WO2021169149A1 - Catalase nanoparticles and methods for use - Google Patents

Catalase nanoparticles and methods for use Download PDF

Info

Publication number
WO2021169149A1
WO2021169149A1 PCT/CN2020/101766 CN2020101766W WO2021169149A1 WO 2021169149 A1 WO2021169149 A1 WO 2021169149A1 CN 2020101766 W CN2020101766 W CN 2020101766W WO 2021169149 A1 WO2021169149 A1 WO 2021169149A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticle
cat
pharmaceutical composition
administering
nanoparticles
Prior art date
Application number
PCT/CN2020/101766
Other languages
French (fr)
Inventor
Zhihua Gan
Shen Pang
Fang Wang
Meng QIN
Qingsong Yu
Zhenbo NING
Yi HOU
Kaili Nie
Ni JIANG
Chaoyong LIU
Original Assignee
Vivibaba, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vivibaba, Inc. filed Critical Vivibaba, Inc.
Priority to PCT/US2021/019803 priority Critical patent/WO2021173922A1/en
Publication of WO2021169149A1 publication Critical patent/WO2021169149A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0078Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a nebulizer such as a jet nebulizer, ultrasonic nebulizer, e.g. in the form of aqueous drug solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01006Catalase (1.11.1.6)

Definitions

  • ROS Reactive oxygen species
  • Cytokine storm for example, is a serious immune dysregulation due to overproduction of cytokines, which often occurs during virus infection, organ transplant, immunotherapy, and autoimmune diseases and may result in death if untreated.
  • increasing level ROS can induce cell apoptosis through DNA damage, lipid peroxidation and protein oxidation.
  • the cell death further exacerbates the immune responses, which help to recruit and activate phagocytes to the disease site, further producing ROS and pro-inflammatory cytokines such as IL-6 and IL-1 ⁇ .
  • the cross-enhancing production of ROS and cytokines further aggravates apoptosis, inflammation and immune response (e.g., activation of T cells) , resulting in occurrence of cytokine storm.
  • Catalase represents one of the most important enzymes, which can effectively breakdown hydrogen peroxide (H 2 O 2 ) , the major component of ROS, to water and oxygen, preventing its direct oxidative damages to the cells and tissues, as well as cutoff its subsequent reaction with other chemical species that generate other types of toxic ROS.
  • CAT is abundant in various cells (e.g.
  • erythrocytes and organs (e.g., liver) , as well as in the serum ( ⁇ 10 U/mL) ; every CAT molecule can breakdown ⁇ 10 7 H 2 O 2 molecules in a second, enabling its use as a powerful antioxidant for the protection of cells and tissues from potential ROS damages.
  • the present invention provides a nanoparticle comprising an enzyme capable of neutralizing reactive oxygen species in a subject and a polymer encapsulating the enzyme.
  • the present invention provides a pharmaceutical composition comprising a plurality of the nanoparticles and a pharmaceutically acceptable carrier or excipient.
  • the present invention provides a method of preparing the nanoparticle, which comprises conjugating the enzyme with a modify agent in a first solvent and encapsulating the conjugated enzyme within a polymer in a second solvent.
  • the present invention provides a method of treating a disease or disorder selected from pneumonia, a viral infection, a bacterial infection, an immune disorder, cytokine release syndrome, or oxidative stress, comprising administering the nanoparticle or the pharmaceutical composition to a person in need thereof.
  • the present invention provides a method of inhibiting the replication of coronavirus (e.g., SARS or COVID-19/SARS-CoV-2) comprising administering n (CAT) to an animal, such as human, in need thereof.
  • coronavirus e.g., SARS or COVID-19/SARS-CoV-2
  • CAT n
  • the present invention provides a method of rescuing or promoting the survival of HPAEpiC injured by ROS in the presence of leukocytes or HPAEpiC injured by LPS-activated leukocytes comprising contacting the injured cells with n (CAT) .
  • FIG. 1A depicts dynamic light scattering of n (CAT) and native catalase.
  • FIG. 1B depicts zeta potential of n (CAT) and native catalase.
  • FIG. 1C depicts Transmission electron microscopic (TEM) image of n (CAT) .
  • FIG. 1D depicts thermal stability of n (CAT) and native catalase.
  • FIG. 1E depicts proteolytic stability of native catalase and n (CAT) .
  • FIG. 1F depicts cell viability of HPAEpiC pre-cultured with 20 ⁇ g/mL n (CAT) for 12 h, followed by addition of H 2 O 2 (1000 ⁇ M) and culturing for 24 h.
  • FIG. 1G depicts cell viability of HPAEpiC pre-cultured with 1000 ⁇ M H 2 O 2 for 24 h, followed by culturing in fresh media containing 20 ⁇ g/ml n (CAT) for 12 h.
  • CAT 20 ⁇ g/ml n
  • FIG. 1H depicts concentration of TNF- ⁇ in the media of human leukocytes (white blood cells, WBC) cultured with LPS and different concentrations of n (CAT) .
  • FIG. 1I depicts concentration of IL-10 in the media of human leukocytes (white blood cells, WBC) cultured with LPS and different concentrations of n (CAT) .
  • FIG. 1J depicts cell viability of HPAEpiC pre-cultured with 500 ⁇ M H 2 O 2 for 12 h (Control #1) followed by culturing with WBC and different concentrations of n (CAT) , as well as that of untreated HPAEpiC cultured with WBC for 12 h (Control #2) .
  • FIG. 1K depicts cell viability of HPAEpiC cultured with LPS (Control #3) , with WBC (Control 4#) , and with LPS, WBC, and different concentrations of n (CAT) .
  • FIG. 2A depicts fluorescence imaging of the major organs.
  • FIG. 2B depicts average radiance of n (CAT) in the liver, lung, and kidney 6 h and 24 h after intravenous administration of 20 mg/kg Cy7-1abeled n (CAT) .
  • CAT Cy7-1abeled n
  • FIG. 2D depicts drug exposure of the native catalase and n (CAT) .
  • FIG. 2E depicts fluorescence imaging of the major organs after intratracheal nebulization of native catalase and n (CAT) . (From left to right: heart, liver, spleen, lung, and kidney. )
  • FIG. 2F depicts relative fluorescence intensity of the lung 48 h after intratracheal nebulization of native catalase and n (CAT) .
  • FIG. 3A depicts schematic showing the experiment design.
  • FIG. 3B depicts viral loads in the nasal swabs of the animals that received nebulization treatment (N1, N2, and N3) .
  • FIG. 3C depicts viral loads in the nasal swabs of the animals that received intravenous injection (I1 and I2) of n (CAT) .
  • FIG. 3D depicts relative bodyweight of the animals at day 1-7.
  • FIG. 3E depicts viral loads in selective organs of the animals receiving nebulization treatment of n (CAT) at day 7.
  • FIG. 3F depicts viral loads in selective organs of the animals receiving intravenous injection of n (CAT) at day 7. (Animals in the control group were marked as C1 and C2. )
  • FIG. 4A depicts aspartate aminotransferase (AST) levels of the animals in the control, inhaled, and intravenous groups.
  • AST aspartate aminotransferase
  • FIG. 4B depicts alanine aminotransferase (ALT) levels of the animals in the control, inhaled, and intravenous groups.
  • ALT alanine aminotransferase
  • FIG. 4C depicts alkaline phosphatase (ALP) levels of the animals in the control, inhaled, and intravenous groups.
  • ALP alkaline phosphatase
  • FIG. 4D depicts uric acid (UA) levels of the animals in the control, inhaled, and intravenous groups.
  • FIG. 4E depicts urea levels of the animals in the control, inhaled, and intravenous groups.
  • FIG. 4F depicts blood urea nitrogen (BUN) levels of the animals in the control, inhaled, and intravenous groups.
  • BUN blood urea nitrogen
  • FIG. 5A depicts enzyme activity of n (CAT) and native catalase in different concentrations of H 2 O 2 .
  • FIG. 5B depicts residual activity of n (CAT) and native catalase in solution stored at 4 °C and 25 °C for 90 days.
  • FIG. 5C depicts residual activity of n (CAT) after freeze-drying.
  • FIG. 6A depicts cell viability of HPAEpiC in the presence of different concentrations of n (CAT) for 12 h.
  • FIG. 6B depicts cell viability of HPAEpiC pre-cultured with different concentrations of n (CAT) for 12 h followed by addition of H 2 O 2 (1000 mM) and culturing for 24 h. 20 ⁇ g/mL native catalase was used as a control.
  • FIG. 6C depicts cell viability of HPAEpiC pre-cultured with 1000 mM H 2 O 2 for 24 h, followed by culturing in a fresh media containing different concentrations of n (CAT) for 12 h. 20 ⁇ g/mL native catalase was used as a control. (P value: **** ⁇ 0.0001. )
  • FIG. 7A depicts plasma levels of alanine aminotransferase (ALT) , aspartate aminotransferase (AST) , and alkaline phosphatase (ALP) 24 h after intravenous injection of 20 mg/kg n (CAT) in BALB/c mice.
  • ALT alanine aminotransferase
  • AST aspartate aminotransferase
  • ALP alkaline phosphatase
  • FIG. 7B depicts urea (UREA) and uric acid (UA) 24 h after intravenous injection of 20 mg/kg n (CAT) in BALB/c mice.
  • FIG. 7C depicts blood routine 24 h after intravenous injection of 20 mg/kg n (CAT) in BALB/c mice.
  • FIG. 10A depicts viral loads in the orals swabs in the inhaled group of SARS-CoV-2 infected rhesus macaque.
  • FIG. 10B depicts viral loads in the oral swabs in the intravenous group of SARS-CoV-2 infected rhesus macaque.
  • FIG. 10C depicts body temperature change in all the animals of SARS-CoV-2 infected rhesus macaque.
  • FIG. 11A depicts viral loads in the nasal swabs of N3 in the inhaled group at day 1-28 p.i.
  • FIG. 11B depicts viral loads in the oral swab of N3 in the inhaled group at day 1-28 p.i.
  • FIG. 11C depicts viral loads in major organs of N3 in the inhaled group at day 28 p.i.
  • FIG. 12A depicts globulin (GLB) level tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
  • GLB globulin
  • FIG. 12B depicts indirect bilirubin (IBIL) level tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
  • IBIL indirect bilirubin
  • FIG. 12C depicts direct bilirubin (DBIL) level tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
  • DBIL direct bilirubin
  • FIG. 12D depicts total bilirubin (TBIL) level tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
  • TBIL total bilirubin
  • FIG. 12E depicts total protein (TP) level tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
  • FIG. 12F depicts C-reactive protein (CRP) level tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
  • CRM C-reactive protein
  • FIG. 12G depicts white blood cell (WBC) number tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
  • WBC white blood cell
  • FIG. 12H depicts red blood cell (RBC) number tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
  • RBC red blood cell
  • FIG. 12I depicts neutrophil number tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
  • FIG. 12J depicts monocyte number tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
  • FIG. 13A depicts liver (AST, ALT, ALP) functions in healthy rhesus macaques receiving 2 mg/kg n (CAT) through inhalation daily for seven days.
  • FIG. 13B depicts renal functions (UA, urea. creatine (CREA) ) in healthy rhesus macaques receiving 2 mg/kg n (CAT) through inhalation daily for seven days.
  • CREA creatine
  • FIG. 13C depicts blood routine in healthy rhesus macaques receiving 2 mg/kg n (CAT) through inhalation daily for seven days.
  • This invention relates to the field of drug delivery and nanomedicine. It describes the application of a pharmaceutical composition comprising nanoparticles of catalase (CAT) , denoted hereinafter as n (CAT) , in neutralizing excessive levels of reactive oxygen species (ROS) caused by immune disorders, organ transplant, and other factors.
  • CAT catalase
  • ROS reactive oxygen species
  • This invention relates to a scale up synthesis of n (CAT) , which can be achieved by a simple batch process.
  • n (CAT) can be utilized as a universal antioxidant for a broad range of therapeutic purposes, such as the treatment and/or reduction of symptoms of pneumonia, cytokine release syndrome (CRS) caused by virus infection and immunotherapy, autoimmune diseases, antiaging applications, anti-inflammation applications, cosmetic applications, and remediation for smokers.
  • CRS cytokine release syndrome
  • this invention provides a nanoparticle-based delivery platform or pharmaceutical composition for effective delivery of CAT. In another aspect, this invention provides a scale up synthesis of CAT nanoparticles.
  • a pharmaceutical composition comprising CAT encapsulated in a nanoscale polymer shell.
  • a method of synthesizing CAT nanoparticles is provided.
  • CAT is encapsulated within a thin layer of poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC) to form n (CAT) with a number average diameter of ⁇ 30 nm.
  • PMPC (2-methacryloyloxyethyl phosphorylcholine
  • n (CAT) with a number average diameter of ⁇ 30 nm.
  • the surface charge and chemistry of the nanoparticles can be finely tuned by the incorporation of monomers with desired functional groups (e.g., amino groups) .
  • the scale up synthesis of n (CAT) allows the production of nanoparticles in the gram level using in a single batch process.
  • the diameter of the nanoparticle may be less than about 100 nm, less than about 90 nm, less than about 80 nm, less than about 70 nm, less than about 60 nm, less than about 50 nm, less than about 40 nm, less than about 30 nm, less than about 20 nm, less than about 10 nm, less than about 5 nm, or less than about 1 nm.
  • the polymer in the CAT nanoparticle comprises a neutral monomer and a cross-linker.
  • the neutral monomer is selected from acrylamide (AAM) , poly (ethylene glycol) methyl ether acrylate (mPEG) , 2-methacryloyloxyethyl phosphorycholine and a mixture thereof.
  • the cross-linker is selected from glycerol dimethacrylate (GDMA) , 1, 3-glycerol dimethacrylate, glycerol 1, 3-diglycerolate diacrylate, N, N’-bis (acryloyl) cystamine, bis [2- (methacryloyloxy) ethyl] phosphate, bisacryloylated polypeptide, N, N′-methylenebis (acrylamide) (BIS) and a mixture thereof.
  • GDMA glycerol dimethacrylate
  • N, N’-bis (acryloyl) cystamine bis [2- (methacryloyloxy) ethyl] phosphate
  • bisacryloylated polypeptide bisacryloylated polypeptide
  • BOS N′-methylenebis (acrylamide)
  • the polymer is the CAT nanoparticle further comprises a positively charged monomer.
  • the positively charged monomer is selected from N- (3-aminopropyl) methacrylamide (APM) , N- (3-Aminopropyl) methacrylamide hydrochloride, acryl-spermine, Dimethylamino ethyl methacrylate, (3-Acrylamidopropyl) trimethylammonium hydrochloride, N- (3- ( (4- ( (3-aminopropyl) amino) butyl) amin o) propyl) methacrylamide, N- (3- ( (4-aminobutyl) amino) propyl) acrylamide, N- (3- ( (4-aminobutyl) amino) propyl) methacrylamide, N- (2- ( (2-aminoethyl) (methyl) amino) ethyl) acrylamide, N- (2- ( (2-aminoethyl) (methyl) ethyl)
  • n (CAT) of present disclosure retains more than 50%, 60%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%of the native CAT activity.
  • n (CAT) of present disclosure after incubation in PBS at 37 °C for 24 h, retains more than 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%of its original activity.
  • n (CAT) of present disclosure after incubation in PBS with 50 ⁇ g/mL trypsin at 37 °C for 2 h, retains more than 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%of its original activity.
  • the above disclosed nanoparticle and the method of preparing the nanoparticle can be adapted to other anti-ROS enzymes.
  • anti-ROS enzymes which can be encapsulated into the nanoparticle, include superoxide dismutase (SOD) , glutathione peroxidase, thioredoxin peroxidase, catalase, or a mixture thereof.
  • SOD superoxide dismutase
  • glutathione peroxidase glutathione peroxidase
  • thioredoxin peroxidase catalase
  • this invention provides in-vivo delivery of CAT.
  • n (CAT) can be delivered systemically and locally through intravenous injection, subcutaneous injection or inhalation.
  • the nanometer size and the non-fouling surface allow sustained sequestration of the nanoparticles in the serum or the target organ such as lung.
  • this invention provides a method of treating or reducing the side effects of immune disorders and/or ROS damages cause by many diseases or medical conditions.
  • Common reactive oxygen species include hydrogen peroxide, superoxide, singlet oxygen, ozone, hypohalous acids, and organic peroxides.
  • n Compared with CAT, n (CAT) has one or more of prolonged half-life, improved proteolytic stability and reduced immunogenicity, opening the possibilities to treat immune disorders and ROS damage in pneumonia, autoimmune diseases and side-effects caused by immunotherapies.
  • the nanoparticle can be used in treatment of immune disorders and ROS damage, and can be used to deliver other anti-ROS enzymes, such as superoxide dismutase (SOD) , glutathione peroxidase, thioredoxin peroxidase, or a mixture thereof, to achieve similar therapeutic effects as CAT.
  • SOD superoxide dismutase
  • glutathione peroxidase glutathione peroxidase
  • thioredoxin peroxidase or a mixture thereof
  • this disclosure provides a method of protecting a lung tissue of a mammal from damaging by H 2 O 2 .
  • a therapeutically effective amount of catalase nanoparticle is administered to human pulmonary alveolar epithelia cells.
