WO2021169563A1 - 近眼显示装置和增强现实设备 - Google Patents

近眼显示装置和增强现实设备 Download PDF

Info

Publication number
WO2021169563A1
WO2021169563A1 PCT/CN2020/140572 CN2020140572W WO2021169563A1 WO 2021169563 A1 WO2021169563 A1 WO 2021169563A1 CN 2020140572 W CN2020140572 W CN 2020140572W WO 2021169563 A1 WO2021169563 A1 WO 2021169563A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical waveguide
coupling
grating
display device
Prior art date
Application number
PCT/CN2020/140572
Other languages
English (en)
French (fr)
Inventor
杨军星
周振兴
马森
田依杉
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/309,835 priority Critical patent/US20220308343A1/en
Publication of WO2021169563A1 publication Critical patent/WO2021169563A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0075Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0026Wavelength selective element, sheet or layer, e.g. filter or grating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0129Head-up displays characterised by optical features comprising devices for correcting parallax
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0152Head-up displays characterised by mechanical features involving arrangement aiming to get lighter or better balanced devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/07Polarisation dependent

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a near-eye display device and augmented reality equipment.
  • near-eye display technology has been developing rapidly.
  • virtual reality virtual reality
  • AR augmented reality
  • VR virtual reality
  • AR augmented reality
  • Near-eye display technology is a technology that can project images directly into the eyes of the viewer, thereby achieving an immersive display experience.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art, and proposes a near-eye display device and an augmented reality device to alleviate the user's visual fatigue.
  • the present disclosure provides a near-eye display device, including: an optical waveguide; a coupling grating, which is arranged on the surface of the optical waveguide, and is used to couple received parallel light into the optical waveguide
  • a light outcoupling structure which is arranged on the surface of the optical waveguide member, is used to take out the light rays propagated through total reflection in the optical waveguide member to form the emitted light of the optical waveguide member; an optical lens , For receiving the exiting light, the optical lens does not change the exiting direction of the exiting light in the first polarization direction, and converges or diverges the exiting light in the second polarization direction.
  • the near-eye display device includes a plurality of the coupling gratings, and the near-eye display device further includes: a display screen corresponding to the coupling grating one-to-one; Projection component, the projection component is used to modulate the divergent light emitted from each position of the corresponding display screen into parallel light directed to the corresponding coupling grating, and the polarization direction of the parallel light modulated by a plurality of projection components includes the The first polarization direction and the second polarization direction.
  • the projection assembly includes: a convex lens, which is arranged between the corresponding display screen and the optical waveguide, the display screen is located on the focal plane of the convex lens; a polarizer, which is arranged Between the display screen and the optical waveguide, it is used to convert the received natural light into linearly polarized light; the polarization direction of the linearly polarized light converted by a plurality of polarizers includes the first polarization direction and the The second polarization direction.
  • the coupling grating is a reflective grating, which is located on a side of the optical waveguide away from the projection component.
  • the coupling grating is a transmissive grating, which is located between the optical waveguide and the projection component.
  • the number of the in-coupling gratings is two, and the light out-coupling structure is located between the two in-coupling gratings.
  • the light coupling-out structure includes: a composite grating for extracting light from each coupling grating that is coupled into the optical waveguide.
  • the composite grating is a reflective grating, which is arranged on the side of the optical waveguide away from the optical lens.
  • the composite grating is a transmissive grating, which is arranged between the optical waveguide and the optical lens.
  • the light out-coupling structure includes: a first out-coupling grating and a second out-coupling grating, the first out-coupling grating is located on a side of the optical waveguide away from the optical lens, For diffracting the light from one of the coupling gratings into the optical waveguide toward the optical lens, the diffracted light from the first coupling grating is directed toward the optical lens; the second coupling grating Located between the optical waveguide and the optical lens, it is used to diffract the light that is coupled into the optical waveguide by the other coupling-in grating, and the diffracted light from the second coupling-out grating is directed toward the optical Lens, the diffracted light of the first out-coupling grating and the diffracted light of the second out-coupling grating together form the outgoing light of the optical waveguide.
  • the coupling grating and the optical lens are located on the same side of the optical waveguide.
  • the optical lens is a liquid crystal lens.
  • it further includes a compensation lens, the compensation lens is located on the side of the optical waveguide away from the optical lens, the compensation lens does not change the direction of the light in the first polarization direction, and is The light in the second polarization direction diverges or converges.
  • the compensation lens is a liquid crystal lens.
  • the first polarization direction is the polarization direction of S-polarized light
  • the second polarization direction is the polarization direction of P-polarized light
  • embodiments of the present disclosure also provide an augmented reality device, including the near-eye display device described above.
  • FIG. 1 is a schematic diagram of a near-eye display device provided in some embodiments of the present disclosure.
  • FIG. 2 is a schematic diagram of a near-eye display device provided in some other embodiments of the present disclosure.
  • FIG. 3 is an optical path diagram of light from different positions of the display screen provided in some embodiments of the disclosure after passing through a convex lens.
  • FIG. 4 is a schematic diagram of modulation of light with different polarization directions by an optical lens provided in some embodiments of the disclosure.
  • Figure 5 is a schematic diagram of the imaging of the human eye under normal conditions.
  • Fig. 6 is a schematic diagram of imaging after an optical lens is set in front of the human eye.
  • Fig. 7 is a schematic diagram of imaging after an optical lens and a compensation lens are set in front of the human eye.
  • FIG. 8 is a schematic diagram of a near-eye display device provided in some other embodiments of the present disclosure.
  • FIG. 9 is a schematic diagram of a near-eye display device provided in some other embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram of a near-eye display device provided in some other embodiments of the present disclosure.
  • 3D display technologies include near-eye binocular parallax display technology, naked-eye binocular parallax display technology and multi-viewpoint display technology. Due to the lack of sufficient parallax images, these display technologies will cause visual convergence conflicts, that is, when users perceive 3D images , Is produced by forming different parallax images in the left and right eyes of humans.
  • the depth of focus (accomodation) produced by lens adjustment is always fixed on the display screen, and the convergence produced by eye movement (vergence) ) Depth will vary with the spatial position of the 3D object, which leads to inconsistency between the depth of focus and the depth of convergence, which leads to visual convergence and conflict problems, which in turn causes visual fatigue.
  • FIG. 1 is a schematic diagram of a near-eye display device provided in some embodiments of the present disclosure.
  • the near-eye display device includes: an optical waveguide 10 and a coupling grating 20 , The light out-coupling structure 30 and the optical lens 40.
  • the optical waveguide 10 is a slab waveguide for conducting light and at the same time supporting the coupling grating 20 and the light coupling-out structure 30.
  • the optical waveguide 10 is a transparent structure with a refractive index greater than that of air.
  • the optical waveguide 10 is a glass plate or a PMMA (polymethyl methacrylate) plate.
  • the optical waveguide 10 is a PMMA plate, the near-eye display device can be reduced The overall weight is conducive to wearing.
  • the coupling grating 20 is arranged on the surface of the optical waveguide 10 for coupling the received parallel light into the optical waveguide 10 for total reflection propagation.
  • the optical waveguide 10 has a first surface facing the human eye 80 and a second surface opposite to the first surface.
  • the coupling grating 20 may be provided on the first surface of the optical waveguide 10 or on the second surface. The surface only needs to be able to couple light into the optical waveguide 10 for total reflection and propagation.
  • the critical angle of total reflection of light propagating in the optical waveguide 10 can be determined according to the refractive index of the optical waveguide 10, and the design can be based on the critical angle of total reflection and the angle range of the parallel light incident on the grating 20.
