WO2021172179A1 - Optical film, polarizing plate, and organic electroluminescence image display device - Google Patents
Optical film, polarizing plate, and organic electroluminescence image display device Download PDFInfo
- Publication number
- WO2021172179A1 WO2021172179A1 PCT/JP2021/006251 JP2021006251W WO2021172179A1 WO 2021172179 A1 WO2021172179 A1 WO 2021172179A1 JP 2021006251 W JP2021006251 W JP 2021006251W WO 2021172179 A1 WO2021172179 A1 WO 2021172179A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical film
- group
- film
- resin
- light
- Prior art date
Links
- 239000012788 optical film Substances 0.000 title claims abstract description 176
- 238000005401 electroluminescence Methods 0.000 title claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims abstract description 90
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 17
- 125000001072 heteroaryl group Chemical group 0.000 claims abstract description 4
- 125000005842 heteroatom Chemical group 0.000 claims abstract description 4
- 239000010408 film Substances 0.000 claims description 99
- 239000004925 Acrylic resin Substances 0.000 claims description 28
- 229920000178 Acrylic resin Polymers 0.000 claims description 22
- 239000002346 layers by function Substances 0.000 claims description 15
- 125000001424 substituent group Chemical group 0.000 claims description 15
- 125000004122 cyclic group Chemical group 0.000 claims description 14
- 238000004770 highest occupied molecular orbital Methods 0.000 claims description 14
- 229920005672 polyolefin resin Polymers 0.000 claims description 14
- 230000007613 environmental effect Effects 0.000 abstract description 6
- -1 indole compound Chemical class 0.000 description 74
- 239000010410 layer Substances 0.000 description 63
- 150000001925 cycloalkenes Chemical class 0.000 description 55
- 229920005989 resin Polymers 0.000 description 55
- 239000011347 resin Substances 0.000 description 55
- 239000000178 monomer Substances 0.000 description 48
- 239000000853 adhesive Substances 0.000 description 43
- 230000001070 adhesive effect Effects 0.000 description 43
- 238000000034 method Methods 0.000 description 39
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 21
- 239000010419 fine particle Substances 0.000 description 21
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 238000004519 manufacturing process Methods 0.000 description 18
- 239000000203 mixture Substances 0.000 description 18
- 239000002904 solvent Substances 0.000 description 17
- 125000004432 carbon atom Chemical group C* 0.000 description 16
- 239000012790 adhesive layer Substances 0.000 description 15
- 238000010521 absorption reaction Methods 0.000 description 14
- 238000005266 casting Methods 0.000 description 14
- 238000001035 drying Methods 0.000 description 13
- 239000002245 particle Substances 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- 239000013557 residual solvent Substances 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 229920001577 copolymer Polymers 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 150000002430 hydrocarbons Chemical group 0.000 description 9
- 238000002834 transmittance Methods 0.000 description 9
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000004049 embossing Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 7
- 230000001965 increasing effect Effects 0.000 description 7
- 239000003960 organic solvent Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000004804 winding Methods 0.000 description 7
- 239000004831 Hot glue Substances 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 238000002835 absorbance Methods 0.000 description 6
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 6
- 125000005161 aryl oxy carbonyl group Chemical group 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 230000009477 glass transition Effects 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 239000003999 initiator Substances 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 238000004776 molecular orbital Methods 0.000 description 6
- 238000006116 polymerization reaction Methods 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 5
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 5
- 239000004372 Polyvinyl alcohol Substances 0.000 description 5
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 230000000996 additive effect Effects 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 125000004093 cyano group Chemical group *C#N 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 229920002451 polyvinyl alcohol Polymers 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 4
- 229910002012 Aerosil® Inorganic materials 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 238000000862 absorption spectrum Methods 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- VANNPISTIUFMLH-UHFFFAOYSA-N glutaric anhydride Chemical compound O=C1CCCC(=O)O1 VANNPISTIUFMLH-UHFFFAOYSA-N 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- 229920002284 Cellulose triacetate Polymers 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 3
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- IAXXETNIOYFMLW-COPLHBTASA-N [(1s,3s,4s)-4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl] 2-methylprop-2-enoate Chemical compound C1C[C@]2(C)[C@@H](OC(=O)C(=C)C)C[C@H]1C2(C)C IAXXETNIOYFMLW-COPLHBTASA-N 0.000 description 3
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- 125000005250 alkyl acrylate group Chemical group 0.000 description 3
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 238000003851 corona treatment Methods 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 125000005843 halogen group Chemical group 0.000 description 3
- 229940119545 isobornyl methacrylate Drugs 0.000 description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 3
- CUONGYYJJVDODC-UHFFFAOYSA-N malononitrile Chemical compound N#CCC#N CUONGYYJJVDODC-UHFFFAOYSA-N 0.000 description 3
- 239000006224 matting agent Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- KNCYXPMJDCCGSJ-UHFFFAOYSA-N piperidine-2,6-dione Chemical compound O=C1CCCC(=O)N1 KNCYXPMJDCCGSJ-UHFFFAOYSA-N 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 239000003505 polymerization initiator Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920002223 polystyrene Polymers 0.000 description 3
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 3
- 238000007142 ring opening reaction Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 229910052724 xenon Inorganic materials 0.000 description 3
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 3
- QNODIIQQMGDSEF-UHFFFAOYSA-N (1-hydroxycyclohexyl)-phenylmethanone Chemical compound C=1C=CC=CC=1C(=O)C1(O)CCCCC1 QNODIIQQMGDSEF-UHFFFAOYSA-N 0.000 description 2
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 2
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical class OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 2
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical group [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 2
- 229920000297 Rayon Polymers 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 125000004397 aminosulfonyl group Chemical group NS(=O)(=O)* 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- KGNDCEVUMONOKF-UGPLYTSKSA-N benzyl n-[(2r)-1-[(2s,4r)-2-[[(2s)-6-amino-1-(1,3-benzoxazol-2-yl)-1,1-dihydroxyhexan-2-yl]carbamoyl]-4-[(4-methylphenyl)methoxy]pyrrolidin-1-yl]-1-oxo-4-phenylbutan-2-yl]carbamate Chemical compound C1=CC(C)=CC=C1CO[C@H]1CN(C(=O)[C@@H](CCC=2C=CC=CC=2)NC(=O)OCC=2C=CC=CC=2)[C@H](C(=O)N[C@@H](CCCCN)C(O)(O)C=2OC3=CC=CC=C3N=2)C1 KGNDCEVUMONOKF-UGPLYTSKSA-N 0.000 description 2
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 2
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229940125797 compound 12 Drugs 0.000 description 2
- 229940125833 compound 23 Drugs 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- 229920005994 diacetyl cellulose Polymers 0.000 description 2
- 238000004043 dyeing Methods 0.000 description 2
- 238000007720 emulsion polymerization reaction Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000008571 general function Effects 0.000 description 2
- 238000003988 headspace gas chromatography Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 125000005647 linker group Chemical group 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 2
- 125000002971 oxazolyl group Chemical group 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000007539 photo-oxidation reaction Methods 0.000 description 2
- 238000001782 photodegradation Methods 0.000 description 2
- 239000003504 photosensitizing agent Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000010557 suspension polymerization reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000002562 thickening agent Substances 0.000 description 2
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 2
- HJIAMFHSAAEUKR-UHFFFAOYSA-N (2-hydroxyphenyl)-phenylmethanone Chemical compound OC1=CC=CC=C1C(=O)C1=CC=CC=C1 HJIAMFHSAAEUKR-UHFFFAOYSA-N 0.000 description 1
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- 125000001399 1,2,3-triazolyl group Chemical group N1N=NC(=C1)* 0.000 description 1
- BBVIDBNAYOIXOE-UHFFFAOYSA-N 1,2,4-oxadiazole Chemical group C=1N=CON=1 BBVIDBNAYOIXOE-UHFFFAOYSA-N 0.000 description 1
- 125000001376 1,2,4-triazolyl group Chemical group N1N=C(N=C1)* 0.000 description 1
- XBYRMPXUBGMOJC-UHFFFAOYSA-N 1,2-dihydropyrazol-3-one Chemical group OC=1C=CNN=1 XBYRMPXUBGMOJC-UHFFFAOYSA-N 0.000 description 1
- FKASFBLJDCHBNZ-UHFFFAOYSA-N 1,3,4-oxadiazole Chemical group C1=NN=CO1 FKASFBLJDCHBNZ-UHFFFAOYSA-N 0.000 description 1
- MBIZXFATKUQOOA-UHFFFAOYSA-N 1,3,4-thiadiazole Chemical group C1=NN=CS1 MBIZXFATKUQOOA-UHFFFAOYSA-N 0.000 description 1
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 1
- ISSYTHPTTMFJKL-UHFFFAOYSA-N 1-ethenylcyclopentene Chemical compound C=CC1=CCCC1 ISSYTHPTTMFJKL-UHFFFAOYSA-N 0.000 description 1
- NZOUVKQMNUZMHI-UHFFFAOYSA-N 1-methyl-4-prop-1-en-2-ylcyclopentene Chemical compound CC(=C)C1CC=C(C)C1 NZOUVKQMNUZMHI-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- MEKOFIRRDATTAG-UHFFFAOYSA-N 2,2,5,8-tetramethyl-3,4-dihydrochromen-6-ol Chemical compound C1CC(C)(C)OC2=C1C(C)=C(O)C=C2C MEKOFIRRDATTAG-UHFFFAOYSA-N 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- 125000002941 2-furyl group Chemical group O1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 125000001494 2-propynyl group Chemical group [H]C#CC([H])([H])* 0.000 description 1
- 125000000175 2-thienyl group Chemical group S1C([*])=C([H])C([H])=C1[H] 0.000 description 1
- SBAMFAXGFRIYFD-UHFFFAOYSA-N 4-ethenylcyclopentene Chemical compound C=CC1CC=CC1 SBAMFAXGFRIYFD-UHFFFAOYSA-N 0.000 description 1
- YXALYBMHAYZKAP-UHFFFAOYSA-N 7-oxabicyclo[4.1.0]heptan-4-ylmethyl 7-oxabicyclo[4.1.0]heptane-4-carboxylate Chemical compound C1CC2OC2CC1C(=O)OCC1CC2OC2CC1 YXALYBMHAYZKAP-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 238000005727 Friedel-Crafts reaction Methods 0.000 description 1
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 1
- DKNPRRRKHAEUMW-UHFFFAOYSA-N Iodine aqueous Chemical compound [K+].I[I-]I DKNPRRRKHAEUMW-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical group COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 229910019015 Mg-Ag Inorganic materials 0.000 description 1
- YCGHKCVYWCWZDA-UHFFFAOYSA-N N-hydroxy-2-methyl-3-phenylprop-2-enamide Chemical compound ONC(C(=CC1=CC=CC=C1)C)=O YCGHKCVYWCWZDA-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical group C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 1
- YKTSYUJCYHOUJP-UHFFFAOYSA-N [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] Chemical compound [O--].[Al+3].[Al+3].[O-][Si]([O-])([O-])[O-] YKTSYUJCYHOUJP-UHFFFAOYSA-N 0.000 description 1
- 125000000738 acetamido group Chemical group [H]C([H])([H])C(=O)N([H])[*] 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 125000003668 acetyloxy group Chemical group [H]C([H])([H])C(=O)O[*] 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 125000005396 acrylic acid ester group Chemical group 0.000 description 1
- 239000003522 acrylic cement Substances 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000005103 alkyl silyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 125000000304 alkynyl group Chemical group 0.000 description 1
- 229920005603 alternating copolymer Polymers 0.000 description 1
- 238000012648 alternating copolymerization Methods 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000002490 anilino group Chemical group [H]N(*)C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 125000004657 aryl sulfonyl amino group Chemical group 0.000 description 1
- 125000005110 aryl thio group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- SIKJAQJRHWYJAI-UHFFFAOYSA-N benzopyrrole Natural products C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 1
- 125000001231 benzoyloxy group Chemical group C(C1=CC=CC=C1)(=O)O* 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000010538 cationic polymerization reaction Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- HKQOBOMRSSHSTC-UHFFFAOYSA-N cellulose acetate Chemical compound OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 HKQOBOMRSSHSTC-UHFFFAOYSA-N 0.000 description 1
- 239000012986 chain transfer agent Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- CFBGXYDUODCMNS-UHFFFAOYSA-N cyclobutene Chemical compound C1CC=C1 CFBGXYDUODCMNS-UHFFFAOYSA-N 0.000 description 1
- ZXIJMRYMVAMXQP-UHFFFAOYSA-N cycloheptene Chemical compound C1CCC=CCC1 ZXIJMRYMVAMXQP-UHFFFAOYSA-N 0.000 description 1
- URYYVOIYTNXXBN-UPHRSURJSA-N cyclooctene Chemical compound C1CCC\C=C/CC1 URYYVOIYTNXXBN-UPHRSURJSA-N 0.000 description 1
- 239000004913 cyclooctene Substances 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Chemical group CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 125000004705 ethylthio group Chemical group C(C)S* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000005283 ground state Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229960004592 isopropanol Drugs 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- ZLTPDFXIESTBQG-UHFFFAOYSA-N isothiazole Chemical group C=1C=NSC=1 ZLTPDFXIESTBQG-UHFFFAOYSA-N 0.000 description 1
- CTAPFRYPJLPFDF-UHFFFAOYSA-N isoxazole Chemical group C=1C=NOC=1 CTAPFRYPJLPFDF-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- RNWDNEVYZAPIBG-UHFFFAOYSA-N methyl bicyclo[2.2.1]hept-2-ene-4-carboxylate Chemical compound C1CC2C=CC1(C(=O)OC)C2 RNWDNEVYZAPIBG-UHFFFAOYSA-N 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 125000006608 n-octyloxy group Chemical group 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- 125000000951 phenoxy group Chemical group [H]C1=C([H])C([H])=C(O*)C([H])=C1[H] 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000003356 phenylsulfanyl group Chemical group [*]SC1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 150000003141 primary amines Chemical class 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- UBQKCCHYAOITMY-UHFFFAOYSA-N pyridin-2-ol Chemical group OC1=CC=CC=N1 UBQKCCHYAOITMY-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000246 pyrimidin-2-yl group Chemical group [H]C1=NC(*)=NC([H])=C1[H] 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010526 radical polymerization reaction Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000011163 secondary particle Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- VOITXYVAKOUIBA-UHFFFAOYSA-N triethylaluminium Chemical compound CC[Al](CC)CC VOITXYVAKOUIBA-UHFFFAOYSA-N 0.000 description 1
- 125000006617 triphenylamine group Chemical group 0.000 description 1
- OBAJXDYVZBHCGT-UHFFFAOYSA-N tris(pentafluorophenyl)borane Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1B(C=1C(=C(F)C(F)=C(F)C=1F)F)C1=C(F)C(F)=C(F)C(F)=C1F OBAJXDYVZBHCGT-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8791—Arrangements for improving contrast, e.g. preventing reflection of ambient light
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/315—Compounds containing carbon-to-nitrogen triple bonds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3445—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/45—Heterocyclic compounds having sulfur in the ring
- C08K5/46—Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
- C08K5/47—Thiazoles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/22—Absorbing filters
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3083—Birefringent or phase retarding elements
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/02—Details
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2333/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
Definitions
- the present invention relates to an optical film, a polarizing plate, and an organic electroluminescence image display device. More specifically, when applied to an image display device, the present invention has high transparency, prevents light leakage, and is light resistant under harsher environmental conditions.
- the present invention relates to an optical film or the like having excellent properties and durability.
- organic electroluminescence hereinafter, also referred to as "organic EL" image display device
- organic EL organic electroluminescence
- an antireflection film combining a ⁇ / 4 retardation film and a polarizer is used.
- a cyclic olefin resin hereinafter, also referred to as “COP”
- COP cyclic olefin resin
- reflection leakage occurs at a specific wavelength due to the influence of its wavelength dispersibility. Therefore, in order to suppress reflection leakage, it is necessary to incorporate a layer containing a dye that absorbs light of a specific wavelength (hereinafter, also referred to as “specific wavelength light absorption layer”) in the display.