  • the nanoparticle comprises less than 5000 U/ml of n (CAT) , about 200 U/ml of n (CAT) , about 80 U/ml of n (CAT) , or about 40 U/ml of n (CAT) .
  • n (CAT) may have an enzyme concentration of 1 mg/ml and the activity of the enzyme is 5000U/mg.
  • n (CAT) After exposure to 40 U/ml of n (CAT) , the viability of human pulmonary alveolar epithelia cell increases from 62%to 78%. Furthermore, after exposure to 80 U/ml of n (CAT) , the viability of human pulmonary alveolar epithelia cell increases from 62%to 100%.
  • this disclosure provides a method of treating a COVID-19 patient.
  • the patient is treated with a therapeutically effective amount of n (CAT) nanoparticles.
  • the n (CAT) can be administered to the patient by intravenous injection, subcutaneous injection, or inhalation.
  • n (CAT) is administered by inhalation, e.g., twice daily, and each dose of nanoparticle comprises, for example, from about 2 mg to about 10 mg of n (CAT) .
  • At least one course of treatment of 14 days with n (CAT) at least one physiological parameter/clinical sign of the COVID-19 patient improves, e.g., reaching a normal range (parameters and ranges listed in Table 4) .
  • the patient’s blood oxygen saturation level (SpO 2 ) reaches a range from 90%to 100%.
  • this disclosure provides methods of inhibiting or preventing pneumonia in a COVID-19 patient.
  • the patient does not have pneumonia before treatment, and is treated with a therapeutically effective amount of catalase nanoparticle (n (CAT) ) .
  • the administration may be accomplished by intravenous injection, subcutaneous injection, or inhalation.
  • the patient is administered by inhalation twice daily and each dose of nanoparticle comprises from about 2 mg to about 10 mg of n (CAT) . After at least one course of treatment with n (CAT) , the patient does not develop pneumonia.
  • this disclosure provides methods of inhibiting or preventing progression of one or more symptoms of COVID-19 in a patient in need thereof.
  • the COVID-19 patient is not in a critical or severe stage of the disease before treatment, and is treated with a therapeutically effective amount of catalase nanoparticle (n (CAT) ) .
  • n (CAT) may be administered to the patient by intravenous injection, subcutaneous injection, or inhalation.
  • the patient is treated by inhalation twice daily and each dose of nanoparticle comprises from about 2 mg to about 10 mg n (CAT) .
  • the clinical courses of COVID-19 can be divided into three main categories: no symptom or mild to moderate (mild symptoms up to mild pneumonia) : about 81%; severe (dyspnea, hypoxia, or >50%lung involvement on imaging) : about 14%; critical (respiratory failure, shock, or multiorgan system dysfunction) : about 5%.
  • the patient receiving the treatment may not progress to a severe or critical stage of COVID-19 after at least one course of treatment.
  • the combined proportion of COVID-19 patients having either severe or critical symptoms is less than about 19%, less than about 15%, less than about 12%, less than about 10%, less than about 8%, less than about 6%, less than about 4%, less than about 3%, less than about 2%, or less than about 1%.
  • this disclosure provides a method of inhibiting the replication of coronavirus (e.g., SARS or COVID-19/SARS-CoV-2) comprising administering n (CAT) to an animal, such as a human, in need thereof.
  • coronavirus e.g., SARS or COVID-19/SARS-CoV-2
  • CAT n
  • n (CAT) is administered intravenously, intramuscularly, or subcutaneously to an animal infected with coronavirus (e.g. SARS or COVID-19/SARS-CoV-2) .
  • the concentration of n (CAT) in each administration may be about 0.1, 0.3, 0.5, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 or 10.0 mg/kg by weight of the animal.
  • the dosing frequency may be four times daily, three times daily, twice daily, once daily, once every two days, or once every three days.
  • Each course of treatment may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 21, 28, or 30/31 doses.
  • the viral loading in the treated animal may be at least about 50%, 60%, 70%, 80%, 90%, 92%, 95%, 97%, or 99%lower than the animals in a control group, e.g., animals infected with COVID-19 but that do not receive n (CAT) treatment.
  • n (CAT) is administered by inhalation to an animal infected with coronavirus (e.g., SARS or COVID-19/SARS-CoV-2) .
  • the concentration of n (CAT) in each administration may be about 1, 5, 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 ⁇ g/ml.
  • the dosing frequency may be four times daily, three times daily, twice daily, once daily, once every two days, or once every three days.
  • Each course of treatment may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 21, 28, or 30/31 doses.
  • the viral loading in the treated animal may be at least about 50%, 60%, 70%, 80%, 90%, 92%, 95%, 97%, or 99%lower than the animals in a control group, e.g., animals infected with COVID-19 but that do not receive n (CAT) treatment.
  • the present invention provides a method of rescuing or promoting the survival of human pulmonary alveolar epithelial cells (HPAEpiC) injured or damaged by reactive oxygen species (ROS) in the presence of leukocytes or HPAEpiC injured by LPS-activated leukocytes, comprising contacting the injured cells with n (CAT) .
  • HPAEpiC human pulmonary alveolar epithelial cells
  • ROS reactive oxygen species
  • n (CAT) can be used to protect lung tissues, such as human pulmonary alveolar epithelial cells (HPAEpiC) , from oxidative injury in the presence of leukocytes.
  • HPAEpiC injured by ROS in the presence of leukocytes may be treated with n (CAT) having a concentration of about 1, 2, 3, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 ⁇ g/mL.
  • HPAEpiC e.g., injured by ROS in the presence of leukocytes without n (CAT)
  • n (CAT) n
  • adding n (CAT) to the injured HPAEpiC can increase the cell viability to about 91%.
  • HPAEpiC injured by LPS-activated leukocytes may be treated with n (CAT) having a concentration of about 1, 2, 3, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 ⁇ g/mL.
  • n (CAT) having a concentration of about 1, 2, 3, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 ⁇ g/mL.
  • adding n (CAT) to the injured HPAEpiC can increase the cell viability to about 91%.
  • agent is used herein to denote a chemical compound (such as an organic or inorganic compound, a mixture of chemical compounds) , a biological macromolecule (such as a nucleic acid, an antibody, including parts thereof as well as humanized, chimeric and human antibodies and monoclonal antibodies, a protein or portion thereof, e.g., a peptide, a lipid, a carbohydrate) , or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues.
  • Agents include, for example, agents whose structure is known, and those whose structure is not known. The ability of such agents to inhibit AR or promote AR degradation may render them suitable as “therapeutic agents” in the methods and compositions of this disclosure.
  • nanocapsule ” “nanoparticle, ” and “n (CAT) ” are used interchangeably to refer to CAT encapsulated in polymer.
  • a “patient, ” “subject, ” or “individual” are used interchangeably and refer to either a human or a non-human animal. These terms include mammals, such as humans, primates, livestock animals (including bovines, porcines, etc. ) , companion animals (e.g., canines, felines, etc. ) and rodents (e.g., mice and rats) .
  • Treating” a condition or patient refers to taking steps to obtain beneficial or desired results, including clinical results.
  • treatment is an approach for obtaining beneficial or desired results, including clinical results.
  • Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total) , whether detectable or undetectable.
  • Treatment can also mean prolonging survival as compared to expected survival if not receiving treatment.
  • preventing is art-recognized, and when used in relation to a condition, such as a local recurrence (e.g., pain) , a disease such as cancer, a syndrome complex such as heart failure or any other medical condition, is well understood in the art, and includes administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition.
  • a condition such as a local recurrence (e.g., pain)
  • a disease such as cancer
  • a syndrome complex such as heart failure or any other medical condition
  • prevention of cancer includes, for example, reducing the number of detectable cancerous growths in a population of patients receiving a prophylactic treatment relative to an untreated control population, and/or delaying the appearance of detectable cancerous growths in a treated population versus an untreated control population, e.g., by a statistically and/or clinically significant amount.
  • administering or “administration of” a substance, a compound or an agent to a subject can be carried out using one of a variety of methods known to those skilled in the art.
  • a compound or an agent can be administered, intravenously, arterially, intradermally, intramuscularly, intraperitoneally, subcutaneously, ocularly, sublingually, orally (by ingestion) , intranasally (by inhalation) , intraspinally, intracerebrally, and transdermally (by absorption, e.g., through a skin duct) .
  • a compound or agent can also appropriately be introduced by rechargeable or biodegradable polymeric devices or other devices, e.g., patches and pumps, or formulations, which provide for the extended, slow or controlled release of the compound or agent.
  • Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.
  • a compound or an agent is administered orally, e.g., to a subject by ingestion.
  • the orally administered compound or agent is in an extended release or slow release formulation, or administered using a device for such slow or extended release.
  • a “therapeutically effective amount” or a “therapeutically effective dose” of a drug or agent is an amount of a drug or an agent that, when administered to a subject, will have the intended therapeutic effect.
  • the full therapeutic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses.
  • a therapeutically effective amount may be administered in one or more administrations.
  • the precise effective amount needed for a subject will depend upon, for example, the subject’s size, health and age, and the nature and extent of the condition being treated, such as cancer or MDS. The skilled worker can readily determine the effective amount for a given situation by routine experimentation.
  • compositions, excipients, adjuvants, polymers and other materials and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable carrier means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filter, diluent, excipient, solvent or encapsulating material useful for formulating a drug for medicinal or therapeutic use.
  • the polymer nanoparticles are 10 nm-20 nm, 20-25 nm, 25 nm-30 nm, 30 nm-35 nm, 35 nm-40 nm, 40 nm-45 nm, 45 nm-50 nm, 50 nm-55 nm, 55 nm-60 nm, 60 nm-65 nm, 70-75 nm, 75 nm-80 nm, 80 nm-85 nm, 85 nm-90 nm, 90 nm-95 nm, 95 nm-100 nm, or 100 nm-110 nm.
  • the polymer nanoparticles are approximately 10 nm, 11 nm, 12nm, 13nm, 14nm, 15nm, 16nm, 17nm, 18nm, 19 nm, 20nm, 21 nm, 22 nm, 23 nm, 24 nm, 25 nm, 26 nm, 27 nm, 28 nm, 29 nm, 30 nm, 31 nm, 32 nm, 33 nm, 34 nm, 35 nm, 36 nm, 37 nm, 38 nm, 39 nm, 40 nm, 41 nm, 42 nm, 43 nm, 44 nm, 45 nm, 46 nm, 47 nm, 48 nm, 49 nm, 50 nm, 51 nm, 52 nm, 53 nm, 54 nm, 55 nm, 56 nm, 57 nm, 58 nm, 59
  • the polymer nanoparticles are 120 nm-130 nm, 130 nm-140 nm, 140 nm-150 nm, 150 nm-160 nm, 160 nm-170 nm, 170 nm-180 nm, 180 nm-190 nm, 190 nm-200 nm, 200 nm-210 nm, 220 nm-230 nm, 230 nm-240 nm, 240 nm-250 nm, or larger than 250 nm in diameter.
  • polymer nanoparticles disclosed herein include nontargeting and targeting ability, higher efficiency, and/or lower adverse immune response.
  • the higher efficiency may result from increased uptake and more directed delivery.
  • n (CAT) composition is composed of two steps, including:
  • a NAS stock solution was prepared by dissolving 10 mg NAS in 400 ⁇ L dimethyl sulfoxide (DMSO) .
  • DMSO dimethyl sulfoxide
  • the NAS stock solution was then mixed with a CAT solution at a molar of 20 ⁇ 1 (NAS ⁇ CAT) .
  • NAS ⁇ CAT a CAT solution at a molar of 20 ⁇ 1
  • 340 ⁇ L NAS stock solution was added to 60 mL CAT solution (10 mg/mL) in lx phosphate buffered saline (PBS) ) .
  • PBS lx phosphate buffered saline
  • the reaction was then kept at room temperature (R.T. ) for 1 hour under magnetic stirring (200 rpm) .
  • 2-methacryloyloxyethyl phosphorycholine (MPC) stock solution was prepared by dissolving 20 g MPC in 50 mL ultrapure water.
  • N- (3-Aminopropyl) methacrylamide hydrochloride (APM) stock solution was prepared by dissolving 1 g APM in 10 mL ultrapure water.
  • N, N′-Methylenebis (acrylamide) (BIS) stock solution was prepared by dissolving 1 g BIS in 10 mL DMSO.
  • Ammonium persulfate (APS) stock solution was prepared by dissolving 1 g APS in 10 mL ultrapure water.
  • n (CAT) (n (CAT) (0) )
  • 33 mL MPC stock solution and 7 mL BIS stock solution were added to a 500 mL glass bottle.
  • 30 mL 10X phosphate-buffered saline (10x PBS) and 17 mL water were added, and the mixture was purged with nitrogen for 20 min under magnetic stirring (200 rpm) .
  • 45 mL CAT solution (from 1, after surface conjugation) was added into the mixture (molar ratio of CAT ⁇ MPC ⁇ BIS is 1 ⁇ 24000 ⁇ 2400) under magnetic stirring (200 rpm) .
  • 2.65 mL pure tetramethylethylenediamine (TEMED) and 10 mL APS stock solution were added to the mixture, and the mixture was kept at R. T. for 2 hours.
  • TEMED tetramethylethylenediamine
  • n (CAT) (+) To prepare positively charged n (CAT) (n (CAT) (+) ) , 30 mL MPC stock solution, 8 mL APM stock solution and 7 mL BIS stock solution were added to a 500 mL glass bottle. Then, 30 mL 10x PBS and 17 mL water were added, and the mixture was purged with nitrogen for 20 min under magnetic stirring (200 rpm) . 45 mL CAT solution from 1) after surface conjugation was added into the mixture (molar ratio of CAT ⁇ MPC ⁇ BIS is 1 ⁇ 24000 ⁇ 2400) under magnetic stirring (200 rpm) . 2.65 mL pure tetramethylethylenediamine (TEMED) and 10 mL APS stock solution were added to the mixture, and the mixture was kept at R. T. for 2 hours.
  • TEMED tetramethylethylenediamine
  • n (CAT) (0) and n (CAT) (+) solutions were adjusted to a final concentration of 1 mg/mL (CAT concentration) with lx PBS for further applications.
  • n (CAT) can be synthesized and characterized by the following method. Catalase was dissolved in phosphate buffered saline (PBS) , dialyzed overnight against PBS at 4 °C, and filtered using a 0.22 ⁇ m filter. As-purified catalase was first conjugated with acrylate moieties by reacting with NAS (20 ⁇ 1, n/n, NAS ⁇ Catalase) at 4 °C for 2 h, and dialyzed overnight against PBS at 4 °C.
  • PBS phosphate buffered saline
  • n (CAT) To synthesize n (CAT) , MPC, APM, and BIS (21600 ⁇ 2400 ⁇ 2400 ⁇ 1, n/n, MPC ⁇ APM ⁇ BIS ⁇ Catalase) were added to form a solution, and then APS (2400 ⁇ 1, n/n, APS ⁇ Catalase) and TEMED (2 ⁇ 1, w/w, TEMED ⁇ APS) were added to initiate the polymerization. After reacting at 4 °C for 2 h, the solution was dialyzed against PBS and passed through a phenyl-sepharose CL-4B column (GE) using 10x PBS as the elusion buffer. The concentration of n (CAT) was determined with BCA protein assay. The size distribution and zeta potential were measured by dynamic light scattering (DLS, Zetasizer Nano Instruments) . The diameter and morphology were evaluated by TEM (Tecnai T12) .
  • Native catalase or n was added to solutions containing 1.25, 2.50, 5.00, and 10.00 mM H 2 O 2 at a final catalase concentration of 1 ⁇ g/mL.
  • the reaction rate was measured by the decrease in the absorption at 240 nm with a UV-VIS spectrum (Beckman) every 10 seconds (40 seconds in total) .
  • native catalase or n (CAT) were diluted with PBS to a final concentration of 0.1 mg/mL and incubated at 37 °C for 24 hours.
  • the activities of the enzymes were measured by adding catalase or n (CAT) to 10 mM H 2 O 2 at a final catalase concentration of 1 ⁇ g/mL.
  • native catalase or n were diluted with PBS to a final concentration of 0.1 mg/mL, after which Trypsin was added to the solutions at a final concentration of 50 ⁇ g/mL and incubated at 37 °C for 2 hours.
  • the enzyme activities were tested in 1000 ⁇ M H 2 O 2 at a final catalase concentration of 1 ⁇ g/mL.
  • HPAEpiC Human pulmonary alveolar epithelial cells
  • RPMI1640 media supplemented with 10%FBS and 1%P/S.
  • HPAEpiC were seeded in 96 well-plates at 5,000 cells/well 12 h prior to in vitro tests, and were seeded at 10,000 cells/well 12 h before the ex vivo studies.
  • the cell viability was tested by the CCK-8 Kit (Dojindo) following the protocol provided.
  • n (CAT) The cytotoxicity of n (CAT) was examined by culturing HPAEpiC with 20, 10, 200, and 1000 ⁇ g/mL of n (CAT) for 12 h.
  • H 2 O 2 was added to HPAEpiC at a final concentration of 1000 ⁇ M, and incubated for 24 h. The media was then removed, and the cells were washed with chilled PBS for three times.
  • n (CAT) was then added at final concentration of 2, 4, 8, 16, and 20 ⁇ g/mL, respectively, and incubated for another 12 h.
