WO2021169324A1 - Système de cristallisation par évaporation sous pression atmosphérique à basse température à faible émission d'énergie et son procédé de fonctionnement - Google Patents

Système de cristallisation par évaporation sous pression atmosphérique à basse température à faible émission d'énergie et son procédé de fonctionnement Download PDF

Info

Publication number
WO2021169324A1
WO2021169324A1 PCT/CN2020/121316 CN2020121316W WO2021169324A1 WO 2021169324 A1 WO2021169324 A1 WO 2021169324A1 CN 2020121316 W CN2020121316 W CN 2020121316W WO 2021169324 A1 WO2021169324 A1 WO 2021169324A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
heat exchanger
condensing
evaporation
evaporation chamber
Prior art date
Application number
PCT/CN2020/121316
Other languages
English (en)
Chinese (zh)
Inventor
王晓龙
郜时旺
刘练波
许世森
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2021169324A1 publication Critical patent/WO2021169324A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage

Definitions

  • the invention belongs to the technical field of zero discharge of high-concentration brine, and specifically relates to an energy-saving zero-discharge low-temperature atmospheric pressure evaporation crystallization system and a working method thereof.
  • Fresh water is the material basis for human survival. With the development of industrial civilization, the problem of high-concentration salt water discharged from seawater desalination and industrial production is becoming more and more serious. Evaporative concentration of solution is an important way to solve this problem.
  • Traditional solution concentration methods include multi-stage flash evaporation, multi-effect evaporation, reverse osmosis and other methods. The process of multi-stage flash evaporation and multi-effect evaporation needs to consume a lot of steam; the reverse osmosis method needs to consume high-quality electric energy, and the operation and maintenance are complicated, and the cost is high.
  • the traditional solution concentration method concentrates the salinity of the solution to over 6% and then discharges it directly into the environment, ignoring the impact of high-salinity solutions on the ecological environment of the surrounding seas in the long run. It can be seen that the traditional solution concentration method has high energy consumption and high pollution, and it is of great significance to develop a solution concentration process with low energy consumption, low cost and zero pollution emission.
  • the purpose of the present invention is to provide an energy-saving zero-emission low-temperature atmospheric pressure evaporative crystallization system and its working method.
  • the system design is reasonable and realizes the concentrated crystallization of concentrated brine and the collection of condensate. And zero discharge treatment of high concentration brine under normal temperature and pressure.
  • the invention discloses an energy-saving zero-discharge low-temperature atmospheric evaporative crystallization system, which includes an evaporation chamber, a crystallization kettle, an evaporative condensation heat exchanger, a condensation chamber and a refrigeration chamber unit;
  • the top and bottom of the evaporation chamber and the condensing chamber are connected to form an annular gas circulation channel.
  • the top of the evaporation chamber and the condensing chamber are connected with an insulating barrier.
  • the lower part of the evaporation chamber and the condensing chamber is provided with a gas circulation fan, and the condensing chamber
  • the side is provided with an air inlet, the air inlet surface of the gas circulation fan faces the air inlet, and the air outlet surface faces the evaporation chamber;
  • the inlet of the evaporation chamber is connected with a feed pump of concentrated brine.
  • the evaporation chamber is equipped with an evaporation chamber sprayer and an evaporation chamber packing.
  • the evaporation chamber sprayer is arranged above the evaporation chamber packing.
  • the bottom outlet of the evaporation chamber is connected with the crystallization kettle.
  • the brine feed pump is connected, the bottom side outlet of the evaporation chamber is connected with the hot side of the evaporative condensation heat exchanger, and the hot side of the evaporative condensation heat exchanger is connected with the evaporation chamber sprayer;
  • the condensing chamber is provided with a condensing chamber sprinkler and a condensing chamber packing.
  • the condensing chamber sprinkler is arranged above the condensing chamber packing.
  • the outlet at the bottom of the condensing chamber is connected with the hot end of the refrigeration chamber unit.
  • the hot end of the refrigeration chamber unit is connected to the evaporative condensation heat exchanger.
  • Cold side connection the cold side of the evaporative condensation heat exchanger is connected with a condensing device, the condensing device is connected with the cold end of the refrigeration room unit, and the cold end of the refrigeration room unit is connected with the condensing chamber sprayer; the bottom side outlet of the condensing room is connected with a condensate discharge Tube.
  • the refrigeration chamber unit includes a refrigeration chamber hot end heat exchanger, a throttle valve, a refrigeration chamber cold end heat exchanger, and a refrigeration chamber compressor, and the low boiling point working fluid is in the refrigeration chamber hot end heat exchanger and throttling valve.
  • the valve, the cold end heat exchanger of the refrigeration chamber and the refrigeration chamber compressor circulate, the outlet at the bottom of the condensation chamber is connected with the hot end heat exchanger of the refrigeration chamber, and the hot end heat exchanger of the refrigeration chamber is connected with the cold side of the evaporative condensation heat exchanger;
  • the device is connected with the cold end heat exchanger of the refrigeration chamber, and the cold end heat exchanger of the refrigeration chamber is connected with the condensing chamber sprayer.
  • the condensing device is a condensing fan or a cooler.
  • the connecting pipeline between the bottom outlet of the evaporation chamber and the crystallization kettle is provided with a concentrated brine discharge pump.
  • the connecting pipeline between the bottom side outlet of the evaporation chamber and the hot side of the evaporative condensation heat exchanger is provided with a concentrated brine internal circulation pump.
