WO2021171096A1 - Avión de ala fija - Google Patents

Avión de ala fija Download PDF

Info

Publication number
WO2021171096A1
WO2021171096A1 PCT/IB2021/000133 IB2021000133W WO2021171096A1 WO 2021171096 A1 WO2021171096 A1 WO 2021171096A1 IB 2021000133 W IB2021000133 W IB 2021000133W WO 2021171096 A1 WO2021171096 A1 WO 2021171096A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
fixed
wing aircraft
aircraft
fuselage
Prior art date
Application number
PCT/IB2021/000133
Other languages
English (en)
French (fr)
Inventor
Arnim Paukner
Original Assignee
Arnim Paukner
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arnim Paukner filed Critical Arnim Paukner
Publication of WO2021171096A1 publication Critical patent/WO2021171096A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/54Varying in area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/10Wings
    • B64U30/12Variable or detachable wings, e.g. wings with adjustable sweep
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/54Varying in area
    • B64C3/546Varying in area by foldable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/56Folding or collapsing to reduce overall dimensions of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C5/00Stabilising surfaces
    • B64C5/10Stabilising surfaces adjustable
    • B64C5/12Stabilising surfaces adjustable for retraction against or within fuselage or nacelle

Definitions

  • the present invention relates to a fixed wing aircraft, heavier than air, with wing surfaces and variable length.
  • a large number of fixed-wing aircraft are known, heavier than air, for a whole series of conditions: cruising speed, altitude, load ...
  • Each aircraft is designed for specific conditions to which it obtains its best sustainability with the least aerodynamic drag.
  • the landing and take-off conditions are always different from the starting conditions.
  • a third striking document is GB155844, in which a biplane with a lower wing surface and rear stabilizers modifiable by opening slats and displacing a ballast is disclosed.
  • the invention consists of a fixed-wing aircraft according to the claims. Its novel features are listed in the characterizing part of the independent claim.
  • This solution allows defining characteristics for a fixed-wing aircraft that can be used in very specific conditions, for example as a false satellite, but that can also take off easily, even from a boat or by hand.
  • the fixed-wing aircraft comprises a fuselage with at least two wings, one or more engines, a tail rudder and stabilizers.
  • it comprises two rollers on both sides of the fuselage aligned with the plane of the corresponding wing and behind.
  • Triangular webs are wound on the rollers with a free vertex mounted on a carriage movable by the wing (generally along the trailing or trailing edge or close to it).
  • the distance between the wings and the stabilizers is adjustable.
  • auxiliary tail with auxiliary outriggers, arranged behind the tail rudder and outriggers.
  • This auxiliary tail can be retractable or releasable in flight, so that it falls to the ground. For that case, it is preferred to attach a parachute to it.
  • the length of the fuselage between the wings and the stabilizers is adjustable.
  • a telescopic section that can be adjusted in flight by means of a spring or a motorized mechanism.
  • Some stops or latches, for example pyrotechnic, allow to produce the movement.
  • the rollers can have springs or return devices for the triangular fabric, to collect it and follow the flight under normal conditions. It is also possible that the rollers are releasable in flight to reduce weight. In this case, it is preferred that they have a parachute to reduce accidents on the ground and to be able to reuse the rollers.
  • At least one battery can be mobile along the fuselage. It is also possible to move the fuel inside the tanks or move some other type of ballast.
  • a first preferred solution comprises a retractable arm in the fuselage that extracts each roller from the fuselage and deviates it from the plane of the wings, generally downwards. In this way, the triangular cloth can be tilted in front of the wing plane.
  • a series of push rods for example carbon fiber or a hard low friction material, are attached to the wings. At least one push rod for each wing.
  • Each push rod is mounted on a trapezoidal deployable bracket, with a longer first end, close to the leading edge, and a shorter second end.
  • the push rod tilts and drives the triangular fabric, deforming it in the desired orientation (downward). That is, the push rod is movable between a position parallel to the wing plane and a second position crossed to the wing plane behind the wing, so as to push the triangular fabric in the desired direction.
  • This support is generally on the wing top to push the triangular fabric down.
  • Figure 1 schematic top view of an embodiment of the invention.
  • Figure 2 schematic top view of a second embodiment.