  • the structure of the coupling grating 20 is such that after the light passes through the coupling grating 20, diffracted light is formed into the optical waveguide 10, and the incident angles of the diffracted light on the first surface and the second surface of the optical waveguide 10 are both greater than The above-mentioned critical angle of total reflection.
  • the light out-coupling structure 30 is arranged on the surface of the optical waveguide 10 and is used to take out the light propagating through total reflection in the optical waveguide 10 to form the outgoing light of the optical waveguide 10.
  • the coupling grating 20 can receive multiple parallel lights, and each parallel light is coupled by the coupling grating 20 into the optical waveguide 10 to propagate, and the parallel light is still one when taken out by the light coupling-out structure 30. Beams of parallel light; and, the exit angle of the parallel light may be the same as the incident angle of the incident light into the grating 20.
  • the optical lens 40 is used to receive the emitted light of the optical waveguide 10, wherein, for the emitted light in the first polarization direction, the optical lens 40 is equivalent to a transparent plane mirror, and does not change the emission direction of the emitted light in the first polarization direction; For the outgoing light in the polarization direction, the optical lens 40 can converge or diverge the outgoing light in the second polarization direction. As shown in FIG. 1, when the optical lens 40 condenses the emitted light in the second polarization direction, the emitted light in the second polarization direction passes through the optical lens 40 and then is condensed at the O point.
  • the optical lens 40 can diverge the emitted light in the second polarization direction.
  • the first polarization direction is orthogonal to the second polarization direction.
  • the first polarization direction is the polarization direction of S-polarized light
  • the second polarization direction is the polarization direction of P-polarized light.
  • two display modules can provide light to the two coupling gratings 20 respectively.
  • the display module can provide the coupling grating 20 with the first parallel light corresponding to the first image at the same time, and The second parallel light corresponding to the second image.
  • the polarization direction of the first parallel light is the first polarization direction
  • the polarization direction of the second parallel light is the second polarization direction.
  • the first image and the second image may be images of the same 3D object with different depths of field. In this way, after the first parallel light is totally reflected in the optical waveguide 10, it is taken out by the light out-coupling structure 30, and then directly passes through the optical lens 40 and enters the human eye 80, thereby forming an image at infinity in front.
  • the human eye 80 After the second parallel light is totally reflected and propagated in the optical waveguide 10, it is taken out by the light out-coupling structure 30, and then condensed by the optical lens 40 and then enters the human eye 80 to form an image at the front focal point, or the second parallel light is After the optical lens 40 diverges, it enters the human eye 80 to form an image at the intersection of the reverse extension line of the divergent light. Therefore, the human eye 80 can see two images at different depths of field at the same time, thereby realizing a 3D display effect, reducing the problem of visual convergence conflict during viewing, and thereby alleviating visual fatigue when viewing the human eye.
  • the light provided to the coupling grating 20 can also be provided by the same display module.
  • the display module alternately provides the same coupling grating 20 with the first parallel light corresponding to the first image and the second image.
  • the second parallel light when the switching speed of the first image and the second image is faster, for the human eye 80, it is equivalent to seeing two images at different depths of field at the same time, thereby alleviating the vision of the human eye when viewing fatigue.
  • the number of coupled gratings 20 is multiple. In the embodiments of the present disclosure, the number of coupled gratings 20 is two for description.
  • the light outcoupling structure 30 is located between the two incoupling gratings 20. The light coupled into the optical waveguide 10 by the two incoupling gratings 20 propagate toward the position of the light outcoupling structure 30 in the optical waveguide 10, and then by The optical coupling-out structure 30 is coupled out of the optical waveguide 10.
  • FIG. 2 is a schematic diagram of a near-eye display device provided in some other embodiments of the present disclosure.
  • the near-eye display device further includes: a display screen 50 corresponding to the coupling grating 20 one-to-one and one-to-one with the display screen 50 The corresponding projection assembly 60.
  • the display screen 50 is a liquid crystal display screen, an OLED (Organic Light-Emitting Diode, organic electroluminescent diode) display screen for displaying two-dimensional images, and the emitted light is natural light.
  • OLED Organic Light-Emitting Diode, organic electroluminescent diode
  • the projection component 60 is used to modulate the divergent light emitted from each position of the corresponding display screen 50 into parallel light directed to the corresponding coupling grating 20, and the polarization direction of the parallel light modulated by the plurality of projection components 60 includes the first polarization Direction and second polarization direction.
  • the projection assembly 60 includes: a convex lens 61 and a polarizer 62.
  • the convex lens 61 is disposed between the corresponding display screen 50 and the optical waveguide 10, and its optical axis may be parallel to the thickness direction of the optical waveguide 10.
  • the display screen 50 is located on the focal plane of the convex lens 61.
  • the convex lens 61 may be made of glass or PMMA material.
  • the polarizer 62 is used to convert the natural light it receives into linearly polarized light; the polarization direction of the linearly polarized light converted by the plurality of polarizers 62 includes a first polarization direction and a second polarization direction. For example, as shown in FIG.
  • the polarizer 62 is located between the convex lens 61 and the optical waveguide 10, the polarizer 62 on the left converts the light from the convex lens 61 into P-polarized light, and the polarizer 62 on the right will come from The light from the convex lens 61 is converted into S-polarized light.
  • the solid arrow without a dot indicates P-polarized light
  • the dashed line indicates P-polarized light
  • the solid arrow with a dot indicates natural light.
  • the specific position of the polarizer 62 in the embodiment of the present disclosure is not limited to the position shown in FIG. 2.
  • the polarizer 62 may also be disposed between the display screen 50 and the convex lens 61.
  • FIG. 2 only takes the light emitted from the center position of the display screen 50 as an example to illustrate a schematic diagram of the light after being refracted by the convex lens 61. However, it should be understood that the light emitted from each position of the display screen 50 will be formed after passing through the convex lens 61.
  • FIG. 3 is a light path diagram of light from different positions of the display screen provided in some embodiments of the present disclosure after passing through a convex lens. As shown in FIG. Three parallel lights are formed.
  • the coupling grating 20 is a reflective grating located on the side of the optical waveguide 10 away from the projection assembly 60.
  • the coupling grating 20 and the optical lens 40 are located on the same side of the optical waveguide 10, thereby improving the compactness of the structure of the near-eye display device.
  • the light coupling-out structure 30 includes a composite grating 31, and the composite grating 31 is used for extracting the light from each coupling grating 20 that is coupled into the optical waveguide 10.
  • the composite grating 31 can diffract the light rays propagating from two directions to the position where the composite grating 31 is located.
  • the composite grating 31 is a reflective grating, which is arranged on the side of the optical waveguide 10 away from the optical lens 40. The light propagating through total reflection in the optical waveguide 10 is diffracted by the composite grating 31, and the diffracted light passes through the optical waveguide 10 and is directed toward the optical lens 40.
  • the composite grating 31 is a transmissive grating, which is arranged on the side of the optical waveguide 10 facing the optical lens 40 so that the light propagating through total reflection in the optical waveguide 10 passes through the composite grating 31 and is directed to the optical lens 40.
  • FIG. 4 is a schematic diagram of the optical lens provided in some embodiments of the disclosure for modulating light with different polarization directions.
  • the optical lens 40 is a liquid crystal lens.
  • the liquid crystal lens includes two substrates 41 and a liquid crystal layer 42 located between the two substrates 41, and an electrode layer 43 is also provided on each substrate 41.
  • the liquid crystal layer 42 is provided with an electric field, thereby controlling the deflection direction of the liquid crystal, and thus the liquid crystal lens converges the linearly polarized light in the second polarization direction (the dotted arrow in FIG. 4) Or divergence, so that the linearly polarized light in the first polarization direction (the solid arrow in FIG. 4) can directly pass through the liquid crystal lens.