  • a condensate internal circulation pump is provided on the connecting pipeline between the bottom outlet of the condensing chamber and the hot end of the refrigerating chamber unit.
  • a condensate drain pump is provided on the condensate drain pipe.
  • a waste heat utilization heat exchanger is provided on the connecting pipeline between the hot side of the evaporative condensation heat exchanger and the evaporation chamber sprayer, and the waste heat utilization heat exchanger is connected to the external system.
  • both the evaporation chamber sprinkler and the condensation chamber sprinkler are multilayered.
  • the invention discloses a working method of the energy-saving zero-emission low-temperature atmospheric evaporative crystallization system, which includes:
  • the concentrated brine enters the evaporation chamber through the concentrated brine feed pump, and the concentrated liquid at the bottom of the evaporation chamber enters the hot side of the evaporative condensation heat exchanger, and exchanges heat with the higher temperature condensate on the cold side of the evaporative condensation heat exchanger to become a high-temperature concentrated liquid. Sprayed from the sprayer of the evaporation chamber, in the filling area of the evaporation chamber, it is in reverse contact with the air sent from the gas circulation fan to cool down and returns to the bottom of the evaporation chamber.
  • the moisture in the concentrated liquid is absorbed by the heated air, and the salt is in The concentrated liquid is retained; the concentrated liquid at the bottom of the evaporation chamber will continuously accumulate salinity and gradually approach the crystallization saturation concentration; the bottom concentrated liquid will enter the crystallization kettle from the bottom outlet of the evaporation chamber to achieve solid-liquid separation to obtain solid salt, and the turbid liquid in the crystallization kettle will return to the concentrated solution. Circulate after the brine feed pump;
  • the hot air with moisture enters the condensing chamber through the air inlet, and contacts with the spray liquid of the condensing chamber sprayer in the same direction to cool down in the filling area of the condensing chamber.
  • the moisture in the air condenses into condensate and falls; after the air cools down, it passes through the gas
  • the circulating fan is sent to the evaporation chamber; the condensate accumulates at the bottom of the condensing chamber and enters the hot end of the refrigeration chamber from the outlet of the condensing chamber to exchange heat and increase the temperature.
  • the heated condensate exchanges heat with the concentrated liquid in the evaporative condensation heat exchanger and then cools down.
  • the cooled condensate passes through the condensing device to further reduce the temperature, and then exchanges heat in the cold end of the refrigeration chamber unit to cool again, and then the low-temperature condensate enters the condensing chamber sprayer; the accumulated condensate is used as the system output water and passes through the condensate discharge pipe Send out the system;
  • the air enters the condensing chamber from the air inlet under the action of the suction of the gas circulation fan, maintains the slightly positive pressure of the system, and circulates in the annular gas circulation channel formed by the evaporation chamber and the condensing chamber.
  • the present invention has the following beneficial technical effects:
  • the invention discloses an energy-saving zero-emission low-temperature atmospheric pressure evaporation crystallization system, which includes an evaporation chamber, a crystallization kettle, an evaporation condensation heat exchanger, a condensation chamber, and a refrigeration chamber unit, which utilizes low temperature atmospheric pressure evaporation and crystallization, LAEC) working principle, simulating water evaporation and rainfall cycle in natural rainfall.
  • LAEC low temperature atmospheric pressure evaporation and crystallization
  • This system uses the characteristics of different air temperature to carry different moisture capacity, and realizes the concentrated crystallization of concentrated brine and the collection of condensate through the circulation in the evaporation chamber and the condensing chamber, and realizes the zero discharge treatment of high-concentration brine under normal temperature and pressure.
  • the annular closed loop shape is adopted to reduce the resistance drop of the gas circulation.
  • the system is reasonable in design and has the characteristics of low energy consumption, low cost, zero pollutant discharge, high salinity and COD removal efficiency, and significant energy-saving effects.
  • the concentrated brine is processed into solid salt and clean water, which has obvious environmental advantages.
  • the refrigeration chamber unit adopts a low-boiling point working fluid cycle to realize the transfer of heat from low temperature to high temperature, and can achieve a good treatment effect without external heat sources and cold sources, and realizes energy saving and consumption reduction.
  • waste heat is introduced into the external system by the heat exchanger to heat the concentrated liquid, making full use of the remaining energy and maximizing energy efficiency.
  • the evaporation chamber sprayer and the condensation chamber sprayer are both multi-layered, which increases the effective contact area of gas and liquid and enhances the mass transfer effect.
  • the working method of the energy-saving zero-emission low-temperature atmospheric evaporative crystallization system disclosed in the present invention has high automation, low energy consumption, low cost, zero pollutant emission, high salinity and COD removal efficiency, and significant energy-saving effect.
  • the concentrated brine is processed It is solid salt and clean water, with good economic benefits, obvious environmental protection advantages, and good application prospects.
  • Figure 1 is a schematic diagram of the overall structure of the energy-saving zero-emission low-temperature atmospheric pressure evaporative crystallization system of the present invention.
  • 1-concentrated brine feed pump 2-evaporation chamber, 3-concentrated brine discharge pump, 4-crystallization kettle, 5-concentrated brine internal circulation pump, 6-evaporation condensation heat exchanger, 7-waste heat utilization and exchange Heater, 8-gas circulation fan, 9-evaporation chamber sprayer, 10-evaporation chamber packing, 11-condensate internal circulation pump, 12-hot end heat exchanger of refrigeration chamber, 13-throttle valve, 14-refrigeration Room cold end heat exchanger, 15-refrigeration chamber compressor, 16-condensing fan, 17-condensation chamber sprayer, 18-condensation chamber packing, 19-condensation chamber, 20-condensate discharge pump.
