evaluated according to the following criteria.
 A:色素残存率が65%以上
 B:色素残存率が40%以上、65%未満
 C:色素残存率が10%以上、40%未満
 D:色素残存率が10%未満
A: Dye residual rate is 65% or more B: Dye residual rate is 40% or more and less than 65% C: Dye residual rate is 10% or more and less than 40% D: Dye residual rate is less than 10%
 <耐久性:ブリードアウトの評価>
 各光学フィルムを、60℃、90%RHの高温高湿雰囲気下で1000時間放置後、光学フィルム表面のブリードアウト(結晶析出)の有無を目視観察で行い、下記に記載の基準に従ってブリードアウトの評価を行った。
<Durability: Evaluation of bleed-out>
After each optical film is left in a high temperature and high humidity atmosphere of 60 ° C. and 90% RH for 1000 hours, the presence or absence of bleed-out (crystal precipitation) on the surface of the optical film is visually observed, and the bleed-out is performed according to the criteria described below. Evaluation was performed.
 ◎:光学フィルム表面にブリードアウトの発生が全く認められない
 ○:光学フィルム表面で、部分的なブリードアウトが僅かに認められる
 △:光学フィルム表面で、全面に亘りブリードアウトが僅かに認められる
 ×:光学フィルム表面で、全面に亘り明確なブリードアウトが認められる
 光学フィルムの構成と上記評価結果を、表IIIに示す。
⊚: No bleed-out is observed on the surface of the optical film ○: Slight bleed-out is observed on the surface of the optical film Δ: Slight bleed-out is observed on the entire surface of the optical film × : Table III shows the composition of the optical film in which clear bleed-out is observed over the entire surface of the optical film and the above evaluation results.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表IIIの結果から、本発明の光学フィルムは、本発明に係る一般式(1)で表される構造を有する色素化合物を使用することにより、光透過率、耐光性及び耐久性に優れることが明らかである。 From the results in Table III, the optical film of the present invention is excellent in light transmittance, light resistance and durability by using a dye compound having a structure represented by the general formula (1) according to the present invention. it is obvious.
 〔実施例2〕
 <光学フィルム201の作製>
 ウレタンアクリレート(新中村化学工業社製、UA-1100H)19.7質量部、光重合開始剤(BASF社製イルガキュア184)0.1質量部、変性シリコーン(信越化学社製 KF-351A)0.3質量部、エマルゲン404(花王ケミカル社製)0.05質量部、プロピレングリコールモノメチルエーテル(PGME) 39.5質量部、酢酸メチル39.5質量部、例示色素化合物6 0.1質量部とを混ぜ合わせ、よく攪拌することで、塗布用組成物を調製した。得られた塗布用組成物を、ワイヤーバーにて厚さ25μmCOP基材上に塗布した後乾燥、UV硬化を行い、厚さ5μmの機能性層(ハードコート層)を有する光学フィルム201を製造した。
[Example 2]
<Manufacturing of optical film 201>
Urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., UA-1100H) 19.7 parts by mass, photopolymerization initiator (manufactured by BASF, Irgacure 184) 0.1 parts by mass, modified silicone (manufactured by Shin-Etsu Chemical Co., Ltd. KF-351A) 0. 3 parts by mass, Emargen 404 (manufactured by Kao Chemical Co., Ltd.) 0.05 parts by mass, propylene glycol monomethyl ether (PGME) 39.5 parts by mass, methyl acetate 39.5 parts by mass, exemplified dye compound 6 0.1 parts by mass. The composition for coating was prepared by mixing and stirring well. The obtained coating composition was applied on a 25 μm-thick COP substrate with a wire bar, dried, and UV-cured to produce an optical film 201 having a functional layer (hard coat layer) with a thickness of 5 μm. ..
 <光学フィルム202~212の作製>
 光学フィルム201の作製において、例示色素化合物を表IVに記載のように変更した以外は同様にして、光学フィルム202~212を作製した。
 作製した光学フィルム201~212について、実施例1と同様に耐光性及び耐久性を評価した。結果を表IVに示す。
<Manufacturing of optical films 202-212>
In the production of the optical film 201, the optical films 202 to 212 were produced in the same manner except that the exemplary dye compounds were changed as shown in Table IV.
The optical films 201 to 212 produced were evaluated for light resistance and durability in the same manner as in Example 1. The results are shown in Table IV.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表IVの結果から、本発明の光学フィルムは、機能性層に本発明に係る一般式(1)で表される構造を有する化合物を使用することにより、実施例1と同様に、光透過率、耐光性及び耐久性に優れることが明らかである。 From the results in Table IV, the optical film of the present invention has a light transmittance similar to that of Example 1 by using a compound having a structure represented by the general formula (1) according to the present invention in the functional layer. It is clear that it is excellent in light resistance and durability.