- the specific wavelength light absorption layer may be provided anywhere in the display, and may be provided as the ⁇ / 4 retardation film.
- Patent Document 1 describes a method of adding a dye that absorbs light having a wavelength of about 400 nm to an adhesive layer in order to protect an organic EL element
- Patent Document 2 improves the brightness and visibility of an organic EL image display device.
- a method of adding a dye that selectively absorbs light in the vicinity of 470 nm and around 600 nm to the pressure-sensitive adhesive is disclosed.
- a dye or a UV absorber is mainly added to the pressure-sensitive adhesive, but since the pressure-sensitive adhesive layer is thin, it is difficult to uniformly add the compound for expressing the function.
- Patent Document 3 describes that a plurality of dye compounds may be put into any layer of the functional layer in order to block ultraviolet rays from the outside and a part of visible light.
- Patent Document 4 describes that an indole compound is contained in a thickener or the like, and Patent Document 5 describes that a dye compound having a specific structure having a cyano group and an ester group is added to a resin or a functional layer.
- Patent Document 5 describes that a dye compound having a specific structure having a cyano group and an ester group is added to a resin or a functional layer.
- the present invention has been made in view of the above problems and situations, and the problem to be solved is that when applied to an image display device, it has high transparency, prevents light leakage, and is light resistant under more severe environmental conditions. It is an object of the present invention to provide an optical film having excellent properties and durability, a polarizing plate provided with the optical film, and an organic electroluminescence image display device.
- the present inventor is an optical film containing a thermoplastic resin in the process of examining the cause of the above problems, and by containing a compound having a specific structure, the image display device can be used.
- an optical film having high transparency, preventing light leakage, and having excellent light resistance and durability under harsh environmental conditions can be obtained.
- An optical film containing a thermoplastic resin An optical film containing a compound having a structure represented by the following general formula (1).
- Z represents a heteroaryl group having two or more heteroatoms, and may have a substituent.
- thermoplastic resin is a cyclic olefin resin or an acrylic resin.
- Items 1 to 6 are characterized in that the compound having the structure represented by the general formula (1) is contained in the range of 0.01 to 20% by mass with respect to the thermoplastic resin.
- the optical film according to any one of the above.
- optical film according to any one of items 1 to 7, further comprising a functional layer.
- optical film according to any one of items 1 to 9, wherein the optical film is a ⁇ / 4 retardation film.
- a polarizing plate comprising the optical film according to any one of items 1 to 10.
- An organic electroluminescence image display device comprising the optical film according to any one of items 1 to 10 or the polarizing plate according to item 11.
- an organic electroluminescent image display device can be provided.
- a cyclic olefin resin film may be used from the viewpoints of low hygroscopicity and good dimensional stability.
- the cyclic olefin resin film exhibits flat wavelength dispersion characteristics, it is used as a ⁇ / 4 retardation film for a circular polarizing plate in, for example, an organic electroluminescence (hereinafter, also referred to as “organic EL”) image display device.
- organic EL organic electroluminescence
- the reflected light tends to leak in a specific wavelength region (region on the short wavelength side). If the leakage of such reflected light is remarkable, the tint of the reflected light tends to be deteriorated.
- the present inventors considered adding a dye compound that absorbs light in the wavelength region to the film. Since the organic EL image display device is used even in a high temperature and high humidity environment, it is required to suppress deterioration of the organic EL element due to external light. Further, since the dye compound is also deteriorated by the incident light, the light resistance of the compound itself is also required.
- the cyano group can lower the energy level of the highest occupied molecular orbital (HOMO), that is, lower the oxidation potential, and thus suppress photooxidation.
- HOMO highest occupied molecular orbital
- Sectional drawing which shows the structure of the polarizing plate 100 Disassembled sectional view of the organic EL image display device 200
- the optical film of the present invention is an optical film containing a thermoplastic resin, and is characterized by containing a compound having a structure represented by the general formula (1). This feature is a technical feature common to or corresponding to the following embodiments.
- Z in the structure represented by the general formula (1) is a group of either the structure represented by claim 2 or claim 3. Is preferable from the viewpoint of obtaining an optical film having an excellent balance between prevention of light leakage and light resistance.
- the energy level of the highest occupied molecular orbital of the compound having the structure represented by the general formula (1) is ⁇ 5.85 eV or less from the viewpoint of obtaining an optical film having excellent durability.
- the thermoplastic resin is a cyclic olefin resin or an acrylic resin from the viewpoint of preventing light leakage and obtaining an optical film having excellent light resistance and durability.
- the cyclic olefin resin has a polar group, the energy level of the highest occupied orbital of the dye and the energy level of the resin are less likely to interact with each other, and deterioration of light resistance and durability can be suppressed.
- the compound having the structure represented by the general formula (1) is contained in the range of 0.01 to 20% by mass with respect to the thermoplastic resin. If it is less than 0.01% by mass, the effect of the present invention is small, and if it exceeds 20% by mass, precipitation from the film (also referred to as bleed-out) is likely to occur under high temperature and high humidity.
- the optical film has a functional layer
- the functional layer contains a compound having a structure represented by the general formula (1).
- the functional layer include a hard coat layer, an adhesive layer, a smooth layer, a light scattering layer, and the like, but a hard coat layer is preferable from the viewpoint of imparting scratch resistance to the optical film.
- the optical film of the present invention is preferably a ⁇ / 4 retardation film, and by incorporating it in a polarizing plate, it is possible to provide a circular polarizing plate for antireflection.
- the organic electroluminescence image display device of the present invention is characterized by comprising the optical film or the polarizing plate of the present invention.
- the optical film of the present invention is an optical film containing a thermoplastic resin, and is characterized by containing a compound having a structure represented by the following general formula (1).
- the energy level of the highest occupied molecular orbital (referred to as HOMO) can be lowered by using a compound having a structure represented by the general formula (1).
- HOMO the energy level of the highest occupied molecular orbital
- the oxidation potential can be lowered and photooxidation can be suppressed. That is, it has the effect of improving the light resistance of the dye compound.
- Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian, USA is used as the software for calculating the molecular orbital.
- the optical film of the present invention is preferably transparent, and "transparent” means a spectrophotometer (for example, “Plastic-How to obtain total light transmittance and total light reflectance”" in accordance with JIS K 7375: 2008. It means that the light transmittance is 80% or more when measured using Hitachi High-Tech Science U-3300).
- Compound having a structure represented by the general formula (1) A compound having a structure represented by the general formula (1) according to the present invention (hereinafter, also referred to as “dye compound”) has the following structure.
- Z represents a heteroaryl group having two or more heteroatoms, and may have a substituent.
- Z is any group represented by the following structural formula, and may further have a substituent.
- R represents a substituent.
- Z is any group represented by the following structural formula from the viewpoint of exhibiting the effect of the present invention.
- R represents a substituent.
- R represents a substituent, for example, a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom, etc.), an alkyl group (methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n).
- a halogen atom fluorine atom, chlorine atom, bromine atom, iodine atom, etc.
- an alkyl group methyl group, ethyl group, n-propyl group, isopropyl group, tert-butyl group, n).
- cycloalkyl group cyclohexyl group, cyclopentyl group, 4-n-dodecylcyclohexyl group, etc.
- alkenyl group vinyl group, allyl group, etc.
- cycloalkenyl group (2-cyclopentene- 1-yl, 2-cyclohexene-1-yl group, etc.)
- alkynyl group ethynyl group, propargyl group, etc.
- aromatic hydrocarbon ring group phenyl group, p-tolyl group, naphthyl group, etc.
- aromatic heterocycle Group (2-pyrrole group, 2-furyl group, 2-thienyl group, pyrrol group, imidazolyl group, oxazolyl group, thiazolyl group, benzoimidazolyl group, benzoxazolyl group, 2-benzothiazolyl group, pyra
- the molecular weight of the dye compound is not particularly limited, but it is preferably not too large, for example, preferably 100 to 1000, in order to facilitate intermolecular penetration of the cyclic olefin resin or acrylic resin.
- the molecular weight of the dye compound can be calculated from the formula amount of the chemical structural formula by specifying the chemical structure by, for example, an NMR (Nuclear Magnetic Resonance) apparatus or the like.
- the maximum absorption wavelength of the dye compound is preferably in the range of 370 to 460 nm, and more preferably in the range of 400 to 440 nm.
- the optical film easily absorbs light in the wavelength region appropriately. Therefore, for example, the optical film is used as a ⁇ / 4 retardation film in an organic EL image display device. If so, the leakage of reflected light in the wavelength region can be further suppressed.
- the maximum absorption wavelength of the dye compound can be determined by measuring the absorption spectrum of the dye compound in dichloromethane using an ultraviolet visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation.
- the dye compound may be obtained synthetically or a commercially available product may be used.
- the synthesis of the exemplary dye compound 12 can be synthesized by the following scheme.
- the content of the dye compound is preferably in the range of 0.01 to 20% by mass with respect to the cyclic olefin resin.
- the content of the dye compound is 0.01% by mass or more, light in a specific wavelength region is appropriately absorbed to improve light resistance while suppressing leakage of reflected light in, for example, an organic EL image display device.
- the content of the dye compound is more preferably in the range of 0.015 to 10% by mass with respect to the cyclic olefin resin.
- thermoplastic resin material according to the present invention is not limited as long as it can be treated as a film after film formation.
- thermoplastic resin used for polarizing plates include cellulose ester resins such as triacetyl cellulose (TAC), cellulose acetate propionate (CAP), and diacetyl cellulose (DAC), and cycloolefin polymers (hereinafter referred to as cycloolefin polymers).
- Cyclic olefin resins such as COP and cycloolefin resins
- polypropylene resins such as polypropylene (PP)
- acrylic resins such as polymethylmethacrylate (PMMA)
- PET polyethylene terephthalate
- Cellulose acetate can be applied.
- cyclic olefin resins and acrylic resins are preferable from the viewpoint of optical properties including phase difference and physical properties such as durability.
- Cycloolefin-based resin contained in the optical film of the present invention is a polymer of a cycloolefin monomer, or a cycloolefin monomer and another copolymerizable monomer. It is preferably a copolymer of.
- the cycloolefin monomer is preferably a cycloolefin monomer having a norbornene skeleton, and is a cycloolefin monomer having a structure represented by the following general formula (A-1) or (A-2). More preferably.
- R 1 to R 4 independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group.
- p represents an integer of 0 to 2. However, all of R 1 to R 4 do not represent hydrogen atoms at the same time, R 1 and R 2 do not represent hydrogen atoms at the same time, and R 3 and R 4 do not represent hydrogen atoms at the same time. do.
- the hydrocarbon group having 1 to 30 carbon atoms represented by R 1 to R 4 in the general formula (A-1) is preferably, for example, a hydrocarbon group having 1 to 10 carbon atoms, and is preferably a carbon atom. More preferably, it is a hydrocarbon group having a number of 1 to 5.
- the hydrocarbon group having 1 to 30 carbon atoms may further have a linking group containing, for example, a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom or a silicon atom. Examples of such linking groups include divalent polar groups such as carbonyl groups, imino groups, ether bonds, silyl ether bonds, thioether bonds and the like.
- Examples of the hydrocarbon group having 1 to 30 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group and the like.
- Examples of the polar groups represented by R 1 to R 4 in the general formula (A-1) include a carboxy group, a hydroxy group, an alkoxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group and a cyano group. Is included. Of these, a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group are preferable, and an alkoxycarbonyl group and an aryloxycarbonyl group are preferable from the viewpoint of ensuring solubility during solution film formation.
- P in the general formula (A-1) is preferably 1 or 2 from the viewpoint of increasing the heat resistance of the optical film. This is because when p is 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to be improved.
- R 5 represents an alkylsilyl group having a hydrogen atom, a hydrocarbon group having 1 to 5 carbon atoms, or an alkyl group having 1 to 5 carbon atoms.
- R 6 represents a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, or a halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom).
- p represents an integer of 0 to 2.
- R 5 in the general formula (A-2) preferably represents a hydrocarbon group having 1 to 5 carbon atoms, and more preferably represents a hydrocarbon group having 1 to 3 carbon atoms.
- R 6 in the general formula (A-2) preferably represents a carboxy group, a hydroxy group, an alkoxycarbonyl group and an aryloxycarbonyl group, and from the viewpoint of ensuring solubility during solution film formation, the alkoxycarbonyl group and aryl Oxycarbonyl groups are more preferred.
- P in the general formula (A-2) preferably represents 1 or 2 from the viewpoint of enhancing the heat resistance of the optical film. This is because when p represents 1 or 2, the obtained polymer becomes bulky and the glass transition temperature tends to improve.
- a cycloolefin monomer having a structure represented by the general formula (A-2) is preferable from the viewpoint of improving the solubility in an organic solvent.
- an organic compound loses its symmetry and thus its crystallinity is lowered, so that its solubility in an organic solvent is improved.
- R 5 and R 6 in the general formula (A-2) are substituted with only the ring-constituting carbon atom on one side with respect to the axis of symmetry of the molecule, the symmetry of the molecule is low, that is, the general formula (A-). Since the cycloolefin monomer having the structure represented by 2) has high solubility, it is suitable for producing an optical film by a solution casting method.
- the content ratio of the cycloolefin monomer having the structure represented by the general formula (A-2) in the polymer of the cycloolefin monomer is the total of all the cycloolefin monomers constituting the cycloolefin resin. For example, it can be 70 mol% or more, preferably 80 mol% or more, and more preferably 100 mol%.
- a cycloolefin monomer having a structure represented by the general formula (A-2) is contained in a certain amount or more, the orientation of the resin is increased, so that the retardation value is likely to increase.
- copolymerizable monomers copolymerizable with cycloolefin monomers examples include copolymerizable monomers capable of ring-opening copolymerization with cycloolefin monomers and addition copolymerization with cycloolefin monomers. Possible copolymerizable monomers and the like are included.
- ring-opening copolymerizable copolymerizable monomers examples include cycloolefins such as cyclobutene, cyclopentene, cycloheptene, cyclooctene and dicyclopentadiene.
- Examples of copolymerizable monomers that can be added and copolymerized include unsaturated double bond-containing compounds, vinyl-based cyclic hydrocarbon monomers, and (meth) acrylates.
- Examples of unsaturated double bond-containing compounds include olefin compounds having 2 to 12 (preferably 2 to 8) carbon atoms, and examples thereof include ethylene, propylene and butene.
- Examples of vinyl-based cyclic hydrocarbon monomers include vinyl cyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene.
- Examples of (meth) acrylates include alkyl (meth) acrylates having 1 to 20 carbon atoms such as methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and cyclohexyl (meth) acrylate.
- the content ratio of the cycloolefin monomer in the copolymer of the cycloolefin monomer and the copolymerizable monomer is, for example, 20 to 80 mol% with respect to the total of all the monomers constituting the copolymer. It can be preferably 30 to 70 mol%.
- the cycloolefin-based resin is obtained by polymerizing a cycloolefin monomer having a norbornene skeleton, preferably a cycloolefin monomer having a structure represented by the general formula (A-1) or (A-2). It is a polymer obtained by copolymerization, and examples thereof include the following.
- the catalyst used for the addition polymerization of the above (5) to (7) for example, those described in paragraphs 0058 to 0063 of JP-A-2005-227606 can be used.
- the alternating copolymerization reaction of (7) above can be carried out, for example, by the method described in paragraphs 0071 and 0072 of JP-A-2005-227606.
- the polymers of the above (1) to (3) and (5) are preferable, and the polymers of the above (3) and (5) are more preferable.
