WO2021172176A1 - Solid-state imaging device and electronic apparatus - Google Patents

Solid-state imaging device and electronic apparatus Download PDF

Info

Publication number
WO2021172176A1
WO2021172176A1 PCT/JP2021/006245 JP2021006245W WO2021172176A1 WO 2021172176 A1 WO2021172176 A1 WO 2021172176A1 JP 2021006245 W JP2021006245 W JP 2021006245W WO 2021172176 A1 WO2021172176 A1 WO 2021172176A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
image sensor
trench
state image
semiconductor substrate
Prior art date
Application number
PCT/JP2021/006245
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 慎一
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021172176A1 publication Critical patent/WO2021172176A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components

Definitions

  • This technology relates to solid-state image sensors and electronic devices.
  • CMOS Complementary Metal Oxide Semiconductor
  • CCD Charge Coupled Device
  • Patent Documents 1 and 2 propose a solid-state image sensor that employs a trench (Deep Trench Isolation) formed between two adjacent pixels.
  • Patent Documents 1 and 2 may not be able to further improve the quality and reliability of the solid-state image sensor.
  • this technology was made in view of such a situation, and is equipped with a solid-state image sensor capable of further improving the quality and reliability of the solid-state image sensor, and the solid-state image sensor thereof. Its main purpose is to provide electronic devices.
  • the present inventors have succeeded in further improving the quality and reliability of the solid-state image sensor, and have completed the present technology.
  • a solid-state image sensor in which the PN junction region is formed by self-alignment.
  • the width of the P-shaped region arranged on the side wall of the trench and the width of the P-shaped region arranged on the bottom surface, which is the upper part of the trench, may be substantially the same.
  • a pixel transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side may be provided.
  • the pixel transistor may be arranged above the trench.
  • the solid-state image sensor may be provided with a floating diffusion formed on the surface of the semiconductor substrate opposite to the light incident side.
  • the floating diffusion may be arranged above the trench.
  • the floating diffusion may be shared by a plurality of the pixels.
  • a transfer gate and a floating diffusion formed on the surface of the semiconductor substrate on the opposite side of the light incident side may be provided.
  • the transfer gate and the floating diffusion may be located above the trench.
  • the transfer gate may be formed for each of the pixels.
  • the floating diffusion may be shared by a plurality of the pixels.
  • the floating diffusion may be surrounded by a plurality of the transfer gates.
  • the photoelectric conversion unit may be embedded below the semiconductor substrate.
  • a vertical gate for transferring the signal charge generated by the photoelectric conversion unit by photoelectric conversion may be formed above the semiconductor substrate.
  • An amplification transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side may be provided.
  • the amplification transistor may be arranged above the trench.
  • the amplification transistor may be shared by a plurality of the pixels.
  • a reset transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side may be provided.
  • the reset transistor may be arranged above the trench.
  • the reset transistor may be shared by a plurality of the pixels.
  • a selection transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side may be provided.
  • the selective transistor may be arranged above the trench.
  • the selection transistor may be shared by a plurality of the pixels.
  • this technology provides an electronic device equipped with a solid-state image sensor according to this technology.
  • FIG. 1 It is a figure which shows the use example of the solid-state image sensor of 1st to 3rd Embodiment to which this technique is applied. It is a functional block diagram of an example of the electronic device which concerns on 4th Embodiment to which this technique is applied. It is a figure which shows an example of the schematic structure of the endoscopic surgery system. It is a block diagram which shows an example of the functional structure of a camera head and a CCU. It is a block diagram which shows an example of the schematic structure of a vehicle control system. It is explanatory drawing which shows an example of the installation position of the vehicle exterior information detection unit and the image pickup unit.
  • a back-illuminated image sensor solid-state image sensor
  • it is generally used to form a trench (Reverse Deep Trench Isolation) in the back-side process for pixel separation.
  • the trench formed in the back surface process can suppress the leakage of obliquely incident light to adjacent pixels.
  • the electrical separation of each pixel is realized by forming a P + region by implantation.
  • a pinning film is formed on the side wall of the trench and the surface on the back surface side (the surface on the light incident side) of the semiconductor substrate (silicon substrate).
  • the pixels are separated by a trench formed from the back surface side, and a PN junction is formed on the side wall of the trench by using a conformal doping process such as solid phase diffusion or plasma doping, and Qs (saturation charge) is formed. It is a structure that realizes an increase in quantity).
  • the side wall of the trench and the back surface (light incident side) of the semiconductor substrate (silicon substrate) are pinned in the P + region where boron is doped, and the side wall of the trench and the back surface of the semiconductor substrate (silicon substrate) are pinned.
  • the side surface (the surface on the light incident side) is pinned by a film having a negative fixed charge (pinning film).
  • the FD (Floating Difference), the pixel transistor, and the like are arranged in one pixel. That is, an FD (Floating Difference) and a pixel transistor are arranged for each pixel, and the FD (Floating Difference) and the pixel transistor (for example, an amplification transistor, a reset transistor, a selection transistor, etc.) are not pixel-shared.
  • the trench cannot be heat-treated at a high temperature in the FEOL process, the dry damage at the time of forming the trench may remain, and the white spot and the dark current may be deteriorated. Furthermore, since the Boron I / I layer (boron Ion Implantation, layer on which boron is implanted) (RDTI side wall pinning) around the RDTI expands in the lateral direction, the pixel volume is reduced and the saturated charge amount (Qs) is reduced, especially in fine pixels. ) May decrease.
  • the Boron I / I layer boron Ion Implantation, layer on which boron is implanted
  • Qs saturated charge amount
  • This technology was made in view of the above circumstances. According to this technology, it is possible to improve the saturated charge amount (Qs) by forming a PN junction on the side wall of the trench, and reduce white spots and / or dark current due to recovery of DTI (trench) formation damage by heat treatment during FEOL formation. .. Further, according to the present technology, it is possible to improve noise by expanding the area of the amplification transistor (Amp. Transistor) by sharing the FD and Well contacts.
  • Example 1 of solid-state image sensor The solid-state image sensor of the first embodiment (Example 1 of the solid-state image sensor) according to the present technology will be described with reference to FIGS. 1 to 6.
  • FIG. 1 is a diagram showing a configuration example of the solid-state image sensor of the first embodiment according to the present technology, and more specifically, is a diagram showing the solid-state image sensor 101 of the first embodiment according to the present technology.
  • a non-penetrating trench 1 is formed in the solid-state image sensor 101 from the back surface side (light incident side, lower side of FIG. 1) of the semiconductor substrate 15.
  • the solid-state image sensor 101 has a structure in which a PN junction is formed in a self-aligned manner on the side wall of the non-penetrating trench 1 (in FIG. 1, the left and right walls of the non-penetrating trench 1).
  • the elements floating diffusion (FD) 40, pixel transistor 50, etc.
  • the non-penetrating trench 1 are arranged vertically (in the vertical direction in FIG. 1).
  • the signal charge photoelectrically converted by the photoelectric conversion unit (photodiode (PD, Photo Diode) 30) is transmitted in the vertical direction to the floating diffusion (FD) 40 via the transfer transistor (pixel transistor 50) (FIG. 1).
  • a vertical gate (VG (Vertical Gate)) 41 is formed to perform transfer in the vertical direction.
  • a plurality of FD40s and well contacts are provided by arranging each element (FD40, pixel transistor 50, well contact) formed in the FEOL process and the non-penetrating trench 1 in the vertical direction. Since the pixels can be shared and the pixel transistors can be arranged above the trench 1, the area of the semiconductor substrate (Si substrate) can be effectively utilized. As a result, the area of the amplification transistor (Amp. Transistor) can be expanded as much as possible, so that good noise characteristics can be realized.
  • the solid-state image sensor 101 has a PD (photodiode) 30 which is a photoelectric conversion element of each pixel formed inside the Si substrate 15.
  • a P-type layer 64 is formed on the light incident side of the PD 30 (the lower side and the back surface side in the drawing), and a film 70 having a negative fixed charge is formed on the lower layer of the P-type layer 64. It is formed, and a flattening film 13 is formed under the flattening film 13.
  • a light-shielding film 14 is formed on the flattening film 13.
  • the light-shielding film 14 is provided to prevent light from leaking to adjacent pixels, and is formed between adjacent PDs 30.
  • the light-shielding film 14 is made of, for example, a metal material such as W (tungsten).
  • An OCL (on-chip lens) 11 is formed on the flattening film 13 (lower side in FIG. 1) and on the back surface side of the Si substrate 15 to collect the incident light on the PD 30.
  • the OCL 11 can be formed of an inorganic material, and for example, SiN, SiO, and SiOxNy (where 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) can be used.
  • a cover glass or a transparent plate such as a resin may be adhered on the OCL 11. Further, a color filter 12 is formed between the OCL 11 and the flattening film 13.
  • the color filter 12 is provided with a plurality of color filters for each pixel, and the colors of the color filters can be configured to be arranged according to, for example, a Bayer arrangement.
  • a wiring layer 16 is formed on the surface side of the semiconductor substrate (Si substrate) 15 (the side opposite to the light incident side and the upper side of the drawing), and the interface between the wiring layer 16 and the Si substrate (semiconductor substrate) 15 is formed. Is formed with a pixel transistor 50.
  • a wiring layer 17 is formed on the upper side of the wiring layer 16, and a logic substrate 18 is formed on the upper side of the wiring layer 17.
  • the Si substrate to be the pixel substrate (sensor substrate) and the circuit board (for example, the logic substrate) 18 are connected to the junction P (the junction surface P1 of the wiring layer 16 and the junction surface P2 of the wiring layer 17) by the Cu—Cu junction 19. It is electrically bonded and joined via (consisting of).
  • the trench 1 is formed between the pixels.
  • the trench 1 is formed between adjacent pixels so as not to penetrate the Si substrate 15 upward from the back surface side of the Si substrate 15 (in the vertical direction in the drawing, the direction from the back surface to the front surface).
  • the trench 1 also functions as a light-shielding wall between pixels so that unnecessary light does not leak to adjacent pixels.
  • a P-type region (P-type impurity region) 60 is formed between the PD 30 and the trench 1 (between the left and right directions in FIG. 1) along the side wall of the trench 1. Further, the P-type region (P-type impurity region) 60 is also formed along the bottom surface of the trench 1.
  • the P-type region (P-type impurity region) 60 may be referred to as a P-type solid phase diffusion layer.
  • the PD30 is composed of an N-type region. Photoelectric conversion is performed in some or all of these N-type regions.
  • a side wall film 61 made of, for example, SiO 2 is formed on the inner wall of the trench 1, and a filler 62 made of, for example, polysilicon is embedded inside the side wall film 61.
  • SiN may be adopted instead of SiO 2 adopted in.
  • doping polysilicon and light-shielding metal may be used instead of the polysilicon used for the filler 62.
  • FIGS. 2 and 3 are diagrams showing a configuration example of the solid-state image sensor of the first embodiment according to the present technology.
  • FIG. 2 is a view from the surface side (opposite side of the light incident side).
  • FIG. 3A is a plan layout view of the solid-state image sensor 123 according to the first embodiment according to the present technology
  • FIG. 3A is a cross section of the solid-state image sensor 123 (123A) according to the line AA'shown in FIG.
  • FIG. 3B is a cross-sectional view of the solid-state image sensor 123 (123B) according to the line BB'shown in FIG.
  • the non-penetrating trench 1 is formed in a grid pattern between adjacent pixels so as to surround each pixel (one pixel is referred to as a pixel GS in FIG. 2). It is formed.
  • a reset transistor (RST Tr.) 51 a transfer gate (TG) transfer transistor) 52 and 53, a selection transistor (SELTr.) 54, and a well contact (VSS) arranged above the non-penetrating trench 1 are shown.
  • ) 59, amplifier (AMP) transistors AMP1 and AMP2, floating diffusion (FD) 40, and wiring 80 are arranged.
  • a photoelectric conversion unit (photodiode (PD)) 30 is formed in the semiconductor substrate 51 by being embedded in the semiconductor substrate 51 for each pixel on the back side of the paper surface of FIG.
  • the floating diffusion (FD) 40 is formed by being shared by four pixel GS (2 ⁇ 2 pixels), and the amplifier (AMP) transistors AMP1 and AMP2 are also shared by four pixel GS (2 ⁇ 2 pixels). Is formed.
  • the number of shared pixels is not limited to 4 pixels (2 ⁇ 2 pixels), for example, 8 pixels (2 ⁇ 4 pixels), 9 pixels (3 ⁇ 3 pixels), 16 pixels (4 ⁇ 4 pixels). ) May be.
  • the reset transistor (RST Tr.) 51 and the selection transistor (SELTr.) 54 are shared and formed by two pixels, and the transfer gate (TG) (transfer transistor) 52 and 53 are formed for each pixel. ..
  • Reset transistor (RST Tr.) 51, transfer gate (TG) (transfer transistor) 52 and 53, selection transistor (SELTr.) 54, floating diffusion (FD) 40 and wiring 80 are arranged.
  • Each of the reset transistor (RST Tr.) 51, transfer gate (TG) transfer transistor) 52 and 53, and the selection transistor (SELTr.) 54 is connected to the wiring 80.
  • the photoelectric conversion unit ( The signal charge photoelectrically converted by the photodiode (PD, Photo Diode) 30 is transferred (per pixel) to each of the transfer gates (transfer transistors) 52 and 52, respectively.
  • the transfer gates 52 and 53 read out the electric charge generated by the PD 30 and transfer it to the FD 40.
  • the FD 40 holds the charge read from the PD 30.
  • the reset transistor 51 resets the potential of the FD 40 by discharging the electric charge stored in the FD 40 to the drain (constant voltage source Vdd).
  • the amplifier (AMP) transistors AMP1 and AMP2 output a pixel signal according to the potential of the FD40.
  • the amplifier (AMP) transistors AMP1 and AMP2 constitute a load MOS as a constant current source connected via a vertical signal line and a source follower circuit, and a pixel signal indicating a level corresponding to the charge stored in the FD 40. Is output from the amplifier (AMP) transistors AMP1 and AMP2 to the column processing unit via the selection transistor 54 and the vertical signal line.
  • the selection transistor 54 outputs the pixel signal of the pixel to the column processing unit via the vertical signal line.
  • FIGS. 4 to 6 a method for manufacturing the solid-state image sensor according to the first embodiment (Example 1 of the solid-state image sensor) according to the present technology will be described.
  • FIG. 4 to 6 are diagrams for explaining a method of manufacturing the solid-state image sensor of the first embodiment (example 1 of the solid-state image sensor) according to the present technology.
  • FIG. 4 shows the solid-state imaging device of the first embodiment according to the present technology in the DTI (DeeP Training Isolation) step, the solid phase diffusion step, the Bond (bonding) step, and the FEOL (Front End Of Line) step. It is a figure for demonstrating the manufacturing method of 106, and FIG. It is a figure for demonstrating the manufacturing method of the solid-state imaging apparatus 106 of an embodiment.
  • FIG. 4 shows the solid-state imaging device of the first embodiment according to the present technology in the DTI (DeeP Training Isolation) step, the solid phase diffusion step, the Bond (bonding) step, and the FEOL (Front End Of Line) step.
  • DTI DeeP Training Isolation
  • Bond bonding
  • FEOL Front End Of Line
  • FIG. 6 is a diagram for explaining a method of manufacturing the solid-state image sensor 106 of the first embodiment according to the present technology in the REOL (Reverse End Of Line) step and the Custom step, and at the same time, is a diagram relating to the present technology. It is a figure which shows the solid-state image sensor 106 of 1st Embodiment.
  • the semiconductor substrate (Si) substrate 15 does not penetrate the trench 1, that is, does not penetrate the semiconductor substrate (Si) substrate 15, and uses lithography and Dry etching processes.
  • the semiconductor substrate (Si) substrate 15 is formed upward from the back surface.
  • FIG. 4 (Trench embedding process) From FIG. 4 (b) to FIG. 4 (c), the inside of the trench 1 is embedded and flattened.
  • the embedded structure of the trench 1 include an insulating film such as a silicon oxide film and a silicon nitride film, and a metal material such as polysilicon (Poly-Si) and tungsten (W).
  • FIG. 4C shows a laminated structure of silicon oxide film 61 and polysilicon (Poly—Si) 62.
  • the semiconductor substrate (Si) substrate 15 on which the trench 1 is formed is thinned.
  • the thinned surface is arranged upward from the bottom surface of the trench.
  • FEOL process After thinning the wafer, as shown in FIG. 4 (d) (FIG. 5 (a)), in order to form the pixel transistor 50 and the photoelectric conversion unit (photodiode (PD)) 30 in the FEOL process.
  • Pixel implantation is performed to form each of a vertical gate (VG (Vertical Gate)) 41, a pixel transistor 50, a floating diffusion (FD) 40, a photoelectric conversion unit 30, and a well contact.
  • BEOL process As shown in FIG. 5B, after executing the FEOL step, the BEOL step of forming the connection wiring for forming the circuit by the element such as the pixel transistor 50 is executed.
  • the logic circuit element (Logic Tr.) Is integrated on the logic substrate 18 which is a substrate different from the semiconductor substrate 19 constituting the pixels. Then, by Cu—Cu (copper-copper) bonding 19, the semiconductor substrate 15 constituting the pixels and the logic substrate 18 are electrically connected via the wiring layer 16 on the semiconductor substrate 19 side and the wiring layer 17 on the logic substrate 18 side. Connect to.
  • Second Embodiment (Example 2 of solid-state image sensor)> The solid-state image sensor of the second embodiment (Example 2 of the solid-state image sensor) according to the present technology will be described with reference to FIGS. 7 to 8.
  • FIG. 7 to 8 are diagrams for explaining the manufacturing method of the solid-state imaging device of the second embodiment (example 2 of the solid-state imaging device) according to the present technology.
  • FIG. 7 is a diagram in the REOL step.
  • FIG. 8 is a diagram for explaining a method of manufacturing the solid-state imaging device 108 of the second embodiment according to the present technology
  • FIG. 8 is a diagram of the solid-state imaging device 108 of the second embodiment according to the present technology in the REOL process. It is a figure for demonstrating the manufacturing method, and at the same time, it is a figure which shows the solid-state image pickup apparatus 108 of the 2nd Embodiment which concerns on this technique.
  • the method for manufacturing the solid-state imaging device 108 is the same as the method for manufacturing the solid-state imaging device according to the first embodiment (Example 1 of the solid-state imaging device) according to the present technology, up to the step of joining the wafer to the logic substrate 18. Execute the process of. Then, in FIG. 9A, the solid-state image sensor 106 is shown for comparison (for reference).
  • the film for example, silicon oxide film 61 and polysilicon (Poly-Si) 62
  • the film for example, silicon oxide film 61 and polysilicon (Poly-Si) 62
  • the P-shaped region 60 for example, the region having BSG (boron silicate glass)
  • BSG boron silicate glass
  • the trench 1 is re-embedded with a film (pinning film) 70 having a negative fixed charge.
  • the film (pinning film) 70 having a negative fixed charge is an insulating film that induces a negative charge on the silicon (Si) surface (including the side wall of the trench 1), and is, for example, HfO 2 , Al 2 O 3, and the like. High dielectric constant insulating film of.
  • re-embedding is performed with an insulating film such as a light-shielding metal or a silicon oxide film so that it is placed on the film (pinning film) 70 having a negative fixed charge.
  • the light-shielding metal material include metal materials such as tungsten (W) and aluminum (Al).
  • tungsten (W) 63 is embedded in the trench 1.
  • a custom step is executed to form a color filter 12, an on-chip lens (OCL (On Chip Lens) 11 and the like), and a solid-state image sensor 108 is manufactured.
  • OCL On Chip Lens
  • the contents described about the solid-state image sensor of the second embodiment according to the present technology of the first embodiment according to the present technology described above, unless there is a particular technical contradiction. It can be applied to a solid-state image sensor and a solid-state image sensor according to a third embodiment of the present technology described later.
  • FIG. 9 to 10 are diagrams for explaining the manufacturing method of the solid-state imaging device of the third embodiment (example 3 of the solid-state imaging device) according to the present technology.
  • FIG. 9 is a diagram in the REOL step. It is a figure for demonstrating the manufacturing method of the solid-state imaging apparatus 110 of the 3rd Embodiment which concerns on this technique
  • FIG. 10 is a figure of FIG. It is a figure for demonstrating the manufacturing method, and at the same time, it is a figure which shows the solid-state image pickup apparatus 110 of the 3rd Embodiment which concerns on this technique.
  • the process up to the step of wafer bonding with the logic substrate 18 is the same as the manufacturing method for the solid-state imaging device of the first embodiment (Example 1 of the solid-state imaging device) according to the present technology. Perform the process. However, in the method for manufacturing the solid-state image sensor 110, the solid-phase diffusion step shown in FIG. 4B is not executed (the P-type region 60 is not formed). Then, in FIG. 9A, the solid-state image sensor 106 is shown for comparison (for reference).
  • the film for example, silicon oxide film 61 and polysilicon (Poly-Si) 62
  • the trench 1 is re-embedded with a film (pinning film) 70 having a negative fixed charge.
  • the film (pinning film) 70 having a negative fixed charge is an insulating film that induces a negative charge on the silicon (Si) surface (including the side wall of the trench 1), and is, for example, HfO 2 , Al 2 O 3, and the like. High dielectric constant insulating film of.
  • re-embedding is performed with an insulating film such as a light-shielding metal or a silicon oxide film so that it is placed on the film (pinning film) 70 having a negative fixed charge.
  • the light-shielding metal material include metal materials such as tungsten (W) and aluminum (Al).
  • tungsten (W) 63 is embedded in the trench 1.
  • a film (pinning film) 70 having a negative fixed charge is formed, so that a P-type region (P-type impurity region) 60-1 is formed on the side wall and the bottom surface of the trench 1. Has been done.
  • a custom step is executed to form a color filter 12, an on-chip lens (OCL (On Chip Lens) 11 and the like), and a solid-state image sensor 110 is manufactured.
  • OCL On Chip Lens
  • the contents of the description of the solid-state image sensor of the third embodiment are the first and second first to the second aspects of the present technology described above, unless there is a particular technical contradiction. It can be applied to the solid-state image sensor of the embodiment.
  • the electronic device of the fourth embodiment according to the present technology is any one of the solid-state image sensors of the first embodiment to the third embodiment according to the present technology. It is an electronic device equipped with the solid-state image sensor of one embodiment.
  • FIG. 11 is a diagram showing an example of using the solid-state image sensor of the first to third embodiments according to the present technology as an image sensor.
  • the solid-state image sensor of the first to third embodiments described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray, as described below. can. That is, as shown in FIG. 11, for example, the field of appreciation for taking an image used for appreciation, the field of transportation, the field of home appliances, the field of medical / healthcare, the field of security, the field of beauty, and sports. (For example, the electronic device of the fourth embodiment described above) is the solid-state image sensor of any one of the first to third embodiments. Can be done.
  • the first to third implementations are applied to devices for taking images to be used for appreciation, such as digital cameras, smartphones, and mobile phones with a camera function.
  • the solid-state imaging device of any one of the embodiments can be used.
  • in-vehicle sensors that photograph the front, rear, surroundings, inside of a vehicle, etc., and monitor traveling vehicles and roads for safe driving such as automatic stop and recognition of the driver's condition.
  • the solid-state imaging device of any one of the first to third embodiments is used as a device used for traffic such as a surveillance camera and a distance measuring sensor for measuring distance between vehicles. be able to.
  • devices used in home appliances such as television receivers, refrigerators, and air conditioners in order to photograph a user's gesture and operate the device according to the gesture.
  • the solid-state imaging device of any one of the third embodiments can be used.
  • the first to third implementations are applied to devices used for medical care and healthcare, such as endoscopes and devices that perform angiography by receiving infrared light.
  • the solid-state imaging device of any one of the embodiments can be used.
  • a device used for security such as a surveillance camera for crime prevention and a camera for personal authentication is used as a solid body of any one of the first to third embodiments.
  • An image sensor can be used.
  • a skin measuring device for photographing the skin for example, a microscope for photographing the scalp, and other devices used for cosmetology are equipped with any one of the first to third embodiments.
  • a solid-state imaging device of the form can be used.
  • a solid-state image sensor In the field of sports, for example, a solid-state image sensor according to any one of the first to third embodiments is used as a device used for sports such as an action camera or a wearable camera for sports applications. Can be used.
  • a device used for agriculture such as a camera for monitoring the state of a field or a crop is subjected to solid-state imaging of any one of the first to third embodiments.
  • the device can be used.
  • the solid-state image sensor of any one of the first to third embodiments described above can be used as the solid-state image sensor 101M, for example, a camera system such as a digital still camera or a video camera, or an image pickup function. It can be applied to all types of electronic devices having an image pickup function, such as a mobile phone having a camera.
  • FIG. 12 shows a schematic configuration of the electronic device 102 (camera) as an example.
  • the electronic device 102 is, for example, a video camera capable of capturing a still image or a moving image, and drives a solid-state image sensor 101M, an optical system (optical lens) 310, a shutter device 311 and a solid-state image sensor 101M and a shutter device 311. It has a drive unit 313 and a signal processing unit 312.
  • the optical system 310 guides the image light (incident light) from the subject to the pixel portion 101a of the solid-state image sensor 101M.
  • the optical system 310 may be composed of a plurality of optical lenses.
  • the shutter device 311 controls the light irradiation period and the light blocking period of the solid-state image sensor 101M.
  • the drive unit 313 controls the transfer operation of the solid-state image sensor 101M and the shutter operation of the shutter device 311.
  • the signal processing unit 312 performs various signal processing on the signal output from the solid-state image sensor 101M.
  • the video signal Dout after signal processing is stored in a storage medium such as a memory, or is output to a monitor or the like.
  • FIG. 13 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique according to the present disclosure (the present technique) can be applied.
  • FIG. 13 illustrates how the surgeon (doctor) 11131 is performing surgery on patient 11132 on patient bed 11133 using the endoscopic surgery system 11000.
  • the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an abdominal tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100.
  • a cart 11200 equipped with various devices for endoscopic surgery.
  • the endoscope 11100 is composed of a lens barrel 11101 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101.
  • the endoscope 11100 configured as a so-called rigid mirror having a rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. good.
  • An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101, and is an objective. It is irradiated toward the observation target in the body cavity of the patient 11132 through the lens.
  • the endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
  • An optical system and an image sensor are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image sensor by the optical system.
  • the observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted as RAW data to the camera control unit (CCU: Camera Control Unit) 11201.
  • CCU Camera Control Unit
  • the CCU11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal for displaying an image based on the image signal, such as development processing (demosaic processing).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • the display device 11202 displays an image based on the image signal processed by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of, for example, a light source such as an LED (Light Emitting Diode), and supplies irradiation light to the endoscope 11100 when photographing an operating part or the like.
  • a light source such as an LED (Light Emitting Diode)
  • LED Light Emitting Diode
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment tool control device 11205 controls the drive of the energy treatment tool 11112 for cauterizing, incising, sealing a blood vessel, or the like of a tissue.
  • the pneumoperitoneum device 11206 uses a gas in the pneumoperitoneum tube 11111 to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the work space of the operator.
  • Recorder 11207 is a device capable of recording various information related to surgery.
  • the printer 11208 is a device capable of printing various information related to surgery in various formats such as texts, images, and graphs.
  • the light source device 11203 that supplies the irradiation light to the endoscope 11100 when photographing the surgical site can be composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof.
  • a white light source is configured by combining RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-division manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing to correspond to each of RGB. It is also possible to capture the image in a time-division manner. According to this method, a color image can be obtained without providing a color filter on the image sensor.
  • the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals.
  • the drive of the image sensor of the camera head 11102 in synchronization with the timing of changing the light intensity to acquire an image in a time-divided manner and synthesizing the image, so-called high dynamic without blackout and overexposure. Range images can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • special light observation for example, by utilizing the wavelength dependence of light absorption in body tissue to irradiate light in a narrow band as compared with the irradiation light (that is, white light) in normal observation, the surface layer of the mucous membrane.
  • a so-called narrow band imaging is performed in which a predetermined tissue such as a blood vessel is photographed with high contrast.
  • fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating with excitation light.
  • the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent.
  • the light source device 11203 may be configured to be capable of supplying narrow band light and / or excitation light corresponding to such special light observation.
  • FIG. 14 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU11201 shown in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • CCU11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and CCU11201 are communicatively connected to each other by a transmission cable 11400.
  • the lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101.
  • the observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and incident on the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the image pickup unit 11402 is composed of an image pickup element.
  • the image sensor constituting the image pickup unit 11402 may be one (so-called single plate type) or a plurality (so-called multi-plate type).
  • each image pickup element may generate an image signal corresponding to each of RGB, and a color image may be obtained by synthesizing them.
  • the image pickup unit 11402 may be configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to 3D (Dimensional) display, respectively.
  • the 3D display enables the operator 11131 to more accurately grasp the depth of the biological tissue in the surgical site.
  • a plurality of lens units 11401 may be provided corresponding to each image pickup element.
  • the imaging unit 11402 does not necessarily have to be provided on the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is composed of an actuator, and the zoom lens and focus lens of the lens unit 11401 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 11405. As a result, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU11201.
  • the communication unit 11404 transmits the image signal obtained from the image pickup unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405.
  • the control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image. Contains information about the condition.
  • the imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of CCU11201 based on the acquired image signal. good.
  • the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
  • the camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102.
  • Image signals and control signals can be transmitted by telecommunications, optical communication, or the like.
  • the image processing unit 11412 performs various image processing on the image signal which is the RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display an image captured by the surgical unit or the like based on the image signal processed by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image by using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edge of an object included in the captured image to remove surgical tools such as forceps, a specific biological part, bleeding, and mist when using the energy treatment tool 11112. Can be recognized.
  • the control unit 11413 may superimpose and display various surgical support information on the image of the surgical unit by using the recognition result. By superimposing and displaying the surgical support information and presenting it to the surgeon 11131, it is possible to reduce the burden on the surgeon 11131 and to allow the surgeon 11131 to proceed with the surgery reliably.
  • the transmission cable 11400 that connects the camera head 11102 and CCU11201 is an electric signal cable that supports electrical signal communication, an optical fiber that supports optical communication, or a composite cable thereof.
  • the communication was performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU11201 may be performed wirelessly.
  • the above is an example of an endoscopic surgery system to which the technology according to the present disclosure can be applied.
  • the technique according to the present disclosure can be applied to the endoscope 11100, the camera head 11102 (imaging unit 11402), and the like among the configurations described above.
  • the solid-state image sensor of the present disclosure can be applied to the image pickup unit 10402.
  • the endoscopic surgery system has been described as an example, but the technique according to the present disclosure may be applied to other, for example, a microscopic surgery system.
  • the technology according to the present disclosure can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
  • FIG. 15 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps.
  • the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches.
  • the body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
  • the vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image pickup unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
  • the imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received.
  • the image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects the in-vehicle information.
  • a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
  • the microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving, etc., which runs autonomously without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030.
  • the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs coordinated control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
  • the audio image output unit 12052 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices.
  • the display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
  • FIG. 16 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has image pickup units 12101, 12102, 12103, 12104, 12105 as the image pickup unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example.
  • the imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100.
  • the images in front acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
  • FIG. 16 shows an example of the photographing range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively
  • the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103.
  • the imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
  • the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100). By obtaining can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
  • automatic brake control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is used via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
  • At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104.
  • pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine.
  • the audio image output unit 12052 When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian.
  • the display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
  • the above is an example of a vehicle control system to which the technology according to the present disclosure (the present technology) can be applied.
  • the technique according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above.
  • the solid-state image sensor of the present disclosure can be applied to the image pickup unit 12031.
  • the present technology is not limited to the above-described embodiments, the above-mentioned usage examples, and the above-mentioned application examples, and various changes can be made without departing from the gist of the present technology.
  • the present technology can also have the following configurations.
  • a pixel transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side is provided.
  • a floating diffusion formed on the surface of the semiconductor substrate opposite to the light incident side is provided.
  • a transfer gate and a floating diffusion formed on the surface of the semiconductor substrate on the opposite side of the light incident side are provided. The transfer gate and the floating diffusion are located above the trench.
  • the transfer gate is formed for each of the pixels.
  • the floating diffusion is shared by the plurality of pixels.
  • the solid-state image sensor according to any one of [1] to [5], wherein the floating diffusion is surrounded by a plurality of the transfer gates.
  • the photoelectric conversion unit is embedded below the semiconductor substrate.
  • the solid according to any one of [1] to [6], wherein the vertical gate for transferring the signal charge generated by the photoelectric conversion unit by the photoelectric conversion is formed above the semiconductor substrate.
  • Image sensor [8] An amplification transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side is provided.
  • the amplification transistor is arranged above the trench and The solid-state image sensor according to any one of [1] to [7], wherein the amplification transistor is shared by a plurality of the pixels.
  • a reset transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side is provided.
  • the reset transistor is arranged above the trench and The solid-state image sensor according to any one of [1] to [8], wherein the reset transistor is shared by a plurality of the pixels.
  • a selection transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side is provided.
  • the selection transistor is arranged above the trench and The solid-state image sensor according to any one of [1] to [9], wherein the selection transistor is shared by a plurality of the pixels.
  • Filler (light-shielding metal, tungsten (W)), 64 ... P layer (P type pinning layer), 70 ... A film having a negative fixed charge, 101, 106, 108, 110, 123, 123A, 123B ... Solid-state image sensor.