  • the ambient light in front can also enter the human eye 80 through the optical lens 40, so that the user can see the outside world while seeing the displayed image. Environment to achieve augmented reality effects.
  • the optical lens 40 will converge or diverge the light in the first polarization direction, so that the external environment seen by the human eye 80 becomes blurred.
  • Fig. 5 is the imaging principle diagram of the human eye under normal conditions
  • Fig. 6 is the imaging principle diagram after the optical lens is set in front of the human eye. After being refracted by the lens 81, it falls on the retina; as shown in FIG.
  • the optical lens 40 when the optical lens 40 is set in front of the human eye 80, and the optical lens 40 converges the polarization component of the second polarization direction in the ambient light, the external object X
  • the image in the human eye 80 is located in front of the retina, making the external environment viewed by the human eye 80 blurred.
  • the optical lens 40 diverges the polarization component of the second polarization direction in the ambient light, the image of the external object X in the human eye 80 is located behind the retina, and the external environment cannot be clearly seen.
  • the near-eye display device may further include: a compensation lens 70, which is located on the side of the optical waveguide 10 away from the optical lens 40, It does not change the direction of the light in the first polarization direction, and diverges or converges the light in the second polarization direction. Specifically, when the optical lens 40 is used to converge the light in the second polarization direction, the compensation lens 70 is used to diverge the light in the second polarization direction; when the optical lens 40 is used to diverge the light in the second polarization direction At this time, the compensation lens 70 is used to converge the light in the second polarization direction.
  • a compensation lens 70 which is located on the side of the optical waveguide 10 away from the optical lens 40, It does not change the direction of the light in the first polarization direction, and diverges or converges the light in the second polarization direction. Specifically, when the optical lens 40 is used to converge the light in the second polarization direction, the compensation lens 70 is used to diverge the light in the second polarization direction
  • FIG. 7 is a schematic diagram of imaging after an optical lens and a compensation lens are set in front of the human eye.
  • the optical lens 40 in FIG. 7 converges light in the second polarization direction, and the compensation lens 70 diverges light in the second polarization direction, in FIG. 7
  • the arrow indicates the polarization component of the second polarization direction in the ambient light.
  • the divergence effect of the compensation lens 70 and the convergence effect of the optical lens 40 are complementary, and the polarization component of the first polarization direction can directly pass through the optical lens 40 and the compensation lens 70 and enter the human eye.
  • both the light in the first polarization direction and the second polarization direction will fall on the retina, so that the human eye can see the external environment more clearly.
  • the optical lens 40 diverges the light in the second polarization direction and the compensation lens 70 converges the light in the second polarization direction, the human eye can also see the external environment more clearly.
  • the compensation lens 70 is a liquid crystal lens, and its structure is the same as that of the liquid crystal lens in FIG. 4. In this case, it is also possible to adjust the deflection direction of the liquid crystal so that the compensation lens 70 achieves a light-shielding effect. At this time, the human eye no longer sees the external environment, thereby achieving a virtual display effect.
  • the display process of the near-eye display device shown in FIG. 2 will be introduced.
  • the light emitted by the display screen 50 on the left passes through the convex lens 61 and the polarizer 62 to form parallel light of the P polarization state; at the same time, the light emitted by the display screen 50 on the right passes through the convex lens 61 and polarized light.
  • parallel light of the S polarization state is formed.
  • the parallel light of the P polarization state When the parallel light of the P polarization state is irradiated to the corresponding coupling grating 20, under the modulation of the coupling grating 20, it enters the optical waveguide 10 and undergoes total reflection propagation; the parallel light of the S polarization state is irradiated to the corresponding coupling After the grating 20, the total reflection propagation in the optical waveguide 10 is also performed.
  • the optical waveguide 10 is emitted under the modulation effect of the optical coupling-out structure 30.
  • the S-polarized light emitted from the optical waveguide 10 directly enters the human eye 80 through the optical lens 40, so that the human eye 80 can see the display image of the left display 50;
  • the P-polarized light emitted from the optical waveguide 10 After being converged or diverged by the optical lens 40, it enters the human eye 80, so that the human eye 80 can see the image displayed on the right display screen 50.
  • the external ambient light will also enter the human eye 80 through the compensation lens 70 and the optical lens 40, so that the human eye 80 can see the external environment.
  • FIG. 8 is a schematic diagram of a near-eye display device provided in some other embodiments of the present disclosure.
  • the near-eye display device also includes: an optical waveguide 10, two in-coupling gratings 20, a light out-coupling structure 30, The optical lens 40, the compensation lens 70, the display screen 50 corresponding to the coupling grating 20 one-to-one, and the projection assembly 60 corresponding to the coupling grating 20 one-to-one.
  • the coupling grating 20 is a transmissive grating.
  • the coupling grating 20 and the optical lens 40 are located on different sides of the optical waveguide 10.
  • FIG. 9 is a schematic diagram of a near-eye display device provided in some other embodiments of the present disclosure.
  • the near-eye display device also includes: an optical waveguide 10, two in-coupling gratings 20, and an optical out-coupling structure 30, The optical lens 40, the compensation lens 70, the display screen 50 corresponding to the coupling grating 20 one-to-one, and the projection assembly 60 corresponding to the coupling grating 20 one-to-one.
  • the light outcoupling structure 30 includes: a first outcoupling grating 32 and a second outcoupling grating 33.
  • the first out-coupling grating 32 is a reflective grating, which is located on the side of the optical waveguide 10 away from the optical lens 40, and is used to diffract the light from one of the in-coupling gratings 20 into the optical waveguide 10.
  • the diffracted light from the first coupling-out grating 32 is directed to the optical lens 40.
  • the second coupling-out grating 33 is a transmissive grating, which is located between the optical waveguide 10 and the optical lens 40, and is used to diffract the light that is coupled into the optical waveguide 10 by another coupling-in grating 20.
  • the second coupling-out grating 33 The diffracted light is directed to the optical lens 40.
  • the diffracted light of the first out-coupling grating 32 and the diffracted light of the second out-coupling grating 33 together form the outgoing light of the optical waveguide 10.
  • the first coupling-out grating 32 only modulates the light propagating from left to right, and does not modulate the light propagating from right to left; the second coupling-out grating 33 only modulates the light propagating from right to left.
  • the light propagating from the left plays a role of modulation, and the light propagating from left to right is not modulated.
  • the coupling-out grating 33 does not modulate this part of the light, so that the diffracted light from the first coupling-out grating 32 directly passes through the second coupling-out grating 33 and is directed toward the optical lens 40; the coupling-in grating 20 on the right is coupled into the optical waveguide 10 When the total reflection of the light propagates to the position of the second coupling-out grating 33, it is taken out by the second coupling-out grating 33.
  • FIG. 10 is a schematic diagram of a near-eye display device provided in some other embodiments of the present disclosure.
  • the near-eye display device shown in FIG. 10 has a similar structure to the near-eye display device shown in FIG. 20 is a transmissive grating, and each coupling grating 20 is located on the side of the optical waveguide 10 away from the optical lens 40.
  • the near-eye display device in the embodiments of the present disclosure is not limited to the above-mentioned structures in FIG. 2 and FIG. 8 to FIG. 10, and other structure forms may also be adopted.
  • the two coupling gratings 20 are both reflective gratings, which are located on the side of the optical waveguide 10 away from the projection assembly 60, and the coupling grating 20 and the optical lens 40 are located on different sides of the optical waveguide 10.
  • one of the coupled gratings 20 is a transmissive grating, which is located between the corresponding projection component 60 and the optical waveguide 10; the other coupled grating 20 is a reflective lens, which is located on the optical waveguide 10 away from the projection component 60 On the side.
  • the embodiments of the present disclosure also provide an augmented reality device, which includes the near-eye display device described above.
  • the augmented reality device may further include a wearing housing, and the near-eye display device is installed on the wearing housing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)

