WO2014171479A1 - Polarizing plate and image display device - Google Patents

Polarizing plate and image display device Download PDF

Info

Publication number
WO2014171479A1
WO2014171479A1 PCT/JP2014/060813 JP2014060813W WO2014171479A1 WO 2014171479 A1 WO2014171479 A1 WO 2014171479A1 JP 2014060813 W JP2014060813 W JP 2014060813W WO 2014171479 A1 WO2014171479 A1 WO 2014171479A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
protective film
polarizing plate
film
polarizer
Prior art date
Application number
PCT/JP2014/060813
Other languages
French (fr)
Japanese (ja)
Inventor
和也 久永
竜二 実藤
隆 米本
裕道 古川
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2014171479A1 publication Critical patent/WO2014171479A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/54Arrangements for reducing warping-twist
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements

Definitions

  • the present invention relates to a polarizing plate and an image display device produced with a curable adhesive.
  • Image display devices such as liquid crystal display (LCD), plasma display (PDP), electroluminescence display (OELD or IELD), field emission display (FED), touch panel, and electronic paper have a polarizing plate on the display screen side of the image display panel.
  • a polarizing plate has a protective film made of a transparent resin bonded to one side of a polarizer made of polyvinyl alcohol resin via an adhesive, and is also transparent to the other side of the polarizer through an adhesive. It has a structure in which a resin film is bonded as a protective film.
  • the polarizing plate protective film has a protective function against the polarizer, and the protective film on the display surface side is generally provided with functions such as an antireflection function and an ultraviolet absorption function, and the protective film on the liquid crystal cell side.
  • the protective film on the liquid crystal cell side For the purpose of optical compensation and viewing angle compensation of a liquid crystal cell, it may be a so-called retardation film provided with an in-plane and / or thickness direction retardation.
  • a polyester film is used as a protective film on the display side, and a cellulose ester film is used as a protective film on the liquid crystal cell side, and a polarizing plate is produced with an active energy ray-curable adhesive.
  • a polyester film has a large retardation
  • a polarizing plate produced using a polyester film as a polarizing plate protective film causes rainbow-like unevenness when incorporated in a liquid crystal display device, and from the viewpoint of display performance. It is difficult to use as a protective film on the liquid crystal cell side.
  • curable adhesives such as active energy ray curable adhesives have been used for bonding protective films to polarizers during the production of polarizing plates.
  • the curable adhesive exhibits an adhesive force between the polarizer film and the protective film by the curing reaction of the adhesive.
  • the polyester film was used as a protective film on one side of the polarizer, and a different type of film was used as the protective film on the other side, and a polarizing plate was prepared using a curable adhesive. It was found that the polarizing plate curls due to the curing shrinkage of the adhesive layer, and then there is a problem that air bubbles and foreign matters enter when pasting to the liquid crystal cell. Further, it was found that the same problem was caused when using a polyester film having a high retardation in the in-plane direction described in Patent Document 2 for eliminating rainbow-like unevenness.
  • the problem to be solved by the present invention is that a curling which occurs when a polarizing plate is produced by laminating a polarizer and two protective films using a curable adhesive can be suppressed. It is an object of the present invention to provide a polarizing plate in which rainbow-like unevenness is difficult to be visually recognized when incorporated.
  • the first protective film is a film that has a large retardation in the in-plane direction and can suppress rainbow unevenness
  • the first and second protective films It has been found that the above-mentioned problems can be solved by controlling the curing shrinkage force at the time of curing of the adhesive layer using the curable adhesive according to the film thickness and elastic modulus value of the polarizer.
  • a polarizer having polarization performance A first protective film bonded to one surface of the polarizer via the adhesive layer 1; Including a second protective film bonded to the other surface of the polarizer via the adhesive layer 2,
  • the in-plane direction retardation of the first protective film is 3000 nm or more, Satisfy at least one of the following formulas (A) and (B), A polarizing plate satisfying the following formula (2).
  • E 1 represents the elastic modulus (unit: GPa) of the first protective film
  • y 1 represents the film thickness of the first protective film
  • E 2 represents the elastic modulus (unit: GPa) of the polarizer
  • y 2 represents the film thickness (unit: ⁇ m) of the polarizer
  • E 3 represents the elastic modulus of the second protective film.
  • y 3 represents the film thickness (unit: ⁇ m) of the second protective film
  • S 1 represents the curing shrinkage force when the adhesive layer 1 is bonded to the polarizing plate
  • S 2 represents adhesion.
  • the polarizing plate according to [1] preferably includes an adhesive that allows the adhesive layer 1 and the adhesive layer 2 to be cured by active energy rays.
  • the thickness of the adhesive layer 1 and the adhesive layer 2 is preferably 0.5 to 5 ⁇ m.
  • the first protective film preferably contains a polyester resin or a polycarbonate resin as a main component.
  • an easy-adhesion layer and a hard coat layer are disposed on the first protective film.
  • [1] ⁇ polarizing plate according to any one of [5] is preferably an elastic modulus E 2 of the polarizer is 10 ⁇ 30 GPa.
  • the method for producing a polarizing plate according to [7] includes an adhesive in which the adhesive layer 1 and the adhesive layer 2 are cured by active energy rays,
  • the step of curing and shrinking the adhesive layer 1 and the adhesive layer 2 is preferably a step of irradiating active energy rays to simultaneously cure the adhesive layer 1 and the adhesive layer 2.
  • the method for producing a polarizing plate according to [7] or [8] includes an adhesive in which the adhesive layer 1 and the adhesive layer 2 are cured by ultraviolet rays,
  • the first protective film contains a UV absorber;
  • the step of curing and shrinking the adhesive layer 1 and the adhesive layer 2 is preferably a step of simultaneously curing the adhesive layer 1 and the adhesive layer 2 by irradiating ultraviolet rays from the second protective film side.
  • the compositions of the adhesive layer 1 and the adhesive layer 2 are preferably the same.
  • An image display device comprising the polarizing plate according to any one of [1] to [6].
  • a polarizing plate when a polarizing plate is produced by laminating a polarizer and two protective films using a curable adhesive, curling that occurs can be suppressed, and when it is incorporated into a liquid crystal display device A polarizing plate in which rainbow-like unevenness is hardly visible can be provided.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the polarizing plate of the present invention includes a polarizer having polarizing performance, a first protective film bonded to one surface of the polarizer via an adhesive layer 1, and an adhesive layer on the other surface of the polarizer. And the second protective film bonded through 2, the retardation in the in-plane direction of the first protective film is 3000 nm or more, and at least one of the following formulas (A) and (B) And satisfying the following formula (2).
  • E 1 represents the elastic modulus (unit: GPa) of the first protective film
  • y 1 represents the film thickness of the first protective film
  • E 2 represents the elastic modulus (unit: GPa) of the polarizer
  • y 2 represents the film thickness (unit: ⁇ m) of the polarizer
  • E 3 represents the elastic modulus of the second protective film.
  • y 3 represents the film thickness (unit: ⁇ m) of the second protective film
  • S 1 represents the curing shrinkage force when the adhesive layer 1 is bonded to the polarizing plate
  • S 2 represents adhesion.
  • the polarizing plate of the present invention has curl (particularly MD direction curling) that occurs when a polarizing plate is produced by laminating a polarizer and two protective films using a curable adhesive. It can be suppressed and rainbow-like unevenness is difficult to be visually recognized when it is incorporated in a liquid crystal display device.
  • the polarizing plate of the present invention can suppress curl in the MD direction in particular, but there is no particular problem with curl in the TD direction when MD direction curl is completely eliminated.
  • a polarizing plate (reference numeral 20 in the figure) of the present invention shown in FIG. 1 includes a polarizer having a polarization performance (reference numeral 2 in the figure), and an adhesive layer 1 (reference numeral in the figure) on one surface of the polarizer. 11) bonded through the first protective film (reference numeral 1 in the figure) and the other surface of the polarizer through the adhesive layer 2 (reference numeral 12 in the figure). And a protective film (reference numeral 3 in the figure).
  • the polarizing plate of the present invention satisfies at least one of the following formulas (A) and (B).
  • E 1 represents the elastic modulus (unit: GPa) of the first protective film
  • y 1 represents the film thickness of the first protective film
  • E 2 represents the elastic modulus (unit: GPa) of the polarizer
  • y 2 represents the film thickness (unit: ⁇ m) of the polarizer
  • E 3 represents the elastic modulus of the second protective film.
  • y 3 represents the film thickness (unit: ⁇ m) of the second protective film
  • S 1 represents the curing shrinkage force when the adhesive layer 1 is bonded to the polarizing plate
  • S 2 represents adhesion.
  • the polarizing plate of the present invention is a laminate of at least 5 layers including at least a first protective film, an adhesive layer 1, a polarizer, an adhesive layer 2, and a second protective film.
  • the curling of the polarizing plate is caused by the shrinkage of the adhesive layers 1 and 2 when cured, and the size and direction of the curl are the positions of the adhesive layers 1 and 2 and the neutral axis that is the center of gravity of the polarizing plate. It depends on the relationship.
  • the expression (1) is an expression that represents the neutral axis position ⁇ of the polarizing plate with reference to the surface of the first protective film opposite to the polarizer.
  • the neutral axis position ⁇ of the polarizing plate and the bending moment applied to the polarizing plate will be described with reference to FIG. 3 as a model diagram.
  • FIG. 3 the three-layer laminate of the first protective film, the polarizer, and the second protective film is shown.
  • the three-layer structure is used. Approximated.
  • Formula (1) is represented by the following (3).
  • the expression (2) expresses the ratio of the bending moments in the adhesive layers 1 and 2 and is cured when the value of the central term of the expression (2) is in the range of 0.5 to 1.8. Curling that occurs when a polarizing plate is produced by laminating a polarizer and two protective films using a mold adhesive can be reduced. Further, the value of the central term in the formula (2) is more preferably in the range of 0.6 to 1.1, and even more preferably 0.7 to 1, using a curable adhesive and a polarizer. Curling that occurs when two protective films are bonded together to produce a polarizing plate is eliminated.
  • the polarizing plate of the present invention may have other layers other than the first protective film, the adhesive layer 1, the polarizer, the adhesive layer 2, and the second protective film.
  • an easily bonding layer, a hard-coat layer, and another well-known functional layer can be mentioned.
  • an easy-adhesion layer and a hard coat layer are disposed on the first protective film for the purpose of preventing reflection, suppressing glare, and suppressing scratches.
  • FIG. 4 shows an example of the image display device of the present invention (reference numeral 30 in the drawing) using the polarizing plate of the present invention as a polarizing plate on the viewing side (reference numerals 20 and 21 in the drawing).
  • an easy-adhesion layer (reference numeral 14 in the figure) and a hard coat layer (reference numeral 15 in the figure) are arranged on the first protective film (reference numeral 1 in the figure). It is an aspect.
  • the polarizing plate of the present invention has a polarizer having polarization performance.
  • a polarizer produced by a conventionally known method can be used, and a polyvinyl alcohol polarizer is preferable.
  • a film made of a hydrophilic polymer such as polyvinyl alcohol or ethylene-modified polyvinyl alcohol having an ethylene unit content of 1 to 4 mol%, a polymerization degree of 2000 to 4000, and a saponification degree of 99.0 to 99.99 mol%
  • a film stretched by treatment with a dichroic dye such as the above, or a film oriented by treating a plastic film such as vinyl chloride is used.
  • Patent No. 5048120, Patent No. 5143918, Patent No. 5048120 No. 4, Patent No. 4691205, Patent No. 4751481 and Patent No. 4751486 can be cited, and known techniques relating to these polarizers can also be preferably used for the polarizing plate of the present invention.
  • the elastic modulus E 2 in the absorption axis direction of the polarizer is preferably 10 to 30 GPa, more preferably 15 to 29 GPa, and particularly preferably 15 to 28 GPa.
  • the polarizing plate of the present invention includes a first protective film that is bonded to one surface of the polarizer via the adhesive layer 1 and has an in-plane retardation of 3000 nm or more.
  • said 1st protective film contains a polyester resin or a polycarbonate resin as a main component.
  • the first protective film is preferably a film mainly containing a resin such as a polyester resin or a polycarbonate resin, but may be a single layer film mainly containing a resin such as a polyester resin or a polycarbonate resin. Further, it may be a multilayer film having a layer mainly composed of a resin such as a polyester resin or a polycarbonate resin.
  • the surface treatment may be performed on both surfaces or one surface of these single layer films or multilayer films, and this surface treatment is performed by corona treatment, saponification treatment, heat treatment, ultraviolet irradiation, electron beam irradiation, or the like. Modification may be sufficient, and thin film formation by application
  • the mass ratio of the resin such as polyester resin or polycarbonate resin in the entire film is usually 50 mass% or more, preferably 70 mass% or more, more preferably 90 mass% or more.
  • the first protective film preferably contains a polyester resin as a main component.
  • the polyester include polyethylene terephthalate, polyethylene isophthalate, polyethylene 2,6-naphthalate, polybutylene terephthalate, and 1,4-cyclohexanedimethylene terephthalate, and two or more of them may be used as necessary. . Of these, polyethylene terephthalate is preferably used.
  • Polyethylene terephthalate is a polyester having a structural unit derived from terephthalic acid as a dicarboxylic acid component and a structural unit derived from ethylene glycol as a diol component, and 80 mol% or more of all repeating units are preferably ethylene terephthalate.
  • the structural unit derived from other copolymerization components may be included.
  • copolymer components include isophthalic acid, p- ⁇ -oxyethoxybenzoic acid, 4,4′-dicarboxydiphenyl, 4,4′-dicarboxybenzophenone, bis (4-carboxyphenyl) ethane, adipic acid , Dicarboxylic acid components such as sebacic acid, 5-sodium sulfoisophthalic acid, 1,4-dicarboxycyclohexane, propylene glycol, butanediol, neopentyl glycol, diethylene glycol, cyclohexanediol, bisphenol A ethylene oxide adduct, polyethylene glycol And diol components such as polypropylene glycol and polytetramethylene glycol.
  • Dicarboxylic acid components such as sebacic acid, 5-sodium sulfoisophthalic acid, 1,4-dicarboxycyclohexane, propylene glycol, butanediol
  • dicarboxylic acid components and diol components can be used in combination of two or more if necessary.
  • an oxycarboxylic acid such as p-oxybenzoic acid can be used in combination with the carboxylic acid component or diol component.
  • a dicarboxylic acid component and / or a diol component containing a small amount of an amide bond, a urethane bond, an ether bond, a carbonate bond, or the like may be used.
  • Polyethylene terephthalate can be produced by a direct polymerization method in which terephthalic acid and ethylene glycol and, if necessary, other dicarboxylic acid and / or other diol are directly reacted, dimethyl ester of terephthalic acid and ethylene glycol, and necessary
  • any production method such as a so-called transesterification method in which a dimethyl ester of another dicarboxylic acid and / or another diol is transesterified can be applied.
  • the first protective film preferably contains a polycarbonate resin as a main component.
  • Known resins can be used. Examples thereof include polycarbonate resins having a bisphenol A skeleton, which are obtained by reacting a dihydroxy component and a carbonate precursor by an interfacial polymerization method or a melt polymerization method.
  • polycarbonate resins having a bisphenol A skeleton which are obtained by reacting a dihydroxy component and a carbonate precursor by an interfacial polymerization method or a melt polymerization method.
  • Japanese Patent Application Laid-Open Nos. 2006-277914 and 2006 -106386 and JP-A-2006-284703 can be preferably used.
  • "Taflon MD1500" made by Idemitsu Kosan Co., Ltd.
  • the first protective film may be blended with known additives as necessary. Examples thereof include ultraviolet absorbers, particles, lubricants, antiblocking agents, thermal stabilizers, antioxidants, and antistatic agents. Agents, light resistance agents, impact resistance improvers, lubricants, dyes, pigments and the like. However, since the first protective film generally requires transparency, it is preferable to keep the additive amount to a minimum.
  • the first protective film may contain an ultraviolet absorber in order to prevent the liquid crystal of the liquid crystal display from being deteriorated by ultraviolet rays.
  • the ultraviolet absorber is not particularly limited as long as it is a compound having ultraviolet absorbing ability and can withstand the heat applied in the manufacturing process of the first protective film.
  • an organic ultraviolet absorber there are an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency.
  • an organic type ultraviolet absorber For example, a benzotriazole type, a cyclic imino ester type, a benzophenone type etc. are mentioned. From the viewpoint of durability, benzotriazole and cyclic imino ester are more preferable. It is also possible to use two or more ultraviolet absorbers in combination.
  • the benzotriazole-based ultraviolet absorber is not limited to the following, and examples thereof include 2- [2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2 '-Hydroxy-5'-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2- [2'- Hydroxy-5 '-(methacryloyloxyhexyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-tert-butyl-5'-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2 -[2'-hydroxy-5'-tert-butyl-3 '-(methac Royloxyethyl)
  • group ultraviolet absorber can be mentioned, for example, If necessary, it can be used as it is disperse
  • water-based benzotriazole ultraviolet absorbers include New Coat UVA-204W (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.), SE-2538E (trade name, manufactured by Taisei Fine Chemical), and the like.
  • the cyclic imino ester-based ultraviolet absorber is not limited to the following, and examples thereof include 2-methyl-3,1-benzoxazin-4-one and 2-butyl-3,1-benzoxazine-4. -One, 2-phenyl-3,1-benzoxazin-4-one, 2- (1- or 2-naphthyl) -3,1-benzoxazin-4-one, 2- (4-biphenyl) -3, 1-benzoxazin-4-one, 2-p-nitrophenyl-3,1-benzoxazin-4-one, 2-m-nitrophenyl-3,1-benzoxazin-4-one, 2-p-benzoyl Phenyl-3,1-benzoxazin-4-one, 2-p-methoxyphenyl-3,1-benzoxazin-4-one, 2-o-methoxyphenyl-3,1-benzoxazin-4-one 2-cyclohexyl-3,1-benzoxazin-4-one, 2-
  • a benzoxazinone-based compound which is difficult to be yellowed is preferably used.
  • a compound represented by the following general formula (1) is more preferably used. It is done.
  • R represents a divalent aromatic hydrocarbon group
  • X 1 and X 2 are each independently selected from hydrogen or the following functional group group, but are not necessarily limited thereto. Absent.
  • 2,2 ′-(1,4-phenylene) bis [4H-3,1-benzoxazin-4-one] is particularly preferable in the present invention.
  • the amount of the ultraviolet absorber to be contained in the first protective film is usually 10.0% by mass or less, preferably 0.3 to 3.0% by mass.
  • the ultraviolet absorber may bleed out on the surface, which may cause deterioration of surface functionality such as adhesion deterioration.
  • the first protective film having a multilayer structure it is preferably at least a three-layer structure, and the ultraviolet absorber is preferably blended in the intermediate layer.
  • the ultraviolet absorber is preferably blended in the intermediate layer.
  • the first protective film has an in-plane retardation Re (phase difference value) of 3000 nm or more, preferably 3000 to 30000 nm, more preferably 4000 to 20000 nm, and still more preferably 6000 nm to 15000 nm. is there.
  • Re phase difference value
  • the in-plane retardation value is represented by the following formula (4).
  • nx is the refractive index in the in-plane slow axis direction of the first protective film
  • ny is the in-plane fast axis direction (direction orthogonal to the in-plane slow axis direction) of the first protective film. It is a refractive index
  • y 1 is the thickness of the first protective film.
  • the retardation Rth in the thickness direction of the first protective film is represented by the following formula (5).
  • nz is the refractive index in the thickness direction of the first protective film.
  • the Nz value of the first protective film is preferably 2.0 or less.
  • Nz value of a 1st protective film is represented by following formula (6).
  • Re, Rth, and Nz at a wavelength ⁇ nm can be measured as follows. Using two polarizing plates, the orientation axis direction of the first protective film was determined, and a 4 cm ⁇ 2 cm rectangle was cut out so that the orientation axis directions were orthogonal to each other, and used as a measurement sample. For this sample, the biaxial refractive index (Nx, Ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were determined by an Abbe refractometer (Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm).
  • ) of the difference in refractive index between the axes was defined as the anisotropy ( ⁇ Nxy) of the refractive index.
  • the thickness y 1 (nm) of the first protective film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm. Measured Nx, Ny, Nz, Re from the value of y 1, Rth, Nz was calculated.
  • the above Re and Rth are adjusted by the kind of the thermoplastic resin used in the film, the amount of the thermoplastic resin and the additive, the addition of the retardation developer, the film thickness, the stretching direction and the stretching ratio of the film, etc. can do.
  • the thickness of the first protective film is preferably 10 to 200 ⁇ m, more preferably 15 to 100 ⁇ m, and particularly preferably 20 to 60 ⁇ m.
  • the thickness of the first protective film is 20 ⁇ m or more, it tends to be easy to handle, and when the thickness is 100 ⁇ m or less, there is a tendency to obtain the merit of manufacturing cost reduction due to thinning.
  • the elastic modulus of the first protective film is preferably 1.8 to 8.0 GPa, more preferably 1.8 to 6.0 GPa, and more preferably 1.8 to 5.0 GPa in the MD direction. It is particularly preferable from the viewpoints of production suitability such as curling suppression of the polarizing plate and transportability at the time of film production, end slit property and difficulty of breaking.
  • the conveyance direction (MD direction, longitudinal direction) of the film is the conveyance direction (MD direction) at the time of film production, and the direction perpendicular to the conveyance direction at the time of film production (TD direction). It is.
  • the conveyance direction (MD direction, longitudinal direction) of a 1st protective film is parallel to the absorption axis of the said polarizer in the polarizing plate of this invention.
  • the parallel in this specification includes not only a completely parallel mode but also a mode having an optically acceptable angle shift from the completely parallel mode.
  • the direction perpendicular to the transport direction of the first protective film (TD direction) is preferably the maximum direction of the in-plane elastic modulus of the first protective film.
  • the maximum direction of the in-plane elastic modulus of the protective film is for a film that has been conditioned for 2 hours or more in an atmosphere of 25 ° C. and 60% relative humidity using a sound velocity measuring device “SST-2501, Nomura Corporation”. In an atmosphere of 25 ° C. and a relative humidity of 60%, the speed of sound is measured by dividing the 360 ° direction into 32 parts, and the maximum speed direction can be determined as the maximum direction of the in-plane elastic modulus.
  • the elastic modulus of the film depends on the type and addition amount of the thermoplastic resin of the first protective film material, the selection of additives (particularly, the particle size, refractive index, and addition amount of the matting agent particles), and film production conditions. (Stretch ratio, etc.) can be adjusted.
  • the elastic modulus a sample having a length of 200 mm in the measurement direction and a width of 10 mm was prepared, and the sample was left in an environment of 60 ° C. and 90% relative humidity for 48 hours, and then left in an environment of 25 ° C. and 60% relative humidity for 48 hours.
  • a sample shape was measured with a strograph V10-C manufactured by Toyo Seiki, with a width of 10 mm and a length between chucks of 100 mm.
  • the polyvinyl alcohol that is the polarizer is softened by soaking in hot water or the like. By removing, it becomes possible to measure the elastic modulus of the film alone.
  • the MD / TD elastic modulus ratio of the elastic modulus of the first protective film is preferably 0.01 to 0.8. Further, it is more preferably 0.01 to 0.7, and particularly preferably 0.01 to 0.6.
  • the first protective film is preferably stretched in the width direction.
  • a resin used for the first protective film for example, a polyester resin
  • a resin used for the first protective film is melt-extruded into a film shape, cooled and solidified with a casting drum to form an unstretched film, and if necessary, an easy-adhesion layer is formed.
  • a coating solution and stretch this unstretched film at a temperature of Tg to (Tg + 60) ° C. of the polyester film so that it is 3 to 10 times, preferably 3 to 7 times in the width direction.
  • the first protective film is preferably uniaxially stretched in the width direction from the viewpoint of greatly expressing in-plane retardation Re.
  • heat setting heat treatment
  • the heat setting temperature is more preferably 150 ° C. or higher and 220 ° C. or lower, and particularly preferably 150 ° C. or higher and lower than 220 ° C.
  • reheat treatment referred to as relaxation treatment
  • shrinking by 0 to 20% in the longitudinal direction and / or the width direction at a temperature lower by 10 to 20 ° C. than the heat setting temperature.
  • the glass transition temperature of the film is expressed as Tg.
  • the polarizing plate of this invention contains the 2nd protective film bonded through the contact bonding layer 2 on the other surface of the side by which the 1st protective film of the polarizer was bonded.
  • said 2nd protective film contains a cycloolefin resin, an acrylic resin, or a cellulose ester resin as a main component.
  • the second protective film is preferably a film mainly containing a resin such as a cycloolefin resin, an acrylic resin or a cellulose ester resin, but a resin such as a cycloolefin resin, an acrylic resin or a cellulose ester resin is the main component.
  • a multilayer film having a layer mainly composed of a resin such as a cycloolefin resin, an acrylic resin, or a cellulose ester resin may be performed on both surfaces or one surface of these single layer films or multilayer films, and this surface treatment is performed by corona treatment, saponification treatment, heat treatment, ultraviolet irradiation, electron beam irradiation, or the like. Modification may be sufficient, and thin film formation by application
  • the mass ratio of the resin such as cycloolefin resin, acrylic resin, and cellulose ester resin in the entire film is usually 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more.
  • a cycloolefin resin (hereinafter also referred to as a cyclic polyolefin resin) can be used.
  • the cyclic polyolefin resin represents a polymer resin having a cyclic olefin structure.
  • the cyclic polyolefin resins preferably used in the present invention are listed below.
  • a cyclic polyolefin resin which is an addition (co) polymer containing at least one repeating unit represented by the following general formula (II) and, if necessary, a general A cyclic polyolefin resin which is an addition (co) polymer further comprising at least one repeating unit represented by formula (I).
  • a ring-opening (co) polymer containing at least one cyclic repeating unit represented by the general formula (III) can also be suitably used.
  • m represents an integer of 0 to 4.
  • R 1 to R 6 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • X 1 to X 3 , Y 1 to Y 3 are hydrogen atoms, a hydrocarbon group having 1 to 10 carbon atoms, a halogen atom, or a halogen atom.
  • a substituted hydrocarbon group having 1 to 10 carbon atoms — (CH 2 ) n COOR 11 , — (CH 2 ) n OCOR 12 , — (CH 2 ) n NCO, — (CH 2 ) n NO 2 , — ( CH 2 ) n CN, — (CH 2 ) n CONR 13 R 14 , — (CH 2 ) n NR 13 R 14 , — (CH 2 ) n OZ, — (CH 2 ) n W, or X 1 and Y 1
  • (—CO) 2 O and (—CO) 2 NR 15 composed of X 2 and Y 2 or X 3 and Y 3 are shown.
  • R 11 , R 12 , R 13 , R 14 , R 15 are hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, Z is a hydrocarbon group or a hydrocarbon group substituted with halogen, and W is SiR 16 p D 3-p (R 16 is a hydrocarbon group having 1 to 10 carbon atoms, D is a halogen atom, —OCOR 16 or —OR 16 , p is an integer of 0 to 3), n is an integer of 0 to 10 Show.
  • Norbornene-based polymer hydrides can also be used preferably.
  • the polycyclic unsaturated compound is hydrogenated after addition polymerization or metathesis ring-opening polymerization.
  • R 5 to R 6 are preferably a hydrogen atom or —CH 3
  • X 3 and Y 3 are preferably a hydrogen atom, Cl, —COOCH 3 , and other groups are appropriately selected.
  • This norbornene resin is sold under the trade name Arton G or Arton F by JSR Co., Ltd., and Zeonor ZF14, ZF16, Zeonex 250 or Zeonex 250 by Nippon Zeon Co., Ltd. They are commercially available under the trade name 280 and can be used.
  • norbornene-based addition (co) polymers can also be preferably used, and are disclosed in JP-A No. 10-7732, JP-T-2002-504184, US Published Patent No. 200429157157A1 or WO2004 / 070463A1. It can be obtained by addition polymerization of norbornene-based polycyclic unsaturated compounds.
  • Tg glass transition temperatures
  • APL8008T Tg70 ° C
  • APL6013T Tg125 ° C
  • APL6015T Grades such as Tg145 ° C
  • Pellets such as TOPAS 8007, 6013, and 6015 are sold by Polyplastics Co., Ltd. Further, Appear 3000 is sold by Ferrania.
  • the glass transition temperature (Tg) of the cyclic polyolefin resin is preferably 110 ° C. to 200 ° C., more preferably 115 ° C. to 190 ° C., and further preferably 120 ° C. to 180 ° C. Further, the weight average molecular weight of the cyclic polyolefin resin is preferably in the range of 50,000 to 500,000.
  • Production method of film mainly composed of cyclic olefin resin About the film which has a cyclic olefin resin as a main component, it can manufacture with the manufacturing method similar to the manufacturing method of the film which has a (meth) acrylic-type polymer as a main component mentioned later, for example, a solution cast method (solution Casting methods), melt extrusion methods, calendering methods, compression molding methods and the like, and conventionally known film forming methods, among which the melt extrusion methods are particularly suitable.
  • a solution cast method solution Casting methods
  • melt extrusion methods melt extrusion methods
  • calendering methods calendering methods
  • compression molding methods and the like for example, a solution cast method (solution Casting methods), melt extrusion methods, calendering methods, compression molding methods and the like, and conventionally known film forming methods, among which the melt extrusion methods are particularly suitable.
  • melt extrusion method examples include a T-die method and an inflation method, and the molding temperature at that time may be appropriately adjusted according to the glass transition temperature of the film raw material.
  • T-die method When forming a film by the T-die method, a roll-shaped film can be obtained by attaching a T-die to the tip of a known single-screw extruder or twin-screw extruder and winding the film extruded into a film. it can. At this time, it is possible to perform uniaxial stretching by appropriately adjusting the temperature of the take-up roll and adding stretching in the extrusion direction. Further, simultaneous biaxial stretching, sequential biaxial stretching, and the like can be performed by stretching the film in a direction perpendicular to the extrusion direction.
  • the acrylic resin a known (meth) acrylic resin can be used.
  • the (meth) acrylic resin is a concept including both a methacrylic resin and an acrylic resin, and includes an acrylate / methacrylate derivative, in particular, an acrylate ester / methacrylate ester (co) polymer.
  • the (meth) acrylic resin includes a methacrylic resin, an acrylic resin, a (meth) acrylic polymer having a ring structure in the main chain, a polymer having a lactone ring, and a succinic anhydride ring.
  • a maleic anhydride-based polymer having, a polymer having a glutaric anhydride ring, and a glutarimide ring-containing polymer.
  • the repeating structural unit of the (meth) acrylic polymer is not particularly limited.
  • the (meth) acrylic polymer preferably has a repeating structural unit derived from a (meth) acrylic acid ester monomer as a repeating structural unit.
  • the (meth) acrylic acid ester is not particularly limited, and examples thereof include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, cyclohexyl acrylate, and benzyl acrylate.
  • Acrylic acid esters; methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate; These may be used alone or in combination of two or more.
  • the content ratio in the monomer component to be subjected to the polymerization step is preferably 50 to 100% by mass in order to sufficiently exhibit the effects of the present invention.
  • the amount is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and particularly preferably 90 to 100% by mass.
  • the glass transition temperature Tg of the resin containing the (meth) acrylic acid ester as a main component is preferably in the range of 80 to 120 ° C.
  • the weight average molecular weight of the resin mainly composed of (meth) acrylic acid ester is preferably in the range of 50,000 to 500,000.
  • rubber elastic particles are preferably blended with the (meth) acrylic resin.
  • the rubber elastic particle is a particle containing a rubber elastic body, and may be a particle made of only a rubber elastic body, or may be a multi-layered particle having a rubber elastic body layer, and may be a film surface. From the viewpoint of hardness, light resistance and transparency, an acrylic elastic polymer is preferably used.
  • Rubber elastic particles containing an acrylic elastic polymer can be obtained with reference to JP 2012-180422 A, JP 2012-032773 A, and JP 2012-180423 A.
  • the number average particle diameter of the rubber elastic particles is preferably in the range of 10 to 300 nm, more preferably in the range of 50 to 250 nm.
  • the (meth) acrylic resin composition forming the (meth) acrylic resin film 25 to 45% by mass of rubber elastic particles having a number average particle diameter of 10 to 300 nm are blended in a transparent acrylic resin. preferable.
  • (Meth) acrylic polymer having a ring structure in the main chain Among (meth) acrylic polymers, those having a ring structure in the main chain are preferred. By introducing a ring structure into the main chain, the rigidity of the main chain can be improved and the heat resistance can be improved.
  • (meth) acrylic polymers having a ring structure in the main chain a polymer having a lactone ring structure in the main chain, a maleic anhydride polymer having a succinic anhydride ring in the main chain, It is preferably either a polymer having a glutaric anhydride ring structure or a polymer having a glutarimide ring structure in the main chain.
  • a polymer having a lactone ring structure in the main chain and a polymer having a glutarimide ring structure in the main chain are more preferable.
  • the following polymers having a ring structure in these main chains will be described in order.
  • a (meth) acrylic polymer having a lactone ring structure in the main chain A (meth) acrylic polymer having a lactone ring structure in the main chain (hereinafter also referred to as a lactone ring-containing polymer) has a lactone ring in the main chain.
  • a lactone ring-containing polymer a lactone ring in the main chain.
  • it will not specifically limit if it is a (meth) acrylic-type polymer which has this, Preferably it has a lactone ring structure shown by the following general formula (100).
  • R 11 , R 12 and R 13 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms, and the organic residue may contain an oxygen atom.
  • the organic residue having 1 to 20 carbon atoms is preferably a methyl group, an ethyl group, an isopropyl group, an n-butyl group, a t-butyl group, or the like.
  • the content of the lactone ring structure represented by the general formula (100) in the structure of the lactone ring-containing polymer is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, and still more preferably 10 to 60% by mass. %, Particularly preferably 10 to 50% by weight.
  • the lactone cyclization rate can be determined by removing the theoretical weight reduction amount from 150 ° C. before the weight reduction starts to 300 ° C. before the polymer decomposition starts. It can be calculated from the weight loss heating weight loss rate due to the alcohol reaction.
  • the method for producing the (meth) acrylic resin having a lactone ring structure is not particularly limited.
  • the (meth) acrylic resin having a lactone ring structure is obtained by polymerizing the following predetermined monomer to obtain a polymer (p) having a hydroxyl group and an ester group in the molecular chain.
  • the obtained polymer (p) is heat-treated at a temperature in the range of 75 ° C. to 120 ° C. to obtain lactone cyclization condensation for introducing a lactone ring structure into the polymer.
  • a polymer having a hydroxyl group and an ester group in the molecular chain is obtained by conducting a polymerization reaction of a monomer component containing a monomer represented by the following general formula (101).
  • R 1 and R 2 each independently represents a hydrogen atom or an organic residue having 1 to 20 carbon atoms
  • Examples of the monomer represented by the general formula (101) include methyl 2- (hydroxymethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, isopropyl 2- (hydroxymethyl) acrylate, 2- ( Hydroxymethyl) normal butyl acrylate, t-butyl 2- (hydroxymethyl) acrylate, and the like. Among these, methyl 2- (hydroxymethyl) acrylate and ethyl 2- (hydroxymethyl) acrylate are preferred, and methyl 2- (hydroxymethyl) acrylate is particularly preferred from the viewpoint of high heat resistance improvement effect. As for the monomer represented by the general formula (101), only one type may be used, or two or more types may be used in combination.
  • the content ratio of the monomer represented by the general formula (101) in the monomer component used in the polymerization step has a lower limit value in a preferable range in terms of heat resistance, solvent resistance, and surface hardness, and was obtained. From the viewpoint of moldability of the polymer, there is an upper limit value in a preferable range. In view of these viewpoints, it is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, still more preferably 10 to 60% by mass, and particularly preferably. Is 10 to 50% by mass.
  • the monomer component provided in the polymerization step may contain a monomer other than the monomer represented by the general formula (101). Although it does not specifically limit as such a monomer, For example, (meth) acrylic acid ester, a hydroxyl-containing monomer, and unsaturated carboxylic acid are mentioned preferably. Only one type of monomer other than the monomer represented by formula (101) may be used, or two or more types may be used in combination.
  • the weight average molecular weight of the lactone ring-containing polymer is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,000,000, and particularly preferably 50,000 to 500,000.
  • the lactone ring-containing polymer has a mass reduction rate in the range of 150 to 300 ° C. in dynamic TG measurement, preferably 1% or less, more preferably 0.5% or less, and still more preferably 0.3% or less. It is good.
  • a method for measuring dynamic TG the method described in JP-A-2002-138106 can be used.
  • the lactone ring-containing polymer Since the lactone ring-containing polymer has a high cyclization condensation reaction rate, there is little dealcoholization reaction in the production process of the molded product, and bubbles and silver stripes (silver streaks) are formed in the molded product after molding due to the alcohol. The disadvantage of entering can be avoided. Furthermore, since the lactone ring structure is sufficiently introduced into the polymer due to a high cyclization condensation reaction rate, the obtained lactone ring-containing polymer has high heat resistance.
  • the lactone ring-containing polymer has a coloring degree (YI) of preferably 6 or less, more preferably 3 or less, still more preferably 2 or less, and particularly preferably 1 or less when a chloroform solution having a concentration of 15% by mass is used. . If the degree of coloring (YI) is 6 or less, problems such as loss of transparency due to coloring are unlikely to occur, and therefore, it can be preferably used in the present invention.
  • the lactone ring-containing polymer has a 5% mass reduction temperature in thermal mass spectrometry (TG) of preferably 330 ° C. or higher, more preferably 350 ° C. or higher, and further preferably 360 ° C. or higher.
  • TG thermal mass spectrometry
  • the 5% mass reduction temperature in thermal mass spectrometry (TG) is an indicator of thermal stability, and by setting it to 330 ° C. or higher, sufficient thermal stability tends to be exhibited.
  • the thermal mass spectrometry can use the apparatus for measuring the dynamic TG.
  • the glass transition temperature (Tg) of the lactone ring-containing polymer is preferably 115 ° C to 180 ° C, more preferably 120 ° C to 170 ° C, and still more preferably 125 ° C to 160 ° C.
  • a succinic anhydride structure is formed in the main chain in the molecular chain of the polymer (in the main skeleton of the polymer).
  • the acrylic resin is preferably given high heat resistance and has a high glass transition temperature (Tg).
  • the glass transition temperature (Tg) of the maleic anhydride polymer having a succinic anhydride ring in the main chain is preferably 110 ° C. to 160 ° C., more preferably 115 ° C. to 160 ° C., and further preferably 120 ° C. to 160 ° C. is there.
  • the weight average molecular weight of the maleic anhydride polymer having a succinic anhydride ring in the main chain is preferably in the range of 50,000 to 500,000.
  • the maleic anhydride unit used for copolymerization with the acrylic resin is not particularly limited, but JP-A-2008-216586, JP-A-2009-052021, JP-A-2009-196151, JP-T-2012-504783. Mention may be made of maleic acid-modified resins described in the respective publications. In addition, these do not limit this invention.
  • As a commercially available maleic acid-modified resin Delpet 980N manufactured by Asahi Kasei Chemicals Corporation, which is a maleic acid-modified MAS resin (methyl methacrylate-acrylonitrile-styrene copolymer), can be preferably used.
  • a method for producing an acrylic resin containing a maleic anhydride unit is not particularly limited, and a known method can be used.
  • the maleic acid-modified resin is not limited as long as the resulting polymer contains maleic anhydride units, and examples thereof include (anhydrous) maleic acid-modified MS resin, (anhydrous) maleic acid-modified MAS resin (methacrylic acid). Methyl-acrylonitrile-styrene copolymer), (anhydrous) maleic acid modified MBS resin, (anhydrous) maleic acid modified AS resin, (anhydrous) maleic acid modified AA resin, (anhydrous) maleic acid modified ABS resin, ethylene-maleic anhydride Examples include acid copolymers, ethylene- (meth) acrylic acid-maleic anhydride copolymers, and maleic anhydride grafted polypropylene.
  • the maleic anhydride unit has a structure represented by the following general formula (200).
  • R 21 and R 22 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • the organic residue is not particularly limited as long as it has 1 to 20 carbon atoms.
  • the organic residue may contain an oxygen atom.
  • Ac represents an acetyl group.
  • R 21 and R 22 preferably have 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms.
  • each of R 21 and R 22 represents a hydrogen atom
  • other copolymerization components are further included from the viewpoint of adjusting the intrinsic birefringence.
  • a ternary or higher heat-resistant acrylic resin for example, methyl methacrylate-maleic anhydride-styrene copolymer can be preferably used.
  • the polymer having a glutaric anhydride ring structure in the main chain is a polymer having a glutaric anhydride unit.
  • the polymer having a glutaric anhydride unit preferably has a glutaric anhydride unit represented by the following general formula (300) (hereinafter referred to as a glutaric anhydride unit).
  • R 31 and R 32 each independently represents a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
  • the organic residue may contain an oxygen atom.
  • R 31 and R 32 particularly preferably represent the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.
  • the polymer having a glutaric anhydride unit is preferably a (meth) acrylic polymer containing a glutaric anhydride unit.
  • the (meth) acrylic polymer preferably has a glass transition temperature (Tg) of 120 ° C. or higher from the viewpoint of heat resistance.
  • the glass transition temperature (Tg) of the polymer having a glutaric anhydride ring structure in the main chain is preferably 110 ° C. to 160 ° C., more preferably 115 ° C. to 160 ° C., and further preferably 120 ° C. to 160 ° C.
  • the weight average molecular weight of the polymer having a glutaric anhydride ring structure in the main chain is preferably in the range of 50,000 to 500,000.
  • the content of glutaric anhydride units relative to the (meth) acrylic polymer is preferably 5 to 50% by mass, more preferably 10 to 45% by mass.
  • the content is 5% by mass or more, more preferably 10% by mass or more, an effect of improving heat resistance can be obtained, and further an effect of improving weather resistance can be obtained.
  • (meth) acrylic polymer having a glutarimide ring structure in the main chain (meth) acrylic polymer having a glutarimide ring structure in the main chain (hereinafter also referred to as glutarimide resin)
  • glutarimide resin (hereinafter also referred to as glutarimide resin)
  • R 301 , R 302 , and R 303 are independently hydrogen or an unsubstituted or substituted alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, or an aryl group. It is preferable to contain a glutarimide resin having 20% by mass or more.
  • R 301 and R 302 are hydrogen or a methyl group
  • R 303 is a methyl group or a cyclohexyl group.
  • the glutarimide unit may be a single type or may include a plurality of types in which R 301 , R 302 , and R 303 are different.
  • the preferred second structural unit constituting the glutarimide resin used in the present invention is a unit composed of an acrylate ester or a methacrylate ester.
  • Preferable acrylic acid ester or methacrylic acid ester structural unit includes methyl acrylate, ethyl acrylate, methyl methacrylate, methyl methacrylate and the like.
  • Another preferred imidizable unit includes N-alkylmethacrylamide such as N-methylmethacrylamide and N-ethylmethacrylamide.
  • These second structural units may be of a single type or may include a plurality of types.
  • the content of the glutarimide unit represented by the general formula (400) in the glutarimide resin is 20% by mass or more based on the total repeating unit of the glutarimide resin.
  • the preferred content of the glutarimide unit is 20% to 95% by mass, more preferably 50 to 90% by mass, and still more preferably 60 to 80% by mass.
  • a glutarimide unit is smaller than this range, the heat resistance of the film obtained may be insufficient, or transparency may be impaired. On the other hand, if it exceeds this range, the heat resistance is unnecessarily increased and it becomes difficult to form a film, the mechanical strength of the resulting film becomes extremely brittle, and the transparency may be impaired.
  • the glutarimide resin may be further copolymerized with a third structural unit, if necessary.
  • the third structural unit include styrene monomers such as styrene, substituted styrene and ⁇ -methylstyrene, acrylic monomers such as butyl acrylate, and nitrile monomers such as acrylonitrile and methacrylonitrile.
  • a structural unit obtained by copolymerizing maleimide monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like can be used.
  • the glutarimide resin may be directly copolymerized with the glutarimide unit and the imidizable unit in the glutarimide resin, and graft copolymerized with the resin having the glutarimide unit and the imidizable unit. It may be polymerized.
  • the content in the glutarimide resin is preferably 5 mol% or more and 30 mol% or less based on the total repeating units in the glutarimide resin.
  • the glutarimide resin is described in US Pat. No. 3,284,425, US Pat. No. 4,246,374, JP-A-2-153904, and the like, and is obtained by using methyl methacrylate as a main raw material as a resin having an imidizable unit. It can be obtained by using a resin and imidizing the resin having an imidizable unit with ammonia or a substituted amine.
  • a unit composed of acrylic acid, methacrylic acid, or an anhydride thereof may be introduced into the glutarimide resin as a reaction by-product.
  • the acrylic acid or methacrylic acid content is 0.5 milliequivalent or less per gram of resin, preferably 0.3 milliequivalent or less, more preferably 0.1 milliequivalent or less.
  • JP-A No. 02-153904 it is also possible to obtain a glutarimide resin by imidization using a resin mainly composed of N-methylacrylamide and methacrylic acid methyl ester.
  • the glass transition temperature (Tg) of the glutaric resin is preferably 110 ° C. to 160 ° C., more preferably 115 ° C. to 160 ° C., and further preferably 120 ° C. to 160 ° C.
  • the weight average molecular weight of the glutar resin is preferably in the range of 50,000 to 500,000.
  • Manufacturing method of film mainly composed of (meth) acrylic polymer a manufacturing method for forming a film containing a (meth) acrylic polymer as a main component will be described in detail.
  • a film raw material is pre-blended with a conventionally known mixer such as an omni mixer, and then the obtained mixture is extruded and kneaded.
  • the mixer used for extrusion kneading is not particularly limited.
  • a conventionally known mixer such as an extruder such as a single screw extruder or a twin screw extruder or a pressure kneader can be used. .
  • the film forming method examples include conventionally known film forming methods such as a solution casting method (solution casting method), a melt extrusion method, a calendar method, and a compression molding method. Of these film forming methods, the melt extrusion method is particularly suitable.
  • melt extrusion method examples include a T-die method and an inflation method, and the molding temperature at that time may be appropriately adjusted according to the glass transition temperature of the film raw material, and is not particularly limited.
  • the temperature is preferably 150 ° C to 350 ° C, more preferably 200 ° C to 300 ° C.
  • a roll-shaped film can be obtained by attaching a T-die to the tip of a known single-screw extruder or twin-screw extruder and winding the film extruded into a film. it can. At this time, it is possible to perform uniaxial stretching by appropriately adjusting the temperature of the take-up roll and adding stretching in the extrusion direction. Further, simultaneous biaxial stretching, sequential biaxial stretching, and the like can be performed by stretching the film in a direction perpendicular to the extrusion direction.
  • the film mainly composed of (meth) acrylic polymer may be either an unstretched film or a stretched film.
  • a stretched film either a uniaxially stretched film or a biaxially stretched film may be used.
  • a biaxially stretched film either a simultaneous biaxially stretched film or a sequential biaxially stretched film may be used.
  • biaxial stretching the mechanical strength is improved and the film performance is improved.
  • the (meth) acrylic polymer is a (meth) acrylic polymer having a cyclic structure in the main chain, mixing with other thermoplastic resins increases the retardation even when stretched. It is possible to obtain a film that can be suppressed and retains optical isotropy.
  • the degree of substitution of cellulose acylate means the ratio of acylation of three hydroxyl groups present in the structural unit of cellulose (glucose having a ( ⁇ ) 1,4-glycoside bond).
  • the degree of substitution can be calculated by measuring the amount of bound fatty acid per unit mass of cellulose.
  • the substitution degree of the cellulose body is determined from the peak intensity ratio of the carbonyl carbon in the acyl group by dissolving the cellulose body in a solvent such as dimethyl sulfoxide substituted with deuterium and measuring the 13C-NMR spectrum.
  • the total acyl substitution degree of the cellulose acylate is preferably 2.0 to 2.97, more preferably 2.2 to 2.95, and particularly preferably 2.3 to 2.95.
  • As the acyl group of cellulose acylate an acetyl group, a propionyl group, and a butyryl group are particularly preferable, and an acetyl group is particularly preferable.
  • a mixed fatty acid ester composed of two or more kinds of acyl groups can also be preferably used as the cellulose acylate in the present invention.
  • the acyl group is preferably an acetyl group and an acyl group having 3 to 4 carbon atoms.
  • the substitution degree of an acetyl group is preferably less than 2.5, and more preferably less than 1.9.
  • the substitution degree of the acyl group having 3 to 4 carbon atoms is preferably 0.1 to 1.5, more preferably 0.2 to 1.2, and 0.5 to 1.1. It is particularly preferred.
  • two types of cellulose acylates having different substituents and / or degree of substitution may be used in combination, mixed, or from a plurality of layers composed of different cellulose acylates by the co-casting method described later.
  • a film may be formed.
  • mixed acid esters having a fatty acid acyl group and a substituted or unsubstituted aromatic acyl group described in [0023] to [0038] of JP-A-2008-20896 can also be preferably used in the present invention.
  • the cellulose acylate preferably has a weight average degree of polymerization of 250 to 800, more preferably 300 to 600.
  • the cellulose acylate preferably has a number average molecular weight of 70000 to 230,000, more preferably a number average molecular weight of 75000 to 230,000, and most preferably a number average molecular weight of 78000 to 120,000.
  • Cellulose acylate can be synthesized using an acid anhydride or acid chloride as an acylating agent.
  • an organic acid for example, acetic acid
  • methylene chloride is used as a reaction solvent.
  • a protic catalyst such as sulfuric acid can be used as the catalyst.
  • the acylating agent is an acid chloride
  • a basic compound can be used as a catalyst.
  • cellulose is an organic acid corresponding to acetyl group and other acyl groups (acetic acid, propionic acid, butyric acid) or their acid anhydrides (acetic anhydride, propionic anhydride, butyric anhydride).
  • a cellulose ester is synthesized by esterification with a mixed organic acid component containing.
  • cellulose such as cotton linter or wood pulp is activated with an organic acid such as acetic acid and then esterified using a mixture of organic acid components as described above in the presence of a sulfuric acid catalyst.
  • the organic acid anhydride component is generally used in an excess amount relative to the amount of hydroxyl groups present in the cellulose.
  • a hydrolysis reaction depolymerization reaction
  • the degree of polymerization of the cellulose ester is lowered, and the physical properties of the cellulose ester film to be produced are lowered. Therefore, the reaction conditions such as the reaction temperature are preferably determined in consideration of the degree of polymerization and molecular weight of the resulting cellulose ester.
  • the 2nd protective film may contain the well-known additive used for an organic acid and another polarizing plate protective film, unless it is contrary to the meaning of this invention.
  • the molecular weight of the additive is not particularly limited, but the additives described below can be preferably used.
  • Additives can be used to control humidity dimensional change rate, improve film thermal properties, optical properties, mechanical properties, impart flexibility, impart water resistance, reduce moisture permeability, etc. It shows a useful effect.
  • control of mechanical properties includes the addition of a plasticizer to a film.
  • plasticizers that can be used as reference include various known esters such as phosphate esters, citrate esters, trimellitic acid esters, and sugar esters. Reference can be made to the description of ester plasticizers and polyester polymers in paragraph numbers 0042 to 0068 of International Publication No. 2011/102492.
  • the description of paragraph numbers 0069 to 0072 of International Publication No. 2011/102492 can be referred to, and adjustment of the retardation of the film
  • a known retardation adjusting agent can be used for controlling expression.
  • the molecular weight of the additive is not particularly limited, but the additives described below can be preferably used.
  • the thickness of the second protective film is preferably 10 to 200 ⁇ m, more preferably 15 to 100 ⁇ m, and particularly preferably 20 to 60 ⁇ m.
  • the thickness of the second protective film is 20 ⁇ m or more, it tends to be easy to handle, and when the thickness is 100 ⁇ m or less, there is a tendency to obtain the merit of manufacturing cost reduction due to thinning.
  • the thickness of the second protective film is as thin as 60 ⁇ m (preferably 40 ⁇ m or less, for example, 10 to 40 ⁇ m), the effects of the present invention are particularly remarkable.
  • a film polyethylene film or the like
  • curling positive curling toward the first protective film
  • the thickness of the second protective film is 40 ⁇ m or less, curling is very likely to occur when a polarizing plate is produced by laminating a polarizer and two protective films using a curable adhesive. Therefore, the curl suppressing effect of the present invention can be remarkably obtained.
  • the elastic modulus of the second protective film is preferably 1.8 to 8.0 GPa in the MD direction, more preferably 1.8 to 6.0 GPa, and 1.8 to 5.0 GPa. It is particularly preferable from the viewpoints of production suitability such as curling suppression of the polarizing plate and transportability at the time of film production, end slit property and difficulty of breaking.
  • the transport direction (MD direction, longitudinal direction) of the second protective film is preferably parallel to the absorption axis of the polarizer.
  • the polarizer and the first protective film are bonded via the adhesive layer 1, and the polarizer and the second protective film are bonded via the adhesive layer 2.
  • the adhesive layer 1 and the adhesive layer 2 preferably contain a curable adhesive.
  • the thicknesses of the adhesive layer 1 and the adhesive layer 2 are preferably set to predetermined values in the range of 0.5 to 5 ⁇ m.
  • the thickness of the adhesive layer 1 and the adhesive layer 2 is 0.5 ⁇ m or more, unevenness in adhesive strength is unlikely to occur.
  • the thickness is 5 ⁇ m or less, the manufacturing cost can be reduced. If the thickness is relatively thick within this range, for example, 3.5 ⁇ m or more, especially 4 ⁇ m or more, even if the film thickness of the adhesive layer 1 and the adhesive layer 2 fluctuates somewhat, defects such as bubbles due to the film hardly appear.
  • the preferable thicknesses of the adhesive layer 1 and the adhesive layer 2 are in the range of 1 to 4 ⁇ m, and more preferably in the range of 1.5 to 3.5 ⁇ m.
  • the adhesive layer 1 and the adhesive layer 2 are different in film thickness so that the adhesive layer 1 and the adhesive layer 2 satisfy the above formula (2) when the compositions of the adhesive layer 1 and the adhesive layer 2 are the same. From the viewpoint that the curing shrinkage force of the adhesive layer 2 can be controlled, it is preferable.
  • the preferred range of the ratio of the film thickness of the adhesive layer 1 (hereinafter referred to as “d 1” ) to the film thickness of the adhesive layer 2 (hereinafter referred to as “d 2” ) (that is, d 1 / d 2 ) is that of the adhesive layer 1 described later.
  • the cure shrinkage force S 1 at the time of the polarizing plate bonding the same as the preferred range of the ratio of hardening shrinkage force S 2 when the polarizing plate bonding of the adhesive layer 2 (i.e., S 1 / S 2).
  • a preferable range of the ratio of the curing shrinkage force S 1 when the adhesive layer 1 is bonded to the polarizing plate to the curing shrinkage force S 2 when the adhesive layer 2 is bonded to the polarizing plate is 0. It is preferably 3 to 10 N / m, more preferably 0.4 to 9 N / m, and particularly preferably 0.5 to 8 N / m. Within this range, the curl suppressing effect of the present invention can be remarkably obtained.
  • contraction force at the time of polarizing plate bonding of the adhesive layer 1 and the adhesive layer 2 is calculated
  • the curing shrinkage force when the adhesive layers 1 and 2 are bonded to the polarizing plate is different from the cured adhesive layer 1 and the adhesive layer 2 in the polarizing plate of the present invention from the composition and film of the adhesive layer 1 and the adhesive layer 2. It can also be determined based on thickness.
  • the adhesive As long as the adhesive is curable, it can be any of those conventionally used in the production of polarizing plates. From the viewpoint of weather resistance, polymerizability, and the like, the adhesive layer 1 and the adhesive layer 2 are It is preferable to include an adhesive that is cured by active energy rays.
  • cured material of the adhesive agent from which a structure differs by the hardening reaction is also contained in the aspect in which the adhesive layer 1 and the adhesive layer 2 contain an adhesive agent.
  • the adhesive cured by the active energy ray is completely cured and the structure is changed to a cured product of an adhesive having a different structure is also included in the present invention.
  • adhesives that are cured by active energy rays cationically polymerizable compounds such as epoxy compounds, more specifically, epoxy having no aromatic ring in the molecule as described in JP-A-2004-245925
  • An active energy ray curable adhesive containing a compound as one of the active energy ray curable components is preferred.
  • Such an epoxy compound is, for example, a hydrogenated epoxy obtained by nuclear hydrogenation of an aromatic polyhydroxy compound, which is a raw material of an aromatic epoxy compound represented by diglycidyl ether of bisphenol A, and converting it to glycidyl ether.
  • the compound an alicyclic epoxy compound having at least one epoxy group bonded to the alicyclic ring in the molecule, an aliphatic epoxy compound typified by a glycidyl ether of an aliphatic polyhydroxy compound, and the like.
  • active energy ray-curable adhesives usually generate polymerization species, especially cationic species or Lewis acids upon irradiation with active energy rays.
  • a cationic photopolymerization initiator for initiating polymerization of the active compound is blended. Further, a thermal cationic polymerization initiator that initiates polymerization by heating, and various other additives such as a photosensitizer may be blended.
  • the composition of the adhesive applied to each protective film may be the same or different, but from the viewpoint of productivity, moderate adhesive strength Therefore, it is preferable to use an adhesive having the same composition on both sides. That is, the composition of the adhesive layer 1 and the adhesive layer 2 is preferably the same in the polarizing plate of the present invention.
  • the polarizing plate of this invention has an adhesive layer for adhere
  • an appropriate pressure-sensitive adhesive can be used, and the type thereof is not particularly limited.
  • Adhesives include rubber adhesives, acrylic adhesives, silicone adhesives, urethane adhesives, vinyl alkyl ether adhesives, polyvinyl alcohol adhesives, polyvinyl pyrrolidone adhesives, polyacrylamide adhesives, Examples thereof include cellulose-based pressure-sensitive adhesives.
  • pressure-sensitive adhesives those having excellent optical transparency, suitable wettability, cohesiveness, and adhesive pressure characteristics, and excellent weather resistance and heat resistance are preferably used.
  • An acrylic pressure-sensitive adhesive is preferably used as one exhibiting such characteristics.
  • those formed of an adhesive containing an acrylic polymer and a crosslinking agent can be suitably used.
  • the acrylic adhesive is based on an acrylic polymer having a monomer unit of (meth) acrylic acid alkyl ester as a main skeleton.
  • the (meth) acrylic acid alkyl ester refers to an acrylic acid alkyl ester and / or a methacrylic acid alkyl ester, and (meth) in the present invention has the same meaning.
  • Examples of the (meth) acrylic acid alkyl ester constituting the main skeleton of the acrylic polymer include linear or branched alkyl groups having 1 to 20 carbon atoms.
  • Illustrative examples include isononyl acid, isomyristyl (meth) acrylate, and lauryl (meth) acrylate. These can be used alone or in combination.
  • These alkyl groups preferably have an average carbon number of 3 to 9.
  • acrylic polymers it is preferable to use an acrylic polymer having a monomer unit of (meth) acrylic acid alkyl ester having high hydrophobicity as a main skeleton from the viewpoint of controlling the equilibrium moisture content to be low.
  • (meth) acrylic acid alkyl ester is a linear or branched alkyl group carbon in terms of optical transparency, moderate wettability and cohesion, adhesion, weather resistance and heat resistance.
  • Those of formula 3 to 9, preferably 4 to 8 are preferably used practically.
  • these alkyl groups the larger the carbon number of the alkyl group, the higher the hydrophobicity, which is preferable for reducing the equilibrium moisture content.
  • alkyl (meth) acrylate examples include butyl (meth) acrylate and isooctyl (meth) acrylate. Among these, isooctyl (meth) acrylate having high hydrophobicity is preferable.
  • one or more kinds of copolymerization monomers can be introduced by copolymerization for the purpose of improving adhesiveness and heat resistance.
  • copolymerization monomers include, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, (meth) acrylic acid 6 Hydroxyl-containing monomers such as hydroxyhexyl, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate and (4-hydroxymethylcyclohexyl) -methyl acrylate
  • Carboxyl group-containing monomers such as (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid and crotonic acid; acid anhydrides such as maleic anhydride
  • (N-substituted) amides such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide, etc.
  • alkylaminoalkyl monomers (meth) acrylates such as aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, and tert-butylaminoethyl (meth) acrylate; (meth) acrylic (Meth) acrylic acid alkoxyalkyl monomers such as methoxyethyl acid and ethoxyethyl (meth) acrylate; N- (meth) acryloyloxymethylenesuccinimide, N- (meth) acryloyl-6-oxyhexamethylenesuccinimide, N- ( Meta) Acry Succinimide monomers such as yl-8-oxyoctamethylene succinimide and N-acryloylmorpholine; maleimide monomers such as N-cyclohexylmaleimide and N-isopropylmaleimide, N-laurylmaleimide and N-phenyl
  • Further modifying monomers include vinyl acetate, vinyl propionate, N-vinyl pyrrolidone, methyl vinyl pyrrolidone, vinyl pyridine, vinyl piperidone, vinyl pyrimidine, vinyl piperazine, vinyl pyrazine, vinyl pyrrole, vinyl imidazole, vinyl oxazole, vinyl morpholine, N- Vinyl monomers such as vinylcarboxylic amides, styrene, ⁇ -methylstyrene, N-vinylcaprolactam; cyanoacrylate monomers such as acrylonitrile and methacrylonitrile; epoxy group-containing acrylic monomers such as glycidyl (meth) acrylate; (Meth) acrylic acid polyethylene glycol, (meth) acrylic acid polypropylene glycol, (meth) acrylic acid methoxyethylene glycol, (meth) acrylic acid meso Glycol acrylic ester monomers such as xypolypropylene glycol; acrylic ester monomers such as
  • the ratio of the copolymerization monomer in the acrylic polymer is not particularly limited, but is preferably about 0 to 30%, more preferably about 0.1 to 15% in the mass ratio of all the constituent monomers.
  • a hydroxyl group-containing monomer, a carboxyl group-containing monomer, and an acid anhydride group-containing monomer are preferably used from the viewpoints of adhesion to a liquid crystal cell and durability for optical film applications. These monomers serve as reaction points with the crosslinking agent. Hydroxyl group-containing monomers, carboxyl group-containing monomers, acid anhydride monomers, and the like are preferably used for improving the cohesiveness and heat resistance of the resulting pressure-sensitive adhesive layer because they are highly reactive with intermolecular crosslinking agents.
  • the hydroxyl group-containing monomer is preferably 4-hydroxybutyl (meth) acrylate, more preferably 6-hydroxyhexyl (meth) acrylate, rather than 2-hydroxyethyl (meth) acrylate. It is preferable to use a hydroxyalkyl group having a large alkyl group.
  • the proportion is preferably 0.01 to 5%, more preferably 0.01 to 3%, in the mass ratio of all the constituent monomers.
  • the ratio is preferably 0.01 to 10%, more preferably 0.01 to 7%, in the mass ratio of all constituent monomers.
  • the average molecular weight of the acrylic polymer is not particularly limited, but the weight average molecular weight is preferably about 100,000 to 2.5 million.
  • the acrylic polymer can be produced by various known methods. For example, a radical polymerization method such as a bulk polymerization method, a solution polymerization method, or a suspension polymerization method can be appropriately selected.
  • a radical polymerization method such as a bulk polymerization method, a solution polymerization method, or a suspension polymerization method can be appropriately selected.
  • the radical polymerization initiator various known azo and peroxide initiators can be used.
  • the reaction temperature is usually about 50 to 80 ° C., and the reaction time is 1 to 8 hours.
  • the solution polymerization method is preferable, and ethyl acetate, toluene and the like are generally used as the solvent for the acrylic polymer.
  • the solution concentration is usually about 20 to 80% by mass.
  • the pressure-sensitive adhesive is preferably a pressure-sensitive adhesive composition containing a crosslinking agent.
  • the polyfunctional compound that can be blended in the pressure-sensitive adhesive include organic crosslinking agents and polyfunctional metal chelates.
  • examples of the organic crosslinking agent include an epoxy crosslinking agent, an isocyanate crosslinking agent, an imine crosslinking agent, and a peroxide crosslinking agent. These crosslinking agents can be used alone or in combination of two or more.
  • an isocyanate crosslinking agent is preferable.
  • an isocyanate type crosslinking agent is used suitably in combination with a peroxide type crosslinking agent.
  • a polyfunctional metal chelate is one in which a polyvalent metal is covalently or coordinately bonded to an organic compound.
  • polyvalent metal atoms include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn, Ti, and the like. can give.
  • the atom in the organic compound that is covalently or coordinately bonded include an oxygen atom, and the organic compound includes an alkyl ester, an alcohol compound, a carboxylic acid compound, an ether compound, a ketone compound, and the like.
  • the blending ratio of the base polymer such as the acrylic polymer and the crosslinking agent is not particularly limited, but usually about 0.001 to 20 parts by mass of the crosslinking agent (solid content) is preferable with respect to 100 parts by mass of the base polymer (solid content). Furthermore, about 0.01 to 15 parts by mass is preferable.
  • an isocyanate type crosslinking agent and a peroxide type crosslinking agent are preferable.
  • the peroxide crosslinking agent is preferably about 0.01 to 3 parts by weight, preferably about 0.02 to 2.5 parts by weight, and more preferably 0.05 to 100 parts by weight of the base polymer (solid content). About 2.0 parts by mass is preferable.
  • the isocyanate-based crosslinking agent is preferably about 0.001 to 2 parts by mass, and more preferably about 0.01 to 1.5 parts by mass with respect to 100 parts by mass of the base polymer (solid content). Moreover, an isocyanate type crosslinking agent and a peroxide type crosslinking agent can be used in the said range, and can be preferably used in combination of these.
  • the pressure-sensitive adhesive includes a silane coupling agent, a tackifier, a plasticizer, glass fiber, glass beads, an antioxidant, an ultraviolet absorber, transparent fine particles, and the like, if necessary, and does not depart from the purpose of the present invention.
  • Various additives can be appropriately used within a range.
  • a silane coupling agent is suitable, and the silane coupling agent (solid content) is preferably about 0.001 to 10 parts by mass with respect to 100 parts by mass of the base polymer (solid content). It is preferable to add about 005 to 5 parts by mass.
  • the silane coupling agent those conventionally known can be used without particular limitation.
  • epoxy groups such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane Containing silane coupling agent, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine
  • Amino group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane, (meth) acrylic group-containing silane coupling agents such as 3-methacryloxypropyltriethoxysilane, and isocyanates such as 3-isocyanatopropyltriethoxysilane Base It can be exe
  • Attaching the pressure-sensitive adhesive layer to the polarizing plate can be performed by an appropriate method.
  • a pressure-sensitive adhesive solution of about 10 to 40% by mass in which a base polymer or a composition thereof is dissolved or dispersed in a solvent composed of a suitable solvent alone or a mixture such as toluene and ethyl acetate is prepared.
  • An adhesive layer is formed on the separator in accordance with the above-mentioned method in which it is directly attached on the polarizing plate or the optical member by an appropriate development method such as a casting method or a coating method, or transferred to the polarizing plate.
  • the method of wearing is mentioned.
  • the polarizing plate of the present invention is a function that is combined with an optical film having functional layers such as an antireflection film, a brightness enhancement film, a hard coat layer, a forward scattering layer, and an antiglare (antiglare) layer for improving the visibility of the display. It is also preferably used as a polarizing plate.
  • the antireflection film, brightness enhancement film, other functional optical film, hard coat layer, forward scattering layer, and antiglare layer for functionalization are described in JP-A-2007-86748, [0257] to [0276].
  • a functionalized polarizing plate can be created based on these descriptions.
  • the method for producing a polarizing plate of the present invention includes a step of bonding a first protective film having an in-plane retardation of 3000 nm or more to one surface of a polarizer having polarizing performance via an adhesive layer 1; A step of bonding a second protective film to the other surface of the polarizer through an adhesive layer 2 controlled to a film thickness different from that of the adhesive layer 1, and a step of curing and shrinking the adhesive layer 1 and the adhesive layer 2 It is preferable to include.
  • the above formula (2) is satisfied even when the compositions of the adhesive layer 1 and the adhesive layer 2 are the same.
  • the curing shrinkage force of the adhesive layer 1 and the adhesive layer 2 can be controlled, which is preferable from the viewpoint of productivity.
  • the method for producing a polarizing plate of the present invention includes a step of bonding a first protective film having an in-plane retardation of 3000 nm or more to one surface of a polarizer having polarizing performance via an adhesive layer 1; It includes a step of bonding a second protective film to the other surface of the polarizer via an adhesive layer 2 controlled to have a film thickness different from that of the adhesive layer 1.
  • the first protective film is bonded to one surface of the polarizer via the adhesive layer 1 and the adhesive layer 2 is controlled to a thickness different from that of the adhesive layer 1 on the other surface of the polarizer.
  • the process of bonding the second protective film may be performed at the same time or sequentially. Among them, the step of bonding the first protective film to one surface of the polarizer via the adhesive layer 1, and the adhesive layer 2 controlled to a film thickness different from the adhesive layer 1 on the other surface of the polarizer. It is preferable to perform the process of bonding a 2nd protective film simultaneously through it, and it is more preferable to perform the process of bonding both using a roll-to-roll system simultaneously.
  • an apparatus and a method described in JP2012-203108A can be used, and a method described in JP2012-203108A can be used.
  • the contents are incorporated into the present invention.
  • the manufacturing apparatus described in Japanese Patent Application Laid-Open No. 2012-203108 while continuously transporting a polarizer, a first protective film is bonded to one surface, and a second protective film is formed to the other surface.
  • a polarizing plate which is wound around a winding roll.
  • a protective film is bonded to both sides of the polarizer.
  • the method of bonding the first protective film and the second protective film to the polarizer is not particularly limited, but the following bonding method is preferable.
  • the angle formed by the maximum direction of the elastic modulus in the plane of the first protective film and the absorption axis direction of the polarizer (generally the same as the stretching direction) is 90 ° at the end and the center in the width direction of the first protective film. It is preferably within ⁇ 25 °.
  • the angle formed between the maximum in-plane elastic modulus direction of the first protective film and the absorption axis direction of the polarizer is more preferably 90 ° ⁇ 20 °, and particularly preferably 90 ° ⁇ 5 °. .
  • the polarizer so that the transmission axis of the polarizer and the slow axis of the second protective film are substantially parallel.
  • being substantially parallel means that the deviation between the direction of the main refractive index nx of the second protective film and the direction of the transmission axis of the polarizing plate is within 5 °, preferably 1 Within 0 °, more preferably within 0.5 °. If the deviation is within 1 °, the polarization degree performance under the polarizing plate crossed Nicol is unlikely to deteriorate, and light leakage is less likely to occur.
  • a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating, or the like can be used.
  • the coating method there is a description example in “Coating method” published by Yoji Harasaki in 1979.
  • the first protective film and the second protective film may be subjected to surface treatment such as saponification treatment, corona treatment, and plasma treatment in advance.
  • the method for producing a polarizing plate of the present invention includes a step of curing and shrinking the adhesive layer 1 and the adhesive layer 2.
  • the manufacturing method of the polarizing plate of the present invention includes an adhesive in which the adhesive layer 1 and the adhesive layer 2 are cured by active energy rays, and the step of curing and shrinking the adhesive layer 1 and the adhesive layer 2 irradiates the active energy rays to bond. It is preferable to be a step of simultaneously curing the layer 1 and the adhesive layer 2.
  • the active energy ray in the step of curing and shrinking the adhesive layer is not particularly limited, and a known active energy ray can be used. Among these, in the present invention, the active energy ray is preferably ultraviolet rays.
  • the adhesive layer 1 and the adhesive layer 2 contain an adhesive that is cured by ultraviolet rays, and one of the first protective film and the second protective film contains an ultraviolet absorber. Is preferably irradiated with ultraviolet rays from the side of the protective film not containing the ultraviolet absorber.
  • the first protective film contains an ultraviolet absorber
  • the step of curing and shrinking the adhesive layer 1 and the adhesive layer 2 irradiates ultraviolet rays from the second protective film side. It is preferable to be a step of simultaneously curing the adhesive layer 1 and the adhesive layer 2.
  • FIG. 2 shows a schematic diagram of such an embodiment. In FIG.
  • the first protective film contains an ultraviolet absorber, and ultraviolet rays (reference numeral UV in the figure) are irradiated from the second protective film (reference numeral 3 in the figure) side.
  • reference numeral 11 in the figure and the adhesive layer 2 (reference numeral 12 in the figure) are simultaneously cured.
  • the first protective film contains an ultraviolet absorber, curling that occurs when a polarizing plate is produced by laminating a polarizer and two protective films using a curable adhesive.
  • the polarizing plate of the present invention can be produced with good productivity while suppressing the above.
  • the first protective film is a polyester film containing a polyester resin as a main component, it is preferable to add an ultraviolet absorber. Therefore, the adhesive layer 1 and the adhesive layer 2 are cured and shrunk in this manner. Is preferred.
  • the image display device of the present invention includes the polarizing plate of the present invention.
  • the image display device include a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (OELD or IELD), a field emission display (FED), a touch panel, and electronic paper.
  • These image display devices preferably include the polarizing plate of the present invention on the display screen side of the image display panel.
  • a roll-to-panel manufacturing method As a method for bonding the polarizing plate of the present invention to an image display device such as a liquid crystal display device, a roll-to-panel manufacturing method can be used, which is preferable in terms of improving productivity and yield.
  • the roll-to-panel manufacturing method is described in JP-A-2011-48381, JP-A-2009-175653, JP-A-4628488, JP-B-4729647, WO2012 / 014602, WO2012 / 014571, and the like. It is not limited.
  • the liquid crystal display device preferably includes the polarizing plate of the present invention and a liquid crystal display element.
  • the liquid crystal display element is typically a liquid crystal panel having a liquid crystal cell in which liquid crystal is sealed between upper and lower substrates and displaying an image by changing the alignment state of the liquid crystal by applying a voltage.
  • the polarizing plate of the present invention can be applied to various known displays such as a display panel, a CRT display, and an organic EL display. Thus, when the polarizing plate of this invention which has a 1st protective film with high retardation is applied to a liquid crystal display element, the curvature of a liquid crystal display element can be prevented.
  • the rainbow-like color spots are caused by the retardation of the first protective film having a high retardation and the emission spectrum of the backlight light source.
  • a fluorescent tube such as a cold cathode tube or a hot cathode tube is used as a backlight source of a liquid crystal display device.
  • the spectral distribution of a fluorescent lamp such as a cold cathode tube or a hot cathode tube shows an emission spectrum having a plurality of peaks, and these discontinuous emission spectra are combined to obtain a white light source.
  • the transmitted light intensity varies depending on the wavelength. For this reason, when the backlight light source has a discontinuous emission spectrum, only a specific wavelength is strongly transmitted, and a rainbow-like color spot is generated.
  • the image display device of the present invention is a liquid crystal display device
  • a backlight light source and a liquid crystal cell disposed between two polarizing plates as constituent members.
  • the configuration of the backlight may be an edge light method using a light guide plate, a reflection plate, or the like, or a direct type, but in the present invention, white is used as the backlight light source of the liquid crystal display device. It is necessary to use a light emitting diode (white LED).
  • the white LED is an element that emits white by combining a phosphor with a phosphor system, that is, a light emitting diode that emits blue light or ultraviolet light using a compound semiconductor.
  • the phosphor include yttrium / aluminum / garnet yellow phosphor and terbium / aluminum / garnet yellow phosphor.
  • white light-emitting diodes which are composed of light-emitting elements that combine blue light-emitting diodes using compound semiconductors with yttrium, aluminum, and garnet-based yellow phosphors, have a continuous and broad emission spectrum and also have high luminous efficiency. Since it is excellent, it is suitable as a backlight light source of the image display device of the present invention.
  • the continuous emission spectrum means that there is no wavelength at which the light intensity becomes zero at least in the visible light region.
  • the white LED with low power consumption can be widely used according to the present invention, an effect of energy saving can be achieved.
  • the mechanism by which the occurrence of rainbow-like color spots is suppressed by the above embodiment is described in International Publication No. WO2011 / 162198, and the contents of this publication are incorporated in the present invention.
  • the arrangement of the polarizing plate of the present invention is not particularly limited.
  • the polarizing plate of the present invention is preferably used as a polarizing plate for the viewing side in a liquid crystal display device.
  • the arrangement of the first protective film having a high in-plane retardation is not particularly limited, but is arranged on the incident light side (light source side), the polarizing plate, the liquid crystal cell, and the outgoing light side (viewing side).
  • the polarizer protective film on the incident light side of the polarizing plate arranged on the incident light side, or the polarizer on the outgoing light side of the polarizing plate arranged on the outgoing light side is preferably the first protective film having a high in-plane retardation.
  • a particularly preferred embodiment is an embodiment in which the polarizer protective film on the exit light side of the polarizing plate disposed on the exit light side is the first protective film having a high in-plane retardation.
  • the first protective film having a high in-plane retardation is disposed at a position other than the above, the polarization characteristics of the liquid crystal cell may be changed. Since the first protective film having a high retardation in the in-plane direction is preferably used in a place where the polarization characteristic is not required, it is preferably used as a protective film for the polarizing plate at such a specific position.
  • FIG. 4 A schematic diagram of a preferred example of a liquid crystal display device is shown in FIG.
  • the liquid crystal display device 30 shown in FIG. 4 has the polarizing plates 20 and 21 of the present invention as the viewing side polarizing plate, and the backlight side polarizing plate 23 on the liquid crystal cell 22 side.
  • the liquid crystal display device 30 has a backlight 26. It does not specifically limit as the backlight side polarizing plate 23, The same polarizing plate as the visual recognition side polarizing plate 21 may be sufficient, and a well-known polarizing plate may be sufficient.
  • the liquid crystal cell preferably has a liquid crystal layer and two glass substrates provided on both sides of the liquid crystal layer. The thickness of the glass substrate is preferably 0.5 mm or less, more preferably 0.4 mm or less, and particularly preferably 0.3 mm or less.
  • the liquid crystal cell of the liquid crystal display device is preferably IPS mode, VA mode, or FFS mode.
  • Example 1 ⁇ Preparation of first protective film >> ⁇ Synthesis of raw material polyester> (Raw material polyester 1) As shown below, terephthalic acid and ethylene glycol are directly reacted to distill off water, esterify, and then, using a direct esterification method in which polycondensation is performed under reduced pressure, raw polyester 1 ( Sb catalyst system PET) was obtained.
  • the reaction product was transferred to a second esterification reaction vessel, and reacted with stirring at a temperature in the reaction vessel of 250 ° C. and an average residence time of 1.2 hours.
  • an ethylene glycol solution of magnesium acetate and an ethylene glycol solution of trimethyl phosphate are continuously supplied so that the added amount of Mg and the added amount of P are 65 ppm and 35 ppm in terms of element, respectively. did.
  • reaction tank temperature was 276 ° C.
  • reaction tank pressure was 5 torr (6.67 ⁇ 10 ⁇ 4 MPa)
  • residence time was about 1.2 hours.
  • the reaction (polycondensation) was performed under the conditions.
  • the reaction product (polyethylene terephthalate (PET)) was obtained by reaction (polycondensation) under the following conditions.
  • polyester pellets cross section: major axis: about 4 mm, minor axis: about 2 mm, length: about 3 mm).
  • This polymer was designated as raw material polyester 1.
  • the raw material polyester 1 (90 parts by mass) and the raw material polyester 2 containing ultraviolet absorbers (10 parts by mass) are dried to a water content of 20 ppm or less and then put into the hopper 1 of a single-screw kneading extruder 1 having a diameter of 50 mm. And was melted to 300 ° C. by the extruder 1. Extrusion was performed from a die through a gear pump and a filter (pore diameter: 20 ⁇ m) under the following extrusion conditions. The molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%.
  • the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
  • the molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled using the peeling roll arrange
  • the obtained unstretched polyester film 1 is guided to a tenter (lateral stretching machine), and the following method and conditions are used in the TD direction (film width direction, lateral direction) while gripping the end of the film with a clip.
  • the film was stretched transversely under conditions to produce a PET film 1 (hereinafter abbreviated as PET1) having a thickness of 80 ⁇ m and a width of 1330 mm.
  • PET1 PET film 1
  • Horizontal stretch ratio 4.3 times
  • Heat fixing part Next, a heat setting treatment was performed while controlling the film surface temperature of the polyester film within the following range. ⁇ Condition> ⁇ Heat setting temperature: 180 °C ⁇ Heat setting time: 15 seconds
  • the polyester film after heat setting was heated to the following temperature to relax the film.
  • -Thermal relaxation temperature 170 ° C
  • TD direction film width direction, lateral direction
  • Adhesive 1 A polarizing plate adhesive was prepared by blending 100 parts by mass of 2-hydroxyethyl acrylate, 10 parts by mass of tolylene diisocyanate, and 3 parts by mass of a photopolymerization initiator (Irgacure 907, manufactured by BASF). This was designated as Adhesive 1.
  • the adhesive was cured by irradiating ultraviolet rays from the bonded COP 1 side, and the layers were bonded.
  • the line speed was 20 m / min, and the cumulative amount of ultraviolet light was 300 mJ / cm 2 .
  • This polarizing plate was used as the polarizing plate of Example 1.
  • Example 2 The polarizing plate of Example 2 is the same as Example 1 except that the film thickness of the adhesive layer 2 between the second protective film and the polarizer is changed from 1.5 ⁇ m to 0.6 ⁇ m in Example 1. And the image display apparatus 1 was manufactured.
  • Example 1 the polarizing plate of Comparative Example 1 was prepared in the same manner as in Example 1 except that the film thickness of the adhesive layer 2 between the second protective film and the polarizer was changed from 1.5 ⁇ m to 3.0 ⁇ m. And the image display apparatus 1 was manufactured.
  • Example 3 In Example 1, the thickness of the adhesive layer 1 between the first protective film and the polarizer was changed from 3.0 ⁇ m to 1.0 ⁇ m, and the adhesion between the second protective film and the polarizer A polarizing plate of Example 3 and the image display device 1 were manufactured in the same manner as Example 1 except that the film thickness of the layer 2 was changed from 1.5 ⁇ m to 0.2 ⁇ m.
  • PET2 A PET film 2 (hereinafter abbreviated as PET2) was produced in the same manner as in Example 1 except that the PET1 of Example 1 was stretched 3 times in the longitudinal direction.
  • the PET2 as a first protective film,
  • COP1 was used as the second protective film and the thickness of the adhesive layer 2 between the second protective film and the polarizer was changed from 1.5 ⁇ m to 3.0 ⁇ m.
  • the polarizing plate of Comparative Example 2 and the image display device 1 were manufactured.
  • Example 4 In Example 1, instead of PET1, the following PET film 3 (hereinafter abbreviated as PET3) is used as the first protective film, and the film thickness of the adhesive layer 2 between the first protective film and the polarizer is used. Is changed from 3.0 ⁇ m to 5.0 ⁇ m, and the film thickness of the adhesive layer 2 between the second protective film and the polarizer is changed from 1.5 ⁇ m to 0.6 ⁇ m. Thus, the polarizing plate of Example 4 and the image display devices 1 and 2 were produced. The manufacturing method of PET film 3 is shown below.
  • Polyester resin 60 parts by mass Acrylic resin: (II) 25 parts by mass Melamine compound: (VIB) 10 parts by mass Particles: (VII) 5 parts by mass Details of the compounds used are shown below.
  • Emulsion polymer of ethyl acrylate / n-butyl acrylate / methyl methacrylate / N-methylol acrylamide / acrylic acid 65/21/10
  • a mixed coating liquid (acryl-1) having the following composition is applied to the surface of the PET 1 obtained in Example 1 on which the coating liquid H1 for the hard coat layer-side easy-adhesion layer is applied so that the dry film thickness becomes 5 ⁇ m. It was applied, dried, and cured by irradiating with ultraviolet rays to form a hard coat layer.
  • Dipentaerythritol hexaacrylate 85 parts by mass 2-hydroxy-3-phenoxypropyl acrylate 15 parts by mass
  • Photopolymerization initiator (trade name: Irgacure 184, manufactured by Ciba Specialty Chemicals) 5 parts by mass Methyl ethyl ketone 200 parts by mass
  • Example 5 A PET film 4 (hereinafter abbreviated as PET4) having a thickness changed to 60 ⁇ m was produced in the same manner as the PET film 1 of Example 1.
  • Example 1 except that PET4 was used instead of PET1 as the first protective film, and the film thickness of the adhesive layer 2 between the second protective film and the polarizer was changed from 1.5 ⁇ m to 1.8 ⁇ m.
  • the polarizing plate of Example 5 and the image display apparatus 1 were manufactured.
  • PET5 PET film 5 having a thickness changed to 40 ⁇ m was produced in the same manner as the PET film 1 of Example 1.
  • Example 1 except that PET5 was used instead of PET1 as the first protective film, and the film thickness of the adhesive layer 2 between the second protective film and the polarizer was changed from 1.5 ⁇ m to 3.8 ⁇ m.
  • the polarizing plate of Example 6 and the image display apparatus 1 were manufactured.
  • Example 7 In Example 1, instead of PET1, the following PET film 6 (hereinafter abbreviated as PET6) was used as the first protective film, and COP2 produced in Comparative Example 2 was used as the second protective film instead of COP1. And the polarizing plate of Example 7 except that the film thickness of the adhesive layer 2 between the second protective film and the polarizer was changed from 1.5 ⁇ m to 2.0 ⁇ m, Image display devices 1 and 2 were manufactured.
  • PET6 PET film 6
  • COP2 produced in Comparative Example 2 was used as the second protective film instead of COP1.
  • the polarizing plate of Example 7 except that the film thickness of the adhesive layer 2 between the second protective film and the polarizer was changed from 1.5 ⁇ m to 2.0 ⁇ m, Image display devices 1 and 2 were manufactured.
  • the extruder 2 (outer layer I layer, outer layer III layer). These two kinds of polymer melts are respectively passed through a gear pump and a filter (pore diameter 20 ⁇ m), and then the polymer extruded from the extruder 1 is extruded into an intermediate layer (II layer) in a two-type three-layer confluence block.
  • the polymer extruded from the machine 2 was laminated so as to be outer layers (I layer and III layer), and extruded from a die into a sheet.
  • the molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%.
  • the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
  • the molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled off using the peeling roll arrange
  • the obtained unstretched polyester film 2 was horizontally stretched under the same conditions as in Example 1 to produce a PET film 6 having a thickness of 80 ⁇ m.
  • Example 8 In Example 1, instead of COP1 as the second protective film, an acrylic film 1 (hereinafter abbreviated as PMMA1) shown below is used, and the adhesive layer 2 between the second protective film and the polarizer is used. A polarizing plate of Example 8 was obtained in the same manner as Example 1 except that the film thickness was changed from 1.5 ⁇ m to 0.6 ⁇ m. An image display device 2 shown below was produced using this polarizing plate.
  • PMMA1 acrylic film 1
  • PMMA1 acrylic film 1 shown below
  • Example 9 In Example 1, instead of COP1 as the second protective film, the following cellulose acylate film 1 (hereinafter abbreviated as DAC1) was used after saponification under the following conditions, and the second protective film and The polarizing plate of Example 9 and the image display devices 1 and 2 are manufactured in the same manner as in Example 1 except that the film thickness of the adhesive layer 2 between the polarizer and the polarizer is changed from 1.5 ⁇ m to 2.0 ⁇ m. did.
  • DAC1 cellulose acylate film 1
  • ⁇ Manufacture of DAC1> (Preparation of cellulose acylate) Cellulose acylate was synthesized by the method described in JP-A Nos. 10-45804 and 08-231761, and the degree of substitution was measured. Specifically, sulfuric acid (7.8 parts by mass with respect to 100 parts by mass of cellulose) was added as a catalyst, carboxylic acid serving as a raw material for the acyl substituent was added, and an acylation reaction was performed at 40 ° C. At this time, the kind and substitution degree of the acyl group were adjusted by adjusting the kind and amount of the carboxylic acid. In addition, aging was performed at 40 ° C. after acylation. Further, the low molecular weight component of the cellulose acylate was removed by washing with acetone.
  • the obtained web was peeled off from the band, sandwiched between clips, and a tenter was used at a stretching temperature of 140 ° C. and a stretching ratio of 1.08 when the amount of residual solvent relative to the total mass of the film was 20-5%. And stretched laterally. Then, after removing the clip from the film and drying at 130 ° C. for 20 minutes, the film was further stretched again using a tenter at a stretching temperature of 180 ° C. and a stretching ratio of 1.2 times.
  • the residual solvent amount was determined according to the following formula.
  • Residual solvent amount (% by mass) ⁇ (MN) / N ⁇ ⁇ 100
  • M is a mass of the web at an arbitrary time point
  • N is a mass when the web of which M is measured is dried at 120 ° C. for 2 hours. In this way, DAC1 was obtained.
  • the film thickness was 58 ⁇ m.
  • Re was 54 nm and Rth was 120 nm.
  • Example 5 In Example 5, the thickness of the adhesive layer 1 between the first protective film and the polarizer was changed from 3.0 ⁇ m to 4.0 ⁇ m, and the adhesion between the second protective film and the polarizer A polarizing plate of Comparative Example 3 and the image display devices 1 and 2 were manufactured in the same manner as in Example 5 except that the film thickness of the layer 2 was changed from 1.8 ⁇ m to 0.8 ⁇ m.
  • ⁇ Re, Rth, Nz of the first protective film> Using two polarizing plates, the orientation axis direction of the first protective film was determined, and a 4 cm ⁇ 2 cm rectangle was cut out so that the orientation axis directions were orthogonal to each other, and used as a measurement sample. With respect to this sample, the biaxial refractive index (Nx, Ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were determined by an Abbe refractometer (NAGO-4T manufactured by Atago Co., Ltd., measurement wavelength 589 nm).
  • NAGO-4T Abbe refractometer
  • the thickness y 1 (nm) of the first protective film was measured using an electric micrometer (Millitron 1245D, manufactured by Fine Reef Co., Ltd.), and the unit was converted to nm. Measured Nx, Ny, Nz, Re from the value of y 1, Rth, Nz was calculated.
  • ⁇ Re, Rth of the second protective film The sample film was conditioned for 24 hours at 25 ° C and 60% relative humidity, and then the surface of the film was measured at 25 ° C and 60% relative humidity using an automatic birefringence meter (KOBRA-21ADH: manufactured by Oji Scientific Instruments).
  • the phase difference at a wavelength of 590 nm is measured from the direction inclined in increments of 10 ° from + 50 ° to ⁇ 50 ° from the normal to the film surface with the vertical direction and the slow axis as the rotation axis, and the in-plane retardation value (Re ) And the retardation value (Rth) in the film thickness direction.
  • ⁇ Thickness of polarizing plate, protective film, adhesive layer, polarizer> The cross section of the manufactured polarizing plate was observed with SEM (scanning microscope), and the thicknesses of the polarizing plate, the first and second protective films, the adhesive layer, and the polarizer were measured.
  • ⁇ Protective film, adhesive layer, elastic modulus of polarizer> Samples having a measurement direction length of 200 mm and a width of 10 mm were prepared for the elastic modulus in the MD direction and TD direction of the first and second protective films and in the MD direction of the polarizing plate. Using V10-C, the sample shape was measured with a width of 10 mm and a length between chucks of 100 mm.
  • the elastic modulus of the polarizer was obtained by the following formula (7) by measuring the elastic modulus Et and the total film thickness yt of the entire polarizing plate by the above method.
  • the elastic modulus of the adhesive layer was measured in the same manner as the protective film, after coating the adhesive 1 on the separator and irradiating ultraviolet rays to produce a test piece having the same size as the sample size.
  • the maximum direction of the elastic modulus in the surface of the first protective film was adjusted for 2 hours or more in an atmosphere of 25 ° C. and 60% relative humidity using a sound velocity measuring device “SST-2501, Nomura Corporation”.
  • the sound speed was measured by dividing the 360 degree direction into 32 parts in an atmosphere of 25 ° C. and a relative humidity of 60%, and the maximum speed direction was determined as the maximum direction of the in-plane elastic modulus.
  • the maximum direction of the in-plane elastic modulus of the first protective film was the TD direction, which was perpendicular to the absorption axis of the polarizer.
  • Cure shrinkage of the adhesive layer 1 and 2 epsilon (%) is the density ⁇ 1 (g / cm 3) of adhesive 1 before curing, dry density density of the adhesive 1 ⁇ 2 (g / cm 3) after curing It measured with the measuring machine (The Shimadzu make, Accupic 1340), and computed by following formula (8).
  • (1- ⁇ 1 / ⁇ 2) ⁇ 100 (8)
  • ⁇ Film thickness of adhesive layers 1 and 2> The cross section of the manufactured polarizing plate was observed with SEM (scanning microscope), and the film thicknesses of the adhesive layers 1 and 2 were measured.
  • ⁇ Curl evaluation> A test piece having a size of (MD) 15 cm ⁇ (TD) 1.5 cm was cut out from the produced polarizing plate and placed in a temperature-humidity environment at 25 ° C. and a relative humidity of 60% for 4 hours or more.
  • the curl amount in the MD direction that is, the curl amount in the absorption axis direction of the polarizer
  • the amount of lifting when the first protective film side (outer side) is placed upward is defined as the plus direction.
  • the amount of lifting cannot be measured even if the first protective film side (outer side) is placed upwards.
  • the second protective film side (inner side) is placed upwards, the amount of lifting is measured, and a minus sign is given.
  • the average lift of the four corners of the polarizing plate (the curl amount in the MD direction, that is, the curl amount in the absorption axis direction of the polarizer) is most preferably less than 3 mm.
  • 3 mm or more and less than 10 mm is preferable.
  • 10 mm or more is not preferable, and this is C. Practically, it is necessary to be A evaluation or B evaluation, and it is preferable that it is A evaluation.
  • the curl amount in the MD direction of the polarizing plate becomes negative, bubbles are likely to be formed when being bonded to the liquid crystal cell, which is not preferable.
  • ⁇ Rainbow-like unevenness evaluation of image display devices 1 and 2> The produced liquid crystal display devices (the image display devices 1 and 2 described above) were visually evaluated by a plurality of observers for rainbow-like unevenness during white display. -Evaluation index- A: Iridescent unevenness was hardly observed. B: Rainbow-like unevenness was weak, but was observed to the extent that it was visible. C: Iridescent unevenness is clearly observed and is not acceptable. Practically, it is necessary to be A evaluation or B evaluation, and it is preferable that it is A evaluation. In any case, the image display devices 1 and 2 had the same evaluation.
  • the polarizing plate of the present invention occurs when a polarizing plate is produced by laminating a polarizer and two protective films using a curable adhesive (MD direction, ie, It was found that curling (in the absorption axis direction of the polarizer) can be suppressed, and rainbow-like unevenness is difficult to be visually recognized when incorporated in a liquid crystal display device. On the other hand, it was found from Comparative Example 1 that when the lower limit value of the range of the formula (2) is below (the moment due to the curing shrinkage force ratio between the adhesive layers 1 and 2), the curling of the polarizing plate increases.
  • Example 4 When the thickness of the adhesive layer was made thinner than in Example 3, curling of the polarizing plate was improved, but bubbles were formed during the production of the polarizing plate.
  • PET having a smaller phase difference than Comparative Example 2 was used, it was found that rainbow-like unevenness was observed and the curling of the polarizing plate was also deteriorated. From the results of Example 4, it was found that even the PET film with a hard coat layer can suppress the curling of the polarizing plate according to the present invention. Even if the film thickness of the first protective film is thinner than in Examples 5 and 6, curling of the polarizing plate can be suppressed according to the present invention. It turns out that it becomes easy to be visually recognized.
  • Example 7 it was found that even the PET film produced by coextrusion can suppress the curling of the polarizing plate according to the present invention. From Examples 8 and 9, it was found that the curling of the polarizing plate can be suppressed by the present invention even when the second protective film is an acrylic resin or a cellulose resin. From Comparative Example 3, it was found that when the upper limit of the range of the formula (2) was exceeded (the moment due to the curing shrinkage force ratio between the adhesive layers 1 and 2), the curling of the polarizing plate was increased.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