  • the energy-saving zero-discharge low-temperature atmospheric evaporative crystallization system of the present invention includes an evaporating chamber 2, a crystallization kettle 4, an evaporative condensation heat exchanger 6, a condensation chamber 19, and a refrigeration chamber unit.
  • the top and bottom of the evaporation chamber 2 and the condensation chamber 19 are connected to form a ring-shaped gas circulation channel.
  • the top of the evaporation chamber 2 and the condensation chamber 19 are connected with an insulating barrier.
  • the insulating barrier can be silicate with a filter membrane.
  • the partition reduces the heat exchange between the system and the outside. At the same time, gas and water vapor can pass through the filter membrane, but the liquid cannot pass through the filter membrane.
  • the lower part of the evaporating chamber 2 and the condensing chamber 19 is provided with a gas circulating fan 8.
  • the cross-sectional area of the lower part of the evaporating chamber 2 and the condensing chamber 19 is gradually reduced from the condensing chamber 19 to the evaporating chamber 2, and the side of the condensing chamber 19 is provided with air
  • the air inlet surface of the gas circulation fan 8 faces the air inlet
  • the air outlet surface faces the evaporation chamber 2.
  • the inlet of the evaporation chamber 2 is connected with a concentrated brine feed pump 1.
  • the evaporation chamber 2 is equipped with an evaporation chamber sprayer 9 and an evaporation chamber filler 10.
  • the evaporation chamber sprayer 9 is set above the evaporation chamber filler 10, and the evaporation chamber sprayer 9 can be set up in multiple layers, the bottom outlet of the evaporation chamber 2 is connected with the crystallization kettle 4, and the connection pipe between the bottom outlet of the evaporation chamber 2 and the crystallization kettle 4 is equipped with a concentrated brine discharge pump 3; the crystallization kettle 4 and a concentrated brine feed pump 1 Connection, the bottom side outlet of the evaporation chamber 2 is connected with the hot side of the evaporative condensation heat exchanger 6, and the connecting pipeline between the bottom side outlet of the evaporation chamber 2 and the hot side of the evaporative condensation heat exchanger 6 is equipped with a concentrated brine internal circulation pump 5.
  • the hot side of the evaporative-condensation heat exchanger 6 is connected to the evaporation chamber sprayer 9, and a waste heat utilization heat exchanger can be installed on the connecting pipeline between the hot side of the evaporative-condensation heat exchanger 6 and the evaporation chamber sprayer 9 7.
  • the waste heat utilization heat exchanger 7 is connected with the external system, and the waste heat of the external system is introduced into the system.
  • the condensing chamber 19 is provided with a condensing chamber sprinkler 17 and a condensing chamber filler 18.
  • the condensing chamber sprinkler 17 is arranged above the condensing chamber filler 18.
  • the condensing chamber sprinkler 17 can be arranged in multiple layers, and the refrigeration chamber units include sequentially connected
  • the cold end heat exchanger 14 and the refrigerating chamber compressor 15 circulate, the bottom outlet of the condensing chamber 19 is connected to the hot end heat exchanger 12 of the refrigerating chamber, and the connecting pipe between the bottom outlet of the condensing chamber 19 and the hot end heat exchanger 12 of the refrigerating chamber
  • the condensing device 16 can be a condensing fan or a cooler, and the condensing device 16 is connected to the cold end of the refrigerating chamber unit, and the refrigerating chamber The cold end of the unit is connected with the condensing chamber sprayer 17; the bottom side outlet of the condensing chamber 19 is connected with a condensate discharge pipe, and the condensate drain pump 20 is provided on the condensate discharge pipe.
  • the working method of the above-mentioned energy-saving zero-emission low-temperature atmospheric pressure evaporative crystallization system includes:
  • the concentrated brine enters the evaporation chamber 2 through the concentrated brine feed pump 1, and the concentrated liquid at the bottom of the evaporation chamber 2 enters the hot side of the evaporative condensation heat exchanger 6 through the concentrated brine internal circulation pump 5, and the temperature of the cold side of the evaporative condensation heat exchanger 6
  • the incoming air will return to the bottom of the evaporation chamber 2 after reverse contact with the temperature.
  • the moisture in the concentrated liquid is absorbed by the heated air, while the salt is retained in the concentrated liquid; the concentrated liquid at the bottom of the evaporation chamber 2 will continue to accumulate salinity and gradually Close to the crystallization saturation concentration; the bottom concentrated liquid enters the crystallization tank 4 from the bottom outlet of the evaporation chamber 2 through the concentrated brine discharge pump 3 to achieve solid-liquid separation to obtain solid salt, and the turbid liquid of the crystallization tank 4 returns to the concentrated brine feed pump 1 and then circulates;
  • the hot air with moisture enters the condensing chamber 19 through the air inlet, and the spray liquid of the condensing chamber sprayer 17 is in contact with the condensing chamber filler 18 in the same direction to cool down.
  • the moisture in the air condenses into condensate and falls; after the air cools down Then it is sent to the evaporation chamber 2 by the gas circulation fan 8; the condensate accumulates at the bottom of the condensing chamber 19, from the bottom outlet of the condensing chamber 19 through the condensate internal circulation pump 11, the refrigerating chamber hot end heat exchanger 12, and the refrigerated chamber compressor 15
  • the low-boiling-point working fluid commonly used refrigerants can be selected for compression work
  • the air enters the condensing chamber 19 from the air inlet under the suction force of the gas circulation fan 8 to maintain the slightly positive pressure of the system, and circulates in the annular gas circulation channel formed by the evaporation chamber 2 and the condensing chamber 19.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