- the cycloolefin-based resin has a structural unit represented by the following general formula (B-1) in that the glass transition temperature of the obtained cycloolefin-based resin can be increased and the light transmittance can be increased. It is preferable that at least one of the structural units represented by the following general formula (B-2) is contained, and only the structural unit represented by the general formula (B-2) is included, or the general formula (B-1) is used. It is more preferable to include both the structural unit represented and the structural unit represented by the general formula (B-2).
- the structural unit represented by the general formula (B-1) is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-1), and is represented by the general formula (B-2).
- the structural unit is a structural unit derived from the cycloolefin monomer represented by the above-mentioned general formula (A-2).
- R 1 ⁇ R 4 and p are respectively the same as R 1 ⁇ R 4 and p of the general formula (A-1).
- R 5 ⁇ R 6 and p are respectively the same as R 5 ⁇ R 6 and p in the general formula (A-2).
- the cycloolefin resin according to the present invention may be a commercially available product.
- Examples of commercially available cycloolefin resins include Arton G (eg, G7810, etc.), Arton F, Arton R (eg, R4500, R4900, R5000, etc.) and Arton RX manufactured by JSR Corporation. included.
- the intrinsic viscosity [ ⁇ ] inh of the cycloolefin resin is preferably in the range of 0.2 to 5 cm 3 / g, and more preferably in the range of 0.3 to 3 cm 3 / g when measured at 30 ° C. It is preferably in the range of 0.4 to 1.5 cm 3 / g, more preferably in the range of 0.4 to 1.5 cm 3 / g.
- the number average molecular weight (Mn) of the cycloolefin resin is preferably in the range of 8000 to 100,000, more preferably in the range of 10,000 to 80,000, and further preferably in the range of 12,000 to 50,000.
- the weight average molecular weight (Mw) of the cycloolefin resin is preferably in the range of 20000 to 300,000, more preferably in the range of 30,000 to 250,000, and even more preferably in the range of 40,000 to 200,000.
- the number average molecular weight and the weight average molecular weight of the cycloolefin resin can be measured by gel permeation chromatography (GPC) in terms of polystyrene.
- the number average molecular weight and the weight average molecular weight are within the above ranges, the heat resistance, water resistance, chemical resistance, mechanical properties, and molding processability as a film of the cycloolefin resin are good. Become.
- the glass transition temperature (Tg) of the cycloolefin resin is usually 110 ° C. or higher, preferably in the range of 110 to 350 ° C., more preferably in the range of 120 to 250 ° C., and 120 to 220 ° C. It is more preferable that the range is.
- Tg is 110 ° C. or higher, deformation under high temperature conditions can be easily suppressed.
- the Tg is 350 ° C. or lower, the molding process becomes easy, and the deterioration of the resin due to the heat during the molding process is also easily suppressed.
- the content of the cycloolefin resin is preferably 70% by mass or more, more preferably 80% by mass or more with respect to the film.
- the acrylic resin according to the present invention is a polymer of an acrylic acid ester or a methacrylic acid ester, and also includes a copolymer with another monomer.
- the acrylic resin according to the present invention also includes a methacrylic resin.
- the resin is not particularly limited, but the methyl methacrylate unit is in the range of 50 to 99% by mass, and other monomer units copolymerizable therewith are in the range of 1 to 50% by mass. Is preferable.
- Hydroxyalkyl acrylates such as hydroxyethyl acrylates, ⁇ , ⁇ -unsaturated acids such as acrylic acid and methacrylic acid, acrylamides such as acryloylmorpholin and N-hydroxyphenylmethacrylate, N-vinylpyrrolidone, maleic anhydride, fumaric acid and itaconic acid.
- Unsaturated group-containing divalent carboxylic acids such as, styrene, aromatic vinyl compounds such as ⁇ -methylstyrene, ⁇ , ⁇ -unsaturated nitriles such as acryloyl nitrile and methacrylic nitrile, maleic anhydride, maleimide, N-substituted maleimide, etc.
- Glutalimide, glutaric anhydride and the like can be mentioned.
- Examples of the copolymerizable monomer forming a unit excluding glutarimide and glutaric anhydride from the above unit include a monomer corresponding to the above unit. That is, alkyl methacrylate having an alkyl number of 2 to 18 carbons, alkyl acrylate having an alkyl number of 1 to 18 carbon atoms, hydroxyalkyl acrylate such as isobornyl methacrylate and 2-hydroxyethyl acrylate, acrylic acid, methacrylic acid and the like.
- Unsaturated group-containing divalent carboxylic acids such as ⁇ , ⁇ -unsaturated acid, acrylic morpholine, acrylamide such as N-hydroxyphenylmethacrylic acid, N-vinylpyrrolidone, maleic acid, fumaric acid, and itaconic acid, styrene, ⁇ -methylstyrene.
- aromatic vinyl compounds such as, acrylonitrile, ⁇ , ⁇ -unsaturated nitriles such as methacrylic acid, maleic anhydride, maleimide, N-substituted maleimide, and the like.
- the glutarimide unit can be formed, for example, by reacting an intermediate polymer having a (meth) acrylic acid ester unit with a primary amine (imidizing agent) to imidize it (see JP-A-2011-26563). .).
- the glutaric anhydride unit can be formed, for example, by heating an intermediate polymer having a (meth) acrylic acid ester unit (see Japanese Patent No. 4961164).
- the acrylic resin according to the present invention contains isobornyl methacrylate, acryloylmorpholine, N-hydroxyphenylmethacrylamide, N-vinylpyrrolidone, styrene, hydroxyethyl methacrylate, and anhydride from the viewpoint of mechanical strength. It is particularly preferred that maleic acid, maleimide, N-substituted maleimide, glutaric anhydride or glutarimide are included.
- the acrylic resin according to the present invention has the viewpoint of controlling dimensional changes with respect to changes in the temperature and humidity atmosphere of the environment, peelability from a metal support during film production, drying properties of an organic solvent, heat resistance, and mechanical strength.
- the weight average molecular weight (Mw) is preferably in the range of 50,000 to 1,000,000, more preferably in the range of 100,000 to 1,000,000, and in the range of 200,000 to 800,000. It is particularly preferable to have.
- the heat resistance and mechanical strength are excellent, and if it is 1 million or less, the peelability from the metal support and the drying property of the organic solvent are excellent.
- the method for producing the acrylic resin according to the present invention is not particularly limited, and any known method such as suspension polymerization, emulsion polymerization, bulk polymerization, or solution polymerization may be used.
- the polymerization initiator ordinary peroxide-based and azo-based ones can be used, and redox-based ones can also be used.
- the polymerization temperature may be in the range of 30 to 100 ° C. for suspension or emulsion polymerization and in the range of 80 to 160 ° C. for massive or solution polymerization.
- polymerization can also be carried out using an alkyl mercaptan or the like as a chain transfer agent.
- the glass transition temperature Tg of the acrylic resin is preferably in the range of 80 to 120 ° C. from the viewpoint of maintaining the mechanical strength of the film.
- acrylic resin according to the present invention a commercially available one can also be used.
- Delpet 60N, 80N, 980N, SR8200 (all manufactured by Asahi Kasei Chemicals Co., Ltd.), Dianar BR52, BR80, BR83, BR85, BR88, EMB-143, EMB-159, EMB-160, EMB-161, Examples thereof include EMB-218, EMB-229, EMB-270, EMB-273 (all manufactured by Mitsubishi Rayon Co., Ltd.), KT75, TX400S, IPX012 (all manufactured by Denki Kagaku Kogyo Co., Ltd.) and the like. Two or more kinds of acrylic resins can be used in combination.
- the acrylic resin according to the present invention preferably contains an additive, and as an example of the additive, the acrylic particles (rubber elastic particles) described in International Publication No. 2010/001668 are used as the mechanical strength of the film. It is preferably contained for improvement and adjustment of the dimensional change rate.
- the acrylic particles rubber elastic particles described in International Publication No. 2010/001668 are used as the mechanical strength of the film. It is preferably contained for improvement and adjustment of the dimensional change rate.
- Examples of commercially available products of such a multilayer structure acrylic granular composite include "Metabrene W-341" manufactured by Mitsubishi Rayon, "Kaneka” manufactured by Kaneka, “Paraloid” manufactured by Kureha, and Roamand.
- Examples include “Acryloid” manufactured by Haas, “Stafyroid” manufactured by Aika, Chemisnow MR-2G, MS-300X (above, manufactured by Soken Kagaku Co., Ltd.) and “Parapet SA” manufactured by Kuraray. Can be used alone or in combination of two or more.
- the volume average particle diameter of the acrylic particles is 0.35 ⁇ m or less, preferably in the range of 0.01 to 0.35 ⁇ m, and more preferably in the range of 0.05 to 0.30 ⁇ m.
- the particle size is above a certain level, the film can be easily stretched under heating, and when the particle size is below a certain level, the transparency of the obtained film is not easily impaired.
- the optical film of the present invention preferably has a flexural modulus (JIS K7171) of 1.5 GPa or less.
- This flexural modulus is more preferably 1.3 GPa or less, still more preferably 1.2 GPa or less.
- This flexural modulus varies depending on the type and amount of acrylic resin and rubber elastic particles in the film. For example, the larger the content of rubber elastic particles, the smaller the flexural modulus.
- the acrylic resin the flexural modulus is generally smaller when a copolymer of alkyl methacrylate and alkyl acrylate or the like is used than when a homopolymer of alkyl methacrylate is used.
- the optical film of the present invention may further contain components other than the above as long as the effects of the present invention are not impaired.
- other components include matting agents, UV absorbers, phase difference adjusters (phase difference increasing agents, phase difference reducing agents), plasticizers, antioxidants, light stabilizers, antistatic agents, release agents, and boosters. Contains thickeners.
- the optical film contains a matting agent from the viewpoint of imparting unevenness to the surface of the optical film and imparting appropriate slipperiness.
- the matting agent is fine particles.
- the fine particles may be inorganic fine particles or resin fine particles.
- inorganic fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate.
- fine particles of inorganic compounds such as calcium phosphate.
- the inorganic fine particles are preferably silicon dioxide fine particles from the viewpoint that it is difficult to increase the haze of the optical film and the friction coefficient can be effectively lowered.
- silicon dioxide fine particles examples include Aerosil 200V, Aerosil R972V, and Aerosil R812 (all manufactured by Nippon Aerosil Co., Ltd.).
- resin fine particles examples include fine particles such as silicone resin, fluororesin, and acrylic resin. Of these, silicone resin fine particles are preferable, and resin fine particles having a three-dimensional network structure are particularly preferable. Examples of the resin fine particles include Tospearl 103, 105, 108, 120, 145, 3120 and 240 (all manufactured by Toshiba Silicone Co., Ltd.).
- the average particle size of the primary particles of the fine particles is preferably in the range of 0.005 to 0.4 ⁇ m, more preferably in the range of 0.01 to 0.3 ⁇ m.
- These fine particles may be contained as secondary aggregates having a particle size in the range of 0.05 to 0.3 ⁇ m.
- the content of the fine particles is preferably in the range of 0.01 to 3.0% by mass, more preferably in the range of 0.01 to 2.0% by mass with respect to the optical film.
- the coefficient of dynamic friction on the surface of the optical film is preferably in the range of 0.2 to 1.0.
- the in-plane retardation Ro measured in an environment with a measurement wavelength of 550 nm and 23 ° C. and 55% RH is in the range of 100 to 170 nm. Is preferable, and the range is more preferably in the range of 130 to 150 nm.
- Ro is defined by the following formula.
- the in-plane slow-phase axis of the optical film can be confirmed by an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics).
- the angle of the in-plane slow axis of the optical film with respect to the width direction of the optical film is preferably in the range of 40 to 50 °, more preferably in the range of 43 to 47 °. Is.
- Ro can be measured by the following method.
- the optical film is humidity-controlled for 24 hours in an environment of 23 ° C. and 55% RH.
- the average refractive index of this film is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer.
- the phase difference Ro of the optical film can be adjusted, for example, by the monomer composition of the cycloolefin resin and the stretching conditions.
- the optical film Since the optical film is preferably formed by a solution casting method, it may further contain a residual solvent.
- the amount of residual solvent is preferably 700 ppm or less, more preferably 30 to 700 ppm with respect to the optical film.
- the content of the residual solvent can be adjusted by the drying conditions of the dope cast on the support in the process of manufacturing the optical film.
- the amount of residual solvent in the optical film can be measured by headspace gas chromatography.
- a sample is sealed in a container, heated, and the gas in the container is promptly injected into a gas chromatograph with the container filled with volatile components, and mass spectrometry is performed to identify the compound.
- the volatile components are quantified while doing so.
- the headspace method it is possible to observe all peaks of volatile components by gas chromatography, and by using an analysis method that utilizes electromagnetic interaction, volatile substances and monomers can be detected with high accuracy. Quantification can also be performed.
- the thickness of the optical film of the present invention is not particularly limited, but is preferably in the range of 10 to 80 ⁇ m, and more preferably in the range of 10 to 60 ⁇ m.
- the optical film of the present invention comprises 1) a step of preparing a dope containing the cycloolefin resin or acrylic resin, the dye compound, and a solvent, and 2) the obtained dope. It can be produced through a step of casting on a support and then drying and peeling to obtain a cast film, and 3) a step of stretching the obtained cast film. Further, the optical film of the present invention further comprises 4) a step of drying the stretched cast film, 5) a step of cutting both ends of the obtained optical film and embossing the film, and 6) a winding step. It may be manufactured through.
- step 1) (dope preparation step) Cycloolefin resin or acrylic resin and dye compound are dissolved or dispersed in a solvent to prepare a dope.
- the solvent used for doping contains at least an organic solvent (good solvent) capable of dissolving a cycloolefin resin.
- good solvents include chlorine-based organic solvents such as methylene chloride; non-chlorine-based organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran. Of these, methylene chloride is preferable.
- the solvent used for doping may further contain a poor solvent.
- poor solvents include straight-chain or branched-chain aliphatic alcohols having 1 to 4 carbon atoms. When the ratio of alcohol in the dope is high, the film-like substance tends to gel and peels off from the metal support easily.
- linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, ethanol is preferable because of its dope stability, relatively low boiling point, and good drying property.
- the dope obtained in the step 2) (casting step) is cast on the support.
- Dope casting can be performed by discharging from a casting die.
- the solvent is evaporated until the dope cast on the support can be peeled off from the support by a peeling roll.
- Examples of the method of evaporating the solvent include a method of blowing wind on the cast dope, a method of transferring heat from the back surface of the support with a liquid, and a method of transferring heat from the front and back surfaces with radiant heat.
- the cast film obtained by evaporating the solvent is peeled off with a peeling roll.
- the amount of residual solvent in the cast film on the support at the time of peeling may be in the range of 50 to 120% by mass, for example, depending on the drying conditions and the length of the support. If peeling is performed with a large amount of residual solvent, the cast film is too soft and the flatness during peeling tends to be impaired, and wrinkles and vertical streaks due to peeling tension are likely to occur.
- the amount of residual solvent is determined.
- the amount of residual solvent is defined by the following formula.
- Residual solvent amount (mass%) (mass before heat treatment of casting film-mass after heat treatment of casting film) / (mass after heat treatment of casting film) ⁇ 100
- the heat treatment for measuring the amount of residual solvent is a heat treatment at 115 ° C. for 1 hour.
- step 3 stretching step
- the casting film obtained by peeling from the support is stretched.
- Stretching may be performed according to the required optical characteristics, and it is preferable to stretch in one or more of the width direction (TD direction), the transport direction (MD direction), and the oblique direction.
- TD direction width direction
- MD direction transport direction
- oblique direction oblique direction
- the draw ratio depends on the required optical characteristics, but when used as a ⁇ / 4 retardation film, it is preferably in the range of 1.05 to 4.0 times, preferably 1.5 to 3.0 times. More preferably, it is in the range.
- the stretch ratio is defined as the stretch direction size of the film after stretching / the stretch direction size of the film before stretching.