  • Figure 3 schematic top view of the example of figure 1 in the unfolded position.
  • Figure 4 side detail of an embodiment that modifies the inclination of the triangular fabric.
  • Figure 5 side detail of another embodiment that modifies the inclination of the triangular fabric in a hidden position (A), approximately parallel to the wing plane, and unfolded (B).
  • the aircraft in figure 1 consists of a fuselage (1) with two wings (2), a tail rudder (3) and stabilizers (4).
  • An engine which can be jet or propeller, provides the thrust for flight.
  • Inside the fuselage (1) there is a battery (7) for powering the engine, which can be recharged by solar panels (not shown) on the upper part of the fuselage (1) and on the wings (2).
  • a roller (9) with a triangular cloth (10) is stored on each side (8) of the fuselage (1) and in the plane of the corresponding wing (2) there is a slot where a roller (9) with a triangular cloth (10) is stored.
  • the triangular cloth (10) is arranged with a free vertex (11) and the opposite edge fixed to the roller (9).
  • a carriage (12) movable by the wing (2) allows the triangular cloth (10) to be unrolled by pulling the free vertex (11).
  • the roller (9) may have a spring or device to rewind the triangular cloth (10).
  • the distance between the wings (2) and the stabilizers (4) is also adjustable.
  • two solutions are offered, which can be alternatives or cooperate.
  • auxiliary tail (13) with auxiliary stabilizers (14), arranged behind the tail rudder (3) and the stabilizers (4).
  • auxiliary stabilizers (14) can compensate for the change in lift forces.
  • This auxiliary tail (13) will generally have a fixed, negative angle of attack (figure 2).
  • the rollers (9) can be releasable in flight by means of a spring or pyrotechnic means. In this way, once the plane has taken off, and when you no longer need these accessories, you can abandon it and reduce the weight of the aircraft. In the same way, the auxiliary tail (13) can be released and dropped to reduce the weight of the aircraft (or hide inside the fuselage, associating the auxiliary stabilizers (14) with the stabilizers (4). These elements can have deployable parachutes to facilitate reuse.
  • the triangular fabric (10) can have battens or stiffening elements, parallel to the roller (9). These sabers can be in pockets so they are easy to replace.
  • the battens can have a slight curvature to prestress the triangular cloth (10) downwards (the concave part faces downwards). Thus, in use it is straightened by the action of air.
  • a first preferred solution comprises a retractable arm (16) in the fuselage that extracts each roller (9) from the fuselage (1) and deviates it from the plane of the wings (2), generally downwards. In this way, the triangular cloth (10) can be inclined in front of the wing plane.
  • the retractable arms (16) generally extract the edge of the roller (9) furthest from the wings (2), but two retractable arms (16) can be incorporated, one per end.
  • the retractable arms (16) can be straight or, preferably, curved.
  • the movement of the retractable arms (16) can be by pneumatic or mechanical means, etc. including a pick-up spring.
  • a series of push rods (17), for example made of Teflon or another low friction material, are coupled to the wings (2), so that they have a position of a starting point in which they are approximately contained in the wing plane, and a working position in which they are they cross behind the wing (2), affecting the triangular fabric (10).
  • each push rod (17) is mounted on a deployable support formed by two rods (18,19).
  • a second stem (19) at the second end with a shorter length.
  • One of the rods (18,19) is attached to the push rod (17) in a sliding manner.
  • the rods (18,19) are attached to the wing by respective joints, so that the push rod (17) can be raised and inclined.
  • the ends of the rods (18,19) attached to the wing can be moved closer or farther away, without it being necessary for the push rod (17) to slide with respect to them.
  • each push rod (17) can be parallel to the wing or cross plane, pushing the triangular fabric (10) vertically and thus modifying its inclination.
  • the wings (2) can also modify the wing angle depending on the presence of the deployed triangular cloth (10) and the speed of the aircraft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Toys (AREA)

Abstract

Avión de ala fija, que comprende un fuselaje (1) con al menos dos alas (2), uno o más motores, un timón de cola (3) y unos estabilizadores (4), y que comprende dos rodillos (9) en sendos costados (8) del fuselaje (1) alineados con el plano del ala (2) correspondiente y por detrás, en donde están enrolladas sendas telas triangulares (10) con un vértice libre (11) montado en un carro (12), móvil por el ala (2), caracterizado por que la distancia entre las alas (2) y los estabilizadores (4) es ajustable.