Abstract

一种近眼显示装置,包括:光波导件(10);耦入光栅(20),其设置在光波导件(10)的表面,用于将接收到的平行光耦入光波导件(10)内进行全反射传播;光耦出结构(30),其设置在光波导件(10)的表面,用于将光波导件(10)内全反射传播的光线取出,形成光波导件(10)的出射光;光学透镜(40),用于接收出射光,光学透镜(40)不改变第一偏振方向的出射光的出射方向,并对第二偏振方向的出射光进行会聚或发散。还提供一种增强现实设备。

Description

近眼显示装置和增强现实设备 技术领域
本公开涉及显示技术领域,具体涉及一种近眼显示装置和增强现实设备。
背景技术
近年来,近眼显示技术正飞速发展,其中,虚拟现实(Virtue Reality,VR)和增强现实(Augmentde Reality,AR)技术最具代表性,为人们带来了极佳的视听体验。近眼显示技术是可将图像直接投射到观看者眼中的技术,从而实现浸入式的显示体验。
现有的近眼显示装置通常存在视觉辐辏冲突(Accommodation Vergence Conflict)问题,容易导致用户在观看时产生视觉疲劳。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提出了一种近眼显示装置和增强现实设备,以减缓用户的视觉疲劳。
为了实现上述目的,本公开提供一种近眼显示装置,包括:光波导件;耦入光栅,其设置在所述光波导件的表面,用于将接收到的平行光耦入所述光波导件内进行全反射传播;光耦出结构,其设置在所述光波导件的表面,用于将所述光波导件内全反射传播的光线取出,形成所述光波导件的出射光;光学透镜,用于接收所述出射光,所述光学透镜不改变第一偏振方向的出射光的出射方向,并对第二偏振方向的出射光进行会聚或发散。
在一些实施例中,所述近眼显示装置包括多个所述耦入光栅,所述近眼显示装置还包括:与所述耦入光栅一一对应的显示屏;与所述显示屏一一对应的投影组件,所述投影组件用于将相应的显示屏各位置所发射的发散光调制为射向相应的耦入光栅的平行光,多个投影组 件所调制成的平行光的偏振方向包括所述第一偏振方向和所述第二偏振方向。
在一些实施例中,所述投影组件包括:凸透镜,其设置在相应的所述显示屏与所述光波导件之间,所述显示屏位于所述凸透镜的焦平面上;偏振器,其设置在所述显示屏与所述光波导件之间,用于将接收到的自然光转换为线偏振光;多个偏振器所转换成的线偏振光的偏振方向包括所述第一偏振方向和所述第二偏振方向。
在一些实施例中,所述耦入光栅为反射式光栅,其位于所述光波导件背离所述投影组件的一侧。
在一些实施例中,所述耦入光栅为透射式光栅,其位于所述光波导件与所述投影组件之间。
在一些实施例中,所述耦入光栅的数量为两个,所述光耦出结构位于两个所述耦入光栅之间。
在一些实施例中,所述光耦出结构包括:复合光栅,所述复合光栅用于将每个耦入光栅耦入所述光波导件的光线取出。
在一些实施例中,所述复合光栅为反射式光栅,其设置在所述光波导件背离所述光学透镜的一侧。
在一些实施例中,所述复合光栅为透射式光栅,其设置在所述光波导件与所述光学透镜之间。
在一些实施例中,所述光耦出结构包括:第一耦出光栅和第二耦出光栅,所述第一耦出光栅位于所述光波导件背离所述所述光学透镜的一侧,用于对其中一个所述耦入光栅耦入所述光波导件的光线朝所述光学透镜衍射,所述第一耦出光栅的衍射光线射向所述光学透镜;所述第二耦出光栅位于所述光波导件与所述光学透镜之间,用于对另一个所述耦入光栅耦入所述光波导件的光线衍射,所述第二耦出光栅的衍射光线射向所述光学透镜,所述第一耦出光栅的衍射光线和所述 第二耦出光栅的衍射光线共同形成所述光波导件的出射光。
在一些实施例中,所述耦入光栅与所述光学透镜位于所述光波导件的同一侧。
在一些实施例中,所述光学透镜为液晶透镜。
在一些实施例中,还包括补偿透镜,所述补偿透镜位于所述光波导件背离所述光学透镜的一侧,所述补偿透镜不改变所述第一偏振方向的光线的方向,并对所述第二偏振方向的光线进行发散或会聚。
在一些实施例中,所述补偿透镜为液晶透镜。
在一些实施例中,所述第一偏振方向为S偏振光的偏振方向,所述第二偏振方向为P偏振光的偏振方向。
为了实现上述目的,本公开实施例还提供一种增强现实设备,包括上文所述的近眼显示装置。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为本公开的一些实施例中提供的近眼显示装置的示意图。
图2为本公开的另一些实施例中提供的近眼显示装置的示意图。
图3为本公开的一些实施例中提供的显示屏不同位置的光线经过凸透镜后的光路图。
图4为本公开的一些实施例中提供的光学透镜对不同偏振方向的光线的调制示意图。
图5为正常情况下人眼的成像原理图。
图6为人眼前方设置光学透镜后的成像原理图。
图7为人眼前方设置光学透镜和补偿透镜后的成像原理图。
图8为本公开的另一些实施例中提供的近眼显示装置的示意图。
图9为本公开的另一些实施例中提供的近眼显示装置的示意图。
图10为本公开的另一些实施例中提供的近眼显示装置的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
这里用于描述本公开的实施例的术语并非旨在限制和/或限定本公开的范围。例如,除非另外定义,本公开使用的技术术语或者科学术语应当为本领域内具有一般技能的人士所理解的通常意义。应该理解的是,本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。除非上下文另外清楚地指出,否则单数形式“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。
传统的3D显示技术包括近眼双目视差显示技术、裸眼式双目视差显示技术和多视点显示技术,这些显示技术由于缺少足够的视差图像会出现视觉辐辏冲突问题,即,用户在感知3D图像时,是通过在人的左右眼形成不同的视差图像而产生,当人们观看3D图像时,由晶状体调节产生的聚焦(accomodation)深度一直固定在显示屏上,而由眼部运动产生的会聚(vergence)深度会随着3D物体所在的空间位置而变化,这就导致聚焦深度与会聚深度不一致,从而引起视觉辐辏冲突问题,进而引起视觉疲劳。
本公开实施例提供一种近眼显示装置,图1为本公开的一些实施例中提供的近眼显示装置的示意图,如图1所示,该近眼显示装置包括:光波导件10、耦入光栅20、光耦出结构30和光学透镜40。
可选地,光波导件10为平板波导,用于进行光的传导,同时起到对耦入光栅20和光耦出结构30的支撑作用。光波导件10为折射率大 于空气的透明结构,例如,光波导件10为玻璃板或PMMA(聚甲基丙烯酸甲酯)板,当光波导件10为PMMA板时,可以减轻近眼显示装置的整体重量,有利于佩戴。