 〔実施例3〕
 実施例1及び2で作製した光学フィルムを用いて、偏光板の作製及び評価を実施した。
[Example 3]
The polarizing plate was prepared and evaluated using the optical films prepared in Examples 1 and 2.
 <偏光板301の作製>
 (1)偏光子の作製
 厚さ60μmの長尺ポリビニルアルコールフィルムを、ガイドロールを介して連続搬送しつつ、ヨウ素とヨウ化カリウム配合の染色浴(30℃)に浸漬して染色処理と2.5倍の延伸処理を施した後、ホウ酸とヨウ化カリウムを添加した酸性浴(60℃)中で、トータルとして5倍となる延伸処理と架橋処理を施し、得られた厚さ12μmのヨウ素-PVA系偏光子を、乾燥機中で50℃、30分間乾燥させて水分率4.9%の偏光子を得た。
<Preparation of polarizing plate 301>
(1) Preparation of Polarizer A long polyvinyl alcohol film with a thickness of 60 μm is continuously conveyed via a guide roll and immersed in a dyeing bath (30 ° C.) containing iodine and potassium iodide for dyeing treatment. After 5 times stretching treatment, in an acidic bath (60 ° C.) to which boric acid and potassium iodide were added, a total of 5 times stretching treatment and cross-linking treatment were carried out, and iodine having a thickness of 12 μm was obtained. -The PVA-based polarizer was dried in a dryer at 50 ° C. for 30 minutes to obtain a polarizer having a moisture content of 4.9%.
 (2)紫外線硬化型接着剤の調製
 下記の各成分を混合し、液状の紫外線硬化型接着剤(UV接着剤)を得た。
 3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート:                40質量部
 ビスフェノールA型エポキシ樹脂:         60質量部
 ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロアンチモネート(カチオン重合開始剤):       4質量部
(2) Preparation of UV Curable Adhesive The following components were mixed to obtain a liquid UV curable adhesive (UV adhesive).
3,4-Epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate: 40 parts by mass Bisphenol A type epoxy resin: 60 parts by mass Diphenyl [4- (phenylthio) phenyl] Sulfonium hexafluoroantimonate (cationic polymerization initiator): 4 parts by mass
 (3)偏光板の作製
 前記光学フィルム101の貼合面にコロナ処理を施した後、上記調製した紫外線硬化型接着剤を、チャンバードクターを備えた塗布装置により、乾燥厚さが3μmとなるように塗布した。また、対向フィルムとしてコニカミノルタタックKC4CT(厚さ40μm、コニカミノルタ社製)の貼合面にも、同様に、コロナ処理を施した後、上記紫外線硬化型接着剤を、乾燥厚さが3μmとなるように塗布した。
(3) Preparation of Polarizing Plate After corona treatment is applied to the bonded surface of the optical film 101, the UV-curable adhesive prepared above is applied to a coating device equipped with a chamber doctor so that the drying thickness becomes 3 μm. Was applied to. Further, the bonded surface of Konica Minolta Tack KC4CT (thickness 40 μm, manufactured by Konica Minolta Co., Ltd.) as an opposing film is similarly subjected to corona treatment, and then the above-mentioned ultraviolet curable adhesive is applied to a dry thickness of 3 μm. It was applied so as to become.
 その後、直ちに、上記作製した偏光子の一方の面に光学フィルム101を、他方の面に対向フィルムであるTACフィルムを、それぞれ紫外線硬化型接着剤を介して、ロール・トゥ・ロール方式で貼り合わせた。貼り合わせは、光学フィルム101の遅相軸(又は進相軸)と偏光子の吸収軸(または透過軸)とが一致するように(光学フィルム101の面内遅相軸と偏光子の吸収軸とのなす角度が45°となるように)行った。その後、貼り合わせ物を、ライン速度20m/分にて搬送しながら、波長280~320nmにおける積算光量が320mJ/cm2となるように、メタルハライドランプにより紫外線を光学フィルム106側から照射した。それにより、紫外線硬化型接着剤を硬化させて、偏光板301を得た。なお、偏光板301の作製は、ロール・トゥ・ロール方式で行われるため、最終的には、長尺状の偏光板を幅方向に沿って切断して、シート状の偏光板301とした。 Immediately after that, the optical film 101 is bonded to one surface of the produced polarizing element, and the TAC film, which is an opposing film, is bonded to the other surface by a roll-to-roll method via an ultraviolet curable adhesive. rice field. The bonding is performed so that the slow axis (or phase advance axis) of the optical film 101 and the absorption axis (or transmission axis) of the polarizer coincide with each other (the in-plane slow axis of the optical film 101 and the absorption axis of the polarizer). The angle between the two was 45 °). Then, while transporting the bonded material at a line speed of 20 m / min, ultraviolet rays were irradiated from the optical film 106 side by a metal halide lamp so that the integrated light amount at a wavelength of 280 to 320 nm was 320 mJ / cm 2. As a result, the ultraviolet curable adhesive was cured to obtain a polarizing plate 301. Since the polarizing plate 301 is manufactured by a roll-to-roll method, the elongated polarizing plate is finally cut along the width direction to obtain a sheet-shaped polarizing plate 301.