Description

DESCRIPCIÓN
Avión de ala fija SECTOR DE LA TÉCNICA
La presente invención se refiere a un avión de ala fija, más pesado que el aire, con superficies alares y longitud variable.
ESTADO DE LA TÉCNICA
Se conoce una gran cantidad de aviones de ala fija, más pesados que el aire, para toda una serie de condiciones: velocidad de crucero, altitud, carga... Cada avión se diseña para unas condiciones concretas a las que obtiene su mejor sustentabilidad con la menor resistencia aerodinámica. Sin embargo, es conocido que las condiciones en el aterrizaje y en el despegue son siempre diferentes a las condiciones de partida.
Se han desarrollado muchas soluciones para modificar la respuesta aerodinámica del avión durante esos momentos, como los dispositivos hipersustentadores. La forma más conocida es la de los flaps que reducen la velocidad de entrada en pérdida en el aterrizaje o el despegue.
Se conoce también en el estado de la técnica las patentes US2007034749 y ES2435677 que divulgan alas flexibles, desplegables, para modificar la velocidad de entrada en pérdida del avión en diferentes momentos o incidentes del vuelo.
Un tercer documento llamativo es GB155844, en la que se divulga un biplano con una superficie alar inferior y estabilizadores traseros modificables mediante la apertura de slats y el desplazamiento de un lastre.
El solicitante no conoce ningún avión similar a la invención.
BREVE EXPLICACIÓN DE LA INVENCIÓN La invención consiste en un avión de ala fija según las reivindicaciones. Sus características novedosas se enumeran en la parte caracterizadora de la reivindicación independiente.
Esta solución permite definir unas características para un avión de ala fija que pueda servir en unas condiciones muy concretas, por ejemplo de falso satélite, pero que además puede despegar de forma sencilla, incluso desde un barco o a mano.
Al avión de ala fija comprende un fuselaje con al menos dos alas, uno o más motores, un timón de cola y unos estabilizadores. Además, comprende dos rodillos en sendos costados del fuselaje alineados con el plano del ala correspondiente y por detrás. En los rodillos están enrolladas sendas telas triangulares con un vértice libre montado en un carro móvil por el ala (generalmente a lo largo del borde de fuga o salida o próximo a éste). Además, la distancia entre las alas y los estabilizadores es ajustable.
Por ejemplo, puede comprender una cola auxiliar con unos estabilizadores auxiliares, dispuesta por detrás del timón de cola y los estabilizadores. Esta cola auxiliar puede ser replegable o liberable en vuelo, de forma que caiga a tierra. Para ese caso, se prefiere acoplarle un paracaídas.
En otra opción, la longitud del fuselaje entre las alas y los estabilizadores es ajustable. Por ejemplo, mediante un tramo telescópico que puede ajustarse en vuelo mediante un resorte o un mecanismo motorizado. Unos topes o pestillos, por ejemplo pirotécnicos, permiten producir el movimiento.
Los rodillos pueden poseer resortes o dispositivos de retorno de la tela triangular, para recogerla y seguir el vuelo en condiciones normales. También es posible que los rodillos sean liberables en vuelo para reducir el peso. En este caso se prefiere que posean paracaídas para reducir los accidentes en tierra y poder reutilizar los rodillos.
Cuando el avión comprenda una o más baterías de alimentación de los motores, al menos una batería puede ser móvil a lo largo de fuselaje. También es posible desplazar el combustible dentro de los depósitos o mover algún otro tipo de lastre.
Para los aviones especialmente aerodinámicos, como pueden ser algunos drones, veleros de vuelo sin motor, etc. es posible modificar o revisar el ángulo del flap formado por la tela triangular desplegada gracias a un mecanismo adecuado. Esto permite asegurar el ángulo de incidencia más adecuado. Para ello, existen varias soluciones, de las cuales se enumeran dos principales.