  • n (CAT) To validate the ability of n (CAT) to prevent oxidative injury, HPAEpiC were pre-incubated with 2, 4, 8, 16, and 20 ⁇ g/mL of n (CAT) for 12 h, respectively, after which H 2 O 2 was added to the cells at a final concentration of 1000 ⁇ M, and incubated for 24 h. The cell viability tests were conducted after all of the in vitro tests.
  • Leukocytes were separated from whole blood from a donor following a protocol provided by Thermo Fisher Scientific. To confirm the ability of n (CAT) to regulate cytokine production, leukocytes were seeded in a 96 well-plate at 100,000 cells/well, and LPS was added at a final concentration of 1 ⁇ g/mL to activate the leukocytes. n (CAT) was added at a final concentration of 2, 4, 8, 16, and 20 ⁇ g/mL, respectively, and incubated for 12 h. The concentration of TNF- ⁇ and IL-10 in the media was measured with an enzyme-linked immunosorbent assay kit (Abcam) following the protocols provided.
  • Abcam enzyme-linked immunosorbent assay kit
  • n (CAT) To validate the ability of n (CAT) to protect injured cells against leukocytes, H 2 O 2 was added to HPAEpiC at a final concentration of 500 ⁇ M, and incubated for 12 h to mimic cell injury. The injured cells were then washed three times with chilled PBS, followed by adding fresh leukocyte-containing media (100,000 cells in each well) . n (CAT) was added at a final concentration of 2, 4, 8, 16, and 20 ⁇ g/mL, respectively, and incubated for another 12 h. PBS was added to the injured HPAEpiC as Control #1, and leukocytes were added to HPAEpiC without H 2 O 2 treatment as Control #2.
  • n (CAT) To confirm the ability of n (CAT) to protect HPAEpiC against injury from activated leukocytes, HPAEpiC were incubated with 100,000 leukocytes containing 1 ⁇ g/mL lipopolysaccharides (LPS) to activate the leukocytes. n (CAT) was then added at final concentration of 2, 4, 8, 16, and 20 ⁇ g/mL, respectively, and incubated for 24 h prior to measuring the cell viability. 1 ⁇ g/mL LPS was added to HPAEpiC as Control #3, and leukocytes were added to HPAEpiC without LPS as Control #4.
  • LPS lipopolysaccharides
  • n (CAT) shows a size distribution centered at 25 nm and a zeta potential of 1.5 mV, in comparison with those of native catalase (10 nm and -4.0 mV) ( Figures 1A and 1B) ; TEM image confirms that n (CAT) has an average size of 20 ⁇ 30 nm ( Figure 1C) .
  • n (CAT) exhibits a similar enzyme activity ( Figure 5A) , yet with significantly improved enzyme stability.
  • n (CAT) and native catalase retain 90%and 52%of the activity after incubation in PBS at 37 °C for 24 h, respectively, indicating improved thermal stability.
  • n (CAT) and native catalase retain 87%and 30%of the activity, respectively, suggesting improved protease stability.
  • n (CAT) in solution retains 100%of the activity after storage at 4 °C and 25 °C for 3 mo.
  • Figure 5B after freeze drying, n (CAT) retains more than 90%of the activity ( Figure 5C) .
  • Such characteristics are critical for the transport and distribution of n (CAT) .
  • n (CAT) The ability of n (CAT) to protect lung tissues from oxidative injury was examined in human pulmonary alveolar epithelial cells (HPAEpiC) .
  • HPAEpiC human pulmonary alveolar epithelial cells
  • the cytotoxicity of n (CAT) was investigated by culturing HPAEpiC with different concentrations of n (CAT) ( Figure 6A) .
  • the cells with n (CAT) exhibit similar or higher cell viability than the control cells, indicating that n (CAT) does not show any noticeable cytotoxicity to HPAEpiC.
  • the higher cell viability observed is possibly attributable to the ability of n (CAT) to remove H 2 O 2 produced in the cultures.
  • HPAEpiC were cultured with 20 ⁇ g/mL of n (CAT) for 12 h, after which 1,000 ⁇ M H 2 O 2 was added to the media and cultured for 24 h ( Figure 1F) .
  • the cells without n (CAT) show a cell viability of 63%, while the cells with n (CAT) retain 100%of the cell viability, demonstrating an ability to protect the cells from oxidative injury.
  • HPAEpiC were incubated with 1000 ⁇ M H 2 O 2 for 24 h to induce cell injury, after which the injured cells were incubated with 20 ⁇ g/mL of n (CAT) for 12 h ( Figure 1G) .
  • n (CAT) Culturing the injured cells with n (CAT) increases the cell viability from 50%to 73%, indicating an ability of n (CAT) to promote survival of injured cells. Similar protective and resuscitative effects were also observed with lower n (CAT) concentrations ( Figures 6B and 6C) .
  • n (CAT) The ability of n (CAT) to regulate cytokine production was studied in human leukocytes (white blood cells, WBC) .
  • Leukocytes were cultured with lipopolysaccharides (LPS, a bacterial endotoxin that activates leukocytes) with and without n (CAT) .
  • Figures 1H and 1I show the concentration of TNF ⁇ and IL-10 in the culture media. Culturing the leukocytes with LPS without n (CAT) significantly increases the production of TNF- ⁇ and IL-10 (P value 0.0001) .
  • n (CAT) shows dramatically lower concentrations of TNF- ⁇ and IL-10 (P value 0.01 to 0.001) , that are comparable with those of the control cells (resting leukocytes) .
  • This ex vivo study suggests that n (CAT) can downregulate the production of TNF- ⁇ and IL-10 by activated leukocytes, indicating a potential use of n (CAT) as an immunoregulator for hyperinflammation.
  • leukocytes were cultured with injured human pulmonary alveolar epithelia cells (HPAEpiC) , of which cell injury was induced by H 2 O 2 (Control #1, cell viability 85%) .
  • HPAEpiC human pulmonary alveolar epithelia cells
  • Control #1 cell viability 85%
  • culturing the cells with leukocytes reduces the viability to 71%.
  • adding 8, 16, and 40 ⁇ g/mL n (CAT) increases the viability to 82, 89, and 91%, respectively, which are comparable to those of Control #2 (leukocytes with untreated-HPAEpiC, 91%cell viability) .
  • n can not only protect, but also resuscitate, the injured alveolar cells, which is consistent with the observation presented in Figure 1G.
  • HPAEpiC was cultured with leukocytes activated by LPS.
  • HPAEpiC (Blank) and HPAEpiC with LPS (Control #3) exhibit a similar cell viability, while HPAEpiC with LPS-activated leukocytes show a dramatically reduced cell viability of 67%.
  • n can also protect healthy alveolar cells from injury caused by activated leukocytes, demonstrating an anti-inflammatory effect.
  • n (CAT) native catalase and n (CAT) labeled with sulfo-Cy7-NHS or Alexa Fluor-750-NHS were used for intravenous injection and intratracheal instillation, respectively.
  • sulfo-Cy7-NHS was added to native catalase or n (CAT) (5 ⁇ 1, n/n, Cy7 ⁇ CAT) , and the reaction was kept at 4 °C overnight. The unreacted Cy7 was removed by dialysis against PBS overnight at 4 °C, and the concentrations of catalase and n (CAT) were determined by BCA assay, respectively.
  • Alexa Fluor-750-NHS a similar protocol was used.
  • the organs of these animals (heart, liver, spleen, lung, and kidney) were collected and imaged with an in vivo imaging system (IVIS spectrum, Perkin Elmer) .
  • the organs were also fixed in 10%neutral-buffered formalin and embedded in paraffin.
  • the sections (4 ⁇ m in thickness) were stained with haematoxylin and eosin, and examined with a light-microscope.
  • the serum was separated from the whole blood by centrifugation at 4000 x g for 10 min, and the serum catalase activity was assessed by a microplate-based method according to a published test with a minor modification 38 . Briefly, the serum was diluted five times with 50 mM phosphate buffer (PB, pH 7.4) .
  • n (CAT) For therapeutic use, the pharmacokinetics and biodistribution of n (CAT) were investigated in mice.
  • BALB/c mice were administered 20 mg/kg of native catalase or n (CAT) .
  • Figure 2A shows the biodistribution 6 h and 24 h post-injection; accumulation of n (CAT) is observed in the liver, kidney, lung, and lymph nodes, of which the average radiance is shown in Figure 2B.
  • Figure 2C presents the pharmacokinetics, indicating that n (CAT) has a significantly longer circulation time than the native catalase.
  • n (CAT) exhibits a serum half-life of 8.9 h, which is 16.8-fold longer than the native CAT (0.5 h) .
  • AUC area under the curve
  • mice were administered 2.5 mg/kg of native CAT or n (CAT) labeled with Alexa-Fluor-750.
  • the mice receiving native catalase show fluorescent signal in the lung after 6 h, the intensity of which decreases significantly after 48 h.
  • the mice receiving n (CAT) exhibit significantly higher fluorescent intensity after 6 h and 48 h ( Figure 2E) , which is confirmed by their fluorescent intensity plot after 48 h ( Figure 2F) .
  • Figure 2E fluorescent intensity plot after 48 h
  • Figure 2F Figure 2F
  • Example 6 Ability of n (CAT) to inhibit the replication of SARS-CoV-2 in rhesus macaques.
  • All of the animals were inoculated with SARS-CoV-2 under anesthesia through intranasal route (100 ⁇ L per nostril) with a suspension of 10 5 CCID50 SARS-CoV-2 in PBS.
  • the animals in the control group inhaled 10 mL PBS at day 2, 4, and 6 post-inoculation (p.i. ) with a nebulizer (OMRON NB-150U) .
  • the animals in the inhaled group received 5 mg n (CAT) (10 mL) at day 2, 4, and 6 p.i. with the nebulizer.
  • the animals in the intravenous group received 5 mg/kg n (CAT) at day 2, 4, and 6 p.i. through saphenous vein injection.
  • the animals in the intravenous treatment group also received 10 mL PBS at day 2, 4, and 6 p.i. with the nebulizer. All of the animals were anesthetized daily with ketamine (5 mg/kg) during day 1-7 p.i. Nasal swabs and oral swabs were collected with cotton swabs from the nasal and oral cavity, respectively. Body weights were also measured daily. For each animal, 1 mL blood sample was collected from the saphenous vein with anti-coagulation tubes, and another 2 mL blood sample was collected with pro-coagulation tubes. The serum was then separated for biochemical tests and blood routine tests with a Mindray BS-200 chemistry analyzer and a Sysmex XT 2000i automated hematology analyzer, respectively. Except N3 (sacrificed at day 21 p.i. ) , all animals were sacrificed at day 7 p.i. Autopsies of the animals were performed according to a standard protocol, and the organs were collected.
  • the swabs were added to 1 mL TRNzol and mixed by vortex; 200 ⁇ L of the liquid was then mixed with 600 ⁇ L TRNzol.
  • As-collected tissues were homogenized (SCIENTZ-48 homogenizer) with TRNzol (tissue: 20 wt-%) . After homogenization, 200 ⁇ L homogenate was mixed with 600 ⁇ L TRNzol. Chloroform (200 ⁇ L) was added to each of the mixtures, placed at room temperature for 10 min, and centrifuged at 12,000 rpm for 10 min. After centrifugation, 500 ⁇ L supernatant was transferred to a tube.
  • Tissues for light-microscope examination were fixed in 10%neutral-buffered formalin, embedded in paraffin, and 4 ⁇ m sections were stained with haematoxylin and eosin.
  • paraffin was removed from the sections, and the sections were treated with citric acid buffer (pH 6.0) for 20 min at 100 °C. Endogenous peroxidase was then blocked with 3%hydrogen peroxide for 25 min at room temperature. The sections were briefly washed with PBS (pH 7.4) for three times, and were blocked with 3%bovine serum albumin (BSA) for 30 min at room temperature.
  • PBS pH 7.4
  • the slides were then incubated with a rabbit polyclonal antibody against SARS-CoV diluted 1 ⁇ 100 with PBS, and kept at 4 °C overnight. After washing with PBS for three times, the slides were incubated with horseradish peroxidase (HRP) labeled goat-anti-rabbit IgG diluted 1 ⁇ 200 with PBS for 50 min at room temperature. After washing with PBS, HRP activity was revealed by adding freshly prepared DAB solution, and the reaction was terminated by washing with DI water when a positive brown color was observed under the light-microscope. The sections were counterstained with haematoxylin.
  • HRP horseradish peroxidase
  • n (CAT) The ability of n (CAT) to suppress the replication of SARS-CoV-2 was examined in rhesus macaques. As illustrated in Figure 3A, at day 0, all of the animals were inoculated with SARS-CoV-2 through the intranasal route. For the control group (C 1, C2) , two animals received 10 mL PBS though inhalation at day 2, 4, and 6, respectively. For the nebulization group, three animals (N1, N2, N3) received 5 mg of n (CAT) (10 mL) through inhalation at day 2, 4, and 6. For the intravenous group, two animals (I1, I2) received 10 mL PBS though inhalation and 5 mg/kg of n (CAT) intravenously at day 2, 4, and 6. Except N3 (sacrificed at day 21) , the other animals were sacrificed at day 7.
  • Figure 3B shows the viral loads in nasal swabs for the control and nebulized group.
  • N1 exhibits a viral load that is similar to C1 and C2 at day 1 and 2, after which the viral load rapidly decreases and becomes significantly lower than the control group.
  • N3 shows a similar viral load to the control group at day 1, after which the viral load remains significantly lower than the control group. It is worth noting that the viral load of N3 at day 2 is lower than the control group. Nevertheless, the oral swabs confirmed that N3 was successfully infected, indicating an individual difference (Figure 10) .
  • N2 shows similar viral loads to the control group from day 1 to 7.
  • Figure 3C shows viral loads in the nasal swabs for the control and intravenous group.
  • I1 exhibits a similar viral load to the control group at day 1 and 2, after which the viral load rapidly decreases and remains significantly lower than the control group.
  • I2 also shows a similar viral load to the control group at day 1, after which the viral load remains significantly lower than the control group.
  • I2 shows a lower viral load than the control group, yet the oral swabs confirmed its active infection.
  • Figures 3E and 3F presents the viral RNA copy numbers in 100 mg of the organs, including lung, trachea, neck lymph node (LN) , and lung LN.
  • N1 shows significantly lower viral loads than the control group; whereas, N2 exhibits similar viral loads to the control group, which is consistent with the nasal-swab results.
  • Figures 4A-4F shows the liver and renal functions of the control and experimental group, which exhibit similar levels of alanine aminotransferase, aminotransferase aspartate aminotransferase, alkaline phosphatase, albumin, uric acid, creatine, and blood urea nitrogen, indicating that intravenous administration of 5 mg/kg of n (CAT) did not cause any noticeable liver or renal toxicity. Meanwhile, all of the groups show similar blood routine and other indexes for liver function ( Figure 12) . Similar results were also observed in healthy rhesus macaques inhaling 2.0 mg/kg ( Figure 13) n (CAT) per day for 7 d, suggesting that n (CAT) does not cause noticeable liver or kidney toxicity.
  • Figure 4G presents representative H&E sections of kidneys (a, b) and liver (c, d) from animals in the control (a, c) and inhaled group (b, d) .
  • the kidneys show neither evidence of interstitial nephritis nor acute tubular injury; the livers exhibit neither steatosis, hepatocyte necrosis, inflammation, cholestasis, nor bile duct injury.
  • Histologic sections of lung tissues in both the control and inhaled groups exhibit unremarkable alveolar architecture, with no evidence of acute lung injury in the form of hyaline membranes, intra-alveolar fibrin, organizing pneumonia, or reactive pneumocyte hyperplasia.
  • the airway epithelium is unremarkable.
  • FIG. 14 Vascular compartments are free of thrombi.
  • Figure 14 There is no evidence of eosinophilia or vasculitis, and no viral cytopathic effect is identified.
  • the H&E staining of other major organs also shows no tissue injury for both the control and inhaled group ( Figure 15) , confirming the biosafety of n (CAT) administered through intravenous injection or inhalation.
  • Figure 4H also presents a representative H&E section (a) and immunohistochemistry for SARS-CoV-2 nucleocapsid protein (b) of the lung LN in one animal from the control group (C1) . Reactive follicular hyperplasia could be observed in the H&E section, and scattered positive mononuclear cells (black arrows) indicate the SARS-CoV-2 infection in the lymph node.
  • n The action mechanism of n (CAT) is unclear.
  • ROS also serve as signaling molecules in numerous physiological processes.
  • H 2 O 2 generation after wounding is required for the recruitment of leukocytes to the wound, and ROS is necessary for the release of pro-inflammatory cytokines to modulate an appropriate immune response.
  • Eliminating the H 2 O 2 excessively produced during inflammation also minimizes the downstream ROS, which assists to downregulate production of cytokines, mitigate recruitment of excessive leukocytes, and inhibit replication of the viruses.
  • immunosuppressive steroids such as prednisone and dexamethasone, are proven to be effective for treatment of hyperinflammation in severe COVID-19 patients.
  • the experimental results demonstrate the anti-inflammatory effect of n (CAT) and ability of catalase to regulate cytokine production in leukocytes, protect alveolar cells from oxidative injury, and inhibit the replication of SARS-CoV-2 in rhesus macaques without noticeable toxicity.
  • CAT n
  • ROS Reactive oxygen species