L'invention concerne un système de cristallisation par évaporation à pression atmosphérique à basse température, à émission nulle et à économie d'énergie, ainsi qu'un procédé de fonctionnement associé, appartenant au domaine technique de traitement sans émission de saumure à haute concentration. Le système comprend une chambre d'évaporation (2), une bouilloire de cristallisation (4), un échangeur de chaleur à condensation par évaporation (6), une chambre de condensation (19) et une unité de chambre de réfrigération. En tirant parti des différentes capacités de transport d'air par circulation d'eau à différentes températures, la circulation dans la chambre d'évaporation (2) et la chambre de condensation (19) assure la concentration et la cristallisation de la saumure concentrée et la collecte d'un condensat, réalisant ainsi un traitement sans émission de la saumure à haute concentration à température normale et à pression atmosphérique. Le système présente une conception raisonnable, un haut degré d'automatisation, une faible consommation d'énergie, des coûts réduits, aucune émission polluante, une efficacité élevée d'élimination de la salinité et de la DCO, et un effet d'économie d'énergie significatif, et la saumure concentrée est transformée en sel solide et en eau propre. Ce système présente de bons avantages économiques, des avantages évidents en matière de protection de l'environnement et de bonnes perspectives d'application.
PCT/CN2020/121316 2020-02-25 2020-10-15 Système de cristallisation par évaporation sous pression atmosphérique à basse température à faible émission d'énergie et son procédé de fonctionnement WO2021169324A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010117237.3A CN111153543A (zh) 2020-02-25 2020-02-25 一种节能零排放低温常压蒸发结晶系统及其工作方法
CN202010117237.3 2020-02-25