耦入光栅20设置在光波导件10的表面,用于将接收到的平行光耦入所述光波导件10内进行全反射传播。可选地,光波导件10具有朝向人眼80的第一表面和与第一表面相对的第二表面,耦入光栅20可以设置在光波导件10的第一表面,也可以设置在第二表面,只要能够将光线耦入光波导件10内进行全反射传播即可。在实际应用中,可以根据光波导件10的折射率确定光线在光波导件10内传播的全反射临界角,并根据该全反射临界角以及射向耦入光栅20的平行光的角度范围设计耦入光栅20的结构,以使光线经过耦入光栅20后,形成射入光波导件10的衍射光线,且衍射光线射向光波导件10的第一表面和第二表面的入射角均大于上述全反射临界角。
光耦出结构30设置在光波导件10的表面,用于将光波导件10内全反射传播的光线取出,形成光波导件10的出射光。需要说明的是,耦入光栅20可以接收到多束平行光,每束平行光被耦入光栅20耦入至光波导件10内传播,平行光被光耦出结构30取出时,仍然是一束平行光;并且,该平行光的出射角度可以与射向耦入光栅20的入射角度相同。
光学透镜40用于接收光波导件10的出射光,其中,对于第一偏振方向的出射光,光学透镜40相当于透明的平面镜,不改变第一偏振方向的出射光的出射方向;对于第二偏振方向的出射光,光学透镜40可以对第二偏振方向的出射光进行会聚或发散。如图1所示,当光学透镜40对第二偏振方向的出射光进行会聚时,第二偏振方向的出射光经过光学透镜40后会聚在O点。需要说明的是,本公开的附图中仅以光学透镜40对第二偏振方向的出射光进行会聚为例,对近眼显示装置进行示意说明,但此并不构成对本公开的限制,在实际应用中,可以使光学透镜40对第二偏振方向的出射光进行发散。
在本公开的一些实施例中,第一偏振方向与第二偏振方向正交。 例如,第一偏振方向为S偏振光的偏振方向,第二偏振方向为P偏振光的偏振方向。
本公开实施例中,可以由两个显示模组分别向两个耦入光栅20提供光线,例如,显示模组可以同时向耦入光栅20提供与第一图像对应的第一平行光,以及与第二图像对应的第二平行光。其中,第一平行光的偏振方向为第一偏振方向,第二平行光的偏振方向为第二偏振方向,第一图像和第二图像可以为同一3D物体不同景深的图像。这样,第一平行光在光波导件10内全反射穿过后,被光耦出结构30取出,进而直接穿过光学透镜40进入人眼80,从而在前方无穷远处成像。第二平行光在光波导件10内全反射传播后,被光耦出结构30取出,进而被光学透镜40会聚后再进入人眼80,从而在前方焦点处成像,或者,第二平行光被光学透镜40发散后再进入人眼80,从而在发散光线的反向延长线相交处成像。因此,人眼80可以同时看到两个不同景深处的图像,从而实现3D显示效果,并减少观看时出现的视觉辐辏冲突问题,进而缓解人眼观看时的视觉疲劳。
当然,提供给耦入光栅20的光线也可以由同一个显示模组提供,例如,显示模组交替向同一个耦入光栅20提供与第一图像对应的第一平行光,以及与第二图像对应的第二平行光,当第一图像和第二图像的切换速度较快时,对于人眼80而言,相当于同时看到两个不同景深处的图像,进而缓解人眼观看时的视觉疲劳。
在一些实施例中,如图1所示,耦入光栅20的数量为多个,在本公开实施例中,均以耦入光栅20的数量为两个进行说明。光耦出结构30位于两个耦入光栅20之间,两个耦入光栅20所耦入光波导件10内的光线在光波导件10内相向传播至光耦出结构30的位置,进而由光耦出结构30耦合出光波导件10内。
图2为本公开的另一些实施例中提供的近眼显示装置的示意图,如图2所示,近眼显示装置还包括:与耦入光栅20一一对应的显示屏50以及与显示屏50一一对应的投影组件60。其中,显示屏50为液晶显示屏、OLED(Organic Light-Emitting Diode,有机电致发光二极管) 显示屏等用于显示二维图像的显示屏,其出射的光线为自然光。投影组件60用于将相应的显示屏50各位置所发射的发散光调制为射向相应的耦入光栅20的平行光,多个投影组件60所调制成的平行光的偏振方向包括第一偏振方向和第二偏振方向。
在一些实施例中,投影组件60包括:凸透镜61和偏振器62。凸透镜61设置在相应的显示屏50与光波导件10之间,其光轴可以与光波导件10的厚度方向平行。显示屏50位于凸透镜61的焦平面上。凸透镜61可以采用玻璃制成,或者采用PMMA材料制成。偏振器62用于将其接收到的自然光转换为线偏振光;多个偏振器62所转换成的线偏振光的偏振方向包括第一偏振方向和第二偏振方向。例如,如图2所示,偏振器62位于凸透镜61与光波导件10之间,左侧的偏振器62将来自于凸透镜61的光学转换为P偏振光,右侧的偏振器62将来自于凸透镜61的光线转换为S偏振光。图2中,未带圆点的实线箭头表示P偏振光,虚线表示P偏振光,带有圆点的实线箭头表示自然光。
需要说明的是,本公开实施例中偏振器62的具体位置并不限定为图2中所示位置,例如,偏振器62也可以设置在显示屏50与凸透镜61之间。
图2中仅以显示屏50中心位置所发射的光线为例,示意出光线经过凸透镜61折射后的示意图,但应当理解的是,显示屏50每个位置发射的光线经过凸透镜61后,都会形成一束平行光。图3为本公开的一些实施例中提供的显示屏不同位置的光线经过凸透镜后的光路图,如图3所示,显示屏50两个边缘位置和中心位置所发射的光线经过凸透镜61后,形成三束平行光,三束平行光照射至耦入光栅20所在平面时,在该平面上形成交叠区域C,耦入光栅20至少应覆盖该交叠区域C,从而可以接收到显示屏50各位置所发射的光线,进而使得人眼80可以看到显示屏50各位置的显示图像。
在一些实施例中,如图2所示,耦入光栅20为反射式光栅,其位于光波导件10背离投影组件60的一侧。耦入光栅20与光学透镜40位于光波导件10的同一侧,从而提高近眼显示装置结构的紧凑性。
光耦出结构30包括复合光栅31,复合光栅31用于将每个耦入光栅20耦入光波导件10的光线取出。也就是说,复合光栅31对从两个方向传播至该复合光栅31所在位置的光线均可以进行衍射。在一具体示例中,该复合光栅31为反射式光栅,其设置在光波导件10背离光学透镜40的一侧。光波导件10内全反射传播的光线被复合光栅31衍射,衍射光线穿过光波导件10射向光学透镜40。或者,该复合光栅31为透射式光栅,其设置在光波导件10朝向光学透镜40的一侧,以使光波导件10内全反射传播的光线穿过复合光栅31射向光学透镜40。
图4为本公开的一些实施例中提供的光学透镜对不同偏振方向的光线的调制示意图,如图4所示,在一些实施例中,光学透镜40为液晶透镜。具体地,液晶透镜包括两个基板41和位于两个基板41之间的液晶层42,每个基板41上还设置有电极层43。通过向两个电极层43施加电压,来为液晶层42提供电场,从而控制液晶的偏转方向,进而使液晶透镜对第二偏振方向的线偏振光(如图4中的虚线箭头)起到会聚或发散作用,而使第一偏振方向的线偏振光(如图4中的实线箭头)可以直接穿过液晶透镜。