A polarizing plate that contains a first protective film with an Re of at least 3,000 nm bonded to one surface of a polarizer with an adhesive layer (1) interposed therebetween and a second protective film bonded to the other surface of said polarizer with another adhesive layer (2) interposed therebetween, satisfies the inequality E1 ≠ E3 and/or the inequality y1 ≠ y3, and also satisfies relation (2) makes it possible to: minimize the curling that occurs when a polarizing plate is fabricated by bonding together a polarizer and two protective films using a curable adhesive; and reduce the visibility of rainbow-like unevenness when said polarizing plate is incorporated into a liquid-crystal display (E1, E2, and E3 represent the elastic moduli of the first protective film, the polarizer, and the second protective film, respectively; y1, y2, and y3 represent the thicknesses of the first protective film, the polarizer, and the second protective film, respectively; S1 and S2 represent the contractive forces due to the curing of the respective adhesive layers (1 and 2) when said adhesive layers are bonded to the polarizing plate; y is a coordinate that represents the distance from the upper surface of the first protective film in the direction of the polarizer; E(y) represents the elastic modulus of the member at position y; and ∫y represents an integral taken over the entire thickness of the polarizing plate).

Description

偏光板及び画像表示装置Polarizing plate and image display device
 本発明は、硬化型接着剤で作製した偏光板及び画像表示装置に関するものである。 The present invention relates to a polarizing plate and an image display device produced with a curable adhesive.
 液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(OELD又はIELD)、フィールドエミッションディスプレイ(FED)、タッチパネル、電子ペーパー等の画像表示装置は、画像表示パネルの表示画面側に偏光板が配置されている。一般に偏光板は、ポリビニルアルコール系樹脂からなる偏光子の一方の面に、接着剤を介して透明樹脂からなる保護フィルムが貼合され偏光子のもう一方の面にも、接着剤を介して透明樹脂フィルムを保護フィルムとして貼合された構造になっている。偏光板保護フィルムは偏光子に対する保護機能を有するほか、表示面側の保護フィルムについては反射防止機能、紫外線吸収機能などの機能をもたせたものが一般的であり、液晶セル側の保護フィルムについては液晶セルの光学補償や視野角補償を目的に、面内および/または厚み方向の位相差が付与されたいわゆる位相差フィルムであることもある。 Image display devices such as liquid crystal display (LCD), plasma display (PDP), electroluminescence display (OELD or IELD), field emission display (FED), touch panel, and electronic paper have a polarizing plate on the display screen side of the image display panel. Has been placed. In general, a polarizing plate has a protective film made of a transparent resin bonded to one side of a polarizer made of polyvinyl alcohol resin via an adhesive, and is also transparent to the other side of the polarizer through an adhesive. It has a structure in which a resin film is bonded as a protective film. The polarizing plate protective film has a protective function against the polarizer, and the protective film on the display surface side is generally provided with functions such as an antireflection function and an ultraviolet absorption function, and the protective film on the liquid crystal cell side. For the purpose of optical compensation and viewing angle compensation of a liquid crystal cell, it may be a so-called retardation film provided with an in-plane and / or thickness direction retardation.
 この表示側の保護フィルムとして、従来よく用いられていた位相差の小さいセルロースアシレートフィルムに変えて、ポリエステルフィルムを用いた例が知られている。例えば特許文献1では表示側の保護フィルムとしてポリエステルフィルム、液晶セル側の保護フィルムとしてセルロースエステルフィルムを使用し、活性エネルギー線硬化型接着剤により偏光板を作製している。しかしながら、ポリエステルフィルムは位相差が大きいため、ポリエステルフィルムを偏光板保護フィルムとして用いて製造した偏光板は、液晶表示装置に組み込んだときに虹状のムラが生じてしまうため、表示性能の観点から液晶セル側の保護フィルムとして使用するのは難しい。 As the protective film on the display side, an example in which a polyester film is used instead of a cellulose acylate film having a small retardation which has been conventionally used is known. For example, in Patent Document 1, a polyester film is used as a protective film on the display side, and a cellulose ester film is used as a protective film on the liquid crystal cell side, and a polarizing plate is produced with an active energy ray-curable adhesive. However, since a polyester film has a large retardation, a polarizing plate produced using a polyester film as a polarizing plate protective film causes rainbow-like unevenness when incorporated in a liquid crystal display device, and from the viewpoint of display performance. It is difficult to use as a protective film on the liquid crystal cell side.
 これに対し、虹ムラを改善した偏光板保護フィルムとして、一軸方向に延伸することにより通常よりレターデーションを大きくすることで虹ムラを視認されにくくしたポリエステルフィルムの使用が検討されつつある(特許文献2参照)。 On the other hand, as a polarizing plate protective film with improved rainbow unevenness, the use of a polyester film in which the rainbow unevenness is made difficult to be visually recognized by making the retardation larger than usual by stretching in a uniaxial direction is being studied (Patent Literature). 2).
 近年偏光板作製時の偏光子への保護フィルム貼合に活性エネルギー線硬化型接着剤などの硬化型接着剤が使われるようになってきている。硬化型接着剤は、接着剤の硬化反応により、偏光子フィルムと保護フィルムとの間で接着力を発現する。 In recent years, curable adhesives such as active energy ray curable adhesives have been used for bonding protective films to polarizers during the production of polarizing plates. The curable adhesive exhibits an adhesive force between the polarizer film and the protective film by the curing reaction of the adhesive.
特開2012-137723号公報JP 2012-137723 A 国際公開WO2011/162198号International Publication WO2011 / 162198
 ところが、本発明者らが検討したところ、ポリエステルフィルムを偏光子の一方の側の保護フィルムとし、もう一方の側の保護フィルムに異なる種類のフィルムを使用して硬化型接着剤により偏光板作製時に、接着層の硬化収縮により偏光板がカールし、その後液晶セルに貼合する際に気泡や異物が入る問題があることがわかった。また、虹状のムラを解消するための特許文献2に記載の面内方向のレターデーションが高いポリエステルフィルムを用いた場合も、同様の問題があることがわかった。 However, when the present inventors examined, the polyester film was used as a protective film on one side of the polarizer, and a different type of film was used as the protective film on the other side, and a polarizing plate was prepared using a curable adhesive. It was found that the polarizing plate curls due to the curing shrinkage of the adhesive layer, and then there is a problem that air bubbles and foreign matters enter when pasting to the liquid crystal cell. Further, it was found that the same problem was caused when using a polyester film having a high retardation in the in-plane direction described in Patent Document 2 for eliminating rainbow-like unevenness.
 本発明が解決しようとする課題は、硬化型接着剤を用いて偏光子と2枚の保護フィルムを貼り合わせて偏光板を作製したときに発生するカールを抑えることができ、かつ液晶表示装置に組み込んだときに虹状のムラが視認されにくい偏光板を提供することである。 The problem to be solved by the present invention is that a curling which occurs when a polarizing plate is produced by laminating a polarizer and two protective films using a curable adhesive can be suppressed. It is an object of the present invention to provide a polarizing plate in which rainbow-like unevenness is difficult to be visually recognized when incorporated.
 上記課題を解決するために本発明者らが鋭意検討した結果、第一の保護フィルムとして面内方向のレターデーションが大きくて虹ムラを抑制できるフィルムを用い、第一および第二の保護フィルムならびに偏光子の膜厚、弾性率の値に応じて、硬化型接着剤を用いた接着層の硬化時の硬化収縮力を制御することにより、上記課題を解決できることを見出した。 As a result of intensive studies by the present inventors in order to solve the above problems, the first protective film is a film that has a large retardation in the in-plane direction and can suppress rainbow unevenness, and the first and second protective films and It has been found that the above-mentioned problems can be solved by controlling the curing shrinkage force at the time of curing of the adhesive layer using the curable adhesive according to the film thickness and elastic modulus value of the polarizer.
 すなわち、上記課題は、以下の構成の本発明によって解決される。
[1] 偏光性能を有する偏光子と、
 偏光子の一方の面に接着層1を介して貼合された第一の保護フィルムと、
 偏光子の他方の面に接着層2を介して貼合された第二の保護フィルムとを含み、
 第一の保護フィルムの面内方向のレターデーションが3000nm以上であり、
 下記式(A)および(B)のうち少なくとも一方を満たし、
下記式(2)を満たす偏光板。
 ≠ E・・・式(A)
 ≠ y・・・式(B)
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
(式(A)、(B)、(1)および(2)中、Eは第一の保護フィルムの弾性率(単位:GPa)を表し、yは第一の保護フィルムの膜厚(単位:μm)を表し、Eは偏光子の弾性率(単位:GPa)を表し、yは偏光子の膜厚(単位:μm)を表し、Eは第二の保護フィルムの弾性率(単位:GPa)を表し、yは第二の保護フィルムの膜厚(単位:μm)を表し、Sは接着層1の偏光板貼合時の硬化収縮力を表し、Sは接着層2の偏光板貼合時の硬化収縮力を表し、
Figure JPOXMLDOC01-appb-M000006
は偏光板の全膜厚にわたっての積分、yは第一の保護フィルムの上面から偏光子方向に取った座標、E(y)はその座標における部材の弾性率(単位:GPa))。
[2] [1]に記載の偏光板は、接着層1および接着層2が活性エネルギー線により硬化する接着剤を含むことが好ましい。
[3] [1]または[2]に記載の偏光板は、接着層1および接着層2の厚みが0.5~5μmであることが好ましい。
[4] [1]~[3]のいずれかに記載の偏光板は、第一の保護フィルムがポリエステル樹脂またはポリカーボネート樹脂を主成分として含むことが好ましい。
[5] [1]~[4]のいずれかに記載の偏光板は、第一の保護フィルム上に易接着層とハードコート層が配置されたことが好ましい。
[6] [1]~[5]のいずれかに記載の偏光板は、偏光子の弾性率Eが10~30GPaであることが好ましい。
[7] 偏光性能を有する偏光子の一方の面に接着層1を介して面内方向のレターデーションが3000nm以上である第一の保護フィルムを貼合する工程と、
 偏光子の他方の面に接着層1とは異なる膜厚に制御した接着層2を介して第二の保護フィルムを貼合する工程と、
 接着層1と接着層2を硬化収縮させる工程とを含むことを特徴とする[1]~[6]のいずれかに記載の偏光板の製造方法。
[8] [7]に記載の偏光板の製造方法は、接着層1および接着層2が活性エネルギー線により硬化する接着剤を含み、
 接着層1と接着層2を硬化収縮させる工程が活性エネルギー線を照射して接着層1と接着層2を同時に硬化させる工程であることが好ましい。
[9] [7]または[8]に記載の偏光板の製造方法は、接着層1および接着層2が紫外線により硬化する接着剤を含み、
 第一の保護フィルムが紫外線吸収剤を含み、
 接着層1と接着層2を硬化収縮させる工程が前記第二の保護フィルム側から紫外線を照射して接着層1と接着層2を同時に硬化させる工程であることが好ましい。
[10] [7]~[9]のいずれかに記載の偏光板の製造方法は、接着層1と接着層2の組成が同じであることが好ましい。
[11] [1]~[6]のいずれかに記載の偏光板を含むことを特徴とする画像表示装置。
That is, the said subject is solved by this invention of the following structures.
[1] A polarizer having polarization performance;
A first protective film bonded to one surface of the polarizer via the adhesive layer 1;
Including a second protective film bonded to the other surface of the polarizer via the adhesive layer 2,
The in-plane direction retardation of the first protective film is 3000 nm or more,
Satisfy at least one of the following formulas (A) and (B),
A polarizing plate satisfying the following formula (2).
E 1 ≠ E 3 ... Formula (A)
y 1 ≠ y 3 ... Formula (B)
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
(In the formulas (A), (B), (1) and (2), E 1 represents the elastic modulus (unit: GPa) of the first protective film, and y 1 represents the film thickness of the first protective film ( (Unit: μm), E 2 represents the elastic modulus (unit: GPa) of the polarizer, y 2 represents the film thickness (unit: μm) of the polarizer, and E 3 represents the elastic modulus of the second protective film. (Unit: GPa), y 3 represents the film thickness (unit: μm) of the second protective film, S 1 represents the curing shrinkage force when the adhesive layer 1 is bonded to the polarizing plate, and S 2 represents adhesion. It represents the curing shrinkage force at the time of laminating the polarizing plate of layer 2,
Figure JPOXMLDOC01-appb-M000006
Is the integral over the entire film thickness of the polarizing plate, y is the coordinate taken in the direction of the polarizer from the top surface of the first protective film, and E (y) is the elastic modulus (unit: GPa) of the member at that coordinate.
[2] The polarizing plate according to [1] preferably includes an adhesive that allows the adhesive layer 1 and the adhesive layer 2 to be cured by active energy rays.
[3] In the polarizing plate according to [1] or [2], the thickness of the adhesive layer 1 and the adhesive layer 2 is preferably 0.5 to 5 μm.
[4] In the polarizing plate according to any one of [1] to [3], the first protective film preferably contains a polyester resin or a polycarbonate resin as a main component.
[5] In the polarizing plate according to any one of [1] to [4], it is preferable that an easy-adhesion layer and a hard coat layer are disposed on the first protective film.
[6] [1] ~ polarizing plate according to any one of [5] is preferably an elastic modulus E 2 of the polarizer is 10 ~ 30 GPa.
[7] A step of bonding a first protective film having an in-plane retardation of 3000 nm or more to one surface of a polarizer having polarizing performance via the adhesive layer 1;
Bonding the second protective film to the other surface of the polarizer via the adhesive layer 2 controlled to have a film thickness different from the adhesive layer 1;
The method for producing a polarizing plate according to any one of [1] to [6], further comprising a step of curing and shrinking the adhesive layer 1 and the adhesive layer 2.
[8] The method for producing a polarizing plate according to [7] includes an adhesive in which the adhesive layer 1 and the adhesive layer 2 are cured by active energy rays,
The step of curing and shrinking the adhesive layer 1 and the adhesive layer 2 is preferably a step of irradiating active energy rays to simultaneously cure the adhesive layer 1 and the adhesive layer 2.
[9] The method for producing a polarizing plate according to [7] or [8] includes an adhesive in which the adhesive layer 1 and the adhesive layer 2 are cured by ultraviolet rays,
The first protective film contains a UV absorber;
The step of curing and shrinking the adhesive layer 1 and the adhesive layer 2 is preferably a step of simultaneously curing the adhesive layer 1 and the adhesive layer 2 by irradiating ultraviolet rays from the second protective film side.
[10] In the method for producing a polarizing plate according to any one of [7] to [9], the compositions of the adhesive layer 1 and the adhesive layer 2 are preferably the same.
[11] An image display device comprising the polarizing plate according to any one of [1] to [6].
 本発明によれば、硬化型接着剤を用いて偏光子と2枚の保護フィルムを貼り合わせて偏光板を作製したときに発生するカールを抑えることができ、かつ液晶表示装置に組み込んだときに虹状のムラが視認されにくい偏光板を提供することができる。 According to the present invention, when a polarizing plate is produced by laminating a polarizer and two protective films using a curable adhesive, curling that occurs can be suppressed, and when it is incorporated into a liquid crystal display device A polarizing plate in which rainbow-like unevenness is hardly visible can be provided.
本発明の偏光板の一例の断面を示す概略図である。It is the schematic which shows the cross section of an example of the polarizing plate of this invention. 本発明の偏光板を作製するときの接着層の硬化収縮力の方向を示した概略図である。It is the schematic which showed the direction of the hardening shrinkage force of the contact bonding layer when producing the polarizing plate of this invention. 本発明の偏光板における、接着層の硬化収縮力を制御する方法の説明のためのモデルの概略図である。It is the schematic of the model for description of the method of controlling the hardening shrinkage force of the contact bonding layer in the polarizing plate of this invention. 本発明の画像表示装置の一例の断面を示す概略図である。It is the schematic which shows the cross section of an example of the image display apparatus of this invention.
 以下、本発明の偏光板および画像表示装置について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、本明細書において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
Hereinafter, the polarizing plate and the image display device of the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
[偏光板]
 本発明の偏光板は、偏光性能を有する偏光子と、前記偏光子の一方の面に接着層1を介して貼合された第一の保護フィルムと、前記偏光子の他方の面に接着層2を介して貼合された第二の保護フィルムとを含み、前記第一の保護フィルムの面内方向のレターデーションが3000nm以上であり、下記式(A)および(B)のうち少なくとも一方を満たし、下記式(2)を満たすことを特徴とする。
 ≠ E・・・式(A)
 ≠ y・・・式(B)
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
(式(A)、(B)、(1)および(2)中、Eは第一の保護フィルムの弾性率(単位:GPa)を表し、yは第一の保護フィルムの膜厚(単位:μm)を表し、Eは偏光子の弾性率(単位:GPa)を表し、yは偏光子の膜厚(単位:μm)を表し、Eは第二の保護フィルムの弾性率(単位:GPa)を表し、yは第二の保護フィルムの膜厚(単位:μm)を表し、Sは接着層1の偏光板貼合時の硬化収縮力を表し、Sは接着層2の偏光板貼合時の硬化収縮力を表し、
Figure JPOXMLDOC01-appb-M000009
は偏光板の全膜厚にわたっての積分、yは第一の保護フィルムの上面から偏光子方向に取った座標、E(y)はその座標における部材の弾性率(単位:GPa))。
 このような構成により、本発明の偏光板は、硬化型接着剤を用いて偏光子と2枚の保護フィルムを貼り合わせて偏光板を作製したときに発生するカール(特にMD方向のカール)を抑えることができ、かつ液晶表示装置に組み込んだときに虹状のムラが視認されにくい。
 なお、本発明の偏光板は、特にMD方向のカールを抑えることができるが、MD方向のカールが完全に解消された場合におけるTD方向のカールについても特に問題はない。
[Polarizer]
The polarizing plate of the present invention includes a polarizer having polarizing performance, a first protective film bonded to one surface of the polarizer via an adhesive layer 1, and an adhesive layer on the other surface of the polarizer. And the second protective film bonded through 2, the retardation in the in-plane direction of the first protective film is 3000 nm or more, and at least one of the following formulas (A) and (B) And satisfying the following formula (2).
E 1 ≠ E 3 ... Formula (A)
y 1 ≠ y 3 ... Formula (B)
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
(In the formulas (A), (B), (1) and (2), E 1 represents the elastic modulus (unit: GPa) of the first protective film, and y 1 represents the film thickness of the first protective film ( (Unit: μm), E 2 represents the elastic modulus (unit: GPa) of the polarizer, y 2 represents the film thickness (unit: μm) of the polarizer, and E 3 represents the elastic modulus of the second protective film. (Unit: GPa), y 3 represents the film thickness (unit: μm) of the second protective film, S 1 represents the curing shrinkage force when the adhesive layer 1 is bonded to the polarizing plate, and S 2 represents adhesion. It represents the curing shrinkage force at the time of laminating the polarizing plate of layer 2,
Figure JPOXMLDOC01-appb-M000009
Is the integral over the entire film thickness of the polarizing plate, y is the coordinate taken in the direction of the polarizer from the top surface of the first protective film, and E (y) is the elastic modulus (unit: GPa) of the member at that coordinate.
With such a configuration, the polarizing plate of the present invention has curl (particularly MD direction curling) that occurs when a polarizing plate is produced by laminating a polarizer and two protective films using a curable adhesive. It can be suppressed and rainbow-like unevenness is difficult to be visually recognized when it is incorporated in a liquid crystal display device.
The polarizing plate of the present invention can suppress curl in the MD direction in particular, but there is no particular problem with curl in the TD direction when MD direction curl is completely eliminated.
<構成>
 まず、本発明の偏光板の構成を、図面に基づいて説明する。
 図1に示した本発明の偏光板(図中の符号20)は、偏光性能を有する偏光子(図中の符号2)と、前記偏光子の一方の面に接着層1(図中の符号11)を介して貼合された第一の保護フィルム(図中の符号1)と、前記偏光子の他方の面に接着層2(図中の符号12)を介して貼合された第二の保護フィルム(図中の符号3)とを含むものである。
<Configuration>
First, the structure of the polarizing plate of this invention is demonstrated based on drawing.
A polarizing plate (reference numeral 20 in the figure) of the present invention shown in FIG. 1 includes a polarizer having a polarization performance (reference numeral 2 in the figure), and an adhesive layer 1 (reference numeral in the figure) on one surface of the polarizer. 11) bonded through the first protective film (reference numeral 1 in the figure) and the other surface of the polarizer through the adhesive layer 2 (reference numeral 12 in the figure). And a protective film (reference numeral 3 in the figure).
 本発明の偏光板は、下記式(A)および(B)のうち少なくとも一方を満たす。
 ≠ E・・・式(A)
 ≠ y・・・式(B)
 すなわち、本発明の偏光板は、第一の保護フィルムの弾性率と第二の保護フィルムの弾性率が等しくないか、第一の保護フィルムの膜厚と第二の保護フィルムの膜厚が等しくない。このような構成の偏光板は、後述する偏光板の重心位置である中立軸が偏光子の膜厚方向の中心軸とずれるため、前記式(2)を満たさないと偏光板のカール発生を抑制し難い。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
(式(A)、(B)、(1)および(2)中、Eは第一の保護フィルムの弾性率(単位:GPa)を表し、yは第一の保護フィルムの膜厚(単位:μm)を表し、Eは偏光子の弾性率(単位:GPa)を表し、yは偏光子の膜厚(単位:μm)を表し、Eは第二の保護フィルムの弾性率(単位:GPa)を表し、yは第二の保護フィルムの膜厚(単位:μm)を表し、Sは接着層1の偏光板貼合時の硬化収縮力を表し、Sは接着層2の偏光板貼合時の硬化収縮力を表し、
Figure JPOXMLDOC01-appb-M000012
は偏光板の全膜厚にわたっての積分、yは第一の保護フィルムの上面から偏光子方向に取った座標、E(y)はその座標における部材の弾性率(単位:GPa))。
The polarizing plate of the present invention satisfies at least one of the following formulas (A) and (B).
E 1 ≠ E 3 ... Formula (A)
y 1 ≠ y 3 ... Formula (B)
That is, in the polarizing plate of the present invention, the elastic modulus of the first protective film and the elastic modulus of the second protective film are not equal, or the film thickness of the first protective film and the film thickness of the second protective film are equal. Absent. In the polarizing plate having such a configuration, the neutral axis, which is the center of gravity position of the polarizing plate described later, is shifted from the central axis in the film thickness direction of the polarizer. Therefore, curling of the polarizing plate is suppressed unless the formula (2) is satisfied. It is hard to do.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
(In the formulas (A), (B), (1) and (2), E 1 represents the elastic modulus (unit: GPa) of the first protective film, and y 1 represents the film thickness of the first protective film ( (Unit: μm), E 2 represents the elastic modulus (unit: GPa) of the polarizer, y 2 represents the film thickness (unit: μm) of the polarizer, and E 3 represents the elastic modulus of the second protective film. (Unit: GPa), y 3 represents the film thickness (unit: μm) of the second protective film, S 1 represents the curing shrinkage force when the adhesive layer 1 is bonded to the polarizing plate, and S 2 represents adhesion. It represents the curing shrinkage force at the time of laminating the polarizing plate of layer 2,
Figure JPOXMLDOC01-appb-M000012
Is the integral over the entire film thickness of the polarizing plate, y is the coordinate taken in the direction of the polarizer from the top surface of the first protective film, and E (y) is the elastic modulus (unit: GPa) of the member at that coordinate.
(式(1)、(2)の詳細説明)
 前記式(1)、(2)について説明する。本発明の偏光板は第一の保護フィルム、接着層1、偏光子、接着層2、第二の保護フィルムを少なくとも含む、少なくとも5層の積層体である。偏光板のカールは接着層1、2が硬化時に収縮することが原因で発生しており、そのカールの大きさ、向きは接着層1、2と偏光板の重心位置である中立軸との位置関係で決まる。
(Detailed description of formulas (1) and (2))
The formulas (1) and (2) will be described. The polarizing plate of the present invention is a laminate of at least 5 layers including at least a first protective film, an adhesive layer 1, a polarizer, an adhesive layer 2, and a second protective film. The curling of the polarizing plate is caused by the shrinkage of the adhesive layers 1 and 2 when cured, and the size and direction of the curl are the positions of the adhesive layers 1 and 2 and the neutral axis that is the center of gravity of the polarizing plate. It depends on the relationship.
 前記式(1)は、第一の保護フィルムの偏光子とは反対側の表面を基準として、偏光板の中立軸の位置ηを表す式である。偏光板の中立軸の位置ηと、偏光板に加わる曲げモーメントについて、モデル図として図3を用いて説明する。図3では第一の保護フィルム、偏光子、第二の保護フィルムの三層積層体で表しているが、接着層1、2の中立軸の位置ηの変動への寄与は小さいため三層で近似した。このとき、式(1)は下記(3)で表される。
Figure JPOXMLDOC01-appb-M000013
 この中立軸と接着層1、2の距離がそれぞれ|η-y|、|η-(y+y|で求められ、接着層1、2の偏光板貼合時の硬化収縮力S、Sとの積が偏光板をカールさせる曲げモーメントになる。
The expression (1) is an expression that represents the neutral axis position η of the polarizing plate with reference to the surface of the first protective film opposite to the polarizer. The neutral axis position η of the polarizing plate and the bending moment applied to the polarizing plate will be described with reference to FIG. 3 as a model diagram. In FIG. 3, the three-layer laminate of the first protective film, the polarizer, and the second protective film is shown. However, since the contribution to the fluctuation of the neutral axis position η of the adhesive layers 1 and 2 is small, the three-layer structure is used. Approximated. At this time, Formula (1) is represented by the following (3).
Figure JPOXMLDOC01-appb-M000013
The neutral axis and the distance of the adhesive layer 1 and 2 respectively | η-y 1 |, | η- (y 1 + y 2 | In prompted, cure shrinkage force S 1 when the polarizing plate bonding of the adhesive layer 2 , the bending moment product of S 2 causes curling polarizing plate.
 接着層1、2におけるこの曲げモーメントの比を表したのが前記式(2)であり、前記式(2)の中央の項の値が0.5~1.8の範囲にあるときに硬化型接着剤を用いて偏光子と2枚の保護フィルムを貼り合わせて偏光板を作製したときに発生するカールを小さくすることができる。さらに前記式(2)の中央の項の値は、より好ましくは0.6~1.1の範囲であり、さらに好ましくは0.7~1になるとき硬化型接着剤を用いて偏光子と2枚の保護フィルムを貼り合わせて偏光板を作製したときに発生するカールは無くなる。 The expression (2) expresses the ratio of the bending moments in the adhesive layers 1 and 2 and is cured when the value of the central term of the expression (2) is in the range of 0.5 to 1.8. Curling that occurs when a polarizing plate is produced by laminating a polarizer and two protective films using a mold adhesive can be reduced. Further, the value of the central term in the formula (2) is more preferably in the range of 0.6 to 1.1, and even more preferably 0.7 to 1, using a curable adhesive and a polarizer. Curling that occurs when two protective films are bonded together to produce a polarizing plate is eliminated.
(その他の層)
 本発明の偏光板は、第一の保護フィルム、接着層1、偏光子、接着層2、第二の保護フィルム以外のその他の層を有していてもよい。前記その他の層としては、易接着層、ハードコート層や、その他の公知の機能層を挙げることができる。本発明の偏光板は、写り込み防止やギラツキ抑制、キズ抑制などを目的として、第一の保護フィルム上に易接着層とハードコート層が配置されたことが、好ましい。
 図4に、本発明の偏光板を視認側の偏光板(図中の符号20、21)として用いた、本発明の画像表示装置(図中の符号30)の一例を示した。図4に示す本発明の偏光板は、第一の保護フィルム(図中の符号1)上に易接着層(図中の符号14)とハードコート層(図中の符号15)が配置された態様である。
(Other layers)
The polarizing plate of the present invention may have other layers other than the first protective film, the adhesive layer 1, the polarizer, the adhesive layer 2, and the second protective film. As said other layer, an easily bonding layer, a hard-coat layer, and another well-known functional layer can be mentioned. In the polarizing plate of the present invention, it is preferable that an easy-adhesion layer and a hard coat layer are disposed on the first protective film for the purpose of preventing reflection, suppressing glare, and suppressing scratches.
FIG. 4 shows an example of the image display device of the present invention (reference numeral 30 in the drawing) using the polarizing plate of the present invention as a polarizing plate on the viewing side (reference numerals 20 and 21 in the drawing). In the polarizing plate of the present invention shown in FIG. 4, an easy-adhesion layer (reference numeral 14 in the figure) and a hard coat layer (reference numeral 15 in the figure) are arranged on the first protective film (reference numeral 1 in the figure). It is an aspect.
 以下、本発明の偏光板を構成する各部材やそれらの製造方法などについて、好ましい態様を説明する。 Hereinafter, preferred aspects of each member constituting the polarizing plate of the present invention and the production method thereof will be described.
<偏光子>
 本発明の偏光板は、偏光性能を有する偏光子を有する。
<Polarizer>
The polarizing plate of the present invention has a polarizer having polarization performance.
 前記偏光子としては、従来公知の方法で製造したものを用いることができ、ポリビニルアルコール系偏光子が好ましい。例えば、ポリビニルアルコールあるいはエチレン単位の含有量1~4モル%、重合度2000~4000、けん化度99.0~99.99モル%であるエチレン変性ポリビニルアルコールの如き親水性ポリマーからなるフィルムを、ヨウ素の如き二色性染料で処理して延伸したものや、塩化ビニルの如きプラスチックフィルムを処理して配向させたものを用いる。 As the polarizer, a polarizer produced by a conventionally known method can be used, and a polyvinyl alcohol polarizer is preferable. For example, a film made of a hydrophilic polymer such as polyvinyl alcohol or ethylene-modified polyvinyl alcohol having an ethylene unit content of 1 to 4 mol%, a polymerization degree of 2000 to 4000, and a saponification degree of 99.0 to 99.99 mol%, A film stretched by treatment with a dichroic dye such as the above, or a film oriented by treating a plastic film such as vinyl chloride is used.
 また、基材上にポリビニルアルコール層を形成した積層フィルムの状態で延伸および染色を施すことにより10μm以下の偏光子フィルムを得る方法として、特許第5048120号公報、特許第5143918号公報、特許第5048120号公報、特許第4691205号公報、特許第4751481号公報、特許第4751486号公報を挙げることができ、これらの偏光子に関する公知の技術も本発明の偏光板に好ましく利用することができる。 Moreover, as a method of obtaining a polarizer film of 10 μm or less by stretching and dyeing in the state of a laminated film in which a polyvinyl alcohol layer is formed on a substrate, Patent No. 5048120, Patent No. 5143918, Patent No. 5048120 No. 4, Patent No. 4691205, Patent No. 4751481 and Patent No. 4751486 can be cited, and known techniques relating to these polarizers can also be preferably used for the polarizing plate of the present invention.
 本発明の偏光板は、偏光子の吸収軸方向の弾性率Eが10~30GPaであることが好ましく、15~29GPaであることがより好ましく、15~28GPaであることが特に好ましい。 In the polarizing plate of the present invention, the elastic modulus E 2 in the absorption axis direction of the polarizer is preferably 10 to 30 GPa, more preferably 15 to 29 GPa, and particularly preferably 15 to 28 GPa.
<第一の保護フィルム>
 本発明の偏光板は、偏光子の一方の面に接着層1を介して貼合され、面内方向のレターデーションが3000nm以上である第一の保護フィルムを含む。
<First protective film>
The polarizing plate of the present invention includes a first protective film that is bonded to one surface of the polarizer via the adhesive layer 1 and has an in-plane retardation of 3000 nm or more.
(樹脂)
 前記第一の保護フィルムの主成分としては特に制限はないが、本発明の偏光板は前記第一の保護フィルムがポリエステル樹脂またはポリカーボネート樹脂を主成分として含むことが好ましい。
 前記第一の保護フィルムは、ポリエステル樹脂やポリカーボネート樹脂などの樹脂を主成分とするフィルムであることが好ましいが、ポリエステル樹脂やポリカーボネート樹脂などの樹脂を主成分とする単層フィルムであってもよいし、ポリエステル樹脂やポリカーボネート樹脂などの樹脂を主成分とする層を有する多層フィルムであってもよい。また、これら単層フィルム又は多層フィルムの両面又は片面に表面処理が施されたものであってもよく、この表面処理は、コロナ処理、ケン化処理、熱処理、紫外線照射、電子線照射等による表面改質であってもよいし、高分子や金属等の塗布や蒸着等による薄膜形成であってもよい。フィルム全体に占めるポリエステル樹脂やポリカーボネート樹脂などの樹脂の質量割合は、通常50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上である。
(resin)
Although there is no restriction | limiting in particular as a main component of said 1st protective film, In the polarizing plate of this invention, it is preferable that said 1st protective film contains a polyester resin or a polycarbonate resin as a main component.
The first protective film is preferably a film mainly containing a resin such as a polyester resin or a polycarbonate resin, but may be a single layer film mainly containing a resin such as a polyester resin or a polycarbonate resin. Further, it may be a multilayer film having a layer mainly composed of a resin such as a polyester resin or a polycarbonate resin. Moreover, the surface treatment may be performed on both surfaces or one surface of these single layer films or multilayer films, and this surface treatment is performed by corona treatment, saponification treatment, heat treatment, ultraviolet irradiation, electron beam irradiation, or the like. Modification may be sufficient, and thin film formation by application | coating, vapor deposition, etc. of a polymer, a metal, etc. may be sufficient. The mass ratio of the resin such as polyester resin or polycarbonate resin in the entire film is usually 50 mass% or more, preferably 70 mass% or more, more preferably 90 mass% or more.
-ポリエステルフィルム-
 前記第一の保護フィルムは、ポリエステル樹脂を主成分として含むことが好ましい。
 ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレン2,6-ナフタレート、ポリブチレンテレフタレート、1,4-シクロヘキサンジメチレンテレフタレートが挙げられ、必要に応じてそれらの2種以上を用いてもよい。中でも、ポリエチレンテレフタレートが好ましく用いられる。
-Polyester film-
The first protective film preferably contains a polyester resin as a main component.
Examples of the polyester include polyethylene terephthalate, polyethylene isophthalate, polyethylene 2,6-naphthalate, polybutylene terephthalate, and 1,4-cyclohexanedimethylene terephthalate, and two or more of them may be used as necessary. . Of these, polyethylene terephthalate is preferably used.
 ポリエチレンテレフタレートは、ジカルボン酸成分としてテレフタル酸に由来する構成単位と、ジオール成分としてエチレングリコールに由来する構成単位とを有するポリエステルであり、全繰り返し単位の80モル%以上がエチレンテレフタレートであるのがよく、他の共重合成分に由来する構成単位を含んでいてもよい。他の共重合成分としては、イソフタル酸、p-β-オキシエトキシ安息香酸、4,4’-ジカルボキシジフェニール、4,4’-ジカルボキシベンゾフェノン、ビス(4-カルボキシフェニル)エタン、アジピン酸、セバシン酸、5-ナトリウムスルホイソフタル酸、1,4-ジカルボキシシクロヘキサン等のジカルボン酸成分や、プロピレングリコール、ブタンジオール、ネオペンチルグリコール、ジエチレングリコール、シクロヘキサンジオール、ビスフェノールAのエチレンオキサイド付加物、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のジオール成分が挙げられる。これらのジカルボン酸成分やジオール成分は、必要により2種類以上を組み合わせて使用することができる。また、上記カルボン酸成分やジオール成分と共に、p-オキシ安息香酸等のオキシカルボン酸を併用することも可能である。他の共重合成分として、少量のアミド結合、ウレタン結合、エーテル結合、カーボネート結合等を含有するジカルボン酸成分及び/又はジオール成分が用いられていてもよい。ポリエチレンテレフタレートの製造法としては、テレフタル酸とエチレングリコール、並びに必要に応じて他のジカルボン酸及び/又は他のジオールを直接反応させるいわゆる直接重合法や、テレフタル酸のジメチルエステルとエチレングリコール、並びに必要に応じて他のジカルボン酸のジメチルエステル及び/又は他のジオールをエステル交換反応させる、いわゆるエステル交換反応法等の任意の製造法を適用することができる。 Polyethylene terephthalate is a polyester having a structural unit derived from terephthalic acid as a dicarboxylic acid component and a structural unit derived from ethylene glycol as a diol component, and 80 mol% or more of all repeating units are preferably ethylene terephthalate. The structural unit derived from other copolymerization components may be included. Other copolymer components include isophthalic acid, p-β-oxyethoxybenzoic acid, 4,4′-dicarboxydiphenyl, 4,4′-dicarboxybenzophenone, bis (4-carboxyphenyl) ethane, adipic acid , Dicarboxylic acid components such as sebacic acid, 5-sodium sulfoisophthalic acid, 1,4-dicarboxycyclohexane, propylene glycol, butanediol, neopentyl glycol, diethylene glycol, cyclohexanediol, bisphenol A ethylene oxide adduct, polyethylene glycol And diol components such as polypropylene glycol and polytetramethylene glycol. These dicarboxylic acid components and diol components can be used in combination of two or more if necessary. In addition, an oxycarboxylic acid such as p-oxybenzoic acid can be used in combination with the carboxylic acid component or diol component. As another copolymer component, a dicarboxylic acid component and / or a diol component containing a small amount of an amide bond, a urethane bond, an ether bond, a carbonate bond, or the like may be used. Polyethylene terephthalate can be produced by a direct polymerization method in which terephthalic acid and ethylene glycol and, if necessary, other dicarboxylic acid and / or other diol are directly reacted, dimethyl ester of terephthalic acid and ethylene glycol, and necessary Depending on the above, any production method such as a so-called transesterification method in which a dimethyl ester of another dicarboxylic acid and / or another diol is transesterified can be applied.
-ポリカーボネート樹脂-
 前記第一の保護フィルムは、ポリカーボネート樹脂を主成分として含むことも好ましい。
-Polycarbonate resin-
The first protective film preferably contains a polycarbonate resin as a main component.
 公知の樹脂を使用することができる。例えばビスフェノールA骨格を有するポリカーボネート樹脂が挙げられ、ジヒドロキシ成分とカーボネート前駆体とを界面重合法または溶融重合法で反応させて得られるものであり、例えば、特開2006-277914号公報、特開2006-106386号公報、特開2006-284703号公報記載のものが好ましく用いることができる。市販品としては、「タフロンMD1500」(出光興産社製)等を用いることができる。
 必要に応じてそれらの2種以上を用いてもよい。
Known resins can be used. Examples thereof include polycarbonate resins having a bisphenol A skeleton, which are obtained by reacting a dihydroxy component and a carbonate precursor by an interfacial polymerization method or a melt polymerization method. For example, Japanese Patent Application Laid-Open Nos. 2006-277914 and 2006 -106386 and JP-A-2006-284703 can be preferably used. As a commercial item, "Taflon MD1500" (made by Idemitsu Kosan Co., Ltd.) etc. can be used.
You may use those 2 or more types as needed.
(第一の保護フィルム中の各種添加剤)
 第一の保護フィルムには、必要に応じて公知の添加剤を配合してもよく、その例としては、紫外線吸収剤、粒子、滑剤、ブロッキング防止剤、熱安定剤、酸化防止剤、帯電防止剤、耐光剤、耐衝撃性改良剤、潤滑剤、染料、顔料等が挙げられる。ただし、第一の保護フィルムは、一般に透明性が必要とされるため、添加剤の添加量は最小限にとどめておくことが好ましい。
(Various additives in the first protective film)
The first protective film may be blended with known additives as necessary. Examples thereof include ultraviolet absorbers, particles, lubricants, antiblocking agents, thermal stabilizers, antioxidants, and antistatic agents. Agents, light resistance agents, impact resistance improvers, lubricants, dyes, pigments and the like. However, since the first protective film generally requires transparency, it is preferable to keep the additive amount to a minimum.
-紫外線吸収剤-
 第一の保護フィルム中には液晶ディスプレイの液晶等が紫外線により劣化することを防止するために、紫外線吸収剤を含有させることも可能である。紫外線吸収剤は、紫外線吸収能を有する化合物で、第一の保護フィルムの製造工程で付加される熱に耐えうるものであれば特に限定されない。
-UV absorber-
The first protective film may contain an ultraviolet absorber in order to prevent the liquid crystal of the liquid crystal display from being deteriorated by ultraviolet rays. The ultraviolet absorber is not particularly limited as long as it is a compound having ultraviolet absorbing ability and can withstand the heat applied in the manufacturing process of the first protective film.
 紫外線吸収剤としては、有機系紫外線吸収剤と無機系紫外線吸収剤があるが、透明性の観点からは有機系紫外線吸収剤が好ましい。有機系紫外線吸収剤としては、特に限定されないが、例えば、ベンゾトリアゾール系、環状イミノエステル系、ベンゾフェノン系などが挙げられる。耐久性の観点からはベンゾトリアゾール系、環状イミノエステル系がより好ましい。また、紫外線吸収剤を2種類以上併用して用いることも可能である。 As the ultraviolet absorber, there are an organic ultraviolet absorber and an inorganic ultraviolet absorber, and an organic ultraviolet absorber is preferable from the viewpoint of transparency. Although it does not specifically limit as an organic type ultraviolet absorber, For example, a benzotriazole type, a cyclic imino ester type, a benzophenone type etc. are mentioned. From the viewpoint of durability, benzotriazole and cyclic imino ester are more preferable. It is also possible to use two or more ultraviolet absorbers in combination.
 ベンゾトリアゾール系の紫外線吸収剤としては、下記に限定されるものではないが、例えば、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシメチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシプロピル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシヘキシル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-3’-tert-ブチル-5’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-tert-ブチル-3’-(メタクリロイルオキシエチル)フェニル]-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-クロロ-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-メトキシ-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-シアノ-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-tert-ブチル-2H-ベンゾトリアゾール、2-[2’-ヒドロキシ-5’-(メタクリロイルオキシエチル)フェニル]-5-ニトロ-2H-ベンゾトリアゾールなどが挙げられる。 The benzotriazole-based ultraviolet absorber is not limited to the following, and examples thereof include 2- [2′-hydroxy-5 ′-(methacryloyloxymethyl) phenyl] -2H-benzotriazole, 2- [2 '-Hydroxy-5'-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxypropyl) phenyl] -2H-benzotriazole, 2- [2'- Hydroxy-5 '-(methacryloyloxyhexyl) phenyl] -2H-benzotriazole, 2- [2'-hydroxy-3'-tert-butyl-5'-(methacryloyloxyethyl) phenyl] -2H-benzotriazole, 2 -[2'-hydroxy-5'-tert-butyl-3 '-(methac Royloxyethyl) phenyl] -2H-benzotriazole, 2- [2′-hydroxy-5 ′-(methacryloyloxyethyl) phenyl] -5-chloro-2H-benzotriazole, 2- [2′-hydroxy-5 ′ -(Methacryloyloxyethyl) phenyl] -5-methoxy-2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxyethyl) phenyl] -5-cyano-2H-benzotriazole, 2- [2 '-Hydroxy-5'-(methacryloyloxyethyl) phenyl] -5-tert-butyl-2H-benzotriazole, 2- [2'-hydroxy-5 '-(methacryloyloxyethyl) phenyl] -5-nitro-2H -Benzotriazole and the like.
 また市販品として、例えば、前記ベンゾトリアゾール系紫外線吸収剤を挙げることができ、必要に応じて乳化剤を用いて、またはそのまま水に分散させて用いることができる。その他、水系のベンゾトリアゾール系紫外線吸収剤としてニューコートUVA-204W(商品名、新中村化学工業製)、SE-2538E(商品名、大成ファインケミカル製)等を挙げることができる。 Moreover, as a commercial item, the said benzotriazole type | system | group ultraviolet absorber can be mentioned, for example, If necessary, it can be used as it is disperse | distributed to water using an emulsifier. Other examples of water-based benzotriazole ultraviolet absorbers include New Coat UVA-204W (trade name, manufactured by Shin-Nakamura Chemical Co., Ltd.), SE-2538E (trade name, manufactured by Taisei Fine Chemical), and the like.
 環状イミノエステル系の紫外線吸収剤としては、下記に限定されるものではないが、例えば、2-メチル-3,1-ベンゾオキサジン-4-オン、2-ブチル-3,1-ベンゾオキサジン-4-オン、2-フェニル-3,1-ベンゾオキサジン-4-オン、2-(1-または2-ナフチル)-3,1-ベンゾオキサジン-4-オン、2-(4-ビフェニル)-3,1-ベンゾオキサジン-4-オン、2-p-ニトロフェニル-3,1-ベンゾオキサジン-4-オン、2-m-ニトロフェニル-3,1-ベンゾオキサジン-4-オン、2-p-ベンゾイルフェニル-3,1-ベンゾオキサジン-4-オン、2-p-メトキシフェニル-3,1-ベンゾオキサジン-4-オン、2-o-メトキシフェニル-3,1-ベンゾオキサジン-4-オン、2-シクロヘキシル-3,1-ベンゾオキサジン-4-オン、2-p-(またはm-)フタルイミドフェニル-3,1-ベンゾオキサジン-4-オン、N-フェニル-4-(3,1-ベンゾオキサジン-4-オン-2-イル)フタルイミド、N-ベンゾイル-4-(3,1-ベンゾオキサジン-4-オン-2-イル)アニリン、N-ベンゾイル-N-メチル-4-(3,1-ベンゾオキサジン-4-オン-2-イル)アニリン、2-(p-(N-メチルカルボニル)フェニル)-3,1-ベンゾオキサジン-4-オン、2,2’-ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-エチレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-テトラメチレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-デカメチレンビス(3,1-ベンゾオキサジン-4-オン、2、2’-(1,4-フェニレン)ビス[4H-3,1-ベンゾオキサジン-4-オン]〔なお、2,2’-p-フェニレンビス(3,1-ベンゾオキサジン-4-オン)とも言う〕、2,2’-m-フェニレンビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(4,4’-ジフェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2,6-または1,5-ナフチレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-メチル-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-ニトロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(2-クロロ-p-フェニレン)ビス(3,1-ベンゾオキサジン-4-オン)、2,2’-(1,4-シクロヘキシレン)ビス(3,1-ベンゾオキサジン-4-オン)、1,3,5-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ベンゼン、1,3,5-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ナフタレン、2,4,6-トリ(3,1-ベンゾオキサジン-4-オン-2-イル)ナフタレン、2,8-ジメチル-4H,6H-ベンゾ(1,2-d;5,4-d’)ビス(1,3)-オキサジン-4,6-ジオン、2,7-ジメチル-4H,9H-ベンゾ(1,2-d;4,5-d’)ビス(1,3)-オキサジン-4,9-ジオン、2,8-ジフェニル-4H,8H-ベンゾ(1,2-d;5,4-d’)ビス(1,3)-オキサジン-4,6-ジオン、2,7-ジフェニル-4H,9H-ベンゾ(1,2-d;4,5-d’)ビス(1,3)-オキサジン-4,6-ジオン、6,6’-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ビス(2-エチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-エチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-エチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ブチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-ブチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-オキシビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-オキシビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-スルホニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-スルホニルビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-カルボニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,6’-カルボニルビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-エチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-オキシビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-スルホニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、7,7’-カルボニルビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7’-ビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7’-ビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン、6,7’-メチレンビス(2-メチル-4H,3,1-ベンゾオキサジン-4-オン)、6,7’-メチレンビス(2-フェニル-4H,3,1-ベンゾオキサジン-4-オン)などが挙げられる。 The cyclic imino ester-based ultraviolet absorber is not limited to the following, and examples thereof include 2-methyl-3,1-benzoxazin-4-one and 2-butyl-3,1-benzoxazine-4. -One, 2-phenyl-3,1-benzoxazin-4-one, 2- (1- or 2-naphthyl) -3,1-benzoxazin-4-one, 2- (4-biphenyl) -3, 1-benzoxazin-4-one, 2-p-nitrophenyl-3,1-benzoxazin-4-one, 2-m-nitrophenyl-3,1-benzoxazin-4-one, 2-p-benzoyl Phenyl-3,1-benzoxazin-4-one, 2-p-methoxyphenyl-3,1-benzoxazin-4-one, 2-o-methoxyphenyl-3,1-benzoxazin-4-one 2-cyclohexyl-3,1-benzoxazin-4-one, 2-p- (or m-) phthalimidophenyl-3,1-benzoxazin-4-one, N-phenyl-4- (3,1-benzo Oxazin-4-one-2-yl) phthalimide, N-benzoyl-4- (3,1-benzoxazin-4-one-2-yl) aniline, N-benzoyl-N-methyl-4- (3,1 -Benzoxazin-4-one-2-yl) aniline, 2- (p- (N-methylcarbonyl) phenyl) -3,1-benzoxazin-4-one, 2,2'-bis (3,1- Benzoxazin-4-one), 2,2′-ethylenebis (3,1-benzoxazin-4-one), 2,2′-tetramethylenebis (3,1-benzoxazin-4-one), 2 , 2'-Deca Tylene bis (3,1-benzoxazin-4-one, 2,2 ′-(1,4-phenylene) bis [4H-3,1-benzoxazin-4-one] [Note that 2,2′-p- Phenylenebis (3,1-benzoxazin-4-one)], 2,2'-m-phenylenebis (3,1-benzoxazin-4-one), 2,2 '-(4,4' -Diphenylene) bis (3,1-benzoxazin-4-one), 2,2 '-(2,6- or 1,5-naphthylene) bis (3,1-benzoxazin-4-one), 2, 2 '-(2-methyl-p-phenylene) bis (3,1-benzoxazin-4-one), 2,2'-(2-nitro-p-phenylene) bis (3,1-benzoxazine-4 -One), 2,2 '-(2-chloro-p-phenylene) bis ( 3,1-benzoxazin-4-one), 2,2 ′-(1,4-cyclohexylene) bis (3,1-benzoxazin-4-one), 1,3,5-tri (3,1 -Benzoxazin-4-one-2-yl) benzene, 1,3,5-tri (3,1-benzoxazin-4-one-2-yl) naphthalene, 2,4,6-tri (3,1 -Benzoxazin-4-one-2-yl) naphthalene, 2,8-dimethyl-4H, 6H-benzo (1,2-d; 5,4-d ') bis (1,3) -oxazine-4, 6-dione, 2,7-dimethyl-4H, 9H-benzo (1,2-d; 4,5-d ′) bis (1,3) -oxazine-4,9-dione, 2,8-diphenyl- 4H, 8H-benzo (1,2-d; 5,4-d ′) bis (1,3) -oxazine-4,6-di 2,7-diphenyl-4H, 9H-benzo (1,2-d; 4,5-d ′) bis (1,3) -oxazine-4,6-dione, 6,6′-bis (2 -Methyl-4H, 3,1-benzoxazin-4-one), 6,6′-bis (2-ethyl-4H, 3,1-benzoxazin-4-one), 6,6′-bis (2 -Phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-methylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-methylenebis (2 -Phenyl-4H, 3,1-benzoxazin-4-one), 6,6′-ethylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-ethylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6 ′ Butylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-butylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6′- Oxybis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-oxybis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6′- Sulfonylbis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6′-sulfonylbis (2-phenyl-4H, 3,1-benzoxazin-4-one), 6,6 '-Carbonylbis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,6'-carbonylbis (2-phenyl-4H, 3,1-benzoxazin-4-one), 7 , 7'-methylenebis ( 2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′-methylenebis (2-phenyl-4H, 3,1-benzoxazin-4-one), 7,7′-bis ( 2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′-ethylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′-oxybis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′-sulfonylbis (2-methyl-4H, 3,1-benzoxazin-4-one), 7,7′- Carbonyl bis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,7′-bis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,7 ′ -Bis (2-phenyl-4H, 3,1-benzoxazine- -One, 6,7'-methylenebis (2-methyl-4H, 3,1-benzoxazin-4-one), 6,7'-methylenebis (2-phenyl-4H, 3,1-benzoxazine-4-one) ON).