 作製した偏光板301を、市販の有機EL画像表示装置の視認側の偏光板を剥離した部位に、上記偏光板の光学フィルム101側が有機EL素子側になるように貼合し、有機EL画像表示装置301を作製した。 The produced polarizing plate 301 is attached to a portion of a commercially available organic EL image display device on which the polarizing plate on the visual side is peeled off so that the optical film 101 side of the polarizing plate is on the organic EL element side, and the organic EL image is displayed. The device 301 was manufactured.
 <偏光板及び有機EL画像表示装置302~319の作製>
 偏光板301の作製において、光学フィルム101を表Vに記載のように変更した以外は同様にして、偏光板302~319及び有機EL画像表示装置302~319を作製した。
 作製した、偏光板301~319及び有機EL画像表示装置301~319について、実施例1と同様の評価及び下記光漏れの評価を実施し、結果を表Vに示した。
<Manufacturing of Polarizing Plates and Organic EL Image Display Devices 302 to 319>
In the production of the polarizing plate 301, the polarizing plates 302 to 319 and the organic EL image display devices 302 to 319 were produced in the same manner except that the optical film 101 was changed as shown in Table V.
The prepared polarizing plates 301 to 319 and the organic EL image display devices 301 to 319 were evaluated in the same manner as in Example 1 and the following light leakage evaluation, and the results are shown in Table V.
 <光漏れ評価>
 上記作製した有機EL画像表示装置に対して、60℃・90%RHの環境で500時間保管し、その後、常温常湿(23℃・55%RH)に24時間置き、暗室にて、黒表示時の画面からの光漏れによる表示ムラの発生の様子を目視観察し、以下の基準で評価した。
 ○:光漏れによる表示ムラの発生がない
 △:光漏れによる表示ムラの発生がやや認められる
 ×:光漏れによる表示ムラが明らかに発生する
<Light leakage evaluation>
The organic EL image display device produced above is stored in an environment of 60 ° C. and 90% RH for 500 hours, then placed at room temperature and humidity (23 ° C. and 55% RH) for 24 hours, and displayed in black in a dark room. The appearance of display unevenness due to light leakage from the screen at that time was visually observed and evaluated according to the following criteria.
◯: No display unevenness due to light leakage Δ: Some display unevenness is observed due to light leakage ×: Display unevenness clearly occurs due to light leakage
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表Vから、本発明の光学フィルムを用いることによって、耐光性及び耐久性に優れ、かつ光漏れのない偏光板及び有機EL画像表示装置が得られることが分かった。 From Table V, it was found that by using the optical film of the present invention, a polarizing plate and an organic EL image display device having excellent light resistance and durability and having no light leakage can be obtained.
 本発明の光学フィルムは、高い透明性を有しながら、光漏れを防ぎ、さらに厳しい環境条件下における耐光性及び耐久性に優れるため、偏光板や有機エレクトロルミネッセンス画像表示装置に好適に利用できる。 The optical film of the present invention has high transparency, prevents light leakage, and is excellent in light resistance and durability under harsh environmental conditions, so that it can be suitably used for polarizing plates and organic electroluminescence image display devices.
 100 偏光板
 101 偏光子
 102 光学フィルム
 103 対向フィルム
 104 接着層
 200 有機EL画像表示装置
 300 有機EL素子
 301 基板
 302 金属電極
 303 発光層
 304 透明電極
 305 封止層
 400 接着層
100 Polarizing plate 101 Polarizer 102 Optical film 103 Opposing film 104 Adhesive layer 200 Organic EL image display device 300 Organic EL element 301 Substrate 302 Metal electrode 303 Light emitting layer 304 Transparent electrode 305 Sealing layer 400 Adhesive layer