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Immunology (AREA)
  • Dispersion Chemistry (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Pulmonology (AREA)
  • Nanotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Optics & Photonics (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Dermatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

It relates to a nanoparticle comprising an enzyme capable of neutralizing excessive production of reactive oxygen species in a subject with the enzyme being encapsulated in a polymer. A scale up synthesis of the nanoparticle is also disclosed. It further relates to a method of treating a disease or disorder e.g. a viral pneumonia (for example COVID-19 pneumonia), an immune disorder, cytokine release syndrome, or oxidative stress, comprising administering said nanoparticle to a person in need thereof. It also relates to a method of inhibiting the replication of coronavirus (e.g. SARS or COVID-19/SARS-CoV-2) by administering n(CAT) to a person in need thereof and a method of promoting survival of HPAEpiC injured by ROS in the presence of leukocytes or HPAEpiC injured by LPS-activated leukocytes by contacting n (CAT) to the injured cells.

Description

Catalase Nanoparticles and Methods for Use
RELATED APPLICATIONS
This application claims the benefit of priority to International Application No. PCT/CN2020/083506, filed April 7, 2020, which claims the benefit of priority to United States Provisional Patent Application serial number 62/982,649, filed February 27, 2020. The contents of that application are hereby incorporated by reference in their entirety.
BACKGROUND
Reactive oxygen species (ROS) play essential physiological roles as signaling molecules in various cell types, participating in almost every biological process, including vascular physiology, oxygen sensing, immune responses and gene transcription. Meanwhile, ROS are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can effectively kill pathogens by creating directly oxidative stress to the pathogens or by stimulating immune system to combat with the pathogens. Nevertheless, excessive production of ROS, which are cytotoxic, may damage cells and tissues and trigger immune dysregulation. Regulating ROS production, in this context, is essential to combat pathogens while prevent immune dysregulation.
Cytokine storm, for example, is a serious immune dysregulation due to overproduction of cytokines, which often occurs during virus infection, organ transplant, immunotherapy, and autoimmune diseases and may result in death if untreated. In the development of cytokine storm, increasing level ROS can induce cell apoptosis through DNA damage, lipid peroxidation and protein oxidation. The cell death further exacerbates the immune responses, which help to recruit and activate phagocytes to the disease site, further producing ROS and pro-inflammatory cytokines such as IL-6 and IL-1β. The cross-enhancing production of ROS and cytokines further aggravates apoptosis, inflammation and immune response (e.g., activation of T cells) , resulting in occurrence of cytokine storm.
To regulate ROS production and prevent their oxidative injury, biological systems have developed complicated antioxidant system that enable effective catabolism of ROS. Catalase (CAT) represents one of the most important enzymes, which can effectively breakdown hydrogen peroxide (H 2O 2) , the major component of ROS, to water and oxygen, preventing its direct oxidative damages to the cells and tissues, as well as cutoff its subsequent reaction with  other chemical species that generate other types of toxic ROS. CAT is abundant in various cells (e.g. erythrocytes) and organs (e.g., liver) , as well as in the serum (~ 10 U/mL) ; every CAT molecule can breakdown ~ 10 7 H 2O 2 molecules in a second, enabling its use as a powerful antioxidant for the protection of cells and tissues from potential ROS damages.
Despite the abundant presence of CAT in biological system, insufficiency of CAT may occur systemically or locally in specific tissues or organs, particularly, for patients with pneumonia, virus infection, autoimmune diseases, and patients under immunotherapies. Under these conditions, effective administration of CAT, a potent antioxidant, can mitigate the oxidative injury and related cell and tissue damages, and prevent occurrence of cytokine storm. However, the effective delivery of CAT is still hampered by its enzyme stability, short circulation time, rapid immunogenicity, and undesired biodistribution. In lights of these limitation, there exists a need to develop a novel delivery of CAT nanoparticles as a potent antioxidant for effective breakdown of toxic ROS for a broad range of applications such therapeutic, cosmetic uses, and remediation for smokers.
SUMMARY OF THE INVENTION
In one aspect, the present invention provides a nanoparticle comprising an enzyme capable of neutralizing reactive oxygen species in a subject and a polymer encapsulating the enzyme.
In one aspect, the present invention provides a pharmaceutical composition comprising a plurality of the nanoparticles and a pharmaceutically acceptable carrier or excipient.
In one aspect, the present invention provides a method of preparing the nanoparticle, which comprises conjugating the enzyme with a modify agent in a first solvent and encapsulating the conjugated enzyme within a polymer in a second solvent.
In one aspect, the present invention provides a method of treating a disease or disorder selected from pneumonia, a viral infection, a bacterial infection, an immune disorder, cytokine release syndrome, or oxidative stress, comprising administering the nanoparticle or the pharmaceutical composition to a person in need thereof.
In one aspect, the present invention provides a method of inhibiting the replication of coronavirus (e.g., SARS or COVID-19/SARS-CoV-2) comprising administering n (CAT) to an animal, such as human, in need thereof.
In one aspect, the present invention provides a method of rescuing or promoting the survival of HPAEpiC injured by ROS in the presence of leukocytes or HPAEpiC injured by LPS-activated leukocytes comprising contacting the injured cells with n (CAT) .
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1A depicts dynamic light scattering of n (CAT) and native catalase.
FIG. 1B depicts zeta potential of n (CAT) and native catalase.
FIG. 1C depicts Transmission electron microscopic (TEM) image of n (CAT) .
FIG. 1D depicts thermal stability of n (CAT) and native catalase.
FIG. 1E depicts proteolytic stability of native catalase and n (CAT) .
FIG. 1F depicts cell viability of HPAEpiC pre-cultured with 20 μg/mL n (CAT) for 12 h, followed by addition of H 2O 2 (1000 μM) and culturing for 24 h.
FIG. 1G depicts cell viability of HPAEpiC pre-cultured with 1000 μM H 2O 2 for 24 h, followed by culturing in fresh media containing 20 μg/ml n (CAT) for 12 h.
FIG. 1H depicts concentration of TNF-α in the media of human leukocytes (white blood cells, WBC) cultured with LPS and different concentrations of n (CAT) .
FIG. 1I depicts concentration of IL-10 in the media of human leukocytes (white blood cells, WBC) cultured with LPS and different concentrations of n (CAT) .
FIG. 1J depicts cell viability of HPAEpiC pre-cultured with 500 μM H 2O 2 for 12 h (Control #1) followed by culturing with WBC and different concentrations of n (CAT) , as well as that of untreated HPAEpiC cultured with WBC for 12 h (Control #2) .
FIG. 1K depicts cell viability of HPAEpiC cultured with LPS (Control #3) , with WBC (Control 4#) , and with LPS, WBC, and different concentrations of n (CAT) . (P value:  < 0.05;  **< 0.01;  ***< 0.001;  ****< 0.0001. )
FIG. 2A depicts fluorescence imaging of the major organs.
FIG. 2B depicts average radiance of n (CAT) in the liver, lung, and kidney 6 h and 24 h after intravenous administration of 20 mg/kg Cy7-1abeled n (CAT) . (From left to right: heart, liver, spleen, lung, kidney, and lymph nodes. )
FIG. 2C depicts pharmacokinetics of native catalase and n (CAT) in BALB/c mice (n = 3) after intravenous administration of 20 mg/kg native catalase or n (CAT) ; blood samples were collected 0.1, 1, 3, 6, and 24 h after injection.
FIG. 2D depicts drug exposure of the native catalase and n (CAT) .
FIG. 2E depicts fluorescence imaging of the major organs after intratracheal nebulization of native catalase and n (CAT) . (From left to right: heart, liver, spleen, lung, and kidney. )
FIG. 2F depicts relative fluorescence intensity of the lung 48 h after intratracheal nebulization of native catalase and n (CAT) . (P value:  < 0.05;  ****< 0.0001. )
FIG. 3A depicts schematic showing the experiment design.
FIG. 3B depicts viral loads in the nasal swabs of the animals that received nebulization treatment (N1, N2, and N3) .
FIG. 3C depicts viral loads in the nasal swabs of the animals that received intravenous injection (I1 and I2) of n (CAT) .
FIG. 3D depicts relative bodyweight of the animals at day 1-7.
FIG. 3E depicts viral loads in selective organs of the animals receiving nebulization treatment of n (CAT) at day 7.
FIG. 3F depicts viral loads in selective organs of the animals receiving intravenous injection of n (CAT) at day 7. (Animals in the control group were marked as C1 and C2. )
FIG. 4A depicts aspartate aminotransferase (AST) levels of the animals in the control, inhaled, and intravenous groups.
FIG. 4B depicts alanine aminotransferase (ALT) levels of the animals in the control, inhaled, and intravenous groups.
FIG. 4C depicts alkaline phosphatase (ALP) levels of the animals in the control, inhaled, and intravenous groups.
FIG. 4D depicts uric acid (UA) levels of the animals in the control, inhaled, and intravenous groups.
FIG. 4E depicts urea levels of the animals in the control, inhaled, and intravenous groups.
FIG. 4F depicts blood urea nitrogen (BUN) levels of the animals in the control, inhaled, and intravenous groups.
FIG. 4G depicts H&E stained sections of the kidneys (a, b) and livers (c, d) in the control (a, c) and inhaled groups (b, d) (scale bar = 50 μm) .
FIG. 4H depicts (a) representative H&E stained section (scale bar = 200 μm) and (b) immunohistochemistry staining of SARS-CoV-2 nucleocapsid protein [6H3] , demonstrating scattered positive mononuclear cells (arrows) within the lung LN in C1 (scale bar = 20 μm) .
FIG. 5A depicts enzyme activity of n (CAT) and native catalase in different concentrations of H 2O 2.
FIG. 5B depicts residual activity of n (CAT) and native catalase in solution stored at 4 ℃ and 25 ℃ for 90 days.
FIG. 5C depicts residual activity of n (CAT) after freeze-drying.
FIG. 6A depicts cell viability of HPAEpiC in the presence of different concentrations of n (CAT) for 12 h.
FIG. 6B depicts cell viability of HPAEpiC pre-cultured with different concentrations of n (CAT) for 12 h followed by addition of H 2O 2 (1000 mM) and culturing for 24 h. 20 μg/mL native catalase was used as a control.
FIG. 6C depicts cell viability of HPAEpiC pre-cultured with 1000 mM H 2O 2 for 24 h, followed by culturing in a fresh media containing different concentrations of n (CAT) for 12 h. 20 μg/mL native catalase was used as a control. (P value:  ****< 0.0001. )
FIG. 7A depicts plasma levels of alanine aminotransferase (ALT) , aspartate aminotransferase (AST) , and alkaline phosphatase (ALP) 24 h after intravenous injection of 20 mg/kg n (CAT) in BALB/c mice.
FIG. 7B depicts urea (UREA) and uric acid (UA) 24 h after intravenous injection of 20 mg/kg n (CAT) in BALB/c mice.
FIG. 7C depicts blood routine 24 h after intravenous injection of 20 mg/kg n (CAT) in BALB/c mice.
FIG. 8 depicts representative H&E staining sections of major organs in BALB/c mice 24 h after intravenous injection of 20 mg/kg n (CAT) . (scale bar = 50 μm)
FIG. 9 depicts representative H&E staining sections of major organs in BALB/c mice 24 h after intratracheal instillation of 2.5 mg/kg n (CAT) . (scale bar = 50 μm)
FIG. 10A depicts viral loads in the orals swabs in the inhaled group of SARS-CoV-2 infected rhesus macaque.
FIG. 10B depicts viral loads in the oral swabs in the intravenous group of SARS-CoV-2 infected rhesus macaque.
FIG. 10C depicts body temperature change in all the animals of SARS-CoV-2 infected rhesus macaque.
FIG. 11A depicts viral loads in the nasal swabs of N3 in the inhaled group at day 1-28 p.i.
FIG. 11B depicts viral loads in the oral swab of N3 in the inhaled group at day 1-28 p.i.
FIG. 11C depicts viral loads in major organs of N3 in the inhaled group at day 28 p.i.
FIG. 12A depicts globulin (GLB) level tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
FIG. 12B depicts indirect bilirubin (IBIL) level tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
FIG. 12C depicts direct bilirubin (DBIL) level tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
FIG. 12D depicts total bilirubin (TBIL) level tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
FIG. 12E depicts total protein (TP) level tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
FIG. 12F depicts C-reactive protein (CRP) level tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
FIG. 12G depicts white blood cell (WBC) number tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
FIG. 12H depicts red blood cell (RBC) number tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
FIG. 12I depicts neutrophil number tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
FIG. 12J depicts monocyte number tests at day 1-7 p.i. in the control, inhaled, and intravenous groups of SARS-CoV-2 infected rhesus macaques.
FIG. 13A depicts liver (AST, ALT, ALP) functions in healthy rhesus macaques receiving 2 mg/kg n (CAT) through inhalation daily for seven days.
FIG. 13B depicts renal functions (UA, urea. creatine (CREA) ) in healthy rhesus macaques receiving 2 mg/kg n (CAT) through inhalation daily for seven days.
FIG. 13C depicts blood routine in healthy rhesus macaques receiving 2 mg/kg n (CAT) through inhalation daily for seven days.
FIG. 14A depicts representative H&E staining sections of lungs in the control group. (scale bar = 100 μm) .
FIG. 14B depicts representative H&E staining sections of lungs in the inhaled group. (scale bar = 100 μm) .
FIG. 15 depicts representative H&E staining sections of other major organs in the control and inhaled groups. (scale bar = 100 μm)
DETAILED DESCRIPTION
This invention relates to the field of drug delivery and nanomedicine. It describes the application of a pharmaceutical composition comprising nanoparticles of catalase (CAT) , denoted hereinafter as n (CAT) , in neutralizing excessive levels of reactive oxygen species (ROS) caused by immune disorders, organ transplant, and other factors. This invention relates to a scale up synthesis of n (CAT) , which can be achieved by a simple batch process. Such n (CAT) can be utilized as a universal antioxidant for a broad range of therapeutic purposes, such as the treatment and/or reduction of symptoms of pneumonia, cytokine release syndrome (CRS) caused by virus infection and immunotherapy, autoimmune diseases, antiaging applications, anti-inflammation applications, cosmetic applications, and remediation for smokers.
In one aspect, this invention provides a nanoparticle-based delivery platform or pharmaceutical composition for effective delivery of CAT. In another aspect, this invention provides a scale up synthesis of CAT nanoparticles.
According to certain embodiments this invention, a pharmaceutical composition comprising CAT encapsulated in a nanoscale polymer shell is provided. In some embodiments of this invention, a method of synthesizing CAT nanoparticles is provided. In a representative embodiment, CAT is encapsulated within a thin layer of poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC) to form n (CAT) with a number average diameter of~ 30 nm. The surface charge and chemistry of the nanoparticles can be finely tuned by the incorporation of monomers with desired functional groups (e.g., amino groups) . The scale up synthesis of n (CAT) allows the production of nanoparticles in the gram level using in a single batch process. The diameter of the nanoparticle may be less than about 100 nm, less than about 90 nm, less than about 80 nm, less than about 70 nm, less than about 60 nm, less than about 50 nm, less than about 40 nm, less than about 30 nm, less than about 20 nm, less than about 10 nm, less than about 5 nm, or less than about 1 nm.
In certain embodiments, the polymer in the CAT nanoparticle comprises a neutral monomer and a cross-linker. In some embodiments, the neutral monomer is selected from acrylamide (AAM) , poly (ethylene glycol) methyl ether acrylate (mPEG) , 2-methacryloyloxyethyl phosphorycholine and a mixture thereof. In some embodiments, the cross-linker is selected from glycerol dimethacrylate (GDMA) , 1, 3-glycerol dimethacrylate, glycerol 1, 3-diglycerolate diacrylate, N, N’-bis (acryloyl) cystamine, bis [2- (methacryloyloxy) ethyl] phosphate, bisacryloylated polypeptide, N, N′-methylenebis (acrylamide) (BIS) and a mixture thereof.
In further embodiments, the polymer is the CAT nanoparticle further comprises a positively charged monomer. In some embodiments, the positively charged monomer is selected from N- (3-aminopropyl) methacrylamide (APM) , N- (3-Aminopropyl) methacrylamide hydrochloride, acryl-spermine, Dimethylamino ethyl methacrylate, (3-Acrylamidopropyl) trimethylammonium hydrochloride, N- (3- ( (4- ( (3-aminopropyl) amino) butyl) amin o) propyl) methacrylamide, N- (3- ( (4-aminobutyl) amino) propyl) acrylamide, N- (3- ( (4-aminobutyl) amino) propyl) methacrylamide, N- (2- ( (2-aminoethyl) (methyl) amino) ethyl) acrylamide, N- (2- ( (2-aminoethyl) (methyl) amino) ethyl) methacrylamide, N- (piperazin-1-ylmethyl) acrylamide, N- (piperazin-1-ylmethyl) methacrylamide, N- (2- (bis (2-aminoethyl) amino) ethyl) acrylamide, and N- (2- (bis (2-minoethyl) amino) ethyl) methacrylamide.
In certain embodiments, n (CAT) of present disclosure retains more than 50%, 60%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%of the native CAT activity. In certain embodiments, n (CAT) of present disclosure, after incubation in PBS at 37 ℃ for 24 h, retains more than 70%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%of its original activity. In further embodiments, n (CAT) of present disclosure, after incubation in PBS with 50 μg/mL trypsin at 37 ℃ for 2 h, retains more than 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%of its original activity.
The above disclosed nanoparticle and the method of preparing the nanoparticle can be adapted to other anti-ROS enzymes. Examples of anti-ROS enzymes, which can be encapsulated into the nanoparticle, include superoxide dismutase (SOD) , glutathione peroxidase, thioredoxin peroxidase, catalase, or a mixture thereof. In certain aspects, this invention provides in-vivo  delivery of CAT. n (CAT) can be delivered systemically and locally through intravenous injection, subcutaneous injection or inhalation. The nanometer size and the non-fouling surface allow sustained sequestration of the nanoparticles in the serum or the target organ such as lung.
In certain aspects, this invention provides a method of treating or reducing the side effects of immune disorders and/or ROS damages cause by many diseases or medical conditions. Common reactive oxygen species (ROS) include hydrogen peroxide, superoxide, singlet oxygen, ozone, hypohalous acids, and organic peroxides.
Compared with CAT, n (CAT) has one or more of prolonged half-life, improved proteolytic stability and reduced immunogenicity, opening the possibilities to treat immune disorders and ROS damage in pneumonia, autoimmune diseases and side-effects caused by immunotherapies. The nanoparticle can be used in treatment of immune disorders and ROS damage, and can be used to deliver other anti-ROS enzymes, such as superoxide dismutase (SOD) , glutathione peroxidase, thioredoxin peroxidase, or a mixture thereof, to achieve similar therapeutic effects as CAT.
In certain aspects, this disclosure provides a method of protecting a lung tissue of a mammal from damaging by H 2O 2. In certain embodiment, a therapeutically effective amount of catalase nanoparticle is administered to human pulmonary alveolar epithelia cells. In certain embodiments, the nanoparticle comprises less than 5000 U/ml of n (CAT) , about 200 U/ml of n (CAT) , about 80 U/ml of n (CAT) , or about 40 U/ml of n (CAT) . In further embodiments, n (CAT) may have an enzyme concentration of 1 mg/ml and the activity of the enzyme is 5000U/mg. After exposure to 40 U/ml of n (CAT) , the viability of human pulmonary alveolar epithelia cell increases from 62%to 78%. Furthermore, after exposure to 80 U/ml of n (CAT) , the viability of human pulmonary alveolar epithelia cell increases from 62%to 100%.
In certain aspects, this disclosure provides a method of treating a COVID-19 patient. In certain embodiments, the patient is treated with a therapeutically effective amount of n (CAT) nanoparticles. The n (CAT) can be administered to the patient by intravenous injection, subcutaneous injection, or inhalation. In certain embodiments, n (CAT) is administered by inhalation, e.g., twice daily, and each dose of nanoparticle comprises, for example, from about 2 mg to about 10 mg of n (CAT) . After the patient receives the treatment, for example at least one course of treatment of 14 days with n (CAT) , at least one physiological parameter/clinical sign of the COVID-19 patient improves, e.g., reaching a normal range (parameters and ranges listed in  Table 4) . In certain embodiments, after at least one course of treatment with n (CAT) (e.g., 14 days) , the patient’s blood oxygen saturation level (SpO 2) reaches a range from 90%to 100%.
In certain aspects, this disclosure provides methods of inhibiting or preventing pneumonia in a COVID-19 patient. In certain embodiments, the patient does not have pneumonia before treatment, and is treated with a therapeutically effective amount of catalase nanoparticle (n (CAT) ) . The administration may be accomplished by intravenous injection, subcutaneous injection, or inhalation. In certain embodiments, the patient is administered by inhalation twice daily and each dose of nanoparticle comprises from about 2 mg to about 10 mg of n (CAT) . After at least one course of treatment with n (CAT) , the patient does not develop pneumonia.
In certain aspects, this disclosure provides methods of inhibiting or preventing progression of one or more symptoms of COVID-19 in a patient in need thereof. In certain embodiments, the COVID-19 patient is not in a critical or severe stage of the disease before treatment, and is treated with a therapeutically effective amount of catalase nanoparticle (n (CAT) ) . n (CAT) may be administered to the patient by intravenous injection, subcutaneous injection, or inhalation. In certain embodiments, the patient is treated by inhalation twice daily and each dose of nanoparticle comprises from about 2 mg to about 10 mg n (CAT) . The clinical courses of COVID-19, such as illness severity, can be divided into three main categories: no symptom or mild to moderate (mild symptoms up to mild pneumonia) : about 81%; severe (dyspnea, hypoxia, or >50%lung involvement on imaging) : about 14%; critical (respiratory failure, shock, or multiorgan system dysfunction) : about 5%. The patient receiving the treatment may not progress to a severe or critical stage of COVID-19 after at least one course of treatment. In certain embodiments, the combined proportion of COVID-19 patients having either severe or critical symptoms is less than about 19%, less than about 15%, less than about 12%, less than about 10%, less than about 8%, less than about 6%, less than about 4%, less than about 3%, less than about 2%, or less than about 1%.