Publications (1)

Publication Number Publication Date
WO2021169324A1 true WO2021169324A1 (fr) 2021-09-02

Family

ID=70566427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121316 WO2021169324A1 (fr) 2020-02-25 2020-10-15 Système de cristallisation par évaporation sous pression atmosphérique à basse température à faible émission d'énergie et son procédé de fonctionnement

Country Status (2)

Country Link
CN (1) CN111153543A (fr)
WO (1) WO2021169324A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105237A (zh) * 2021-10-27 2022-03-01 华电水务科技股份有限公司 一种污水资源化的低温常压蒸发浓缩装置
CN116789210A (zh) * 2023-06-25 2023-09-22 济南森华工程技术有限公司 一种火电厂脱硫废水零排放系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111153543A (zh) * 2020-02-25 2020-05-15 中国华能集团清洁能源技术研究院有限公司 一种节能零排放低温常压蒸发结晶系统及其工作方法
CN113415936A (zh) * 2021-06-15 2021-09-21 上海灿星环境科技有限公司 一种电镀含镍废水零排放工艺
CN113666444A (zh) * 2021-08-09 2021-11-19 南京飞普特科技有限公司 双体系蒸发结晶装置及蒸发结晶方法
CN115465989B (zh) * 2022-08-31 2024-04-02 上海航天动力科技工程有限公司 一种高盐高有机制药废水的正压蒸发结晶系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201983674U (zh) * 2011-04-22 2011-09-21 张伟 一种单向传热热管
CN104027993A (zh) * 2014-07-03 2014-09-10 北京欧泰克能源环保工程技术股份有限公司 一种机械蒸汽再压缩蒸发系统及节能方法
CN204111353U (zh) * 2014-07-29 2015-01-21 北京万邦达环保技术股份有限公司 浓盐水蒸发结晶系统
CN105344119A (zh) * 2015-11-30 2016-02-24 浙江奇彩环境科技有限公司 一种低温喷淋蒸发的废水处理装置及废水处理方法
US20190352194A1 (en) * 2017-02-07 2019-11-21 Sylvan Source, Inc. Water treatment and desalination
CN111153543A (zh) * 2020-02-25 2020-05-15 中国华能集团清洁能源技术研究院有限公司 一种节能零排放低温常压蒸发结晶系统及其工作方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898358B2 (ja) * 2006-09-07 2012-03-14 町田酒造 株式会社 蒸留方法及び蒸留装置
CN104211130B (zh) * 2014-09-16 2016-07-06 凯姆德(北京)能源环境科技有限公司 一种利用废热的低温蒸发浓缩结晶系统及方法
CN211770781U (zh) * 2020-02-25 2020-10-27 中国华能集团清洁能源技术研究院有限公司 一种节能零排放低温常压蒸发结晶系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201983674U (zh) * 2011-04-22 2011-09-21 张伟 一种单向传热热管
CN104027993A (zh) * 2014-07-03 2014-09-10 北京欧泰克能源环保工程技术股份有限公司 一种机械蒸汽再压缩蒸发系统及节能方法
CN204111353U (zh) * 2014-07-29 2015-01-21 北京万邦达环保技术股份有限公司 浓盐水蒸发结晶系统
CN105344119A (zh) * 2015-11-30 2016-02-24 浙江奇彩环境科技有限公司 一种低温喷淋蒸发的废水处理装置及废水处理方法
US20190352194A1 (en) * 2017-02-07 2019-11-21 Sylvan Source, Inc. Water treatment and desalination
CN111153543A (zh) * 2020-02-25 2020-05-15 中国华能集团清洁能源技术研究院有限公司 一种节能零排放低温常压蒸发结晶系统及其工作方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105237A (zh) * 2021-10-27 2022-03-01 华电水务科技股份有限公司 一种污水资源化的低温常压蒸发浓缩装置
CN116789210A (zh) * 2023-06-25 2023-09-22 济南森华工程技术有限公司 一种火电厂脱硫废水零排放系统
CN116789210B (zh) * 2023-06-25 2024-03-08 济南森华工程技术有限公司 一种火电厂脱硫废水零排放系统