Claims (12)

  1.  熱可塑性樹脂を含有する光学フィルムであって、
     下記一般式(1)で表される構造を有する化合物を含有することを特徴とする光学フィルム。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Zはヘテロ原子を2つ以上有するヘテロアリール基を表し、置換基を有してもよい。)
    An optical film containing a thermoplastic resin.
    An optical film containing a compound having a structure represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, Z represents a heteroaryl group having two or more heteroatoms, and may have a substituent.)
  2.  前記Zが、下記構造式で表されるいずれかの基であることを特徴とする請求項1に記載の光学フィルム。
    Figure JPOXMLDOC01-appb-C000002
    (上記構造式で表される基は更に置換基を有してもよい。また、Rは置換基を表す。)
    The optical film according to claim 1, wherein Z is any group represented by the following structural formula.
    Figure JPOXMLDOC01-appb-C000002
    (The group represented by the above structural formula may further have a substituent. In addition, R represents a substituent.)
  3.  さらに、前記Zが、下記構造式で表されるいずれかの基であることを特徴とする請求項2に記載の光学フィルム。
    Figure JPOXMLDOC01-appb-C000003
    (上記構造式で表される基は更に置換基を有してもよい。また、Rは置換基を表す。)
    The optical film according to claim 2, wherein Z is any group represented by the following structural formula.
    Figure JPOXMLDOC01-appb-C000003
    (The group represented by the above structural formula may further have a substituent. In addition, R represents a substituent.)
  4.  前記一般式(1)で表される構造を有する化合物の最高被占軌道のエネルギー準位が、-5.85ev以下であることを特徴とする請求項1から請求項3までのいずれか一項に記載の光学フィルム。 Any one of claims 1 to 3, wherein the energy level of the highest occupied molecular orbital of the compound having the structure represented by the general formula (1) is −5.85 ev or less. The optical film described in.
  5.  前記熱可塑性樹脂が、環状オレフィン系樹脂又はアクリル樹脂であることを特徴とする請求項1から請求項4までのいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 4, wherein the thermoplastic resin is a cyclic olefin resin or an acrylic resin.
  6.  前記環状オレフィン系樹脂が、極性基を有することを特徴とする請求項5に記載の光学フィルム。 The optical film according to claim 5, wherein the cyclic olefin resin has a polar group.
  7.  前記一般式(1)で表される構造を有する化合物が、前記熱可塑性樹脂に対して、0.01~20質量%の範囲内で含有されることを特徴とする請求項1から請求項6までのいずれか一項に記載の光学フィルム。 Claims 1 to 6 are characterized in that the compound having the structure represented by the general formula (1) is contained in the range of 0.01 to 20% by mass with respect to the thermoplastic resin. The optical film according to any one of the above.
  8.  更に、機能性層を有することを特徴とする請求項1から請求項7までのいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 7, further comprising a functional layer.
  9.  前記機能性層が、前記一般式(1)で表される構造を有する化合物を含有することを特徴とする請求項8に記載の光学フィルム。 The optical film according to claim 8, wherein the functional layer contains a compound having a structure represented by the general formula (1).
  10.  前記光学フィルムが、λ/4位相差フィルムであることを特徴とする請求項1から請求項9までのいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 9, wherein the optical film is a λ / 4 retardation film.
  11.  請求項1から請求項10までのいずれか一項に記載の光学フィルムを具備することを特徴とする偏光板。 A polarizing plate comprising the optical film according to any one of claims 1 to 10.
  12.  請求項1から請求項10までのいずれか一項に記載の光学フィルム又は請求項11に記載の偏光板を具備することを特徴とする有機エレクトロルミネッセンス画像表示装置。 An organic electroluminescence image display device comprising the optical film according to any one of claims 1 to 10 or the polarizing plate according to claim 11.
PCT/JP2021/006251 2020-02-28 2021-02-19 Optical film, polarizing plate, and organic electroluminescence image display device WO2021172179A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227018850A KR20220097949A (en) 2020-02-28 2021-02-19 Optical film, polarizing plate and organic electroluminescent image display device
CN202180016225.4A CN115136045A (en) 2020-02-28 2021-02-19 Optical film, polarizing plate and organic electroluminescent image display device
JP2022503321A JPWO2021172179A1 (en) 2020-02-28 2021-02-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-032652 2020-02-28
JP2020032652 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021172179A1 true WO2021172179A1 (en) 2021-09-02