In one aspect, this disclosure provides a method of inhibiting the replication of coronavirus (e.g., SARS or COVID-19/SARS-CoV-2) comprising administering n (CAT) to an animal, such as a human, in need thereof.
In certain embodiments, n (CAT) is administered intravenously, intramuscularly, or subcutaneously to an animal infected with coronavirus (e.g. SARS or COVID-19/SARS-CoV-2) . The concentration of n (CAT) in each administration may be about 0.1, 0.3, 0.5, 0.8, 1.0, 2.0, 3.0,  4.0, 5.0, 6.0, 7.0, 8.0, 9.0 or 10.0 mg/kg by weight of the animal. The dosing frequency may be four times daily, three times daily, twice daily, once daily, once every two days, or once every three days. Each course of treatment may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 21, 28, or 30/31 doses. After a course of treatment with n (CAT) , the viral loading in the treated animal may be at least about 50%, 60%, 70%, 80%, 90%, 92%, 95%, 97%, or 99%lower than the animals in a control group, e.g., animals infected with COVID-19 but that do not receive n (CAT) treatment.
In certain embodiments, n (CAT) is administered by inhalation to an animal infected with coronavirus (e.g., SARS or COVID-19/SARS-CoV-2) . The concentration of n (CAT) in each administration may be about 1, 5, 10, 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 μg/ml. The dosing frequency may be four times daily, three times daily, twice daily, once daily, once every two days, or once every three days. Each course of treatment may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14, 21, 28, or 30/31 doses. After a course of treatment with n (CAT) , the viral loading in the treated animal may be at least about 50%, 60%, 70%, 80%, 90%, 92%, 95%, 97%, or 99%lower than the animals in a control group, e.g., animals infected with COVID-19 but that do not receive n (CAT) treatment.
In one aspect, the present invention provides a method of rescuing or promoting the survival of human pulmonary alveolar epithelial cells (HPAEpiC) injured or damaged by reactive oxygen species (ROS) in the presence of leukocytes or HPAEpiC injured by LPS-activated leukocytes, comprising contacting the injured cells with n (CAT) .
In certain embodiments, n (CAT) can be used to protect lung tissues, such as human pulmonary alveolar epithelial cells (HPAEpiC) , from oxidative injury in the presence of leukocytes. HPAEpiC injured by ROS in the presence of leukocytes may be treated with n (CAT) having a concentration of about 1, 2, 3, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 μg/mL. Compared to a control group of HPAEpiC (e.g., injured by ROS in the presence of leukocytes without n (CAT) ) , which shows a cell viability of about 71%, adding n (CAT) to the injured HPAEpiC can increase the cell viability to about 91%.
In further embodiments, HPAEpiC injured by LPS-activated leukocytes may be treated with n (CAT) having a concentration of about 1, 2, 3, 5, 8, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, or 100 μg/mL. Compared to a control group of HPAEpiC (injured by LPS activated leukocytes  without n (CAT) ) , which shows a cell viability of about 67%, adding n (CAT) to the injured HPAEpiC can increase the cell viability to about 91%.
Definitions
Unless otherwise defined herein, scientific and technical terms used in this application shall have the meanings that are commonly understood by those of ordinary skill in the art. Generally, nomenclature used in connection with, and techniques of, chemistry, cell and tissue culture, molecular biology, cell and cancer biology, neurobiology, neurochemistry, virology, immunology, microbiology, pharmacology, genetics and protein and nucleic acid chemistry, described herein, are those well-known and commonly used in the art.
The methods and techniques of the present disclosure are generally performed, unless otherwise indicated, according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout this specification. See, e.g. “Principles of Neural Science” , McGraw-Hill Medical, New York, N.Y. (2000) ; Motulsky, “Intuitive Biostatistics” , Oxford University Press, Inc. (1995) ; Lodish et al., “Molecular Cell Biology, 4th ed. ” , W.H. Freeman &Co., New York (2000) ; Griffiths et al., “Introduction to Genetic Analysis, 7th ed. ” , W.H. Freeman &Co., N.Y. (1999) ; and Gilbert et al., “Developmental Biology, 6th ed. ” , Sinauer Associates, Inc., Sunderland, MA (2000) .
Chemistry terms used herein, unless otherwise defined herein, are used according to conventional usage in the art, as exemplified by “The McGraw-Hill Dictionary of Chemical Terms” , Parker S., Ed., McGraw-Hill, San Francisco, C. A. (1985) .
All of the above, and any other publications, patents and published patent applications referred to in this application are specifically incorporated by reference herein. In case of conflict, the present specification, including its specific definitions, will control.
The term “agent” is used herein to denote a chemical compound (such as an organic or inorganic compound, a mixture of chemical compounds) , a biological macromolecule (such as a nucleic acid, an antibody, including parts thereof as well as humanized, chimeric and human antibodies and monoclonal antibodies, a protein or portion thereof, e.g., a peptide, a lipid, a carbohydrate) , or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues. Agents include, for example, agents whose structure is known, and those whose structure is not known. The ability of such agents to inhibit  AR or promote AR degradation may render them suitable as “therapeutic agents” in the methods and compositions of this disclosure.
The terms “nanocapsule, ” “nanoparticle, ” and “n (CAT) ” are used interchangeably to refer to CAT encapsulated in polymer.
A “patient, ” “subject, ” or “individual” are used interchangeably and refer to either a human or a non-human animal. These terms include mammals, such as humans, primates, livestock animals (including bovines, porcines, etc. ) , companion animals (e.g., canines, felines, etc. ) and rodents (e.g., mice and rats) .
“Treating” a condition or patient refers to taking steps to obtain beneficial or desired results, including clinical results. As used herein, and as well understood in the art, “treatment” is an approach for obtaining beneficial or desired results, including clinical results. Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized (i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total) , whether detectable or undetectable. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment.
The term “preventing” is art-recognized, and when used in relation to a condition, such as a local recurrence (e.g., pain) , a disease such as cancer, a syndrome complex such as heart failure or any other medical condition, is well understood in the art, and includes administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition. Thus, prevention of cancer includes, for example, reducing the number of detectable cancerous growths in a population of patients receiving a prophylactic treatment relative to an untreated control population, and/or delaying the appearance of detectable cancerous growths in a treated population versus an untreated control population, e.g., by a statistically and/or clinically significant amount.
“Administering” or “administration of” a substance, a compound or an agent to a subject can be carried out using one of a variety of methods known to those skilled in the art. For example, a compound or an agent can be administered, intravenously, arterially, intradermally, intramuscularly, intraperitoneally, subcutaneously, ocularly, sublingually, orally (by ingestion) ,  intranasally (by inhalation) , intraspinally, intracerebrally, and transdermally (by absorption, e.g., through a skin duct) . A compound or agent can also appropriately be introduced by rechargeable or biodegradable polymeric devices or other devices, e.g., patches and pumps, or formulations, which provide for the extended, slow or controlled release of the compound or agent. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.
Appropriate methods of administering a substance, a compound or an agent to a subject will also depend, for example, on the age and/or the physical condition of the subject and the chemical and biological properties of the compound or agent (e.g., solubility, digestibility, bioavailability, stability and toxicity) . In some embodiments, a compound or an agent is administered orally, e.g., to a subject by ingestion. In some embodiments, the orally administered compound or agent is in an extended release or slow release formulation, or administered using a device for such slow or extended release.
A “therapeutically effective amount” or a “therapeutically effective dose” of a drug or agent is an amount of a drug or an agent that, when administered to a subject, will have the intended therapeutic effect. The full therapeutic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses. Thus, a therapeutically effective amount may be administered in one or more administrations. The precise effective amount needed for a subject will depend upon, for example, the subject’s size, health and age, and the nature and extent of the condition being treated, such as cancer or MDS. The skilled worker can readily determine the effective amount for a given situation by routine experimentation.
The phrase “pharmaceutically acceptable” is art-recognized. In certain embodiments, the term includes compositions, excipients, adjuvants, polymers and other materials and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
The phrase “pharmaceutically acceptable carrier” as used herein means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filter, diluent, excipient, solvent or encapsulating material useful for formulating a drug for medicinal or therapeutic use.
In certain embodiments, the polymer nanoparticles are 10 nm-20 nm, 20-25 nm, 25 nm-30 nm, 30 nm-35 nm, 35 nm-40 nm, 40 nm-45 nm, 45 nm-50 nm, 50 nm-55 nm, 55 nm-60 nm, 60 nm-65 nm, 70-75 nm, 75 nm-80 nm, 80 nm-85 nm, 85 nm-90 nm, 90 nm-95 nm, 95 nm-100 nm, or 100 nm-110 nm. In certain embodiments, the polymer nanoparticles are approximately 10 nm, 11 nm, 12nm, 13nm, 14nm, 15nm, 16nm, 17nm, 18nm, 19 nm, 20nm, 21 nm, 22 nm, 23 nm, 24 nm, 25 nm, 26 nm, 27 nm, 28 nm, 29 nm, 30 nm, 31 nm, 32 nm, 33 nm, 34 nm, 35 nm, 36 nm, 37 nm, 38 nm, 39 nm, 40 nm, 41 nm, 42 nm, 43 nm, 44 nm, 45 nm, 46 nm, 47 nm, 48 nm, 49 nm, 50 nm, 51 nm, 52 nm, 53 nm, 54 nm, 55 nm, 56 nm, 57 nm, 58 nm, 59 nm, 60 nm, 61 nm, 62 nm, 63 nm, 64 nm, 65 nm, 66 nm, 67 nm, 68 nm, 69 nm, 70 nm, 71 nm, 72 nm, 73 nm, 74 nm, 75 nm, 76 nm, 77 nm, 78 nm, 79 nm, 80 nm, 81 nm, 82 nm, 83 nm, 84 nm, 85 nm, 86 nm, 87 nm, 88 nm, 89 nm, 90 nm, 91 nm, 92 nm, 93 nm, 94 nm, 95 nm, 96 nm, 97 nm, 98 nm, 99 nm, 100 nm, 101 nm, 102 nm, 103 nm, 104 nm, 105 nm, 106 nm, 107 nm, 108 nm, 109 nm, 110 nm, 111 nm, 112 nm, 113 nm, 114 nm, 115 nm, 116 nm, 117 nm, 118 nm, 119 nm, or 120 nm in diameter. In certain embodiments, the polymer nanoparticles are 120 nm-130 nm, 130 nm-140 nm, 140 nm-150 nm, 150 nm-160 nm, 160 nm-170 nm, 170 nm-180 nm, 180 nm-190 nm, 190 nm-200 nm, 200 nm-210 nm, 220 nm-230 nm, 230 nm-240 nm, 240 nm-250 nm, or larger than 250 nm in diameter.
In certain embodiments, polymer nanoparticles disclosed herein include nontargeting and targeting ability, higher efficiency, and/or lower adverse immune response. For example, the higher efficiency may result from increased uptake and more directed delivery.
Examples
The invention now being generally described, it will be more readily understood by reference to the following examples which are included merely for purposes of illustration of certain aspects and embodiments, of the present invention, and are not intended to limit the invention.
All results as described in the following examples, are presented as the mean ± standard error of the mean (s. e. m. ) as indicated. Paired T tests and one-way ANOVA were used for multiple comparisons (when more than two groups were compared) . All statistical analyses were conducted with Prism Software (Prism 8.0) .
Example 1. Scale Up Synthesis of n (CAT) Composition
The scale up synthesis of n (CAT) composition is composed of two steps, including:
1) Surface conjugation with acrylic acid N-hydroxysuccinimide ester (NAS)
A NAS stock solution was prepared by dissolving 10 mg NAS in 400 μL dimethyl sulfoxide (DMSO) . The NAS stock solution was then mixed with a CAT solution at a molar of 20∶1 (NAS∶CAT) . As an example, 340 μL NAS stock solution was added to 60 mL CAT solution (10 mg/mL) in lx phosphate buffered saline (PBS) ) . The reaction was then kept at room temperature (R.T. ) for 1 hour under magnetic stirring (200 rpm) .
2) CAT encapsulation
2-methacryloyloxyethyl phosphorycholine (MPC) stock solution was prepared by dissolving 20 g MPC in 50 mL ultrapure water. N- (3-Aminopropyl) methacrylamide hydrochloride (APM) stock solution was prepared by dissolving 1 g APM in 10 mL ultrapure water. N, N′-Methylenebis (acrylamide) (BIS) stock solution was prepared by dissolving 1 g BIS in 10 mL DMSO. Ammonium persulfate (APS) stock solution was prepared by dissolving 1 g APS in 10 mL ultrapure water.
To prepare neutrally charged n (CAT) (n (CAT) (0) ) , 33 mL MPC stock solution and 7 mL BIS stock solution were added to a 500 mL glass bottle. Then, 30 mL 10X phosphate-buffered saline (10x PBS) and 17 mL water were added, and the mixture was purged with nitrogen for 20 min under magnetic stirring (200 rpm) . 45 mL CAT solution (from 1, after surface conjugation) was added into the mixture (molar ratio of CAT∶MPC∶BIS is 1∶24000∶2400) under magnetic stirring (200 rpm) . 2.65 mL pure tetramethylethylenediamine (TEMED) and 10 mL APS stock solution were added to the mixture, and the mixture was kept at R. T. for 2 hours.
To prepare positively charged n (CAT) (n (CAT) (+) ) , 30 mL MPC stock solution, 8 mL APM stock solution and 7 mL BIS stock solution were added to a 500 mL glass bottle. Then, 30 mL 10x PBS and 17 mL water were added, and the mixture was purged with nitrogen for 20 min under magnetic stirring (200 rpm) . 45 mL CAT solution from 1) after surface conjugation was added into the mixture (molar ratio of CAT∶MPC∶BIS is 1∶24000∶2400) under magnetic stirring (200 rpm) . 2.65 mL pure tetramethylethylenediamine (TEMED) and 10 mL APS stock solution were added to the mixture, and the mixture was kept at R. T. for 2 hours.
After polymerization, the unreacted molecules and as-formed polymers (unbonded to nanoparticles) were removed using dialysis, diafiltration, or ultrafiltration. For large scale synthesis, diafiltration and ultrafiltration are the preferable methods. The resulted n (CAT) (0)  and n (CAT) (+) solutions were adjusted to a final concentration of 1 mg/mL (CAT concentration) with lx PBS for further applications.
n (CAT) can be synthesized and characterized by the following method. Catalase was dissolved in phosphate buffered saline (PBS) , dialyzed overnight against PBS at 4 ℃, and filtered using a 0.22 μm filter. As-purified catalase was first conjugated with acrylate moieties by reacting with NAS (20∶1, n/n, NAS∶Catalase) at 4 ℃ for 2 h, and dialyzed overnight against PBS at 4 ℃. To synthesize n (CAT) , MPC, APM, and BIS (21600∶2400∶2400∶1, n/n, MPC∶APM∶BIS∶Catalase) were added to form a solution, and then APS (2400∶1, n/n, APS∶Catalase) and TEMED (2∶1, w/w, TEMED∶APS) were added to initiate the polymerization. After reacting at 4 ℃ for 2 h, the solution was dialyzed against PBS and passed through a phenyl-sepharose CL-4B column (GE) using 10x PBS as the elusion buffer. The concentration of n (CAT) was determined with BCA protein assay. The size distribution and zeta potential were measured by dynamic light scattering (DLS, Zetasizer Nano Instruments) . The diameter and morphology were evaluated by TEM (Tecnai T12) .
Example 2. Quantification of the Activity and Stability of Catalase and n (CAT)
Native catalase or n (CAT) was added to solutions containing 1.25, 2.50, 5.00, and 10.00 mM H 2O 2 at a final catalase concentration of 1 μg/mL. The reaction rate was measured by the decrease in the absorption at 240 nm with a UV-VIS spectrum (Beckman) every 10 seconds (40 seconds in total) . To examine the thermal stability, native catalase or n (CAT) were diluted with PBS to a final concentration of 0.1 mg/mL and incubated at 37 ℃ for 24 hours. The activities of the enzymes were measured by adding catalase or n (CAT) to 10 mM H 2O 2 at a final catalase concentration of 1 μg/mL. To measure the proteolytic stability, native catalase or n (CAT) were diluted with PBS to a final concentration of 0.1 mg/mL, after which Trypsin was added to the solutions at a final concentration of 50 μg/mL and incubated at 37 ℃ for 2 hours. The enzyme activities were tested in 1000 μM H 2O 2 at a final catalase concentration of 1 μg/mL.
Example 3. In vitro and ex vivo studies on Human pulmonary alveolar epithelial cells
Human pulmonary alveolar epithelial cells (HPAEpiC) were cultured on 25 cm 2 tissue culture flasks containing RPMI1640 media, supplemented with 10%FBS and 1%P/S. HPAEpiC were seeded in 96 well-plates at 5,000 cells/well 12 h prior to in vitro tests, and were seeded at 10,000 cells/well 12 h before the ex vivo studies. The cell viability was tested by the CCK-8 Kit (Dojindo) following the protocol provided.
The cytotoxicity of n (CAT) was examined by culturing HPAEpiC with 20, 10, 200, and 1000 μg/mL of n (CAT) for 12 h. To validate the resuscitative ability of n (CAT) for injured cells, H 2O 2 was added to HPAEpiC at a final concentration of 1000 μM, and incubated for 24 h. The media was then removed, and the cells were washed with chilled PBS for three times. n (CAT) was then added at final concentration of 2, 4, 8, 16, and 20 μg/mL, respectively, and incubated for another 12 h. To validate the ability of n (CAT) to prevent oxidative injury, HPAEpiC were pre-incubated with 2, 4, 8, 16, and 20 μg/mL of n (CAT) for 12 h, respectively, after which H 2O 2 was added to the cells at a final concentration of 1000 μM, and incubated for 24 h. The cell viability tests were conducted after all of the in vitro tests.
Leukocytes were separated from whole blood from a donor following a protocol provided by Thermo Fisher Scientific. To confirm the ability of n (CAT) to regulate cytokine production, leukocytes were seeded in a 96 well-plate at 100,000 cells/well, and LPS was added at a final concentration of 1 μg/mL to activate the leukocytes. n (CAT) was added at a final concentration of 2, 4, 8, 16, and 20 μg/mL, respectively, and incubated for 12 h. The concentration of TNF-α and IL-10 in the media was measured with an enzyme-linked immunosorbent assay kit (Abcam) following the protocols provided.
To validate the ability of n (CAT) to protect injured cells against leukocytes, H 2O 2 was added to HPAEpiC at a final concentration of 500 μM, and incubated for 12 h to mimic cell injury. The injured cells were then washed three times with chilled PBS, followed by adding fresh leukocyte-containing media (100,000 cells in each well) . n (CAT) was added at a final concentration of 2, 4, 8, 16, and 20 μg/mL, respectively, and incubated for another 12 h. PBS was added to the injured HPAEpiC as Control #1, and leukocytes were added to HPAEpiC without H 2O 2 treatment as Control #2.
To confirm the ability of n (CAT) to protect HPAEpiC against injury from activated leukocytes, HPAEpiC were incubated with 100,000 leukocytes containing 1 μg/mL lipopolysaccharides (LPS) to activate the leukocytes. n (CAT) was then added at final concentration of 2, 4, 8, 16, and 20 μg/mL, respectively, and incubated for 24 h prior to measuring the cell viability. 1 μg/mL LPS was added to HPAEpiC as Control #3, and leukocytes were added to HPAEpiC without LPS as Control #4.
Example 4. Characteristic, anti-inflammatory effect, and protective ability of n (CAT)
The methods to conduct experiments for the current example are described in Examples 2 and 3. n (CAT) shows a size distribution centered at 25 nm and a zeta potential of 1.5 mV, in comparison with those of native catalase (10 nm and -4.0 mV) (Figures 1A and 1B) ; TEM image confirms that n (CAT) has an average size of 20~30 nm (Figure 1C) . Compared with native catalase, n (CAT) exhibits a similar enzyme activity (Figure 5A) , yet with significantly improved enzyme stability. As shown in Figure 1D, E, n (CAT) and native catalase retain 90%and 52%of the activity after incubation in PBS at 37 ℃ for 24 h, respectively, indicating improved thermal stability. After incubation in PBS with 50 μg/mL trypsin at 37 ℃ for 2 h, n (CAT) and native catalase retain 87%and 30%of the activity, respectively, suggesting improved protease stability. In addition, n (CAT) in solution retains 100%of the activity after storage at 4 ℃ and 25 ℃ for 3 mo. (Figure 5B) ; after freeze drying, n (CAT) retains more than 90%of the activity (Figure 5C) . Such characteristics are critical for the transport and distribution of n (CAT) .
The ability of n (CAT) to protect lung tissues from oxidative injury was examined in human pulmonary alveolar epithelial cells (HPAEpiC) . The cytotoxicity of n (CAT) was investigated by culturing HPAEpiC with different concentrations of n (CAT) (Figure 6A) . The cells with n (CAT) exhibit similar or higher cell viability than the control cells, indicating that n (CAT) does not show any noticeable cytotoxicity to HPAEpiC. The higher cell viability observed is possibly attributable to the ability of n (CAT) to remove H 2O 2 produced in the cultures. To examine the protective effect, HPAEpiC were cultured with 20 μg/mL of n (CAT) for 12 h, after which 1,000 μM H 2O 2 was added to the media and cultured for 24 h (Figure 1F) . The cells without n (CAT) show a cell viability of 63%, while the cells with n (CAT) retain 100%of the cell viability, demonstrating an ability to protect the cells from oxidative injury. In addition, HPAEpiC were incubated with 1000 μM H 2O 2 for 24 h to induce cell injury, after which the injured cells were incubated with 20 μg/mL of n (CAT) for 12 h (Figure 1G) . Culturing the injured cells with n (CAT) increases the cell viability from 50%to 73%, indicating an ability of n (CAT) to promote survival of injured cells. Similar protective and resuscitative effects were also observed with lower n (CAT) concentrations (Figures 6B and 6C) .
The ability of n (CAT) to regulate cytokine production was studied in human leukocytes (white blood cells, WBC) . Leukocytes were cultured with lipopolysaccharides (LPS, a bacterial endotoxin that activates leukocytes) with and without n (CAT) . Figures 1H and 1I show the  concentration of TNFα and IL-10 in the culture media. Culturing the leukocytes with LPS without n (CAT) significantly increases the production of TNF-α and IL-10 (P value 0.0001) . Moreover, the cultures with n (CAT) show dramatically lower concentrations of TNF-α and IL-10 (P value 0.01 to 0.001) , that are comparable with those of the control cells (resting leukocytes) . This ex vivo study suggests that n (CAT) can downregulate the production of TNF-α and IL-10 by activated leukocytes, indicating a potential use of n (CAT) as an immunoregulator for hyperinflammation.