- the stretching temperature (drying temperature during stretching) is preferably in the range of (Tg + 2) to (Tg + 50) ° C., preferably in the range of (Tg + 2) to (Tg + 50) ° C., where Tg is the glass transition temperature of the cycloolefin resin, as described above. It is more preferably in the range of (Tg + 30) ° C.
- Tg glass transition temperature of the cycloolefin resin, as described above. It is more preferably in the range of (Tg + 30) ° C.
- the stretching temperature it is preferable to measure the atmospheric temperature such as (a) the temperature inside the stretching machine in the same manner as described above.
- the amount of residual solvent in the film-like material at the start of stretching is preferably about the same as the amount of residual solvent in the film-like material at the time of peeling, and is preferably in the range of, for example, 20 to 30% by mass, 25. More preferably, it is in the range of about 30% by mass.
- Stretching of the film-like object in the TD direction can be performed, for example, by fixing both ends of the film-like object with clips or pins and widening the distance between the clips or pins in the traveling direction (tenter method).
- Stretching of the film-like material in the MD direction can be performed, for example, by a method (roll method) in which a plurality of rolls are provided with a peripheral speed difference and the roll peripheral speed difference is utilized between the rolls.
- a tenter method in which both ends of the casting film are gripped by a clip or the like and stretched is preferable in order to improve the flatness and dimensional stability of the film.
- step 4 drying step
- the stretched casting film is further dried to obtain an optical film.
- Drying of the cast film can be performed, for example, while transporting the cast film by a plurality of transport rolls (for example, a plurality of transport rolls arranged in a staggered pattern when viewed from the side surface).
- the drying means is not particularly limited, and hot air, infrared rays, heating rolls or microwaves are used. Hot air drying is preferable from the viewpoint of simplicity.
- step 5 cutting / embossing step
- Both ends of the obtained optical film in the width direction are cut. Both ends of the optical film can be cut by a slitter.
- embossing is performed on both ends of the optical film in the width direction.
- the embossing process can be performed by pressing a heated embossing roller against both ends of the optical film. Fine irregularities are formed on the surface of the embossing roller, and by pressing the embossing roller against both ends of the optical film, irregularities are formed on both ends.
- the obtained optical film is wound up to obtain a roll body.
- the method of winding the optical film may be any method using a winder that is generally used, and is a method of controlling tension such as a constant torque method, a constant tension method, a taper tension method, and a program tension control method with a constant internal stress. There is.
- the winding length of the optical film in the roll body is preferably in the range of 1000 to 7200 m.
- the width of the optical film is preferably in the range of 1000 to 3000 mm.
- the optical film of the present invention preferably has a functional layer, and the functional layer may contain a compound having a structure represented by the general formula (1).
- the functional layer include a hard coat layer, an antistatic layer, an antireflection layer, a slippery layer, an adhesive layer, an antiglare layer, a barrier layer, etc., but when incorporated into an organic EL image display device, scratch resistance It is preferable to provide a hard coat layer in order to improve the above.
- the hard coat layer used in the present invention is preferably contained with an active ray-curable resin because it is excellent in mechanical film strength (scratch resistance, pencil hardness). That is, it is a layer containing a resin as a main component, which is cured through a cross-linking reaction by irradiation with active rays (also referred to as active energy rays) such as ultraviolet rays and electron beams.
- active ray-curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active ray-curable resin layer is formed by curing by irradiating with an active ray such as ultraviolet rays or an electron beam.
- the active ray-curable resin include an ultraviolet curable resin and an electron beam curable resin, and the resin cured by ultraviolet irradiation is particularly excellent in mechanical film strength (scratch resistance, pencil hardness). It is preferable from the point of view.
- the ultraviolet curable resin include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet ray.
- a curable epoxy resin or the like is preferably used, and among them, an ultraviolet curable acrylate resin is preferable.
- Adekaoptomer N series Sunrad H-601, RC-750, RC-700, RC-600, RC-500, RC-611, RC-612 (all manufactured by Sanyo Kasei Kogyo Co., Ltd.).
- the above-mentioned active ray-curable resin may be used alone or in combination of two or more.
- the hard coat layer contains a photopolymerization initiator in order to accelerate the curing of the active ray-curable resin.
- Specific examples of the photopolymerization initiator include alkylphenone-based, acetophenone, benzophenone, hydroxybenzophenone, Michler ketone, ⁇ -amyloxime ester, thioxanthone and the like, and derivatives thereof. It is not particularly limited to these.
- photopolymerization initiator examples thereof include Irgacure 184, Irgacure 907, and Irgacure 651 manufactured by BASF Japan Ltd. as preferable examples.
- the thickness of the hard coat layer is preferably in the range of 0.1 to 50 ⁇ m, preferably in the range of 1 to 20 ⁇ m, from the viewpoint of improving the hard coat property and improving the transparency of the optical film. More preferred.
- the method for forming the hard coat layer is not particularly limited. For example, after preparing a coating liquid for forming a hard coat layer containing each of the above components, the coating liquid is applied with a wire bar or the like, and the coating liquid is cured by heat or ultraviolet rays. , A method of forming a hard coat layer and the like. It is preferable that the hard coat layer contains a compound having a structure represented by the general formula (1) according to the present invention from the viewpoint of further improving light resistance and imparting scratch resistance. It is preferably contained in the range of 0.1 to 40% by mass, more preferably in the range of 0.1 to 20% by mass, based on the ultraviolet curable resin.
- the polarizing plate of the present invention has a polarizing element and an optical film of the present invention arranged on at least one surface thereof.
- FIG. 1 is a cross-sectional view showing the configuration of the polarizing plate 100.
- the polarizing plate 100 of the present invention comprises a polarizing element 101, an optical film 102 of the present invention arranged on one surface thereof, an opposing film 103 arranged on the other surface, and polarized light. It may have two adhesive layers 104 arranged between the child 101 and the optical film 102 and between the polarizer 101 and the opposing film 103.
- the polarizer 101 is an element that allows only light on a plane of polarization in a certain direction to pass through, and is a polyvinyl alcohol-based stretched film doped with iodine or a dichroic dye.
- the thickness of the polarizer 101 is in the range of 5 to 40 ⁇ m, preferably in the range of 5 to 30 ⁇ m, and particularly preferably in the range of 5 to 20 ⁇ m.
- the optical film 102 can function as a retardation film, for example, a ⁇ / 4 retardation film used for a circularly polarizing plate of an organic EL image display device.
- the angle formed by the in-plane slow-phase axis of the optical film 102 with respect to one side of the outer shape of the rectangular film is preferably in the range of 30 to 60 °, more preferably 45 °. ..
- the one side corresponds to the width direction of the long optical film 102.
- the angle formed by the in-plane slow-phase axis of the optical film 102 and the absorption axis (or transmission axis) of the polarizer 101 is preferably in the range of 30 to 60 °, more preferably 45 °.
- the optical film 102 may further have other layers (for example, a hard coat layer, a low refractive index layer, and an antireflection layer) arranged on the surface opposite to the polarizer 101, depending on the application.
- the optical film 102 may further have an easy-adhesion layer (not shown) arranged on the surface on the side of the polarizer 101.
- the opposing film 103 may be the optical film of the present invention or another optical film (that is, a protective film). More preferably, the optical film of the present invention is used and the hard coat layer is provided on the outermost surface.
- Examples of commercially available protective films include commercially available cellulose ester films (eg, Konica Minolta Tuck KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC4KR, KC8UY, KC6UY, KCUEK, KC6UY, KC4UY KC8UY-HA, KC2UA, KC4UA, KC6UA, KC8UA, KC2UAH, KC4UAH, KC6UAH, manufactured by Konica Minolta Co., Ltd. The above includes Fuji Film Co., Ltd.).
- cellulose ester films eg, Konica Minolta Tuck KC8UX, KC5UX, KC4UX, KC8UCR3, KC4SR, KC4BR, KC4CR, KC4DR, KC4FR, KC
- cycloolefin-based film As a commercially available cycloolefin-based film, various grades of cycloolefin polymer (COP) molded product-Zeonor film (R) manufactured by Zeon Corporation are preferably used.
- COP cycloolefin polymer
- R molded product-Zeonor film
- the thickness of the opposing film 103 can be, for example, in the range of 5 to 100 ⁇ m, preferably in the range of 40 to 80 ⁇ m.
- the adhesive layer 104 may be arranged between the polarizer 101 and the optical film 102, and between the polarizer 101 and the opposing film 103, respectively.
- the adhesive layer 104 may be a layer obtained from a water-based adhesive described later, or may be a cured product layer of an ultraviolet curable adhesive.
- the thickness of the adhesive layer 104 is not particularly limited, but may be, for example, in the range of 0.01 to 10 ⁇ m, preferably about 0.01 to 5 ⁇ m.
- the polarizing plate 100 may have a long shape or a sheet shape obtained by cutting a long polarizing plate along the width direction.
- the polarizing plate When an aluminum reflective material is laminated on the optical film of the polarizing plate via an adhesive layer, the reflectance of light having a wavelength of 460 nm of the polarizing plate is T 1 (%), and the reflectance of light having a wavelength of 650 nm is T 2 When (%), the polarizing plate preferably satisfies the following formula (2).
- Equation (2) 0 ⁇ T 1 / T 2 ⁇ 2.6
- T 1 / T 2 is less than 2.6
- the reflectance of light having a wavelength of 460 nm is not too high, that is, leakage of reflected light in the vicinity of the wavelength can be suppressed. Therefore, for example, reflection in an organic EL image display device.
- the color of light can be improved.
- T 1 / T 2 is more than 0, for example, the light emission in the wavelength region in the organic EL image display device is not easily obstructed by the dye compound, so that the decrease in brightness can be suppressed. More preferably, T 1 / T 2 is 2.5 or less.
- the color difference ⁇ E (a * b * ) of the polarizing plate is preferably less than 25, more preferably less than 20.
- the tint of the reflected light in the organic EL image display device can be improved.
- the T 1 / T 2 of the polarizing plate and the color difference ⁇ E (a * b * ) can be measured by the following procedure.
- the pressure-sensitive adhesive is an acrylic pressure-sensitive adhesive.
- the T 1 / T 2 of the polarizing plate and the color difference ⁇ E (a * b * ) can be adjusted by the type and content of the dye compound represented by the general formula (1).
- the polarizing plate 100 can be obtained through a step of bonding the polarizing element 101 and the optical film 102 of the present invention via an adhesive.
- an adhesive a water-based adhesive or an ultraviolet curable adhesive is used.
- water-based adhesive examples include a water-based adhesive containing a polyvinyl alcohol-based resin (such as a completely saponified polyvinyl alcohol aqueous solution).
- the ultraviolet curable adhesive composition may be a photoradical polymerization type composition, a photocationic polymerization type composition, or a hybrid type composition in which they are used in combination.
- Examples of the photoradical polymerization type composition include a radically polymerizable compound containing a polar group such as a hydroxy group or a carboxy group described in JP-A-2008-09329, and a radically polymerizable compound containing no polar group. Compositions containing) are included.
- the radically polymerizable compound is preferably a compound having an ethylenically unsaturated bond capable of radical polymerization.
- Preferred examples of compounds having a radically polymerizable ethylenically unsaturated bond include compounds having a (meth) acryloyl group.
- Examples of compounds having a (meth) acryloyl group include N-substituted (meth) acrylamide-based compounds and (meth) acrylate-based compounds.
- (Meta) acrylamide means acryamide or methacrylamide.
- Examples of the photocationic polymerization type composition include ( ⁇ ) a cationically polymerizable compound, ( ⁇ ) a photocationic polymerization initiator, and ( ⁇ ) a wavelength longer than 380 nm as disclosed in JP-A-2011-028234. Includes a photosensitizer that exhibits maximum absorption of light, and an ultraviolet curable adhesive composition containing a ( ⁇ ) naphthalene-based photosensitizer.
- a step of performing a pretreatment for easy adhesion on the adhesive surface of the optical film and the opposing film pretreatment step
- a polarizer and the optical film (or the opposing film) are attached. It can be obtained through a step of bonding via an ultraviolet adhesive and a step of 3) irradiating the laminated product obtained by bonding with ultraviolet rays to cure the ultraviolet adhesive (curing step).
- Pretreatment step Easy adhesion treatment is performed on the bonding surface between the optical film and the polarizer of the opposing film.
- Examples of the easy-adhesion treatment include corona treatment and plasma treatment.
- An ultraviolet curable adhesive is applied to at least one of a polarizing element and an optical film (or an opposing film).
- the method of applying the ultraviolet curable adhesive is not particularly limited, and may be, for example, a doctor blade, a wire bar, a die coater, a comma coater, a gravure coater, or the like.
- the polarizer and the optical film or the opposing film are bonded together via an ultraviolet curable adhesive.
- both sides of the laminated laminate are sandwiched between pressure rollers and the like to pressurize.
- the material of the pressure roller metal or rubber can be used.
- the laminate bonded via the ultraviolet curable adhesive is irradiated with ultraviolet rays to cure the ultraviolet curable adhesive.
- the polarizer and the optical film or the opposing film are adhered to each other via an ultraviolet curable adhesive.
- the curing of the ultraviolet curable adhesive on one side of the polarizer and the curing of the ultraviolet curable adhesive on the other side of the polarizer may be performed sequentially or at the same time. From the viewpoint of increasing the production efficiency of the polarizing plate, it is preferable that the curing of the ultraviolet curable adhesive on one side of the polarizer and the curing of the ultraviolet curable adhesive on the other side of the polarizer are performed at the same time.
- It irradiation condition of the ultraviolet ray may be any conditions that ultraviolet curable adhesive is cured, for example, be integrated light quantity in the range of 50 ⁇ 1500mJ / cm 2 is preferably in the range of 100 ⁇ 500mJ / cm 2 Is more preferable.
- the line speed at the time of manufacturing the polarizing plate depends on the curing time of the adhesive, but is preferably in the range of, for example, 1 to 500 m / min, and more preferably in the range of 5 to 300 m / min.
- the line speed is 1 m / min or more, the productivity can be easily increased and the damage to the optical film and the opposing film can be further reduced.
- the line speed is 500 m / min or less, the ultraviolet curable adhesive is sufficiently cured, and good adhesiveness can be easily obtained.
- a high temperature environment may occur due to irradiation with ultraviolet rays or heating to promote curing. Further, even when the adhesive is a water-based adhesive, a high temperature environment may occur due to heating for promoting adhesion or drying the adhesive.
- the optical film of the present invention is excellent in light resistance and durability, it is possible to obtain a polarizing plate in which light leakage is suppressed even in an environment where the temperature is high when the polarizer and the optical film are bonded. Can be done. By suppressing the light leakage of the polarizing plate, it is possible to suppress a slight light leakage due to the reflection of external light at the time of black display in the organic EL image display device having the polarizing plate.
- optical film of the present invention can be used as an optical film (phase difference film, protective film) of an image display device such as an organic EL image display device or a liquid crystal display device.
- the optical film of the present invention can be preferably used as a retardation film ( ⁇ / 4 retardation film) of an organic EL image display device.
- FIG. 2 is an exploded cross-sectional view of the organic EL image display device 200.
- the organic EL image display device 200 has an organic EL element 300 (display cell), a polarizing plate 100 (circular polarizing plate), and an adhesive layer 400 arranged between them.
- the organic EL element 300 has a metal electrode 302, a light emitting layer 303, a transparent electrode (ITO, etc.) 304, and a sealing layer 305 in this order on a substrate 301 such as glass or polyimide.
- the metal electrode 302 may be composed of a reflective electrode and a transparent electrode.
- the metal electrode 302 can function as a cathode.
- the metal electrode 302 in order to facilitate electron injection and increase the luminous efficiency, it is preferable to use a substance having a small work function, and Mg-Ag and Al-Li are usually used.
- the light emitting layer 303 is a laminate of organic thin films, for example, a laminate of a hole injection layer made of a triphenylamine derivative or the like and a light emitting layer made of a fluorescent organic solid such as anthracene, or such a light emitting layer. It may be a laminate of an electron injection layer composed of a perylene derivative or the like, a hole injection layer thereof, a light emitting layer, a laminate of an electron injection layer, or the like.