Abstract

Provided is a solid-state imaging device with which further improvement in the quality and reliability of the solid-state imaging device can be achieved. Provided is a solid-state imaging device comprising: a semiconductor substrate on which a photoelectric conversion unit that performs photoelectric conversion is formed for each pixel; a trench formed between the pixels and recessed upward from the back surface of the semiconductor substrate that is the light incident side without penetrating the semiconductor substrate; and a PN junction region composed of a P-type region and an N-type region, which are arranged along the peripheral part of the trench, wherein the PN junction region is formed through self-alignment.

Description

固体撮像装置及び電子機器Solid-state image sensor and electronic equipment
 本技術は、固体撮像装置及び電子機器に関する。 This technology relates to solid-state image sensors and electronic devices.
 一般的に、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサやCCD(Charge Coupled Device)などの固体撮像装置は、デジタルスチルカメラ、デジタルビデオカメラ、スマートフォンなどに広く用いられている。 Generally, solid-state image sensors such as CMOS (Complementary Metal Oxide Semiconductor) image sensors and CCD (Charge Coupled Device) are widely used in digital still cameras, digital video cameras, smartphones, and the like.
 このような実情のもと、近年は、固体撮像装置の更なる高品質や高信頼性を目指した技術開発が盛んに行われている。例えば、特許文献1及び2には、隣接する2つの画素間に形成されたトレンチ(Deep Trench Isolation)を採用した固体撮像装置が提案されている。 Under these circumstances, in recent years, technological development aimed at higher quality and higher reliability of solid-state image sensors has been actively carried out. For example, Patent Documents 1 and 2 propose a solid-state image sensor that employs a trench (Deep Trench Isolation) formed between two adjacent pixels.
特開2011-3860号公報Japanese Unexamined Patent Publication No. 2011-3860 国際公開第2019/093151号International Publication No. 2019/093151
 しかしながら、特許文献1及び2で提案された技術では、固体撮像装置の品質や信頼性の更なる向上を図ることができないおそれがある。 However, the techniques proposed in Patent Documents 1 and 2 may not be able to further improve the quality and reliability of the solid-state image sensor.
 そこで、本技術は、このような状況に鑑みてなされたものであり、固体撮像装置の品質や信頼性の更なる向上を実現することができる固体撮像装置、及びその固体撮像装置が搭載された電子機器を提供することを主目的とする。 Therefore, this technology was made in view of such a situation, and is equipped with a solid-state image sensor capable of further improving the quality and reliability of the solid-state image sensor, and the solid-state image sensor thereof. Its main purpose is to provide electronic devices.
 本発明者らは、上述の目的を解決するために鋭意研究を行った結果、固体撮像装置の品質や信頼性の更なる向上に成功し、本技術を完成するに至った。 As a result of diligent research to solve the above-mentioned object, the present inventors have succeeded in further improving the quality and reliability of the solid-state image sensor, and have completed the present technology.
 すなわち、本技術では、
 画素毎に、光電変換を行う光電変換部が形成された半導体基板と、
 光入射側である該半導体基板の裏面から上方に掘り込んで該半導体基板を貫通しないで、該画素間に形成されたトレンチと、
 該トレンチの周囲部に沿って配された、P型領域とN型領域とから構成されるPN接合領域と、を備え、
 該PN接合領域がセルフアラインで形成される、固体撮像装置を提供する。
That is, in this technology,
A semiconductor substrate on which a photoelectric conversion unit that performs photoelectric conversion is formed for each pixel,
A trench formed between the pixels without digging upward from the back surface of the semiconductor substrate on the light incident side and penetrating the semiconductor substrate.
A PN junction region composed of a P-type region and an N-type region, which is arranged along the peripheral portion of the trench, is provided.
Provided is a solid-state image sensor in which the PN junction region is formed by self-alignment.
 本技術に係る固体撮像装置において、
 前記トレンチの側壁に配された前記P型領域の幅と、前記トレンチの上部である底面に配された前記P型領域の幅とが略同一でもよい。
In the solid-state image sensor according to this technology
The width of the P-shaped region arranged on the side wall of the trench and the width of the P-shaped region arranged on the bottom surface, which is the upper part of the trench, may be substantially the same.
 本技術に係る固体撮像装置において、
 光入射側の反対側である前記半導体基板の表面に形成された画素トランジスタを備えてもよく、
 該画素トランジスタが、前記トレンチの上方に配されいてもよい。
In the solid-state image sensor according to this technology
A pixel transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side may be provided.
The pixel transistor may be arranged above the trench.
 本技術に係る固体撮像装置において、
 光入射側の反対側である前記半導体基板の表面に形成されたフローティングディフュージョンを備えていてもよく、
 該フローティングディフュージョンが、前記トレンチの上方に配されていてもよい。
In the solid-state image sensor according to this technology
It may be provided with a floating diffusion formed on the surface of the semiconductor substrate opposite to the light incident side.
The floating diffusion may be arranged above the trench.
 本技術に係る固体撮像装置において、
 前記フローティングディフュージョンが、複数の前記画素で共有されていてもよい。
In the solid-state image sensor according to this technology
The floating diffusion may be shared by a plurality of the pixels.
 本技術に係る固体撮像装置において、
 光入射側の反対側である前記半導体基板の表面に形成された転送ゲート及びフローティングディフュージョンを備えていてもよく、
 該転送ゲート及び該フローティングディフュージョンが、前記トレンチの上方に配されいてもよく、
 該転送ゲートが、前記画素毎に形成されていてもよく、
 該フローティングディフュージョンが、複数の前記画素で共有されていてもよく、
 該フローティングディフュージョンが、複数の該転送ゲートに囲まれていてもよい。
In the solid-state image sensor according to this technology
A transfer gate and a floating diffusion formed on the surface of the semiconductor substrate on the opposite side of the light incident side may be provided.
The transfer gate and the floating diffusion may be located above the trench.
The transfer gate may be formed for each of the pixels.
The floating diffusion may be shared by a plurality of the pixels.
The floating diffusion may be surrounded by a plurality of the transfer gates.
 本技術に係る固体撮像装置において、
 前記光電変換部が、前記半導体基板の下方に埋め込まれていてもよく、
 光電変換により前記光電変換部で生成された信号電荷の転送を行うためのバーティカルゲートが、前記半導体基板の上方に形成されていてもよい。
In the solid-state image sensor according to this technology
The photoelectric conversion unit may be embedded below the semiconductor substrate.
A vertical gate for transferring the signal charge generated by the photoelectric conversion unit by photoelectric conversion may be formed above the semiconductor substrate.
 本技術に係る固体撮像装置において、
 光入射側の反対側である前記半導体基板の表面に形成された増幅トランジスタを備えていてもよく、
 該増幅トランジスタが、前記トレンチの上方に配されていてもよく、
 該増幅トランジスタが、複数の前記画素で共有されていてもよい。
In the solid-state image sensor according to this technology
An amplification transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side may be provided.
The amplification transistor may be arranged above the trench.
The amplification transistor may be shared by a plurality of the pixels.
 本技術に係る固体撮像装置において、
 光入射側の反対側である前記半導体基板の表面に形成されたリセットトランジスタを備えていてもよく、
 該リセットトランジスタが、前記トレンチの上方に配されていてもよく、
 該リセットトランジスタが、複数の前記画素で共有されていてもよい。
In the solid-state image sensor according to this technology
A reset transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side may be provided.
The reset transistor may be arranged above the trench.
The reset transistor may be shared by a plurality of the pixels.
 本技術に係る固体撮像装置において、
 光入射側の反対側である前記半導体基板の表面に形成された選択トランジスタを備えていてもよく、
 該選択トランジスタが、前記トレンチの上方に配されていてもよく、
 該選択トランジスタが、複数の前記画素で共有されていてもよい。
In the solid-state image sensor according to this technology
A selection transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side may be provided.
The selective transistor may be arranged above the trench.
The selection transistor may be shared by a plurality of the pixels.
 また、本技術では、本技術に係る固体撮像装置が搭載された、電子機器を提供する。 In addition, this technology provides an electronic device equipped with a solid-state image sensor according to this technology.
 本技術によれば、固体撮像装置の品質や信頼性の更なる向上を実現することができる。なお、ここに記載された効果は、必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。 According to this technology, it is possible to further improve the quality and reliability of the solid-state image sensor. The effects described here are not necessarily limited, and may be any of the effects described in the present disclosure.
本技術を適用した第1の実施形態の固体撮像装置の構成例を示す図である。It is a figure which shows the structural example of the solid-state image sensor of 1st Embodiment to which this technique is applied. 本技術を適用した第1の実施形態の固体撮像装置の構成例を示す図である。It is a figure which shows the structural example of the solid-state image sensor of 1st Embodiment to which this technique is applied. 本技術を適用した第1の実施形態の固体撮像装置の構成例を示す図である。It is a figure which shows the structural example of the solid-state image sensor of 1st Embodiment to which this technique is applied. 本技術を適用した第1の実施形態の固体撮像装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the solid-state image sensor of 1st Embodiment to which this technique is applied. 本技術を適用した第1の実施形態の固体撮像装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the solid-state image sensor of 1st Embodiment to which this technique is applied. 本技術を適用した第1の実施形態の固体撮像装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the solid-state image sensor of 1st Embodiment to which this technique is applied. 本技術を適用した第2の実施形態の固体撮像装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the solid-state image sensor of the 2nd Embodiment to which this technique is applied. 本技術を適用した第2の実施形態の固体撮像装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the solid-state image sensor of the 2nd Embodiment to which this technique is applied. 本技術を適用した第3の実施形態の固体撮像装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the solid-state image sensor of the 3rd Embodiment to which this technique is applied. 本技術を適用した第3の実施形態の固体撮像装置の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the solid-state image sensor of the 3rd Embodiment to which this technique is applied. 本技術を適用した第1~第3の実施形態の固体撮像装置の使用例を示す図である。It is a figure which shows the use example of the solid-state image sensor of 1st to 3rd Embodiment to which this technique is applied. 本技術を適用した第4の実施形態に係る電子機器の一例の機能ブロック図である。It is a functional block diagram of an example of the electronic device which concerns on 4th Embodiment to which this technique is applied. 内視鏡手術システムの概略的な構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the endoscopic surgery system. カメラヘッド及びCCUの機能構成の一例を示すブロック図である。It is a block diagram which shows an example of the functional structure of a camera head and a CCU. 車両制御システムの概略的な構成の一例を示すブロック図である。It is a block diagram which shows an example of the schematic structure of a vehicle control system. 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。It is explanatory drawing which shows an example of the installation position of the vehicle exterior information detection unit and the image pickup unit.
 以下、本技術を実施するための好適な形態について説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。なお、特に断りがない限り、図面において、「上」とは図中の上方向又は上側を意味し、「下」とは、図中の下方向又は下側を意味し、「左」とは図中の左方向又は左側を意味し、「右」とは図中の右方向又は右側を意味する。また、図面については、同一又は同等の要素又は部材には同一の符号を付し、重複する説明は省略する。 Hereinafter, a suitable mode for carrying out this technology will be described. The embodiments described below show an example of typical embodiments of the present technology, and the scope of the present technology is not narrowly interpreted by this. Unless otherwise specified, in the drawings, "upper" means an upper direction or an upper side in the drawing, "lower" means a lower direction or a lower side in the drawing, and "left" means. It means the left direction or the left side in the figure, and "right" means the right direction or the right side in the figure. Further, in the drawings, the same or equivalent elements or members are designated by the same reference numerals, and duplicate description will be omitted.
 説明は以下の順序で行う。
 1.本技術の概要
 2.第1の実施形態(固体撮像装置の例1)
 3.第2の実施形態(固体撮像装置の例2)
 4.第3の実施形態(固体撮像装置の例3)
 5.第4の実施形態(電子機器の例)
 6.本技術を適用した固体撮像装置の使用例
 7.内視鏡手術システムへの応用例
 8.移動体への応用例
The explanation will be given in the following order.
1. 1. Outline of this technology 2. First Embodiment (Example 1 of a solid-state image sensor)
3. 3. Second Embodiment (Example 2 of a solid-state image sensor)
4. Third Embodiment (Example 3 of a solid-state image sensor)
5. Fourth Embodiment (Example of electronic device)
6. Example of using a solid-state image sensor to which this technology is applied 7. Example of application to endoscopic surgery system 8. Application example to mobile
<1.本技術の概要>
 まず、本技術の概要について説明をする。
<1. Outline of this technology>
First, the outline of this technology will be described.
 裏面照射型イメージセンサ(固体撮像装置)において、画素分離のために裏面工程でトレンチ(Reverse Deep Trench Isolation)を形成することが一般的に用いられている。 In a back-illuminated image sensor (solid-state image sensor), it is generally used to form a trench (Reverse Deep Trench Isolation) in the back-side process for pixel separation.
 裏面工程で形成されたトレンチによって、斜入射光の隣接画素への漏れ込みを抑制することができる。各画素の電気的な分離はインプラテーションによってP+領域を形成することで実現している。加えて、トレンチの側壁のピニング強化のために、ピニング膜がトレンチの側壁及び半導体基板(シリコン基板)の裏面側の面(光入射側の面)に成膜されている。 The trench formed in the back surface process can suppress the leakage of obliquely incident light to adjacent pixels. The electrical separation of each pixel is realized by forming a P + region by implantation. In addition, in order to strengthen the pinning of the side wall of the trench, a pinning film is formed on the side wall of the trench and the surface on the back surface side (the surface on the light incident side) of the semiconductor substrate (silicon substrate).
 また、裏面側から形成されたトレンチによって、画素が分離されており、さらに、固相拡散やプラズマドーピングなどのコンフォーマルドーピングプロセスを用いて、トレンチの側壁にPN接合を形成し、Qs(飽和電荷量)増加を実現した構造である。トレンチの側壁及び半導体基板(シリコン基板)の裏面側の面(光入射側の面)はボロン(Boron)がドーピングされているP+領域でピニングされ、トレンチの側壁及び半導体基板(シリコン基板)の裏面側の面(光入射側の面)は、負の固定電荷を有する膜(ピニング膜)でピニングされている。FD(Floating Diffusion)、画素トランジスタなどは、1つの画素内に配置されている。すなわち、画素毎に、FD(Floating Diffusion)及び画素トランジスタが配置されて、FD(Floating Diffusion)及び画素トランジスタ(例えば、増幅トランジスタ、リセットトランジスタ、選択トランジスタ等)は、画素共有はされていない。 In addition, the pixels are separated by a trench formed from the back surface side, and a PN junction is formed on the side wall of the trench by using a conformal doping process such as solid phase diffusion or plasma doping, and Qs (saturation charge) is formed. It is a structure that realizes an increase in quantity). The side wall of the trench and the back surface (light incident side) of the semiconductor substrate (silicon substrate) are pinned in the P + region where boron is doped, and the side wall of the trench and the back surface of the semiconductor substrate (silicon substrate) are pinned. The side surface (the surface on the light incident side) is pinned by a film having a negative fixed charge (pinning film). The FD (Floating Difference), the pixel transistor, and the like are arranged in one pixel. That is, an FD (Floating Difference) and a pixel transistor are arranged for each pixel, and the FD (Floating Difference) and the pixel transistor (for example, an amplification transistor, a reset transistor, a selection transistor, etc.) are not pixel-shared.
 従来、トレンチに対して、FEOL工程での高温の熱処理を施すことができないため、トレンチ形成時のDryダメージが残存することで、白点および暗電流が悪化するおそれがある。さらに、RDTI周辺のBoron I/I層(Boron Ion Implantation、ボロンがインプラされた層)(RDTI側壁ピニング)が横方向に拡がるため、特に微細画素において、画素体積が縮小し、飽和電荷量(Qs)が減少してしまうおそれがある。 Conventionally, since the trench cannot be heat-treated at a high temperature in the FEOL process, the dry damage at the time of forming the trench may remain, and the white spot and the dark current may be deteriorated. Furthermore, since the Boron I / I layer (boron Ion Implantation, layer on which boron is implanted) (RDTI side wall pinning) around the RDTI expands in the lateral direction, the pixel volume is reduced and the saturated charge amount (Qs) is reduced, especially in fine pixels. ) May decrease.
 また、トレンチ形成→FEOL(Front End Of Line)工程→BEOL(Back End Of Line)工程→REOL(Reverse End Of Line)工程の工程順でプロセスが施される場合、トレンチのドライ(Dry)ダメージが抑制される利点はあるが、FDが画素共有されておらず、画素毎に、FDを配置する必要があるため、増幅トランジスタ(Amp.トランジスタ)の面積が縮小する結果、ノイズが悪化してしまうことがある。 Further, when the process is performed in the order of trench formation → FEOL (Front End Of Line) process → BEOL (Back End Of Line) process → REOL (Reverse End Of Line) process, the dry damage of the trench is caused. Although there is an advantage of being suppressed, since the FD is not pixel-shared and it is necessary to arrange the FD for each pixel, the area of the amplification transistor (Amp. Transistor) is reduced, and as a result, the noise is deteriorated. Sometimes.
 本技術は、上記の事情を鑑みてなされたものである。本技術によれば、トレンチの側壁のPN接合形成による飽和電荷量(Qs)の向上を実現でき、FEOL形成時の熱処理によるDTI(トレンチ)形成ダメージ回復による白点及び/又は暗電流を低減できる。さらに、本技術によれば、FD及びウェル(Well)コンタクト共有による増幅トランジスタ(Amp.トランジスタ)の面積拡大によるノイズ改善を図ることができる。 This technology was made in view of the above circumstances. According to this technology, it is possible to improve the saturated charge amount (Qs) by forming a PN junction on the side wall of the trench, and reduce white spots and / or dark current due to recovery of DTI (trench) formation damage by heat treatment during FEOL formation. .. Further, according to the present technology, it is possible to improve noise by expanding the area of the amplification transistor (Amp. Transistor) by sharing the FD and Well contacts.
 以下、本技術を実施するための好適な形態について図面を参照しながら詳細に説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、これにより本技術の範囲が狭く解釈されることはない。 Hereinafter, a suitable mode for carrying out the present technology will be described in detail with reference to the drawings. The embodiments described below show an example of typical embodiments of the present technology, and the scope of the present technology is not narrowly interpreted by this.
<2.第1の実施形態(固体撮像装置の例1)>
 本技術に係る第1の実施形態(固体撮像装置の例1)の固体撮像装置について、図1~図6を用いて説明をする。
<2. First Embodiment (Example 1 of solid-state image sensor)>
The solid-state image sensor of the first embodiment (Example 1 of the solid-state image sensor) according to the present technology will be described with reference to FIGS. 1 to 6.