 上記化合物のうち、色調を考慮した場合、黄色味が付きにくいベンゾオキサジノン系の化合物が好適に用いられ、その例としては、下記の一般式(1)で表されるものがより好適に用いられる。 Among the above compounds, when considering the color tone, a benzoxazinone-based compound which is difficult to be yellowed is preferably used. As an example thereof, a compound represented by the following general formula (1) is more preferably used. It is done.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 上記一般式(1)中、Rは2価の芳香族炭化水素基を表しXおよびXはそれぞれ独立して水素または以下の官能基群から選ばれるが、必ずしもこれらに限定されるものではない。 In the general formula (1), R represents a divalent aromatic hydrocarbon group, and X 1 and X 2 are each independently selected from hydrogen or the following functional group group, but are not necessarily limited thereto. Absent.
 官能基群:アルキル基、アリール基、ヘテロアリール基、ハロゲン、アルコキシル基、アリールオキシ基、ヒドロキシル基、カルボキシル基、エステル基、ニトロ基。 Functional group: alkyl group, aryl group, heteroaryl group, halogen, alkoxyl group, aryloxy group, hydroxyl group, carboxyl group, ester group, nitro group.
 上記一般式(1)で表される化合物の中でも、本発明においては、2、2’-(1,4-フェニレン)ビス[4H-3,1-ベンゾオキサジン-4-オン]が特に好ましい。 Among the compounds represented by the general formula (1), 2,2 ′-(1,4-phenylene) bis [4H-3,1-benzoxazin-4-one] is particularly preferable in the present invention.
 第一の保護フィルム中に含有させる紫外線吸収剤の量は、通常10.0質量%以下、好ましくは0.3~3.0質量%の範囲で含有するものである。10.0質量%を超える量の紫外線吸収剤を含有させた場合は、表面に紫外線吸収剤がブリードアウトし、接着性低下等、表面機能性の悪化を招くおそれがある。 The amount of the ultraviolet absorber to be contained in the first protective film is usually 10.0% by mass or less, preferably 0.3 to 3.0% by mass. When an ultraviolet absorber in an amount exceeding 10.0% by mass is contained, the ultraviolet absorber may bleed out on the surface, which may cause deterioration of surface functionality such as adhesion deterioration.
 また、多層構造の第一の保護フィルムの場合、少なくとも3層構造のものが好ましく、紫外線吸収剤は、その中間層に配合することが好ましい。中間層に紫外線吸収剤を配合することにより、当該化合物がフィルム表面へブリードアウトしてくるのを防ぐことができ、その結果、フィルムの接着性等の特性を維持することができる。 Further, in the case of the first protective film having a multilayer structure, it is preferably at least a three-layer structure, and the ultraviolet absorber is preferably blended in the intermediate layer. By blending an ultraviolet absorber in the intermediate layer, the compound can be prevented from bleeding out to the film surface, and as a result, properties such as film adhesion can be maintained.
(第一の保護フィルムの特性)
-位相差-
 第一の保護フィルムは、面内方向のレターデーションRe(位相差値)は、3000nm以上であり、3000~30000nm以上が好ましく、より好ましくは4000~20000nmであり、さらに好ましくは6000nm以上15000nm以下である。面内位相差値を3000nm以上とすることにより、本発明の偏光板を液晶表示装置に組み込んだときに虹状のムラが視認されにくくなる傾向にある。面内位相差値を30000nm以下とすることにより、薄膜化が可能であり、脆性およびハンドリング性に優れたフィルムとすることができる。なお、第一の保護フィルムの面内位相差値Reは、下記式(4)で表される。
(Characteristics of the first protective film)
-Phase difference-
The first protective film has an in-plane retardation Re (phase difference value) of 3000 nm or more, preferably 3000 to 30000 nm, more preferably 4000 to 20000 nm, and still more preferably 6000 nm to 15000 nm. is there. By setting the in-plane retardation value to 3000 nm or more, when the polarizing plate of the present invention is incorporated in a liquid crystal display device, rainbow-like unevenness tends to be hardly recognized. When the in-plane retardation value is 30000 nm or less, the film can be thinned, and a film having excellent brittleness and handling properties can be obtained. The in-plane retardation value Re of the first protective film is represented by the following formula (4).
Figure JPOXMLDOC01-appb-M000015
 ここで、nxは第一の保護フィルムの面内遅相軸方向の屈折率であり、nyは第一の保護フィルムの面内進相軸方向(面内遅相軸方向と直交する方向)の屈折率であり、yは第一の保護フィルムの厚みである。
Figure JPOXMLDOC01-appb-M000015
Here, nx is the refractive index in the in-plane slow axis direction of the first protective film, and ny is the in-plane fast axis direction (direction orthogonal to the in-plane slow axis direction) of the first protective film. It is a refractive index, and y 1 is the thickness of the first protective film.
 前記第一の保護フィルムの厚み方向のレターデーションRthは下記式(5)で表される。 The retardation Rth in the thickness direction of the first protective film is represented by the following formula (5).
Figure JPOXMLDOC01-appb-M000016
ここでnzは第一の保護フィルムの厚み方向の屈折率である。
Figure JPOXMLDOC01-appb-M000016
Here, nz is the refractive index in the thickness direction of the first protective film.
 また、第一の保護フィルムのNz値が2.0以下であることが好ましい。なお、第一の保護フィルムのNz値は、下記式(6)で表される。 The Nz value of the first protective film is preferably 2.0 or less. In addition, Nz value of a 1st protective film is represented by following formula (6).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 本明細書中において、波長λnmでのRe、Rth及びNzは次のようにして測定できる。
 二枚の偏光板を用いて、第一の保護フィルムの配向軸方向を求め、配向軸方向が直交するように4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(Nx,Ny)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求め、前記二軸の屈折率差の絶対値(|Nx-Ny|)を屈折率の異方性(△Nxy)とした。第一の保護フィルムの厚みy(nm)は電気マイクロメータ(ファインリューフ社製、ミリトロン1245D)を用いて測定し、単位をnmに換算した。測定したNx、Ny、Nz、yの値からRe、Rth、Nzをそれぞれ算出した。
In this specification, Re, Rth, and Nz at a wavelength λnm can be measured as follows.
Using two polarizing plates, the orientation axis direction of the first protective film was determined, and a 4 cm × 2 cm rectangle was cut out so that the orientation axis directions were orthogonal to each other, and used as a measurement sample. For this sample, the biaxial refractive index (Nx, Ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were determined by an Abbe refractometer (Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm). The absolute value (| Nx−Ny |) of the difference in refractive index between the axes was defined as the anisotropy (ΔNxy) of the refractive index. The thickness y 1 (nm) of the first protective film was measured using an electric micrometer (manufactured by Fine Reef, Millitron 1245D), and the unit was converted to nm. Measured Nx, Ny, Nz, Re from the value of y 1, Rth, Nz was calculated.
 上記のRe、Rthは、フィルムに用いられる前記熱可塑性樹脂の種類、前記熱可塑性樹脂と添加剤の量、レターデーション発現剤の添加、フィルムの膜厚、フィルムの延伸方向と延伸率等により調整することができる。 The above Re and Rth are adjusted by the kind of the thermoplastic resin used in the film, the amount of the thermoplastic resin and the additive, the addition of the retardation developer, the film thickness, the stretching direction and the stretching ratio of the film, etc. can do.
-膜厚-
 第一の保護フィルムの厚みは、10~200μmとすることが好ましく、15~100μmとすることがより好ましく、20~60μmであることが特に好ましい。第一の保護フィルムの厚みが20μm以上であると、ハンドリングしやすい傾向にあり、厚みが100μm以下であると、薄肉化による製造コスト低減のメリットが得られる傾向にある。
-Film thickness-
The thickness of the first protective film is preferably 10 to 200 μm, more preferably 15 to 100 μm, and particularly preferably 20 to 60 μm. When the thickness of the first protective film is 20 μm or more, it tends to be easy to handle, and when the thickness is 100 μm or less, there is a tendency to obtain the merit of manufacturing cost reduction due to thinning.
-弾性率-
 第一の保護フィルムの弾性率は、MD方向において、1.8~8.0GPaが好ましく、1.8~6.0GPaであることがより好ましく、1.8~5.0GPaであることが、偏光板のカール抑制およびフィルム作製時の搬送性、端部スリット性や破断のし難さ等の製造適性の観点から、特に好ましい。
 ここで、フィルムの搬送方向(MD方向、長手方向)とは、フィルム作製時の搬送方向(MD方向)であり、幅方向とはフィルム作製時の搬送方向に対して垂直な方向(TD方向)である。第一の保護フィルムの搬送方向(MD方向、長手方向)は、本発明の偏光板では前記偏光子の吸収軸と平行であることが好ましい。なお、本明細書中における平行には、完全な平行の態様のみならず、完全な平行の態様から光学的に許容できる程度の角度のずれがある態様も含まれる。
 第一の保護フィルムの搬送方向に対して垂直な方向(TD方向)は、第一の保護フィルムの面内の弾性率の最大方向であることが好ましい。保護フィルムの面内の弾性率の最大方向は、音速測定装置“SST-2501,野村商事(株)”を用い、25℃、相対湿度60%の雰囲気中で2時間以上調湿したフィルムについて、25℃、相対湿度60%の雰囲気にて、360度方向を32分割して音速を測定し、最大速度方向を面内の弾性率の最大方向と決定できる。
-Elastic modulus-
The elastic modulus of the first protective film is preferably 1.8 to 8.0 GPa, more preferably 1.8 to 6.0 GPa, and more preferably 1.8 to 5.0 GPa in the MD direction. It is particularly preferable from the viewpoints of production suitability such as curling suppression of the polarizing plate and transportability at the time of film production, end slit property and difficulty of breaking.
Here, the conveyance direction (MD direction, longitudinal direction) of the film is the conveyance direction (MD direction) at the time of film production, and the direction perpendicular to the conveyance direction at the time of film production (TD direction). It is. It is preferable that the conveyance direction (MD direction, longitudinal direction) of a 1st protective film is parallel to the absorption axis of the said polarizer in the polarizing plate of this invention. In addition, the parallel in this specification includes not only a completely parallel mode but also a mode having an optically acceptable angle shift from the completely parallel mode.
The direction perpendicular to the transport direction of the first protective film (TD direction) is preferably the maximum direction of the in-plane elastic modulus of the first protective film. The maximum direction of the in-plane elastic modulus of the protective film is for a film that has been conditioned for 2 hours or more in an atmosphere of 25 ° C. and 60% relative humidity using a sound velocity measuring device “SST-2501, Nomura Corporation”. In an atmosphere of 25 ° C. and a relative humidity of 60%, the speed of sound is measured by dividing the 360 ° direction into 32 parts, and the maximum speed direction can be determined as the maximum direction of the in-plane elastic modulus.
 フィルムの弾性率は、前記第一の保護フィルム材料の熱可塑性樹脂の種類や添加量、添加剤の選択(特に、マット剤粒子の粒径、屈折率、添加量)や、更にはフィルム製造条件(延伸倍率など)により調整することができる。
 弾性率は、測定方向の長さが200mm、幅が10mmの試料を用意し、試料を60℃相対湿度90%の環境に48時間放置した後、25℃相対湿度60%の環境に48時間放置した直後、東洋精機製のストログラフV10-Cを用い、サンプル形状を幅10mm、チャック間長さ100mmとして測定した。
 なお、偏光子と、第一の保護フィルムと第二の保護フィルムのどちらか一方または両方が貼着された場合であっても、お湯などに浸漬して偏光子であるポリビニルアルコールを軟化させて除去することにより、フィルム単体での弾性率測定が可能となる。
The elastic modulus of the film depends on the type and addition amount of the thermoplastic resin of the first protective film material, the selection of additives (particularly, the particle size, refractive index, and addition amount of the matting agent particles), and film production conditions. (Stretch ratio, etc.) can be adjusted.
For the elastic modulus, a sample having a length of 200 mm in the measurement direction and a width of 10 mm was prepared, and the sample was left in an environment of 60 ° C. and 90% relative humidity for 48 hours, and then left in an environment of 25 ° C. and 60% relative humidity for 48 hours. Immediately after the measurement, a sample shape was measured with a strograph V10-C manufactured by Toyo Seiki, with a width of 10 mm and a length between chucks of 100 mm.
In addition, even if one or both of the polarizer and the first protective film and the second protective film are attached, the polyvinyl alcohol that is the polarizer is softened by soaking in hot water or the like. By removing, it becomes possible to measure the elastic modulus of the film alone.
 第一の保護フィルムの弾性率のMD/TD弾性率比は、0.01~0.8であることが、好ましい。さらに0.01~0.7であることがより好ましく、0.01~0.6であることが特に好ましい。 The MD / TD elastic modulus ratio of the elastic modulus of the first protective film is preferably 0.01 to 0.8. Further, it is more preferably 0.01 to 0.7, and particularly preferably 0.01 to 0.6.
(第一の保護フィルムの製造方法)
 前記第一の保護フィルムは幅方向に延伸されてなることが好ましい。第一の保護フィルムの製造方法としては特に制限はない。前記第一の保護フィルムに上記特性を付与するためには、以下の方法で製造することが好ましい。
 まず、第一の保護フィルムに用いられる樹脂(例えばポリエステル樹脂)をフィルム状に溶融押出し、キャスティングドラムで冷却固化させて未延伸フィルムとした後に、必要であれば、易接着層を形成するための塗液を塗布し、この未延伸フィルムを、ポリエステルフィルムのTg~(Tg+60)℃の温度で、幅方向に3~10倍、好ましくは3倍~7倍になるよう延伸することが好ましい。前記第一の保護フィルムは幅方向に一軸延伸されてなることが、面内方向のレターデーションReを大きく発現させる観点から好ましい。
(Method for producing the first protective film)
The first protective film is preferably stretched in the width direction. There is no restriction | limiting in particular as a manufacturing method of a 1st protective film. In order to impart the above properties to the first protective film, it is preferable to produce the first protective film by the following method.
First, a resin used for the first protective film (for example, a polyester resin) is melt-extruded into a film shape, cooled and solidified with a casting drum to form an unstretched film, and if necessary, an easy-adhesion layer is formed. It is preferable to apply a coating solution and stretch this unstretched film at a temperature of Tg to (Tg + 60) ° C. of the polyester film so that it is 3 to 10 times, preferably 3 to 7 times in the width direction. The first protective film is preferably uniaxially stretched in the width direction from the viewpoint of greatly expressing in-plane retardation Re.
 次に、140℃以上220℃以下で、1~60秒間熱処理(ここでは熱固定という。)を行うことが好ましい。前記熱固定の温度は150℃以上220℃以下であることがより好ましく、150℃以上220℃未満であることが特に好ましい。 Next, it is preferable to perform heat treatment (herein referred to as heat setting) for 1 to 60 seconds at 140 ° C. or higher and 220 ° C. or lower. The heat setting temperature is more preferably 150 ° C. or higher and 220 ° C. or lower, and particularly preferably 150 ° C. or higher and lower than 220 ° C.
 さらに、熱固定温度より10~20℃低い温度で長手方向または/および幅方向に0~20%収縮させながら再熱処理(弛緩処理という。)を行うことが好ましい。この方法では、フィルムがロールに接触することが少なくなるため、フィルム表面に微小な傷等が前述の方法よりもできにくく、光学用途への適用に有利である。なお、フィルムのガラス転移温度をTgと表記する。熱固定温度が150℃以上220℃未満では、ポリエステルの配向方向のずれが小さくなり、熱寸法変化も小さくなるので、ハードコート層の剥がれや割れなどが発生しにくくなる。 Further, it is preferable to perform reheat treatment (referred to as relaxation treatment) while shrinking by 0 to 20% in the longitudinal direction and / or the width direction at a temperature lower by 10 to 20 ° C. than the heat setting temperature. In this method, since the film is less likely to come into contact with the roll, minute scratches and the like are less likely to occur on the film surface than in the method described above, which is advantageous for application to optical applications. The glass transition temperature of the film is expressed as Tg. When the heat setting temperature is 150 ° C. or more and less than 220 ° C., the deviation in the orientation direction of the polyester is reduced and the thermal dimensional change is also reduced, so that the hard coat layer is not easily peeled off or cracked.
<第二の保護フィルム>
 本発明の偏光板は、偏光子の第一の保護フィルムが貼合された側の他方の面に、接着層2を介して貼合された第二の保護フィルムを含む。
<Second protective film>
The polarizing plate of this invention contains the 2nd protective film bonded through the contact bonding layer 2 on the other surface of the side by which the 1st protective film of the polarizer was bonded.
(樹脂)
 前記第二の保護フィルムの主成分としては特に制限はないが、本発明の偏光板は前記第二の保護フィルムがシクロオレフィン樹脂、アクリル樹脂またはセルロースエステル樹脂を主成分として含むことが好ましい。
 前記第二の保護フィルムは、シクロオレフィン樹脂やアクリル樹脂やセルロースエステル樹脂などの樹脂を主成分とするフィルムであることが好ましいが、シクロオレフィン樹脂やアクリル樹脂やセルロースエステル樹脂などの樹脂を主成分とする単層フィルムであってもよいし、シクロオレフィン樹脂やアクリル樹脂やセルロースエステル樹脂などの樹脂を主成分とする層を有する多層フィルムであってもよい。また、これら単層フィルム又は多層フィルムの両面又は片面に表面処理が施されたものであってもよく、この表面処理は、コロナ処理、ケン化処理、熱処理、紫外線照射、電子線照射等による表面改質であってもよいし、高分子や金属等の塗布や蒸着等による薄膜形成であってもよい。フィルム全体に占めるシクロオレフィン樹脂やアクリル樹脂やセルロースエステル樹脂などの樹脂の質量割合は、通常50質量%以上、好ましくは70質量%以上、より好ましくは90質量%以上である。
(resin)
Although there is no restriction | limiting in particular as a main component of said 2nd protective film, In the polarizing plate of this invention, it is preferable that said 2nd protective film contains a cycloolefin resin, an acrylic resin, or a cellulose ester resin as a main component.
The second protective film is preferably a film mainly containing a resin such as a cycloolefin resin, an acrylic resin or a cellulose ester resin, but a resin such as a cycloolefin resin, an acrylic resin or a cellulose ester resin is the main component. Or a multilayer film having a layer mainly composed of a resin such as a cycloolefin resin, an acrylic resin, or a cellulose ester resin. Moreover, the surface treatment may be performed on both surfaces or one surface of these single layer films or multilayer films, and this surface treatment is performed by corona treatment, saponification treatment, heat treatment, ultraviolet irradiation, electron beam irradiation, or the like. Modification may be sufficient, and thin film formation by application | coating, vapor deposition, etc. of a polymer, a metal, etc. may be sufficient. The mass ratio of the resin such as cycloolefin resin, acrylic resin, and cellulose ester resin in the entire film is usually 50% by mass or more, preferably 70% by mass or more, and more preferably 90% by mass or more.
-シクロオレフィン樹脂-
 本発明に用いることができる熱可塑性樹脂は、シクロオレフィン樹脂(以下、環状ポリオレフィン系樹脂とも言う)を用いることができる。ここで、環状ポリオレフィン系樹脂とは、環状オレフィン構造を有する重合体樹脂を表す。
 本発明に好ましく用いられる環状ポリオレフィン系樹脂を以下に列挙する。
 本発明に好ましい環状オレフィン構造を有する重合体としては、下記一般式(II)で表される繰り返し単位を少なくとも1種以上含む付加(共)重合体である環状ポリオレフィン系樹脂及び必要に応じ、一般式(I)で表される繰り返し単位の少なくとも1種以上を更に含んでなる付加(共)重合体である環状ポリオレフィン系樹脂である。また、一般式(III)で表される環状繰り返し単位を少なくとも1種含む開環(共)重合体も好適に使用することができる。
-Cycloolefin resin-
As the thermoplastic resin that can be used in the present invention, a cycloolefin resin (hereinafter also referred to as a cyclic polyolefin resin) can be used. Here, the cyclic polyolefin resin represents a polymer resin having a cyclic olefin structure.
The cyclic polyolefin resins preferably used in the present invention are listed below.
As a polymer having a cyclic olefin structure preferable for the present invention, a cyclic polyolefin resin which is an addition (co) polymer containing at least one repeating unit represented by the following general formula (II) and, if necessary, a general A cyclic polyolefin resin which is an addition (co) polymer further comprising at least one repeating unit represented by formula (I). Further, a ring-opening (co) polymer containing at least one cyclic repeating unit represented by the general formula (III) can also be suitably used.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 式(I)~(III)中、mは0~4の整数を表す。R~Rは水素原子又は炭素数1~10の炭化水素基、X~X、Y~Yは水素原子、炭素数1~10の炭化水素基、ハロゲン原子、ハロゲン原子で置換された炭素数1~10の炭化水素基、-(CHCOOR11、-(CHOCOR12、-(CHNCO、-(CHNO、-(CHCN、-(CHCONR1314、-(CHNR1314、-(CHOZ、-(CHW、又はXとYあるいはXとYあるいはXとYから構成された(-CO)O、(-CO)NR15を示す。なお、R11,R12,R13,R14,R15は水素原子、炭素数1~20の炭化水素基、Zは炭化水素基又はハロゲンで置換された炭化水素基、WはSiR16 3-p(R16は炭素数1~10の炭化水素基、Dはハロゲン原子、-OCOR16又は-OR16、pは0~3の整数を示す)、nは0~10の整数を示す。 In the formulas (I) to (III), m represents an integer of 0 to 4. R 1 to R 6 are a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, X 1 to X 3 , Y 1 to Y 3 are hydrogen atoms, a hydrocarbon group having 1 to 10 carbon atoms, a halogen atom, or a halogen atom. A substituted hydrocarbon group having 1 to 10 carbon atoms, — (CH 2 ) n COOR 11 , — (CH 2 ) n OCOR 12 , — (CH 2 ) n NCO, — (CH 2 ) n NO 2 , — ( CH 2 ) n CN, — (CH 2 ) n CONR 13 R 14 , — (CH 2 ) n NR 13 R 14 , — (CH 2 ) n OZ, — (CH 2 ) n W, or X 1 and Y 1 Alternatively, (—CO) 2 O and (—CO) 2 NR 15 composed of X 2 and Y 2 or X 3 and Y 3 are shown. R 11 , R 12 , R 13 , R 14 , R 15 are hydrogen atoms, hydrocarbon groups having 1 to 20 carbon atoms, Z is a hydrocarbon group or a hydrocarbon group substituted with halogen, and W is SiR 16 p D 3-p (R 16 is a hydrocarbon group having 1 to 10 carbon atoms, D is a halogen atom, —OCOR 16 or —OR 16 , p is an integer of 0 to 3), n is an integer of 0 to 10 Show.
 また、ノルボルネン系重合体水素化物も好ましく用いることができ、特開平1-240517号、特開平7-196736号、特開昭60-26024号、特開昭62-19801号、特開2003-1159767号あるいは特開2004-309979号等に開示されているように、多環状不飽和化合物を付加重合あるいはメタセシス開環重合したのち水素添加することにより作られる。本発明に用いるノルボルネン系重合体において、R~Rは水素原子又は-CHが好ましく、X、及びYは水素原子、Cl、-COOCHが好ましく、その他の基は適宜選択される。このノルボルネン系樹脂は、JSR(株)からアートン(Arton)GあるいはアートンFという商品名で発売されており、また日本ゼオン(株)からゼオノア(Zeonor)ZF14、ZF16、ゼオネックス(Zeonex)250あるいはゼオネックス280という商品名で市販されており、これらを使用することができる。 Norbornene-based polymer hydrides can also be used preferably. As disclosed in Japanese Patent Application Laid-Open No. 2004-309979 or the like, the polycyclic unsaturated compound is hydrogenated after addition polymerization or metathesis ring-opening polymerization. In the norbornene-based polymer used in the present invention, R 5 to R 6 are preferably a hydrogen atom or —CH 3 , X 3 and Y 3 are preferably a hydrogen atom, Cl, —COOCH 3 , and other groups are appropriately selected. The This norbornene resin is sold under the trade name Arton G or Arton F by JSR Co., Ltd., and Zeonor ZF14, ZF16, Zeonex 250 or Zeonex 250 by Nippon Zeon Co., Ltd. They are commercially available under the trade name 280 and can be used.
 さらに、ノルボルネン系付加(共)重合体も好ましく用いることができ、特開平10-7732号、特表2002-504184号、米国公開特許2004229157A1号あるいはWO2004/070463A1号等に開示されている。ノルボルネン系多環状不飽和化合物同士を付加重合する事によって得られる。また、必要に応じ、ノルボルネン系多環状不飽和化合物と、エチレン、プロピレン、ブテン;ブタジエン、イソプレンのような共役ジエン;エチリデンノルボルネンのような非共役ジエン;アクリロニトリル、アクリル酸、メタアクリル酸、無水マレイン酸、アクリル酸エステル、メタクリル酸エステル、マレイミド、酢酸ビニル、塩化ビニルなどの線状ジエン化合物とを付加重合することもできる。このノルボルネン系付加(共)重合体は、三井化学(株)よりアペルの商品名で発売されており、ガラス転移温度(Tg)の異なる例えばAPL8008T(Tg70℃)、APL6013T(Tg125℃)あるいはAPL6015T(Tg145℃)などのグレードがある。ポリプラスチック(株)よりTOPAS8007、同6013、同6015などのペレットが発売されている。更に、Ferrania社よりAppear3000が発売されている。 Furthermore, norbornene-based addition (co) polymers can also be preferably used, and are disclosed in JP-A No. 10-7732, JP-T-2002-504184, US Published Patent No. 200429157157A1 or WO2004 / 070463A1. It can be obtained by addition polymerization of norbornene-based polycyclic unsaturated compounds. If necessary, norbornene-based polycyclic unsaturated compounds and ethylene, propylene, butene; conjugated dienes such as butadiene and isoprene; nonconjugated dienes such as ethylidene norbornene; acrylonitrile, acrylic acid, methacrylic acid, maleic anhydride It is also possible to carry out addition polymerization with linear diene compounds such as acid, acrylic acid ester, methacrylic acid ester, maleimide, vinyl acetate and vinyl chloride. This norbornene-based addition (co) polymer is marketed by Mitsui Chemicals, Inc. under the name of Apel, and has different glass transition temperatures (Tg) such as APL8008T (Tg70 ° C), APL6013T (Tg125 ° C) or APL6015T ( Grades such as Tg145 ° C). Pellets such as TOPAS 8007, 6013, and 6015 are sold by Polyplastics Co., Ltd. Further, Appear 3000 is sold by Ferrania.
 本発明においては、環状ポリオレフィン系樹脂のガラス転移温度(Tg)は、好ましくは110℃~200℃、より好ましくは115℃~190℃、さらに好ましくは120℃~180℃である。
 また、環状ポリオレフィン系樹脂の重量平均分子量は、好ましくは50,000~500,000の範囲である。
In the present invention, the glass transition temperature (Tg) of the cyclic polyolefin resin is preferably 110 ° C. to 200 ° C., more preferably 115 ° C. to 190 ° C., and further preferably 120 ° C. to 180 ° C.
Further, the weight average molecular weight of the cyclic polyolefin resin is preferably in the range of 50,000 to 500,000.
環状オレフィン系樹脂を主成分とするフィルムの製造方法:
 環状オレフィン系樹脂を主成分とするフィルムについては、後述する(メタ)アクリル系重合体を主成分とするフィルムの製造方法と同様の製造方法で製造することができ、例えば、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法など、従来公知のフィルム成形法が挙げられ、そのうち、溶融押出法が特に好適である。
Production method of film mainly composed of cyclic olefin resin:
About the film which has a cyclic olefin resin as a main component, it can manufacture with the manufacturing method similar to the manufacturing method of the film which has a (meth) acrylic-type polymer as a main component mentioned later, for example, a solution cast method (solution Casting methods), melt extrusion methods, calendering methods, compression molding methods and the like, and conventionally known film forming methods, among which the melt extrusion methods are particularly suitable.
 溶融押出法としては、例えば、Tダイ法、インフレーション法などが挙げられ、その際の成形温度は、フィルム原料のガラス転移温度に応じて適宜調節すればよい。
 Tダイ法でフィルム成形する場合は、公知の単軸押出機や二軸押出機の先端部にTダイを取り付け、フィルム状に押出されたフィルムを巻き取って、ロール状のフィルムを得ることができる。この際、巻き取りロールの温度を適宜調整して、押出方向に延伸を加えることで、1軸延伸することも可能である。また、押出方向と垂直な方向にフィルムを延伸することにより、同時2軸延伸、逐次2軸延伸などを行うこともできる。
Examples of the melt extrusion method include a T-die method and an inflation method, and the molding temperature at that time may be appropriately adjusted according to the glass transition temperature of the film raw material.
When forming a film by the T-die method, a roll-shaped film can be obtained by attaching a T-die to the tip of a known single-screw extruder or twin-screw extruder and winding the film extruded into a film. it can. At this time, it is possible to perform uniaxial stretching by appropriately adjusting the temperature of the take-up roll and adding stretching in the extrusion direction. Further, simultaneous biaxial stretching, sequential biaxial stretching, and the like can be performed by stretching the film in a direction perpendicular to the extrusion direction.
-アクリル樹脂-
 アクリル樹脂としては、公知の(メタ)アクリル系樹脂を用いることができる。
 (メタ)アクリル系樹脂は、メタクリル系樹脂とアクリル系樹脂の両方を含む概念であり、アクリレート/メタクリレートの誘導体、特にアクリレートエステル/メタクリレートエステルの(共)重合体も含まれる。
 さらに、前記(メタ)アクリル系樹脂は、メタクリル系樹脂、アクリル系樹脂の他に、主鎖に環構造を有する(メタ)アクリル系重合体も含み、ラクトン環を有する重合体、無水コハク酸環を有する無水マレイン酸系重合体、無水グルタル酸環を有する重合体、グルタルイミド環含有重合体を含む。
-acrylic resin-
As the acrylic resin, a known (meth) acrylic resin can be used.
The (meth) acrylic resin is a concept including both a methacrylic resin and an acrylic resin, and includes an acrylate / methacrylate derivative, in particular, an acrylate ester / methacrylate ester (co) polymer.
Furthermore, the (meth) acrylic resin includes a methacrylic resin, an acrylic resin, a (meth) acrylic polymer having a ring structure in the main chain, a polymer having a lactone ring, and a succinic anhydride ring. A maleic anhydride-based polymer having, a polymer having a glutaric anhydride ring, and a glutarimide ring-containing polymer.
(メタ)アクリル系重合体:
 前記(メタ)アクリル系重合体の繰り返し構造単位は、特に限定されない。前記(メタ)アクリル系重合体は、繰り返し構造単位として(メタ)アクリル酸エステル単量体由来の繰り返し構造単位を有することが好ましい。
(Meth) acrylic polymer:
The repeating structural unit of the (meth) acrylic polymer is not particularly limited. The (meth) acrylic polymer preferably has a repeating structural unit derived from a (meth) acrylic acid ester monomer as a repeating structural unit.
 前記(メタ)アクリル酸エステルとしては、特に限定されないが、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸t-ブチル、アクリル酸シクロヘキシル、アクリル酸ベンジルなどのアクリル酸エステル;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸t-ブチル、メタクリル酸シクロヘキシル、メタクリル酸ベンジルなどのメタクリル酸エステル;などが挙げられ、これらは1種のみ用いてもよいし、2種以上を併用してもよい。これらの中でも特に、耐熱性、透明性が優れる点から、メタクリル酸メチルが好ましい。
 前記(メタ)アクリル酸エステルを主成分として用いる場合、重合工程に供する単量体成分中のその含有割合は、本発明の効果を十分に発揮させる上で、好ましくは50~100質量%、より好ましくは70~100質量%、更に好ましくは80~100質量%、特に好ましくは90~100質量%である。
 前記(メタ)アクリル酸エステルを主成分とする樹脂のガラス転移温度Tgが、80~120℃の範囲内にあることが好ましい。
 また、前記(メタ)アクリル酸エステルを主成分とする樹脂の重量平均分子量は、好ましくは50,000~500,000の範囲である。
The (meth) acrylic acid ester is not particularly limited, and examples thereof include methyl acrylate, ethyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, cyclohexyl acrylate, and benzyl acrylate. Acrylic acid esters; methacrylic acid esters such as methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate; These may be used alone or in combination of two or more. Among these, methyl methacrylate is particularly preferable from the viewpoint of excellent heat resistance and transparency.
When the (meth) acrylic acid ester is used as a main component, the content ratio in the monomer component to be subjected to the polymerization step is preferably 50 to 100% by mass in order to sufficiently exhibit the effects of the present invention. The amount is preferably 70 to 100% by mass, more preferably 80 to 100% by mass, and particularly preferably 90 to 100% by mass.
The glass transition temperature Tg of the resin containing the (meth) acrylic acid ester as a main component is preferably in the range of 80 to 120 ° C.
The weight average molecular weight of the resin mainly composed of (meth) acrylic acid ester is preferably in the range of 50,000 to 500,000.
 柔軟性を向上させてハンドリング性を高めるため、(メタ)アクリル系樹脂には、ゴム弾性体粒子を配合することが好ましい。ゴム弾性体粒子は、ゴム弾性体を含有する粒子であり、ゴム弾性体のみからなる粒子であってもよいし、ゴム弾性体の層を有する多層構造の粒子であってもよく、フィルムの表面硬度や耐光性、透明性の点から、アクリル系弾性重合体が好ましく用いられる。 In order to improve flexibility and handling properties, rubber elastic particles are preferably blended with the (meth) acrylic resin. The rubber elastic particle is a particle containing a rubber elastic body, and may be a particle made of only a rubber elastic body, or may be a multi-layered particle having a rubber elastic body layer, and may be a film surface. From the viewpoint of hardness, light resistance and transparency, an acrylic elastic polymer is preferably used.
 アクリル系弾性重合体を含有するゴム弾性体粒子は、特開2012-180422号公報、特開2012-032773号公報、特開2012-180423号公報を参考に得ることができる。 Rubber elastic particles containing an acrylic elastic polymer can be obtained with reference to JP 2012-180422 A, JP 2012-032773 A, and JP 2012-180423 A.
 前記ゴム弾性体粒子の数平均粒径は10~300nmの範囲が好ましく、50~250nmの範囲がより好ましい。 The number average particle diameter of the rubber elastic particles is preferably in the range of 10 to 300 nm, more preferably in the range of 50 to 250 nm.
 (メタ)アクリル系樹脂フィルムを形成する(メタ)アクリル系樹脂組成物は、透明なアクリル系樹脂に、数平均粒子径が10~300nmのゴム弾性体粒子を25~45質量%配合することが好ましい。 In the (meth) acrylic resin composition forming the (meth) acrylic resin film, 25 to 45% by mass of rubber elastic particles having a number average particle diameter of 10 to 300 nm are blended in a transparent acrylic resin. preferable.
主鎖に環構造を有する(メタ)アクリル系重合体:
 (メタ)アクリル系重合体の中でも主鎖に環構造を有するものが好ましい。主鎖に環構造を導入することで、主鎖の剛直性を高め、耐熱性を向上することができる。
 本発明では主鎖に環構造を有する(メタ)アクリル系重合体の中でも主鎖にラクトン環構造を含有する重合体、主鎖に無水コハク酸環を有する無水マレイン酸系重合体、主鎖に無水グルタル酸環構造を有する重合体、主鎖にグルタルイミド環構造を有する重合体のいずれかであることが好ましい。中でも主鎖にラクトン環構造を含有する重合体、及び主鎖にグルタルイミド環構造を有する重合体であることがより好ましい。
 以下のこれらの主鎖に環構造を有する重合体について順に説明する。
(Meth) acrylic polymer having a ring structure in the main chain:
Among (meth) acrylic polymers, those having a ring structure in the main chain are preferred. By introducing a ring structure into the main chain, the rigidity of the main chain can be improved and the heat resistance can be improved.
In the present invention, among (meth) acrylic polymers having a ring structure in the main chain, a polymer having a lactone ring structure in the main chain, a maleic anhydride polymer having a succinic anhydride ring in the main chain, It is preferably either a polymer having a glutaric anhydride ring structure or a polymer having a glutarimide ring structure in the main chain. Among them, a polymer having a lactone ring structure in the main chain and a polymer having a glutarimide ring structure in the main chain are more preferable.
The following polymers having a ring structure in these main chains will be described in order.
(1)主鎖にラクトン環構造を有する(メタ)アクリル系重合体
 主鎖にラクトン環構造を有する(メタ)アクリル系重合体(以降ラクトン環含有重合体とも称す)は、主鎖にラクトン環を有する(メタ)アクリル系重合体であれば特に限定されないが、好ましくは下記一般式(100)で示されるラクトン環構造を有する。
(1) A (meth) acrylic polymer having a lactone ring structure in the main chain A (meth) acrylic polymer having a lactone ring structure in the main chain (hereinafter also referred to as a lactone ring-containing polymer) has a lactone ring in the main chain. Although it will not specifically limit if it is a (meth) acrylic-type polymer which has this, Preferably it has a lactone ring structure shown by the following general formula (100).
 一般式(100): General formula (100):
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 一般式(100)中、R11、R12及びR13は、それぞれ独立に、水素原子又は炭素原子数1~20の有機残基を表し、有機残基は酸素原子を含有していてもよい。
 ここで、炭素原子数1~20の有機残基としては、メチル基、エチル基、イソプロピル基、n-ブチル基、t-ブチル基などが好ましい。
In general formula (100), R 11 , R 12 and R 13 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms, and the organic residue may contain an oxygen atom. .
Here, the organic residue having 1 to 20 carbon atoms is preferably a methyl group, an ethyl group, an isopropyl group, an n-butyl group, a t-butyl group, or the like.
 ラクトン環含有重合体の構造中における上記一般式(100)で示されるラクトン環構造の含有割合は、好ましくは5~90質量%、より好ましくは10~70質量%、さらに好ましくは10~60質量%、特に好ましくは10~50質量%である。ラクトン環構造の含有割合を5質量%以上とすることにより、得られた重合体の耐熱性、及び表面硬度が向上する傾向にあり、ラクトン環構造の含有割合を90質量%以下とすることにより、得られた重合体の成形加工性が向上する傾向にある。 The content of the lactone ring structure represented by the general formula (100) in the structure of the lactone ring-containing polymer is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, and still more preferably 10 to 60% by mass. %, Particularly preferably 10 to 50% by weight. By setting the content ratio of the lactone ring structure to 5% by mass or more, the heat resistance and surface hardness of the obtained polymer tend to be improved, and by setting the content ratio of the lactone ring structure to 90% by mass or less. The moldability of the obtained polymer tends to be improved.
 なお、ラクトン環構造の含有割合は下記式より算出することができる。
 ラクトン環の含有割合(質量%)=B×A×M/M
 (式中、Bは、ラクトン環化に関与する構造(水酸基)を有する原料単量体の当該共重合に用いられた単量体組成における質量含有割合であり、Mは生成するラクトン環構造単位の式量であり、Mはラクトン環化に関与する構造(水酸基)を有する原料単量体の分子量であり、Aはラクトン環化率である)
 また、ラクトン環化率は、例えば環化反応が脱アルコール反応を伴う場合、理論重量減少量と重量減少が始まる前の150℃から、重合体の分解が始まる前の300℃までの間の脱アルコール反応による重量減加熱重量減少率から算出することができる。
The content ratio of the lactone ring structure can be calculated from the following formula.
Lactone ring content (% by mass) = B × A × M R / M m
(Wherein, B is the mass proportion in the monomer composition used in the copolymerization raw monomer having a structure (hydroxyl group) responsible for the lactonization, M R lactone ring structure to generate The unit formula weight, M m is the molecular weight of the raw material monomer having a structure (hydroxyl group) involved in lactone cyclization, and A is the lactone cyclization rate)
In addition, when the cyclization reaction involves a dealcoholization reaction, for example, the lactone cyclization rate can be determined by removing the theoretical weight reduction amount from 150 ° C. before the weight reduction starts to 300 ° C. before the polymer decomposition starts. It can be calculated from the weight loss heating weight loss rate due to the alcohol reaction.
 ラクトン環構造を有する(メタ)アクリル系樹脂の製造方法については、特に限定はされない。好ましくは、ラクトン環構造を有する(メタ)アクリル系樹脂は、下記の所定の単量体を、重合することによって分子鎖中に水酸基とエステル基とを有する重合体(p)を得た後に、得られた重合体(p)を75℃~120℃の温度範囲で加熱処理することによりラクトン環構造を重合体に導入するラクトン環化縮合を行うことによって得られる。
 重合工程においては、下記一般式(101)で表される単量体を含む単量体成分の重合反応を行うことにより、分子鎖中に水酸基とエステル基とを有する重合体を得る。
一般式(101):
The method for producing the (meth) acrylic resin having a lactone ring structure is not particularly limited. Preferably, the (meth) acrylic resin having a lactone ring structure is obtained by polymerizing the following predetermined monomer to obtain a polymer (p) having a hydroxyl group and an ester group in the molecular chain. The obtained polymer (p) is heat-treated at a temperature in the range of 75 ° C. to 120 ° C. to obtain lactone cyclization condensation for introducing a lactone ring structure into the polymer.
In the polymerization step, a polymer having a hydroxyl group and an ester group in the molecular chain is obtained by conducting a polymerization reaction of a monomer component containing a monomer represented by the following general formula (101).
Formula (101):
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
(式中、RおよびRは、それぞれ独立に、水素原子または炭素数1~20の有機残基を表す。) (Wherein R 1 and R 2 each independently represents a hydrogen atom or an organic residue having 1 to 20 carbon atoms)
 一般式(101)で表される単量体としては、例えば、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチル、2-(ヒドロキシメチル)アクリル酸イソプロピル、2-(ヒドロキシメチル)アクリル酸ノルマルブチル、2-(ヒドロキシメチル)アクリル酸t-ブチルなどが挙げられる。これらの中でも、2-(ヒドロキシメチル)アクリル酸メチル、2-(ヒドロキシメチル)アクリル酸エチルが好ましく、耐熱性向上効果が高い点で、2-(ヒドロキシメチル)アクリル酸メチルが特に好ましい。一般式(101)で表される単量体は、1種のみ用いても良いし、2種以上を併用しても良い。 Examples of the monomer represented by the general formula (101) include methyl 2- (hydroxymethyl) acrylate, ethyl 2- (hydroxymethyl) acrylate, isopropyl 2- (hydroxymethyl) acrylate, 2- ( Hydroxymethyl) normal butyl acrylate, t-butyl 2- (hydroxymethyl) acrylate, and the like. Among these, methyl 2- (hydroxymethyl) acrylate and ethyl 2- (hydroxymethyl) acrylate are preferred, and methyl 2- (hydroxymethyl) acrylate is particularly preferred from the viewpoint of high heat resistance improvement effect. As for the monomer represented by the general formula (101), only one type may be used, or two or more types may be used in combination.
 重合工程において供する単量体成分中の一般式(101)で表される単量体の含有割合は、耐熱性、耐溶剤性、表面硬度の観点で好ましい範囲の下限値があり、得られた重合体の成形加工性の観点で好ましい範囲の上限値があり、それら観点を踏まえ、好ましくは5~90質量%、より好ましくは10~70質量%、さらに好ましくは10~60質量%、特に好ましくは10~50質量%である。 The content ratio of the monomer represented by the general formula (101) in the monomer component used in the polymerization step has a lower limit value in a preferable range in terms of heat resistance, solvent resistance, and surface hardness, and was obtained. From the viewpoint of moldability of the polymer, there is an upper limit value in a preferable range. In view of these viewpoints, it is preferably 5 to 90% by mass, more preferably 10 to 70% by mass, still more preferably 10 to 60% by mass, and particularly preferably. Is 10 to 50% by mass.
 重合工程において供する単量体成分中には、一般式(101)で表される単量体以外の単量体を含んでいても良い。このような単量体としては、特に限定されないが、例えば、(メタ)アクリル酸エステル、水酸基含有単量体、不飽和カルボン酸が好ましく挙げられる。一般式(101)で表される単量体以外の単量体は、1種のみ用いても良いし、2種以上を併用しても良い。 The monomer component provided in the polymerization step may contain a monomer other than the monomer represented by the general formula (101). Although it does not specifically limit as such a monomer, For example, (meth) acrylic acid ester, a hydroxyl-containing monomer, and unsaturated carboxylic acid are mentioned preferably. Only one type of monomer other than the monomer represented by formula (101) may be used, or two or more types may be used in combination.
 ラクトン環含有重合体の重量平均分子量は、好ましくは10,000~2,000,000、より好ましくは20,000~1,000,000、特に好ましくは50,000~500,000である。 The weight average molecular weight of the lactone ring-containing polymer is preferably 10,000 to 2,000,000, more preferably 20,000 to 1,000,000, and particularly preferably 50,000 to 500,000.
 ラクトン環含有重合体は、ダイナミックTG測定における150~300℃の範囲内での質量減少率が、好ましくは1%以下、より好ましくは0.5%以下、さらに好ましくは0.3%以下であるのがよい。ダイナミックTGの測定方法については、特開2002-138106号公報に記載の方法を用いることができる。 The lactone ring-containing polymer has a mass reduction rate in the range of 150 to 300 ° C. in dynamic TG measurement, preferably 1% or less, more preferably 0.5% or less, and still more preferably 0.3% or less. It is good. As a method for measuring dynamic TG, the method described in JP-A-2002-138106 can be used.
 ラクトン環含有重合体は、環化縮合反応率が高いので、成型品の製造過程で脱アルコール反応が少なく、該アルコールを原因とした成形後の成形品中に泡や銀条(シルバーストリーク)が入るという欠点が回避できる。さらに、高い環化縮合反応率によって、ラクトン環構造が重合体に充分に導入されるので、得られたラクトン環含有重合体は高い耐熱性を有する。 Since the lactone ring-containing polymer has a high cyclization condensation reaction rate, there is little dealcoholization reaction in the production process of the molded product, and bubbles and silver stripes (silver streaks) are formed in the molded product after molding due to the alcohol. The disadvantage of entering can be avoided. Furthermore, since the lactone ring structure is sufficiently introduced into the polymer due to a high cyclization condensation reaction rate, the obtained lactone ring-containing polymer has high heat resistance.
 ラクトン環含有重合体は、濃度15質量%のクロロホルム溶液にした場合、その着色度(YI)が、好ましくは6以下、より好ましくは3以下、さらに好ましくは2以下、特に好ましくは1以下である。着色度(YI)が6以下であれば、着色により透明性が損なわれるなどの不具合が生じにくいので、本発明において好ましく使用することができる。 The lactone ring-containing polymer has a coloring degree (YI) of preferably 6 or less, more preferably 3 or less, still more preferably 2 or less, and particularly preferably 1 or less when a chloroform solution having a concentration of 15% by mass is used. . If the degree of coloring (YI) is 6 or less, problems such as loss of transparency due to coloring are unlikely to occur, and therefore, it can be preferably used in the present invention.