Una primera solución preferida comprende un brazo escamoteable en el fuselaje que extrae cada rodillo del fuselaje y lo desvía del plano de las alas, generalmente hacia abajo. De esta forma, la tela triangular puede quedar inclinado frente al plano alar.
En una segunda forma de modificar el ángulo, una serie de varillas empujadoras, por ejemplo fibra de carbono o un material duro de baja fricción, están acopladas a las alas. Al menos una varilla empujadora por cada ala. Cada varilla empujadora está montada en un soporte desplegable trapezoidal, con un primer extremo, próximo al borde de ataque, más largo y un segundo extremo más corto. De esta forma, al desplegarse el soporte la varilla empujadora se inclina e impulsa la tela triangular, deformándola en la orientación deseada (hacia abajo). Es decir, la varilla empujadora es móvil entre una posición paralela al plano alar y una segunda posición cruzada al plano alar por detrás del ala, de forma que empuja la tela triangular en la dirección deseada. Este soporte está generalmente en el extradós alar para empujar la tela triangular hacia abajo.
Esta solución que corrige el ángulo del flap es también ventajosa para aviones donde la distancia estabilizadores-ala es fija, pero donde un lastre u otro cuerpo modifica la posición del centro de gravedad.
Otras realizaciones particulares se enumeran en el resto de la memoria.
DESCRIPCIÓN DE LOS DIBUJOS
Para una mejor comprensión de la invención, se incluyen las siguientes figuras.
Figura 1: vista superior esquemática de un ejemplo de realización de la invención.
Figura 2: vista superior esquemática de un segundo ejemplo de realización.
Figura 3: vista superior esquemática del ejemplo de la figura 1 en posición desplegada. Figura 4: detalle lateral de un ejemplo de realización que modifica la inclinación de la tela triangular.
Figura 5: detalle lateral de otro ejemplo de realización que modifica la inclinación de la tela triangular en posición escondida (A), aproximadamente paralela al plano alar, y desplegada (B).
MODOS DE REALIZACIÓN DE LA INVENCIÓN
A continuación se pasa a describir de manera breve un modo de realización de la invención, como ejemplo ilustrativo y no limitativo de ésta.
El avión de la figura 1 consta de un fuselaje (1) con dos alas (2), un timón de cola (3) y unos estabilizadores (4). Un motor, que puede ser de reacción o de hélice proporciona el empuje para el vuelo. En el interior del fuselaje (1) se dispone una batería (7) de alimentación del motor, que puede ser recargada por paneles solares (no representados) en la parte superior del fuselaje (1) y de las alas (2).
En cada costado (8) del fuselaje (1) y en el plano del ala (2) correspondiente se dispone una ranura en donde se almacena un rodillo (9) con una tela triangular (10). La tela triangular (10) se dispone con un vértice libre (11) y la arista opuesta fijada al rodillo (9). Un carro (12) móvil por el ala (2) permite desenrollar la tela triangular (10) tirando del vértice libre (11). El rodillo (9) puede tener un resorte o dispositivo para enrollar de nuevo la tela triangular (10).
Además, la distancia entre las alas (2) y los estabilizadores (4) es igualmente ajustable. Para ello se ofrecen dos soluciones, que pueden ser alternativas o cooperar.
Definir una cola auxiliar (13) con unos estabilizadores auxiliares (14), dispuesta por detrás del timón de cola (3) y de los estabilizadores (4). De esta forma los estabilizadores auxiliares (14) pueden compensar la modificación en las fuerzas de sustentación. Esta cola auxiliar (13) tendrá generalmente un ángulo de ataque fijo, negativo (figura 2).