To further elucidate the immunoregulatory effect, leukocytes were cultured with injured human pulmonary alveolar epithelia cells (HPAEpiC) , of which cell injury was induced by H 2O 2 (Control #1, cell viability 85%) . As shown in Figure 1J, culturing the cells with leukocytes reduces the viability to 71%. Furthermore, adding 8, 16, and 40 μg/mL n (CAT) increases the viability to 82, 89, and 91%, respectively, which are comparable to those of Control #2 (leukocytes with untreated-HPAEpiC, 91%cell viability) . This finding indicates that n (CAT) can not only protect, but also resuscitate, the injured alveolar cells, which is consistent with the observation presented in Figure 1G. Furthermore, HPAEpiC was cultured with leukocytes activated by LPS. As shown in Figure 1K, HPAEpiC (Blank) and HPAEpiC with LPS (Control #3) exhibit a similar cell viability, while HPAEpiC with LPS-activated leukocytes show a dramatically reduced cell viability of 67%. Moreover, adding 8, 16, and 40 μg/mL n (CAT) increases the cell viability to 78, 88, and 91%, respectively, which are comparable with those of Control #4 (un-activated leukocytes and HPAEpiC, cell viability 91%) . This study indicates that n (CAT) can also protect healthy alveolar cells from injury caused by activated leukocytes, demonstrating an anti-inflammatory effect.
Example 5. Pharmacokinetics and biodistribution of n (CAT) in mice
To assess the biodistribution of n (CAT) , native catalase and n (CAT) labeled with sulfo-Cy7-NHS or Alexa Fluor-750-NHS were used for intravenous injection and intratracheal instillation, respectively. To achieve the labeling, sulfo-Cy7-NHS was added to native catalase or n (CAT) (5∶1, n/n, Cy7∶CAT) , and the reaction was kept at 4 ℃ overnight. The unreacted Cy7 was removed by dialysis against PBS overnight at 4 ℃, and the concentrations of catalase and n (CAT) were determined by BCA assay, respectively. To label native catalase and n (CAT) with Alexa Fluor-750-NHS, a similar protocol was used.
BALB/c mice (8 w, 22 ±2 g, n=4) received 2.5 mg/kg of labeled native catalase or n (CAT) through intratracheal instillation, and were euthanized 6 h and 48 h post-instillation. BALB/c mice (8 w, 22±2 g, n=3) received 20 mg/kg of labeled native catalase or n (CAT) through tail-vein injection, and were euthanized 6 h and 24 h post-injection. The organs of these animals (heart, liver, spleen, lung, and kidney) were collected and imaged with an in vivo imaging system (IVIS spectrum, Perkin Elmer) . The organs were also fixed in 10%neutral-buffered formalin and embedded in paraffin. The sections (4 μm in thickness) were stained with haematoxylin and eosin, and examined with a light-microscope.
To evaluate the pharmacokinetics, BALB/c mice (8 w, 22±2 g, n=3) received 20 mg/kg native catalase or n (CAT) through tail-vein injection, and blood samples were collected at 0.1, 1, 3, 6, and 24 h post-injection. The serum was separated from the whole blood by centrifugation at 4000 x g for 10 min, and the serum catalase activity was assessed by a microplate-based method according to a published test with a minor modification 38. Briefly, the serum was diluted five times with 50 mM phosphate buffer (PB, pH 7.4) . Subsequently, 20 μL of the diluted serum was added to 100 μL H 2O 2 (50 mM) and incubated for 60 s. The reaction was terminated by adding 100 μL ammonium molybdate solution (50 mM) , and the absorbance at 405 nm was measured by a UV-VIS (Beckman) and recorded as A test. Three blank samples were also tested as controls. First, 100 μL H 2O 2 (50 mM) was mixed with 100 μL ammonium molybdate solution (50 mM) , followed by adding 20 μL of the diluted serum. The absorbance at 405 nm was recorded as A 1. Second, 120 μL PB (50 mM) was mixed with 100 μL ammonium molybdate solution (50 mM) , and the absorbance was recorded as A 2. Finally, 100 μL H 2O 2 (50 mM) was mixed with 20 μL PB (50 mM) and 100 μL ammonium molybdate solution (50 mM) , and the absorbance was recorded as A 3. The activity of catalase in the serum was then calculated by the following equation: catalase activity
Figure PCTCN2020101766-appb-000001
For therapeutic use, the pharmacokinetics and biodistribution of n (CAT) were investigated in mice. For intravenous administration, BALB/c mice were administered 20 mg/kg of native catalase or n (CAT) . Figure 2A shows the biodistribution 6 h and 24 h post-injection; accumulation of n (CAT) is observed in the liver, kidney, lung, and lymph nodes, of which the average radiance is shown in Figure 2B. Figure 2C presents the pharmacokinetics, indicating that n (CAT) has a significantly longer circulation time than the native catalase. Based on the  one-compartment model, n (CAT) exhibits a serum half-life of 8.9 h, which is 16.8-fold longer than the native CAT (0.5 h) . Further analysis of the drug exposure time through the area under the curve (AUC) indicates that the mice that received n (CAT) had a significantly increased body exposure to catalase compared to the mice with native CAT (~ 2.5-fold increase) (Figure 2D) . The following were all within the normal ranges: the plasma levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase (Figure 7A) ; the levels of urea and uric acid (Figure 7B) ; the total white blood cell (WBC) count; and the counts of lymphocytes, monocytes, and granulocytes (Figure 7C) . Furthermore, H&E stained sections of the main organs do not show any noticeable tissue damage (Figure 8) .
For intratracheal nebulization, BALB/c mice were administered 2.5 mg/kg of native CAT or n (CAT) labeled with Alexa-Fluor-750. The mice receiving native catalase show fluorescent signal in the lung after 6 h, the intensity of which decreases significantly after 48 h. The mice receiving n (CAT) exhibit significantly higher fluorescent intensity after 6 h and 48 h (Figure 2E) , which is confirmed by their fluorescent intensity plot after 48 h (Figure 2F) . Except the lung, other organs (heart, liver, spleen, and kidney) after 48 h show negligible fluorescent signal, indicating that the as-administered n (CAT) was mainly retained within the lung. H&E stained sections of the main organs do not show any noticeable tissue damage (Figure 9) .
Example 6. Ability of n (CAT) to inhibit the replication of SARS-CoV-2 in rhesus macaques.
The studies were conducted in a BSL-3 laboratory in the Institute of Medical Biology, Chinese Academy of Medical Sciences (BSL number SWAQ20200404, animal protocol number DWSP202001020) . SARS-CoV-2 (SARS-Cov-2/KM 1/2010) was originally separated from the sputum of a patient infected with COVID-19 in Kunming, Yunnan, China. Seven rhesus macaques (female, 10-12 mo., body weight 1.5-2.5 kg) were randomly distributed into three groups: control (n=2, C1, C2) , inhaled (n=3, N1, N2, N3) , and intravenous (n=2, I1, I2) .
All of the animals were inoculated with SARS-CoV-2 under anesthesia through intranasal route (100 μL per nostril) with a suspension of 10 5 CCID50 SARS-CoV-2 in PBS. The animals in the control group inhaled 10 mL PBS at  day  2, 4, and 6 post-inoculation (p.i. ) with a nebulizer (OMRON NB-150U) . The animals in the inhaled group received 5 mg n (CAT) (10 mL) at  day  2, 4, and 6 p.i. with the nebulizer. The animals in the intravenous group received 5 mg/kg n (CAT) at  day  2, 4, and 6 p.i. through saphenous vein injection. The animals in the intravenous treatment group also received 10 mL PBS at  day  2, 4, and 6 p.i. with the nebulizer.  All of the animals were anesthetized daily with ketamine (5 mg/kg) during day 1-7 p.i. Nasal swabs and oral swabs were collected with cotton swabs from the nasal and oral cavity, respectively. Body weights were also measured daily. For each animal, 1 mL blood sample was collected from the saphenous vein with anti-coagulation tubes, and another 2 mL blood sample was collected with pro-coagulation tubes. The serum was then separated for biochemical tests and blood routine tests with a Mindray BS-200 chemistry analyzer and a Sysmex XT 2000i automated hematology analyzer, respectively. Except N3 (sacrificed at day 21 p.i. ) , all animals were sacrificed at day 7 p.i. Autopsies of the animals were performed according to a standard protocol, and the organs were collected.
Viral load testing
To extract the viral RNA samples from nasal and oral swabs, the swabs were added to 1 mL TRNzol and mixed by vortex; 200 μL of the liquid was then mixed with 600 μL TRNzol. To extract the viral RNA samples from tissues, as-collected tissues were homogenized (SCIENTZ-48 homogenizer) with TRNzol (tissue: 20 wt-%) . After homogenization, 200 μL homogenate was mixed with 600 μL TRNzol. Chloroform (200 μL) was added to each of the mixtures, placed at room temperature for 10 min, and centrifuged at 12,000 rpm for 10 min. After centrifugation, 500 μL supernatant was transferred to a tube. Isopropanol (500 μL) was then added, placed at room temperature for 10 min, and centrifugated at 12,000 rpm for 10 min. The resultant precipitation was then mixed with ethanol (1 mL, 75 vol-%) , and centrifugated at 10,000 rpm for 5 min at 4 ℃. After removal of the ethanol, the precipitation was placed at room temperature for 5 min and dissolved with 30 μL RNase-free DI water. The SARS-CoV-2 RT-qPCR was performed following a previously published protocol.
Histology and immunohistochemistry staining
Tissues for light-microscope examination were fixed in 10%neutral-buffered formalin, embedded in paraffin, and 4 μm sections were stained with haematoxylin and eosin. In the immunohistochemistry study, paraffin was removed from the sections, and the sections were treated with citric acid buffer (pH 6.0) for 20 min at 100 ℃. Endogenous peroxidase was then blocked with 3%hydrogen peroxide for 25 min at room temperature. The sections were briefly washed with PBS (pH 7.4) for three times, and were blocked with 3%bovine serum albumin (BSA) for 30 min at room temperature. The slides were then incubated with a rabbit polyclonal antibody against SARS-CoV diluted 1∶100 with PBS, and kept at 4 ℃ overnight. After washing  with PBS for three times, the slides were incubated with horseradish peroxidase (HRP) labeled goat-anti-rabbit IgG diluted 1∶200 with PBS for 50 min at room temperature. After washing with PBS, HRP activity was revealed by adding freshly prepared DAB solution, and the reaction was terminated by washing with DI water when a positive brown color was observed under the light-microscope. The sections were counterstained with haematoxylin.
Statistical Analysis
All results are presented as the mean ± standard error of the mean (s.e.m. ) as indicated. Paired t-tests and one-way ANOVA were used for multiple comparisons (when more than two groups were compared) . All statistical analyses were conducted with Prism Software (Prism 8.0) .
The ability of n (CAT) to suppress the replication of SARS-CoV-2 was examined in rhesus macaques. As illustrated in Figure 3A, at day 0, all of the animals were inoculated with SARS-CoV-2 through the intranasal route. For the control group (C 1, C2) , two animals received 10 mL PBS though inhalation at  day  2, 4, and 6, respectively. For the nebulization group, three animals (N1, N2, N3) received 5 mg of n (CAT) (10 mL) through inhalation at  day  2, 4, and 6. For the intravenous group, two animals (I1, I2) received 10 mL PBS though inhalation and 5 mg/kg of n (CAT) intravenously at  day  2, 4, and 6. Except N3 (sacrificed at day 21) , the other animals were sacrificed at day 7.
Figure 3B shows the viral loads in nasal swabs for the control and nebulized group. N1 exhibits a viral load that is similar to C1 and C2 at  day  1 and 2, after which the viral load rapidly decreases and becomes significantly lower than the control group. N3 shows a similar viral load to the control group at day 1, after which the viral load remains significantly lower than the control group. It is worth noting that the viral load of N3 at day 2 is lower than the control group. Nevertheless, the oral swabs confirmed that N3 was successfully infected, indicating an individual difference (Figure 10) . N2 shows similar viral loads to the control group from day 1 to 7. Figure 3C shows viral loads in the nasal swabs for the control and intravenous group. I1 exhibits a similar viral load to the control group at  day  1 and 2, after which the viral load rapidly decreases and remains significantly lower than the control group. I2 also shows a similar viral load to the control group at day 1, after which the viral load remains significantly lower than the control group. Similarly, I2 shows a lower viral load than the control group, yet the oral swabs confirmed its active infection. Figures 3E and 3F presents the viral RNA copy numbers in 100 mg of the organs, including lung, trachea, neck lymph node (LN) , and lung LN. N1 shows  significantly lower viral loads than the control group; whereas, N2 exhibits similar viral loads to the control group, which is consistent with the nasal-swab results. I1 and I2 show significantly lower viral loads than the control group, which is consistent with the nasal-swab results. No virus is detected from the organs of N3 (Figure 11) . Figure 3D shows the bodyweight change of the animals, suggesting that the experiment groups have less weight lost. These results confirm the ability of n (CAT) to suppress the replication of SARS-CoV-2 in rhesus macaques.
Example 7. Biosafety and histology of SARS-CoV-2 infected rhesus macaques
Figures 4A-4F shows the liver and renal functions of the control and experimental group, which exhibit similar levels of alanine aminotransferase, aminotransferase aspartate aminotransferase, alkaline phosphatase, albumin, uric acid, creatine, and blood urea nitrogen, indicating that intravenous administration of 5 mg/kg of n (CAT) did not cause any noticeable liver or renal toxicity. Meanwhile, all of the groups show similar blood routine and other indexes for liver function (Figure 12) . Similar results were also observed in healthy rhesus macaques inhaling 2.0 mg/kg (Figure 13) n (CAT) per day for 7 d, suggesting that n (CAT) does not cause noticeable liver or kidney toxicity.
Figure 4G presents representative H&E sections of kidneys (a, b) and liver (c, d) from animals in the control (a, c) and inhaled group (b, d) . The kidneys show neither evidence of interstitial nephritis nor acute tubular injury; the livers exhibit neither steatosis, hepatocyte necrosis, inflammation, cholestasis, nor bile duct injury. Histologic sections of lung tissues in both the control and inhaled groups exhibit unremarkable alveolar architecture, with no evidence of acute lung injury in the form of hyaline membranes, intra-alveolar fibrin, organizing pneumonia, or reactive pneumocyte hyperplasia. The airway epithelium is unremarkable. Vascular compartments are free of thrombi (Figure 14) . There is no evidence of eosinophilia or vasculitis, and no viral cytopathic effect is identified. The H&E staining of other major organs also shows no tissue injury for both the control and inhaled group (Figure 15) , confirming the biosafety of n (CAT) administered through intravenous injection or inhalation. In addition, Figure 4H also presents a representative H&E section (a) and immunohistochemistry for SARS-CoV-2 nucleocapsid protein (b) of the lung LN in one animal from the control group (C1) . Reactive follicular hyperplasia could be observed in the H&E section, and scattered positive mononuclear cells (black arrows) indicate the SARS-CoV-2 infection in the lymph node.
The action mechanism of n (CAT) is unclear. In addition to being a weapon against pathogens, ROS also serve as signaling molecules in numerous physiological processes. For example, it has been documented that H 2O 2 generation after wounding is required for the recruitment of leukocytes to the wound, and ROS is necessary for the release of pro-inflammatory cytokines to modulate an appropriate immune response. Eliminating the H 2O 2 excessively produced during inflammation also minimizes the downstream ROS, which assists to downregulate production of cytokines, mitigate recruitment of excessive leukocytes, and inhibit replication of the viruses. It is also worth noting that immunosuppressive steroids, such as prednisone and dexamethasone, are proven to be effective for treatment of hyperinflammation in severe COVID-19 patients.
The experimental results demonstrate the anti-inflammatory effect of n (CAT) and ability of catalase to regulate cytokine production in leukocytes, protect alveolar cells from oxidative injury, and inhibit the replication of SARS-CoV-2 in rhesus macaques without noticeable toxicity.
REFERENCES
1. Scavone, C. et al. Current pharmacological treatments for COVID-19: What’s next? Br. J. Pharmacol. (2020) . doi: 10.1111/bph. 15072
2. Mehta, P. et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 395, 1033-1034 (2020) .
3. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497-506 (2020) .
4. Liu, Q., Zhou, Y. &Yang, Z. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 13, 3-10 (2016) .
5. Hill, G.R. &Ferrara, J.L. The primacy of the gastrointestinal tract as a target organ of acute graft-versus-host disease: rationale for the use of cytokine shields in allogeneic bone marrow transplantation. Blood 95, 2754-2759 (2000) .
6. Sterner, R.M. et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 133, 697-709 (2019) .
7. O’Shea, J.J., Ma, A. &Lipsky, P. Cytokines and autoimmunity. Nat. Rev. Immunol. 2, 37-45 (2002) .
8. Tisoncik, J.R. et al. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 76, 16-32 (2012) .
9. Kupferschmidt, K. A cheap steroid is the first drug shown to reduce death in COVID-19 patients. Science (2020) . doi: 10.1126/science. abd3683
10. Nguyen, A.A. et al. Immunoglobulins in the treatment of COVID-19 infection: Proceed with caution! Clin. Immunol. 216, 108459 (2020) .
11. Huet, T. et al. Anakinra for severe forms of COVID-19: a cohort study. The Lancet Rheumatology (2020) . doi: 10.1016/S2665-9913 (20) 30164-8
12. Guaraldi, G. et al. Tocilizumab in patients with severe COVID-19: a retrospective cohort study. The Lancet Rheumatology (2020) . doi: 10.1016/S2665-9913 (20) 30173-9
13. La Rosée, F. et al. The Janus kinase 1/2 inhibitor ruxolitinib in COVID-19 with severe systemic hyperinflammation. Leukemia (2020) . doi: 10.1038/s41375-020-0891-0
14. Mittal, M., Siddiqui, M.R., Tran, K., Reddy, S.P. &Malik, A.B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126-1167 (2014) .
15. Schieber, M. &Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 24, R453-62 (2014) .
16. Amatore, D. et al. Influenza virus replication in lung epithelial cells depends on redox-sensitive pathways activated by NOX4-derived ROS. Cell Microbiol. 17, 131-145 (2015) .
17. Vlahos, R. et al. Inhibition of Nox2 oxidase activity ameliorates influenza A virus-induced lung inflammation. PLoS Pathog. 7, e1001271 (2011) .
18. Sebastiano, M., Chastel, O., de Thoisy, B., Eens, M. &Costantini, D. Oxidative stress favours herpes virus infection in vertebrates: a meta-analysis. Curr. Zool. 62, 325-332 (2016) .
19. 
Figure PCTCN2020101766-appb-000002
P., 
Figure PCTCN2020101766-appb-000003
J., 
Figure PCTCN2020101766-appb-000004
P., 
Figure PCTCN2020101766-appb-000005
L. &
Figure PCTCN2020101766-appb-000006
P. Reactive oxygen species and antioxidant defense in human gastrointestinal diseases. Integrative Medicine Research 5, 250-258 (2016) .
20. Phaniendra, A., Jestadi, D.B. &Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem. 30, 11-26 (2015) .
21. Majewska, E. et al. Elevated exhalation of hydrogen peroxide and thiobarbituric acid reactive substances in patients with community acquired pneumonia. Respir. Med. 98, 669-676 (2004) .
22. Nathan, C. &Cunningham-Bussel, A. Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat. Rev. Immunol. 13, 349-361 (2013) .
23. Slimen, I. B. et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int. J. Hyperthermia 30, 513-523 (2014) .
24. Nishikawa, M., Hashida, M. &Takakura, Y. Catalase delivery for inhibiting ROS-mediated tissue injury and tumor metastasis. Adv. Drug Deliv. Rev. 61, 319-326 (2009) .
25. Shi, X. et al. PEGylated human catalase elicits potent therapeutic effects on H1N1 influenza-induced pneumonia in mice. Appl. Microbiol. Biotechnol. 97, 10025-10033 (2013) .
26. Liang, S. et al. Phosphorylcholine polymer nanoparticles prolong the circulation time and reduce the immunogenicity of therapeutic proteins. Nano Res. 9, 1022-1031 (2016) .
27. Yan, M. et al. A novel intracellular protein delivery platform based on single-protein nanoparticles SUPPLEMENTARY INFORMATION. Nat. Nanotechnol. 5, 48-53 (2010) .
28. Merad, M. &Martin, J.C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20, 355-362 (2020) .
29. Tay, M. Z., Poh, C.M., Rénia, L., MacAry, P.A. &Ng, L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363-374 (2020) .
30. Gong, J. et al. Correlation Analysis Between Disease Severity and Inflammation-related Parameters in Patients with COVID-19 Pneumonia. medRxiv (2020) . doi: 10.1101/2020.02.25.20025643
31. Roshanravan, N., Seif, F., Ostadrahimi, A., Pouraghaei, M. &Ghaffari, S. Targeting Cytokine Storm to Manage Patients with COVID-19: A Mini-Review. Arch Med Res (2020) . doi: 10.1016/j. arcmed. 2020.06.012
32. Marchesoni, A. et al. TNF-alpha antagonist survival rate in a cohort of rheumatoid arthritis patients observed under conditions of standard clinical practice. Ann. N.Y. Acad. Sci. 1173, 837-846 (2009) .
33. Sies, H. &Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. (2020) . doi: 10.1038/s41580-020-0230-3
34. Niethammer, P., Grabher, C., Look, A.T. &Mitchison, T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. Nature 459, 996-999 (2009) .
35. Hardy, R.S., Raza, K. &Cooper, M.S. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat. Rev. Rheumatol. 16, 133-144 (2020) .
36. Tang, C., Wang, Y., Lv, H., Guan, Z. &Gu, J. Caution against corticosteroid-based COVID-19 treatment. Lancet 395, 1759-1760 (2020) .
37. Guo, K.J. et al. The influence of age, gender and treatment with steroids on the incidence of osteonecrosis of the femoral head during the management of severe acute respiratory syndrome: a retrospective study. Bone Joint J. 96-B, 259-262 (2014) .
38. Góth, L. A simple method for determination of serum catalase activity and revision of reference range. Clin. Chim. Acta 196, 143-151 (1991) .
39. Corman, V.M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill. 25, (2020) .
INCORPORATION BY REFERENCE
All publications and patents mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.
EQUIVALENTS
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the compounds and methods of use thereof described herein. Such equivalents are considered to be within the scope of this invention and are covered by the following claims. Those skilled in the art will also recognize that all combinations of embodiments described herein are within the scope of the invention.