 ラクトン環含有重合体は、熱質量分析(TG)における5%質量減少温度が、好ましくは330℃以上、より好ましくは350℃以上、さらに好ましくは360℃以上である。熱質量分析(TG)における5%質量減少温度は、熱安定性の指標であり、これを330℃以上とすることにより、充分な熱安定性が発揮されやすい傾向にある。熱質量分析は、上記ダイナミックTGの測定の装置を使用することができる。 The lactone ring-containing polymer has a 5% mass reduction temperature in thermal mass spectrometry (TG) of preferably 330 ° C. or higher, more preferably 350 ° C. or higher, and further preferably 360 ° C. or higher. The 5% mass reduction temperature in thermal mass spectrometry (TG) is an indicator of thermal stability, and by setting it to 330 ° C. or higher, sufficient thermal stability tends to be exhibited. The thermal mass spectrometry can use the apparatus for measuring the dynamic TG.
 ラクトン環含有重合体のガラス転移温度(Tg)が、好ましくは115℃~180℃、より好ましくは120℃~170℃、さらに好ましくは125℃~160℃である。 The glass transition temperature (Tg) of the lactone ring-containing polymer is preferably 115 ° C to 180 ° C, more preferably 120 ° C to 170 ° C, and still more preferably 125 ° C to 160 ° C.
(2)主鎖に無水コハク酸環を有する無水マレイン酸系重合体
 主鎖に無水コハク酸構造が重合体の分子鎖中(重合体の主骨格中)に形成されることにより、共重合体であるアクリル樹脂に高い耐熱性が付与され、かつ、ガラス転移温度(Tg)も高くなるため好ましい。
 主鎖に無水コハク酸環を有する無水マレイン酸系重合体のガラス転移温度(Tg)が、好ましくは110℃~160℃、より好ましくは115℃~160℃、さらに好ましくは120℃~160℃である。
 また、主鎖に無水コハク酸環を有する無水マレイン酸系重合体の重量平均分子量は、好ましくは50,000~500,000の範囲である。
(2) Maleic anhydride-based polymer having a succinic anhydride ring in the main chain A succinic anhydride structure is formed in the main chain in the molecular chain of the polymer (in the main skeleton of the polymer). The acrylic resin is preferably given high heat resistance and has a high glass transition temperature (Tg).
The glass transition temperature (Tg) of the maleic anhydride polymer having a succinic anhydride ring in the main chain is preferably 110 ° C. to 160 ° C., more preferably 115 ° C. to 160 ° C., and further preferably 120 ° C. to 160 ° C. is there.
The weight average molecular weight of the maleic anhydride polymer having a succinic anhydride ring in the main chain is preferably in the range of 50,000 to 500,000.
 前記アクリル樹脂との共重合に用いられる前記無水マレイン酸単位としては、特に制限はないが、特開2008-216586号、特開2009-052021号、特開2009-196151号、特表2012-504783号の各公報に記載のマレイン酸変性樹脂を挙げることができる。
 なお、これらは本発明を限定するものではない。
 マレイン酸変性樹脂の市販品としては、マレイン酸変性MAS樹脂(メタクリル酸メチル-アクリロニトリル-スチレン共重合体)である旭化成ケミカルズ(株)製デルペット980Nを好ましく使用することができる。
 また、無水マレイン酸単位を含むアクリル樹脂を製造する方法は特に制限がなく公知の方法を用いることができる。
The maleic anhydride unit used for copolymerization with the acrylic resin is not particularly limited, but JP-A-2008-216586, JP-A-2009-052021, JP-A-2009-196151, JP-T-2012-504783. Mention may be made of maleic acid-modified resins described in the respective publications.
In addition, these do not limit this invention.
As a commercially available maleic acid-modified resin, Delpet 980N manufactured by Asahi Kasei Chemicals Corporation, which is a maleic acid-modified MAS resin (methyl methacrylate-acrylonitrile-styrene copolymer), can be preferably used.
In addition, a method for producing an acrylic resin containing a maleic anhydride unit is not particularly limited, and a known method can be used.
 前記マレイン酸変性樹脂としては、得られるポリマー中に無水マレイン酸単位が含まれるものであれば制限はなく、例えば、(無水)マレイン酸変性MS樹脂、(無水)マレイン酸変性MAS樹脂(メタクリル酸メチル-アクリロニトリル-スチレン共重合体)、(無水)マレイン酸変性MBS樹脂、(無水)マレイン酸変性AS樹脂、(無水)マレイン酸変性AA樹脂、(無水)マレイン酸変性ABS樹脂、エチレン-無水マレイン酸共重合体、エチレン-(メタ)アクリル酸-無水マレイン酸共重合体、無水マレイン酸グラフトポリプロピレンなどが挙げられる。 The maleic acid-modified resin is not limited as long as the resulting polymer contains maleic anhydride units, and examples thereof include (anhydrous) maleic acid-modified MS resin, (anhydrous) maleic acid-modified MAS resin (methacrylic acid). Methyl-acrylonitrile-styrene copolymer), (anhydrous) maleic acid modified MBS resin, (anhydrous) maleic acid modified AS resin, (anhydrous) maleic acid modified AA resin, (anhydrous) maleic acid modified ABS resin, ethylene-maleic anhydride Examples include acid copolymers, ethylene- (meth) acrylic acid-maleic anhydride copolymers, and maleic anhydride grafted polypropylene.
 前記無水マレイン酸単位は、下記一般式(200)で表される構造である。
 一般式(200):
The maleic anhydride unit has a structure represented by the following general formula (200).
General formula (200):
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 前記一般式(200)中、R21及びR22は、それぞれ独立に、水素原子又は炭素数1~20の有機残基を表す。
 前記有機残基は、炭素数が1~20の範囲内であれば特には限定されないが、例えば、直鎖若しくは分岐状のアルキル基、直鎖若しくは分岐状のアルキレン基、アリール基、-OAc基、-CN基などが挙げられる。また、有機残基は酸素原子を含んでいてもよい。Acはアセチル基を表す。
 前記R21及びR22の炭素数は1~10であることが好ましく、1~5であることがより好ましい。
In the general formula (200), R 21 and R 22 each independently represent a hydrogen atom or an organic residue having 1 to 20 carbon atoms.
The organic residue is not particularly limited as long as it has 1 to 20 carbon atoms. For example, a linear or branched alkyl group, a linear or branched alkylene group, an aryl group, an —OAc group , -CN group and the like. The organic residue may contain an oxygen atom. Ac represents an acetyl group.
R 21 and R 22 preferably have 1 to 10 carbon atoms, and more preferably 1 to 5 carbon atoms.
 前記R21及びR22がそれぞれ水素原子を表す場合は、固有複屈折の調整の観点から、更にその他の共重合成分を含むことも好ましい。このような3元系以上の耐熱性アクリル樹脂として、例えば、メタクリル酸メチル-無水マレイン酸-スチレン共重合体を好ましく用いることができる。 When each of R 21 and R 22 represents a hydrogen atom, it is preferable that other copolymerization components are further included from the viewpoint of adjusting the intrinsic birefringence. As such a ternary or higher heat-resistant acrylic resin, for example, methyl methacrylate-maleic anhydride-styrene copolymer can be preferably used.
(3)主鎖に無水グルタル酸環構造を有する重合体
 主鎖に無水グルタル酸環構造を有する重合体とは、グルタル酸無水物単位を有する重合体である。
(3) Polymer having a glutaric anhydride ring structure in the main chain The polymer having a glutaric anhydride ring structure in the main chain is a polymer having a glutaric anhydride unit.
 グルタル酸無水物単位を有する重合体は、下記一般式(300)で表されるグルタル酸無水物単位(以下、グルタル酸無水物単位と呼ぶ)を有することが好ましい。 The polymer having a glutaric anhydride unit preferably has a glutaric anhydride unit represented by the following general formula (300) (hereinafter referred to as a glutaric anhydride unit).
 一般式(300): General formula (300):
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 一般式(300)中、R31、R32は、それぞれ独立に、水素原子又は炭素数1~20の有機残基を表す。なお、有機残基は酸素原子を含んでいてもよい。R31、R32は、特に好ましくは、同一又は相異なる、水素原子又は炭素数1~5のアルキル基を表す。 In general formula (300), R 31 and R 32 each independently represents a hydrogen atom or an organic residue having 1 to 20 carbon atoms. The organic residue may contain an oxygen atom. R 31 and R 32 particularly preferably represent the same or different hydrogen atoms or alkyl groups having 1 to 5 carbon atoms.
 グルタル酸無水物単位を有する重合体は、グルタル酸無水物単位を含有する(メタ)アクリル系重合体であることが好ましい。(メタ)アクリル系重合体としては、耐熱性の点から120℃以上のガラス転移温度(Tg)を有することが好ましい。
 主鎖に無水グルタル酸環構造を有する重合体のガラス転移温度(Tg)が、好ましくは110℃~160℃、より好ましくは115℃~160℃、さらに好ましくは120℃~160℃である。
 また、主鎖に無水グルタル酸環構造を有する重合体の重量平均分子量は、好ましくは50,000~500,000の範囲である。
The polymer having a glutaric anhydride unit is preferably a (meth) acrylic polymer containing a glutaric anhydride unit. The (meth) acrylic polymer preferably has a glass transition temperature (Tg) of 120 ° C. or higher from the viewpoint of heat resistance.
The glass transition temperature (Tg) of the polymer having a glutaric anhydride ring structure in the main chain is preferably 110 ° C. to 160 ° C., more preferably 115 ° C. to 160 ° C., and further preferably 120 ° C. to 160 ° C.
The weight average molecular weight of the polymer having a glutaric anhydride ring structure in the main chain is preferably in the range of 50,000 to 500,000.
 (メタ)アクリル系重合体に対するグルタル酸無水物単位の含有量としては、5~50質量%が好ましく、より好ましくは10~45質量%である。5質量%以上、より好ましくは10質量%以上とすることにより、耐熱性向上の効果を得ることができ、さらには耐候性向上の効果を得ることもできる。 The content of glutaric anhydride units relative to the (meth) acrylic polymer is preferably 5 to 50% by mass, more preferably 10 to 45% by mass. When the content is 5% by mass or more, more preferably 10% by mass or more, an effect of improving heat resistance can be obtained, and further an effect of improving weather resistance can be obtained.
(4)主鎖にグルタルイミド環構造を有する(メタ)アクリル系重合体
 主鎖にグルタルイミド環構造を有する(メタ)アクリル系重合体(以降グルタルイミド系樹脂とも称す)は、主鎖にグルタルイミド環構造を有することによって光学特性や耐熱性などの点で好ましい特性バランスを発現できる。前記主鎖にグルタルイミド環構造を有する(メタ)アクリル系重合体は、少なくとも下記一般式(400):
(4) (Meth) acrylic polymer having a glutarimide ring structure in the main chain (meth) acrylic polymer having a glutarimide ring structure in the main chain (hereinafter also referred to as glutarimide resin) By having an imide ring structure, a desirable balance of properties can be expressed in terms of optical properties and heat resistance. The (meth) acrylic polymer having a glutarimide ring structure in the main chain is at least the following general formula (400):
一般式(400): Formula (400):
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
で表されるグルタルイミド単位(但し、式中、R301、R302、R303は独立に水素または炭素数1~12個の非置換のまたは置換のアルキル基、シクロアルキル基、アリール基である。)を20質量%以上有するグルタルイミド樹脂を含有することが好ましい。 Wherein R 301 , R 302 , and R 303 are independently hydrogen or an unsubstituted or substituted alkyl group having 1 to 12 carbon atoms, a cycloalkyl group, or an aryl group. It is preferable to contain a glutarimide resin having 20% by mass or more.
 本発明に用いられるグルタルイミド系樹脂を構成する好ましいグルタルイミド単位としては、R301、R302が水素またはメチル基であり、R303がメチル基またはシクロヘキシル基である。該グルタルイミド単位は、単一の種類でもよく、R301、R302、R303が異なる複数の種類を含んでいてもよい。 As a preferable glutarimide unit constituting the glutarimide resin used in the present invention, R 301 and R 302 are hydrogen or a methyl group, and R 303 is a methyl group or a cyclohexyl group. The glutarimide unit may be a single type or may include a plurality of types in which R 301 , R 302 , and R 303 are different.
 本発明に用いられる、グルタルイミド系樹脂を構成する好ましい第二の構成単位としては、アクリル酸エステル又はメタクリル酸エステルからなる単位である。好ましいアクリル酸エステル又はメタクリル酸エステル構成単位としてはアクリル酸メチル、アクリル酸エチル、メタクリル酸メチル、メタクリル酸メチル等が挙げられる。また、別の好ましいイミド化可能な単位として、N-メチルメタクリルアミドや、N-エチルメタクリルアミドのような、N-アルキルメタクリルアミドが挙げられる。これら第二の構成単位は単独の種類でもよく、複数の種類を含んでいてもよい。 The preferred second structural unit constituting the glutarimide resin used in the present invention is a unit composed of an acrylate ester or a methacrylate ester. Preferable acrylic acid ester or methacrylic acid ester structural unit includes methyl acrylate, ethyl acrylate, methyl methacrylate, methyl methacrylate and the like. Another preferred imidizable unit includes N-alkylmethacrylamide such as N-methylmethacrylamide and N-ethylmethacrylamide. These second structural units may be of a single type or may include a plurality of types.
 グルタルイミド系樹脂の、一般式(400)で表されるグルタルイミド単位の含有量は、グルタルイミド系樹脂の総繰り返し単位を基準として、20質量%以上である。グルタルイミド単位の、好ましい含有量は、20質量%から95質量%であり、より好ましくは50~90質量%、さらに好ましくは、60~80質量%である。グルタルイミド単位がこの範囲より小さい場合、得られるフィルムの耐熱性が不足したり、透明性が損なわれたりすることがある。また、この範囲を超えると不必要に耐熱性が上がりフィルム化しにくくなる他、得られるフィルムの機械的強度は極端に脆くなり、また、透明性が損なわれることがある。 The content of the glutarimide unit represented by the general formula (400) in the glutarimide resin is 20% by mass or more based on the total repeating unit of the glutarimide resin. The preferred content of the glutarimide unit is 20% to 95% by mass, more preferably 50 to 90% by mass, and still more preferably 60 to 80% by mass. When a glutarimide unit is smaller than this range, the heat resistance of the film obtained may be insufficient, or transparency may be impaired. On the other hand, if it exceeds this range, the heat resistance is unnecessarily increased and it becomes difficult to form a film, the mechanical strength of the resulting film becomes extremely brittle, and the transparency may be impaired.
 グルタルイミド系樹脂は、必要に応じ、更に、第三の構成単位が共重合されたものでもよい。好ましい第三の構成単位の例としては、スチレン、置換スチレン、α-メチルスチレンなどのスチレン系単量体、ブチルアクリレートなどのアクリル系単量体、アクリロニトリルやメタクリロニトリル等のニトリル系単量体、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミドなどのマレイミド系単量体を共重合してなる構成単位を用いることができる。これらはグルタルイミド系樹脂中に、該グルタルイミド単位とイミド化可能な単位と直接共重合してあっても良く、また、該グルタルイミド単位とイミド化可能な単位を有する樹脂に対してグラフト共重合してあってもかまわない。第3成分は、これを添加する場合は、グルタルイミド系樹脂中の含有率は、グルタルイミド系樹脂中の総繰り返し単位を基準として5モル%以上、30モル%以下であることが好ましい。 The glutarimide resin may be further copolymerized with a third structural unit, if necessary. Preferred examples of the third structural unit include styrene monomers such as styrene, substituted styrene and α-methylstyrene, acrylic monomers such as butyl acrylate, and nitrile monomers such as acrylonitrile and methacrylonitrile. Further, a structural unit obtained by copolymerizing maleimide monomers such as maleimide, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide and the like can be used. These may be directly copolymerized with the glutarimide unit and the imidizable unit in the glutarimide resin, and graft copolymerized with the resin having the glutarimide unit and the imidizable unit. It may be polymerized. When the third component is added, the content in the glutarimide resin is preferably 5 mol% or more and 30 mol% or less based on the total repeating units in the glutarimide resin.
 グルタルイミド系樹脂は、米国特許3284425号、米国特許4246374号、特開平2-153904号公報等に記載されており、イミド化可能な単位を有する樹脂としてメタクリル酸メチルエステルなどを主原料として得られる樹脂を用い、該イミド化可能な単位を有する樹脂をアンモニアまたは置換アミンを用いてイミド化することにより得ることができる。グルタルイミド系樹脂を得る際に、反応副生成物としてアクリル酸やメタクリル酸、あるいはその無水物から構成される単位がグルタルイミド系樹脂中に導入される場合がある。このような構成単位、特に酸無水物の存在は、得られる本発明フィルムの全光線透過率やヘイズを低下させるため、好ましくない。アクリル酸やメタクリル酸含量として、樹脂1g当たり0.5ミリ当量以下、好ましくは0.3ミリ当量以下、より好ましくは0.1ミリ当量以下とすることが望ましい。また、特開平02-153904号公報にみられるように、主としてN-メチルアクリルアミドとメタクリル酸メチルエステルから成る樹脂を用いてイミド化することにより、グルタルイミド系樹脂を得ることも可能である。 The glutarimide resin is described in US Pat. No. 3,284,425, US Pat. No. 4,246,374, JP-A-2-153904, and the like, and is obtained by using methyl methacrylate as a main raw material as a resin having an imidizable unit. It can be obtained by using a resin and imidizing the resin having an imidizable unit with ammonia or a substituted amine. When obtaining a glutarimide resin, a unit composed of acrylic acid, methacrylic acid, or an anhydride thereof may be introduced into the glutarimide resin as a reaction by-product. The presence of such a structural unit, particularly an acid anhydride, is not preferable because it reduces the total light transmittance and haze of the obtained film of the present invention. The acrylic acid or methacrylic acid content is 0.5 milliequivalent or less per gram of resin, preferably 0.3 milliequivalent or less, more preferably 0.1 milliequivalent or less. Further, as seen in JP-A No. 02-153904, it is also possible to obtain a glutarimide resin by imidization using a resin mainly composed of N-methylacrylamide and methacrylic acid methyl ester.
 前記、グルタル系樹脂のガラス転移温度(Tg)が、好ましくは110℃~160℃、より好ましくは115℃~160℃、さらに好ましくは120℃~160℃である。
 また、グルタル系樹脂の重量平均分子量は、好ましくは50,000~500,000の範囲である。
The glass transition temperature (Tg) of the glutaric resin is preferably 110 ° C. to 160 ° C., more preferably 115 ° C. to 160 ° C., and further preferably 120 ° C. to 160 ° C.
The weight average molecular weight of the glutar resin is preferably in the range of 50,000 to 500,000.
(メタ)アクリル系重合体を主成分とするフィルムの製造方法:
 以下、(メタ)アクリル系重合体を主成分とするフィルムを製膜する製造方法について詳しく説明する。
 (メタ)アクリル系重合体を主成分として用いてフィルムを製膜するには、例えば、オムニミキサーなど、従来公知の混合機でフィルム原料をプレブレンドした後、得られた混合物を押出混練する。この場合、押出混練に用いる混合機は、特に限定されるものではなく、例えば、単軸押出機、二軸押出機などの押出機や加圧ニーダーなど、従来公知の混合機を用いることができる。
Manufacturing method of film mainly composed of (meth) acrylic polymer:
Hereinafter, a manufacturing method for forming a film containing a (meth) acrylic polymer as a main component will be described in detail.
In order to form a film using a (meth) acrylic polymer as a main component, for example, a film raw material is pre-blended with a conventionally known mixer such as an omni mixer, and then the obtained mixture is extruded and kneaded. In this case, the mixer used for extrusion kneading is not particularly limited. For example, a conventionally known mixer such as an extruder such as a single screw extruder or a twin screw extruder or a pressure kneader can be used. .
 フィルム成形の方法としては、例えば、溶液キャスト法(溶液流延法)、溶融押出法、カレンダー法、圧縮成形法など、従来公知のフィルム成形法が挙げられる。これらのフィルム成形法のうち、溶融押出法が特に好適である。 Examples of the film forming method include conventionally known film forming methods such as a solution casting method (solution casting method), a melt extrusion method, a calendar method, and a compression molding method. Of these film forming methods, the melt extrusion method is particularly suitable.
 溶融押出法としては、例えば、Tダイ法、インフレーション法などが挙げられ、その際の成形温度は、フィルム原料のガラス転移温度に応じて適宜調節すればよく、特に限定されるものではないが、例えば、好ましくは150℃~350℃、より好ましくは200℃~300℃である。 Examples of the melt extrusion method include a T-die method and an inflation method, and the molding temperature at that time may be appropriately adjusted according to the glass transition temperature of the film raw material, and is not particularly limited. For example, the temperature is preferably 150 ° C to 350 ° C, more preferably 200 ° C to 300 ° C.
 Tダイ法でフィルム成形する場合は、公知の単軸押出機や二軸押出機の先端部にTダイを取り付け、フィルム状に押出されたフィルムを巻き取って、ロール状のフィルムを得ることができる。この際、巻き取りロールの温度を適宜調整して、押出方向に延伸を加えることで、1軸延伸することも可能である。また、押出方向と垂直な方向にフィルムを延伸することにより、同時2軸延伸、逐次2軸延伸などを行うこともできる。 When forming a film by the T-die method, a roll-shaped film can be obtained by attaching a T-die to the tip of a known single-screw extruder or twin-screw extruder and winding the film extruded into a film. it can. At this time, it is possible to perform uniaxial stretching by appropriately adjusting the temperature of the take-up roll and adding stretching in the extrusion direction. Further, simultaneous biaxial stretching, sequential biaxial stretching, and the like can be performed by stretching the film in a direction perpendicular to the extrusion direction.
 (メタ)アクリル系重合体を主成分とするフィルムは、未延伸フィルムまたは延伸フィルムのいずれでもよい。延伸フィルムである場合は、1軸延伸フィルムまたは2軸延伸フィルムのいずれでもよい。2軸延伸フィルムである場合は、同時2軸延伸フィルムまたは逐次2軸延伸フィルムのいずれでもよい。2軸延伸した場合は、機械的強度が向上し、フィルム性能が向上する。(メタ)アクリル系重合体が、前記の主鎖に環状構造を有する(メタ)アクリル系重合体である場合は、その他の熱可塑性樹脂を混合することにより、延伸しても位相差の増大を抑制することができ、光学的等方性を保持したフィルムを得ることができる。 The film mainly composed of (meth) acrylic polymer may be either an unstretched film or a stretched film. In the case of a stretched film, either a uniaxially stretched film or a biaxially stretched film may be used. In the case of a biaxially stretched film, either a simultaneous biaxially stretched film or a sequential biaxially stretched film may be used. In the case of biaxial stretching, the mechanical strength is improved and the film performance is improved. When the (meth) acrylic polymer is a (meth) acrylic polymer having a cyclic structure in the main chain, mixing with other thermoplastic resins increases the retardation even when stretched. It is possible to obtain a film that can be suppressed and retains optical isotropy.
-セルロースエステル樹脂-
 以下、第二の保護フィルムに用いることができるセルロースエステル樹脂(好ましくはセルロースアシレート)について、詳しく説明する。
 セルロースアシレートの置換度は、セルロースの構成単位((β)1,4-グリコシド結合しているグルコース)に存在している、3つの水酸基がアシル化されている割合を意味する。置換度(アシル化度)は、セルロースの構成単位質量当りの結合脂肪酸量を測定して算出することができる。本発明において、セルロース体の置換度はセルロース体を重水素置換されたジメチルスルフォキシド等の溶剤に溶解して13C-NMRスペクトルを測定し、アシル基中のカルボニル炭素のピーク強度比から求めることにより算出することができる。セルロースアシレートの残存水酸基をセルロースアシレート自身が有するアシル基とは異なる他のアシル基に置換したのち、13C-NMR測定により求めることができる。測定方法の詳細については、手塚他(Carbohydrate.Res.,273(1995)83-91)に記載がある。
-Cellulose ester resin-
Hereinafter, the cellulose ester resin (preferably cellulose acylate) that can be used for the second protective film will be described in detail.
The degree of substitution of cellulose acylate means the ratio of acylation of three hydroxyl groups present in the structural unit of cellulose (glucose having a (β) 1,4-glycoside bond). The degree of substitution (acylation degree) can be calculated by measuring the amount of bound fatty acid per unit mass of cellulose. In the present invention, the substitution degree of the cellulose body is determined from the peak intensity ratio of the carbonyl carbon in the acyl group by dissolving the cellulose body in a solvent such as dimethyl sulfoxide substituted with deuterium and measuring the 13C-NMR spectrum. Can be calculated. This can be determined by 13C-NMR measurement after substituting the remaining hydroxyl group of cellulose acylate with another acyl group different from the acyl group of cellulose acylate itself. Details of the measurement method are described in Tezuka et al. (Carbohydrate. Res., 273 (1995) 83-91).
 セルロースアシレートの全アシル置換度は2.0~2.97であることが好ましく、2.2~2.95であることがより好ましく、2.3~2.95であることが特に好ましい。
 セルロースアシレートのアシル基としては、アセチル基、プロピオニル基、ブチリル基が特に好ましく、アセチル基がより特に好ましい。
The total acyl substitution degree of the cellulose acylate is preferably 2.0 to 2.97, more preferably 2.2 to 2.95, and particularly preferably 2.3 to 2.95.
As the acyl group of cellulose acylate, an acetyl group, a propionyl group, and a butyryl group are particularly preferable, and an acetyl group is particularly preferable.
 2種類以上のアシル基からなる混合脂肪酸エステルも本発明においてセルロースアシレートとして好ましく用いることができる。この場合も、アシル基としてはアセチル基と炭素数が3~4のアシル基が好ましい。また、混合脂肪酸エステルを用いる場合、アセチル基の置換度は2.5未満が好ましく、1.9未満がさらに好ましい。一方、炭素数が3~4のアシル基の置換度は0.1~1.5であることが好ましく、0.2~1.2であることがより好ましく、0.5~1.1であることが特に好ましい。
 本発明においては、置換基および/または置換度の異なる2種のセルロースアシレートを併用、混合して用いてもよいし、後述の共流延法などにより、異なるセルロースアシレートからなる複数層からなるフィルムを形成してもよい。
A mixed fatty acid ester composed of two or more kinds of acyl groups can also be preferably used as the cellulose acylate in the present invention. Also in this case, the acyl group is preferably an acetyl group and an acyl group having 3 to 4 carbon atoms. Moreover, when using mixed fatty acid ester, the substitution degree of an acetyl group is preferably less than 2.5, and more preferably less than 1.9. On the other hand, the substitution degree of the acyl group having 3 to 4 carbon atoms is preferably 0.1 to 1.5, more preferably 0.2 to 1.2, and 0.5 to 1.1. It is particularly preferred.
In the present invention, two types of cellulose acylates having different substituents and / or degree of substitution may be used in combination, mixed, or from a plurality of layers composed of different cellulose acylates by the co-casting method described later. A film may be formed.
 さらに特開2008-20896号公報の〔0023〕~〔0038〕に記載の脂肪酸アシル基と置換もしくは無置換の芳香族アシル基とを有する混合酸エステルも本発明に好ましく用いることができる。 Furthermore, mixed acid esters having a fatty acid acyl group and a substituted or unsubstituted aromatic acyl group described in [0023] to [0038] of JP-A-2008-20896 can also be preferably used in the present invention.
 セルロースアシレートは、250~800の質量平均重合度を有することが好ましく、300~600の質量平均重合度を有することがさらに好ましい。
 またセルロースアシレートは、70000~230000の数平均分子量を有することが好ましく、75000~230000の数平均分子量を有することがさらに好ましく、78000~120000の数平均分子量を有することが最も好ましい。
The cellulose acylate preferably has a weight average degree of polymerization of 250 to 800, more preferably 300 to 600.
The cellulose acylate preferably has a number average molecular weight of 70000 to 230,000, more preferably a number average molecular weight of 75000 to 230,000, and most preferably a number average molecular weight of 78000 to 120,000.
 セルロースアシレートは、アシル化剤として酸無水物や酸塩化物を用いて合成できる。前記アシル化剤が酸無水物である場合は、反応溶媒として有機酸(例えば、酢酸)や塩化メチレンが使用される。また、触媒として、硫酸のようなプロトン性触媒を用いることができる。アシル化剤が酸塩化物である場合は、触媒として塩基性化合物を用いることができる。工業的に最も一般的な合成方法では、セルロースをアセチル基および他のアシル基に対応する有機酸(酢酸、プロピオン酸、酪酸)またはそれらの酸無水物(無水酢酸、無水プロピオン酸、無水酪酸)を含む混合有機酸成分でエステル化してセルロースエステルを合成する。 Cellulose acylate can be synthesized using an acid anhydride or acid chloride as an acylating agent. When the acylating agent is an acid anhydride, an organic acid (for example, acetic acid) or methylene chloride is used as a reaction solvent. Further, a protic catalyst such as sulfuric acid can be used as the catalyst. When the acylating agent is an acid chloride, a basic compound can be used as a catalyst. In the most common synthetic method in the industry, cellulose is an organic acid corresponding to acetyl group and other acyl groups (acetic acid, propionic acid, butyric acid) or their acid anhydrides (acetic anhydride, propionic anhydride, butyric anhydride). A cellulose ester is synthesized by esterification with a mixed organic acid component containing.
 前記方法においては、綿花リンターや木材パルプのようなセルロースは、酢酸のような有機酸で活性化処理した後、硫酸触媒の存在下で、上記のような有機酸成分の混合液を用いてエステル化する場合が多い。有機酸無水物成分は、一般にセルロース中に存在する水酸基の量に対して過剰量で使用する。このエステル化処理では、エステル化反応に加えてセルロース主鎖(β)1,4-グリコシド結合)の加水分解反応(解重合反応)が進行する。主鎖の加水分解反応が進むとセルロースエステルの重合度が低下し、製造するセルロースエステルフィルムの物性が低下する。そのため、反応温度のような反応条件は、得られるセルロースエステルの重合度や分子量を考慮して決定することが好ましい。 In the above method, cellulose such as cotton linter or wood pulp is activated with an organic acid such as acetic acid and then esterified using a mixture of organic acid components as described above in the presence of a sulfuric acid catalyst. In many cases. The organic acid anhydride component is generally used in an excess amount relative to the amount of hydroxyl groups present in the cellulose. In this esterification treatment, a hydrolysis reaction (depolymerization reaction) of the cellulose main chain (β) 1,4-glycoside bond) proceeds in addition to the esterification reaction. When the hydrolysis reaction of the main chain proceeds, the degree of polymerization of the cellulose ester is lowered, and the physical properties of the cellulose ester film to be produced are lowered. Therefore, the reaction conditions such as the reaction temperature are preferably determined in consideration of the degree of polymerization and molecular weight of the resulting cellulose ester.
(第二の保護フィルムの各種添加剤)
 第二の保護フィルムは、有機酸やその他の偏光板保護フィルムに用いられる公知の添加剤を、本発明の趣旨に反しない限りにおいて、含んでいてもよい。添加剤の分子量は特に制限されないが、後述の添加剤を好ましく用いることができる。
 添加剤を加えることによって、湿度寸法変化率の制御、フィルムの熱的性質、光学的性質、機械的性質の改善、柔軟性付与、耐吸水性付与、水分透過率低減等のフィルム改質の観点で、有用な効果を示す。
(Various additives for the second protective film)
The 2nd protective film may contain the well-known additive used for an organic acid and another polarizing plate protective film, unless it is contrary to the meaning of this invention. The molecular weight of the additive is not particularly limited, but the additives described below can be preferably used.
Additives can be used to control humidity dimensional change rate, improve film thermal properties, optical properties, mechanical properties, impart flexibility, impart water resistance, reduce moisture permeability, etc. It shows a useful effect.
 例えば機械的な性質の制御としては、フィルムへの可塑剤添加が挙げられ、参考となる可塑剤の事例としては、リン酸エステル、クエン酸エステル、トリメリット酸エステル、糖エステルなどの既知の各種エステル系可塑剤や国際公開第2011/102492パンフレットの段落番号0042から0068のポリエステル系ポリマーの記載を参考にすることができる。 For example, the control of mechanical properties includes the addition of a plasticizer to a film. Examples of plasticizers that can be used as reference include various known esters such as phosphate esters, citrate esters, trimellitic acid esters, and sugar esters. Reference can be made to the description of ester plasticizers and polyester polymers in paragraph numbers 0042 to 0068 of International Publication No. 2011/102492.
 また、光学的な性質の制御として、紫外線や赤外線の吸収能の付与には、国際公開第2011/102492号の段落番号0069から0072の記載を参考にすることができ、フィルムの位相差の調整や発現性制御のためには既知のレターデーション調整剤を用いることができる。添加剤の分子量は特に制限されないが、後述の添加剤を好ましく用いることができる。 In addition, as control of optical properties, for the provision of ultraviolet and infrared absorbing ability, the description of paragraph numbers 0069 to 0072 of International Publication No. 2011/102492 can be referred to, and adjustment of the retardation of the film In addition, a known retardation adjusting agent can be used for controlling expression. The molecular weight of the additive is not particularly limited, but the additives described below can be preferably used.
(第二の保護フィルムの特性)
-膜厚-
 第二の保護フィルムの厚みは、10~200μmとすることが好ましく、15~100μmとすることがより好ましく、20~60μmであることが特に好ましい。第二の保護フィルムの厚みが20μm以上であると、ハンドリングしやすい傾向にあり、厚みが100μm以下であると、薄肉化による製造コスト低減のメリットが得られる傾向にある。
 また、第二の保護フィルムの厚みが60μm(好ましくは40μm以下、例えば10~40μm)と薄い場合に、特に本発明の効果が顕著に得られる。具体的には、第二の保護フィルムの膜厚が厚いほど、前記第一の保護フィルムとして面内方向のレターデーションが高いフィルム(ポリエステルフィルムなど)を用いた場合でも、硬化型接着剤を用いて偏光子と2枚の保護フィルムを貼り合わせて偏光板を作製したときにカール(第一の保護フィルム方向へのプラスのカール)が発生しにくい傾向にある。逆に、第二の保護フィルムの厚みが40μm以下のときには、硬化型接着剤を用いて偏光子と2枚の保護フィルムを貼り合わせて偏光板を作製したときにカールが非常に発生しやすくなるため、本発明のカール抑制効果を顕著に得ることができる。
(Characteristics of the second protective film)
-Film thickness-
The thickness of the second protective film is preferably 10 to 200 μm, more preferably 15 to 100 μm, and particularly preferably 20 to 60 μm. When the thickness of the second protective film is 20 μm or more, it tends to be easy to handle, and when the thickness is 100 μm or less, there is a tendency to obtain the merit of manufacturing cost reduction due to thinning.
In addition, when the thickness of the second protective film is as thin as 60 μm (preferably 40 μm or less, for example, 10 to 40 μm), the effects of the present invention are particularly remarkable. Specifically, the thicker the second protective film is, the more the curable adhesive is used even when a film (polyester film or the like) having a high in-plane retardation is used as the first protective film. Thus, when a polarizing plate is produced by laminating a polarizer and two protective films, curling (positive curling toward the first protective film) tends not to occur. Conversely, when the thickness of the second protective film is 40 μm or less, curling is very likely to occur when a polarizing plate is produced by laminating a polarizer and two protective films using a curable adhesive. Therefore, the curl suppressing effect of the present invention can be remarkably obtained.
-弾性率-
 第二の保護フィルムの弾性率は、MD方向において、1.8~8.0GPaが好ましく、1.8~6.0GPaであることがより好ましく、1.8~5.0GPaであることが、偏光板のカール抑制およびフィルム作製時の搬送性、端部スリット性や破断のし難さ等の製造適性の観点から、特に好ましい。
 第二の保護フィルムの搬送方向(MD方向、長手方向)は、本発明の偏光板では前記偏光子の吸収軸と平行であることが好ましい。
-Elastic modulus-
The elastic modulus of the second protective film is preferably 1.8 to 8.0 GPa in the MD direction, more preferably 1.8 to 6.0 GPa, and 1.8 to 5.0 GPa. It is particularly preferable from the viewpoints of production suitability such as curling suppression of the polarizing plate and transportability at the time of film production, end slit property and difficulty of breaking.
In the polarizing plate of the present invention, the transport direction (MD direction, longitudinal direction) of the second protective film is preferably parallel to the absorption axis of the polarizer.
<接着層>
 本発明の偏光板は、前記偏光子と第一の保護フィルムが接着層1を介して貼合され、前記偏光子と第二の保護フィルムが接着層2を介して貼合される。接着層1および接着層2は、硬化性の接着剤を含むことが好ましい。
<Adhesive layer>
In the polarizing plate of the present invention, the polarizer and the first protective film are bonded via the adhesive layer 1, and the polarizer and the second protective film are bonded via the adhesive layer 2. The adhesive layer 1 and the adhesive layer 2 preferably contain a curable adhesive.
(接着層の特性)
-膜厚-
 本発明の偏光板は、接着層1および接着層2の膜厚は、0.5~5μmの範囲で所定値に設定されることが好ましい。その接着層1および接着層2の膜厚が0.5μm以上であると、接着強度にムラを生じにくい。一方、その厚さが5μm以下であると、製造コストが低減できる。この範囲内で比較的厚め、たとえば3.5μm以上、とりわけ4μm以上とすれば、接着層1および接着層2の膜厚が多少変動しても、それに起因する気泡などの欠陥が現れにくくなるが、一方で、このように厚くすることはコストの増加につながりかねないので、可能な範囲で薄くすることが望まれる。これらの理由から、接着層1および接着層2の膜厚の好ましい厚さは、1~4μm、さらには1.5~3.5μmの範囲である。
(Adhesive layer properties)
-Film thickness-
In the polarizing plate of the present invention, the thicknesses of the adhesive layer 1 and the adhesive layer 2 are preferably set to predetermined values in the range of 0.5 to 5 μm. When the thickness of the adhesive layer 1 and the adhesive layer 2 is 0.5 μm or more, unevenness in adhesive strength is unlikely to occur. On the other hand, when the thickness is 5 μm or less, the manufacturing cost can be reduced. If the thickness is relatively thick within this range, for example, 3.5 μm or more, especially 4 μm or more, even if the film thickness of the adhesive layer 1 and the adhesive layer 2 fluctuates somewhat, defects such as bubbles due to the film hardly appear. On the other hand, since increasing the thickness in this way may lead to an increase in cost, it is desired to reduce the thickness as much as possible. For these reasons, the preferable thicknesses of the adhesive layer 1 and the adhesive layer 2 are in the range of 1 to 4 μm, and more preferably in the range of 1.5 to 3.5 μm.
 本発明の偏光板は、接着層1および接着層2の膜厚が異なることが、接着層1と接着層2の組成を同じとしたときに前記式(2)を満たすように接着層1および接着層2の硬化収縮力を制御できる観点から、好ましい。
 接着層1の膜厚(以下dとする)の、接着層2の膜厚(以下dとする)に対する比(すなわち、d/d)の好ましい範囲は、後述の接着層1の偏光板貼合時の硬化収縮力Sの、接着層2の偏光板貼合時の硬化収縮力Sに対する比(すなわち、S/S)の好ましい範囲と同様である。
In the polarizing plate of the present invention, the adhesive layer 1 and the adhesive layer 2 are different in film thickness so that the adhesive layer 1 and the adhesive layer 2 satisfy the above formula (2) when the compositions of the adhesive layer 1 and the adhesive layer 2 are the same. From the viewpoint that the curing shrinkage force of the adhesive layer 2 can be controlled, it is preferable.
The preferred range of the ratio of the film thickness of the adhesive layer 1 (hereinafter referred to as “d 1” ) to the film thickness of the adhesive layer 2 (hereinafter referred to as “d 2” ) (that is, d 1 / d 2 ) is that of the adhesive layer 1 described later. the cure shrinkage force S 1 at the time of the polarizing plate bonding, the same as the preferred range of the ratio of hardening shrinkage force S 2 when the polarizing plate bonding of the adhesive layer 2 (i.e., S 1 / S 2).
-接着層1、2の硬化収縮力比-
 接着層1の偏光板貼合時の硬化収縮力Sの、接着層2の偏光板貼合時の硬化収縮力Sに対する比(すなわち、S/S)の好ましい範囲は、0.3~10N/mであることが好ましく、0.4~9N/mであることがより好ましく、0.5~8N/mであることが特に好ましい。この範囲内において本発明のカール抑制効果を顕著に得ることができる。
 接着層1および接着層2の偏光板貼合時の硬化収縮力は、本発明では、後述の実施例に記載の方法で求める。ただし、接着層1および接着層2の偏光板貼合時の硬化収縮力は、本発明の偏光板における硬化後の接着層1および接着層2から、接着層1および接着層2の組成と膜厚に基づいて求めることもできる。
-Ratio of curing shrinkage of adhesive layers 1 and 2-
A preferable range of the ratio of the curing shrinkage force S 1 when the adhesive layer 1 is bonded to the polarizing plate to the curing shrinkage force S 2 when the adhesive layer 2 is bonded to the polarizing plate (that is, S 1 / S 2 ) is 0. It is preferably 3 to 10 N / m, more preferably 0.4 to 9 N / m, and particularly preferably 0.5 to 8 N / m. Within this range, the curl suppressing effect of the present invention can be remarkably obtained.
In this invention, the shrinkage | contraction force at the time of polarizing plate bonding of the adhesive layer 1 and the adhesive layer 2 is calculated | required by the method as described in the below-mentioned Example. However, the curing shrinkage force when the adhesive layers 1 and 2 are bonded to the polarizing plate is different from the cured adhesive layer 1 and the adhesive layer 2 in the polarizing plate of the present invention from the composition and film of the adhesive layer 1 and the adhesive layer 2. It can also be determined based on thickness.
(活性エネルギー線硬化型接着剤)
 接着剤は、硬化性である限りにおいて、従来から偏光板の製造に使用されている各種のものであることができるが、耐候性や重合性などの観点から、接着層1および接着層2が活性エネルギー線により硬化する接着剤を含むことが好ましい。なお、接着剤が硬化反応によって、構造が異なる接着剤の硬化物に変化した態様も、接着層1および接着層2が接着剤を含む態様に含まれる。例えば、接着層1および接着層2中において、活性エネルギー線により硬化する接着剤が完全に硬化し、構造が異なる接着剤の硬化物に変化した場合も本発明に含まれる。
 活性エネルギー線により硬化する接着剤の中でも、カチオン重合性の化合物、たとえばエポキシ化合物、より具体的には、特開2004-245925号公報に記載されるような、分子内に芳香環を有しないエポキシ化合物を、活性エネルギー線硬化性成分の一つとして含有する活性エネルギー線硬化型接着剤が好ましい。このようなエポキシ化合物は、たとえば、ビスフェノールAのジグリシジルエーテルを代表例とする芳香族エポキシ化合物の原料である芳香族ポリヒドロキシ化合物を核水添し、それをグリシジルエーテル化して得られる水素化エポキシ化合物、脂環式環に結合するエポキシ基を分子内に少なくとも1個有する脂環式エポキシ化合物、脂肪族ポリヒドロキシ化合物のグリシジルエーテルを代表例とする脂肪族エポキシ化合物などであることができる。また、活性エネルギー線硬化型接着剤には、エポキシ化合物を代表例とするカチオン重合性化合物のほか、通常は重合開始剤、特に活性エネルギー線の照射によりカチオン種またはルイス酸を発生し、カチオン重合性化合物の重合を開始させるための光カチオン重合開始剤が配合される。さらに、加熱によって重合を開始させる熱カチオン重合開始剤、その他、光増感剤などの各種添加剤が配合されていてもよい。
(Active energy ray-curable adhesive)
As long as the adhesive is curable, it can be any of those conventionally used in the production of polarizing plates. From the viewpoint of weather resistance, polymerizability, and the like, the adhesive layer 1 and the adhesive layer 2 are It is preferable to include an adhesive that is cured by active energy rays. In addition, the aspect which the adhesive agent changed into the hardened | cured material of the adhesive agent from which a structure differs by the hardening reaction is also contained in the aspect in which the adhesive layer 1 and the adhesive layer 2 contain an adhesive agent. For example, in the adhesive layer 1 and the adhesive layer 2, the case where the adhesive cured by the active energy ray is completely cured and the structure is changed to a cured product of an adhesive having a different structure is also included in the present invention.
Among adhesives that are cured by active energy rays, cationically polymerizable compounds such as epoxy compounds, more specifically, epoxy having no aromatic ring in the molecule as described in JP-A-2004-245925 An active energy ray curable adhesive containing a compound as one of the active energy ray curable components is preferred. Such an epoxy compound is, for example, a hydrogenated epoxy obtained by nuclear hydrogenation of an aromatic polyhydroxy compound, which is a raw material of an aromatic epoxy compound represented by diglycidyl ether of bisphenol A, and converting it to glycidyl ether. The compound, an alicyclic epoxy compound having at least one epoxy group bonded to the alicyclic ring in the molecule, an aliphatic epoxy compound typified by a glycidyl ether of an aliphatic polyhydroxy compound, and the like. In addition to cationically polymerizable compounds, typically epoxy compounds, active energy ray-curable adhesives usually generate polymerization species, especially cationic species or Lewis acids upon irradiation with active energy rays. A cationic photopolymerization initiator for initiating polymerization of the active compound is blended. Further, a thermal cationic polymerization initiator that initiates polymerization by heating, and various other additives such as a photosensitizer may be blended.
 偏光子の両面に保護フィルムを貼合する場合、それぞれの保護フィルムに適用される接着剤の組成は、同じであっても異なっていてもよいが、生産性の観点からは、適度の接着力が得られるという前提で、両面とも同じ組成の接着剤とするほうが好ましい。すなわち、本発明の偏光板は、接着層1と接着層2の組成が同じであることが好ましい。 When bonding protective films on both sides of the polarizer, the composition of the adhesive applied to each protective film may be the same or different, but from the viewpoint of productivity, moderate adhesive strength Therefore, it is preferable to use an adhesive having the same composition on both sides. That is, the composition of the adhesive layer 1 and the adhesive layer 2 is preferably the same in the polarizing plate of the present invention.
<粘着剤層>
 本発明の偏光板は、他部材と接着するための粘着剤層を有することが好ましい。
<Adhesive layer>
It is preferable that the polarizing plate of this invention has an adhesive layer for adhere | attaching with another member.
 粘着剤層の形成には、適宜な粘着剤を用いることができ、その種類について特に制限はない。粘着剤としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルアルコール系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などがあげられる。 For forming the pressure-sensitive adhesive layer, an appropriate pressure-sensitive adhesive can be used, and the type thereof is not particularly limited. Adhesives include rubber adhesives, acrylic adhesives, silicone adhesives, urethane adhesives, vinyl alkyl ether adhesives, polyvinyl alcohol adhesives, polyvinyl pyrrolidone adhesives, polyacrylamide adhesives, Examples thereof include cellulose-based pressure-sensitive adhesives.
 これら粘着剤のなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく使用される。このような特徴を示すものとしてアクリル系粘着剤が好ましく使用される。特に、アクリル系ポリマーおよび架橋剤を含む粘着剤により形成されているものを好適に用いることができる。 Among these pressure-sensitive adhesives, those having excellent optical transparency, suitable wettability, cohesiveness, and adhesive pressure characteristics, and excellent weather resistance and heat resistance are preferably used. An acrylic pressure-sensitive adhesive is preferably used as one exhibiting such characteristics. In particular, those formed of an adhesive containing an acrylic polymer and a crosslinking agent can be suitably used.
 アクリル系粘着剤は、(メタ)アクリル酸アルキルエステルのモノマーユニットを主骨格とするアクリル系ポリマーをベースポリマーとする。なお、(メタ)アクリル酸アルキルエステルはアクリル酸アルキルエステルおよび/またはメタクリル酸アルキルエステルをいい、本発明の(メタ)とは同様の意味である。アクリル系ポリマーの主骨格を構成する、(メタ)アクリル酸アルキルエステルとしては、直鎖状または分岐鎖状のアルキル基の炭素数1~20のものを例示できる。例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸イソミリスチル、(メタ)アクリル酸ラウリル等を例示できる。これらは単独であるいは組み合わせて使用することができる。これらアルキル基の平均炭素数は3~9であるのが好ましい。 The acrylic adhesive is based on an acrylic polymer having a monomer unit of (meth) acrylic acid alkyl ester as a main skeleton. The (meth) acrylic acid alkyl ester refers to an acrylic acid alkyl ester and / or a methacrylic acid alkyl ester, and (meth) in the present invention has the same meaning. Examples of the (meth) acrylic acid alkyl ester constituting the main skeleton of the acrylic polymer include linear or branched alkyl groups having 1 to 20 carbon atoms. For example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isooctyl (meth) acrylate, (meth) acrylic Illustrative examples include isononyl acid, isomyristyl (meth) acrylate, and lauryl (meth) acrylate. These can be used alone or in combination. These alkyl groups preferably have an average carbon number of 3 to 9.
 前記アクリル系ポリマーのなかでも、平衡水分率を低く制御する観点から、疎水性の高い(メタ)アクリル酸アルキルエステルのモノマーユニットを主骨格とするアクリルポリマーをベースポリマーとすることが好ましい。一般に(メタ)アクリル酸アルキルエステルとしては、前記の光学透明性、適度な濡れ性と凝集力、接着力、耐候性や耐熱性などの点から、直鎖状または分岐鎖状のアルキル基の炭素数3~9のもの、好ましくは4~8のものが実用上好ましく用いられる。これらアルキル基のなかでも、アルキル基の炭素数が大きい程、疎水性が高くなり、当該平衡水分率を低くするうえで好ましい。かかる(メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸ブチル、(メタ)アクリル酸イソオクチルがあげられる。これらのなかでも疎水性が高い(メタ)アクリル酸イソオクチルが好ましい。 Among the acrylic polymers, it is preferable to use an acrylic polymer having a monomer unit of (meth) acrylic acid alkyl ester having high hydrophobicity as a main skeleton from the viewpoint of controlling the equilibrium moisture content to be low. In general, (meth) acrylic acid alkyl ester is a linear or branched alkyl group carbon in terms of optical transparency, moderate wettability and cohesion, adhesion, weather resistance and heat resistance. Those of formula 3 to 9, preferably 4 to 8, are preferably used practically. Among these alkyl groups, the larger the carbon number of the alkyl group, the higher the hydrophobicity, which is preferable for reducing the equilibrium moisture content. Examples of the alkyl (meth) acrylate include butyl (meth) acrylate and isooctyl (meth) acrylate. Among these, isooctyl (meth) acrylate having high hydrophobicity is preferable.