在本公开实施例中,显示屏50的光线进入人眼80时,前方的外界环境光也可以通过光学透镜40进入人眼80,从而使用户在看到显示图像的同时,还可以看到外界环境,实现增强现实效果。但光学透镜40会对第一偏振方向的光线起到会聚或发散作用,从而使人眼80观看到的外界环境变得模糊。图5为正常情况下人眼的成像原理图,图6为人眼前方设置光学透镜后的成像原理图,如图5所示,人眼80在正常情况下观看外界物体X时,物体X的光线经过晶状体81折射后落在视网膜上;如图6所示,当人眼80前方设置光学透镜40、且光学透镜40对环境光中第二偏振方向的偏振分量起到会聚作用时,外界物体X在人眼80中的像位于视网膜前方,使人眼80观看到的外界环境变得模糊。同理,当光学透镜40对环境光中第二偏振方向的偏振分量起到发散作用时,外界物体X在人眼80中的像位于视网膜后方,同样无法清晰看到外界环境。
为了外界物体能够在人眼中清晰成像,在一些实施例中,如图2所示,近眼显示装置还可以包括:补偿透镜70,该补偿透镜70位于光波导件10远离光学透镜40的一侧,其不改变第一偏振方向的光线的方向,并对第二偏振方向的光线进行发散或会聚。具体地,当光学透镜40用于对第二偏振方向的光线进行会聚时,补偿透镜70用于对第二偏振方向的光线进行发散;当光学透镜40用于对第二偏振方向的光线进行发散时,补偿透镜70用于对第二偏振方向的光线进行会聚。图7为人眼前方设置光学透镜和补偿透镜后的成像原理图,图7中的光学透镜40对第二偏振方向的光线进行会聚,补偿透镜70对第二偏振方向的光线进行发散,图7中的箭头表示外界环境光中第二偏振方向的偏振分量。对于第二偏振方向的偏振分量而言,补偿透镜70的发散效果和光学透镜40的会聚效果形成互补,而第一偏振方向的偏振分量可以直接透过光学透镜40和补偿透镜70进入人眼,因此,第一偏振方向和第二偏振方向的光线均会落在视网膜上,使得人眼可以更清楚地看到外界环境。同理,当光学透镜40对第二偏振方向的光线进行发散、补偿透镜70对第二偏振方向的光线进行会聚时,同样也可以使人眼更清楚地看到外界环境。
在一具体示例中,补偿透镜70为液晶透镜,其结构与图4中的液晶透镜的结构相同。这种情况下,还可以通过调节液晶的偏转方向,使得补偿透镜70达到遮光效果,此时,人眼不再看到外界的环境,从而实现虚拟显示效果。
下面以第一偏振方向的光线为S偏振光、第二偏振方向的光线为P偏振光为例,对图2中所示的近眼显示装置的显示过程进行介绍。如图2所示,左侧的显示屏50所发出的光线经过凸透镜61和偏振器62后,形成P偏振态的平行光;同时,右侧的显示屏50所发出的光线经过凸透镜61和偏振器62后,形成S偏振态的平行光。P偏振态的平行光照射至相应的耦入光栅20时,在耦入光栅20的调制作用下,进入光波导件10内并进行全反射传播;S偏振态的平行光照射至相应的耦入光栅20后,同样在光波导件10内进行全反射传播。并且,S偏振光和P偏振光相向传播至光耦出结构30时,在光耦出结构30的 调制作用下射出光波导件10。其中,从光波导件10出射的S偏振光直接透过光学透镜40进入人眼80,从而使人眼80看到左侧显示屏50的显示图像;从光波导件10出射后的P偏振光被光学透镜40会聚或发散后进入人眼80,从而使人眼80看到右侧显示屏50的显示图像。与此同时,外界环境光也会经过补偿透镜70和光学透镜40进入人眼80,从而使人眼80看到外界环境。
图8为本公开的另一些实施例中提供的近眼显示装置的示意图,如图8所示,该近眼显示装置同样包括:光波导件10、两个耦入光栅20、光耦出结构30、光学透镜40、补偿透镜70、与耦入光栅20一一对应的显示屏50以及与耦入光栅20一一对应的投影组件60。与图2所示的结构不同的是,在图8所示的近眼显示装置中,耦入光栅20为透射式光栅,两个耦入光栅20以及光耦出结构30位于光波导件10的同一侧,耦入光栅20与光学透镜40位于光波导件10的不同侧。
图9为本公开的另一些实施例中提供的近眼显示装置的示意图,如图9所示,该近眼显示装置同样包括:光波导件10、两个耦入光栅20、光耦出结构30、光学透镜40、补偿透镜70、与耦入光栅20一一对应的显示屏50以及与耦入光栅20一一对应的投影组件60。与图2所示的结构不同的是,在图9所示的近眼显示装置中,光耦出结构30包括:第一耦出光栅32和第二耦出光栅33。第一耦出光栅32为反射式光栅,其位于光波导件10背离光学透镜40的一侧,用于对其中一个耦入光栅20耦入光波导件10的光线衍射。第一耦出光栅32的衍射光线射向光学透镜40。第二耦出光栅33为透射式光栅,其位于光波导件10与光学透镜40之间,用于对另一个耦入光栅20耦入光波导件10的光线衍射,第二耦出光栅33的衍射光线射向光学透镜40。第一耦出光栅32的衍射光线和第二耦出光栅33的衍射光线共同形成光波导件10的出射光。
如图9所示,第一耦出光栅32只对从左到右传播的光线起到调制作用,而对从右到左传播的光线不进行调制;第二耦出光栅33只对从右到左传播的光线起到调制作用,而对从左到右传播的光线不进行调 制。左边的耦入光栅20耦入光波导件10的光线全反射传播至第一耦出光栅32的位置时,被第一耦出光栅32衍射,形成射向光学透镜40的衍射光线,而第二耦出光栅33对这部分光线不进行调制,从而使第一耦出光栅32的衍射光线直接穿过第二耦出光栅33射向光学透镜40;右边的耦入光栅20耦入光波导件10的光线全反射传播至第二耦出光栅33的位置时,被第二耦出光栅33取出。
图10为本公开的另一些实施例中提供的近眼显示装置的示意图,图10所示的近眼显示装置与图9所示的近眼显示装置结构类似,区别仅在于:图10中的耦入光栅20为透射式光栅,每个耦入光栅20位于光波导件10背离光学透镜40的一侧。
需要说明的是,本公开实施例中近眼显示装置不限于上述图2、图8至图10中的结构,也可以采用其他结构形式。例如,两个耦入光栅20均为反射式光栅,其位于光波导件10背离投影组件60的一侧,耦入光栅20和光学透镜40位于光波导件10的不同侧。又例如,其中一个耦入光栅20为透射式光栅,其位于相应的投影组件60与光波导件10之间;另一个耦入光栅20为反射式透镜,其位于光波导件10背离投影组件60的一侧。
本公开实施例还提供一种增强现实设备,其包括上文所述的近眼显示装置。另外,该增强现实设备还可以包括佩戴壳体,近眼显示装置安装在佩戴壳体上。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (16)