Family

ID=77490073

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006251 WO2021172179A1 (en) 2020-02-28 2021-02-19 Optical film, polarizing plate, and organic electroluminescence image display device

Country Status (5)

Country Link
JP (1) JPWO2021172179A1 (en)
KR (1) KR20220097949A (en)
CN (1) CN115136045A (en)
TW (1) TWI845816B (en)
WO (1) WO2021172179A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267913B1 (en) * 1996-11-12 2001-07-31 California Institute Of Technology Two-photon or higher-order absorbing optical materials and methods of use
JP2006521220A (en) * 2003-03-25 2006-09-21 ランクセス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical data medium containing a polymer network in the information layer
WO2019004042A1 (en) * 2017-06-27 2019-01-03 住友化学株式会社 Optical film
WO2019004046A1 (en) * 2017-06-27 2019-01-03 住友化学株式会社 Adhesive composition and adhesive layer-bearing film
WO2019004043A1 (en) * 2017-06-27 2019-01-03 住友化学株式会社 Adhesive sheet and film with adhesive layer
WO2019004047A1 (en) * 2017-06-27 2019-01-03 住友化学株式会社 Adhesive composition and film with adhesive layer
WO2019073869A1 (en) * 2017-10-13 2019-04-18 住友化学株式会社 Resin and adhesive composition