- the transparent electrode 304 can function as an anode.
- the transparent electrode 304 can usually be made of a transparent conductor such as indium tin oxide (ITO).
- ITO indium tin oxide
- the polarizing plate 100 is arranged on the surface of the organic EL element 300 on the visual side.
- the polarizing plate 100 is the above-mentioned polarizing plate 100 (see FIG. 1), and the optical film 102 ( ⁇ / 4 retardation film) is arranged so as to be located between the organic EL element 301 and the polarizer 101.
- the angle formed by the transmission axis (or absorption axis) of the polarizer 101 and the in-plane slow phase axis of the optical film 102 is preferably 45 ° (or 135 °).
- the opposing film 103 further has a hard coat layer (not shown) arranged on the surface on the visual side (the surface opposite to the polarizer 101).
- the hard coat layer can not only prevent scratches on the surface of the organic EL image display device, but also reduce the warp of the polarizing plate 100. Further, an antireflection layer may be further formed on the hard coat layer.
- the adhesive layer 400 is arranged between the organic EL element 300 and the polarizing plate 100, and these are adhered to each other.
- the adhesive constituting the adhesive layer 400 include a heat-curable adhesive (epoxy-based heat-curable adhesive, urethane-based heat-curable adhesive, acrylic-based heat-curable adhesive, etc.), hot-melt adhesive, and the like. (Rubber-based hot-melt adhesive, polyester-based hot-melt adhesive, polyolefin-based hot-melt adhesive, ethylene-vinyl acetate resin-based hot-melt adhesive, polyurethane resin hot-melt adhesive, etc.) are included.
- the light emitting layer 303 is formed of an extremely thin film having a thickness of about 10 nm. Therefore, the light emitting layer 303 also transmits light almost completely like the transparent electrode 304. As a result, the light that is incident from the outside of the organic EL image display device 200 when it is not emitting light, passes through the sealing layer 305, the transparent electrode 304, and the light emitting layer 303 and reaches the metal electrode 302 is reflected by the metal electrode 302. It passes through the light emitting layer 303, the transparent electrode 302, and the sealing layer 305 again, and tries to come out to the surface side of the organic EL device 200. At this time, the optical film 102 suppresses the light reflected by the metal electrode 302 from leaking to the surface side of the organic EL image display device 200, thereby reducing the reflection of external light.
- the phase is reversed by 180 degrees and becomes circularly polarized light in the opposite direction.
- the reflected light is incident on the optical film 102, it is converted into linearly polarized light perpendicular to the transmission axis of the polarizer 101 (parallel to the absorption axis), so that the reflected light is absorbed by the polarizer 101 and emitted to the outside. Can be suppressed.
- an optical film 102 containing a specific dye compound is used.
- the optical film 102 (the cycloolefin-based resin film containing no dye compound could not be converted into the desired linearly polarized light) is perpendicular to the transmission axis of the polarizer 101 even for light in a specific wavelength region ( It can be converted to linearly polarized light (parallel to the absorption axis).
- the optical film 102 is excellent in light resistance even if it contains a dye compound, and display unevenness due to this can be suppressed.
- Example 1 1. Optical film material (1) Cycloolefin resin ⁇ Synthesis of cycloolefin resin 1 >> 100 parts by mass of purified toluene and 100 parts by mass of norbornene carboxylic acid methyl ester (see structural formula A below) were put into a reaction vessel. Then, 25 mmol% of ethylhexanoate-Ni dissolved in toluene (vs. monomer mass), 0.225 mol% of tri (pentafluorophenyl) boron (vs. monomer mass), and 0.25 mol% of triethylaluminum dissolved in toluene (vs.).
- the monomer mass was put into a reaction vessel and reacted for 18 hours with stirring at room temperature. After completion of the reaction, the reaction mixture was poured into excess ethanol to form a polymer precipitate. The precipitate was purified and the obtained solid was dried in vacuum at 65 ° C. for 24 hours to obtain a cycloolefin resin (P-1) (weight average molecular weight Mw: 140,000, Tg: 140 ° C.). The weight average molecular weight was measured by the method described above.
- the calculation of the energy level of HOMO by the molecular orbital calculation of the exemplary dye compound and the comparative compound having the structure represented by the general formula (1) is calculated by using B3LYP as a general function and 6-31G (d) as a basis function. It can be calculated by using the molecular orbital calculation software using the above, and the software is not particularly limited, and any of them can be used in the same manner.
- the calculation was performed using Gaussian 09 (Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.) manufactured by Gaussian, USA as software for calculating the molecular orbital.
- Gaussian 09 Revision C.01, MJ Frisch, et al, Gaussian, Inc., 2010.
- the HOMO energy level values of the calculation results are shown in Table I.
- the maximum absorption wavelength of the above compound was determined by measuring the absorption spectrum of the dye compound in dichloromethane using an ultraviolet-visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation, and is shown in Table II.
- the "maximum absorption wavelength” in the invention means a wavelength (nm) showing the maximum and maximum absorbance (absorption intensity) in the absorption spectrum of the compound obtained when the absorption spectrum of the compound is measured.
- Fine particles (Aerosil R812: manufactured by Nippon Aerosil Co., Ltd., primary average particle size: 7 nm, apparent specific gravity 50 g / L): 4 parts by mass
- Dichloromethane 48 parts by mass
- Ethanol 48 parts by mass
- Cycloolefin resin 1 100 parts by mass Dichloromethane: 302 parts by mass Ethanol: 18 parts by mass
- Example dye compound 1 0.1 parts by mass Fine particle additive: 10 parts by mass
- the prepared dope is cast from a casting die on an endless metal support driven at a speed of 30 m / min, and a dry air of 40 ° C. is blown on the support to provide a self-supporting casting film. It was dried until a (film-like substance) was obtained. Then, the mixture was cooled to 10 ° C., and the cast film was peeled off from the support. Then, the peeled cast film was dried at 110 ° C. for 30 minutes, and then stretched at 170 ° C. in the direction of 45 ° (diagonal direction) with respect to the width direction at a stretching ratio of 2 times.
- an optical film 101 having a film thickness of 40 ⁇ m and having an in-plane delayed phase axis in a direction of about 45 ° with respect to the width direction was obtained. It was confirmed that the optical film 101 is a film having a retardation value Ro of 145 nm and functioning as a ⁇ / 4 plate by the above-mentioned retardation value evaluation method.
- the light transmittance was measured using a spectrophotometer (Hitachi High-Tech Science U-3300) according to JIS K 7375: 2008 "Plastic-How to determine total light transmittance and total light reflectance”. When the light transmittance was 80% or more, it was set as “ ⁇ ”, and when it was less than 80%, it was set as “ ⁇ ”.
- the optical film produced above was subjected to a light resistance test.
- the prepared film was continuously irradiated with light from a xenon lamp (60 W / m 2 ) for 100 hours, and the absorbance of the thin film before (0 hours) and after (100 hours) irradiation was measured with a spectrophotometer.
- the dye residual rate was measured according to (1).
- Dye residual rate (%) ⁇ (A 100 ) / (A 0 ) ⁇ ⁇ 100 (However, A 0 is the absorbance before irradiation with the xenon lamp, and A 100 is the absorbance after irradiation with the xenon lamp.)
- the "absorbance" represents the absorbance of each compound at the maximum absorption wavelength, and the higher the dye residual ratio, the more difficult the compound is decomposed by light and the higher the light resistance. The light resistance was evaluated according to the following criteria.
- Dye residual rate is 65% or more
- the optical film of the present invention is excellent in light transmittance, light resistance and durability by using a dye compound having a structure represented by the general formula (1) according to the present invention. it is obvious.
- the composition for coating was prepared by mixing and stirring well.
- the obtained coating composition was applied on a 25 ⁇ m-thick COP substrate with a wire bar, dried, and UV-cured to produce an optical film 201 having a functional layer (hard coat layer) with a thickness of 5 ⁇ m. ..
- the optical films 202 to 212 were produced in the same manner except that the exemplary dye compounds were changed as shown in Table IV.
- the optical films 201 to 212 produced were evaluated for light resistance and durability in the same manner as in Example 1. The results are shown in Table IV.
- the optical film of the present invention has a light transmittance similar to that of Example 1 by using a compound having a structure represented by the general formula (1) according to the present invention in the functional layer. It is clear that it is excellent in light resistance and durability.
- Example 3 The polarizing plate was prepared and evaluated using the optical films prepared in Examples 1 and 2.
- Preparation of polarizing plate 301> Preparation of Polarizer A long polyvinyl alcohol film with a thickness of 60 ⁇ m is continuously conveyed via a guide roll and immersed in a dyeing bath (30 ° C.) containing iodine and potassium iodide for dyeing treatment. After 5 times stretching treatment, in an acidic bath (60 ° C.) to which boric acid and potassium iodide were added, a total of 5 times stretching treatment and cross-linking treatment were carried out, and iodine having a thickness of 12 ⁇ m was obtained. -The PVA-based polarizer was dried in a dryer at 50 ° C. for 30 minutes to obtain a polarizer having a moisture content of 4.9%.
- UV curable Adhesive The following components were mixed to obtain a liquid UV curable adhesive (UV adhesive).
- the optical film 101 is bonded to one surface of the produced polarizing element, and the TAC film, which is an opposing film, is bonded to the other surface by a roll-to-roll method via an ultraviolet curable adhesive. rice field.
- the bonding is performed so that the slow axis (or phase advance axis) of the optical film 101 and the absorption axis (or transmission axis) of the polarizer coincide with each other (the in-plane slow axis of the optical film 101 and the absorption axis of the polarizer).
- the angle between the two was 45 °).
- the ultraviolet curable adhesive was cured to obtain a polarizing plate 301. Since the polarizing plate 301 is manufactured by a roll-to-roll method, the elongated polarizing plate is finally cut along the width direction to obtain a sheet-shaped polarizing plate 301.
- the produced polarizing plate 301 is attached to a portion of a commercially available organic EL image display device on which the polarizing plate on the visual side is peeled off so that the optical film 101 side of the polarizing plate is on the organic EL element side, and the organic EL image is displayed.
- the device 301 was manufactured.
- ⁇ Light leakage evaluation> The organic EL image display device produced above is stored in an environment of 60 ° C. and 90% RH for 500 hours, then placed at room temperature and humidity (23 ° C. and 55% RH) for 24 hours, and displayed in black in a dark room. The appearance of display unevenness due to light leakage from the screen at that time was visually observed and evaluated according to the following criteria. ⁇ : No display unevenness due to light leakage ⁇ : Some display unevenness is observed due to light leakage ⁇ : Display unevenness clearly occurs due to light leakage
- the optical film of the present invention has high transparency, prevents light leakage, and is excellent in light resistance and durability under harsh environmental conditions, so that it can be suitably used for polarizing plates and organic electroluminescence image display devices.
- Polarizing plate 101 Polarizer 102 Optical film 103 Opposing film 104 Adhesive layer 200 Organic EL image display device 300 Organic EL element 301 Substrate 302 Metal electrode 303 Light emitting layer 304 Transparent electrode 305 Sealing layer 400 Adhesive layer
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Polarising Elements (AREA)
- Electroluminescent Light Sources (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
下記一般式(1)で表される構造を有する化合物を含有することを特徴とする光学フィルム。 1. 1. An optical film containing a thermoplastic resin.
An optical film containing a compound having a structure represented by the following general formula (1).
本発明の光学フィルムは、熱可塑性樹脂を含有する光学フィルムであって、下記一般式(1)で表される構造を有する化合物を含有することを特徴とする。 << Outline of the optical film of the present invention >>
The optical film of the present invention is an optical film containing a thermoplastic resin, and is characterized by containing a compound having a structure represented by the following general formula (1).
本発明に係る一般式(1)で表される構造を有する化合物(以下、「色素化合物」ともいう。)は下記構造を有する。 [1] Compound having a structure represented by the general formula (1) A compound having a structure represented by the general formula (1) according to the present invention (hereinafter, also referred to as “dye compound”) has the following structure.
本発明に係る熱可塑性樹脂材料としては、製膜後フィルムとして扱えるものであれば限定はない。例えば、偏光板用途として使用されている熱可塑性樹脂としては、トリアセチルセルロース(TAC)、セルロースアセテートプロピオネート(CAP)、ジアセチルセルロース(DAC)などのセルロースエステル系樹脂やシクロオレフィンポリマー(以下、COP、シクロオレフィン系樹脂ともいう。)などの環状オレフィン系樹脂、ポリプロピレン(PP)などのポリプロピレン系樹脂、ポリメチルメタクリレート(PMMA)などのアクリル系樹脂、及びポリエチレンテレフターレート(PET)などのポリエステル系樹脂が適用できる。 [2] Thermoplastic Resin The thermoplastic resin material according to the present invention is not limited as long as it can be treated as a film after film formation. For example, examples of the thermoplastic resin used for polarizing plates include cellulose ester resins such as triacetyl cellulose (TAC), cellulose acetate propionate (CAP), and diacetyl cellulose (DAC), and cycloolefin polymers (hereinafter referred to as cycloolefin polymers). Cyclic olefin resins such as COP and cycloolefin resins), polypropylene resins such as polypropylene (PP), acrylic resins such as polymethylmethacrylate (PMMA), and polyesters such as polyethylene terephthalate (PET). Cellulose acetate can be applied.
本発明の光学フィルムに含有されるシクロオレフィン系樹脂は、シクロオレフィン単量体の重合体、又はシクロオレフィン単量体とそれ以外の共重合性単量体との共重合体であることが好ましい。 [2.1] Cycloolefin-based resin The cycloolefin-based resin contained in the optical film of the present invention is a polymer of a cycloolefin monomer, or a cycloolefin monomer and another copolymerizable monomer. It is preferably a copolymer of.
(2)シクロオレフィン単量体と、それと開環共重合可能な共重合性単量体との開環共重合体
(3)上記(1)又は(2)の開環(共)重合体の水素添加物
(4)上記(1)又は(2)の開環(共)重合体をフリーデルクラフツ反応により環化した後、水素添加した(共)重合体
(5)シクロオレフィン単量体と、不飽和二重結合含有化合物との飽和共重合体
(6)シクロオレフィン単量体のビニル系環状炭化水素単量体との付加共重合体及びその水素添加物
(7)シクロオレフィン単量体と、(メタ)アクリレートとの交互共重合体
上記(1)~(7)の重合体は、いずれも公知の方法、例えば、特開2008-107534号公報や特開2005-227606号公報に記載の方法で得ることができる。例えば、上記(2)の開環共重合に用いられる触媒や溶媒は、例えば、特開2008-107534号公報の段落0019~0024に記載のものを使用できる。上記(3)及び(6)の水素添加に用いられる触媒は、例えば、特開2008-107534号公報の段落0025~0028に記載のものを使用できる。上記(4)のフリーデルクラフツ反応に用いられる酸性化合物は、例えば、特開2008-107534号公報の段落0029に記載のものを使用できる。上記(5)~(7)の付加重合に用いられる触媒は、例えば、特開2005-227606号公報の段落0058~0063に記載のものを使用できる。上記(7)の交互共重合反応は、例えば、特開2005-227606号公報の段落0071及び0072に記載の方法で行うことができる。 (1) Ring-opening polymer of cycloolefin monomer (2) Ring-opening copolymer of cycloolefin monomer and copolymerizable copolymer with ring-opening copolymerization (3) The above (1) Alternatively, a hydrogenated product of the ring-opened (co) polymer of (2) (4) The ring-opened (co) polymer of (1) or (2) above was cyclized by the Friedercrafts reaction and then hydrogenated ( Co) Polymer (5) Saturated copolymer of cycloolefin monomer and unsaturated double bond-containing compound (6) Addition copolymer of vinyl-based cyclic hydrocarbon monomer of cycloolefin monomer (7) Alternating copolymer of cycloolefin monomer and (meth) acrylate The polymers of (1) to (7) above are all known methods, for example, Japanese Patent Application Laid-Open No. 2008-. It can be obtained by the method described in Japanese Patent Application Laid-Open No. 107534 and Japanese Patent Application Laid-Open No. 2005-227606. For example, as the catalyst and solvent used for the ring-opening copolymerization of (2) above, those described in paragraphs 0019 to 0024 of JP-A-2008-107534 can be used, for example. As the catalyst used for hydrogenation of (3) and (6) above, for example, those described in paragraphs 0025 to 0028 of JP-A-2008-107534 can be used. As the acidic compound used in the Friedel-Crafts reaction of (4) above, for example, those described in paragraph 0029 of JP-A-2008-107534 can be used. As the catalyst used for the addition polymerization of the above (5) to (7), for example, those described in paragraphs 0058 to 0063 of JP-A-2005-227606 can be used. The alternating copolymerization reaction of (7) above can be carried out, for example, by the method described in paragraphs 0071 and 0072 of JP-A-2005-227606.