  1. 一种近眼显示装置,其中,包括:
    光波导件;
    耦入光栅,其设置在所述光波导件的表面,用于将接收到的平行光耦入所述光波导件内进行全反射传播;
    光耦出结构,其设置在所述光波导件的表面,用于将所述光波导件内全反射传播的光线取出,形成所述光波导件的出射光;
    光学透镜,用于接收所述出射光,所述光学透镜不改变第一偏振方向的出射光的出射方向,并对第二偏振方向的出射光进行会聚或发散。
  2. 根据权利要求1所述的近眼显示装置,其中,所述近眼显示装置包括多个所述耦入光栅,所述近眼显示装置还包括:
    与所述耦入光栅一一对应的显示屏;
    与所述显示屏一一对应的投影组件,所述投影组件用于将相应的显示屏各位置所发射的发散光调制为射向相应的耦入光栅的平行光,多个投影组件所调制成的平行光的偏振方向包括所述第一偏振方向和所述第二偏振方向。
  3. 根据权利要求2所述的近眼显示装置,其中,所述投影组件包括:
    凸透镜,其设置在相应的所述显示屏与所述光波导件之间,所述显示屏位于所述凸透镜的焦平面上;
    偏振器,其设置在所述显示屏与所述光波导件之间,用于将接收到的自然光转换为线偏振光;多个偏振器所转换成的线偏振光的偏振方向包括所述第一偏振方向和所述第二偏振方向。
  4. 根据权利要求2所述的近眼显示装置,其中,所述耦入光栅为反射式光栅,其位于所述光波导件背离所述投影组件的一侧。
  5. 根据权利要求2所述的近眼显示装置,其中,所述耦入光栅为透射式光栅,其位于所述光波导件与所述投影组件之间。
  6. 根据权利要求2至5中任意一项所述的近眼显示装置,其中,所述耦入光栅的数量为两个,所述光耦出结构位于两个所述耦入光栅之间。
  7. 根据权利要求6所述的近眼显示装置,其中,所述光耦出结构包括:复合光栅,所述复合光栅用于将每个耦入光栅耦入所述光波导件的光线取出。
  8. 根据权利要求7所述的近眼显示装置,其中,所述复合光栅为反射式光栅,其设置在所述光波导件背离所述光学透镜的一侧。
  9. 根据权利要求7所述的近眼显示装置,其中,所述复合光栅为透射式光栅,其设置在所述光波导件与所述光学透镜之间。
  10. 根据权利要求6所述的近眼显示装置,其中,所述光耦出结构包括:第一耦出光栅和第二耦出光栅,
    所述第一耦出光栅位于所述光波导件背离所述所述光学透镜的一侧,用于对其中一个所述耦入光栅耦入所述光波导件的光线衍射,所述第一耦出光栅的衍射光线射向所述光学透镜;
    所述第二耦出光栅位于所述光波导件与所述光学透镜之间,用于对另一个所述耦入光栅耦入所述光波导件的光线衍射,所述第二耦出 光栅的衍射光线射向所述光学透镜,所述第一耦出光栅的衍射光线和所述第二耦出光栅的衍射光线共同形成所述光波导件的出射光。
  11. 根据权利要求1至5中任意一项所述的近眼显示装置,其中,所述耦入光栅与所述光学透镜位于所述光波导件的同一侧。
  12. 根据权利要求1至5中任意一项所述的近眼显示装置,其中,所述光学透镜为液晶透镜。
  13. 根据权利要求1至5中任意一项所述的近眼显示装置,其中,还包括补偿透镜,所述补偿透镜位于所述光波导件背离所述光学透镜的一侧,所述补偿透镜不改变所述第一偏振方向的光线的方向,并对所述第二偏振方向的光线进行发散或会聚。
  14. 根据权利要求13所述的近眼显示装置,其中,所述补偿透镜为液晶透镜。
  15. 根据权利要求1至5中任意一项所述的近眼显示装置,其中,所述第一偏振方向为S偏振光的偏振方向,所述第二偏振方向为P偏振光的偏振方向。
  16. 一种增强现实设备,其中,包括权利要求1至15中任意一项所述的近眼显示装置。
PCT/CN2020/140572 2020-02-25 2020-12-29 近眼显示装置和增强现实设备 WO2021169563A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/309,835 US20220308343A1 (en) 2020-02-25 2020-12-29 Near-to-eye display device and augmented reality apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010115103.8A CN111158153B (zh) 2020-02-25 2020-02-25 近眼显示装置和增强现实设备
CN202010115103.8 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021169563A1 true WO2021169563A1 (zh) 2021-09-02