 まず、図1を用いて説明をする。図1は、本技術に係る第1の実施形態の固体撮像装置の構成例を示す図であり、詳しくは、本技術に係る第1の実施形態の固体撮像装置101を示す図である。 First, an explanation will be given using FIG. FIG. 1 is a diagram showing a configuration example of the solid-state image sensor of the first embodiment according to the present technology, and more specifically, is a diagram showing the solid-state image sensor 101 of the first embodiment according to the present technology.
 図1に示されるように、固体撮像装置101には、半導体基板15の裏面側(光入射側、図1の下側)から非貫通トレンチ1が形成されている。固体撮像装置101は、非貫通トレンチ1の側壁(図1では、非貫通トレンチ1の左右の壁)にセルフアラインでPN接合が形成された構造を有する。固体撮像装置101では、FEOL(Front End Of Line)工程で形成される素子(フローティングディフュージョン(FD)40、画素トランジスタ50等)と、非貫通トレンチ1とが上下(図1の上下方向)に配置され、光電変換部(フォトダイオード(PD、Photo Diode)30)で光電変換された信号電荷を、転送トランジスタ(画素トランジスタ50)を経由して、フローティングディフュージョン(FD)40に縦方向(図1の上下方向)に転送を行うために、バーティカルゲート(VG(Vertical Gate))41が形成されている。 As shown in FIG. 1, a non-penetrating trench 1 is formed in the solid-state image sensor 101 from the back surface side (light incident side, lower side of FIG. 1) of the semiconductor substrate 15. The solid-state image sensor 101 has a structure in which a PN junction is formed in a self-aligned manner on the side wall of the non-penetrating trench 1 (in FIG. 1, the left and right walls of the non-penetrating trench 1). In the solid-state imaging device 101, the elements (floating diffusion (FD) 40, pixel transistor 50, etc.) formed in the FEOL (Front End Of Line) process and the non-penetrating trench 1 are arranged vertically (in the vertical direction in FIG. 1). Then, the signal charge photoelectrically converted by the photoelectric conversion unit (photodiode (PD, Photo Diode) 30) is transmitted in the vertical direction to the floating diffusion (FD) 40 via the transfer transistor (pixel transistor 50) (FIG. 1). A vertical gate (VG (Vertical Gate)) 41 is formed to perform transfer in the vertical direction.
 固体撮像装置101によれば、FEOL工程で形成されるの各素子(FD40、画素トランジスタ50、ウェルコンタクト)と、非貫通トレンチ1とを上下方向に配置することで、FD40及びウェルコンタクトを複数の画素で共有することが可能となり、さらにトレンチ1の上方に画素トランジスタを配置することができるため、半導体基板(Si基板)の面積を有効活用することが可能となる。その結果、増幅トランジスタ(Amp.トランジスタ)の面積を可能な限り、拡大することができるため、良好なノイズ特性を実現することができる。 According to the solid-state image sensor 101, a plurality of FD40s and well contacts are provided by arranging each element (FD40, pixel transistor 50, well contact) formed in the FEOL process and the non-penetrating trench 1 in the vertical direction. Since the pixels can be shared and the pixel transistors can be arranged above the trench 1, the area of the semiconductor substrate (Si substrate) can be effectively utilized. As a result, the area of the amplification transistor (Amp. Transistor) can be expanded as much as possible, so that good noise characteristics can be realized.
 固体撮像装置101は、Si基板15の内部に形成された各画素の光電変換素部であるPD(フォトダイオード)30を有する。PD30の光入射側(図中、下側であり、裏面側となる)には、P型層64が形成され、そのP型層64のさらに下層には、負の固定電荷を有する膜70が形成され、その下には平坦化膜13が形成されている。 The solid-state image sensor 101 has a PD (photodiode) 30 which is a photoelectric conversion element of each pixel formed inside the Si substrate 15. A P-type layer 64 is formed on the light incident side of the PD 30 (the lower side and the back surface side in the drawing), and a film 70 having a negative fixed charge is formed on the lower layer of the P-type layer 64. It is formed, and a flattening film 13 is formed under the flattening film 13.
 平坦化膜13には、遮光膜14が形成されている。遮光膜14は、隣接する画素への光の漏れ込みを防止するために設けられ、隣接するPD30の間に形成されている。遮光膜14は、例えば、W(タングステン)等の金属材から成る。 A light-shielding film 14 is formed on the flattening film 13. The light-shielding film 14 is provided to prevent light from leaking to adjacent pixels, and is formed between adjacent PDs 30. The light-shielding film 14 is made of, for example, a metal material such as W (tungsten).
 平坦化膜13上(図1の下側)であり、Si基板15の裏面側には、入射光をPD30に集光させるOCL(オンチップレンズ)11が形成されている。OCL11は、無機材料で形成することができ、例えば、SiN、SiO、SiOxNy(ただし、0<x≦1、0<y≦1である)を用いることができる。 An OCL (on-chip lens) 11 is formed on the flattening film 13 (lower side in FIG. 1) and on the back surface side of the Si substrate 15 to collect the incident light on the PD 30. The OCL 11 can be formed of an inorganic material, and for example, SiN, SiO, and SiOxNy (where 0 <x ≦ 1, 0 <y ≦ 1) can be used.
 図1では図示されていないが、OCL11上にカバーガラスや、樹脂などの透明板が接着されている構成とすることもできる。また、OCL11と平坦化膜13との間にカラーフィルタ12が形成されている。カラーフィルタ12は、複数のカラーフィルタが画素毎に設けられており、各カラーフィルタの色は、例えば、ベイヤ配列に従って並べられているように構成することができる。 Although not shown in FIG. 1, a cover glass or a transparent plate such as a resin may be adhered on the OCL 11. Further, a color filter 12 is formed between the OCL 11 and the flattening film 13. The color filter 12 is provided with a plurality of color filters for each pixel, and the colors of the color filters can be configured to be arranged according to, for example, a Bayer arrangement.
 半導体基板(Si基板)15の表面側(光入射側とは反対側であって図面上側)には、配線層16が形成されており、配線層16とSi基板(半導体基板)15との界面には、画素トランジスタ50が形成されている。 A wiring layer 16 is formed on the surface side of the semiconductor substrate (Si substrate) 15 (the side opposite to the light incident side and the upper side of the drawing), and the interface between the wiring layer 16 and the Si substrate (semiconductor substrate) 15 is formed. Is formed with a pixel transistor 50.
 配線層16の上側には、配線層17が形成され、そして配線層17の上側にはロジック基板18が形成されている。画素基板(センサ基板)となるSi基板と、回路基板(例えばロジック基板)18とは、Cu-Cu接合19により、接合部P(配線層16の接合面P1と配線層17の接合面P2とから構成される)を介して、電気的に貼り合わされて接合されている。 A wiring layer 17 is formed on the upper side of the wiring layer 16, and a logic substrate 18 is formed on the upper side of the wiring layer 17. The Si substrate to be the pixel substrate (sensor substrate) and the circuit board (for example, the logic substrate) 18 are connected to the junction P (the junction surface P1 of the wiring layer 16 and the junction surface P2 of the wiring layer 17) by the Cu—Cu junction 19. It is electrically bonded and joined via (consisting of).
 画素間には、上述したように、トレンチ1が形成されている。トレンチ1は、隣接する画素間に、Si基板15の裏面側から上方(図中縦方向であり、裏面から表面への方向)にSi基板15を貫通しないで形成されている。また、トレンチ1は、隣接する画素に不要な光が漏れないように、画素間の遮光壁としても機能する。 As described above, the trench 1 is formed between the pixels. The trench 1 is formed between adjacent pixels so as not to penetrate the Si substrate 15 upward from the back surface side of the Si substrate 15 (in the vertical direction in the drawing, the direction from the back surface to the front surface). The trench 1 also functions as a light-shielding wall between pixels so that unnecessary light does not leak to adjacent pixels.
 PD30とトレンチ1との間(図1の左右方向の間)には、トレンチ1の側壁に沿うように、P型領域(P型不純物領域)60が形成されている。また、P型領域(P型不純物領域)60は、トレンチ1の底面に沿うようにも形成されている。P型領域(P型不純物領域)60は、P型固相拡散層と称する場合もある。そして、PD30はN型領域で構成されている。光電変換は、これらN型領域の一部、または全てにおいて行われる。 A P-type region (P-type impurity region) 60 is formed between the PD 30 and the trench 1 (between the left and right directions in FIG. 1) along the side wall of the trench 1. Further, the P-type region (P-type impurity region) 60 is also formed along the bottom surface of the trench 1. The P-type region (P-type impurity region) 60 may be referred to as a P-type solid phase diffusion layer. The PD30 is composed of an N-type region. Photoelectric conversion is performed in some or all of these N-type regions.
 図1に示されるように、トレンチ1の内壁に、例えば、SiOから成る側壁膜61が形成され、その内側には、例えば、ポリシリコンから成る充填材62が埋め込まれている、側壁膜61に採用したSiOの代わりSiNを採用してもよい。また、充填材62に採用したポリシリコンの代わりにドーピングポリシリコン、遮光メタルを用いてもよい。 As shown in FIG. 1, a side wall film 61 made of, for example, SiO 2 is formed on the inner wall of the trench 1, and a filler 62 made of, for example, polysilicon is embedded inside the side wall film 61. SiN may be adopted instead of SiO 2 adopted in. Further, doping polysilicon and light-shielding metal may be used instead of the polysilicon used for the filler 62.
 次に、図2及び図3を用いて説明をする。図2及び図3は、本技術に係る第1の実施形態の固体撮像装置の構成例を示す図であり、詳しくは、図2は、表面側(光入射側の反対側)から見た、本技術に係る第1の実施形態の固体撮像装置123の平面レイアウト図であり、図3(a)は、図2に示されるA-A’線に従った固体撮像装置123(123A)の断面図であり、図3(b)は、図2に示されるB-B’線に従った固体撮像装置123(123B)の断面図である。 Next, a description will be given with reference to FIGS. 2 and 3. 2 and 3 are diagrams showing a configuration example of the solid-state image sensor of the first embodiment according to the present technology. Specifically, FIG. 2 is a view from the surface side (opposite side of the light incident side). FIG. 3A is a plan layout view of the solid-state image sensor 123 according to the first embodiment according to the present technology, and FIG. 3A is a cross section of the solid-state image sensor 123 (123A) according to the line AA'shown in FIG. FIG. 3B is a cross-sectional view of the solid-state image sensor 123 (123B) according to the line BB'shown in FIG.
 図2(固体撮像装置123)に示されるように、各画素(図2では1画素を画素GSと称する。)を囲むように、隣接する画素間であって格子状に、非貫通トレンチ1が形成されている。図2には、非貫通トレンチ1の上方に配される、リセットトランジスタ(RST Tr.)51、転送ゲート(TG)転送トランジスタ)52及び53、選択トランジスタ(SEL Tr.)54、ウェルコンタクト(VSS)59、アンプ(AMP)トランジスタAMP1及びAMP2、フローティングディフュージョン(FD)40、並びに配線80が配置されている。なお、図示はされていないが、図2の紙面の奥側には、光電変換部(フォトダイオード(PD))30が半導体基板51に、画素毎に埋め込まれて形成されている。 As shown in FIG. 2 (solid-state image sensor 123), the non-penetrating trench 1 is formed in a grid pattern between adjacent pixels so as to surround each pixel (one pixel is referred to as a pixel GS in FIG. 2). It is formed. In FIG. 2, a reset transistor (RST Tr.) 51, a transfer gate (TG) transfer transistor) 52 and 53, a selection transistor (SELTr.) 54, and a well contact (VSS) arranged above the non-penetrating trench 1 are shown. ) 59, amplifier (AMP) transistors AMP1 and AMP2, floating diffusion (FD) 40, and wiring 80 are arranged. Although not shown, a photoelectric conversion unit (photodiode (PD)) 30 is formed in the semiconductor substrate 51 by being embedded in the semiconductor substrate 51 for each pixel on the back side of the paper surface of FIG.
 フローティングディフュージョン(FD)40は4つの画素GS(2×2画素)で共有されて形成されており、また、アンプ(AMP)トランジスタAMP1及びAMP2も4つの画素GS(2×2画素)で共有されて形成されている。なお、共有される画素数は、4画素(2×2画素)に限定されずに、例えば、8画素(2×4画素)、9画素(3×3画素)、16画素(4×4画素)でもよい。また、リセットトランジスタ(RST Tr.)51及び選択トランジスタ(SEL Tr.)54は2画素で共有されて形成されて、転送ゲート(TG)(転送トランジスタ)52及び53が画素毎に形成されている。 The floating diffusion (FD) 40 is formed by being shared by four pixel GS (2 × 2 pixels), and the amplifier (AMP) transistors AMP1 and AMP2 are also shared by four pixel GS (2 × 2 pixels). Is formed. The number of shared pixels is not limited to 4 pixels (2 × 2 pixels), for example, 8 pixels (2 × 4 pixels), 9 pixels (3 × 3 pixels), 16 pixels (4 × 4 pixels). ) May be. Further, the reset transistor (RST Tr.) 51 and the selection transistor (SELTr.) 54 are shared and formed by two pixels, and the transfer gate (TG) (transfer transistor) 52 and 53 are formed for each pixel. ..
 図3(a)のA-A’線の断面構造(固体撮像装置123A)及び図3(b)のB-B’線の断面構造(固体撮像装置123B)では、非貫通トレンチ1の上方に、リセットトランジスタ(RST Tr.)51、転送ゲート(TG)(転送トランジスタ)52及び53、選択トランジスタ(SEL Tr.)54、フローティングディフュージョン(FD)40及び配線80が配置されている。リセットトランジスタ(RST Tr.)51、転送ゲート(TG)転送トランジスタ)52及び53及び選択トランジスタ(SEL Tr.)54のそれぞれは、配線80に接続されている。 In the cross-sectional structure of the AA'line of FIG. 3A (solid-state image sensor 123A) and the cross-sectional structure of the BB'line of FIG. 3B (solid-state image sensor 123B), the cross-sectional structure is above the non-penetrating trench 1. , Reset transistor (RST Tr.) 51, transfer gate (TG) (transfer transistor) 52 and 53, selection transistor (SELTr.) 54, floating diffusion (FD) 40 and wiring 80 are arranged. Each of the reset transistor (RST Tr.) 51, transfer gate (TG) transfer transistor) 52 and 53, and the selection transistor (SELTr.) 54 is connected to the wiring 80.
 図3(a)に示されるように、縦方向(図3(a)の上下方向)に形成されたトレンチ構造であるバーティカルゲート(VG(Vertical Gate))41を経由して、光電変換部(フォトダイオード(PD、Photo Diode)30で光電変換された信号電荷は、転送ゲート(転送トランジスタ)52及び52のそれぞれに(画素毎に)転送される。 As shown in FIG. 3A, the photoelectric conversion unit ( The signal charge photoelectrically converted by the photodiode (PD, Photo Diode) 30 is transferred (per pixel) to each of the transfer gates (transfer transistors) 52 and 52, respectively.
 転送ゲート52及び53は、PD30で生成された電荷を読み出し、FD40に転送する。FD40は、PD30から読み出された電荷を保持する。リセットトランジスタ51は、FD40に蓄積されている電荷がドレイン(定電圧源Vdd)に排出されることで、FD40の電位をリセットする。 The transfer gates 52 and 53 read out the electric charge generated by the PD 30 and transfer it to the FD 40. The FD 40 holds the charge read from the PD 30. The reset transistor 51 resets the potential of the FD 40 by discharging the electric charge stored in the FD 40 to the drain (constant voltage source Vdd).
 アンプ(AMP)トランジスタAMP1及びAMP2は、FD40の電位に応じた画素信号を出力する。アンプ(AMP)トランジスタAMP1及びAMP2は、垂直信号線を介して接続されている定電流源としての負荷MOSとソースフォロワ回路を構成し、FD40に蓄積されている電荷に応じたレベルを示す画素信号が、アンプ(AMP)トランジスタAMP1及びAMP2から選択トランジスタ54と垂直信号線を介してカラム処理部に出力される。選択トランジスタ54は、画素の画素信号を、垂直信号線を介してカラム処理部に出力する。 The amplifier (AMP) transistors AMP1 and AMP2 output a pixel signal according to the potential of the FD40. The amplifier (AMP) transistors AMP1 and AMP2 constitute a load MOS as a constant current source connected via a vertical signal line and a source follower circuit, and a pixel signal indicating a level corresponding to the charge stored in the FD 40. Is output from the amplifier (AMP) transistors AMP1 and AMP2 to the column processing unit via the selection transistor 54 and the vertical signal line. The selection transistor 54 outputs the pixel signal of the pixel to the column processing unit via the vertical signal line.
 最後に、図4~図6を用いて、本技術に係る第1の実施形態(固体撮像装置の例1)の固体撮像装置の製造方法について説明をする。 Finally, using FIGS. 4 to 6, a method for manufacturing the solid-state image sensor according to the first embodiment (Example 1 of the solid-state image sensor) according to the present technology will be described.
 図4~図6は、本技術に係る第1の実施形態(固体撮像装置の例1)の固体撮像装置の製造方法を説明するための図である。詳しくは、図4は、DTI(DeeP Trench Isolation)工程、固相拡散工程、Bond(貼り合わせ)工程及びFEOL(Front End Of Line)工程における、本技術に係る第1の実施形態の固体撮像装置106の製造方法を説明するための図であり、図5は、FEOL(Front End Of Line)工程、BEOL(Back End Of Line)工程及びBond(貼り合わせ)工程における、本技術に係る第1の実施形態の固体撮像装置106の製造方法を説明するための図である。図6は、REOL(Reverse End Of Line)工程及びCustom工程における、本技術に係る第1の実施形態の固体撮像装置106の製造方法を説明するための図であると同時に、本技術に係る第1の実施形態の固体撮像装置106を示す図である。 4 to 6 are diagrams for explaining a method of manufacturing the solid-state image sensor of the first embodiment (example 1 of the solid-state image sensor) according to the present technology. Specifically, FIG. 4 shows the solid-state imaging device of the first embodiment according to the present technology in the DTI (DeeP Training Isolation) step, the solid phase diffusion step, the Bond (bonding) step, and the FEOL (Front End Of Line) step. It is a figure for demonstrating the manufacturing method of 106, and FIG. It is a figure for demonstrating the manufacturing method of the solid-state imaging apparatus 106 of an embodiment. FIG. 6 is a diagram for explaining a method of manufacturing the solid-state image sensor 106 of the first embodiment according to the present technology in the REOL (Reverse End Of Line) step and the Custom step, and at the same time, is a diagram relating to the present technology. It is a figure which shows the solid-state image sensor 106 of 1st Embodiment.
(トレンチ形成工程(DTI工程))
 図4(a)に示されるように、半導体基板(Si)基板15に、トレンチ1を非貫通、すなわち、半導体基板(Si)基板15を貫通しないで、リソグラフィ及びDry(ドライ)エッチングプロセスを用いて、半導体基板(Si)基板15の裏面から上方に形成する。
(Trench forming process (DTI process))
As shown in FIG. 4A, the semiconductor substrate (Si) substrate 15 does not penetrate the trench 1, that is, does not penetrate the semiconductor substrate (Si) substrate 15, and uses lithography and Dry etching processes. The semiconductor substrate (Si) substrate 15 is formed upward from the back surface.
(トレンチ側壁へのセルフアラインP型ドーピング形成工程(固相拡散工程)
 図4(b)に示されるように、コンフォーマルドーピングプロセスを用いて、トレンチ1の側壁及び底面にP型領域(P型の不純物領域)60を、P型領域60の幅が均一になるように形成する。コンフォーマルドーピングプロセスとして、固相拡散の他に、例えば、プラズマドーピング、insitu-dope Epiなどが挙げられる。ところで、横方向に拡がってしまうBoron I/I層とは異なり、上述のとおり、コンフォーマルドーピングプロセスを用いて、トレンチ1の側壁にセルフアラインでPN接合を形成することで、飽和電荷量(Qs)の増加を実現することができる。
(Self-aligned P-type doping formation step on the trench side wall (solid phase diffusion step)
As shown in FIG. 4B, a conformal doping process was used to create a P-type region (P-type impurity region) 60 on the side wall and bottom surface of the trench 1 so that the width of the P-type region 60 became uniform. Form to. In addition to solid phase diffusion, conformal doping processes include, for example, plasma doping and insitu-dope Epi. By the way, unlike the Boron I / I layer that spreads in the lateral direction, as described above, a conformal doping process is used to form a self-aligned PN junction on the side wall of the trench 1 to obtain a saturated charge amount (Qs). ) Can be increased.
(トレンチ埋込工程)
 図4(b)~図4(c)にかけて、トレンチ1の内部の埋込を行い、平坦化を行う。トレンチ1の埋込構造として、シリコン酸化膜、シリコン窒化膜などの絶縁膜、ポリシリコン(Poly-Si)、タングステン(W)などのメタル材料が挙げられる。図4(c)ではシリコン酸化膜61及びポリシリコン(Poly-Si)62の積層構造が示されている。
(Trench embedding process)
From FIG. 4 (b) to FIG. 4 (c), the inside of the trench 1 is embedded and flattened. Examples of the embedded structure of the trench 1 include an insulating film such as a silicon oxide film and a silicon nitride film, and a metal material such as polysilicon (Poly-Si) and tungsten (W). FIG. 4C shows a laminated structure of silicon oxide film 61 and polysilicon (Poly—Si) 62.
(支持基板とのウエハ接合およびウエハ薄肉化工程)
 図4(c)に示されるように、支持基板15-1とウエハ接合した後、トレンチ1を形成した半導体基板(Si)基板15を薄肉化する。なお、トレンチ1を非貫通にするために、トレンチ底面よりも薄肉化面が上方向に配置されていることが必要となる。
(Wafer bonding with support substrate and wafer thinning process)
As shown in FIG. 4C, after the support substrate 15-1 is wafer-bonded, the semiconductor substrate (Si) substrate 15 on which the trench 1 is formed is thinned. In order to make the trench 1 non-penetrating, it is necessary that the thinned surface is arranged upward from the bottom surface of the trench.