Also Published As

Publication number Publication date
CN111153543A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2021169324A1 (fr) Système de cristallisation par évaporation sous pression atmosphérique à basse température à faible émission d'énergie et son procédé de fonctionnement
CN201261726Y (zh) 一种新型高效热泵海水淡化装置
CN103449548B (zh) 船用热管式海水淡化装置
CN104925883B (zh) 一种浓盐废水的节能浓缩处理装置
CN105923676A (zh) 高效太阳能海水淡化与空调制冷联合运行方法与系统
CN102328965B (zh) 一种太阳能海水淡化装置及其操作方法
CN103527267B (zh) 一种采用板式蒸发冷凝器组的直接空冷机组系统
WO2020056847A1 (fr) Ensemble membrane à étages multiples intégré à une pompe à chaleur à semi-conducteur et son utilisation dans la distillation à membrane
CN105403067B (zh) 一种利用工业余热制冷凝水除雾冷却塔
CN111412686B (zh) 一种热管耦合的太阳能空气制水设备
CN102080898A (zh) 一种溴化锂吸收式蒸发冷凝冷水机组
CN201535592U (zh) 一种采用降膜式发生器的溴化锂吸收式冷水机组
CN203531984U (zh) 一种采用板式蒸发冷凝器组的直接空冷机组系统
CN204301555U (zh) 一种利用工业余热制冷凝水除雾冷却塔
CN103292611A (zh) 一种用于空冷电厂湿式空冷器的节水装置
CN105645491A (zh) 水净化系统及工艺
CN201973952U (zh) 一种溴化锂吸收式蒸发冷凝冷水机组
CN1329309C (zh) 一种非沸腾蒸发与冷凝分级循环进行的脱盐方法
CN211770781U (zh) 一种节能零排放低温常压蒸发结晶系统
CN107098419A (zh) 一种太阳能空调海水淡化系统
CN201262495Y (zh) 一种新型海水热泵冷、热、热水和淡水四联供系统
CN203625073U (zh) 一种海水淡化系统
CN106698559A (zh) 热泵海水淡化装置
CN109292860A (zh) 降膜蒸发耦合吸收式制冷高盐污水处理设备和高盐污水处理方法
CN1259533C (zh) 热水驱动吸附式室内空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921956

Country of ref document: EP

Kind code of ref document: A1