Claims (102)

  1. A nanoparticle comprising:
    an enzyme capable of neutralizing excessive production of reactive oxygen species in a subject;and
    a polymer encapsulating the enzyme.
  2. The nanoparticle of claim 1, wherein the enzyme comprises superoxide dismutase, glutathione peroxidase, thioredoxin peroxidase, or catalase.
  3. The nanoparticle of claim 1 or 2, wherein the enzyme comprises catalase.
  4. The nanoparticle of any one of the preceding claims, wherein the nanoparticle has a diameter less than about 100 nm.
  5. The nanoparticle of any one of the preceding claims, wherein the subject is a mammal.
  6. The nanoparticle of any one of the preceding claims, wherein the subject is a human.
  7. The nanoparticle of any one of the preceding claims, further comprising a solvent.
  8. The nanoparticle of any one of the preceding claims, wherein the enzyme is conjugated with a modifying agent.
  9. The nanoparticle of claim 8, wherein the modifying agent is acrylic acid N-hydroxysuccinimide ester.
  10. The nanoparticle of any one of the preceding claims, wherein the polymer comprises a neutral repeating unit and a cross-linking unit.
  11. The nanoparticle of claim 3, the neutral repeating unit is derived from an acrylate or an acrylamide, such as acrylamide, poly (ethylene glycol) methyl ether acrylate, or 2-methacryloyloxyethyl phosphorylcholine.
  12. The nanoparticle of claim 10 or 11, wherein the neutral repeating unit comprises 2-methacryloyloxyethyl phosphorylcholine.
  13. The nanoparticle of any one of claims 10-12, wherein the cross-linking unit is derived from a bis-acrylate, such as glycerol dimethacrylate, 1, 3-glycerol dimethacrylate, glycerol 1, 3-diglycerolate diacrylate, N, N'-bis (acryloyl) cystamine, bis [2- (methacryloyloxy) ethyl] phosphate, bisacryloylated polypeptide, or N, N′-methylenebis (acrylamide) .
  14. The nanoparticle of any one of claims 10-13, wherein the cross-linker is derived from N, N′-methylenebis (acrylamide) .
  15. The nanoparticle of any one of the preceding claims, further comprising a positively charged repeating unit.
  16. The nanoparticle of claim 15, wherein the positively charged repeating unit is derived from an amine-substituted acrylate or arylamide, such as N- (3-aminopropyl) methacrylamide (APM) , N- (3-Aminopropyl) methacrylamide hydrochloride, acryl-spermine, Dimethylamino ethyl methacrylate, (3-Acrylamidopropyl) trimethylammonium hydrochloride, N- (3- ( (4- ( (3-aminopropyl) amino) butyl) amino) propyl) methacrylamide, N- (3- ( (4-aminobutyl) amino) propyl) acrylamide, N- (3- ( (4-aminobutyl) amino) propyl) methacrylamide, N-(2- ( (2-aminoethyl) (methyl) amino) ethyl) acrylamide, N- (2- ( (2-aminoethyl) (methyl) amino) ethyl) methacrylamide, N- (piperazin-1 -ylmethyl) acrylamide, N- (piperazin-1-ylmethyl) methacrylamide, N- (2- (bis (2-aminoethyl) amino) ethyl) acrylamide, and N- (2- (bis (2-minoethyl) amino) ethyl) methacrylamide.
  17. The nanoparticle of claim 15 or 16, wherein the positively charged monomer is derived from N- (3-aminopropyl) methacrylamide.
  18. The nanoparticle of any one of the preceding claims, further comprising tetramethylethylenediamine or ammonium persulfate.
  19. The nanoparticle of any one of claims 7-18, wherein the solvent comprises water, phosphate buffered saline, or dimethyl sulfoxide.
  20. The nanoparticle of any one of claims 1-14, wherein the nanoparticle is neutrally charged.
  21. The nanoparticle of any one of claims 15-19, wherein the nanoparticle is positively charged.
  22. The nanoparticle of any one of the preceding claims, wherein the nanoparticle has a diameter less than about 30 nm.
  23. The nanoparticle of any one of the preceding claims, wherein the nanoparticle has a diameter from about 5 nm to about 30 nm.
  24. A pharmaceutical composition, comprising a plurality of the nanoparticles of any one of the preceding claims and a pharmaceutically acceptable carrier or excipient.
  25. The pharmaceutical composition of claim 24, wherein the plurality of nanoparticles has a number average diameter less than about 100 nm, such as less than about 30 nm.
  26. A method of delivering the nanoparticle to a person in need thereof, comprising administering a nanoparticle of any one of claims 1-23 or a pharmaceutical composition of claim 24 or 25 to a person in need thereof.
  27. The method of claims 26, wherein the administration is accomplished by intravenous injection, subcutaneous injection, or inhalation.
  28. A method of preparing the nanoparticle of any one of claims 1-23, comprising:
    conjugating the enzyme with a modifying agent in a first solvent; and
    encapsulating the conjugated the enzyme within a polymer in a second solvent.
  29. The method of claim 28, wherein the modifying agent comprises acrylic acid N-hydroxysuccinimide ester.
  30. The method of claim 28 or 29, wherein the first solvent comprises water, phosphate buffered saline, or dimethyl sulfoxide.
  31. The method of any one of claims 28-30, wherein the polymer is formed by polymerizing a monomer mixture comprising 2-methacryloyloxyethyl phosphorycholine, N- (3- aminopropyl) methacrylamide hydrochloride, or N, N′-methylenebis (acrylamide) in the second solvent.
  32. The method of any one of claims 28-31, wherein the second solvent comprises water, phosphate buffered saline, or dimethyl sulfoxide.
  33. The method of any one of claims 28-32, wherein the encapsulation further comprises adding tetramethylethylenediamine, ammonium persulfate, or a mixture thereof to the second solvent.
  34. The method of any one of claims 28-33, wherein the monomer mixture comprises 2-methacryloyloxyethyl phosphorycholine and N, N′-methylenebis (acrylamide) and the resulting polymer is neutrally charged.
  35. The method of any one of claims 28-34, wherein the monomer mixture comprises 2-methacryloyloxyethyl phosphorylcholine, N- (3-aminopropyl) methacrylamide hydrochloride, and N, N′-methylenebis (acrylamide) and the resulting polymer is positively charged.
  36. The method of any one of claim 28-35, wherein the nanoparticle formed has a dimeter less than about 100 nm.
  37. The method of any one of claim 28-36, wherein the nanoparticle has a dimeter less than about 30 nm.
  38. A method of treating a disease or disorder selected from pneumonia, a viral infection, a bacterial infection, an immune disorder, cytokine release syndrome, or oxidative stress, comprising administering a nanoparticle of any one of claims 1-23 or a pharmaceutical composition of claim 24 or 25 to a person in need thereof.
  39. The method of claim 38, wherein the disease or disorder is an immune disorder selected from an autoimmune disease.
  40. The method of claim 38, wherein the disease or disorder is pneumonia and is a bacterial pneumonia or a viral pneumonia.
  41. The method of claim 40, wherein the pneumonia is a viral pneumonia, and the viral pneumonia is caused by an influenza virus, a rhinovirus, or a coronavirus (e.g. SARS or COVID-19/SARS-CoV-2) .
  42. The method of claim 38, wherein the disease or disorder is oxidative stress and is caused by a reactive oxygen species (ROS) .
  43. The method of claim 42, wherein ROS damages are caused by a disease or a condition selected from pneumonia, autoimmune diseases, and immunotherapies.
  44. A method of protecting a lung tissue of a mammal from oxidative damage, comprising administering a therapeutically effective amount of a nanoparticle of any one of claims 1-23 or a pharmaceutical composition of claim 24 or 25 to the lung tissues.
  45. The method of claim 44, wherein the oxidative damage is caused by abnormal levels of H 2O 2.
  46. The method of claim 44 or 45, wherein the lung tissue is human pulmonary alveolar epithelia cell.
  47. The method of claim 44 or 46, wherein the nanoparticle comprises less than 5000 U/ml of n (CAT) .
  48. The method of claim 44 or 46, wherein the nanoparticle comprises about 200 U/ml of n (CAT) .
  49. The method of claim 44 or 46, wherein the nanoparticle comprises about 40 U/mL of n (CAT) .
  50. The method of claim 44 or 46, wherein the nanoparticle comprises about 80 U/mL of n (CAT) .
  51. The method of any one of claims 47-50, wherein n (CAT) comprises 5000U/mg of catalase.
  52. The method of any one of claims 47-50, wherein n (CAT) improves the viability of human pulmonary alveolar epithelia cell.
  53. A method of treating a COVID-19 patient, comprising administering to the patient a therapeutically effective amount of a nanoparticle of any one of claims 1-23 or a pharmaceutical composition of claim 24 or 25.
  54. The method of claim 53, wherein administering the nanoparticles comprises administering the nanoparticles by intravenous injection, subcutaneous injection, or inhalation.
  55. The method of claim 53 or 54, wherein administering the nanoparticles comprises administering the nanoparticles by inhalation twice daily and each dose of nanoparticle comprises 2 mg of n (CAT) .
  56. The method of any one of claims 53-55, wherein the patient is not in critical stage before the treatment.
  57. The method of any one of claims 53 -56 wherein at least one physiological parameter/clinical sign of the COVID 19 patient reaches a normal range (parameters and ranges listed in Table 4) after at least one course of treatment (e.g., 14 days) .
  58. The method of any one of claims 53-57, wherein the patient's blood oxygen saturation level (SpO 2) reaches a range from 90%to 100%after at least one course of treatment (e.g., 14 days) .
  59. A method of inhibiting or preventing pneumonia in a COVID-19 patient, comprising administering to the patient a therapeutically effective amount of nanoparticles of any one of claims 1-23 or a pharmaceutical composition of claim 24 or 25.
  60. The method of claim 59, wherein administering the nanoparticles comprises administering the nanoparticles by intravenous injection, subcutaneous injection, or inhalation.
  61. The method of claim 59 or 60, wherein administering the nanoparticles comprises administering the nanoparticles by inhalation twice daily and each dose of nanoparticle comprises 2 mg of n (CAT) .
  62. The method of any one of claims 59-61, wherein the patient does not have pneumonia before the treatment.
  63. The method of any one of claim 59-62, wherein the patient does not develop pneumonia after at least one course of treatment.
  64. A method of inhibiting or preventing progression of COVID-19 in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of nanoparticles of any one of claims 1-23 or a pharmaceutical composition of claim 24 or 25.
  65. The method of claim 64, wherein administering the nanoparticles comprises administering the nanoparticles by intravenous injection, subcutaneous injection, or inhalation.
  66. The method of claim 64 or 65, wherein administering the nanoparticles comprises administering the nanoparticles by inhalation twice daily and each dose of nanoparticle comprises 2 mg of n (CAT) .
  67. The method of any one of claims 64-66, wherein the patient is not in critical or severe stage before the treatment.
  68. The method of any one of claims 64-67, wherein the patient does not progress to severe or critical stage of COVID-19 after at least one course of treatment.
  69. The method of any one of claims 64-68, wherein less than 10%of the COVID-19 patient progresses to severe or critical stage of the disease.
  70. A method of inhibit replication of coronavirus in an animal, comprising administering a nanoparticle of any one of claims 1-23 or a pharmaceutical composition of claims 24 or 25 to the animal in need thereof.
  71. The method of claim 70, wherein the animal of claim 70 is a mammal.
  72. The method of claim 71, wherein the mammal is a primate.
  73. The method of claim 72, wherein the primate is a monkey or a human.
  74. The method of any one of claims 70-73, wherein the nanoparticle or the pharmaceutical composition comprises from about 0.1 mg/kg (weight of the animal) n (CAT) to about 20 mg/kg (weight of the animal) n (CAT) .
  75. The method of any one of claims 70-73, wherein the nanoparticle or the pharmaceutical composition comprises from about 0.5 mg/kg n (CAT) to about 10 mg/kg (weight of the animal) n (CAT) .
  76. The method of any one of claims 70-73, wherein the nanoparticle or the pharmaceutical composition comprises about 5 mg/kg n (CAT) .
  77. The method of any one of claims 74-76, wherein the nanoparticle or the pharmaceutical composition is administered by intravenous injection or subcutaneous injection to the animal in need thereof.
  78. The method of any one of claims 70-73, wherein the nanoparticle or the pharmaceutical composition comprises from about 1 μg/ml n (CAT) to about 1000 μg/ml n (CAT) .
  79. The method of any one of claims 70-73, wherein the nanoparticle or the pharmaceutical composition comprises from about 100 μg/ml n (CAT) to about 800 μg/ml n (CAT) .
  80. The method of any one of claims 70-73, wherein the nanoparticle or the pharmaceutical composition comprises about 500 μg/ml n (CAT) .
  81. The method of any one of claims 78-80, wherein the nanoparticle or the pharmaceutical composition is administered by inhalation to the animal in need thereof.
  82. The method of any one of claims 70-81, wherein the nanoparticle or the pharmaceutical composition is administered from four times daily to once every two days.
  83. The method of any one of claims 70-81, wherein the nanoparticle or the pharmaceutical composition is administered twice daily.
  84. The method of any one of claims 70-81, wherein the nanoparticle or the pharmaceutical composition is administered once daily.
  85. The method of any one of claims 70-81, wherein the nanoparticle or the pharmaceutical composition is administered once every two days.
  86. The method of any one of claims 70-85, wherein the nanoparticle or the pharmaceutical composition is administered to the animal in need thereof for from 1 day to 30 days.
  87. The method of any one of claims 70-85, wherein the nanoparticle or the pharmaceutical composition is administered to the animal in need thereof for from 1 day to 21 days.
  88. The method of any one of claims 70-85, wherein the nanoparticle or the pharmaceutical composition is administered to the animal in need thereof for from 1 day to 14 days.
  89. The method of any one of claims 70-85, wherein the nanoparticle or the pharmaceutical composition is administered to the animal in need thereof for from 1 day to 7 days.
  90. The method of any one of claims 70-89, wherein the viral loading in the animal after a complete treatment with administration of n (CAT) is reduced by from about at least 50%to about at least 99%.
  91. The method of any one of claims 70-89, wherein the viral loading in the animal after a complete treatment with administration of n (CAT) is reduced by from about at least 70%to about at least 99%.
  92. The method of any one of claims 70-89, wherein the viral loading in the animal after a complete treatment with administration of n (CAT) is reduced by at least 90%.
  93. The method of any one of claims 70-92, wherein the coronavirus is SARS or COVID-19/SARS-CoV-2.
  94. A method of promoting survival of human pulmonary alveolar epithelia cells (HPAEpiC) injured by a reactive oxygen species (ROS) in the presence of leukocytes, comprising administering a nanoparticle of any one of claims 1-23 or a pharmaceutical composition of claims 24 or 25 to the injured cells.
  95. The method of claim 94, wherein the nanoparticle or the pharmaceutical composition comprises from about 1 μg/mL n (CAT) to about 100 μg/mL n (CAT) .
  96. The method of claim 95, wherein the nanoparticle or the pharmaceutical composition comprises from about 8 μg/mL n (CAT) to about 40 μg/mL n (CAT) .
  97. The method of any one of claims 94-96, wherein the viability of injured HPAEpiC increases from about 71% (control) to about 91%.
  98. A method of promoting survival of human pulmonary alveolar epithelia cells (HPAEpiC) injured by lipopolysaccharides (LPS) activated leukocytes, comprising administering a nanoparticle of any one of claims 1-23 or a pharmaceutical composition of claims 24 or 25 to the injured cells.
  99. The method of claim 98, wherein the nanoparticle or the pharmaceutical composition comprises from about 1 μg/mL n (CAT) to about 100 μg/mL n (CAT) .
  100. The method of claim 99, wherein the nanoparticle or the pharmaceutical composition comprises from about 8 μg/mL n (CAT) to about 40 μg/mL n (CAT) .
  101. The method of any one of claims 98-100, wherein the viability of injured HPAEpiC increases from about 67% (control) to about 91%.
  102. The method of any one of claims 94-102, wherein the production of NF-α and IL-10 by leukocytes is reduced by n (CAT) .
PCT/CN2020/101766 2020-02-27 2020-07-14 Catalase nanoparticles and methods for use WO2021169149A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2021/019803 WO2021173922A1 (en) 2020-02-27 2021-02-26 Catalase nanocapsules and methods for use