 前記アクリル系ポリマー中には、接着性や耐熱性の改善を目的に、1種類以上の共重合モノマーを共重合により導入することができる。そのような共重合モノマーの具体例としては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸6-ヒドロキシヘキシル、(メタ)アクリル酸8-ヒドロキシオクチル、(メタ)アクリル酸10-ヒドロキシデシル、(メタ)アクリル酸12-ヒドロキシラウリルや(4-ヒドロキシメチルシクロヘキシル)-メチルアクリレートなどのヒドロキシル基含有モノマー;(メタ)アクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマール酸、クロトン酸などのカルボキシル基含有モノマー;無水マレイン酸、無水イタコン酸などの酸無水物基含有モノマー;アクリル酸のカプロラクトン付加物;スチレンスルホン酸やアリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸などのスルホン酸基含有モノマー;2-ヒドロキシエチルアクリロイルホスフェートなどの燐酸基含有モノマーなどがあげられる。 In the acrylic polymer, one or more kinds of copolymerization monomers can be introduced by copolymerization for the purpose of improving adhesiveness and heat resistance. Specific examples of such copolymerization monomers include, for example, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, (meth) acrylic acid 6 Hydroxyl-containing monomers such as hydroxyhexyl, 8-hydroxyoctyl (meth) acrylate, 10-hydroxydecyl (meth) acrylate, 12-hydroxylauryl (meth) acrylate and (4-hydroxymethylcyclohexyl) -methyl acrylate Carboxyl group-containing monomers such as (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid and crotonic acid; acid anhydrides such as maleic anhydride and itaconic anhydride Substance-based materials -Caprolactone adduct of acrylic acid; styrene sulfonic acid, allyl sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate, (meth) acryloyl Examples thereof include sulfonic acid group-containing monomers such as oxynaphthalenesulfonic acid; and phosphoric acid group-containing monomers such as 2-hydroxyethylacryloyl phosphate.
 また、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミドやN-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミドなどの(N-置換)アミド系モノマー;(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸tert-ブチルアミノエチルなどの(メタ)アクリル酸アルキルアミノアルキル系モノマー;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチルなどの(メタ)アクリル酸アルコキシアルキル系モノマー;N-(メタ)アクリロイルオキシメチレンスクシンイミドやN-(メタ)アクリロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミド、N-アクリロイルモルホリンなどのスクシンイミド系モノマー;N-シクロヘキシルマレイミドやN-イソプロピルマレイミド、N-ラウリルマレイミドやN-フェニルマレイミドなどのマレイミド系モノマー;N-メチルイタコンイミド、N-エチルイタコンイミド、N-ブチルイタコンイミド、N-オクチルイタコンイミド、N-2-エチルヘキシルイタコンイミド、N-シクロヘキシルイタコンイミド、N-ラウリルイタコンイミドなどのイタコンイミド系モノマー、なども改質目的のモノマー例としてあげられる。 Also, (N-substituted) amides such as (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide, etc. Monomers; alkylaminoalkyl monomers (meth) acrylates such as aminoethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, and tert-butylaminoethyl (meth) acrylate; (meth) acrylic (Meth) acrylic acid alkoxyalkyl monomers such as methoxyethyl acid and ethoxyethyl (meth) acrylate; N- (meth) acryloyloxymethylenesuccinimide, N- (meth) acryloyl-6-oxyhexamethylenesuccinimide, N- ( Meta) Acry Succinimide monomers such as yl-8-oxyoctamethylene succinimide and N-acryloylmorpholine; maleimide monomers such as N-cyclohexylmaleimide and N-isopropylmaleimide, N-laurylmaleimide and N-phenylmaleimide; N-methylitaconimide, Itaconimide monomers such as N-ethyl itaconimide, N-butyl itaconimide, N-octyl itaconimide, N-2-ethylhexylitaconimide, N-cyclohexyl itaconimide, N-lauryl itaconimide, etc. Take an example.
 さらに改質モノマーとして、酢酸ビニル、プロピオン酸ビニル、N-ビニルピロリドン、メチルビニルピロリドン、ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニルピペラジン、ビニルピラジン、ビニルピロール、ビニルイミダゾール、ビニルオキサゾール、ビニルモルホリン、N-ビニルカルボン酸アミド類、スチレン、α-メチルスチレン、N-ビニルカプロラクタムなどのビニル系モノマー;アクリロニトリル、メタクリロニトリルなどのシアノアクリレート系モノマー;(メタ)アクリル酸グリシジルなどのエポキシ基含有アクリル系モノマー;(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコール、(メタ)アクリル酸メトキシエチレングリコール、(メタ)アクリル酸メトキシポリプロピレングリコールなどのグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリル、フッ素(メタ)アクリレート、シリコーン(メタ)アクリレートや2-メトキシエチルアクリレートなどのアクリル酸エステル系モノマーなども使用することができる。 Further modifying monomers include vinyl acetate, vinyl propionate, N-vinyl pyrrolidone, methyl vinyl pyrrolidone, vinyl pyridine, vinyl piperidone, vinyl pyrimidine, vinyl piperazine, vinyl pyrazine, vinyl pyrrole, vinyl imidazole, vinyl oxazole, vinyl morpholine, N- Vinyl monomers such as vinylcarboxylic amides, styrene, α-methylstyrene, N-vinylcaprolactam; cyanoacrylate monomers such as acrylonitrile and methacrylonitrile; epoxy group-containing acrylic monomers such as glycidyl (meth) acrylate; (Meth) acrylic acid polyethylene glycol, (meth) acrylic acid polypropylene glycol, (meth) acrylic acid methoxyethylene glycol, (meth) acrylic acid meso Glycol acrylic ester monomers such as xypolypropylene glycol; acrylic ester monomers such as tetrahydrofurfuryl (meth) acrylate, fluorine (meth) acrylate, silicone (meth) acrylate and 2-methoxyethyl acrylate may also be used. it can.
 アクリル系ポリマー中の前記共重合モノマーの割合は、特に制限されないが、全構成モノマーの質量比率において、0~30%程度、さらには0.1~15%程度であるのが好ましい。 The ratio of the copolymerization monomer in the acrylic polymer is not particularly limited, but is preferably about 0 to 30%, more preferably about 0.1 to 15% in the mass ratio of all the constituent monomers.
 これら共重合モノマーの中でも、光学フィルム用途として液晶セルへの接着性、耐久性の点から、ヒドロキシル基含有モノマー、カルボキシル基含有モノマー、酸無水物基含有モノマーが好ましく用いられる。これらモノマーは、架橋剤との反応点になる。ヒドロキシル基含有モノマー、カルボキシル基含有モノマー、酸無水物モノマーなどは分子間架橋剤との反応性に富むため、得られる粘着剤層の凝集性や耐熱性の向上のために好ましく用いられる。例えば、ヒドロキシル基含有モノマーとしては、(メタ)アクリル酸2-ヒドロキシエチルを用いるよりも、好ましくは(メタ)アクリル酸4-ヒドロキシブチル、さらに好ましくは(メタ)アクリル酸6-ヒドロキシヘキシルのように、ヒドロキシアルキル基のアルキル基の大きいものを用いるのが好ましい。共重合モノマーとしてヒドロキシル基含有モノマーを用いる場合、その割合は全構成モノマーの質量比率において、0.01~5%、さらには0.01~3%であるのが好ましい。また、共重合モノマーとしてカルボキシル基含有モノマーを用いる場合、その割合は全構成モノマーの質量比率において、0.01~10%、さらには0.01~7%であるのが好ましい。 Among these copolymerized monomers, a hydroxyl group-containing monomer, a carboxyl group-containing monomer, and an acid anhydride group-containing monomer are preferably used from the viewpoints of adhesion to a liquid crystal cell and durability for optical film applications. These monomers serve as reaction points with the crosslinking agent. Hydroxyl group-containing monomers, carboxyl group-containing monomers, acid anhydride monomers, and the like are preferably used for improving the cohesiveness and heat resistance of the resulting pressure-sensitive adhesive layer because they are highly reactive with intermolecular crosslinking agents. For example, the hydroxyl group-containing monomer is preferably 4-hydroxybutyl (meth) acrylate, more preferably 6-hydroxyhexyl (meth) acrylate, rather than 2-hydroxyethyl (meth) acrylate. It is preferable to use a hydroxyalkyl group having a large alkyl group. When a hydroxyl group-containing monomer is used as the copolymerization monomer, the proportion is preferably 0.01 to 5%, more preferably 0.01 to 3%, in the mass ratio of all the constituent monomers. Further, when a carboxyl group-containing monomer is used as a copolymerization monomer, the ratio is preferably 0.01 to 10%, more preferably 0.01 to 7%, in the mass ratio of all constituent monomers.
 アクリル系ポリマーの平均分子量は特に制限されないが、重量平均分子量は、10万~250万程度であるのが好ましい。前記アクリル系ポリマーの製造は、各種公知の手法により製造でき、例えば、バルク重合法、溶液重合法、懸濁重合法等のラジカル重合法を適宜選択できる。ラジカル重合開始剤としては、アゾ系、過酸化物系の各種公知のものを使用できる。反応温度は通常50~80℃程度、反応時間は1~8時間とされる。また、前記製造法の中でも溶液重合法が好ましく、アクリル系ポリマーの溶媒としては一般に酢酸エチル、トルエン等が用いられる。溶液濃度は通常20~80質量%程度とされる。 The average molecular weight of the acrylic polymer is not particularly limited, but the weight average molecular weight is preferably about 100,000 to 2.5 million. The acrylic polymer can be produced by various known methods. For example, a radical polymerization method such as a bulk polymerization method, a solution polymerization method, or a suspension polymerization method can be appropriately selected. As the radical polymerization initiator, various known azo and peroxide initiators can be used. The reaction temperature is usually about 50 to 80 ° C., and the reaction time is 1 to 8 hours. Among the above production methods, the solution polymerization method is preferable, and ethyl acetate, toluene and the like are generally used as the solvent for the acrylic polymer. The solution concentration is usually about 20 to 80% by mass.
 また前記粘着剤は、架橋剤を含有する粘着剤組成物とするのが好ましい。粘着剤に配合できる多官能化合物としては、有機系架橋剤や多官能性金属キレートがあげられる。有機系架橋剤としては、エポキシ系架橋剤、イソシアネート系架橋剤、イミン系架橋剤、過酸化物系架橋剤、などがあげられる。これら架橋剤は1種または2種以上を組み合わせて用いることができる。有機系架橋剤としてはイソシアネート系架橋剤が好ましい。また、イソシアネート系架橋剤は過酸化物系架橋剤と組み合わせて好適に用いられる。多官能性金属キレートは、多価金属が有機化合物と共有結合または配位結合しているものである。多価金属原子としては、Al、Cr、Zr、Co、Cu、Fe、Ni、V、Zn、In、Ca、Mg、Mn、Y、Ce、Sr、Ba、Mo、La、Sn、Ti等があげられる。共有結合または配位結合する有機化合物中の原子としては酸素原子等があげられ、有機化合物としてはアルキルエステル、アルコール化合物、カルボン酸化合物、エーテル化合物、ケトン化合物等があげられる。 The pressure-sensitive adhesive is preferably a pressure-sensitive adhesive composition containing a crosslinking agent. Examples of the polyfunctional compound that can be blended in the pressure-sensitive adhesive include organic crosslinking agents and polyfunctional metal chelates. Examples of the organic crosslinking agent include an epoxy crosslinking agent, an isocyanate crosslinking agent, an imine crosslinking agent, and a peroxide crosslinking agent. These crosslinking agents can be used alone or in combination of two or more. As the organic crosslinking agent, an isocyanate crosslinking agent is preferable. Moreover, an isocyanate type crosslinking agent is used suitably in combination with a peroxide type crosslinking agent. A polyfunctional metal chelate is one in which a polyvalent metal is covalently or coordinately bonded to an organic compound. Examples of polyvalent metal atoms include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn, Ti, and the like. can give. Examples of the atom in the organic compound that is covalently or coordinately bonded include an oxygen atom, and the organic compound includes an alkyl ester, an alcohol compound, a carboxylic acid compound, an ether compound, a ketone compound, and the like.
 アクリル系ポリマー等のベースポリマーと架橋剤の配合割合は特に限定されないが、通常、ベースポリマー(固形分)100質量部に対して、架橋剤(固形分)0.001~20質量部程度が好ましく、さらには0.01~15質量部程度が好ましい。前記架橋剤としては、イソシアネート系架橋剤、過酸化物系架橋剤が好ましい。過酸化物系架橋剤は、ベースポリマー(固形分)100質量部に対して、0.01~3質量部程度が好ましく、0.02~2.5質量部程度が好ましく、さらには0.05~2.0質量部程度が好ましい。イソシアネート系架橋剤は、ベースポリマー(固形分)100質量部に対して、0.001~2質量部程度が好ましく、さらには0.01~1.5質量部程度が好ましい。また、イソシアネート系架橋剤および過酸化物系架橋剤は、前記範囲で用いることができる他、これらを併用して好ましく用いることができる。 The blending ratio of the base polymer such as the acrylic polymer and the crosslinking agent is not particularly limited, but usually about 0.001 to 20 parts by mass of the crosslinking agent (solid content) is preferable with respect to 100 parts by mass of the base polymer (solid content). Furthermore, about 0.01 to 15 parts by mass is preferable. As said crosslinking agent, an isocyanate type crosslinking agent and a peroxide type crosslinking agent are preferable. The peroxide crosslinking agent is preferably about 0.01 to 3 parts by weight, preferably about 0.02 to 2.5 parts by weight, and more preferably 0.05 to 100 parts by weight of the base polymer (solid content). About 2.0 parts by mass is preferable. The isocyanate-based crosslinking agent is preferably about 0.001 to 2 parts by mass, and more preferably about 0.01 to 1.5 parts by mass with respect to 100 parts by mass of the base polymer (solid content). Moreover, an isocyanate type crosslinking agent and a peroxide type crosslinking agent can be used in the said range, and can be preferably used in combination of these.
 さらに粘着剤には、必要に応じて、シランカップリング剤、粘着付与剤、可塑剤、ガラス繊維、ガラスビーズ、酸化防止剤、紫外線吸収剤、透明微粒子等を、また本発明の目的を逸脱しない範囲で各種の添加剤を適宜に使用することもできる。 Furthermore, the pressure-sensitive adhesive includes a silane coupling agent, a tackifier, a plasticizer, glass fiber, glass beads, an antioxidant, an ultraviolet absorber, transparent fine particles, and the like, if necessary, and does not depart from the purpose of the present invention. Various additives can be appropriately used within a range.
 添加剤としては、シランカップリング剤が好適であり、ベースポリマー(固形分)100質量部に対して、シランカップリング剤(固形分)0.001~10質量部程度が好ましく、さらには0.005~5質量部程度を配合するのが好ましい。シランカップリング剤としては、従来から知られているものを特に制限なく使用できる。例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、2-(3,4エポキシシクロヘキシル)エチルトリメトキシシランなどのエポキシ基含有シランカップリング剤、3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルブチリデン)プロピルアミンなどのアミノ基含有シランカップリング剤、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシランなどの(メタ)アクリル基含有シランカップリング剤、3-イソシアネートプロピルトリエトキシシラン等のイソシアネート基含有シランカップリング剤を例示できる。 As the additive, a silane coupling agent is suitable, and the silane coupling agent (solid content) is preferably about 0.001 to 10 parts by mass with respect to 100 parts by mass of the base polymer (solid content). It is preferable to add about 005 to 5 parts by mass. As the silane coupling agent, those conventionally known can be used without particular limitation. For example, epoxy groups such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethoxysilane Containing silane coupling agent, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N- (1,3-dimethylbutylidene) propylamine Amino group-containing silane coupling agents such as 3-acryloxypropyltrimethoxysilane, (meth) acrylic group-containing silane coupling agents such as 3-methacryloxypropyltriethoxysilane, and isocyanates such as 3-isocyanatopropyltriethoxysilane Base It can be exemplified a silane coupling agent.
 偏光板への粘着剤層の付設は、適宜な方式で行いうる。その例としては、例えばトルエンや酢酸エチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベースポリマー又はその組成物を溶解又は分散させた10~40質量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式で偏光板上又は光学部材上に直接付設する方式、あるいは前記に準じセパレータ上に粘着剤層を形成してそれを偏光板上に移着する方式などが挙げられる。 Attaching the pressure-sensitive adhesive layer to the polarizing plate can be performed by an appropriate method. For example, a pressure-sensitive adhesive solution of about 10 to 40% by mass in which a base polymer or a composition thereof is dissolved or dispersed in a solvent composed of a suitable solvent alone or a mixture such as toluene and ethyl acetate is prepared. An adhesive layer is formed on the separator in accordance with the above-mentioned method in which it is directly attached on the polarizing plate or the optical member by an appropriate development method such as a casting method or a coating method, or transferred to the polarizing plate. The method of wearing is mentioned.
<偏光板の機能化>
 本発明の偏光板は、ディスプレイの視認性向上のための反射防止フィルム、輝度向上フィルムや、ハードコート層、前方散乱層、アンチグレア(防眩)層等の機能層を有する光学フィルムと複合した機能化偏光板としても好ましく使用される。機能化のための反射防止フィルム、輝度向上フィルム、他の機能性光学フィルム、ハードコート層、前方散乱層、アンチグレア層については、特開2007-86748号公報の〔0257〕~〔0276〕に記載され、これらの記載を基に機能化した偏光板を作成することができる。
<Functionalization of polarizing plate>
The polarizing plate of the present invention is a function that is combined with an optical film having functional layers such as an antireflection film, a brightness enhancement film, a hard coat layer, a forward scattering layer, and an antiglare (antiglare) layer for improving the visibility of the display. It is also preferably used as a polarizing plate. The antireflection film, brightness enhancement film, other functional optical film, hard coat layer, forward scattering layer, and antiglare layer for functionalization are described in JP-A-2007-86748, [0257] to [0276]. Thus, a functionalized polarizing plate can be created based on these descriptions.
[偏光板の製造方法]
 本発明の偏光板を製造する方法としては特に制限は無く、公知の方法を用いることができる。その中でも、本発明の偏光板は、以下に記載する本発明の偏光板の製造方法によって、生産性よく、容易に製造することができる。
 本発明の偏光板の製造方法は、偏光性能を有する偏光子の一方の面に接着層1を介して面内方向のレターデーションが3000nm以上である第一の保護フィルムを貼合する工程と、偏光子の他方の面に接着層1とは異なる膜厚に制御した接着層2を介して第二の保護フィルムを貼合する工程と、接着層1と接着層2を硬化収縮させる工程とを含むことが好ましい。このように、接着層2の膜厚を、接着層1とは異なる膜厚に制御することによって、接着層1と接着層2の組成を同じとしたときにも前記式(2)を満たすように接着層1および接着層2の硬化収縮力を制御でき、生産性の観点から好ましい。
[Production method of polarizing plate]
There is no restriction | limiting in particular as a method of manufacturing the polarizing plate of this invention, A well-known method can be used. Among them, the polarizing plate of the present invention can be easily manufactured with high productivity by the manufacturing method of the polarizing plate of the present invention described below.
The method for producing a polarizing plate of the present invention includes a step of bonding a first protective film having an in-plane retardation of 3000 nm or more to one surface of a polarizer having polarizing performance via an adhesive layer 1; A step of bonding a second protective film to the other surface of the polarizer through an adhesive layer 2 controlled to a film thickness different from that of the adhesive layer 1, and a step of curing and shrinking the adhesive layer 1 and the adhesive layer 2 It is preferable to include. Thus, by controlling the film thickness of the adhesive layer 2 to a film thickness different from that of the adhesive layer 1, the above formula (2) is satisfied even when the compositions of the adhesive layer 1 and the adhesive layer 2 are the same. Further, the curing shrinkage force of the adhesive layer 1 and the adhesive layer 2 can be controlled, which is preferable from the viewpoint of productivity.
(偏光子と保護フィルムとの貼合工程)
 本発明の偏光板の製造方法は、偏光性能を有する偏光子の一方の面に接着層1を介して面内方向のレターデーションが3000nm以上である第一の保護フィルムを貼合する工程と、偏光子の他方の面に接着層1とは異なる膜厚に制御した接着層2を介して第二の保護フィルムを貼合する工程を含む。
(Bonding process of polarizer and protective film)
The method for producing a polarizing plate of the present invention includes a step of bonding a first protective film having an in-plane retardation of 3000 nm or more to one surface of a polarizer having polarizing performance via an adhesive layer 1; It includes a step of bonding a second protective film to the other surface of the polarizer via an adhesive layer 2 controlled to have a film thickness different from that of the adhesive layer 1.
 偏光子の一方の面に接着層1を介して第一の保護フィルムを貼合する工程と、偏光子の他方の面に接着層1とは異なる膜厚に制御した接着層2を介して第二の保護フィルムを貼合する工程は、同時に貼合を行っても、逐次で貼合を行ってもよい。その中でも、偏光子の一方の面に接着層1を介して第一の保護フィルムを貼合する工程と、偏光子の他方の面に接着層1とは異なる膜厚に制御した接着層2を介して第二の保護フィルムを貼合する工程を同時に行うことが好ましく、ロールツーロール方式を用いて両方の貼合する工程を同時に行うことがより好ましい。
 ロールツーロール方式を用いて両方の貼合する工程を同時に行う方法としては、例えば特開2012-203108号公報に記載の装置および方法を用いることができ、特開2012-203108号公報に記載の内容は本発明に組み込まれる。
 特開2012-203108号公報に記載の製造装置は、偏光子を連続的に搬送しながら、その一方の面に第一の保護フィルムを貼合し、もう一方の面には第二の保護フィルムを貼合して、偏光板を製造し、巻取りロールに巻き取るように構成されている。典型的には偏光子の両面にそれぞれ保護フィルムが貼合される。
The first protective film is bonded to one surface of the polarizer via the adhesive layer 1 and the adhesive layer 2 is controlled to a thickness different from that of the adhesive layer 1 on the other surface of the polarizer. The process of bonding the second protective film may be performed at the same time or sequentially. Among them, the step of bonding the first protective film to one surface of the polarizer via the adhesive layer 1, and the adhesive layer 2 controlled to a film thickness different from the adhesive layer 1 on the other surface of the polarizer. It is preferable to perform the process of bonding a 2nd protective film simultaneously through it, and it is more preferable to perform the process of bonding both using a roll-to-roll system simultaneously.
As a method for simultaneously performing both the bonding steps using a roll-to-roll method, for example, an apparatus and a method described in JP2012-203108A can be used, and a method described in JP2012-203108A can be used. The contents are incorporated into the present invention.
The manufacturing apparatus described in Japanese Patent Application Laid-Open No. 2012-203108, while continuously transporting a polarizer, a first protective film is bonded to one surface, and a second protective film is formed to the other surface. Are laminated to produce a polarizing plate, which is wound around a winding roll. Typically, a protective film is bonded to both sides of the polarizer.
 第一の保護フィルムおよび第二の保護フィルムの前記偏光子への貼り合せ方は特に制限はないが、以下の貼り合わせ方が好ましい。
 第一の保護フィルムの面内の弾性率の最大方向と前記偏光子の吸収軸方向(一般に延伸方向と同じ)とのなす角が第一の保護フィルムの幅方向の端部と中心で90°±25°以内であることが好ましい。第一の保護フィルムの面内の弾性率の最大方向と偏光子の吸収軸方向とのなす角は、90°±20°であることがより好ましく、90°±5°であることが特に好ましい。
 一方、偏光子の透過軸と第二の保護フィルムの遅相軸が実質的に平行となるように貼り合せることが好ましい。ここで、実質的に平行であるとは、第二の保護フィルムの主屈折率nxの方向と偏光板の透過軸の方向とは、そのずれが5°以内であることをいい、好ましくは1°以内、より好ましくは0.5°以内である。ずれが1°以内であれば、偏光板クロスニコル下での偏光度性能が低下しにくく、光抜けが生じにくく好ましい。
The method of bonding the first protective film and the second protective film to the polarizer is not particularly limited, but the following bonding method is preferable.
The angle formed by the maximum direction of the elastic modulus in the plane of the first protective film and the absorption axis direction of the polarizer (generally the same as the stretching direction) is 90 ° at the end and the center in the width direction of the first protective film. It is preferably within ± 25 °. The angle formed between the maximum in-plane elastic modulus direction of the first protective film and the absorption axis direction of the polarizer is more preferably 90 ° ± 20 °, and particularly preferably 90 ° ± 5 °. .
On the other hand, it is preferable to bond the polarizer so that the transmission axis of the polarizer and the slow axis of the second protective film are substantially parallel. Here, being substantially parallel means that the deviation between the direction of the main refractive index nx of the second protective film and the direction of the transmission axis of the polarizing plate is within 5 °, preferably 1 Within 0 °, more preferably within 0.5 °. If the deviation is within 1 °, the polarization degree performance under the polarizing plate crossed Nicol is unlikely to deteriorate, and light leakage is less likely to occur.
 本発明において、接着層1と接着層2を設ける方法はリバースグラビアコート、ダイレクトグラビアコート、ロールコート、ダイコート、バーコート、カーテンコート等、従来公知の塗工方式を用いることができる。塗工方式に関しては「コーティング方式」槇書店 原崎勇次著1979年発行に記載例がある。
 第一の保護フィルムおよび第二の保護フィルムにはあらかじめ、けん化処理、コロナ処理、プラズマ処理等の表面処理を施してもよい。
In the present invention, as a method of providing the adhesive layer 1 and the adhesive layer 2, a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating, or the like can be used. As for the coating method, there is a description example in “Coating method” published by Yoji Harasaki in 1979.
The first protective film and the second protective film may be subjected to surface treatment such as saponification treatment, corona treatment, and plasma treatment in advance.
(接着層を硬化収縮させる工程)
 本発明の偏光板の製造方法は、接着層1と接着層2を硬化収縮させる工程とを含む。接着層1と接着層2を硬化収縮させる工程としては特に制限はなく、公知の方法を用いることができる。
 本発明の偏光板の製造方法は、接着層1および接着層2が活性エネルギー線により硬化する接着剤を含み、接着層1と接着層2を硬化収縮させる工程が活性エネルギー線を照射して接着層1と接着層2を同時に硬化させる工程であることが好ましい。
(Step of curing and shrinking the adhesive layer)
The method for producing a polarizing plate of the present invention includes a step of curing and shrinking the adhesive layer 1 and the adhesive layer 2. There is no restriction | limiting in particular as a process of carrying out hardening shrinkage of the contact bonding layer 1 and the contact bonding layer 2, A well-known method can be used.
The manufacturing method of the polarizing plate of the present invention includes an adhesive in which the adhesive layer 1 and the adhesive layer 2 are cured by active energy rays, and the step of curing and shrinking the adhesive layer 1 and the adhesive layer 2 irradiates the active energy rays to bond. It is preferable to be a step of simultaneously curing the layer 1 and the adhesive layer 2.
 前記接着層を硬化収縮させる工程における活性エネルギー線としては特に制限はなく、公知の活性エネルギー線を用いることができる。その中でも、本発明では、活性エネルギー線が紫外線であることが好ましい。 The active energy ray in the step of curing and shrinking the adhesive layer is not particularly limited, and a known active energy ray can be used. Among these, in the present invention, the active energy ray is preferably ultraviolet rays.
 活性エネルギー線が紫外線である場合において、接着層1および接着層2が紫外線により硬化する接着剤を含み、第一の保護フィルムおよび第二の保護フィルムのうちいずれか一方が紫外線吸収剤を含むときは、紫外線吸収剤を含まない方の保護フィルム側から紫外線を照射することが好ましい。
 その中でも本発明の偏光板の製造方法は、第一の保護フィルムが紫外線吸収剤を含み、接着層1と接着層2を硬化収縮させる工程が前記第二の保護フィルム側から紫外線を照射して接着層1と接着層2を同時に硬化させる工程であることが好ましい。図2にこのような態様の概略図を示す。図2では、第一の保護フィルム(図中の符号1)が紫外線吸収剤を含み、前記第二の保護フィルム(図中の符号3)側から紫外線(図中の符号UV)を照射して(図中の符号11)と接着層2(図中の符号12)を同時に硬化させている。このような構成により、第一の保護フィルムが紫外線吸収剤を含む場合にも、硬化型接着剤を用いて偏光子と2枚の保護フィルムを貼り合わせて偏光板を作製したときに発生するカールを抑えながら、生産性良く、本発明の偏光板を製造することができる。特に前記第一の保護フィルムがポリエステル樹脂を主成分として含むポリエステルフィルムである場合は、紫外線吸収剤を添加することが好ましいため、このような態様で接着層1と接着層2を硬化収縮させることが好ましい。
When the active energy rays are ultraviolet rays, the adhesive layer 1 and the adhesive layer 2 contain an adhesive that is cured by ultraviolet rays, and one of the first protective film and the second protective film contains an ultraviolet absorber. Is preferably irradiated with ultraviolet rays from the side of the protective film not containing the ultraviolet absorber.
Among them, in the method for producing a polarizing plate of the present invention, the first protective film contains an ultraviolet absorber, and the step of curing and shrinking the adhesive layer 1 and the adhesive layer 2 irradiates ultraviolet rays from the second protective film side. It is preferable to be a step of simultaneously curing the adhesive layer 1 and the adhesive layer 2. FIG. 2 shows a schematic diagram of such an embodiment. In FIG. 2, the first protective film (reference numeral 1 in the figure) contains an ultraviolet absorber, and ultraviolet rays (reference numeral UV in the figure) are irradiated from the second protective film (reference numeral 3 in the figure) side. (Reference numeral 11 in the figure) and the adhesive layer 2 (reference numeral 12 in the figure) are simultaneously cured. With such a configuration, even when the first protective film contains an ultraviolet absorber, curling that occurs when a polarizing plate is produced by laminating a polarizer and two protective films using a curable adhesive. The polarizing plate of the present invention can be produced with good productivity while suppressing the above. In particular, when the first protective film is a polyester film containing a polyester resin as a main component, it is preferable to add an ultraviolet absorber. Therefore, the adhesive layer 1 and the adhesive layer 2 are cured and shrunk in this manner. Is preferred.
[画像表示装置]
 本発明の画像表示装置は、本発明の偏光板を含むことを特徴とする。
 前記画像表示装置としては、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(OELD又はIELD)、フィールドエミッションディスプレイ(FED)、タッチパネル、電子ペーパー等を挙げることができる。これらの画像表示装置は、画像表示パネルの表示画面側に本発明の偏光板を備えることが好ましい。
[Image display device]
The image display device of the present invention includes the polarizing plate of the present invention.
Examples of the image display device include a liquid crystal display (LCD), a plasma display (PDP), an electroluminescence display (OELD or IELD), a field emission display (FED), a touch panel, and electronic paper. These image display devices preferably include the polarizing plate of the present invention on the display screen side of the image display panel.
<偏光板の画像表示装置への貼合方法>
 本発明の偏光板を液晶表示装置などの画像表示装置へと貼合する方法としては、ロールtoパネル製法を用いることもでき、生産性、歩留まりを向上する上で好ましい。ロールtoパネル製法は特開2011-48381号公報、特開2009-175653号公報、特許4628488号公報、特許4729647号公報、WO2012/014602号、WO2012/014571号等に記載されているが、これらに限定されない。
<Method of bonding polarizing plate to image display device>
As a method for bonding the polarizing plate of the present invention to an image display device such as a liquid crystal display device, a roll-to-panel manufacturing method can be used, which is preferable in terms of improving productivity and yield. The roll-to-panel manufacturing method is described in JP-A-2011-48381, JP-A-2009-175653, JP-A-4628488, JP-B-4729647, WO2012 / 014602, WO2012 / 014571, and the like. It is not limited.
<液晶表示装置>
 液晶表示装置は、本発明の偏光板と、液晶表示素子とを備えるものであることが好ましい。ここで、液晶表示素子は、上下基板間に液晶が封入された液晶セルを備え、電圧印加により液晶の配向状態を変化させて画像の表示を行う液晶パネルが代表的であるが、その他、プラズマディスプレイパネル、CRTディスプレイ、有機ELディスプレイ等、公知の各種ディスプレイに対しても、本発明の偏光板を適用することができる。このように、レターデーションが高い第一の保護フィルムを有する本発明の偏光板を液晶表示素子に適用した場合には、液晶表示素子の反りを防止することができる。
<Liquid crystal display device>
The liquid crystal display device preferably includes the polarizing plate of the present invention and a liquid crystal display element. Here, the liquid crystal display element is typically a liquid crystal panel having a liquid crystal cell in which liquid crystal is sealed between upper and lower substrates and displaying an image by changing the alignment state of the liquid crystal by applying a voltage. The polarizing plate of the present invention can be applied to various known displays such as a display panel, a CRT display, and an organic EL display. Thus, when the polarizing plate of this invention which has a 1st protective film with high retardation is applied to a liquid crystal display element, the curvature of a liquid crystal display element can be prevented.
 ここで、虹状の色斑は、レターデーションが高い第一の保護フィルムのレターデーションとバックライト光源の発光スペクトルに起因する。従来、液晶表示装置のバックライト光源としては、冷陰極管や熱陰極管などの蛍光管を用いられる。冷陰極管や熱陰極管などの蛍光灯の分光分布は複数のピークを有する発光スペクトルを示し、これら不連続な発光スペクトルが合わさって白色の光源が得られている。レターデーションが高いフィルムを光が透過する場合、波長によって異なる透過光強度を示す。このため、バックライト光源が不連続な発光スペクトルであると、特定の波長のみ強く透過されることになり虹状の色斑が発生する。 Here, the rainbow-like color spots are caused by the retardation of the first protective film having a high retardation and the emission spectrum of the backlight light source. Conventionally, a fluorescent tube such as a cold cathode tube or a hot cathode tube is used as a backlight source of a liquid crystal display device. The spectral distribution of a fluorescent lamp such as a cold cathode tube or a hot cathode tube shows an emission spectrum having a plurality of peaks, and these discontinuous emission spectra are combined to obtain a white light source. When light passes through a film having a high retardation, the transmitted light intensity varies depending on the wavelength. For this reason, when the backlight light source has a discontinuous emission spectrum, only a specific wavelength is strongly transmitted, and a rainbow-like color spot is generated.
 本発明の画像表示装置が液晶表示装置である場合は、バックライト光源と、2つの偏光板の間に配された液晶セルとを構成部材として含むことが好ましい。また、これら以外の他の構成、例えばカラーフィルター、レンズフィルム、拡散シート、反射防止フィルムなどを適宜有しても構わない。 When the image display device of the present invention is a liquid crystal display device, it is preferable to include a backlight light source and a liquid crystal cell disposed between two polarizing plates as constituent members. Moreover, you may have suitably other structures other than these, for example, a color filter, a lens film, a diffusion sheet, an antireflection film etc. suitably.
 バックライトの構成としては、導光板や反射板などを構成部材とするエッジライト方式であっても、直下型方式であっても構わないが、本発明では、液晶表示装置のバックライト光源として白色発光ダイオード(白色LED)を用いることが必要である。本発明において、白色LEDとは、蛍光体方式、すなわち化合物半導体を使用した青色光、もしくは紫外光を発する発光ダイオードと蛍光体を組み合わせることにより白色を発する素子のことである。蛍光体としては、イットリウム・アルミニウム・ガーネット系の黄色蛍光体やテルビウム・アルミニウム・ガーネット系の黄色蛍光体等がある。なかでも、化合物半導体を使用した青色発光ダイオードとイットリウム・アルミニウム・ガーネット系黄色蛍光体とを組み合わせた発光素子からなる白色発光ダイオードは、連続的で幅広い発光スペクトルを有しているとともに発光効率にも優れるため、本発明の画像表示装置のバックライト光源として好適である。なお、ここで発光スペクトルが連続的であるとは、少なくとも可視光の領域において光の強度がゼロとなる波長が存在しないことをいう。また、本発明により消費電力の小さい白色LEDを広汎に利用可能になるので、省エネルギー化の効果も奏することが可能となる。
 上記態様により虹状の色斑の発生が抑制される機構としては国際公開WO2011/162198号に記載があり、この公報の内容は本発明に組み込まれる。
The configuration of the backlight may be an edge light method using a light guide plate, a reflection plate, or the like, or a direct type, but in the present invention, white is used as the backlight light source of the liquid crystal display device. It is necessary to use a light emitting diode (white LED). In the present invention, the white LED is an element that emits white by combining a phosphor with a phosphor system, that is, a light emitting diode that emits blue light or ultraviolet light using a compound semiconductor. Examples of the phosphor include yttrium / aluminum / garnet yellow phosphor and terbium / aluminum / garnet yellow phosphor. Above all, white light-emitting diodes, which are composed of light-emitting elements that combine blue light-emitting diodes using compound semiconductors with yttrium, aluminum, and garnet-based yellow phosphors, have a continuous and broad emission spectrum and also have high luminous efficiency. Since it is excellent, it is suitable as a backlight light source of the image display device of the present invention. Here, the continuous emission spectrum means that there is no wavelength at which the light intensity becomes zero at least in the visible light region. Further, since the white LED with low power consumption can be widely used according to the present invention, an effect of energy saving can be achieved.
The mechanism by which the occurrence of rainbow-like color spots is suppressed by the above embodiment is described in International Publication No. WO2011 / 162198, and the contents of this publication are incorporated in the present invention.
 本発明の画像表示装置が液晶表示装置である場合は、本発明の偏光板の配置は特に制限はない。本発明の偏光板は、液晶表示装置における視認側用の偏光板として用いられることが好ましい。
 面内方向のレターデーションが高い第一の保護フィルムの配置は特に限定されないが、入射光側(光源側)に配される偏光板と、液晶セルと、出射光側(視認側)に配される偏光板とを配された液晶表示装置の場合、入射光側に配される偏光板の入射光側の偏光子保護フィルム、もしくは出射光側に配される偏光板の射出光側の偏光子保護フィルムが面内方向のレターデーションが高い第一の保護フィルムであることが好ましい。特に好ましい態様は、出射光側に配される偏光板の射出光側の偏光子保護フィルムを面内方向のレターデーションが高い第一の保護フィルムとする態様である。上記以外の位置に面内方向のレターデーションが高い第一の保護フィルムを配する場合は、液晶セルの偏光特性を変化させてしまう場合がある。偏光特性が必要とされない場所に、面内方向のレターデーションが高い第一の保護フィルムは用いられることが好ましいため、このような特定の位置の偏光板の保護フィルムとして使用されることが好ましい。
When the image display device of the present invention is a liquid crystal display device, the arrangement of the polarizing plate of the present invention is not particularly limited. The polarizing plate of the present invention is preferably used as a polarizing plate for the viewing side in a liquid crystal display device.
The arrangement of the first protective film having a high in-plane retardation is not particularly limited, but is arranged on the incident light side (light source side), the polarizing plate, the liquid crystal cell, and the outgoing light side (viewing side). In the case of a liquid crystal display device provided with a polarizing plate, the polarizer protective film on the incident light side of the polarizing plate arranged on the incident light side, or the polarizer on the outgoing light side of the polarizing plate arranged on the outgoing light side The protective film is preferably the first protective film having a high in-plane retardation. A particularly preferred embodiment is an embodiment in which the polarizer protective film on the exit light side of the polarizing plate disposed on the exit light side is the first protective film having a high in-plane retardation. When the first protective film having a high in-plane retardation is disposed at a position other than the above, the polarization characteristics of the liquid crystal cell may be changed. Since the first protective film having a high retardation in the in-plane direction is preferably used in a place where the polarization characteristic is not required, it is preferably used as a protective film for the polarizing plate at such a specific position.
 液晶表示装置の好ましい一例の模式図を図4に示す。
 図4に示した液晶表示装置30は、視認側偏光板として本発明の偏光板20、21を有し、液晶セル22側に、バックライト側偏光板23を有する。また、液晶表示装置30はバックライト26を有する。バックライト側偏光板23としては、特に限定されず、視認側偏光板21と同じ偏光板でもよいし、公知の偏光板でもよい。
 液晶セルは、液晶層と、該液晶層の両側に設けられた2枚のガラス基板を有することが好ましい。ガラス基板の厚さは0.5mm以下であることが好ましく、0.4mm以下がより好ましく、0.3mm以下が特に好ましい。
 液晶表示装置の液晶セルはIPSモード、VAモード、FFSモードであることが好ましい。
A schematic diagram of a preferred example of a liquid crystal display device is shown in FIG.
The liquid crystal display device 30 shown in FIG. 4 has the polarizing plates 20 and 21 of the present invention as the viewing side polarizing plate, and the backlight side polarizing plate 23 on the liquid crystal cell 22 side. The liquid crystal display device 30 has a backlight 26. It does not specifically limit as the backlight side polarizing plate 23, The same polarizing plate as the visual recognition side polarizing plate 21 may be sufficient, and a well-known polarizing plate may be sufficient.
The liquid crystal cell preferably has a liquid crystal layer and two glass substrates provided on both sides of the liquid crystal layer. The thickness of the glass substrate is preferably 0.5 mm or less, more preferably 0.4 mm or less, and particularly preferably 0.3 mm or less.
The liquid crystal cell of the liquid crystal display device is preferably IPS mode, VA mode, or FFS mode.
 以下に実施例と比較例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 Hereinafter, the features of the present invention will be described more specifically with reference to examples and comparative examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
[実施例1]
<<第一の保護フィルムの作製>>
<原料ポリエステルの合成>
(原料ポリエステル1)
 以下に示すように、テレフタル酸及びエチレングリコールを直接反応させて水を留去し、エステル化した後、減圧下で重縮合を行なう直接エステル化法を用いて、連続重合装置により原料ポリエステル1(Sb触媒系PET)を得た。
[Example 1]
<< Preparation of first protective film >>
<Synthesis of raw material polyester>
(Raw material polyester 1)
As shown below, terephthalic acid and ethylene glycol are directly reacted to distill off water, esterify, and then, using a direct esterification method in which polycondensation is performed under reduced pressure, raw polyester 1 ( Sb catalyst system PET) was obtained.
(1)エステル化反応
 第一エステル化反応槽に、高純度テレフタル酸4.7トンとエチレングリコール1.8トンを90分かけて混合してスラリー形成させ、3800kg/hの流量で連続的に第一エステル化反応槽に供給した。更に三酸化アンチモンのエチレングリコール溶液を連続的に供給し、反応槽内温度250℃、攪拌下、平均滞留時間約4.3時間で反応を行なった。このとき、三酸化アンチモンはSb添加量が元素換算値で150ppmとなるように連続的に添加した。
(1) Esterification reaction In a first esterification reactor, 4.7 tons of high-purity terephthalic acid and 1.8 tons of ethylene glycol are mixed over 90 minutes to form a slurry, and continuously at a flow rate of 3800 kg / h. It supplied to the 1st esterification reaction tank. Further, an ethylene glycol solution of antimony trioxide was continuously supplied, and the reaction was carried out at a reaction vessel temperature of 250 ° C. with stirring and an average residence time of about 4.3 hours. At this time, antimony trioxide was continuously added so that the amount of Sb added was 150 ppm in terms of element.
 この反応物を第二エステル化反応槽に移送し、攪拌下、反応槽内温度250℃で、平均滞留時間で1.2時間反応させた。第二エステル化反応槽には、酢酸マグネシウムのエチレングリコール溶液と、リン酸トリメチルのエチレングリコール溶液を、Mg添加量およびP添加量が元素換算値でそれぞれ65ppm、35ppmになるように連続的に供給した。 The reaction product was transferred to a second esterification reaction vessel, and reacted with stirring at a temperature in the reaction vessel of 250 ° C. and an average residence time of 1.2 hours. To the second esterification reaction tank, an ethylene glycol solution of magnesium acetate and an ethylene glycol solution of trimethyl phosphate are continuously supplied so that the added amount of Mg and the added amount of P are 65 ppm and 35 ppm in terms of element, respectively. did.
(2)重縮合反応
 上記で得られたエステル化反応生成物を連続的に第一重縮合反応槽に供給し、攪拌下、反応温度270℃、反応槽内圧力20torr(2.67×10-3MPa)で、平均滞留時間約1.8時間で重縮合させた。
(2) the polycondensation reaction above-obtained esterification reaction product supplied to the first polycondensation reaction vessel continuously stirring, the reaction temperature 270 ° C., the reaction vessel pressure 20 torr (2.67 × 10 - 3 MPa) and polycondensation with an average residence time of about 1.8 hours.
 更に、第二重縮合反応槽に移送し、この反応槽において攪拌下、反応槽内温度276℃、反応槽内圧力5torr(6.67×10-4MPa)で滞留時間約1.2時間の条件で反応(重縮合)させた。 Further, it was transferred to the second double condensation reaction tank, and while stirring in this reaction tank, the reaction tank temperature was 276 ° C., the reaction tank pressure was 5 torr (6.67 × 10 −4 MPa), and the residence time was about 1.2 hours. The reaction (polycondensation) was performed under the conditions.
 次いで、更に第三重縮合反応槽に移送し、この反応槽では、反応槽内温度278℃、反応槽内圧力1.5torr(2.0×10-4MPa)で、滞留時間1.5時間の条件で反応(重縮合)させ、反応物(ポリエチレンテレフタレート(PET))を得た。 Subsequently, it was further transferred to the third triple condensation reaction tank, in which the temperature in the reaction tank was 278 ° C., the pressure in the reaction tank was 1.5 torr (2.0 × 10 −4 MPa), and the residence time was 1.5 hours. The reaction product (polyethylene terephthalate (PET)) was obtained by reaction (polycondensation) under the following conditions.
 次に、得られた反応物を、冷水にストランド状に吐出し、直ちにカッティングしてポリエステルのペレット<断面:長径約4mm、短径約2mm、長さ:約3mm>を作製した。 Next, the obtained reaction product was discharged into cold water in a strand shape and immediately cut to prepare polyester pellets (cross section: major axis: about 4 mm, minor axis: about 2 mm, length: about 3 mm).
 得られたポリマーは、固有粘度IV=0.63であった。このポリマーを原料ポリエステル1とした。 The obtained polymer had an intrinsic viscosity IV = 0.63. This polymer was designated as raw material polyester 1.
 IVは、原料ポリエステルフィルム1を、1,1,2,2-テトラクロルエタン/フェノール(=2/3[質量比])混合溶媒に溶解し、該混合溶媒中の25℃での溶液粘度から求めた。 In IV, the raw material polyester film 1 is dissolved in a 1,1,2,2-tetrachloroethane / phenol (= 2/3 [mass ratio]) mixed solvent, and from the solution viscosity at 25 ° C. in the mixed solvent. Asked.
(原料ポリエステル2)
 乾燥させた紫外線吸収剤(2,2’-(1,4-フェニレン)ビス(4H-3,1-ベンズオキサジノン-4-オン)10質量部、原料ポリエステル1(IV=0.63)90質量部を混合し、混練押出機を用い、紫外線吸収剤を含有する原料ポリエステル2を得た。
(Raw material polyester 2)
10 parts by weight of a dried UV absorber (2,2 ′-(1,4-phenylene) bis (4H-3,1-benzoxazinon-4-one), raw material polyester 1 (IV = 0.63) 90 The raw material polyester 2 containing an ultraviolet absorber was obtained by mixing the mass parts and using a kneading extruder.
-フィルム成形工程-
 原料ポリエステル1(90質量部)と、紫外線吸収剤を含有した原料ポリエステル2(10質量部)を、含水率20ppm以下に乾燥させた後、直径50mmの1軸混練押出機1のホッパー1に投入し、押出機1で300℃に溶融した。下記押出条件により、ギアポンプ、濾過器(孔径20μm)を介し、ダイから押出した。
 溶融樹脂の押出条件は、圧力変動を1%、溶融樹脂の温度分布を2%として、溶融樹脂をダイから押出した。具体的には、背圧を、押出機のバレル内平均圧力に対して1%加圧し、押出機の配管温度を、押出機のバレル内平均温度に対して2%高い温度で加熱した。
 ダイから押出した溶融樹脂は、温度25℃に設定された冷却キャストドラム上に押出し、静電印加法を用い冷却キャストドラムに密着させた。冷却キャストドラムに対向配置された剥ぎ取りロールを用いて剥離し、未延伸ポリエステルフィルム1を得た。
-Film forming process-
The raw material polyester 1 (90 parts by mass) and the raw material polyester 2 containing ultraviolet absorbers (10 parts by mass) are dried to a water content of 20 ppm or less and then put into the hopper 1 of a single-screw kneading extruder 1 having a diameter of 50 mm. And was melted to 300 ° C. by the extruder 1. Extrusion was performed from a die through a gear pump and a filter (pore diameter: 20 μm) under the following extrusion conditions.
The molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%. Specifically, the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
The molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled using the peeling roll arrange | positioned facing the cooling cast drum, and the unstretched polyester film 1 was obtained.