(FEOL工程)
 ウエハ薄肉化を行った後、図4(d)(図5(a))に示されるように、FEOL工程にて、画素トランジスタ50及び光電変換部(フォトダイオード(PD))30を形成するための画素インプラテーションを行い、バーティカルゲート(VG(VerticalGate))41、画素トランジスタ50、フローティングディフュージョン(FD)40、光電変換部30及びウェルコンタクトのそれぞれを形成する。ところで、非貫通トレンチ1を形成した後に、FEOL工程の高温の熱処理を行うため、トレンチ形成時のDryダメージを回復させることができ、白点および暗電流を抑制することができる。
(FEOL process)
After thinning the wafer, as shown in FIG. 4 (d) (FIG. 5 (a)), in order to form the pixel transistor 50 and the photoelectric conversion unit (photodiode (PD)) 30 in the FEOL process. Pixel implantation is performed to form each of a vertical gate (VG (Vertical Gate)) 41, a pixel transistor 50, a floating diffusion (FD) 40, a photoelectric conversion unit 30, and a well contact. By the way, since the high temperature heat treatment in the FEOL step is performed after the non-penetrating trench 1 is formed, the Dry damage at the time of forming the trench can be recovered, and the white spot and the dark current can be suppressed.
(BEOL工程)
 図5(b)に示されるように、FEOL工程を実行した後、画素トランジスタ50等の素子による回路を形成するための接続配線を形成するBEOL工程を実行する。
(BEOL process)
As shown in FIG. 5B, after executing the FEOL step, the BEOL step of forming the connection wiring for forming the circuit by the element such as the pixel transistor 50 is executed.
(ロジック(Logic)基板とのウエハ接合(Bond(貼り合わせ)工程))
 図5(c)に示されるように、周辺回路に関しては、画素を構成する半導体基板19とは別の基板であるロジック基板18にロジック回路用素子(Logic Tr.)を集積する。そして、Cu-Cu(銅-銅)接合19により、半導体基板19側の配線層16及びロジック基板18側の配線層17を介して、画素を構成する半導体基板15と、ロジック基板18とを電気的に接続する。
(Wafer bonding with a logic substrate (Bond (bonding) process))
As shown in FIG. 5C, with respect to the peripheral circuit, the logic circuit element (Logic Tr.) Is integrated on the logic substrate 18 which is a substrate different from the semiconductor substrate 19 constituting the pixels. Then, by Cu—Cu (copper-copper) bonding 19, the semiconductor substrate 15 constituting the pixels and the logic substrate 18 are electrically connected via the wiring layer 16 on the semiconductor substrate 19 side and the wiring layer 17 on the logic substrate 18 side. Connect to.
(REOL工程およびCustom工程)
 図6に示されように、支持基板15-1を除去した後、カラーフィルタ12、オンチップレンズ(OCL(On Chip Lens)11などを形成し、固体撮像装置106が製造される。
(REOL process and Custom process)
As shown in FIG. 6, after removing the support substrate 15-1, a color filter 12, an on-chip lens (OCL (On Chip Lens) 11 and the like) are formed, and the solid-state image sensor 106 is manufactured.
 以上、本技術に係る第1の実施形態(固体撮像装置の例1)の固体撮像装置について説明した内容は、特に技術的な矛盾がない限り、後述する本技術に係る第2~第3の実施形態の固体撮像装置に適用することができる。 As described above, the contents described about the solid-state image sensor of the first embodiment (example 1 of the solid-state image sensor) according to the present technology will be described in the second to third aspects of the present technology, which will be described later, unless there is a particular technical contradiction. It can be applied to the solid-state image sensor of the embodiment.
<3.第2の実施形態(固体撮像装置の例2)>
 本技術に係る第2の実施形態(固体撮像装置の例2)の固体撮像装置について、図7~図8を用いて説明をする。
<3. Second Embodiment (Example 2 of solid-state image sensor)>
The solid-state image sensor of the second embodiment (Example 2 of the solid-state image sensor) according to the present technology will be described with reference to FIGS. 7 to 8.
 図7~図8は、本技術に係る第2の実施形態(固体撮像装置の例2)の固体撮像装置の製造方法を説明するための図であり、詳しくは、図7は、REOL工程における、本技術に係る第2の実施形態の固体撮像装置108の製造方法を説明するための図であり、図8は、REOL工程における、本技術に係る第2の実施形態の固体撮像装置108の製造方法を説明するための図であると同時に、本技術に係る第2の実施形態の固体撮像装置108を示す図である。 7 to 8 are diagrams for explaining the manufacturing method of the solid-state imaging device of the second embodiment (example 2 of the solid-state imaging device) according to the present technology. In detail, FIG. 7 is a diagram in the REOL step. FIG. 8 is a diagram for explaining a method of manufacturing the solid-state imaging device 108 of the second embodiment according to the present technology, and FIG. 8 is a diagram of the solid-state imaging device 108 of the second embodiment according to the present technology in the REOL process. It is a figure for demonstrating the manufacturing method, and at the same time, it is a figure which shows the solid-state image pickup apparatus 108 of the 2nd Embodiment which concerns on this technique.
 固体撮像装置108の製造方法においては、ロジック(Logic)基板18とウエハ接合する工程までは、本技術に係る第1の実施形態(固体撮像装置の例1)の固体撮像装置の製造方法と同様の工程を実行する。そして、図9(a)には、比較として(参考として)、固体撮像装置106が図示されている。 The method for manufacturing the solid-state imaging device 108 is the same as the method for manufacturing the solid-state imaging device according to the first embodiment (Example 1 of the solid-state imaging device) according to the present technology, up to the step of joining the wafer to the logic substrate 18. Execute the process of. Then, in FIG. 9A, the solid-state image sensor 106 is shown for comparison (for reference).
 図7(b)に示されるように、支持基板15-1を除去した後、トレンチ内に埋め込んであった膜(例えばシリコン酸化膜61及びポリシリコン(Poly-Si)62)を除去する。なお、トレンチ1の側壁及び底面に形成されているP型領域60(例えばBSG(ボロンシリケートグラス)を有する領域))、及び半導体基板15の裏面(光電変換部30の光入射側の面)に形成されているP層(P型ピニング層)64は除去されない。 As shown in FIG. 7B, after removing the support substrate 15-1, the film (for example, silicon oxide film 61 and polysilicon (Poly-Si) 62) embedded in the trench is removed. In addition, on the P-shaped region 60 (for example, the region having BSG (boron silicate glass)) formed on the side wall and the bottom surface of the trench 1 and the back surface of the semiconductor substrate 15 (the surface on the light incident side of the photoelectric conversion unit 30). The formed P layer (P-type pinning layer) 64 is not removed.
 その後、図7(c)に示されるように、負の固定電荷を有する膜(ピニング膜)70で、トレンチ1に再度埋め込みを行う。負の固定電荷を有する膜(ピニング膜)70は、シリコン(Si)表面(トレンチ1の側壁を含む)に、負の電荷を誘起する絶縁膜であり、例えば、HfO、Alなどの高誘電率絶縁膜が挙げられる。 Then, as shown in FIG. 7C, the trench 1 is re-embedded with a film (pinning film) 70 having a negative fixed charge. The film (pinning film) 70 having a negative fixed charge is an insulating film that induces a negative charge on the silicon (Si) surface (including the side wall of the trench 1), and is, for example, HfO 2 , Al 2 O 3, and the like. High dielectric constant insulating film of.
 次に、遮光メタル又はシリコン酸化膜などの絶縁膜で、負の固定電荷を有する膜(ピニング膜)70上になるように、再度の埋込を行う。遮光メタルの材料として、タングステン(W)、アルミニウム(Al)などのメタル材料が挙げられる。図8では、タングステン(W)63が、トレンチ1に埋め込まれている。 Next, re-embedding is performed with an insulating film such as a light-shielding metal or a silicon oxide film so that it is placed on the film (pinning film) 70 having a negative fixed charge. Examples of the light-shielding metal material include metal materials such as tungsten (W) and aluminum (Al). In FIG. 8, tungsten (W) 63 is embedded in the trench 1.
 図8では、図示されていないが、Custom工程が実行されて、カラーフィルタ12、オンチップレンズ(OCL(On Chip Lens)11などを形成し、固体撮像装置108が製造される。 Although not shown in FIG. 8, a custom step is executed to form a color filter 12, an on-chip lens (OCL (On Chip Lens) 11 and the like), and a solid-state image sensor 108 is manufactured.
 以上、本技術に係る第2の実施形態(固体撮像装置の例2)の固体撮像装置について説明した内容は、特に技術的な矛盾がない限り、前述した本技術に係る第1の実施形態の固体撮像装置及び後述する本技術に係る第3の実施形態の固体撮像装置に適用することができる。 As described above, the contents described about the solid-state image sensor of the second embodiment (example 2 of the solid-state image sensor) according to the present technology of the first embodiment according to the present technology described above, unless there is a particular technical contradiction. It can be applied to a solid-state image sensor and a solid-state image sensor according to a third embodiment of the present technology described later.
<4.第3の実施形態(固体撮像装置の例3)>
 本技術に係る第3の実施形態(固体撮像装置の例3)の固体撮像装置について、図9~図10を用いて説明をする。
<4. Third Embodiment (Example 3 of solid-state image sensor)>
The solid-state image sensor of the third embodiment (Example 3 of the solid-state image sensor) according to the present technology will be described with reference to FIGS. 9 to 10.
 図9~図10は、本技術に係る第3の実施形態(固体撮像装置の例3)の固体撮像装置の製造方法を説明するための図であり、詳しくは、図9は、REOL工程における、本技術に係る第3の実施形態の固体撮像装置110の製造方法を説明するための図であり、図10は、REOL工程における、本技術に係る第3の実施形態の固体撮像装置110の製造方法を説明するための図であると同時に、本技術に係る第3の実施形態の固体撮像装置110を示す図である。 9 to 10 are diagrams for explaining the manufacturing method of the solid-state imaging device of the third embodiment (example 3 of the solid-state imaging device) according to the present technology. In detail, FIG. 9 is a diagram in the REOL step. It is a figure for demonstrating the manufacturing method of the solid-state imaging apparatus 110 of the 3rd Embodiment which concerns on this technique, and FIG. 10 is a figure of FIG. It is a figure for demonstrating the manufacturing method, and at the same time, it is a figure which shows the solid-state image pickup apparatus 110 of the 3rd Embodiment which concerns on this technique.
 固体撮像装置110の製造方法においては、ロジック(Logic)基板18とウエハ接合する工程までは、本技術に係る第1の実施形態(固体撮像装置の例1)の固体撮像装置の製造方法同様の工程を実行する。ただし、固体撮像装置110の製造方法では、図4(b)に示される固相拡散工程は実行されない(P型領域60は形成されない。)。そして、図9(a)には、比較として(参考として)、固体撮像装置106が図示されている。 In the method for manufacturing the solid-state imaging device 110, the process up to the step of wafer bonding with the logic substrate 18 is the same as the manufacturing method for the solid-state imaging device of the first embodiment (Example 1 of the solid-state imaging device) according to the present technology. Perform the process. However, in the method for manufacturing the solid-state image sensor 110, the solid-phase diffusion step shown in FIG. 4B is not executed (the P-type region 60 is not formed). Then, in FIG. 9A, the solid-state image sensor 106 is shown for comparison (for reference).
 図9(b)に示されるように、支持基板15-1を除去した後、トレンチ内に埋め込んであった膜(例えばシリコン酸化膜61及びポリシリコン(Poly-Si)62)を除去する。なお、半導体基板15の裏面(光電変換部30の光入射側の面)に形成されているP層(P型ピニング層)64は除去されない。 As shown in FIG. 9B, after removing the support substrate 15-1, the film (for example, silicon oxide film 61 and polysilicon (Poly-Si) 62) embedded in the trench is removed. The P layer (P-type pinning layer) 64 formed on the back surface of the semiconductor substrate 15 (the surface of the photoelectric conversion unit 30 on the light incident side) is not removed.
 その後、図9(c)に示されるように、負の固定電荷を有する膜(ピニング膜)70で、トレンチ1に再度埋め込みを行う。負の固定電荷を有する膜(ピニング膜)70は、シリコン(Si)表面(トレンチ1の側壁を含む)に、負の電荷を誘起する絶縁膜であり、例えば、HfO、Alなどの高誘電率絶縁膜が挙げられる。 Then, as shown in FIG. 9C, the trench 1 is re-embedded with a film (pinning film) 70 having a negative fixed charge. The film (pinning film) 70 having a negative fixed charge is an insulating film that induces a negative charge on the silicon (Si) surface (including the side wall of the trench 1), and is, for example, HfO 2 , Al 2 O 3, and the like. High dielectric constant insulating film of.
 次に、遮光メタル又はシリコン酸化膜などの絶縁膜で、負の固定電荷を有する膜(ピニング膜)70上になるように、再度の埋込を行う。遮光メタルの材料として、タングステン(W)、アルミニウム(Al)などのメタル材料が挙げられる。図10では、タングステン(W)63が、トレンチ1に埋め込まれている。また、図10に示されるように、負の固定電荷を有する膜(ピニング膜)70が形成されたことにより、P型領域(P型不純物領域)60-1がトレンチ1の側壁及び底面に形成されている。 Next, re-embedding is performed with an insulating film such as a light-shielding metal or a silicon oxide film so that it is placed on the film (pinning film) 70 having a negative fixed charge. Examples of the light-shielding metal material include metal materials such as tungsten (W) and aluminum (Al). In FIG. 10, tungsten (W) 63 is embedded in the trench 1. Further, as shown in FIG. 10, a film (pinning film) 70 having a negative fixed charge is formed, so that a P-type region (P-type impurity region) 60-1 is formed on the side wall and the bottom surface of the trench 1. Has been done.
 図10では、図示されていないが、Custom工程が実行されて、カラーフィルタ12、オンチップレンズ(OCL(On Chip Lens)11などを形成し、固体撮像装置110が製造される。 Although not shown in FIG. 10, a custom step is executed to form a color filter 12, an on-chip lens (OCL (On Chip Lens) 11 and the like), and a solid-state image sensor 110 is manufactured.
 以上、本技術に係る第3の実施形態(固体撮像装置の例3)の固体撮像装置について説明した内容は、特に技術的な矛盾がない限り、前述した本技術に係る第1~第2の実施形態の固体撮像装置に適用することができる。 As described above, the contents of the description of the solid-state image sensor of the third embodiment (example 3 of the solid-state image sensor) according to the present technology are the first and second first to the second aspects of the present technology described above, unless there is a particular technical contradiction. It can be applied to the solid-state image sensor of the embodiment.
<5.第4の実施形態(電子機器の例)> 本技術に係る第4の実施形態の電子機器は、本技術に係る第1の実施形態~第3の実施形態の固体撮像装置のうち、いずれか一つ実施形態の固体撮像装置が搭載された電子機器である。 <5. Fourth Embodiment (Example of Electronic Device)> The electronic device of the fourth embodiment according to the present technology is any one of the solid-state image sensors of the first embodiment to the third embodiment according to the present technology. It is an electronic device equipped with the solid-state image sensor of one embodiment.
 <6.本技術を適用した固体撮像装置の使用例>
 図11は、イメージセンサとしての本技術に係る第1~第3の実施形態の固体撮像装置の使用例を示す図である。
<6. Example of using a solid-state image sensor to which this technology is applied>
FIG. 11 is a diagram showing an example of using the solid-state image sensor of the first to third embodiments according to the present technology as an image sensor.
 上述した第1~第3の実施形態の固体撮像装置は、例えば、以下のように、可視光や、赤外光、紫外光、X線等の光をセンシングするさまざまなケースに使用することができる。すなわち、図11に示すように、例えば、鑑賞の用に供される画像を撮影する鑑賞の分野、交通の分野、家電の分野、医療・ヘルスケアの分野、セキュリティの分野、美容の分野、スポーツの分野、農業の分野等において用いられる装置(例えば、上述した第4の実施形態の電子機器)に、第1~第3の実施形態のいずれか1つの実施形態の固体撮像装置を使用することができる。 The solid-state image sensor of the first to third embodiments described above can be used in various cases for sensing light such as visible light, infrared light, ultraviolet light, and X-ray, as described below. can. That is, as shown in FIG. 11, for example, the field of appreciation for taking an image used for appreciation, the field of transportation, the field of home appliances, the field of medical / healthcare, the field of security, the field of beauty, and sports. (For example, the electronic device of the fourth embodiment described above) is the solid-state image sensor of any one of the first to third embodiments. Can be done.
 具体的には、鑑賞の分野においては、例えば、デジタルカメラやスマートフォン、カメラ機能付きの携帯電話機等の、鑑賞の用に供される画像を撮影するための装置に、第1~第3の実施形態のいずれか1つの実施形態の固体撮像装置を使用することができる。 Specifically, in the field of appreciation, for example, the first to third implementations are applied to devices for taking images to be used for appreciation, such as digital cameras, smartphones, and mobile phones with a camera function. The solid-state imaging device of any one of the embodiments can be used.
 交通の分野においては、例えば、自動停止等の安全運転や、運転者の状態の認識等のために、自動車の前方や後方、周囲、車内等を撮影する車載用センサ、走行車両や道路を監視する監視カメラ、車両間等の測距を行う測距センサ等の、交通の用に供される装置に、第1~第3の実施形態のいずれか1つの実施形態の固体撮像装置を使用することができる。 In the field of traffic, for example, in-vehicle sensors that photograph the front, rear, surroundings, inside of a vehicle, etc., and monitor traveling vehicles and roads for safe driving such as automatic stop and recognition of the driver's condition. The solid-state imaging device of any one of the first to third embodiments is used as a device used for traffic such as a surveillance camera and a distance measuring sensor for measuring distance between vehicles. be able to.
 家電の分野においては、例えば、ユーザのジェスチャを撮影して、そのジェスチャに従った機器操作を行うために、テレビ受像機や冷蔵庫、エアーコンディショナ等の家電に供される装置で、第1~第3の実施形態のいずれか1つの実施形態の固体撮像装置を使用することができる。 In the field of home appliances, for example, devices used in home appliances such as television receivers, refrigerators, and air conditioners in order to photograph a user's gesture and operate the device according to the gesture. The solid-state imaging device of any one of the third embodiments can be used.
 医療・ヘルスケアの分野においては、例えば、内視鏡や、赤外光の受光による血管撮影を行う装置等の、医療やヘルスケアの用に供される装置に、第1~第3の実施形態のいずれか1つの実施形態の固体撮像装置を使用することができる。 In the field of medical care and healthcare, the first to third implementations are applied to devices used for medical care and healthcare, such as endoscopes and devices that perform angiography by receiving infrared light. The solid-state imaging device of any one of the embodiments can be used.
 セキュリティの分野においては、例えば、防犯用途の監視カメラや、人物認証用途のカメラ等の、セキュリティの用に供される装置に、第1~第3の実施形態のいずれか1つの実施形態の固体撮像装置を使用することができる。 In the field of security, for example, a device used for security such as a surveillance camera for crime prevention and a camera for personal authentication is used as a solid body of any one of the first to third embodiments. An image sensor can be used.
 美容の分野においては、例えば、肌を撮影する肌測定器や、頭皮を撮影するマイクロスコープ等の、美容の用に供される装置に、第1~第3の実施形態のいずれか1つの実施形態の固体撮像装置を使用することができる。 In the field of cosmetology, for example, a skin measuring device for photographing the skin, a microscope for photographing the scalp, and other devices used for cosmetology are equipped with any one of the first to third embodiments. A solid-state imaging device of the form can be used.
 スポーツの分野において、例えば、スポーツ用途等向けのアクションカメラやウェアラブルカメラ等の、スポーツの用に供される装置に、第1~第3の実施形態のいずれか1つの実施形態の固体撮像装置を使用することができる。 In the field of sports, for example, a solid-state image sensor according to any one of the first to third embodiments is used as a device used for sports such as an action camera or a wearable camera for sports applications. Can be used.
 農業の分野においては、例えば、畑や作物の状態を監視するためのカメラ等の、農業の用に供される装置に、第1~第3の実施形態のいずれか1つの実施形態の固体撮像装置を使用することができる。 In the field of agriculture, for example, a device used for agriculture such as a camera for monitoring the state of a field or a crop is subjected to solid-state imaging of any one of the first to third embodiments. The device can be used.