溶媒: メチレンクロライド
カラム: Shodex K806、K805、K803G(昭和電工(株)製を3本接続して使用した)
カラム温度:25℃
試料濃度: 0.1質量%
検出器: RI Model 504(GLサイエンス社製)
ポンプ: L6000(日立製作所(株)製)
流量: 1.0mL/min
校正曲線: 標準ポリスチレンSTK standard ポリスチレン(東ソー(株)製)Mw=500~2800000の範囲内の13サンプルによる校正曲線を使用した。13サンプルは、ほぼ等間隔に用いることが好ましい。 <Gel Permeation Chromatography>
Solvent: Methylene chloride Column: Shodex K806, K805, K803G (Three made by Showa Denko KK were connected and used)
Column temperature: 25 ° C
Sample concentration: 0.1% by mass
Detector: RI Model 504 (manufactured by GL Science)
Pump: L6000 (manufactured by Hitachi, Ltd.)
Flow rate: 1.0 mL / min
Calibration curve: Standard polystyrene STK standard polystyrene (manufactured by Tosoh Corporation) A calibration curve with 13 samples in the range of Mw = 500 to 2800000 was used. The 13 samples are preferably used at approximately equal intervals.
本発明に係るアクリル系樹脂は、アクリル酸エステル又はメタアクリル酸エステルの重合体であって、ほかのモノマーとの共重合体も含まれる。 [2.2] Acrylic Resin The acrylic resin according to the present invention is a polymer of an acrylic acid ester or a methacrylic acid ester, and also includes a copolymer with another monomer.
本発明の光学フィルムは、本発明の効果を損なわない範囲で上記以外の他の成分をさらに含んでもよい。他の成分の例には、マット剤、紫外線吸収剤、位相差調整剤(位相差上昇剤、位相差低減剤)、可塑剤、酸化防止剤、光安定剤、帯電防止剤、剥離剤、増粘剤が含まれる。中でも、光学フィルムの表面に凹凸を付与し、適度なすべり性を付与する観点などから、光学フィルムは、マット剤を含むことが好ましい。 [3] Other Components The optical film of the present invention may further contain components other than the above as long as the effects of the present invention are not impaired. Examples of other components include matting agents, UV absorbers, phase difference adjusters (phase difference increasing agents, phase difference reducing agents), plasticizers, antioxidants, light stabilizers, antistatic agents, release agents, and boosters. Contains thickeners. Above all, it is preferable that the optical film contains a matting agent from the viewpoint of imparting unevenness to the surface of the optical film and imparting appropriate slipperiness.
マット剤は、微粒子である。微粒子は、無機微粒子であってもよいし、樹脂微粒子であってもよい。無機微粒子の例には、二酸化ケイ素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム、及びリン酸カルシウムなどの無機化合物の微粒子が含まれる。中でも、無機微粒子は、光学フィルムのヘイズを増大させにくく、摩擦係数を効果的に下げうる観点などから、二酸化ケイ素微粒子であることが好ましい。 (Matte agent)
The matting agent is fine particles. The fine particles may be inorganic fine particles or resin fine particles. Examples of inorganic fine particles include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate. , And fine particles of inorganic compounds such as calcium phosphate. Among them, the inorganic fine particles are preferably silicon dioxide fine particles from the viewpoint that it is difficult to increase the haze of the optical film and the friction coefficient can be effectively lowered.
〔4.1〕光学フィルムの物性
(位相差Ro)
光学フィルムは、例えば、λ/4位相差フィルムとして用いる観点では、測定波長550nm、23℃55%RHの環境下で測定される面内方向の位相差Roは、100~170nmの範囲であることが好ましく、130~150nmの範囲であることがより好ましい。 [4] Manufacturing method of optical film [4.1] Physical characteristics of optical film (phase difference Ro)
From the viewpoint of using the optical film as, for example, a λ / 4 retardation film, the in-plane retardation Ro measured in an environment with a measurement wavelength of 550 nm and 23 ° C. and 55% RH is in the range of 100 to 170 nm. Is preferable, and the range is more preferably in the range of 130 to 150 nm.
(式(1)中、nxは、フィルムの面内遅相軸方向(屈折率が最大となる方向)の屈折率を表し、nyは、フィルムの面内遅相軸に直交する方向の屈折率を表し、dは、フィルムの厚さ(nm)を表す。)
光学フィルムの面内遅相軸は、自動複屈折率計アクソスキャン(Axo Scan Mueller Matrix Polarimeter:アクソメトリックス社製)により確認することができる。光学フィルムをλ/4位相差フィルムとして用いる場合、光学フィルムの面内遅相軸の、光学フィルムの幅方向に対する角度は、好ましくは40~50°の範囲、より好ましくは43~47°の範囲である。 Equation (1): Ro = (n x − n y ) × d
(In the equation (1), n x represents the refractive index in the in-plane slow-phase axis direction (the direction in which the refractive index becomes maximum) of the film, and n y is the direction orthogonal to the in-plane slow-phase axis of the film. It represents the refractive index, and d represents the thickness (nm) of the film.)
The in-plane slow-phase axis of the optical film can be confirmed by an automatic birefringence meter Axoscan (Axo Scan Mueller Matrix Polarimeter: manufactured by Axometrics). When the optical film is used as a λ / 4 retardation film, the angle of the in-plane slow axis of the optical film with respect to the width direction of the optical film is preferably in the range of 40 to 50 °, more preferably in the range of 43 to 47 °. Is.
光学フィルムは、好ましくは溶液流延法で製膜されることから、残留溶媒をさらに含みうる。残留溶媒量は、光学フィルムに対して700ppm以下であることが好ましく、30~700ppmの範囲であることがより好ましい。残留溶媒の含有量は、光学フィルムの製造工程における、支持体上に流延させたドープの乾燥条件によって調整されうる。 (Amount of residual solvent)
Since the optical film is preferably formed by a solution casting method, it may further contain a residual solvent. The amount of residual solvent is preferably 700 ppm or less, more preferably 30 to 700 ppm with respect to the optical film. The content of the residual solvent can be adjusted by the drying conditions of the dope cast on the support in the process of manufacturing the optical film.
本発明の光学フィルムの厚さは、特に制限されないが、10~80μmの範囲であることが好ましく、10~60μmの範囲であることがより好ましい。 (thickness)
The thickness of the optical film of the present invention is not particularly limited, but is preferably in the range of 10 to 80 μm, and more preferably in the range of 10 to 60 μm.
本発明の光学フィルムは、1)上記シクロオレフィン系樹脂又はアクリル系樹脂、上記色素化合物、及び溶媒を含むドープを準備する工程、2)得られたドープを支持体上に流延した後、乾燥及び剥離して、流延膜を得る工程、及び3)得られた流延膜を延伸する工程、を経て製造されうる。また、本発明の光学フィルムは、さらに、4)延伸された流延膜を乾燥させる工程、5)得られた光学フィルムの両端部を切断し、エンボス加工を施す工程、及び6)巻き取り工程を経て製造されてもよい。 [4.2] Method for Producing Optical Film The optical film of the present invention comprises 1) a step of preparing a dope containing the cycloolefin resin or acrylic resin, the dye compound, and a solvent, and 2) the obtained dope. It can be produced through a step of casting on a support and then drying and peeling to obtain a cast film, and 3) a step of stretching the obtained cast film. Further, the optical film of the present invention further comprises 4) a step of drying the stretched cast film, 5) a step of cutting both ends of the obtained optical film and embossing the film, and 6) a winding step. It may be manufactured through.
シクロオレフィン系樹脂又はアクリル系樹脂、及び色素化合物を、溶媒に溶解または分散させて、ドープを調製する。 About step 1) (dope preparation step) Cycloolefin resin or acrylic resin and dye compound are dissolved or dispersed in a solvent to prepare a dope.
得られたドープを、支持体上に流延する。ドープの流延は、流延ダイから吐出させて行うことができる。 The dope obtained in the step 2) (casting step) is cast on the support. Dope casting can be performed by discharging from a casting die.
残留溶媒量を測定する際の加熱処理は、115℃で1時間の加熱処理である。 Residual solvent amount (mass%) = (mass before heat treatment of casting film-mass after heat treatment of casting film) / (mass after heat treatment of casting film) × 100
The heat treatment for measuring the amount of residual solvent is a heat treatment at 115 ° C. for 1 hour.
支持体から剥離して得られた流延膜を、延伸する。 About step 3) (stretching step) The casting film obtained by peeling from the support is stretched.
延伸された流延膜をさらに乾燥させて、光学フィルムを得る。 About step 4) (drying step) The stretched casting film is further dried to obtain an optical film.
得られた光学フィルムの幅方向の両端部を切断する。光学フィルムの両端部の切断は、スリッターによって行うことができる。 About step 5) (cutting / embossing step) Both ends of the obtained optical film in the width direction are cut. Both ends of the optical film can be cut by a slitter.
そして、得られた光学フィルムを巻き取り、ロール体を得る。 About the step (winding step) of 6) Then, the obtained optical film is wound up to obtain a roll body.
本発明の光学フィルムは、機能性層を有することが好ましく、前記機能性層が、前記一般式(1)で表される構造を有する化合物を含有することが、好ましい。機能性層としては、ハードコート層、帯電防止層、反射防止層、易滑性層、接着層、防眩層、バリアー層等があげられるが、有機EL画像表示装置に組み込む場合は、耐傷性を向上するためにハードコート層を設けることが好ましい。 [5] Other Functional Layers The optical film of the present invention preferably has a functional layer, and the functional layer may contain a compound having a structure represented by the general formula (1). preferable. Examples of the functional layer include a hard coat layer, an antistatic layer, an antireflection layer, a slippery layer, an adhesive layer, an antiglare layer, a barrier layer, etc., but when incorporated into an organic EL image display device, scratch resistance It is preferable to provide a hard coat layer in order to improve the above.
本発明に用いられるハードコート層は、活性線硬化樹脂を含有することが機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。すなわち、紫外線や電子線のような活性線(活性エネルギー線ともいう)照射により、架橋反応を経て硬化する樹脂を主たる成分とする層である。活性線硬化樹脂としては、エチレン性不飽和二重結合を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を照射することによって硬化させて活性線硬化樹脂層が形成される。活性線硬化樹脂としては、紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、紫外線照射によって硬化する樹脂が特に機械的膜強度(耐擦傷性、鉛筆硬度)に優れる点から好ましい。紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリレート系樹脂、紫外線硬化型ウレタンアクリレート系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、又は紫外線硬化型エポキシ樹脂等が好ましく用いられ、中でも紫外線硬化型アクリレート系樹脂が好ましい。 [5.1] Hard Coat Layer The hard coat layer used in the present invention is preferably contained with an active ray-curable resin because it is excellent in mechanical film strength (scratch resistance, pencil hardness). That is, it is a layer containing a resin as a main component, which is cured through a cross-linking reaction by irradiation with active rays (also referred to as active energy rays) such as ultraviolet rays and electron beams. As the active ray-curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and the active ray-curable resin layer is formed by curing by irradiating with an active ray such as ultraviolet rays or an electron beam. NS. Typical examples of the active ray-curable resin include an ultraviolet curable resin and an electron beam curable resin, and the resin cured by ultraviolet irradiation is particularly excellent in mechanical film strength (scratch resistance, pencil hardness). It is preferable from the point of view. Examples of the ultraviolet curable resin include an ultraviolet curable acrylate resin, an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet ray. A curable epoxy resin or the like is preferably used, and among them, an ultraviolet curable acrylate resin is preferable.
ハードコート層の形成方法は特に制限されず、例えば、上記各成分を含むハードコート層形成用塗布液を調製した後、塗布液をワイヤーバー等により塗布し、熱又は紫外線で塗布液を硬化させ、ハードコート層を形成する方法などが挙げられる。
ハードコート層中には、本発明に係る一般式(1)で表される構造を有する化合物を含有することが、耐光性をさらに向上し耐傷性を付与する観点から好ましい。前記紫外線硬化樹脂に対して、0.1~40質量%の範囲内で含有することが好ましく、より好ましくは、0.1~20質量%の範囲内である。 The thickness of the hard coat layer is preferably in the range of 0.1 to 50 μm, preferably in the range of 1 to 20 μm, from the viewpoint of improving the hard coat property and improving the transparency of the optical film. More preferred.
The method for forming the hard coat layer is not particularly limited. For example, after preparing a coating liquid for forming a hard coat layer containing each of the above components, the coating liquid is applied with a wire bar or the like, and the coating liquid is cured by heat or ultraviolet rays. , A method of forming a hard coat layer and the like.
It is preferable that the hard coat layer contains a compound having a structure represented by the general formula (1) according to the present invention from the viewpoint of further improving light resistance and imparting scratch resistance. It is preferably contained in the range of 0.1 to 40% by mass, more preferably in the range of 0.1 to 20% by mass, based on the ultraviolet curable resin.
本発明の偏光板は、偏光子と、その少なくとも一方の面に配置された本発明の光学フィルムとを有する。 [6] Polarizing Plate The polarizing plate of the present invention has a polarizing element and an optical film of the present invention arranged on at least one surface thereof.
図1に示されるように、本発明の偏光板100は、偏光子101と、その一方の面に配置された本発明の光学フィルム102と、他方の面に配置された対向フィルム103と、偏光子101と光学フィルム102との間、及び、偏光子101と対向フィルム103との間に配置された2つの接着層104とを有しうる。 FIG. 1 is a cross-sectional view showing the configuration of the
As shown in FIG. 1, the
偏光子101は、一定方向の偏波面の光だけを通す素子であり、ヨウ素または二色性色素がドープされたポリビニルアルコール系延伸フィルムである。 (About Polarizer 101)
The
光学フィルム102は、位相差フィルム、例えば、有機EL画像表示装置の円偏光板に用いられるλ/4位相差フィルムとして機能しうる。 (About optical film 102)
The
対向フィルム103は、本発明の光学フィルムであってもよいし、それ以外の他の光学フィルム(すなわち、保護フィルム)であってもよい。より好ましくは、本発明の光学フィルムを用い、最表面にハードコート層を有する態様である。 (About the opposing film 103)
The opposing
接着層104は、偏光子101と光学フィルム102との間、及び偏光子101と対向フィルム103との間にそれぞれ配置されうる。 (About the adhesive layer 104)
The
(T1/T2)
偏光板の光学フィルム上に、粘着剤層を介してアルミニウム反射材を積層したときの、偏光板の波長460nmの光の反射率をT1(%)、波長650nmの光の反射率をT2(%)としたとき、偏光板は、下記式(2)を満たすことが好ましい。 (Physical characteristics)
(T 1 / T 2 )
When an aluminum reflective material is laminated on the optical film of the polarizing plate via an adhesive layer, the reflectance of light having a wavelength of 460 nm of the polarizing plate is T 1 (%), and the reflectance of light having a wavelength of 650 nm is T 2 When (%), the polarizing plate preferably satisfies the following formula (2).