 得られた未延伸ポリエステルフィルム1を、テンター(横延伸機)に導き、フィルムの端部をクリップで把持しながら、下記の方法、条件にてTD方向(フィルム幅方向、横方向)に下記の条件にて横延伸し、厚さ80μm、幅1330mmのPETフィルム1(以降、PET1と略す)を製造した。
《条件》
 ・横延伸温度:90℃
 ・横延伸倍率:4.3倍
The obtained unstretched polyester film 1 is guided to a tenter (lateral stretching machine), and the following method and conditions are used in the TD direction (film width direction, lateral direction) while gripping the end of the film with a clip. The film was stretched transversely under conditions to produce a PET film 1 (hereinafter abbreviated as PET1) having a thickness of 80 μm and a width of 1330 mm.
"conditions"
-Transverse stretching temperature: 90 ° C
・ Horizontal stretch ratio: 4.3 times
(熱固定部)
 次いで、ポリエステルフィルムの膜面温度を下記範囲に制御しながら、熱固定処理を行った。
 <条件>
 ・熱固定温度:180℃
 ・熱固定時間:15秒
(Heat fixing part)
Next, a heat setting treatment was performed while controlling the film surface temperature of the polyester film within the following range.
<Condition>
・ Heat setting temperature: 180 ℃
・ Heat setting time: 15 seconds
(熱緩和部)
 熱固定後のポリエステルフィルムを下記の温度に加熱し、フィルムを緩和した。
 ・熱緩和温度:170℃
 ・熱緩和率:TD方向(フィルム幅方向、横方向)2%
(Heat relaxation part)
The polyester film after heat setting was heated to the following temperature to relax the film.
-Thermal relaxation temperature: 170 ° C
-Thermal relaxation rate: TD direction (film width direction, lateral direction) 2%
(冷却部)
 次に、熱緩和後のポリエステルフィルムを50℃の冷却温度にて冷却した。
(Cooling section)
Next, the polyester film after heat relaxation was cooled at a cooling temperature of 50 ° C.
<<第二の保護フィルムの作成>>
<COP1の製造>
 「ゼオノア1420 R」{日本ゼオン(株)製、厚み100μm}を、縦一軸延伸機において、給気温度140℃、フィルム膜面温度130℃で、延伸倍率30%で縦延伸した。その後、テンター延伸機において、給気温度140℃、フィルム膜面温度130℃で延伸倍率40%で横延伸し、巻取り部前で両端部を切り落とし幅1330mmとし、長さ4000mのロールフィルムとして巻き取った。二軸延伸した熱可塑性樹脂フィルム(以降、COP1と略す)を得た(膜厚52μm、Re=50nm、Rth=120nm)。
<< Creation of second protective film >>
<Manufacture of COP1>
“Zeonor 1420 R” {manufactured by Nippon Zeon Co., Ltd., thickness 100 μm} was longitudinally stretched at a supply temperature of 140 ° C. and a film film surface temperature of 130 ° C. at a stretching ratio of 30% in a longitudinal uniaxial stretching machine. Then, in a tenter stretching machine, the film is stretched horizontally at an air supply temperature of 140 ° C. and a film film surface temperature of 130 ° C. at a stretching ratio of 40%, and both ends are cut off in front of the winding portion to a width of 1330 mm and wound as a roll film having a length of 4000 m I took it. A biaxially stretched thermoplastic resin film (hereinafter abbreviated as COP1) was obtained (film thickness 52 μm, Re = 50 nm, Rth = 120 nm).
<偏光板加工>
(偏光子の作製)
 特開2001-141926号公報の実施例1に従い、延伸したポリビニルアルコールフィルムにヨウ素を吸着させて膜厚24μmの偏光子を作製した。
<Polarizing plate processing>
(Production of polarizer)
According to Example 1 of Japanese Patent Laid-Open No. 2001-141926, iodine was adsorbed to a stretched polyvinyl alcohol film to prepare a polarizer having a thickness of 24 μm.
(接着剤の調製1)
 2-ヒドロキシエチルアクリレート100質量部、トリレンジイソシアネート10質量部および光重合開始剤(イルガキュア907、BASF製)3質量部、を配合して偏光板用接着剤を調製した。これを接着剤1とした。
(Preparation of adhesive 1)
A polarizing plate adhesive was prepared by blending 100 parts by mass of 2-hydroxyethyl acrylate, 10 parts by mass of tolylene diisocyanate, and 3 parts by mass of a photopolymerization initiator (Irgacure 907, manufactured by BASF). This was designated as Adhesive 1.
(偏光板の作製)
 前記のPET1及びCOP1の表面にコロナ処理を施した。次いで、マイクログラビアコーター(グラビアロール:#300,回転速度140%/ライン速)を用いて、第一の保護フィルムPET1と偏光子との間の接着層1の膜厚を3.0μmとし、第二の保護フィルムCOP1と偏光子との間の接着層2の膜厚を1.5μmなるように接着剤1を各フィルム上に塗工し接着剤付き保護フィルムとした。次いで、上記偏光子の両面に前記接着剤付き保護フィルムをロール機でロールツーロールで貼り合わせた。貼り合わせたCOP1側から、紫外線を照射して接着剤を硬化させ、各層を貼り合わせた。ライン速度は20m/min、紫外線の積算光量300mJ/cmとした。このようにしてフィルム長さ500mの両面が第一および第二の光学フィルムによって保護された偏光板を得た。この偏光板を実施例1の偏光板とした。
(Preparation of polarizing plate)
The surface of the PET1 and COP1 was subjected to corona treatment. Next, using a micro gravure coater (gravure roll: # 300, rotational speed 140% / line speed), the thickness of the adhesive layer 1 between the first protective film PET1 and the polarizer is set to 3.0 μm, Adhesive 1 was applied on each film so that the film thickness of the adhesive layer 2 between the second protective film COP1 and the polarizer was 1.5 μm to obtain a protective film with an adhesive. Then, the said protective film with an adhesive agent was bonded together on both surfaces of the said polarizer by the roll to roll with the roll machine. The adhesive was cured by irradiating ultraviolet rays from the bonded COP 1 side, and the layers were bonded. The line speed was 20 m / min, and the cumulative amount of ultraviolet light was 300 mJ / cm 2 . In this way, a polarizing plate in which both surfaces having a film length of 500 m were protected by the first and second optical films was obtained. This polarizing plate was used as the polarizing plate of Example 1.
[画像表示装置の作製1]
市販のVA型液晶テレビ(Skyworth製39E61HR)の2枚の偏光板をはがし、フロント側(視認側)、リア側(非視認側)に前記実施例1の偏光板を、第二の保護フィルムがそれぞれ液晶セル側となるように、粘着剤を介して、フロント側およびリア側に一枚ずつ貼り付けた。フロント側の偏光板の吸収軸が長手方向(左右方向)に、そして、リア側の偏光板の透過軸が長手方向(左右方向)になるように、クロスニコル配置とした。液晶セルに使用されているガラスの厚さは0.5mmであった。この表示特性は良好であった。
 このようにして得られた液晶表示装置を実施例1の画像表示装置1とした。
[Production of Image Display Device 1]
Peel off the two polarizing plates of a commercially available VA type liquid crystal television (Skyworth 39E61HR), the polarizing plate of Example 1 on the front side (viewing side) and the rear side (non-viewing side), the second protective film One sheet was attached to each of the front side and the rear side via an adhesive so as to be on the liquid crystal cell side. The crossed Nicols were arranged so that the absorption axis of the front-side polarizing plate was in the longitudinal direction (left-right direction) and the transmission axis of the rear-side polarizing plate was in the longitudinal direction (left-right direction). The thickness of the glass used for the liquid crystal cell was 0.5 mm. This display characteristic was good.
The liquid crystal display device thus obtained was designated as the image display device 1 of Example 1.
[実施例2]
 実施例1において、第二の保護フィルムと偏光子との間の接着層2の膜厚を1.5μmから0.6μmに変更した以外は実施例1と同様にして、実施例2の偏光板と、画像表示装置1を製造した。
[Example 2]
The polarizing plate of Example 2 is the same as Example 1 except that the film thickness of the adhesive layer 2 between the second protective film and the polarizer is changed from 1.5 μm to 0.6 μm in Example 1. And the image display apparatus 1 was manufactured.
[比較例1]
 実施例1において、第二の保護フィルムと偏光子との間の接着層2の膜厚を1.5μmから3.0μmに変更した以外は実施例1と同様にして、比較例1の偏光板と、画像表示装置1を製造した。
[Comparative Example 1]
In Example 1, the polarizing plate of Comparative Example 1 was prepared in the same manner as in Example 1 except that the film thickness of the adhesive layer 2 between the second protective film and the polarizer was changed from 1.5 μm to 3.0 μm. And the image display apparatus 1 was manufactured.
[実施例3]
 実施例1において、第一の保護フィルムと偏光子との間の接着層1の膜厚を3.0μmから1.0μmに変更し、かつ、第二の保護フィルムと偏光子との間の接着層2の膜厚を1.5μmから0.2μmに変更した以外は実施例1と同様にして、実施例3の偏光板と、画像表示装置1を製造した。
[Example 3]
In Example 1, the thickness of the adhesive layer 1 between the first protective film and the polarizer was changed from 3.0 μm to 1.0 μm, and the adhesion between the second protective film and the polarizer A polarizing plate of Example 3 and the image display device 1 were manufactured in the same manner as Example 1 except that the film thickness of the layer 2 was changed from 1.5 μm to 0.2 μm.
[比較例2]
 実施例1のPET1の製造において縦方向に3倍延伸した以外は実施例1と同様にしてPETフィルム2(以降、PET2と略す)を製造した。そのPET2を第一の保護フィルムとし、
 第二の保護フィルムとしてCOP1を用い、かつ、第二の保護フィルムと偏光子との間の接着層2の膜厚を1.5μmから3.0μmに変更した以外は実施例1と同様にして、比較例2の偏光板と、画像表示装置1を製造した。
[Comparative Example 2]
A PET film 2 (hereinafter abbreviated as PET2) was produced in the same manner as in Example 1 except that the PET1 of Example 1 was stretched 3 times in the longitudinal direction. The PET2 as a first protective film,
The same as in Example 1 except that COP1 was used as the second protective film and the thickness of the adhesive layer 2 between the second protective film and the polarizer was changed from 1.5 μm to 3.0 μm. The polarizing plate of Comparative Example 2 and the image display device 1 were manufactured.
[実施例4]
 実施例1において、第一の保護フィルムとしてPET1の代わりに、以下に示すPETフィルム3(以降、PET3と略す)を用い、第一の保護フィルムと偏光子との間の接着層2の膜厚を3.0μmから5.0μmに変更し、かつ、第二の保護フィルムと偏光子との間の接着層2の膜厚を1.5μmから0.6μmに変更した以外は実施例1と同様にして、実施例4の偏光板と、画像表示装置1および2とを製造した。
 PETフィルム3の製造法を以下に示す。
[Example 4]
In Example 1, instead of PET1, the following PET film 3 (hereinafter abbreviated as PET3) is used as the first protective film, and the film thickness of the adhesive layer 2 between the first protective film and the polarizer is used. Is changed from 3.0 μm to 5.0 μm, and the film thickness of the adhesive layer 2 between the second protective film and the polarizer is changed from 1.5 μm to 0.6 μm. Thus, the polarizing plate of Example 4 and the image display devices 1 and 2 were produced.
The manufacturing method of PET film 3 is shown below.
-易接着層の形成-
(1)ハードコート層側易接着層の形成
 下記化合物を下記の比率で混合し、ハードコート層側易接着層用の塗布液H1を作製した。実施例1で得られたPET1の上に、ハードコート層側易接着層用の塗布液H1を膜厚0.09μmで塗布した。
-Formation of easy-bonding layer-
(1) Formation of hard coat layer side easy-adhesion layer The following compounds were mixed in the following ratio to prepare a coating liquid H1 for the hard coat layer-side easy adhesive layer. On PET1 obtained in Example 1, the coating liquid H1 for the hard coat layer-side easy-adhesion layer was applied in a film thickness of 0.09 μm.
・ハードコート層側易接着層用の塗布液H1
ポリエステル樹脂:(IC)                60質量部
アクリル樹脂:(II)                  25質量部
メラミン化合物:(VIB)                10質量部
粒子:(VII)                      5質量部
以下に使用化合物の詳細を示す。
・ポリエステル樹脂:(IC)
 下記組成のモノマーで共重合したポリエステル樹脂のスルホン酸系水分散体
モノマー組成:(酸成分)テレフタル酸/イソフタル酸/5-ソジウムスルホイソフタル酸//(ジオール成分)エチレングリコール/1,4-ブタンジオール/ジエチレングリコール=56/40/4//70/20/10(mol%)
・ Coating liquid H1 for hard coat layer side easy adhesion layer
Polyester resin: (IC) 60 parts by mass Acrylic resin: (II) 25 parts by mass Melamine compound: (VIB) 10 parts by mass Particles: (VII) 5 parts by mass Details of the compounds used are shown below.
・ Polyester resin: (IC)
Polyester resin sulfonic acid aqueous dispersion monomer composition copolymerized with monomers of the following composition: (acid component) terephthalic acid / isophthalic acid / 5-sodium sulfoisophthalic acid // (diol component) ethylene glycol / 1,4- Butanediol / diethylene glycol = 56/40/4 // 70/20/10 (mol%)
・アクリル樹脂:(II)
 下記組成のモノマーで重合したアクリル樹脂の水分散体
 エチルアクリレート/n-ブチルアクリレート/メチルメタクリレート/N-メチロールアクリルアミド/アクリル酸=65/21/10/2/2(質量%)の乳化重合体(乳化剤:アニオン系界面活性剤)
・ウレタン樹脂:(IIIB)
 1,6-ヘキサンジオールとジエチルカーボネートからなる数平均分子量が2000のポリカーボネートポリオールを400質量部、ネオペンチルグリコールを10.4質量部、イソホロンジイソシアネート58.4質量部、ジメチロールブタン酸が74.3質量部からなるプレポリマーをトリエチルアミンで中和し、イソホロンジアミンで鎖延長して得られるウレタン樹脂の水分散体。
・メラミン化合物:(VIB)ヘキサメトキシメチルメラミン
・粒子:(VII)平均粒径65nmのシリカゾル
・ Acrylic resin: (II)
Aqueous dispersion of acrylic resin polymerized with monomers having the following composition: Emulsion polymer of ethyl acrylate / n-butyl acrylate / methyl methacrylate / N-methylol acrylamide / acrylic acid = 65/21/10/2/2 (mass%) Emulsifier: Anionic surfactant)
-Urethane resin: (IIIB)
400 parts by weight of polycarbonate polyol composed of 1,6-hexanediol and diethyl carbonate having a number average molecular weight of 2000, 10.4 parts by weight of neopentyl glycol, 58.4 parts by weight of isophorone diisocyanate, 74.3 parts by weight of dimethylol butanoic acid. An aqueous dispersion of urethane resin obtained by neutralizing a prepolymer consisting of parts by mass with triethylamine and extending the chain with isophoronediamine.
Melamine compound: (VIB) hexamethoxymethylmelamine Particles: (VII) Silica sol having an average particle size of 65 nm
<ハードコート層の塗布による形成>
 その後、実施例1で得られたPET1のハードコート層側易接着層用の塗布液H1を塗布した面に、下記組成の混合塗液(アクリル-1)を乾燥膜厚が5μmになるように塗布・乾燥し、紫外線を照射して硬化させハードコート層を形成した。
ジペンタエリスリトールヘキサアクリレート         85質量部
2-ヒドロキシ-3-フェノキシプロピルアクリレート    15質量部
光重合開始剤(商品名:イルガキュア184、チバスペシャルティケミカル製)                            5質量部
メチルエチルケトン                   200質量部
<Formation by applying a hard coat layer>
Thereafter, a mixed coating liquid (acryl-1) having the following composition is applied to the surface of the PET 1 obtained in Example 1 on which the coating liquid H1 for the hard coat layer-side easy-adhesion layer is applied so that the dry film thickness becomes 5 μm. It was applied, dried, and cured by irradiating with ultraviolet rays to form a hard coat layer.
Dipentaerythritol hexaacrylate 85 parts by mass 2-hydroxy-3-phenoxypropyl acrylate 15 parts by mass Photopolymerization initiator (trade name: Irgacure 184, manufactured by Ciba Specialty Chemicals) 5 parts by mass Methyl ethyl ketone 200 parts by mass
[実施例5]
 実施例1のPETフィルム1と同様の方法で厚さのみ60μmに変更したPETフィルム4(以下、PET4と略す)を製造した。そのPET4を第一の保護フィルムとしてPET1の代わりに用い、第二の保護フィルムと偏光子との間の接着層2の膜厚を1.5μmから1.8μmに変更した以外は実施例1と同様にして、実施例5の偏光板と、画像表示装置1を製造した。
[Example 5]
A PET film 4 (hereinafter abbreviated as PET4) having a thickness changed to 60 μm was produced in the same manner as the PET film 1 of Example 1. Example 1 except that PET4 was used instead of PET1 as the first protective film, and the film thickness of the adhesive layer 2 between the second protective film and the polarizer was changed from 1.5 μm to 1.8 μm. Similarly, the polarizing plate of Example 5 and the image display apparatus 1 were manufactured.
[実施例6]
 実施例1のPETフィルム1と同様の方法で厚さのみ40μmに変更したPETフィルム5(以下、PET5と略す)を製造した。そのPET5を第一の保護フィルムとしてPET1の代わりに用い、第二の保護フィルムと偏光子との間の接着層2の膜厚を1.5μmから3.8μmに変更した以外は実施例1と同様にして、実施例6の偏光板と、画像表示装置1を製造した。
[Example 6]
A PET film 5 (hereinafter abbreviated as “PET5”) having a thickness changed to 40 μm was produced in the same manner as the PET film 1 of Example 1. Example 1 except that PET5 was used instead of PET1 as the first protective film, and the film thickness of the adhesive layer 2 between the second protective film and the polarizer was changed from 1.5 μm to 3.8 μm. Similarly, the polarizing plate of Example 6 and the image display apparatus 1 were manufactured.
[実施例7]
 実施例1において、第一の保護フィルムとしてPET1の代わりに以下に示すPETフィルム6(以降、PET6と略す)を用い、第二の保護フィルムとしてCOP1の代わりに比較例2で製造したCOP2を用い、かつ、第二の保護フィルムと偏光子との間の接着層2の膜厚を1.5μmから2.0μmに変更した以外は実施例1と同様にして、実施例7の偏光板と、画像表示装置1および2とを製造した。
[Example 7]
In Example 1, instead of PET1, the following PET film 6 (hereinafter abbreviated as PET6) was used as the first protective film, and COP2 produced in Comparative Example 2 was used as the second protective film instead of COP1. And the polarizing plate of Example 7 except that the film thickness of the adhesive layer 2 between the second protective film and the polarizer was changed from 1.5 μm to 2.0 μm, Image display devices 1 and 2 were manufactured.
<PETフィルム6の製造>
-フィルム成形工程-
 原料ポリエステル1(90質量部)と、紫外線吸収剤を含有した原料ポリエステル2(10質量部)を、含水率20ppm以下に乾燥させた後、直径50mmの1軸混練押出機1のホッパー1に投入し、押出機1で300℃に溶融した(中間層II層)。
 またPET1を、含水率20ppm以下に乾燥させた後、直径30mmの1軸混練押出機2のホッパー2に投入し、押出機2で300℃に溶融した(外層I層、外層III層)。
 これらの2種のポリマー溶融物をそれぞれギアポンプ、濾過器(孔径20μm)に介した後、2種3層合流ブロックにて、押出機1から押出されたポリマーが中間層(II層)に、押出機2から押出されたポリマーが外層(I層及びIII層)になるように積層し、ダイよりシート状に押し出した。
 溶融樹脂の押出条件は、圧力変動を1%、溶融樹脂の温度分布を2%として、溶融樹脂をダイから押出した。具体的には、背圧を、押出機のバレル内平均圧力に対して1%加圧し、押出機の配管温度を、押出機のバレル内平均温度に対して2%高い温度で加熱した。
 ダイから押出した溶融樹脂は、温度25℃に設定された冷却キャストドラム上に押出し、静電印加法を用い冷却キャストドラムに密着させた。冷却キャストドラムに対向配置された剥ぎ取りロールを用いて剥離し、未延伸ポリエステルフィルム2を得た。このとき、I層、II層、III層の厚さの比は10:80:10となるように各押出機の吐出量を調整した。
<Manufacture of PET film 6>
-Film forming process-
The raw material polyester 1 (90 parts by mass) and the raw material polyester 2 containing ultraviolet absorbers (10 parts by mass) are dried to a moisture content of 20 ppm or less, and then charged into the hopper 1 of a uniaxial kneading extruder 1 having a diameter of 50 mm. Then, it was melted at 300 ° C. by the extruder 1 (intermediate layer II layer).
Moreover, after drying PET1 to a water content of 20 ppm or less, it was put into a hopper 2 of a single screw kneading extruder 2 having a diameter of 30 mm and melted at 300 ° C. by the extruder 2 (outer layer I layer, outer layer III layer).
These two kinds of polymer melts are respectively passed through a gear pump and a filter (pore diameter 20 μm), and then the polymer extruded from the extruder 1 is extruded into an intermediate layer (II layer) in a two-type three-layer confluence block. The polymer extruded from the machine 2 was laminated so as to be outer layers (I layer and III layer), and extruded from a die into a sheet.
The molten resin was extruded from the die under the conditions that the pressure fluctuation was 1% and the temperature distribution of the molten resin was 2%. Specifically, the back pressure was increased by 1% with respect to the average pressure in the barrel of the extruder, and the piping temperature of the extruder was heated at a temperature 2% higher than the average temperature in the barrel of the extruder.
The molten resin extruded from the die was extruded onto a cooling cast drum set at a temperature of 25 ° C., and was brought into close contact with the cooling cast drum using an electrostatic application method. It peeled off using the peeling roll arrange | positioned facing the cooling cast drum, and the unstretched polyester film 2 was obtained. At this time, the discharge amount of each extruder was adjusted so that the ratio of the thicknesses of the I layer, the II layer, and the III layer was 10:80:10.
 得られた未延伸ポリエステルフィルム2を、実施例1と同じ条件で横延伸し、厚さ80μmのPETフィルム6を製造した。 The obtained unstretched polyester film 2 was horizontally stretched under the same conditions as in Example 1 to produce a PET film 6 having a thickness of 80 μm.
[実施例8]
 実施例1において、第二の保護フィルムとしてCOP1の代わりに、以下に示すアクリルフィルム1(以降、PMMA1と略す)を用い、かつ、第二の保護フィルムと偏光子との間の接着層2の膜厚を1.5μmから0.6μmに変更した以外は実施例1と同様にして、実施例8の偏光板を得た。この偏光板を用いて以下に示す画像表示装置2を作製した。
[Example 8]
In Example 1, instead of COP1 as the second protective film, an acrylic film 1 (hereinafter abbreviated as PMMA1) shown below is used, and the adhesive layer 2 between the second protective film and the polarizer is used. A polarizing plate of Example 8 was obtained in the same manner as Example 1 except that the film thickness was changed from 1.5 μm to 0.6 μm. An image display device 2 shown below was produced using this polarizing plate.
<アクリルフィルム1の作製>
Figure JPOXMLDOC01-appb-C000026
 上記一般式中、Rは水素原子、RおよびRはメチル基であるラクトン環構造を有する(メタ)アクリル系樹脂{共重合モノマー質量比=メタクリル酸メチル/2-(ヒドロキシメチル)アクリル酸メチル=8/2、ラクトン環化率約100%、ラクトン環構造の含有割合19.4%、質量平均分子量133000、メルトフローレート6.5g/10分(240℃、10kgf)、Tg131℃}90質量部と、アクリロニトリル-スチレン(AS)樹脂{トーヨーAS AS20、東洋スチレン社製}10質量部との混合物;Tg127℃のペレットを二軸押し出し機に供給し、約280℃でシート状に溶融押し出しして、ラクトン環構造を有する(メタ)アクリル系樹脂シートを得た。この未延伸シートを、160℃の温度条件下、縦、横に延伸してPMMA1(厚さ:41μm、面内位相差Re:0.8nm、厚み方向位相差Rth:1.5nm)を得た。
<Preparation of acrylic film 1>
Figure JPOXMLDOC01-appb-C000026
(Meth) acrylic resin having a lactone ring structure in which R 1 is a hydrogen atom and R 2 and R 3 are methyl groups in the above general formula {mass ratio of copolymerization monomer = methyl methacrylate / 2- (hydroxymethyl) acrylic Methyl acid = 8/2, lactone cyclization rate about 100%, lactone ring structure content 19.4%, mass average molecular weight 133000, melt flow rate 6.5 g / 10 min (240 ° C., 10 kgf), Tg 131 ° C.} A mixture of 90 parts by mass and 10 parts by mass of acrylonitrile-styrene (AS) resin {Toyo AS AS20, manufactured by Toyo Styrene Co., Ltd.}; Pellets with a Tg of 127 ° C. are fed to a twin screw extruder and melted into a sheet at about 280 ° C. Extrusion was performed to obtain a (meth) acrylic resin sheet having a lactone ring structure. This unstretched sheet was stretched vertically and horizontally under a temperature condition of 160 ° C. to obtain PMMA 1 (thickness: 41 μm, in-plane retardation Re: 0.8 nm, thickness direction retardation Rth: 1.5 nm). .
[画像表示装置の作製2]
IPSモード液晶セル(LGD製 42LS5600)の2枚の偏光板をはがし、フロント側(視認側)、リア側(非視認側)に前記実施例1の偏光板を、第二の保護フィルムがそれぞれ液晶セル側となるように、粘着剤を介して、フロント側およびリア側に一枚ずつ貼り付けた。フロント側の偏光板の吸収軸が長手方向(左右方向)に、そして、リア側の偏光板の透過軸が長手方向(左右方向)になるように、クロスニコル配置とした。液晶セルに使用されているガラスの厚さは0.5mmであった。 この表示特性は良好であった。
 このようにして得られた液晶表示装置を実施例8の画像表示装置2とした。
[Production of image display device 2]
The two polarizing plates of the IPS mode liquid crystal cell (made by LGD 42LS5600) are peeled off, the polarizing plate of Example 1 is applied to the front side (viewing side) and the rear side (non-viewing side), and the second protective film is a liquid crystal. One sheet was attached to each of the front side and the rear side via an adhesive so as to be on the cell side. The crossed Nicols were arranged so that the absorption axis of the front-side polarizing plate was in the longitudinal direction (left-right direction) and the transmission axis of the rear-side polarizing plate was in the longitudinal direction (left-right direction). The thickness of the glass used for the liquid crystal cell was 0.5 mm. This display characteristic was good.
The liquid crystal display device thus obtained was designated as an image display device 2 of Example 8.
[実施例9]
 実施例1において、第二の保護フィルムとしてCOP1の代わりに、以下に示すセルロースアシレートフィルム1(以降、DAC1と略す)を以下の条件でけん化した後で用い、かつ、第二の保護フィルムと偏光子との間の接着層2の膜厚を1.5μmから2.0μmに変更した以外は実施例1と同様にして、実施例9の偏光板と、画像表示装置1および2とを製造した。
[Example 9]
In Example 1, instead of COP1 as the second protective film, the following cellulose acylate film 1 (hereinafter abbreviated as DAC1) was used after saponification under the following conditions, and the second protective film and The polarizing plate of Example 9 and the image display devices 1 and 2 are manufactured in the same manner as in Example 1 except that the film thickness of the adhesive layer 2 between the polarizer and the polarizer is changed from 1.5 μm to 2.0 μm. did.
<DAC1の製造>
(セルロースアシレートの調製)
 特開平10-45804号公報、同08-231761号公報に記載の方法で、セルロースアシレートを合成し、その置換度を測定した。具体的には、触媒として硫酸(セルロース100質量部に対し7.8質量部)を添加し、アシル置換基の原料となるカルボン酸を添加し40℃でアシル化反応を行った。この時、カルボン酸の種類、量を調整することでアシル基の種類、置換度を調整した。またアシル化後に40℃で熟成を行った。さらにこのセルロースアシレートの低分子量成分をアセトンで洗浄し除去した。
<Manufacture of DAC1>
(Preparation of cellulose acylate)
Cellulose acylate was synthesized by the method described in JP-A Nos. 10-45804 and 08-231761, and the degree of substitution was measured. Specifically, sulfuric acid (7.8 parts by mass with respect to 100 parts by mass of cellulose) was added as a catalyst, carboxylic acid serving as a raw material for the acyl substituent was added, and an acylation reaction was performed at 40 ° C. At this time, the kind and substitution degree of the acyl group were adjusted by adjusting the kind and amount of the carboxylic acid. In addition, aging was performed at 40 ° C. after acylation. Further, the low molecular weight component of the cellulose acylate was removed by washing with acetone.
(コア層セルロースアシレートドープの作製)
 下記の組成物をミキシングタンクに投入し攪拌して、各成分を溶解し、セルロースアセテート溶液を調整した。
コア層セルロースアシレートドープの組成:
----------------------------------
・セルロースアセテート(置換度2.45)        100質量部
・化合物A                        19質量部
メチレンクロライド(第1溶媒)           365.5質量部
メタノール(第2溶剤)                54.6質量部
----------------------------------
(Preparation of core layer cellulose acylate dope)
The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acetate solution.
Composition of core layer cellulose acylate dope:
---------------------------------
Cellulose acetate (degree of substitution 2.45) 100 parts by weight Compound A 19 parts by weight Methylene chloride (first solvent) 365.5 parts by weight Methanol (second solvent) 54.6 parts by weight -------- --------------------------
上記化合物Aはテレフタル酸/コハク酸/プロピレンクリコール/エチレングリコール共重合体(共重合比[モル%]=27.5/22.5/25/25)を表す。 The compound A represents a terephthalic acid / succinic acid / propylene glycol / ethylene glycol copolymer (copolymerization ratio [mol%] = 27.5 / 22.5 / 25/25).
(外層セルロースアシレートドープの作製)
 下記の組成物をミキシングタンクに投入し、撹拌して、各成分を溶解し、セルロースアシレート溶液を調製した。セルロースアシレート溶液の固形分濃度が19.7(質量%)になるように溶剤(メチレンクロライドおよびメタノール)の量は適宜調整した。
外層セルロースアシレートドープの組成:
----------------------------------
・セルロースアセテート(置換度2.79)      100.0質量部
・化合物A                      11.0質量部
・シリカ微粒子 R972(日本エアロジル製)     0.15質量部
・メチレンクロライド                395.0質量部
・メタノール                     59.0質量部
----------------------------------
 前記コア層セルロースアシレート溶液を乾燥後の膜厚が56μmのコア層になるように、前記外層セルロースアシレート溶液を乾燥後の膜厚2μmのスキンA層およびスキンB層になるように、それぞれ流延した。得られたウェブ(フィルム)をバンドから剥離し、クリップに挟み、フィルム全体の質量に対する残留溶媒量が20~5%の状態のときに延伸温度140℃、延伸倍率1.08倍でテンターを用いて横延伸した。
その後にフィルムからクリップを外して130℃で20分間乾燥させた後、更に延伸温度180℃、延伸倍率1.2倍でテンターを用いて再度横延伸した。
 なお、残留溶媒量は下記の式にしたがって求めた。
  残留溶媒量(質量%)={(M-N)/N}×100
 ここで、Mはウェブの任意時点での質量、NはMを測定したウェブを120℃で2時間乾燥させた時の質量である。
 このようにしてDAC1を得た。膜厚は58μmであった。なお、Reは54nm、Rthは120nmであった。
(Preparation of outer layer cellulose acylate dope)
The following composition was put into a mixing tank and stirred to dissolve each component to prepare a cellulose acylate solution. The amount of the solvent (methylene chloride and methanol) was appropriately adjusted so that the solid content concentration of the cellulose acylate solution was 19.7 (mass%).
Composition of outer layer cellulose acylate dope:
---------------------------------
Cellulose acetate (substitution degree 2.79) 100.0 parts by mass Compound A 11.0 parts by mass Silica fine particles R972 (manufactured by Nippon Aerosil) 0.15 parts by mass Methylene chloride 395.0 parts by mass Methanol 59.0 Mass part ---------------------------------
The outer layer cellulose acylate solution is formed into a skin A layer and a skin B layer each having a thickness of 2 μm after drying so that the film thickness after drying the core layer cellulose acylate solution is 56 μm, respectively. Casted. The obtained web (film) was peeled off from the band, sandwiched between clips, and a tenter was used at a stretching temperature of 140 ° C. and a stretching ratio of 1.08 when the amount of residual solvent relative to the total mass of the film was 20-5%. And stretched laterally.
Then, after removing the clip from the film and drying at 130 ° C. for 20 minutes, the film was further stretched again using a tenter at a stretching temperature of 180 ° C. and a stretching ratio of 1.2 times.
The residual solvent amount was determined according to the following formula.
Residual solvent amount (% by mass) = {(MN) / N} × 100
Here, M is a mass of the web at an arbitrary time point, and N is a mass when the web of which M is measured is dried at 120 ° C. for 2 hours.
In this way, DAC1 was obtained. The film thickness was 58 μm. Re was 54 nm and Rth was 120 nm.
[比較例3]
 実施例5において、第一の保護フィルムと偏光子との間の接着層1の膜厚を3.0μmから4.0μmに変更し、かつ、第二の保護フィルムと偏光子との間の接着層2の膜厚を1.8μmから0.8μmに変更した以外は実施例5と同様にして、比較例3の偏光板と、画像表示装置1および2とを製造した。
[Comparative Example 3]
In Example 5, the thickness of the adhesive layer 1 between the first protective film and the polarizer was changed from 3.0 μm to 4.0 μm, and the adhesion between the second protective film and the polarizer A polarizing plate of Comparative Example 3 and the image display devices 1 and 2 were manufactured in the same manner as in Example 5 except that the film thickness of the layer 2 was changed from 1.8 μm to 0.8 μm.
[保護フィルムの特性、接着層、偏光子の特性評価、偏光板の評価]
 各実施例および比較例の偏光板に用いた第一および第二の保護フィルムの特性評価と、接着層1および2の特性評価と、偏光子の特性評価と、各実施例および比較例の偏光板の評価と、各実施例および比較例の画像表示装置1および2の評価を以下の方法で行った。
 得られた結果を下記表1に記載した。
[Protective film characteristics, adhesive layer, polarizer characteristics evaluation, polarizing plate evaluation]
Characteristic evaluation of the first and second protective films used in the polarizing plates of each Example and Comparative Example, characteristic evaluation of the adhesive layers 1 and 2, characteristic evaluation of the polarizer, and polarization of each Example and Comparative Example Evaluation of the plate and evaluation of the image display devices 1 and 2 of each example and comparative example were performed by the following methods.
The obtained results are shown in Table 1 below.
<第一の保護フィルムのRe、Rth、Nz>
 二枚の偏光板を用いて、第一の保護フィルムの配向軸方向を求め、配向軸方向が直交するように4cm×2cmの長方形を切り出し、測定用サンプルとした。このサンプルについて、直交する二軸の屈折率(Nx,Ny)、及び厚さ方向の屈折率(Nz)をアッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)によって求めた。さらに第一の保護フィルムの厚みy(nm)は電気マイクロメータ(ファインリューフ社製、ミリトロン1245D)を用いて測定し、単位をnmに換算した。測定したNx、Ny、Nz、yの値からRe、Rth、Nzをそれぞれ算出した。
<Re, Rth, Nz of the first protective film>
Using two polarizing plates, the orientation axis direction of the first protective film was determined, and a 4 cm × 2 cm rectangle was cut out so that the orientation axis directions were orthogonal to each other, and used as a measurement sample. With respect to this sample, the biaxial refractive index (Nx, Ny) perpendicular to each other and the refractive index (Nz) in the thickness direction were determined by an Abbe refractometer (NAGO-4T manufactured by Atago Co., Ltd., measurement wavelength 589 nm). Furthermore, the thickness y 1 (nm) of the first protective film was measured using an electric micrometer (Millitron 1245D, manufactured by Fine Reef Co., Ltd.), and the unit was converted to nm. Measured Nx, Ny, Nz, Re from the value of y 1, Rth, Nz was calculated.
<第二の保護フィルムのRe、Rth>
 サンプルフィルムを25℃、相対湿度60%にて24時間調湿後、自動複屈折計(KOBRA-21ADH:王子計測機器(株)製)を用いて、25℃、相対湿度60%において、フィルム表面に対し垂直方向及び遅相軸を回転軸としてフィルム面法線から+50°から-50°まで10°刻みで傾斜させた方向から波長590nmにおける位相差を測定して、面内レターデーション値(Re)と膜厚方向のレターデーション値(Rth)とを算出した。
<Re, Rth of the second protective film>
The sample film was conditioned for 24 hours at 25 ° C and 60% relative humidity, and then the surface of the film was measured at 25 ° C and 60% relative humidity using an automatic birefringence meter (KOBRA-21ADH: manufactured by Oji Scientific Instruments). The phase difference at a wavelength of 590 nm is measured from the direction inclined in increments of 10 ° from + 50 ° to −50 ° from the normal to the film surface with the vertical direction and the slow axis as the rotation axis, and the in-plane retardation value (Re ) And the retardation value (Rth) in the film thickness direction.
<偏光板、保護フィルム、接着層、偏光子の膜厚>
 製造した偏光板の断面をSEM(走査型顕微鏡)により観察し、偏光板、第一、第二の保護フィルム、接着層、偏光子の膜厚を測定した。
<保護フィルム、接着層、偏光子の弾性率>
 第一および第二の保護フィルムのMD方向およびTD方向の弾性率ならびに偏光板のMD方向の弾性率は測定方向の長さが200mm、幅が10mmの試料を用意し、東洋精機製のストログラフV10-Cを用い、サンプル形状を幅10mm、チャック間長さ100mmとして測定した。
 偏光子の弾性率は偏光板全体の弾性率Etと全膜厚ytを上記方法で測定し、下記式(7)により求めた。
Figure JPOXMLDOC01-appb-M000027
 接着層の弾性率は接着剤1をセパレータの上に塗工した後紫外線を照射して上記サンプルサイズと同じサイズの試験片を作製し、保護フィルムと同様に測定した。
<Thickness of polarizing plate, protective film, adhesive layer, polarizer>
The cross section of the manufactured polarizing plate was observed with SEM (scanning microscope), and the thicknesses of the polarizing plate, the first and second protective films, the adhesive layer, and the polarizer were measured.
<Protective film, adhesive layer, elastic modulus of polarizer>
Samples having a measurement direction length of 200 mm and a width of 10 mm were prepared for the elastic modulus in the MD direction and TD direction of the first and second protective films and in the MD direction of the polarizing plate. Using V10-C, the sample shape was measured with a width of 10 mm and a length between chucks of 100 mm.
The elastic modulus of the polarizer was obtained by the following formula (7) by measuring the elastic modulus Et and the total film thickness yt of the entire polarizing plate by the above method.
Figure JPOXMLDOC01-appb-M000027
The elastic modulus of the adhesive layer was measured in the same manner as the protective film, after coating the adhesive 1 on the separator and irradiating ultraviolet rays to produce a test piece having the same size as the sample size.
 なお、第一の保護フィルムの面内の弾性率の最大方向を、音速測定装置“SST-2501,野村商事(株)”を用い、25℃、相対湿度60%の雰囲気中で2時間以上調湿したフィルムについて、25℃、相対湿度60%の雰囲気にて、360度方向を32分割して音速を測定し、最大速度方向を面内の弾性率の最大方向として求めた。その結果、第一の保護フィルムの面内の弾性率の最大方向はTD方向であることがわかり、偏光子の吸収軸と垂直であったことがわかった。 In addition, the maximum direction of the elastic modulus in the surface of the first protective film was adjusted for 2 hours or more in an atmosphere of 25 ° C. and 60% relative humidity using a sound velocity measuring device “SST-2501, Nomura Corporation”. With respect to the wet film, the sound speed was measured by dividing the 360 degree direction into 32 parts in an atmosphere of 25 ° C. and a relative humidity of 60%, and the maximum speed direction was determined as the maximum direction of the in-plane elastic modulus. As a result, it was found that the maximum direction of the in-plane elastic modulus of the first protective film was the TD direction, which was perpendicular to the absorption axis of the polarizer.
<接着層1および2の偏光板貼合時の硬化収縮率>
接着剤層1および2の硬化収縮率ε(%)は、硬化前の接着剤1の密度ρ1(g/cm)、硬化後の接着剤1の密度ρ2(g/cm)を乾式密度測定機(島津社製、アキュピック1340)により測定し、下記式(8)により算出した。
ε = (1-ρ1/ρ2)×100・・・(8)
<Curing shrinkage rate at the time of bonding of polarizing plates of adhesive layers 1 and 2>
Cure shrinkage of the adhesive layer 1 and 2 epsilon (%) is the density ρ1 (g / cm 3) of adhesive 1 before curing, dry density density of the adhesive 1 ρ2 (g / cm 3) after curing It measured with the measuring machine (The Shimadzu make, Accupic 1340), and computed by following formula (8).
ε = (1-ρ1 / ρ2) × 100 (8)
<接着層1、2の膜厚>
 製造した偏光板の断面をSEM(走査型顕微鏡)により観察し、接着層1、2の膜厚を測定した。
<Film thickness of adhesive layers 1 and 2>
The cross section of the manufactured polarizing plate was observed with SEM (scanning microscope), and the film thicknesses of the adhesive layers 1 and 2 were measured.
<接着剤1の偏光板貼合時の硬化収縮力>
 接着剤1の偏光板貼合時の硬化収縮力Sを、上記にて得られた接着剤1の弾性率と硬化収縮率と膜厚をもとに、以下の方法で算出した。
硬化収縮力(N/m) = 硬化収縮率 × 弾性率 × 膜厚
<Curing shrinkage force at the time of bonding of polarizing plate of adhesive 1>
The curing shrinkage force S at the time of bonding the polarizing plate of the adhesive 1 was calculated by the following method based on the elastic modulus, curing shrinkage, and film thickness of the adhesive 1 obtained above.
Curing shrinkage force (N / m) = Curing shrinkage rate × Elastic modulus × Film thickness
<カール評価>
 作製した偏光板から(MD)15cm×(TD)1.5cmの大きさの試験片を切り出し、25℃、相対湿度60%の温度湿度環境に4時間以上置いた後、4隅の浮き上がり量(MD方向のカール量、すなわち偏光子の吸収軸方向のカール量)を計測した。この際、第一の保護フィルム側(アウター側)を上向きに置いた時の浮き上がり量をプラス方向とする。作製したサンプルが第二の保護フィルム側(インナー側)に反っている時は、第一の保護フィルム側(アウター側)を上向きに置いても浮き上がり量を計測できないため、フィルムの上下を引っくり返して第二の保護フィルム側(インナー側)を上向きに置いて浮き上がり量を計測し、マイナス符号を付与する。なお、試験片を切り出す際は、偏光板の中心部分から切り出した。
 偏光板4隅の平均の浮き上がり量(MD方向のカール量、すなわち偏光子の吸収軸方向のカール量)の良し悪しは、3mm未満が最も好ましく、これをAとした。3mm以上10mm未満が次に好ましく、これをBとした。10mm以上は好ましくなく、これをCとした。実用上、A評価またはB評価であることが必要であり、A評価であることが好ましい。
 なお、偏光板のMD方向(偏光子の吸収軸方向)のカール量がマイナスになると液晶セルに貼り合わせるときに泡が入りやすくなり好ましくない。
<Curl evaluation>
A test piece having a size of (MD) 15 cm × (TD) 1.5 cm was cut out from the produced polarizing plate and placed in a temperature-humidity environment at 25 ° C. and a relative humidity of 60% for 4 hours or more. The curl amount in the MD direction, that is, the curl amount in the absorption axis direction of the polarizer) was measured. At this time, the amount of lifting when the first protective film side (outer side) is placed upward is defined as the plus direction. When the prepared sample is warped on the second protective film side (inner side), the amount of lifting cannot be measured even if the first protective film side (outer side) is placed upwards. The second protective film side (inner side) is placed upwards, the amount of lifting is measured, and a minus sign is given. In addition, when cutting out a test piece, it cut out from the center part of a polarizing plate.
The average lift of the four corners of the polarizing plate (the curl amount in the MD direction, that is, the curl amount in the absorption axis direction of the polarizer) is most preferably less than 3 mm. Next, 3 mm or more and less than 10 mm is preferable. 10 mm or more is not preferable, and this is C. Practically, it is necessary to be A evaluation or B evaluation, and it is preferable that it is A evaluation.
In addition, when the curl amount in the MD direction of the polarizing plate (absorption axis direction of the polarizer) becomes negative, bubbles are likely to be formed when being bonded to the liquid crystal cell, which is not preferable.
<偏光板欠陥評価>
 実施例および比較例において1330mm幅で得られた偏光板のうち、両端のそれぞれ40mm幅部分を除く中央の1250mm幅部分を有効幅として、その有効幅内で搬送方向1000mmの長さにわたる面につき、目視観察で気泡の観察を行った。気泡が観察されなかった場合を「A」、明確に気泡が観察された場合を「B」とした。
 実用上、B評価であっても問題ないが、A評価であることが好ましい。
<Evaluation of polarizing plate defects>
Of the polarizing plates obtained with a width of 1330 mm in the examples and comparative examples, the central 1250 mm width portion excluding the 40 mm width portions at both ends as the effective width, and the surface over the length of 1000 mm in the conveying direction within the effective width, Bubbles were observed by visual observation. The case where bubbles were not observed was designated as “A”, and the case where bubbles were clearly observed was designated as “B”.
Practically, there is no problem even if it is B evaluation, but A evaluation is preferable.
<画像表示装置1および2の虹状のムラ評価>
 作製した液晶表示装置(上記の画像表示装置1および2)の、白表示時の虹状のムラを複数の観察者により目視評価した。
~評価指標~
  A:虹状のムラは殆ど観察されなかった。
  B:虹状のムラは弱いが、視認できる程度に観察された。
  C:虹状のムラがはっきり観察され、許容できない。
 実用上、A評価またはB評価であることが必要であり、A評価であることが好ましい。なお、いずれの場合も画像表示装置1および2は同評価であった。
<Rainbow-like unevenness evaluation of image display devices 1 and 2>
The produced liquid crystal display devices (the image display devices 1 and 2 described above) were visually evaluated by a plurality of observers for rainbow-like unevenness during white display.
-Evaluation index-
A: Iridescent unevenness was hardly observed.
B: Rainbow-like unevenness was weak, but was observed to the extent that it was visible.
C: Iridescent unevenness is clearly observed and is not acceptable.
Practically, it is necessary to be A evaluation or B evaluation, and it is preferable that it is A evaluation. In any case, the image display devices 1 and 2 had the same evaluation.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
<評価結果>
 上記表1の実施例1、2より本発明の偏光板は、硬化型接着剤を用いて偏光子と2枚の保護フィルムを貼り合わせて偏光板を作製したときに発生する(MD方向、すなわち偏光子の吸収軸方向の)カールを抑えることができ、かつ液晶表示装置に組み込んだときに虹状のムラが視認されにくいことがわかった。
 一方、比較例1より式(2)の範囲の下限値を(接着層1と2の硬化収縮力比に起因するモーメントが)下回る場合は偏光板のカールが大きくなることがわかった。
 実施例3より接着層の厚みを薄くすると偏光板のカールは良くなるが、偏光板作成時に気泡が入ってしまった。
 比較例2より位相差の小さいPETを使用すると虹状のムラが観察され、偏光板のカールも悪化することがわかった。
 実施例4の結果からハードコート層付きのPETフィルムでも本発明により偏光板のカールが抑えられることがわかった。
 実施例5、6より第一の保護フィルムの膜厚が薄くなっても本発明により偏光板のカールを抑えることができるが、薄くなりすぎると位相差の値が小さくなるため虹状のムラが視認されやすくなることがわかった。
 実施例7より共押し出しで作製したPETフィルムでも本発明により偏光板のカールを抑えることができることがわかった。
 実施例8、9より第二の保護フィルムがアクリル系樹脂、セルロース系樹脂でも本発明により偏光板のカールを抑えることが出来ることがわかった。
 比較例3より式(2)の範囲の上限値を、(接着層1と2の硬化収縮力比に起因するモーメントが)上回る場合は偏光板のカールが大きくなることがわかった。
<Evaluation results>
From Examples 1 and 2 in Table 1 above, the polarizing plate of the present invention occurs when a polarizing plate is produced by laminating a polarizer and two protective films using a curable adhesive (MD direction, ie, It was found that curling (in the absorption axis direction of the polarizer) can be suppressed, and rainbow-like unevenness is difficult to be visually recognized when incorporated in a liquid crystal display device.
On the other hand, it was found from Comparative Example 1 that when the lower limit value of the range of the formula (2) is below (the moment due to the curing shrinkage force ratio between the adhesive layers 1 and 2), the curling of the polarizing plate increases.
When the thickness of the adhesive layer was made thinner than in Example 3, curling of the polarizing plate was improved, but bubbles were formed during the production of the polarizing plate.
When PET having a smaller phase difference than Comparative Example 2 was used, it was found that rainbow-like unevenness was observed and the curling of the polarizing plate was also deteriorated.
From the results of Example 4, it was found that even the PET film with a hard coat layer can suppress the curling of the polarizing plate according to the present invention.
Even if the film thickness of the first protective film is thinner than in Examples 5 and 6, curling of the polarizing plate can be suppressed according to the present invention. It turns out that it becomes easy to be visually recognized.
From Example 7, it was found that even the PET film produced by coextrusion can suppress the curling of the polarizing plate according to the present invention.
From Examples 8 and 9, it was found that the curling of the polarizing plate can be suppressed by the present invention even when the second protective film is an acrylic resin or a cellulose resin.
From Comparative Example 3, it was found that when the upper limit of the range of the formula (2) was exceeded (the moment due to the curing shrinkage force ratio between the adhesive layers 1 and 2), the curling of the polarizing plate was increased.
1   第一の保護フィルム
2   偏光子
3   第二の保護フィルム
11  接着層1
12  接着層2
13  中立軸
14  易接着層
15  ハードコート層
20  偏光板
21  視認側偏光板
22  液晶セル
23  バックライト側偏光板
23a バックライト側偏光板の保護フィルム
23b バックライト側偏光板の偏光子
26  バックライト
30  画像表示装置
  接着層1の偏光板貼合時の硬化収縮力
  接着層2の偏光板貼合時の硬化収縮力
UV  活性エネルギー線照射方向
  第一の保護フィルムの膜厚
  第二の保護フィルムの膜厚
  偏光子の膜厚
η   中立軸
1 First Protective Film 2 Polarizer 3 Second Protective Film 11 Adhesive Layer 1
12 Adhesive layer 2
13 Neutral axis 14 Easy adhesion layer 15 Hard coat layer 20 Polarizing plate 21 Viewing side polarizing plate 22 Liquid crystal cell 23 Backlight side polarizing plate 23a Backlight side polarizing plate protective film 23b Backlight side polarizing plate polarizer 26 Backlight 30 Image display device S 1 Curing shrinkage force at the time of bonding of the polarizing plate 1 of the adhesive layer 1 2 Curing shrinkage force at the time of bonding of the polarizing plate of the adhesive layer 2 UV active energy ray irradiation direction y 1 Film thickness y of the first protective film 2 Second protective film thickness y 3 Polarizer thickness η Neutral axis