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202062982649P 2020-02-27 2020-02-27
US62/982,649 2020-02-27
PCT/CN2020/083506 WO2021168996A1 (en) 2020-02-27 2020-04-07 Catalase nanocapsules and methods for use
CNPCT/CN2020/083506 2020-04-07

Publications (1)

Publication Number Publication Date
WO2021169149A1 true WO2021169149A1 (en) 2021-09-02

Family

ID=77489820

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/083506 WO2021168996A1 (en) 2020-02-27 2020-04-07 Catalase nanocapsules and methods for use
PCT/CN2020/101766 WO2021169149A1 (en) 2020-02-27 2020-07-14 Catalase nanoparticles and methods for use

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/083506 WO2021168996A1 (en) 2020-02-27 2020-04-07 Catalase nanocapsules and methods for use

Country Status (1)

Country Link
WO (2) WO2021168996A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230404933A1 (en) * 2020-11-06 2023-12-21 Purdue Research Foundation NON-CATIONIC SOFT POLYPHENOL NANOCAPSULES FOR EFFECTIVE SYSTEMIC DELIVERY OF SMALL INTERFERING RNA (siRNA) FOR CANCER TREATMENT
GB2622559A (en) * 2022-05-10 2024-03-27 Johan Frostegaard Compositions, methods and uses

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006762A2 (en) * 2011-07-06 2013-01-10 The Regents Of The University Of California Multiple-enzyme nanocomplexes
US8795731B1 (en) * 2009-10-12 2014-08-05 University Of Central Florida Research Foundation, Inc. Cerium oxide nanoparticle-based device for the detection of reactive oxygen species and monitoring of chronic inflammation
WO2014124142A2 (en) * 2013-02-07 2014-08-14 The Cleveland Clinic Foundation Methods of treating spinal cord injury
CN104549085A (en) * 2015-01-12 2015-04-29 中国科学院化学研究所 Antioxidant enzyme nano capsules as well as preparation method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123492A2 (en) * 2012-02-17 2013-08-22 Massachusetts Institute Of Technology Glucose-responsive microgels for closed loop insulin delivery
CN106669822B (en) * 2017-01-04 2019-11-05 河北工业大学 A kind of preparation method of composite bionic mineralising nano biological catalyst
US20190365869A1 (en) * 2018-06-01 2019-12-05 Board Of Regents, The University Of Texas System Bioresponsive Particles
CN109266639B (en) * 2018-08-31 2021-07-30 华南协同创新研究院 Dual immobilized enzyme and preparation method and application thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795731B1 (en) * 2009-10-12 2014-08-05 University Of Central Florida Research Foundation, Inc. Cerium oxide nanoparticle-based device for the detection of reactive oxygen species and monitoring of chronic inflammation
WO2013006762A2 (en) * 2011-07-06 2013-01-10 The Regents Of The University Of California Multiple-enzyme nanocomplexes
WO2013006763A1 (en) * 2011-07-06 2013-01-10 The Regents Of The University Of California Oral delivery of enzymes by nanocapsules for targeted metabolism of alcohol or toxic metabolites
WO2014124142A2 (en) * 2013-02-07 2014-08-14 The Cleveland Clinic Foundation Methods of treating spinal cord injury
CN104549085A (en) * 2015-01-12 2015-04-29 中国科学院化学研究所 Antioxidant enzyme nano capsules as well as preparation method and application thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KHOMICH OLGA, KOCHETKOV SERGEY, BARTOSCH BIRKE, IVANOV ALEXANDER: "Redox Biology of Respiratory Viral Infections", VIRUSES, vol. 10, no. 8, 26 July 2018 (2018-07-26), XP055841040, DOI: 10.3390/v10080392 *
QI HONGZHAO, YANG LIJUN, SHAN PEIPEI, ZHU SUJIE, DING HAN, XUE SHENG, WANG YIN, YUAN XUBO, LI PEIFENG: "The Stability Maintenance of Protein Drugs in Organic Coatings Based on Nanogels", PHARMACEUTICS, vol. 12, no. 2, 1 February 2020 (2020-02-01), XP055841066, DOI: 10.3390/pharmaceutics12020115 *

Also Published As

Publication number Publication date
WO2021168996A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
Mohideen et al. Degradable bioadhesive nanoparticles for prolonged intravaginal delivery and retention of elvitegravir
Zhong et al. Effect of the route of administration and PEGylation of poly (amidoamine) dendrimers on their systemic and lung cellular biodistribution
Xu et al. Prevention of colorectal cancer liver metastasis by exploiting liver immunity via chitosan-TPP/nanoparticles formulated with IL-12
TWI668019B (en) Membrane encapsulated nanoparticles and method of use
US20190388369A1 (en) Use of N-acetylcysteine Amide in the Treatment Of Disease and Injury
Vela-Ramirez et al. Safety and biocompatibility of carbohydrate-functionalized polyanhydride nanoparticles
WO2021169149A1 (en) Catalase nanoparticles and methods for use
US20230226199A1 (en) Dendrimer compositions and methods for drug delivery
Rodriguez-Nogales et al. Effect of aqueous and particulate silk fibroin in a rat model of experimental colitis
CN113679670B (en) Vesicle nano-drug carrying chloroquine compound, and preparation method and application thereof
Ji et al. Targeted dual small interfering ribonucleic acid delivery via non‐viral polymeric vectors for pulmonary fibrosis therapy
US20230107937A1 (en) Zwitterionic polypeptide and derivative thereof and nanodrug based thereon
Jin et al. Berberine-loaded biomimetic nanoparticles attenuate inflammation of experimental allergic asthma via enhancing IL-12 expression
Ge et al. Atmosphere-inspired multilayered nanoarmor with modulable protection and delivery of Interleukin-4 for inflammatory microenvironment modulation
Dang et al. Neutrophil-mediated and low density lipoprotein receptor-mediated dual-targeting nanoformulation enhances brain accumulation of scutellarin and exerts neuroprotective effects against ischemic stroke
Wu et al. Bioinspired β-glucan microcapsules deliver FK506 to lymph nodes for treatment of cardiac allograft acute rejection
Wang et al. Nano-integrated cascade antioxidases opsonized by albumin bypass the blood–brain barrier for treatment of ischemia-reperfusion injury
WO2021173922A1 (en) Catalase nanocapsules and methods for use
Zeeshan et al. QbD-based fabrication of transferrin-anchored nanocarriers for targeted drug delivery to macrophages and colon cells for mucosal inflammation healing
Wu et al. Preparation of betulinic acid galactosylated chitosan nanoparticles and their effect on liver fibrosis
WO2023142357A1 (en) Drug/sirna co-delivery nanocomplex, method for preparing same, and use thereof
Xiang et al. Selective inhibition of glycolysis in hepatic stellate cells and suppression of liver fibrogenesis with vitamin A-derivative decorated camptothecin micelles
Teng et al. Intranasal morphology transformation nanomedicines for long-term intervention of allergic rhinitis
US20210395181A1 (en) Rosmarinic acid derivative, rosmarinic acid-derived particles, composition containing same for treating inflammatory disease
Jin et al. Therapeutic effects of tea polyphenol-loaded nanoparticles coated with platelet membranes on LPS-induced lung injury

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921236

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921236

Country of ref document: EP

Kind code of ref document: A1