 次に、本技術に係る第1~第3の実施形態の固体撮像装置の使用例を具体的に説明する。例えば、上述で説明をした第1~第3の実施形態のいずれか1つの実施形態の固体撮像装置は、固体撮像装置101Mとして、例えばデジタルスチルカメラやビデオカメラ等のカメラシステムや、撮像機能を有する携帯電話など、撮像機能を備えたあらゆるタイプの電子機器に適用することができる。図12に、その一例として、電子機器102(カメラ)の概略構成を示す。この電子機器102は、例えば静止画または動画を撮影可能なビデオカメラであり、固体撮像装置101Mと、光学系(光学レンズ)310と、シャッタ装置311と、固体撮像装置101Mおよびシャッタ装置311を駆動する駆動部313と、信号処理部312とを有する。 Next, an example of using the solid-state image sensor according to the first to third embodiments according to the present technology will be specifically described. For example, the solid-state image sensor of any one of the first to third embodiments described above can be used as the solid-state image sensor 101M, for example, a camera system such as a digital still camera or a video camera, or an image pickup function. It can be applied to all types of electronic devices having an image pickup function, such as a mobile phone having a camera. FIG. 12 shows a schematic configuration of the electronic device 102 (camera) as an example. The electronic device 102 is, for example, a video camera capable of capturing a still image or a moving image, and drives a solid-state image sensor 101M, an optical system (optical lens) 310, a shutter device 311 and a solid-state image sensor 101M and a shutter device 311. It has a drive unit 313 and a signal processing unit 312.
 光学系310は、被写体からの像光(入射光)を固体撮像装置101Mの画素部101aへ導くものである。この光学系310は、複数の光学レンズから構成されていてもよい。シャッタ装置311は、固体撮像装置101Mへの光照射期間および遮光期間を制御するものである。駆動部313は、固体撮像装置101Mの転送動作およびシャッタ装置311のシャッタ動作を制御するものである。信号処理部312は、固体撮像装置101Mから出力された信号に対し、各種の信号処理を行うものである。信号処理後の映像信号Doutは、メモリなどの記憶媒体に記憶されるか、あるいは、モニタ等に出力される。 The optical system 310 guides the image light (incident light) from the subject to the pixel portion 101a of the solid-state image sensor 101M. The optical system 310 may be composed of a plurality of optical lenses. The shutter device 311 controls the light irradiation period and the light blocking period of the solid-state image sensor 101M. The drive unit 313 controls the transfer operation of the solid-state image sensor 101M and the shutter operation of the shutter device 311. The signal processing unit 312 performs various signal processing on the signal output from the solid-state image sensor 101M. The video signal Dout after signal processing is stored in a storage medium such as a memory, or is output to a monitor or the like.
<7.内視鏡手術システムへの応用例>
 本技術は、様々な製品へ応用することができる。例えば、本開示に係る技術(本技術)は、内視鏡手術システムに適用されてもよい。
<7. Application example to endoscopic surgery system>
This technology can be applied to various products. For example, the technique according to the present disclosure (the present technique) may be applied to an endoscopic surgery system.
 図13は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。 FIG. 13 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technique according to the present disclosure (the present technique) can be applied.
 図13では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。 FIG. 13 illustrates how the surgeon (doctor) 11131 is performing surgery on patient 11132 on patient bed 11133 using the endoscopic surgery system 11000. As shown, the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as an abdominal tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100. , A cart 11200 equipped with various devices for endoscopic surgery.
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。 The endoscope 11100 is composed of a lens barrel 11101 in which a region having a predetermined length from the tip is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101. In the illustrated example, the endoscope 11100 configured as a so-called rigid mirror having a rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. good.
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。 An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101. A light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101, and is an objective. It is irradiated toward the observation target in the body cavity of the patient 11132 through the lens. The endoscope 11100 may be a direct endoscope, a perspective mirror, or a side endoscope.
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。 An optical system and an image sensor are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is focused on the image sensor by the optical system. The observation light is photoelectrically converted by the image sensor, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated. The image signal is transmitted as RAW data to the camera control unit (CCU: Camera Control Unit) 11201.
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。 The CCU11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and comprehensively controls the operations of the endoscope 11100 and the display device 11202. Further, the CCU 11201 receives an image signal from the camera head 11102, and performs various image processing on the image signal for displaying an image based on the image signal, such as development processing (demosaic processing).
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。 The display device 11202 displays an image based on the image signal processed by the CCU 11201 under the control of the CCU 11201.
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。 The light source device 11203 is composed of, for example, a light source such as an LED (Light Emitting Diode), and supplies irradiation light to the endoscope 11100 when photographing an operating part or the like.
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。 The input device 11204 is an input interface for the endoscopic surgery system 11000. The user can input various information and input instructions to the endoscopic surgery system 11000 via the input device 11204. For example, the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。 The treatment tool control device 11205 controls the drive of the energy treatment tool 11112 for cauterizing, incising, sealing a blood vessel, or the like of a tissue. The pneumoperitoneum device 11206 uses a gas in the pneumoperitoneum tube 11111 to inflate the body cavity of the patient 11132 for the purpose of securing the field of view by the endoscope 11100 and securing the work space of the operator. To send. Recorder 11207 is a device capable of recording various information related to surgery. The printer 11208 is a device capable of printing various information related to surgery in various formats such as texts, images, and graphs.
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。 The light source device 11203 that supplies the irradiation light to the endoscope 11100 when photographing the surgical site can be composed of, for example, an LED, a laser light source, or a white light source composed of a combination thereof. When a white light source is configured by combining RGB laser light sources, the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy. Therefore, the light source device 11203 adjusts the white balance of the captured image. It can be carried out. Further, in this case, the laser light from each of the RGB laser light sources is irradiated to the observation target in a time-division manner, and the drive of the image sensor of the camera head 11102 is controlled in synchronization with the irradiation timing to correspond to each of RGB. It is also possible to capture the image in a time-division manner. According to this method, a color image can be obtained without providing a color filter on the image sensor.
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。 Further, the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals. By controlling the drive of the image sensor of the camera head 11102 in synchronization with the timing of changing the light intensity to acquire an image in a time-divided manner and synthesizing the image, so-called high dynamic without blackout and overexposure. Range images can be generated.
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。 Further, the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation. In special light observation, for example, by utilizing the wavelength dependence of light absorption in body tissue to irradiate light in a narrow band as compared with the irradiation light (that is, white light) in normal observation, the surface layer of the mucous membrane. A so-called narrow band imaging (Narrow Band Imaging) is performed in which a predetermined tissue such as a blood vessel is photographed with high contrast. Alternatively, in the special light observation, fluorescence observation may be performed in which an image is obtained by fluorescence generated by irradiating with excitation light. In fluorescence observation, the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is injected. It is possible to obtain a fluorescence image by irradiating excitation light corresponding to the fluorescence wavelength of the reagent. The light source device 11203 may be configured to be capable of supplying narrow band light and / or excitation light corresponding to such special light observation.
 図14は、図13に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。 FIG. 14 is a block diagram showing an example of the functional configuration of the camera head 11102 and CCU11201 shown in FIG.
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。 The camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405. CCU11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413. The camera head 11102 and CCU11201 are communicatively connected to each other by a transmission cable 11400.
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。 The lens unit 11401 is an optical system provided at a connection portion with the lens barrel 11101. The observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and incident on the lens unit 11401. The lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。 The image pickup unit 11402 is composed of an image pickup element. The image sensor constituting the image pickup unit 11402 may be one (so-called single plate type) or a plurality (so-called multi-plate type). When the image pickup unit 11402 is composed of a multi-plate type, for example, each image pickup element may generate an image signal corresponding to each of RGB, and a color image may be obtained by synthesizing them. Alternatively, the image pickup unit 11402 may be configured to have a pair of image pickup elements for acquiring image signals for the right eye and the left eye corresponding to 3D (Dimensional) display, respectively. The 3D display enables the operator 11131 to more accurately grasp the depth of the biological tissue in the surgical site. When the image pickup unit 11402 is composed of a multi-plate type, a plurality of lens units 11401 may be provided corresponding to each image pickup element.
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。 Further, the imaging unit 11402 does not necessarily have to be provided on the camera head 11102. For example, the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。 The drive unit 11403 is composed of an actuator, and the zoom lens and focus lens of the lens unit 11401 are moved by a predetermined distance along the optical axis under the control of the camera head control unit 11405. As a result, the magnification and focus of the image captured by the imaging unit 11402 can be adjusted as appropriate.
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。 The communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU11201. The communication unit 11404 transmits the image signal obtained from the image pickup unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。 Further, the communication unit 11404 receives a control signal for controlling the drive of the camera head 11102 from the CCU 11201 and supplies the control signal to the camera head control unit 11405. The control signal includes, for example, information to specify the frame rate of the captured image, information to specify the exposure value at the time of imaging, and / or information to specify the magnification and focus of the captured image. Contains information about the condition.
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。 The imaging conditions such as the frame rate, exposure value, magnification, and focus may be appropriately specified by the user, or may be automatically set by the control unit 11413 of CCU11201 based on the acquired image signal. good. In the latter case, the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are mounted on the endoscope 11100.
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。 The camera head control unit 11405 controls the drive of the camera head 11102 based on the control signal from the CCU 11201 received via the communication unit 11404.
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。 The communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102. The communication unit 11411 receives an image signal transmitted from the camera head 11102 via the transmission cable 11400.
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。 Further, the communication unit 11411 transmits a control signal for controlling the drive of the camera head 11102 to the camera head 11102. Image signals and control signals can be transmitted by telecommunications, optical communication, or the like.
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。 The image processing unit 11412 performs various image processing on the image signal which is the RAW data transmitted from the camera head 11102.
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。 The control unit 11413 performs various controls related to the imaging of the surgical site and the like by the endoscope 11100 and the display of the captured image obtained by the imaging of the surgical site and the like. For example, the control unit 11413 generates a control signal for controlling the drive of the camera head 11102.
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。 Further, the control unit 11413 causes the display device 11202 to display an image captured by the surgical unit or the like based on the image signal processed by the image processing unit 11412. At this time, the control unit 11413 may recognize various objects in the captured image by using various image recognition techniques. For example, the control unit 11413 detects the shape, color, and the like of the edge of an object included in the captured image to remove surgical tools such as forceps, a specific biological part, bleeding, and mist when using the energy treatment tool 11112. Can be recognized. When displaying the captured image on the display device 11202, the control unit 11413 may superimpose and display various surgical support information on the image of the surgical unit by using the recognition result. By superimposing and displaying the surgical support information and presenting it to the surgeon 11131, it is possible to reduce the burden on the surgeon 11131 and to allow the surgeon 11131 to proceed with the surgery reliably.
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。 The transmission cable 11400 that connects the camera head 11102 and CCU11201 is an electric signal cable that supports electrical signal communication, an optical fiber that supports optical communication, or a composite cable thereof.
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。 Here, in the illustrated example, the communication was performed by wire using the transmission cable 11400, but the communication between the camera head 11102 and the CCU11201 may be performed wirelessly.
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、内視鏡11100や、カメラヘッド11102(の撮像部11402)等に適用され得る。具体的には、本開示の固体撮像装置は、撮像部10402に適用することができる。内視鏡11100や、カメラヘッド11102(の撮像部11402)等に本開示に係る技術を適用することにより、内視鏡11100や、カメラヘッド11102(の撮像部11402)等の性能や品質を向上させることが可能となる。 The above is an example of an endoscopic surgery system to which the technology according to the present disclosure can be applied. The technique according to the present disclosure can be applied to the endoscope 11100, the camera head 11102 (imaging unit 11402), and the like among the configurations described above. Specifically, the solid-state image sensor of the present disclosure can be applied to the image pickup unit 10402. By applying the technique according to the present disclosure to the endoscope 11100, the camera head 11102 (imaging unit 11402), etc., the performance and quality of the endoscope 11100, the camera head 11102 (imaging unit 11402), etc. are improved. It becomes possible to make it.
 ここでは、一例として内視鏡手術システムについて説明したが、本開示に係る技術は、その他、例えば、顕微鏡手術システム等に適用されてもよい。 Here, the endoscopic surgery system has been described as an example, but the technique according to the present disclosure may be applied to other, for example, a microscopic surgery system.
<8.移動体への応用例>
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
<8. Application example to mobile>
The technology according to the present disclosure (the present technology) can be applied to various products. For example, the technology according to the present disclosure is realized as a device mounted on a moving body of any kind such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, a personal mobility, an airplane, a drone, a ship, and a robot. You may.
 図15は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。 FIG. 15 is a block diagram showing a schematic configuration example of a vehicle control system, which is an example of a mobile control system to which the technique according to the present disclosure can be applied.