Claims (11)

  1.  偏光性能を有する偏光子と、
     前記偏光子の一方の面に接着層1を介して貼合された第一の保護フィルムと、
     前記偏光子の他方の面に接着層2を介して貼合された第二の保護フィルムとを含み、
     前記第一の保護フィルムの面内方向のレターデーションが3000nm以上であり、
     下記式(A)および(B)のうち少なくとも一方を満たし、
     下記式(2)を満たすことを特徴とする偏光板。
     ≠ E・・・式(A)
     ≠ y・・・式(B)
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    (式(A)、(B)、(1)および(2)中、Eは第一の保護フィルムの弾性率(単位:GPa)を表し、yは第一の保護フィルムの膜厚(単位:μm)を表し、Eは偏光子の弾性率(単位:GPa)を表し、yは偏光子の膜厚(単位:μm)を表し、Eは第二の保護フィルムの弾性率を表し、yは第二の保護フィルムの膜厚(単位:μm)を表し、Sは接着層1の偏光板貼合時の硬化収縮力を表し、Sは接着層2の偏光板貼合時の硬化収縮力を表し、
    Figure JPOXMLDOC01-appb-M000003
    は偏光板の全膜厚にわたっての積分、yは第一の保護フィルムの上面から偏光子方向に取った座標、E(y)はその座標における部材の弾性率(単位:GPa))。
    A polarizer having polarization performance;
    A first protective film bonded to one surface of the polarizer via an adhesive layer 1;
    A second protective film bonded to the other surface of the polarizer via the adhesive layer 2,
    The in-plane retardation of the first protective film is 3000 nm or more,
    Satisfy at least one of the following formulas (A) and (B),
    A polarizing plate satisfying the following formula (2).
    E 1 ≠ E 3 ... Formula (A)
    y 1 ≠ y 3 ... Formula (B)
    Figure JPOXMLDOC01-appb-M000001
    Figure JPOXMLDOC01-appb-M000002
    (In the formulas (A), (B), (1) and (2), E 1 represents the elastic modulus (unit: GPa) of the first protective film, and y 1 represents the film thickness of the first protective film ( (Unit: μm), E 2 represents the elastic modulus (unit: GPa) of the polarizer, y 2 represents the film thickness (unit: μm) of the polarizer, and E 3 represents the elastic modulus of the second protective film. Y 3 represents the film thickness (unit: μm) of the second protective film, S 1 represents the curing shrinkage force when the adhesive layer 1 is bonded to the polarizing plate, and S 2 is the polarizing plate of the adhesive layer 2 Represents the curing shrinkage force at the time of bonding,
    Figure JPOXMLDOC01-appb-M000003
    Is the integral over the entire film thickness of the polarizing plate, y is the coordinate taken in the direction of the polarizer from the top surface of the first protective film, and E (y) is the elastic modulus (unit: GPa) of the member at that coordinate.
  2.  前記接着層1および前記接着層2が活性エネルギー線により硬化する接着剤を含む請求項1に記載の偏光板。 The polarizing plate according to claim 1, wherein the adhesive layer 1 and the adhesive layer 2 include an adhesive that is cured by active energy rays.
  3.  前記接着層1および前記接着層2の厚みが0.5~5μmである請求項1または2に記載の偏光板。 The polarizing plate according to claim 1 or 2, wherein the adhesive layer 1 and the adhesive layer 2 have a thickness of 0.5 to 5 µm.
  4.  前記第一の保護フィルムがポリエステル樹脂またはポリカーボネート樹脂を主成分として含む請求項1~3のいずれか一項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 3, wherein the first protective film contains a polyester resin or a polycarbonate resin as a main component.
  5.  前記第一の保護フィルム上に易接着層とハードコート層が配置された請求項1~4のいずれか一項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 4, wherein an easy-adhesion layer and a hard coat layer are disposed on the first protective film.
  6.  前記偏光子の弾性率Eが10~30GPaである請求項1~5のいずれか一項に記載の偏光板。 The polarizing plate according to any one of claims 1 to 5, the elastic modulus E 3 of the polarizer is 10 ~ 30 GPa.
  7.  偏光性能を有する偏光子の一方の面に接着層1を介して面内方向のレターデーションが3000nm以上である第一の保護フィルムを貼合する工程と、
     前記偏光子の他方の面に前記接着層1とは異なる膜厚に制御した接着層2を介して第二の保護フィルムを貼合する工程と、
     前記接着層1と前記接着層2を硬化収縮させる工程とを含むことを特徴とする請求項1~6のいずれか一項に記載の偏光板の製造方法。
    A step of bonding a first protective film having an in-plane retardation of 3000 nm or more to one surface of a polarizer having polarization performance through the adhesive layer 1;
    A step of bonding a second protective film to the other surface of the polarizer via an adhesive layer 2 controlled to a film thickness different from that of the adhesive layer 1;
    The method for producing a polarizing plate according to any one of claims 1 to 6, further comprising a step of curing and shrinking the adhesive layer 1 and the adhesive layer 2.
  8.  前記接着層1および前記接着層2が活性エネルギー線により硬化する接着剤を含み、
     前記接着層1と前記接着層2を硬化収縮させる工程が活性エネルギー線を照射して前記接着層1と前記接着層2を同時に硬化させる工程である請求項7に記載の偏光板の製造方法。
    The adhesive layer 1 and the adhesive layer 2 include an adhesive that is cured by active energy rays,
    The method for producing a polarizing plate according to claim 7, wherein the step of curing and shrinking the adhesive layer 1 and the adhesive layer 2 is a step of irradiating active energy rays to simultaneously cure the adhesive layer 1 and the adhesive layer 2.
  9.  前記接着層1および前記接着層2が紫外線により硬化する接着剤を含み、
     前記第一の保護フィルムが紫外線吸収剤を含み、
     前記接着層1と前記接着層2を硬化収縮させる工程が前記第二の保護フィルム側から紫外線を照射して前記接着層1と前記接着層2を同時に硬化させる工程である請求項7または8に記載の偏光板の製造方法。
    The adhesive layer 1 and the adhesive layer 2 include an adhesive that is cured by ultraviolet rays,
    The first protective film contains an ultraviolet absorber;
    The step of curing and shrinking the adhesive layer 1 and the adhesive layer 2 is a step of irradiating ultraviolet rays from the second protective film side to simultaneously cure the adhesive layer 1 and the adhesive layer 2. The manufacturing method of the polarizing plate of description.
  10.  前記接着層1と前記接着層2の組成が同じである請求項7~9のいずれか一項に記載の偏光板の製造方法。 The method for producing a polarizing plate according to any one of claims 7 to 9, wherein the compositions of the adhesive layer 1 and the adhesive layer 2 are the same.
  11.  請求項1~6のいずれか一項に記載の偏光板を含むことを特徴とする画像表示装置。 An image display device comprising the polarizing plate according to any one of claims 1 to 6.
PCT/JP2014/060813 2013-04-16 2014-04-16 Polarizing plate and image display device WO2014171479A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013085491A JP2014206702A (en) 2013-04-16 2013-04-16 Polarizing plate and image display device
JP2013-085491 2013-04-16