T1/T2が2.6未満であると、波長460nmの光の反射率が高すぎない、すなわち、当該波長近傍の反射光の漏れを抑制できるため、例えば、有機EL画像表示装置における反射光の色味を改善することができる。また、T1/T2が0超であると、例えば、有機EL画像表示装置における上記波長領域の発光が、色素化合物によって阻害されにくいため、輝度の低下を抑制しうる。T1/T2は、2.5以下であることがより好ましい。 Equation (2): 0 <T 1 / T 2 <2.6
When T 1 / T 2 is less than 2.6, the reflectance of light having a wavelength of 460 nm is not too high, that is, leakage of reflected light in the vicinity of the wavelength can be suppressed. Therefore, for example, reflection in an organic EL image display device. The color of light can be improved. Further, when T 1 / T 2 is more than 0, for example, the light emission in the wavelength region in the organic EL image display device is not easily obstructed by the dye compound, so that the decrease in brightness can be suppressed. More preferably, T 1 / T 2 is 2.5 or less.
また、偏光板の色差ΔE(a*b*)は、25未満であることが好ましく、20未満であることがより好ましい。偏光板の色差ΔE(a*b*)が上記範囲内であると、例えば、有機EL画像表示装置における反射光の色味を改善しうる。 (Color difference ΔE (a * b * ))
Further, the color difference ΔE (a * b * ) of the polarizing plate is preferably less than 25, more preferably less than 20. When the color difference ΔE (a * b *) of the polarizing plate is within the above range, for example, the tint of the reflected light in the organic EL image display device can be improved.
偏光板100は、偏光子101と本発明の光学フィルム102とを、接着剤を介して貼り合わせる工程を経て得ることができる。接着剤としては、水系接着剤や紫外線硬化型接着剤が用いられる。 (Manufacturing method of polarizing plate 100)
The
水系接着剤の例には、ポリビニルアルコール系樹脂を含む水接着剤(完全ケン化型ポリビニルアルコール水溶液など)が含まれる。 <Water-based adhesive>
Examples of the water-based adhesive include a water-based adhesive containing a polyvinyl alcohol-based resin (such as a completely saponified polyvinyl alcohol aqueous solution).
紫外線硬化型接着剤組成物は、光ラジカル重合型組成物、光カチオン重合型組成物、またはそれらを併用したハイブリッド型組成物でありうる。 <UV curable adhesive>
The ultraviolet curable adhesive composition may be a photoradical polymerization type composition, a photocationic polymerization type composition, or a hybrid type composition in which they are used in combination.
光学フィルムと対向フィルムの偏光子との接着面に、易接着処理を行う。易接着処理の例には、コロナ処理、プラズマ処理が含まれる。 (1) Pretreatment step Easy adhesion treatment is performed on the bonding surface between the optical film and the polarizer of the opposing film. Examples of the easy-adhesion treatment include corona treatment and plasma treatment.
紫外線硬化型接着剤を、偏光子と、光学フィルム(または対向フィルム)の少なくとも一方に塗布する。紫外線硬化型接着剤の塗布方法は、特に制限されず、例えば、ドクターブレード、ワイヤーバー、ダイコーター、カンマコーター、グラビアコーターなどでありうる。 (2) Laminating step An ultraviolet curable adhesive is applied to at least one of a polarizing element and an optical film (or an opposing film). The method of applying the ultraviolet curable adhesive is not particularly limited, and may be, for example, a doctor blade, a wire bar, a die coater, a comma coater, a gravure coater, or the like.
次いで、紫外線硬化型接着剤を介して貼り合わされた積層物に紫外線を照射して、紫外線硬化型接着剤を硬化させる。それにより、偏光子と光学フィルムまたは対向フィルムとを、紫外線硬化型接着剤を介して接着させる。なお、偏光子の一方の側の紫外線硬化型接着剤の硬化と、偏光子の他方の側の紫外線硬化型接着剤の硬化とは、逐次的に行ってもよいし、同時に行ってもよい。偏光板の製造効率を高める観点では、偏光子の一方の側の紫外線硬化型接着剤の硬化と、偏光子の他方の側の紫外線硬化型接着剤の硬化とは、同時に行うことが好ましい。 (3) Curing Step Next, the laminate bonded via the ultraviolet curable adhesive is irradiated with ultraviolet rays to cure the ultraviolet curable adhesive. As a result, the polarizer and the optical film or the opposing film are adhered to each other via an ultraviolet curable adhesive. The curing of the ultraviolet curable adhesive on one side of the polarizer and the curing of the ultraviolet curable adhesive on the other side of the polarizer may be performed sequentially or at the same time. From the viewpoint of increasing the production efficiency of the polarizing plate, it is preferable that the curing of the ultraviolet curable adhesive on one side of the polarizer and the curing of the ultraviolet curable adhesive on the other side of the polarizer are performed at the same time.
本発明の光学フィルムは、有機EL画像表示装置や液晶表示装置などの画像表示装置の光学フィルム(位相差フィルム、保護フィルム)として用いることができる。中でも、本発明の光学フィルムは、有機EL画像表示装置の位相差フィルム(λ/4位相差フィルム)として好ましく用いることができる。 [7] Image Display Device The optical film of the present invention can be used as an optical film (phase difference film, protective film) of an image display device such as an organic EL image display device or a liquid crystal display device. Above all, the optical film of the present invention can be preferably used as a retardation film (λ / 4 retardation film) of an organic EL image display device.
図2は、有機EL画像表示装置200の分解断面図である。 [7.1] Organic EL Image Display Device FIG. 2 is an exploded cross-sectional view of the organic EL
このような有機EL画像表示装置200では、金属電極302と透明電極304とに電圧を印加すると、発光層303に対して、陰極となる金属電極302から電子が注入され、陽極となる透明電極304から正孔が注入され、両者が発光層303で再結合することにより、発光層303の発光特性に対応した可視光線の発光が生じる。発光層303で生じた光は、直接または金属電極302で反射した後、透明電極304及び偏光板100を介して外部に取り出される。 (Action)
In such an organic EL
1.光学フィルムの材料
(1)シクロオレフィン系樹脂
≪シクロオレフィン系樹脂1の合成≫
精製トルエン100質量部と、ノルボルネンカルボン酸メチルエステル(下記構造式A参照)100質量部とを、反応釜に投入した。次いで、トルエン中に溶解したエチルヘキサノエート-Ni25mmol%(対モノマー質量)、トリ(ペンタフルオロフェニル)ボロン0.225mol%(対モノマー質量)、及びトルエンに溶解したトリエチルアルミニウム0.25mol%(対モノマー質量)を、反応釜に投入し、室温で撹拌しながら18時間反応させた。反応終了後、過剰のエタノール中に反応混合物を投入し、重合物沈殿を生成させた。沈殿を精製し、得られた固形物を、真空乾燥で65℃24時間乾燥させて、シクロオレフィン系樹脂(P-1)(重量平均分子量Mw:14万、Tg:140℃)を得た。なお、重量平均分子量は、前述の方法で測定した。 [Example 1]
1. 1. Optical film material (1) Cycloolefin resin << Synthesis of cycloolefin resin 1 >>
100 parts by mass of purified toluene and 100 parts by mass of norbornene carboxylic acid methyl ester (see structural formula A below) were put into a reaction vessel. Then, 25 mmol% of ethylhexanoate-Ni dissolved in toluene (vs. monomer mass), 0.225 mol% of tri (pentafluorophenyl) boron (vs. monomer mass), and 0.25 mol% of triethylaluminum dissolved in toluene (vs.). The monomer mass) was put into a reaction vessel and reacted for 18 hours with stirring at room temperature. After completion of the reaction, the reaction mixture was poured into excess ethanol to form a polymer precipitate. The precipitate was purified and the obtained solid was dried in vacuum at 65 ° C. for 24 hours to obtain a cycloolefin resin (P-1) (weight average molecular weight Mw: 140,000, Tg: 140 ° C.). The weight average molecular weight was measured by the method described above.
表Iに記載の例示色素化合物及び比較化合物を準備し、HOMOのエネルギー準位(eV)を算出した。 (2) Dye compound The example dye compounds and comparative compounds shown in Table I were prepared, and the energy level (eV) of HOMO was calculated.
上記化合物の吸収極大波長は、株式会社島津製作所製紫外可視分光光度計UV-2450を用いて、色素化合物のジクロロメタン中での吸収スペクトルを測定することによって求め、表IIに記載した。
なお、発明における「吸収極大波長」とは、上記化合物の吸収スペクトルを測定したとき得られる化合物の吸収スペクトルにおいて、最大かつ極大の吸光度(吸収強度)を示す波長(nm)をいう。 (Measurement of maximum absorption wavelength)
The maximum absorption wavelength of the above compound was determined by measuring the absorption spectrum of the dye compound in dichloromethane using an ultraviolet-visible spectrophotometer UV-2450 manufactured by Shimadzu Corporation, and is shown in Table II.
The "maximum absorption wavelength" in the invention means a wavelength (nm) showing the maximum and maximum absorbance (absorption intensity) in the absorption spectrum of the compound obtained when the absorption spectrum of the compound is measured.
<光学フィルム101の作製>
(微粒子添加液の調製)
下記成分を、ディゾルバーで50分間撹拌混合した後、マントンゴーリンで分散を行った。さらに、二次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。 2. Fabrication and evaluation of optical film <Manufacture of
(Preparation of fine particle additive liquid)
The following components were stirred and mixed with a dissolver for 50 minutes, and then dispersed with menton golin. Further, the particles were dispersed by an attritor so that the particle size of the secondary particles became a predetermined size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
ジクロロメタン: 48質量部
エタノール: 48質量部 Fine particles (Aerosil R812: manufactured by Nippon Aerosil Co., Ltd., primary average particle size: 7 nm, apparent specific gravity 50 g / L): 4 parts by mass Dichloromethane: 48 parts by mass Ethanol: 48 parts by mass
下記成分を、十分に攪拌しながら密閉容器に投入した後、80℃まで昇温し、1時間保持した。次いで、これを30℃まで冷却した後、孔径5μmのフィルターでろ過して、ドープA-1を得た。 (Preparation of dope)
The following components were put into a closed container with sufficient stirring, then heated to 80 ° C. and held for 1 hour. Then, this was cooled to 30 ° C., and then filtered through a filter having a pore size of 5 μm to obtain Dope A-1.
ジクロロメタン: 302質量部
エタノール: 18質量部
例示色素化合物1: 0.1質量部
微粒子添加液: 10質量部 Cycloolefin resin 1: 100 parts by mass Dichloromethane: 302 parts by mass Ethanol: 18 parts by mass Example dye compound 1: 0.1 parts by mass Fine particle additive: 10 parts by mass
30m/minの速度で駆動する無端状の金属支持体上に、調製したドープを流延ダイから流延し、支持体上で40℃の乾燥風を当てて、自己支持性を有する流延膜(膜状物)が得られるまで乾燥させた。その後、10℃まで冷却し、流延膜を支持体から剥離した。その後、剥離した流延膜を110℃で30分間乾燥させた後、170℃で幅方向に対して45°の方向(斜め方向)に延伸倍率2倍で延伸した。それにより、幅方向に対して約45°の方向に面内遅相軸を有する膜厚40μmの光学フィルム101を得た。
光学フィルム101は、前述の位相差値の評価方法により、位相差値Roは145nmであり、λ/4板として機能するフィルムであることが確認された。 (Manufacturing of Optical Film 101)
The prepared dope is cast from a casting die on an endless metal support driven at a speed of 30 m / min, and a dry air of 40 ° C. is blown on the support to provide a self-supporting casting film. It was dried until a (film-like substance) was obtained. Then, the mixture was cooled to 10 ° C., and the cast film was peeled off from the support. Then, the peeled cast film was dried at 110 ° C. for 30 minutes, and then stretched at 170 ° C. in the direction of 45 ° (diagonal direction) with respect to the width direction at a stretching ratio of 2 times. As a result, an
It was confirmed that the
光学フィルム101の作製において、例示色素化合物を表IIIに記載のように変更した以外は同様にして、光学フィルム102~119を作製した。 <Manufacturing of
In the production of the
<光透過率>
光透過率は、JIS K 7375:2008「プラスチック-全光線透過率及び全光線反射率の求め方」に従って、分光光度計(日立ハイテクサイエンス製U-3300)を用いて測定した。なお、光透過率が80%以上であるときに「〇」とし、80%未満のときは「△」とした。 ≪Evaluation≫
<Light transmittance>
The light transmittance was measured using a spectrophotometer (Hitachi High-Tech Science U-3300) according to JIS K 7375: 2008 "Plastic-How to determine total light transmittance and total light reflectance". When the light transmittance was 80% or more, it was set as “◯”, and when it was less than 80%, it was set as “Δ”.
上記作製した光学フィルムについて、耐光性試験を行った。
作製したフィルムにキセノンランプ(60W/m2)の光を連続的に100時間照射し、照射前(0時間)、照射後(100時間)の薄膜の吸光度を分光光度計で測定し、下記式(1)に従って色素残存率を測定した。
式(1) 色素残存率(%)={(A100)/(A0)}×100
(ただし、A0はキセノンランプ照射前の吸光度、A100はキセノンランプ照射後の吸光度である。)
なお、「吸光度」とは、各化合物の吸収極大波長における吸光度を表しており、色素残存率が高い程、化合物が光によって分解されにくく、耐光性が高いことを示す。耐光性は、下記基準により評価した。 <Light resistance test>
The optical film produced above was subjected to a light resistance test.
The prepared film was continuously irradiated with light from a xenon lamp (60 W / m 2 ) for 100 hours, and the absorbance of the thin film before (0 hours) and after (100 hours) irradiation was measured with a spectrophotometer. The dye residual rate was measured according to (1).
Equation (1) Dye residual rate (%) = {(A 100 ) / (A 0 )} × 100
(However, A 0 is the absorbance before irradiation with the xenon lamp, and A 100 is the absorbance after irradiation with the xenon lamp.)
The "absorbance" represents the absorbance of each compound at the maximum absorption wavelength, and the higher the dye residual ratio, the more difficult the compound is decomposed by light and the higher the light resistance. The light resistance was evaluated according to the following criteria.
B:色素残存率が40%以上、65%未満
C:色素残存率が10%以上、40%未満
D:色素残存率が10%未満 A: Dye residual rate is 65% or more B: Dye residual rate is 40% or more and less than 65% C: Dye residual rate is 10% or more and less than 40% D: Dye residual rate is less than 10%
各光学フィルムを、60℃、90%RHの高温高湿雰囲気下で1000時間放置後、光学フィルム表面のブリードアウト(結晶析出)の有無を目視観察で行い、下記に記載の基準に従ってブリードアウトの評価を行った。 <Durability: Evaluation of bleed-out>
After each optical film is left in a high temperature and high humidity atmosphere of 60 ° C. and 90% RH for 1000 hours, the presence or absence of bleed-out (crystal precipitation) on the surface of the optical film is visually observed, and the bleed-out is performed according to the criteria described below. Evaluation was performed.
○:光学フィルム表面で、部分的なブリードアウトが僅かに認められる
△:光学フィルム表面で、全面に亘りブリードアウトが僅かに認められる
×:光学フィルム表面で、全面に亘り明確なブリードアウトが認められる
光学フィルムの構成と上記評価結果を、表IIIに示す。 ⊚: No bleed-out is observed on the surface of the optical film ○: Slight bleed-out is observed on the surface of the optical film Δ: Slight bleed-out is observed on the entire surface of the optical film × : Table III shows the composition of the optical film in which clear bleed-out is observed over the entire surface of the optical film and the above evaluation results.