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図15に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。 The vehicle control system 12000 includes a plurality of electronic control units connected via the communication network 12001. In the example shown in FIG. 15, the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, an outside information detection unit 12030, an in-vehicle information detection unit 12040, and an integrated control unit 12050. Further, as a functional configuration of the integrated control unit 12050, a microcomputer 12051, an audio image output unit 12052, and an in-vehicle network I / F (interface) 12053 are shown.
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。 The drive system control unit 12010 controls the operation of the device related to the drive system of the vehicle according to various programs. For example, the drive system control unit 12010 provides a driving force generator for generating the driving force of the vehicle such as an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering angle of the vehicle. It functions as a control device such as a steering mechanism for adjusting and a braking device for generating braking force of the vehicle.
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。 The body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs. For example, the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as headlamps, back lamps, brake lamps, blinkers or fog lamps. In this case, the body system control unit 12020 may be input with radio waves transmitted from a portable device that substitutes for the key or signals of various switches. The body system control unit 12020 receives inputs of these radio waves or signals and controls a vehicle door lock device, a power window device, a lamp, and the like.
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。 The vehicle outside information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000. For example, the image pickup unit 12031 is connected to the vehicle exterior information detection unit 12030. The vehicle outside information detection unit 12030 causes the image pickup unit 12031 to capture an image of the outside of the vehicle and receives the captured image. The vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as a person, a vehicle, an obstacle, a sign, or a character on the road surface based on the received image.
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。 The imaging unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of the light received. The image pickup unit 12031 can output an electric signal as an image or can output it as distance measurement information. Further, the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。 The in-vehicle information detection unit 12040 detects the in-vehicle information. For example, a driver state detection unit 12041 that detects the driver's state is connected to the in-vehicle information detection unit 12040. The driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated, or it may be determined whether the driver is dozing.
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。 The microcomputer 12051 calculates the control target value of the driving force generator, the steering mechanism, or the braking device based on the information inside and outside the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, and the drive system control unit. A control command can be output to 12010. For example, the microcomputer 12051 realizes ADAS (Advanced Driver Assistance System) functions including vehicle collision avoidance or impact mitigation, follow-up driving based on inter-vehicle distance, vehicle speed maintenance driving, vehicle collision warning, vehicle lane deviation warning, and the like. It is possible to perform cooperative control for the purpose of.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 Further, the microcomputer 12051 controls the driving force generator, the steering mechanism, the braking device, and the like based on the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040. It is possible to perform coordinated control for the purpose of automatic driving, etc., which runs autonomously without depending on the operation.
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。 Further, the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the vehicle exterior information detection unit 12030. For example, the microcomputer 12051 controls the headlamps according to the position of the preceding vehicle or the oncoming vehicle detected by the external information detection unit 12030, and performs coordinated control for the purpose of anti-glare such as switching the high beam to the low beam. It can be carried out.
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図15の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。 The audio image output unit 12052 transmits an output signal of at least one of audio and image to an output device capable of visually or audibly notifying information to the passenger or the outside of the vehicle. In the example of FIG. 15, an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are exemplified as output devices. The display unit 12062 may include, for example, at least one of an onboard display and a heads-up display.
 図16は、撮像部12031の設置位置の例を示す図である。 FIG. 16 is a diagram showing an example of the installation position of the imaging unit 12031.
 図16では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。 In FIG. 16, the vehicle 12100 has image pickup units 12101, 12102, 12103, 12104, 12105 as the image pickup unit 12031.
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。 The imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose, side mirrors, rear bumpers, back doors, and the upper part of the windshield in the vehicle interior of the vehicle 12100, for example. The imaging unit 12101 provided on the front nose and the imaging unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100. The imaging units 12102 and 12103 provided in the side mirrors mainly acquire images of the side of the vehicle 12100. The imaging unit 12104 provided on the rear bumper or the back door mainly acquires an image of the rear of the vehicle 12100. The images in front acquired by the imaging units 12101 and 12105 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic light, a traffic sign, a lane, or the like.
 なお、図16には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。 Note that FIG. 16 shows an example of the photographing range of the imaging units 12101 to 12104. The imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose, the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors, respectively, and the imaging range 12114 indicates the imaging range of the imaging units 12102 and 12103. The imaging range of the imaging unit 12104 provided on the rear bumper or the back door is shown. For example, by superimposing the image data captured by the imaging units 12101 to 12104, a bird's-eye view image of the vehicle 12100 as viewed from above can be obtained.
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。 At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information. For example, at least one of the image pickup units 12101 to 12104 may be a stereo camera composed of a plurality of image pickup elements, or may be an image pickup element having pixels for phase difference detection.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。 For example, the microcomputer 12051 has a distance to each three-dimensional object within the imaging range 12111 to 12114 based on the distance information obtained from the imaging units 12101 to 12104, and a temporal change of this distance (relative velocity with respect to the vehicle 12100). By obtaining can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic brake control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform coordinated control for the purpose of automatic driving or the like in which the vehicle travels autonomously without depending on the operation of the driver.
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。 For example, the microcomputer 12051 converts three-dimensional object data related to a three-dimensional object into two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, utility poles, and other three-dimensional objects based on the distance information obtained from the imaging units 12101 to 12104. It can be classified and extracted and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles that can be seen by the driver of the vehicle 12100 and obstacles that are difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or higher than the set value and there is a possibility of collision, the microcomputer 12051 is used via the audio speaker 12061 or the display unit 12062. By outputting an alarm to the driver and performing forced deceleration and avoidance steering via the drive system control unit 12010, driving support for collision avoidance can be provided.
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。 At least one of the imaging units 12101 to 12104 may be an infrared camera that detects infrared rays. For example, the microcomputer 12051 can recognize a pedestrian by determining whether or not a pedestrian is present in the captured image of the imaging units 12101 to 12104. Such pedestrian recognition includes, for example, a procedure for extracting feature points in an image captured by an imaging unit 12101 to 12104 as an infrared camera, and pattern matching processing for a series of feature points indicating the outline of an object to determine whether or not the pedestrian is a pedestrian. It is done by the procedure to determine. When the microcomputer 12051 determines that a pedestrian is present in the captured images of the imaging units 12101 to 12104 and recognizes the pedestrian, the audio image output unit 12052 outputs a square contour line for emphasizing the recognized pedestrian. The display unit 12062 is controlled so as to superimpose and display. Further, the audio image output unit 12052 may control the display unit 12062 so as to display an icon or the like indicating a pedestrian at a desired position.
 以上、本開示に係る技術(本技術)が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、例えば、撮像部12031等に適用され得る。具体的には、本開示の固体撮像装置は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、撮像部12031の性能や品質を向上させることが可能となる。 The above is an example of a vehicle control system to which the technology according to the present disclosure (the present technology) can be applied. The technique according to the present disclosure can be applied to, for example, the imaging unit 12031 among the configurations described above. Specifically, the solid-state image sensor of the present disclosure can be applied to the image pickup unit 12031. By applying the technique according to the present disclosure to the imaging unit 12031, it is possible to improve the performance and quality of the imaging unit 12031.
 なお、本技術は、上述した実施形態及び上述した使用例、並びに上述した応用例に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。 The present technology is not limited to the above-described embodiments, the above-mentioned usage examples, and the above-mentioned application examples, and various changes can be made without departing from the gist of the present technology.
 また、本明細書に記載された効果はあくまでも例示であって限定されるものではなく、また他の効果があってもよい。 Further, the effects described in the present specification are merely examples and are not limited, and other effects may be obtained.
 また、本技術は、以下のような構成も取ることができる。
[1]
 画素毎に、光電変換を行う光電変換部が形成された半導体基板と、
 光入射側である該半導体基板の裏面から上方に掘り込んで該半導体基板を貫通しないで、該画素間に形成されたトレンチと、
 該トレンチの周囲部に沿って配された、P型領域とN型領域とから構成されるPN接合領域と、を備え、
 該PN接合領域がセルフアラインで形成される、固体撮像装置。
[2]
 前記トレンチの側壁に配された前記P型領域の幅と、前記トレンチの上部である底面に配された前記P型領域の幅とが略同一である、[1]に記載の固体撮像装置。
[3]
 光入射側の反対側である前記半導体基板の表面に形成された画素トランジスタを備え、
 該画素トランジスタが、前記トレンチの上方に配される、[1]又は[2]に記載の固体撮像装置。
[4]
 光入射側の反対側である前記半導体基板の表面に形成されたフローティングディフュージョンを備え、
 該フローティングディフュージョンが、前記トレンチの上方に配される、[1]から[3]のいずれか1つに記載の固体撮像装置。
[5]
 前記フローティングディフュージョンが、複数の前記画素で共有されている、[4]に記載の固体撮像装置。
[6]
 光入射側の反対側である前記半導体基板の表面に形成された転送ゲート及びフローティングディフュージョンを備え、
 該転送ゲート及び該フローティングディフュージョンが、前記トレンチの上方に配され、
 該転送ゲートが、前記画素毎に形成され、
 該フローティングディフュージョンが、複数の前記画素で共有され、
 該フローティングディフュージョンが、複数の該転送ゲートに囲まれている、[1]から[5]のいずれか1つに記載の固体撮像装置。
[7]
 前記光電変換部が、前記半導体基板の下方に埋め込まれており、
 光電変換により前記光電変換部で生成された信号電荷の転送を行うためのバーティカルゲートが、前記半導体基板の上方に形成されている、[1]から[6]のいずれか1つに記載の固体撮像装置。
[8]
 光入射側の反対側である前記半導体基板の表面に形成された増幅トランジスタを備え、
 該増幅トランジスタが、前記トレンチの上方に配され、
 該増幅トランジスタが、複数の前記画素で共有されている、[1]から[7]のいずれか1つに記載の固体撮像装置。
[9]
 光入射側の反対側である前記半導体基板の表面に形成されたリセットトランジスタを備え、
 該リセットトランジスタが、前記トレンチの上方に配され、
 該リセットトランジスタが、複数の前記画素で共有されている、[1]から[8]のいずれか1つに記載の固体撮像装置。
[10]
 光入射側の反対側である前記半導体基板の表面に形成された選択トランジスタを備え、
 該選択トランジスタが、前記トレンチの上方に配され、
 該選択トランジスタが、複数の前記画素で共有されている、[1]から[9]のいずれか1つに記載の固体撮像装置。
[11]
 [1]から[10]のいずれか1つに記載の固体撮像装置が搭載された、電子機器。
In addition, the present technology can also have the following configurations.
[1]
A semiconductor substrate on which a photoelectric conversion unit that performs photoelectric conversion is formed for each pixel,
A trench formed between the pixels without digging upward from the back surface of the semiconductor substrate on the light incident side and penetrating the semiconductor substrate.
A PN junction region composed of a P-type region and an N-type region, which is arranged along the peripheral portion of the trench, is provided.
A solid-state image sensor in which the PN junction region is self-aligned.
[2]
The solid-state image sensor according to [1], wherein the width of the P-shaped region arranged on the side wall of the trench and the width of the P-shaped region arranged on the bottom surface, which is the upper part of the trench, are substantially the same.
[3]
A pixel transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side is provided.
The solid-state image sensor according to [1] or [2], wherein the pixel transistor is arranged above the trench.
[4]
A floating diffusion formed on the surface of the semiconductor substrate opposite to the light incident side is provided.
The solid-state image sensor according to any one of [1] to [3], wherein the floating diffusion is arranged above the trench.
[5]
The solid-state image sensor according to [4], wherein the floating diffusion is shared by a plurality of the pixels.
[6]
A transfer gate and a floating diffusion formed on the surface of the semiconductor substrate on the opposite side of the light incident side are provided.
The transfer gate and the floating diffusion are located above the trench.
The transfer gate is formed for each of the pixels.
The floating diffusion is shared by the plurality of pixels.
The solid-state image sensor according to any one of [1] to [5], wherein the floating diffusion is surrounded by a plurality of the transfer gates.
[7]
The photoelectric conversion unit is embedded below the semiconductor substrate.
The solid according to any one of [1] to [6], wherein the vertical gate for transferring the signal charge generated by the photoelectric conversion unit by the photoelectric conversion is formed above the semiconductor substrate. Image sensor.
[8]
An amplification transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side is provided.
The amplification transistor is arranged above the trench and
The solid-state image sensor according to any one of [1] to [7], wherein the amplification transistor is shared by a plurality of the pixels.
[9]
A reset transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side is provided.
The reset transistor is arranged above the trench and
The solid-state image sensor according to any one of [1] to [8], wherein the reset transistor is shared by a plurality of the pixels.
[10]
A selection transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side is provided.
The selection transistor is arranged above the trench and
The solid-state image sensor according to any one of [1] to [9], wherein the selection transistor is shared by a plurality of the pixels.
[11]
An electronic device equipped with the solid-state image sensor according to any one of [1] to [10].
 1・・・トレンチ、
 11・・・オンチップレンズ(OCL)、
 13・・・平坦化膜、
 14・・・遮光膜、
 15・・・半導体基板、
 16、17・・・配線層、
 18・・・ロジック基板、
 30・・・光電変換部(フォトダイオード(PD))、
 40・・・フローティングディフュージョン(FD)、
 41・・・バーティカルゲート(VG)、
 50・・・画素トランジスタ、
 51・・・リセットトランジスタ(RST Tr.)、
 52、53・・・転送ゲート(トランスファーゲート(TG))、
 54・・・選択トランジスタ(SEL Tr.)、
 60・・・P型領域(P型不純物領域)、
 61・・・側壁膜、
 62・・・充填材(ポリシリコン)、
 63・・・充填材(遮光メタル、タングステン(W))、
 64・・・P層(P型ピニング層)、
 70・・・負の固定電荷を有する膜、
 101、106、108、110、123、123A、123B・・・固体撮像装置。
1 ... Trench,
11 ... On-chip lens (OCL),
13 ... Flattening film,
14 ... light-shielding film,
15 ... Semiconductor substrate,
16, 17 ... Wiring layer,
18 ... Logic board,
30 ... Photoelectric conversion unit (photodiode (PD)),
40 ... Floating diffusion (FD),
41 ... Vertical Gate (VG),
50 ... Pixel transistor,
51 ... Reset transistor (RST Tr.),
52, 53 ... Transfer gate (transfer gate (TG)),
54 ... Selective transistor (SEL Tr.),
60 ... P-type region (P-type impurity region),
61 ... Side wall membrane,
62 ... Filler (polysilicon),
63 ... Filler (light-shielding metal, tungsten (W)),
64 ... P layer (P type pinning layer),
70 ... A film having a negative fixed charge,
101, 106, 108, 110, 123, 123A, 123B ... Solid-state image sensor.