Family

ID=70566404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140572 WO2021169563A1 (zh) 2020-02-25 2020-12-29 近眼显示装置和增强现实设备

Country Status (3)

Country Link
US (1) US20220308343A1 (zh)
CN (1) CN111158153B (zh)
WO (1) WO2021169563A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791470A (zh) * 2021-09-24 2021-12-14 北京枭龙科技有限公司 共振光栅波导结构及近眼显示装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111158153B (zh) * 2020-02-25 2022-06-24 京东方科技集团股份有限公司 近眼显示装置和增强现实设备
CN111413764A (zh) * 2020-05-22 2020-07-14 宋建明 无源亮度增强方法及波导光栅无源亮度能量叠加增强装置
CN114815234A (zh) * 2021-01-18 2022-07-29 京东方科技集团股份有限公司 显示装置、现实增强设备以及显示方法
CN112987306B (zh) * 2021-02-25 2023-04-11 福州京东方光电科技有限公司 增强现实显示设备、体全息光波导结构及其制备方法
CN113050281A (zh) * 2021-02-28 2021-06-29 南昌三极光电有限公司 一种光学系统及混合现实设备
CN114089531B (zh) * 2021-11-16 2022-08-09 浙江大学 一种基于反射式偏振复用液晶透镜的双目波导显示方法
CN114265138A (zh) * 2021-12-16 2022-04-01 江西凤凰光学科技有限公司 一种可消除彩虹效应的衍射光波导装置
CN114326123B (zh) * 2021-12-27 2023-03-21 北京灵犀微光科技有限公司 一种近眼显示装置
CN114002849B (zh) * 2022-01-04 2022-04-08 南昌虚拟现实研究院股份有限公司 一种衍射光波导显示装置
CN115494649B (zh) * 2022-11-16 2023-01-31 深圳惠牛科技有限公司 增强现实显示装置屈光度调节方法及增强现实显示装置
CN115933205A (zh) * 2023-02-24 2023-04-07 北京灵犀微光科技有限公司 一种光波导近眼显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581820B2 (en) * 2012-06-04 2017-02-28 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
CN107966819A (zh) * 2017-12-27 2018-04-27 北京灵犀微光科技有限公司 波导显示装置
CN108292042A (zh) * 2015-11-16 2018-07-17 微软技术许可有限责任公司 在使用偏振灵敏光栅的近眼显示器中的彩虹效应去除
CN108474956A (zh) * 2015-12-29 2018-08-31 微软技术许可有限责任公司 具有可变聚焦的增强现实显示系统
CN110471185A (zh) * 2019-08-28 2019-11-19 瑞声通讯科技(常州)有限公司 波导增强现实显示装置
CN110515209A (zh) * 2019-08-28 2019-11-29 瑞声通讯科技(常州)有限公司 基于波导的增强现实显示装置
CN111158153A (zh) * 2020-02-25 2020-05-15 京东方科技集团股份有限公司 近眼显示装置和增强现实设备

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205643869U (zh) * 2016-05-16 2016-10-12 成都理想境界科技有限公司 一种用于增强现实的平面波导光学装置及增强现实设备
CN107561696A (zh) * 2016-07-01 2018-01-09 成都理想境界科技有限公司 一种近眼显示系统、虚拟现实设备和增强现实设备
KR102568792B1 (ko) * 2017-12-04 2023-08-21 삼성전자주식회사 회절 광학 렌즈를 구비한 다중 영상 디스플레이 장치
CN108803022A (zh) * 2018-02-13 2018-11-13 成都理想境界科技有限公司 单眼大视场近眼显示设备及双目大视场近眼显示设备
CN110297331A (zh) * 2018-03-23 2019-10-01 京东方科技集团股份有限公司 显示装置及显示方法
CN110376737B (zh) * 2019-05-28 2022-09-30 京东方科技集团股份有限公司 光学显示系统、显示控制装置和增强现实设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9581820B2 (en) * 2012-06-04 2017-02-28 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
CN108292042A (zh) * 2015-11-16 2018-07-17 微软技术许可有限责任公司 在使用偏振灵敏光栅的近眼显示器中的彩虹效应去除
CN108474956A (zh) * 2015-12-29 2018-08-31 微软技术许可有限责任公司 具有可变聚焦的增强现实显示系统
CN107966819A (zh) * 2017-12-27 2018-04-27 北京灵犀微光科技有限公司 波导显示装置
CN110471185A (zh) * 2019-08-28 2019-11-19 瑞声通讯科技(常州)有限公司 波导增强现实显示装置
CN110515209A (zh) * 2019-08-28 2019-11-29 瑞声通讯科技(常州)有限公司 基于波导的增强现实显示装置
CN111158153A (zh) * 2020-02-25 2020-05-15 京东方科技集团股份有限公司 近眼显示装置和增强现实设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113791470A (zh) * 2021-09-24 2021-12-14 北京枭龙科技有限公司 共振光栅波导结构及近眼显示装置

Also Published As

Publication number Publication date
CN111158153A (zh) 2020-05-15
CN111158153B (zh) 2022-06-24
US20220308343A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
WO2021169563A1 (zh) 近眼显示装置和增强现实设备
JP7190337B2 (ja) 回折光学レンズを具備した多重映像ディスプレイ装置
US10732415B2 (en) Substrate-guide optical device
US11119322B2 (en) Imaging display system
EP2788809B1 (en) Compact illumination module for head mounted display
CN110543022B (zh) 一种增强现实装置及穿戴设备
CN107247333B (zh) 可切换显示模式的显示系统
EP2142953B1 (en) A collimating optical device and system
CN110300905B (zh) 用于具有集成的偏振器的显示设备的方法和系统
WO2019041812A1 (zh) 显示系统和显示方法
US11022799B2 (en) Projector-combiner display with beam replication
CN104380177A (zh) 定向显示装置中的偏振恢复
US20210325763A1 (en) Display apparatus and controlling method thereof
US20230152592A1 (en) Augmented reality display device
WO2023114113A1 (en) Waveguide with polarization volume hologram grating
US20230107434A1 (en) Geometrical waveguide illuminator and display based thereon
US20220299776A1 (en) Display apparatus including combiner having asymmetric magnification
CN118043589A (zh) 几何波导照明器和基于该几何波导照明器的显示器
CN116762024A (zh) 具有透明照明器的显示设备
TW202319790A (zh) 幾何波導照明器及基於其之顯示器
WO2023039124A1 (en) Lightguide with radial pupil replication and visual display based thereon
TW202331348A (zh) 具有徑向光瞳複製的光導及基於其之視覺顯示器
IL182705A (en) Compact optical component in conductive substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920824

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920824

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20920824

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20920824

Country of ref document: EP

Kind code of ref document: A1