<光学フィルム201の作製>
ウレタンアクリレート(新中村化学工業社製、UA-1100H)19.7質量部、光重合開始剤(BASF社製イルガキュア184)0.1質量部、変性シリコーン(信越化学社製 KF-351A)0.3質量部、エマルゲン404(花王ケミカル社製)0.05質量部、プロピレングリコールモノメチルエーテル(PGME) 39.5質量部、酢酸メチル39.5質量部、例示色素化合物6 0.1質量部とを混ぜ合わせ、よく攪拌することで、塗布用組成物を調製した。得られた塗布用組成物を、ワイヤーバーにて厚さ25μmCOP基材上に塗布した後乾燥、UV硬化を行い、厚さ5μmの機能性層(ハードコート層)を有する光学フィルム201を製造した。 [Example 2]
<Manufacturing of optical film 201>
Urethane acrylate (manufactured by Shin-Nakamura Chemical Co., Ltd., UA-1100H) 19.7 parts by mass, photopolymerization initiator (manufactured by BASF, Irgacure 184) 0.1 parts by mass, modified silicone (manufactured by Shin-Etsu Chemical Co., Ltd. KF-351A) 0. 3 parts by mass, Emargen 404 (manufactured by Kao Chemical Co., Ltd.) 0.05 parts by mass, propylene glycol monomethyl ether (PGME) 39.5 parts by mass, methyl acetate 39.5 parts by mass, exemplified dye compound 6 0.1 parts by mass. The composition for coating was prepared by mixing and stirring well. The obtained coating composition was applied on a 25 μm-thick COP substrate with a wire bar, dried, and UV-cured to produce an optical film 201 having a functional layer (hard coat layer) with a thickness of 5 μm. ..
光学フィルム201の作製において、例示色素化合物を表IVに記載のように変更した以外は同様にして、光学フィルム202~212を作製した。
作製した光学フィルム201~212について、実施例1と同様に耐光性及び耐久性を評価した。結果を表IVに示す。 <Manufacturing of optical films 202-212>
In the production of the optical film 201, the optical films 202 to 212 were produced in the same manner except that the exemplary dye compounds were changed as shown in Table IV.
The optical films 201 to 212 produced were evaluated for light resistance and durability in the same manner as in Example 1. The results are shown in Table IV.
実施例1及び2で作製した光学フィルムを用いて、偏光板の作製及び評価を実施した。 [Example 3]
The polarizing plate was prepared and evaluated using the optical films prepared in Examples 1 and 2.
(1)偏光子の作製
厚さ60μmの長尺ポリビニルアルコールフィルムを、ガイドロールを介して連続搬送しつつ、ヨウ素とヨウ化カリウム配合の染色浴(30℃)に浸漬して染色処理と2.5倍の延伸処理を施した後、ホウ酸とヨウ化カリウムを添加した酸性浴(60℃)中で、トータルとして5倍となる延伸処理と架橋処理を施し、得られた厚さ12μmのヨウ素-PVA系偏光子を、乾燥機中で50℃、30分間乾燥させて水分率4.9%の偏光子を得た。 <Preparation of
(1) Preparation of Polarizer A long polyvinyl alcohol film with a thickness of 60 μm is continuously conveyed via a guide roll and immersed in a dyeing bath (30 ° C.) containing iodine and potassium iodide for dyeing treatment. After 5 times stretching treatment, in an acidic bath (60 ° C.) to which boric acid and potassium iodide were added, a total of 5 times stretching treatment and cross-linking treatment were carried out, and iodine having a thickness of 12 μm was obtained. -The PVA-based polarizer was dried in a dryer at 50 ° C. for 30 minutes to obtain a polarizer having a moisture content of 4.9%.
下記の各成分を混合し、液状の紫外線硬化型接着剤(UV接着剤)を得た。
3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート: 40質量部
ビスフェノールA型エポキシ樹脂: 60質量部
ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロアンチモネート(カチオン重合開始剤): 4質量部 (2) Preparation of UV Curable Adhesive The following components were mixed to obtain a liquid UV curable adhesive (UV adhesive).
3,4-Epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate: 40 parts by mass Bisphenol A type epoxy resin: 60 parts by mass Diphenyl [4- (phenylthio) phenyl] Sulfonium hexafluoroantimonate (cationic polymerization initiator): 4 parts by mass
前記光学フィルム101の貼合面にコロナ処理を施した後、上記調製した紫外線硬化型接着剤を、チャンバードクターを備えた塗布装置により、乾燥厚さが3μmとなるように塗布した。また、対向フィルムとしてコニカミノルタタックKC4CT(厚さ40μm、コニカミノルタ社製)の貼合面にも、同様に、コロナ処理を施した後、上記紫外線硬化型接着剤を、乾燥厚さが3μmとなるように塗布した。 (3) Preparation of Polarizing Plate After corona treatment is applied to the bonded surface of the
偏光板301の作製において、光学フィルム101を表Vに記載のように変更した以外は同様にして、偏光板302~319及び有機EL画像表示装置302~319を作製した。
作製した、偏光板301~319及び有機EL画像表示装置301~319について、実施例1と同様の評価及び下記光漏れの評価を実施し、結果を表Vに示した。 <Manufacturing of Polarizing Plates and Organic EL
In the production of the
The prepared
上記作製した有機EL画像表示装置に対して、60℃・90%RHの環境で500時間保管し、その後、常温常湿(23℃・55%RH)に24時間置き、暗室にて、黒表示時の画面からの光漏れによる表示ムラの発生の様子を目視観察し、以下の基準で評価した。
○:光漏れによる表示ムラの発生がない
△:光漏れによる表示ムラの発生がやや認められる
×:光漏れによる表示ムラが明らかに発生する <Light leakage evaluation>
The organic EL image display device produced above is stored in an environment of 60 ° C. and 90% RH for 500 hours, then placed at room temperature and humidity (23 ° C. and 55% RH) for 24 hours, and displayed in black in a dark room. The appearance of display unevenness due to light leakage from the screen at that time was visually observed and evaluated according to the following criteria.
◯: No display unevenness due to light leakage Δ: Some display unevenness is observed due to light leakage ×: Display unevenness clearly occurs due to light leakage
101 偏光子
102 光学フィルム
103 対向フィルム
104 接着層
200 有機EL画像表示装置
300 有機EL素子
301 基板
302 金属電極
303 発光層
304 透明電極
305 封止層
400 接着層 100
Claims (12)
- 熱可塑性樹脂を含有する光学フィルムであって、
下記一般式(1)で表される構造を有する化合物を含有することを特徴とする光学フィルム。
An optical film containing a compound having a structure represented by the following general formula (1).
- 前記Zが、下記構造式で表されるいずれかの基であることを特徴とする請求項1に記載の光学フィルム。
- さらに、前記Zが、下記構造式で表されるいずれかの基であることを特徴とする請求項2に記載の光学フィルム。
- 前記一般式(1)で表される構造を有する化合物の最高被占軌道のエネルギー準位が、-5.85ev以下であることを特徴とする請求項1から請求項3までのいずれか一項に記載の光学フィルム。 Any one of claims 1 to 3, wherein the energy level of the highest occupied molecular orbital of the compound having the structure represented by the general formula (1) is −5.85 ev or less. The optical film described in.
- 前記熱可塑性樹脂が、環状オレフィン系樹脂又はアクリル樹脂であることを特徴とする請求項1から請求項4までのいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 4, wherein the thermoplastic resin is a cyclic olefin resin or an acrylic resin.
- 前記環状オレフィン系樹脂が、極性基を有することを特徴とする請求項5に記載の光学フィルム。 The optical film according to claim 5, wherein the cyclic olefin resin has a polar group.
- 前記一般式(1)で表される構造を有する化合物が、前記熱可塑性樹脂に対して、0.01~20質量%の範囲内で含有されることを特徴とする請求項1から請求項6までのいずれか一項に記載の光学フィルム。 Claims 1 to 6 are characterized in that the compound having the structure represented by the general formula (1) is contained in the range of 0.01 to 20% by mass with respect to the thermoplastic resin. The optical film according to any one of the above.
- 更に、機能性層を有することを特徴とする請求項1から請求項7までのいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 7, further comprising a functional layer.
- 前記機能性層が、前記一般式(1)で表される構造を有する化合物を含有することを特徴とする請求項8に記載の光学フィルム。 The optical film according to claim 8, wherein the functional layer contains a compound having a structure represented by the general formula (1).
- 前記光学フィルムが、λ/4位相差フィルムであることを特徴とする請求項1から請求項9までのいずれか一項に記載の光学フィルム。 The optical film according to any one of claims 1 to 9, wherein the optical film is a λ / 4 retardation film.
- 請求項1から請求項10までのいずれか一項に記載の光学フィルムを具備することを特徴とする偏光板。 A polarizing plate comprising the optical film according to any one of claims 1 to 10.
- 請求項1から請求項10までのいずれか一項に記載の光学フィルム又は請求項11に記載の偏光板を具備することを特徴とする有機エレクトロルミネッセンス画像表示装置。 An organic electroluminescence image display device comprising the optical film according to any one of claims 1 to 10 or the polarizing plate according to claim 11.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227018850A KR20220097949A (en) | 2020-02-28 | 2021-02-19 | Optical film, polarizing plate and organic electroluminescent image display device |
CN202180016225.4A CN115136045A (en) | 2020-02-28 | 2021-02-19 | Optical film, polarizing plate and organic electroluminescent image display device |
JP2022503321A JPWO2021172179A1 (en) | 2020-02-28 | 2021-02-19 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-032652 | 2020-02-28 | ||
JP2020032652 | 2020-02-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021172179A1 true WO2021172179A1 (en) | 2021-09-02 |
Family
ID=77490073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/006251 WO2021172179A1 (en) | 2020-02-28 | 2021-02-19 | Optical film, polarizing plate, and organic electroluminescence image display device |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2021172179A1 (en) |
KR (1) | KR20220097949A (en) |
CN (1) | CN115136045A (en) |
TW (1) | TWI845816B (en) |
WO (1) | WO2021172179A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6267913B1 (en) * | 1996-11-12 | 2001-07-31 | California Institute Of Technology | Two-photon or higher-order absorbing optical materials and methods of use |
JP2006521220A (en) * | 2003-03-25 | 2006-09-21 | ランクセス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング | Optical data medium containing a polymer network in the information layer |
WO2019004042A1 (en) * | 2017-06-27 | 2019-01-03 | 住友化学株式会社 | Optical film |
WO2019004046A1 (en) * | 2017-06-27 | 2019-01-03 | 住友化学株式会社 | Adhesive composition and adhesive layer-bearing film |
WO2019004043A1 (en) * | 2017-06-27 | 2019-01-03 | 住友化学株式会社 | Adhesive sheet and film with adhesive layer |
WO2019004047A1 (en) * | 2017-06-27 | 2019-01-03 | 住友化学株式会社 | Adhesive composition and film with adhesive layer |
WO2019073869A1 (en) * | 2017-10-13 | 2019-04-18 | 住友化学株式会社 | Resin and adhesive composition |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101127586B1 (en) | 2010-02-24 | 2012-03-22 | 삼성모바일디스플레이주식회사 | High transparency polarizing plate and organic light emitting device having the same |
WO2017015996A1 (en) | 2015-07-28 | 2017-02-02 | 东莞市凯欣电池材料有限公司 | Phosphonitrile fluoroalkyl sulfimide alkali metal salt and electrolyte solution containing the metal salt |
JP2017165941A (en) | 2015-12-25 | 2017-09-21 | 日東電工株式会社 | Adhesive composition for organic el display device, adhesive layer for organic el display device, polarizing film with adhesive layer for organic el display device, and organic el display device |
EP3239747B1 (en) | 2016-04-29 | 2023-01-18 | Samsung Display Co., Ltd. | Polarization member and display device including the same |
KR102326288B1 (en) * | 2017-03-09 | 2021-11-15 | 후지필름 가부시키가이샤 | Composition, dichroic material, light absorption anisotropic film, laminate and image display device |
JP6510113B2 (en) | 2017-05-09 | 2019-05-08 | 日東電工株式会社 | Composition for optical member, optical member and image display device |
-
2021
- 2021-02-19 CN CN202180016225.4A patent/CN115136045A/en active Pending
- 2021-02-19 KR KR1020227018850A patent/KR20220097949A/en not_active Application Discontinuation
- 2021-02-19 WO PCT/JP2021/006251 patent/WO2021172179A1/en active Application Filing
- 2021-02-19 JP JP2022503321A patent/JPWO2021172179A1/ja active Pending
- 2021-02-24 TW TW110106433A patent/TWI845816B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6267913B1 (en) * | 1996-11-12 | 2001-07-31 | California Institute Of Technology | Two-photon or higher-order absorbing optical materials and methods of use |
JP2006521220A (en) * | 2003-03-25 | 2006-09-21 | ランクセス ドイチュラント ゲゼルシャフト ミット ベシュレンクテル ハフツング | Optical data medium containing a polymer network in the information layer |
WO2019004042A1 (en) * | 2017-06-27 | 2019-01-03 | 住友化学株式会社 | Optical film |
WO2019004046A1 (en) * | 2017-06-27 | 2019-01-03 | 住友化学株式会社 | Adhesive composition and adhesive layer-bearing film |
WO2019004043A1 (en) * | 2017-06-27 | 2019-01-03 | 住友化学株式会社 | Adhesive sheet and film with adhesive layer |
WO2019004047A1 (en) * | 2017-06-27 | 2019-01-03 | 住友化学株式会社 | Adhesive composition and film with adhesive layer |
WO2019073869A1 (en) * | 2017-10-13 | 2019-04-18 | 住友化学株式会社 | Resin and adhesive composition |
Also Published As
Publication number | Publication date |
---|---|
TWI845816B (en) | 2024-06-21 |
KR20220097949A (en) | 2022-07-08 |
CN115136045A (en) | 2022-09-30 |
TW202147660A (en) | 2021-12-16 |
JPWO2021172179A1 (en) | 2021-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014171479A1 (en) | Polarizing plate and image display device | |
KR101792374B1 (en) | Optical film, circularly polarizing plate and organic electroluminescent display device | |
JP2014240905A (en) | Polarizing plate and method for manufacturing the same, and organic electroluminescence display device including the same | |
US10935710B2 (en) | Optical film, polarizing plate, image display device, method for producing optical film, and method for producing polarizing plate | |
TWI570463B (en) | Polarizing plate, manufacturing method of polarizing plate, liquid crystal display device, and organic electroluminescent display device | |
JP2014145852A (en) | Optical film, circularly polarizing plate and image display apparatus | |
TWI725980B (en) | Optical film and manufacturing method thereof | |
KR20170011306A (en) | Optical film, manufacturing method thereof and display device | |
JP2024045312A (en) | Circularly polarizing plate with anti-reflection layer and image display device using the same | |
JP6387960B2 (en) | Resin composition, optical member, optical film, polarizing plate, circularly polarizing plate, and image display device | |
JP5971198B2 (en) | Polarizing plate, method for manufacturing the same, and organic electroluminescence display device including the same | |
WO2021172179A1 (en) | Optical film, polarizing plate, and organic electroluminescence image display device | |
JP2017167312A (en) | Optical film manufacturing method | |
JP6927285B2 (en) | Optical film, its manufacturing method, polarizing plate and display device equipped with it | |
JP2011053596A (en) | Optical film, polarizing plate, and display device | |
JP7347035B2 (en) | Optical films, polarizing plates and organic EL display devices | |
TWI831132B (en) | Polarizing plate protective film | |
TWI773115B (en) | Polarizing plate and organic electroluminescence display device | |
CN111757918B (en) | Resin composition, film, optical filter, image display device, solid-state imaging element, and compound | |
JP2022145412A (en) | Optical laminate, manufacturing method thereof and picture display unit | |
TW202334678A (en) | Polarizing plate and organic electroluminescent display device | |
JP2024142941A (en) | Polarizing plate | |
JP2024142942A (en) | Polarizing plate | |
TW202319235A (en) | Optical layered body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21760682 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227018850 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2022503321 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21760682 Country of ref document: EP Kind code of ref document: A1 |