Claims (11)

  1.  画素毎に、光電変換を行う光電変換部が形成された半導体基板と、
     光入射側である該半導体基板の裏面から上方に掘り込んで該半導体基板を貫通しないで、該画素間に形成されたトレンチと、
     該トレンチの周囲部に沿って配された、P型領域とN型領域とから構成されるPN接合領域と、を備え、
     該PN接合領域がセルフアラインで形成される、固体撮像装置。
    A semiconductor substrate on which a photoelectric conversion unit that performs photoelectric conversion is formed for each pixel,
    A trench formed between the pixels without digging upward from the back surface of the semiconductor substrate on the light incident side and penetrating the semiconductor substrate.
    A PN junction region composed of a P-type region and an N-type region, which is arranged along the peripheral portion of the trench, is provided.
    A solid-state image sensor in which the PN junction region is self-aligned.
  2.  前記トレンチの側壁に配された前記P型領域の幅と、前記トレンチの上部である底面に配された前記P型領域の幅とが略同一である、請求項1に記載の固体撮像装置。 The solid-state image sensor according to claim 1, wherein the width of the P-shaped region arranged on the side wall of the trench and the width of the P-shaped region arranged on the bottom surface, which is the upper part of the trench, are substantially the same.
  3.  光入射側の反対側である前記半導体基板の表面に形成された画素トランジスタを備え、
     該画素トランジスタが、前記トレンチの上方に配される、請求項1に記載の固体撮像装置。
    A pixel transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side is provided.
    The solid-state image sensor according to claim 1, wherein the pixel transistor is arranged above the trench.
  4.  光入射側の反対側である前記半導体基板の表面に形成されたフローティングディフュージョンを備え、
     該フローティングディフュージョンが、前記トレンチの上方に配される、請求項1に記載の固体撮像装置。
    A floating diffusion formed on the surface of the semiconductor substrate opposite to the light incident side is provided.
    The solid-state image sensor according to claim 1, wherein the floating diffusion is arranged above the trench.
  5.  前記フローティングディフュージョンが、複数の前記画素で共有されている、請求項4に記載の固体撮像装置。 The solid-state image sensor according to claim 4, wherein the floating diffusion is shared by a plurality of the pixels.
  6.  光入射側の反対側である前記半導体基板の表面に形成された転送ゲート及びフローティングディフュージョンを備え、
     該転送ゲート及び該フローティングディフュージョンが、前記トレンチの上方に配され、
     該転送ゲートが、前記画素毎に形成され、
     該フローティングディフュージョンが、複数の前記画素で共有され、
     該フローティングディフュージョンが、複数の該転送ゲートに囲まれている、請求項1に記載の固体撮像装置。
    A transfer gate and a floating diffusion formed on the surface of the semiconductor substrate on the opposite side of the light incident side are provided.
    The transfer gate and the floating diffusion are located above the trench.
    The transfer gate is formed for each of the pixels.
    The floating diffusion is shared by the plurality of pixels.
    The solid-state imaging device according to claim 1, wherein the floating diffusion is surrounded by a plurality of the transfer gates.
  7.  前記光電変換部が、前記半導体基板の下方に埋め込まれており、
     光電変換により前記光電変換部で生成された信号電荷の転送を行うためのバーティカルゲートが、前記半導体基板の上方に形成されている、請求項1に記載の固体撮像装置。
    The photoelectric conversion unit is embedded below the semiconductor substrate.
    The solid-state image sensor according to claim 1, wherein a vertical gate for transferring a signal charge generated by the photoelectric conversion unit by photoelectric conversion is formed above the semiconductor substrate.
  8.  光入射側の反対側である前記半導体基板の表面に形成された増幅トランジスタを備え、
     該増幅トランジスタが、前記トレンチの上方に配され、
     該増幅トランジスタが、複数の前記画素で共有されている、請求項1に記載の固体撮像装置。
    An amplification transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side is provided.
    The amplification transistor is arranged above the trench and
    The solid-state image sensor according to claim 1, wherein the amplification transistor is shared by a plurality of the pixels.
  9.  光入射側の反対側である前記半導体基板の表面に形成されたリセットトランジスタを備え、
     該リセットトランジスタが、前記トレンチの上方に配され、
     該リセットトランジスタが、複数の前記画素で共有されている、請求項1に記載の固体撮像装置。
    A reset transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side is provided.
    The reset transistor is arranged above the trench and
    The solid-state image sensor according to claim 1, wherein the reset transistor is shared by a plurality of the pixels.
  10.  光入射側の反対側である前記半導体基板の表面に形成された選択トランジスタを備え、
     該選択トランジスタが、前記トレンチの上方に配され、
     該選択トランジスタが、複数の前記画素で共有されている、請求項1に記載の固体撮像装置。
    A selection transistor formed on the surface of the semiconductor substrate on the opposite side of the light incident side is provided.
    The selection transistor is arranged above the trench and
    The solid-state image sensor according to claim 1, wherein the selection transistor is shared by a plurality of the pixels.
  11.  請求項1に記載の固体撮像装置が搭載された、電子機器。 An electronic device equipped with the solid-state image sensor according to claim 1.
PCT/JP2021/006245 2020-02-28 2021-02-19 Solid-state imaging device and electronic apparatus WO2021172176A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-033222 2020-02-28
JP2020033222A JP2021136380A (en) 2020-02-28 2020-02-28 Solid-state imaging device and electronic device