Modificar la longitud del fuselaje (1), al menos entre las alas (2) y los estabilizadores (4). Por ejemplo mediante un tramo telescópico (15) (figuras 1 y 3). Estas dos soluciones también producen un desplazamiento del centro de gravedad del avión, modificando la resistencia aerodinámica longitudinal. Este desplazamiento puede ser modificado con movimientos de lastres, como puede ser la batería (7) o parte de las baterías (7).
Los rodillos (9) pueden ser liberables en vuelo por medio de un resorte o de medios pirotécnicos. De esta forma, una vez despegado el avión, y cuando deja de necesitar estos aditamentos, se pueden abandonar y reducir el peso de la aeronave. De la misma forma, la cola auxiliar (13) puede liberarse y dejarse caer para reducir el peso del avión (o esconderse dentro del fuselaje, asociando los estabilizadores auxiliares (14) a los estabilizadores (4). Estos elementos pueden tener paracaídas desplegables para facilitar la reutilización.
La tela triangular (10) puede tener sables o elementos rigidizadores, paralelos al rodillo (9). Estos sables pueden estar en bolsillos para que sean fáciles de sustituir. Los sables pueden tener una ligera curvatura para pretensar la tela triangular (10) hacia abajo (la parte cóncava está orientada hacia abajo). Así, en uso se endereza por la acción del aire.
Para los aviones especialmente delgados y aerodinámicos, como pueden ser algunos drones, veleros de vuelo sin motor, etc. es posible asegurar modificar o revisar el ángulo del flap formado por la tela triangular (10). Para ello, existen varias soluciones, de las cuales se enumeran dos principales.
Una primera solución preferida comprende un brazo escamoteable (16) en el fuselaje que extrae cada rodillo (9) del fuselaje (1) y lo desvía del plano de las alas (2), generalmente hacia abajo. De esta forma, la tela triangular (10) puede quedar inclinada frente al plano alar. Los brazos escamoteables (16) generalmente extraen el borde del rodillo (9) más alejado de las alas (2), pero pueden incorporarse dos brazos escamoteables (16), uno por extremo. Los brazos escamoteables (16) pueden ser rectos o, preferiblemente, curvos. El movimiento de los brazos escamoteables (16) puede ser por medios neumáticos, mecánicos, etc. incluyendo un resorte de recogida.
En una segunda forma de modificar el ángulo, compatible con la anterior, una serie de varillas empujadoras (17), por ejemplo de teflón u otro material de baja fricción, están acopladas a las alas (2), de forma que poseen una posición de partida en la que están aproximadamente contenidas en el plano alar, y una posición de trabajo en la que se cruzan por detrás del ala (2), afectando a la tela triangular (10). Para ello, cada varilla empujadora (17) está montada en un soporte desplegable formado por dos vástagos (18,19). Un primer vástago (18) en el primer extremo, más cerca del borde de ataque, y que tiene una longitud mayor. Un segundo vástago (19) en el segundo extremo, con una longitud menor. Uno de los vástagos (18,19) está unido a la varilla empujadora (17) de forma deslizante. Los vástagos (18,19) están unidos al ala por sendas articulaciones, de forma que pueden levantarse e inclinar así la varilla empujadora (17).
En otra forma de realizar el soporte, los extremos de los vástagos (18,19) unidos al ala pueden acercarse o alejarse, sin que sea necesario que la varilla empujadora (17) deslice respecto de éstos.
De esta forma, cada varilla empujadora (17) puede estar paralela al plano alar o cruzada, empujando la tela triangular (10) verticalmente y modificando así su inclinación.
Las alas (2) pueden también modificar el ángulo alar en función de la presencia de la tela triangular (10) desplegada y la velocidad del avión.