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127586B1 (en) 2010-02-24 2012-03-22 삼성모바일디스플레이주식회사 High transparency polarizing plate and organic light emitting device having the same
WO2017015996A1 (en) 2015-07-28 2017-02-02 东莞市凯欣电池材料有限公司 Phosphonitrile fluoroalkyl sulfimide alkali metal salt and electrolyte solution containing the metal salt
JP2017165941A (en) 2015-12-25 2017-09-21 日東電工株式会社 Adhesive composition for organic el display device, adhesive layer for organic el display device, polarizing film with adhesive layer for organic el display device, and organic el display device
EP3239747B1 (en) 2016-04-29 2023-01-18 Samsung Display Co., Ltd. Polarization member and display device including the same
KR102326288B1 (en) * 2017-03-09 2021-11-15 후지필름 가부시키가이샤 Composition, dichroic material, light absorption anisotropic film, laminate and image display device
JP6510113B2 (en) 2017-05-09 2019-05-08 日東電工株式会社 Composition for optical member, optical member and image display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267913B1 (en) * 1996-11-12 2001-07-31 California Institute Of Technology Two-photon or higher-order absorbing optical materials and methods of use
JP2006521220A (en) * 2003-03-25 2006-09-21 ランクセス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング Optical data medium containing a polymer network in the information layer
WO2019004042A1 (en) * 2017-06-27 2019-01-03 住友化学株式会社 Optical film
WO2019004046A1 (en) * 2017-06-27 2019-01-03 住友化学株式会社 Adhesive composition and adhesive layer-bearing film
WO2019004043A1 (en) * 2017-06-27 2019-01-03 住友化学株式会社 Adhesive sheet and film with adhesive layer
WO2019004047A1 (en) * 2017-06-27 2019-01-03 住友化学株式会社 Adhesive composition and film with adhesive layer
WO2019073869A1 (en) * 2017-10-13 2019-04-18 住友化学株式会社 Resin and adhesive composition

Also Published As

Publication number Publication date
TWI845816B (en) 2024-06-21
KR20220097949A (en) 2022-07-08
CN115136045A (en) 2022-09-30
TW202147660A (en) 2021-12-16
JPWO2021172179A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
WO2014171479A1 (en) Polarizing plate and image display device
KR101792374B1 (en) Optical film, circularly polarizing plate and organic electroluminescent display device
JP2014240905A (en) Polarizing plate and method for manufacturing the same, and organic electroluminescence display device including the same
US10935710B2 (en) Optical film, polarizing plate, image display device, method for producing optical film, and method for producing polarizing plate
TWI570463B (en) Polarizing plate, manufacturing method of polarizing plate, liquid crystal display device, and organic electroluminescent display device
JP2014145852A (en) Optical film, circularly polarizing plate and image display apparatus
TWI725980B (en) Optical film and manufacturing method thereof
KR20170011306A (en) Optical film, manufacturing method thereof and display device
JP2024045312A (en) Circularly polarizing plate with anti-reflection layer and image display device using the same
JP6387960B2 (en) Resin composition, optical member, optical film, polarizing plate, circularly polarizing plate, and image display device
JP5971198B2 (en) Polarizing plate, method for manufacturing the same, and organic electroluminescence display device including the same
WO2021172179A1 (en) Optical film, polarizing plate, and organic electroluminescence image display device
JP2017167312A (en) Optical film manufacturing method
JP6927285B2 (en) Optical film, its manufacturing method, polarizing plate and display device equipped with it
JP2011053596A (en) Optical film, polarizing plate, and display device
JP7347035B2 (en) Optical films, polarizing plates and organic EL display devices
TWI831132B (en) Polarizing plate protective film
TWI773115B (en) Polarizing plate and organic electroluminescence display device
CN111757918B (en) Resin composition, film, optical filter, image display device, solid-state imaging element, and compound
JP2022145412A (en) Optical laminate, manufacturing method thereof and picture display unit
TW202334678A (en) Polarizing plate and organic electroluminescent display device
JP2024142941A (en) Polarizing plate
JP2024142942A (en) Polarizing plate
TW202319235A (en) Optical layered body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760682

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227018850

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022503321

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760682

Country of ref document: EP

Kind code of ref document: A1