Publications (1)

Publication Number Publication Date
WO2021172176A1 true WO2021172176A1 (en) 2021-09-02

Family

ID=77490931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006245 WO2021172176A1 (en) 2020-02-28 2021-02-19 Solid-state imaging device and electronic apparatus

Country Status (2)

Country Link
JP (1) JP2021136380A (en)
WO (1) WO2021172176A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225818A (en) * 2009-03-23 2010-10-07 Toshiba Corp Solid-state image pickup device and method for manufacturing the same
WO2018139279A1 (en) * 2017-01-30 2018-08-02 ソニーセミコンダクタソリューションズ株式会社 Solid-state image-capture element and electronic device
WO2019093151A1 (en) * 2017-11-09 2019-05-16 ソニーセミコンダクタソリューションズ株式会社 Solid-state image pickup device and electronic apparatus
JP2019145544A (en) * 2018-02-16 2019-08-29 ソニーセミコンダクタソリューションズ株式会社 Imaging element
WO2019220945A1 (en) * 2018-05-18 2019-11-21 ソニーセミコンダクタソリューションズ株式会社 Imaging element and electronic device
WO2019240207A1 (en) * 2018-06-15 2019-12-19 ソニーセミコンダクタソリューションズ株式会社 Imaging device and method for manufacturing same, and electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225818A (en) * 2009-03-23 2010-10-07 Toshiba Corp Solid-state image pickup device and method for manufacturing the same
WO2018139279A1 (en) * 2017-01-30 2018-08-02 ソニーセミコンダクタソリューションズ株式会社 Solid-state image-capture element and electronic device
WO2019093151A1 (en) * 2017-11-09 2019-05-16 ソニーセミコンダクタソリューションズ株式会社 Solid-state image pickup device and electronic apparatus
JP2019145544A (en) * 2018-02-16 2019-08-29 ソニーセミコンダクタソリューションズ株式会社 Imaging element
WO2019220945A1 (en) * 2018-05-18 2019-11-21 ソニーセミコンダクタソリューションズ株式会社 Imaging element and electronic device
WO2019240207A1 (en) * 2018-06-15 2019-12-19 ソニーセミコンダクタソリューションズ株式会社 Imaging device and method for manufacturing same, and electronic apparatus

Also Published As

Publication number Publication date
JP2021136380A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
US11961862B2 (en) Solid-state imaging element and electronic apparatus
US11398514B2 (en) Solid-state image pickup device, manufacturing method therefor, and electronic apparatus
WO2019220945A1 (en) Imaging element and electronic device
WO2021015009A1 (en) Solid-state imaging device and electronic apparatus
WO2021124975A1 (en) Solid-state imaging device and electronic instrument
JP7187440B2 (en) Solid-state imaging device, electronic device, and manufacturing method
WO2020079945A1 (en) Solid-state imaging device and electronic apparatus
US20220246653A1 (en) Solid-state imaging element and solid-state imaging element manufacturing method
WO2019239754A1 (en) Solid-state imaging element, method for manufacturing solid-state imaging element, and electronic device
WO2019181466A1 (en) Imaging element and electronic device
WO2019188131A1 (en) Semiconductor device and method for manufacturing semiconductor device
WO2022130791A1 (en) Solid-state image capturing device and electronic device
US20220254823A1 (en) Imaging device
WO2021172176A1 (en) Solid-state imaging device and electronic apparatus
WO2021187151A1 (en) Image-capturing element, semiconductor chip
WO2022137864A1 (en) Imaging device and electronic apparatus
WO2022145190A1 (en) Solid-state imaging device and electronic apparatus
WO2023149187A1 (en) Vertical transistor, light detection device, and electronic apparatus
WO2021140958A1 (en) Imaging element, manufacturing method, and electronic device
WO2021186911A1 (en) Imaging device and electronic apparatus
WO2022270039A1 (en) Solid-state imaging device
WO2024057805A1 (en) Imaging element and electronic device
TWI834644B (en) Imaging components and electronic equipment
WO2022259855A1 (en) Semiconductor device, method for manufacturing same, and electronic apparatus
US20220344390A1 (en) Organic cis image sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21759982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21759982

Country of ref document: EP

Kind code of ref document: A1