Claims

REIVINDICACIONES
1- Avión de ala fija, que comprende un fuselaje (1) con al menos dos alas (2), uno o más motores, un timón de cola (3) y unos estabilizadores (4), y que comprende dos rodillos (9) en sendos costados (8) del fuselaje (1) alineados con el plano del ala (2) correspondiente y por detrás, en donde están enrolladas sendas telas triangulares (10) con un vértice libre (11) montado en un carro (12), móvil por el ala (2), caracterizado por que la distancia entre las alas (2) y los estabilizadores (4) es ajustable.
2- Avión de ala fija, según la reivindicación 1 , caracterizado por que comprende una o más baterías (7) de alimentación de los motores, y por que al menos una batería (7) es móvil a lo largo de fuselaje (1).
3- Avión de ala fija, según la reivindicación 1 , caracterizado por que comprende una cola auxiliar (13) con unos estabilizadores auxiliares (14), dispuesta por detrás del timón de cola (3) y los estabilizadores (4).
4- Avión de ala fija, según la reivindicación 1 , caracterizado por que la longitud del fuselaje (1) entre las alas (2) y los estabilizadores (4) es ajustable.
5- Avión de ala fija, según la reivindicación 1 , caracterizado por que el rodillo (9) posee un resorte o dispositivo de retorno de la tela triangular (10).
6- Avión de ala fija, según la reivindicación 1 , caracterizado por que los rodillos (9) son liberables en vuelo del avión.
7- - Avión de ala fija, según la reivindicación 6, caracterizado por que los rodillos (9) poseen paracaídas.
8- Avión de ala fija, según la reivindicación 3, caracterizado por que la cola auxiliar (13) es liberable en vuelo.
9- Avión de ala fija, según la reivindicación 8, caracterizado por que la cola auxiliar (13) posee un paracaídas.
10- Avión de ala fija, según la reivindicación 1, caracterizado por que comprende un mecanismo de modificación de la inclinación de la vela triangular (10) desplegada. 11- Avión de ala fija, según la reivindicación 10, caracterizado por que cada rodillo (9) está sujeto al fuselaje (1) por al menos un brazo escamoteable (16) configurado para situarlo fuera del plano del ala (2).
12- Avión de ala fija, según la reivindicación 10, caracterizado por que cada ala (2) comprende al menos una varilla empujadora (17) móvil entre una posición paralela al plano alar y una segunda posición cruzada al plano alar por detrás del ala (2).
13- Avión de ala fija, según la reivindicación 12, caracterizado por que las varillas empujadoras (17) están montadas en sendos soportes trapezoidales formados por un primer vástago (18) en el primer extremo, más cerca del borde de ataque, y que tiene una longitud mayor y un segundo vástago (19) más corto, ambos unidos al ala (2) por sendas articulaciones, y siendo deslizante la unión de uno de los vástagos (18,19) a la varilla empujadora (17).
14- Avión de ala fija, según la reivindicación 1 , caracterizado por que comprende sables paralelos al rodillo (9) en cada tela triangular (10).
15- Avión de ala fija, según la reivindicación 14, caracterizado por que los sables están curvados hacia abajo.
16- Avión de ala fija, según la reivindicación 1, caracterizado por que las alas (2) son de ángulo alar variable.
PCT/IB2021/000133 2020-02-26 2021-02-26 Avión de ala fija WO2021171096A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES202030325U ES1246309Y (es) 2020-02-26 2020-02-26 Avión de ala fija
ESU202030325 2020-02-26

Publications (1)

Publication Number Publication Date
WO2021171096A1 true WO2021171096A1 (es) 2021-09-02

Family

ID=70676793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/000133 WO2021171096A1 (es) 2020-02-26 2021-02-26 Avión de ala fija

Country Status (2)

Country Link
ES (1) ES1246309Y (es)
WO (1) WO2021171096A1 (es)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB155844A (en) 1919-12-27 1922-04-24 Manuel Pardo Y Cosio Improvements in means for the control of aircraft
US2193029A (en) * 1938-09-06 1940-03-12 Samuel H Juul Safety device for aircraft
DE1266137B (de) * 1965-07-10 1968-04-11 Hamburger Flugzeugbau G M B H Ausfahrbare Auftriebsflaeche zur Laengsstabilisierung von Luftfahrzeugen
EP0973676A1 (en) * 1997-04-10 2000-01-26 Wagner, Fred A., III Extendable/retractable airfoil assembly for fixed wing aircraft
US20070034749A1 (en) 2005-08-12 2007-02-15 Wagner Fred A Iii Deployable airfoil assembly for aircraft
GB2470603A (en) * 2009-05-29 2010-12-01 Rupert John Bickham Sweet-Escott Batten or rib arrangement for folding wing
US8196863B2 (en) * 2007-01-04 2012-06-12 Airbus Operations Sas Aircraft horizontal stabilizer
ES2435677A1 (es) 2013-07-05 2013-12-20 Jose Luis López Rodríguez Dispositivo de control, estabilización y sustentación aplicable a un móvil que se desplace a alta velocidad
US20140179535A1 (en) * 2011-06-14 2014-06-26 Eads Deutschland Gmbh Electric drive device for an aircraft
US20140339371A1 (en) * 2012-03-30 2014-11-20 W. Morrison Consulting Group, Inc. Long Range Electric Aircraft and Method of Operating Same
US9016623B2 (en) * 2011-11-30 2015-04-28 The Boeing Company Jam protection and alleviation for control surface linkage mechanisms
KR101953892B1 (ko) * 2017-05-23 2019-03-04 한국항공우주연구원 수직이착륙 분산 추진형 항공기 및 이의 제어 방법
CN208915423U (zh) * 2018-10-25 2019-05-31 酷黑科技(北京)有限公司 一种飞行器