Publications (1)

Publication Number Publication Date
WO2014171479A1 true WO2014171479A1 (en) 2014-10-23

Family

ID=51731416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/060813 WO2014171479A1 (en) 2013-04-16 2014-04-16 Polarizing plate and image display device

Country Status (3)

Country Link
JP (1) JP2014206702A (en)
TW (1) TW201447402A (en)
WO (1) WO2014171479A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179893A1 (en) * 2017-03-30 2018-10-04 富士フイルム株式会社 Optical film, and front panel of image display device, image display device, mirror with image display function, resistive touch panel and capacitive touch panel each of which comprises said optical film

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6659217B2 (en) * 2014-12-04 2020-03-04 住友化学株式会社 Manufacturing method of polarizing plate
JP6563750B2 (en) 2014-12-26 2019-08-21 日東電工株式会社 Paint and production method thereof
WO2016104764A1 (en) * 2014-12-26 2016-06-30 日東電工株式会社 Laminated film roll and method for producing same
JP6612563B2 (en) 2014-12-26 2019-11-27 日東電工株式会社 Silicone porous body and method for producing the same
JP6604781B2 (en) 2014-12-26 2019-11-13 日東電工株式会社 Laminated film roll and method for producing the same
JP6599699B2 (en) 2014-12-26 2019-10-30 日東電工株式会社 Void structure film bonded through catalytic action and method for producing the same
JP2016147737A (en) * 2015-02-12 2016-08-18 富士フイルム株式会社 Peeling method of lamination film, and production method of functional film
KR101813755B1 (en) 2015-05-28 2017-12-29 삼성에스디아이 주식회사 Polarizing film and display including the same
JP6713871B2 (en) 2015-07-31 2020-06-24 日東電工株式会社 Optical laminate, method for producing optical laminate, optical member, image display device, method for producing optical member, and method for producing image display device
JP6713872B2 (en) 2015-07-31 2020-06-24 日東電工株式会社 Laminated film, laminated film manufacturing method, optical member, image display device, optical member manufacturing method, and image display device manufacturing method
KR20170021476A (en) * 2015-08-18 2017-02-28 스미또모 가가꾸 가부시키가이샤 Polarizing plate and method of preparing the same
JP6892744B2 (en) 2015-08-24 2021-06-23 日東電工株式会社 Laminated optical film, manufacturing method of laminated optical film, optical members, and image display device
JP7152130B2 (en) 2015-09-07 2022-10-12 日東電工株式会社 Low refractive index layer, laminated film, method for producing low refractive index layer, method for producing laminated film, optical member, and image display device
TWI618955B (en) * 2015-12-09 2018-03-21 住華科技股份有限公司 Optical structure
KR102312023B1 (en) * 2016-03-31 2021-10-13 도요보 가부시키가이샤 liquid crystal display
JP6563373B2 (en) * 2016-07-28 2019-08-21 富士フイルム株式会社 Liquid crystal display
JP7566630B2 (en) 2018-06-29 2024-10-15 エルジー・ケム・リミテッド Polarizing plate, liquid crystal panel and display device
KR20200002427A (en) * 2018-06-29 2020-01-08 주식회사 엘지화학 Polarizing plate, liquid crystal panel, and display apparatus
KR102275734B1 (en) * 2018-09-21 2021-07-08 주식회사 엘지화학 Liquid crystal display
KR102522253B1 (en) 2019-02-19 2023-04-17 주식회사 엘지화학 Preparation Method for Polarizing Plate
WO2022145369A1 (en) * 2020-12-28 2022-07-07 住友化学株式会社 Polarizing plate
TWI757061B (en) * 2021-01-21 2022-03-01 住華科技股份有限公司 Method of evaluation for surface protective film
EP4398222A1 (en) * 2021-08-31 2024-07-10 Nitto Denko Corporation Multi-layer structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339903A (en) * 1989-04-27 1991-02-20 Mitsubishi Gas Chem Co Inc Antidazzle polarizing plate made of polycarbonate
JP2006251224A (en) * 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd Method for manufacturing polarizing plate
JP2007094396A (en) * 2005-09-05 2007-04-12 Fujifilm Corp Polarizing plate and liquid crystal display device using the same
JP2008203400A (en) * 2007-02-19 2008-09-04 Nitto Denko Corp Polarizing plate with surface protective film, liquid crystal panel with surface protective film and image display apparatus
JP2009157352A (en) * 2007-12-06 2009-07-16 Nitto Denko Corp Polarizer, manufacturing method thereof, optical film, and image display device
JP2011095560A (en) * 2009-10-30 2011-05-12 Sumitomo Chemical Co Ltd Method for manufacturing polarizing plate
JP2011154257A (en) * 2010-01-28 2011-08-11 Sumitomo Chemical Co Ltd Method for manufacturing polarizing plate
WO2011162198A1 (en) * 2010-06-22 2011-12-29 東洋紡績株式会社 Liquid crystal display device, polarizing plate and polarizer protective film
JP2013047844A (en) * 2007-12-06 2013-03-07 Nitto Denko Corp Method of manufacturing image display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339903A (en) * 1989-04-27 1991-02-20 Mitsubishi Gas Chem Co Inc Antidazzle polarizing plate made of polycarbonate
JP2006251224A (en) * 2005-03-09 2006-09-21 Fuji Photo Film Co Ltd Method for manufacturing polarizing plate
JP2007094396A (en) * 2005-09-05 2007-04-12 Fujifilm Corp Polarizing plate and liquid crystal display device using the same
JP2008203400A (en) * 2007-02-19 2008-09-04 Nitto Denko Corp Polarizing plate with surface protective film, liquid crystal panel with surface protective film and image display apparatus
JP2009157352A (en) * 2007-12-06 2009-07-16 Nitto Denko Corp Polarizer, manufacturing method thereof, optical film, and image display device
JP2013047844A (en) * 2007-12-06 2013-03-07 Nitto Denko Corp Method of manufacturing image display device
JP2011095560A (en) * 2009-10-30 2011-05-12 Sumitomo Chemical Co Ltd Method for manufacturing polarizing plate
JP2011154257A (en) * 2010-01-28 2011-08-11 Sumitomo Chemical Co Ltd Method for manufacturing polarizing plate
WO2011162198A1 (en) * 2010-06-22 2011-12-29 東洋紡績株式会社 Liquid crystal display device, polarizing plate and polarizer protective film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018179893A1 (en) * 2017-03-30 2018-10-04 富士フイルム株式会社 Optical film, and front panel of image display device, image display device, mirror with image display function, resistive touch panel and capacitive touch panel each of which comprises said optical film
JPWO2018179893A1 (en) * 2017-03-30 2019-11-07 富士フイルム株式会社 Optical film and front plate of image display apparatus having the same, image display apparatus, mirror with image display function, resistive touch panel, and capacitive touch panel

Also Published As

Publication number Publication date
JP2014206702A (en) 2014-10-30
TW201447402A (en) 2014-12-16

Similar Documents

Publication Publication Date Title
WO2014171479A1 (en) Polarizing plate and image display device
KR101667087B1 (en) Adhesive sheet for optical film, process for production of the adhesive sheet, adhesive optical film, and image display device
US9937689B2 (en) Polarizing film, method for manufacture thereof, optical film, and image display device
JP6096582B2 (en) Polarizing plate, method for manufacturing the same, and image display device
JP6194179B2 (en) Liquid crystal display
US8197629B2 (en) Method for producing polarizing plate, polarizing plate, optical film, and image display
TWI381196B (en) A polarizing plate, a method for manufacturing the same, an optical film, and an image display device
TWI801333B (en) Single-sided protective polarizing film with adhesive layer, image display device and continuous manufacturing method thereof
CN108107499B (en) Polarizing plate, optical film, and image display device
WO2021070525A1 (en) Polarizing plate with phase difference layer and adhesive layer and organic electro luminescence display device using same
JP7514097B2 (en) Polarizing plate with retardation layer and adhesive layer and organic electroluminescence display device using the same
KR20190109266A (en) Method for manufacturing optical laminate with adhesive layer
WO2013005820A1 (en) Method for producing polarizing laminate film
TWI831132B (en) Polarizing plate protective film
WO2023042518A1 (en) Optical layered body
WO2024116892A1 (en) Laminate and display device
WO2024117121A1 (en) Laminate and display device
WO2024117124A1 (en) Laminate and display device
JP2023151127A (en) Laminate and method of manufacturing the same
JP2024089227A (en) Polarization plate with retardation layer and picture display unit including polarization plate with retardation layer
TW202303201A (en) Polarizing plate and organic EL display device
KR20230031220A (en) A polarizing plate having a retardation layer and a pressure-sensitive adhesive layer, and an image display device using the polarizing plate having the retardation layer and the pressure-sensitive adhesive layer
JP2011090312A (en) Adhesive sheet for optical film of image display device, adhesive optical film, and the image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14786106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14786106

Country of ref document: EP

Kind code of ref document: A1