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB155844A (en) 1919-12-27 1922-04-24 Manuel Pardo Y Cosio Improvements in means for the control of aircraft
US2193029A (en) * 1938-09-06 1940-03-12 Samuel H Juul Safety device for aircraft
DE1266137B (de) * 1965-07-10 1968-04-11 Hamburger Flugzeugbau G M B H Ausfahrbare Auftriebsflaeche zur Laengsstabilisierung von Luftfahrzeugen
EP0973676A1 (en) * 1997-04-10 2000-01-26 Wagner, Fred A., III Extendable/retractable airfoil assembly for fixed wing aircraft
US20070034749A1 (en) 2005-08-12 2007-02-15 Wagner Fred A Iii Deployable airfoil assembly for aircraft
US8196863B2 (en) * 2007-01-04 2012-06-12 Airbus Operations Sas Aircraft horizontal stabilizer
GB2470603A (en) * 2009-05-29 2010-12-01 Rupert John Bickham Sweet-Escott Batten or rib arrangement for folding wing
US20140179535A1 (en) * 2011-06-14 2014-06-26 Eads Deutschland Gmbh Electric drive device for an aircraft
US9016623B2 (en) * 2011-11-30 2015-04-28 The Boeing Company Jam protection and alleviation for control surface linkage mechanisms
US20140339371A1 (en) * 2012-03-30 2014-11-20 W. Morrison Consulting Group, Inc. Long Range Electric Aircraft and Method of Operating Same
ES2435677A1 (es) 2013-07-05 2013-12-20 Jose Luis López Rodríguez Dispositivo de control, estabilización y sustentación aplicable a un móvil que se desplace a alta velocidad
KR101953892B1 (ko) * 2017-05-23 2019-03-04 한국항공우주연구원 수직이착륙 분산 추진형 항공기 및 이의 제어 방법
CN208915423U (zh) * 2018-10-25 2019-05-31 酷黑科技(北京)有限公司 一种飞行器

Also Published As

Publication number Publication date
ES1246309U (es) 2020-05-18
ES1246309Y (es) 2020-08-27

Similar Documents

Publication Publication Date Title
ES2953004T3 (es) Sistema de accionamiento de inclinación de las alas para aeronaves eléctricas de despegue y aterrizaje en vertical (VTOL)
US7946527B2 (en) Aircraft with fixed, swinging and folding wings
ES2970693T3 (es) Vehículo aéreo con componentes desplegables
JP7197178B2 (ja) 折り畳まれた翼のマルチローター
US11305863B1 (en) Hybrid lighter-than-air vehicle
ES2233806T3 (es) Un cono para el reabastecimiento de combustible en vuelo.
US10472058B2 (en) VTOL aircraft with step-up overlapping propellers
US10377465B2 (en) Hybrid lighter-than-air vehicle
ES2716601T3 (es) Ala y su aplicación
US3987984A (en) Semi-rigid aircraft wing
ES2289932B1 (es) Aeronave con sistema de vuelo convertible.
ES2711660B2 (es) Conjunto de tres alas compuestas para vehículos aéreos, acuáticos, terrestres o espaciales
US20080011897A1 (en) System and method for a flyable and roadable vehicle
ES2934135T3 (es) Aeronave VTOL con hélices elevadoras superpuestas
US9623954B2 (en) Hybrid lighter-than-air vehicle
ES2867625T3 (es) Aeronave con grupo sustentador romboédrico de geometría variable
US3140842A (en) Flexible wing aircraft
JP2007508998A (ja) テールブーム安定vtol機
ES2773598T3 (es) Dispositivo de borde de salida divergente deslizable
US4375280A (en) Free wing flyer
US2751172A (en) Flexible kite
US4667898A (en) Aircraft with single surface membranous airfoils
WO2021171096A1 (es) Avión de ala fija
ES2285510T3 (es) Ala rigida de sustentacion variable por despliegue de un ala flexible.
US3154269A (en) Deployable, inflatable ring-wing airfoil

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21719706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21719706

Country of ref document: EP

Kind code of ref document: A1