WO2021168996A1 - Catalase nanocapsules and methods for use - Google Patents

Catalase nanocapsules and methods for use Download PDF

Info

Publication number
WO2021168996A1
WO2021168996A1 PCT/CN2020/083506 CN2020083506W WO2021168996A1 WO 2021168996 A1 WO2021168996 A1 WO 2021168996A1 CN 2020083506 W CN2020083506 W CN 2020083506W WO 2021168996 A1 WO2021168996 A1 WO 2021168996A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticle
cat
administering
patient
ncat
Prior art date
Application number
PCT/CN2020/083506
Other languages
French (fr)
Inventor
Zhihua Gan
Shen Pang
Fang Wang
Meng QIN
Qingsong Yu
Zhenbo NING
Yi HOU
Kaili Nie
Ni JIANG
Chaoyong LIU
Original Assignee
Vivibaba, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vivibaba, Inc. filed Critical Vivibaba, Inc.
Priority to PCT/CN2020/101766 priority Critical patent/WO2021169149A1/en
Priority to PCT/US2021/019803 priority patent/WO2021173922A1/en
Publication of WO2021168996A1 publication Critical patent/WO2021168996A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/44Oxidoreductases (1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/007Pulmonary tract; Aromatherapy
    • A61K9/0073Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy
    • A61K9/0078Sprays or powders for inhalation; Aerolised or nebulised preparations generated by other means than thermal energy for inhalation via a nebulizer such as a jet nebulizer, ultrasonic nebulizer, e.g. in the form of aqueous drug solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • B01J13/18In situ polymerisation with all reactants being present in the same phase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y111/00Oxidoreductases acting on a peroxide as acceptor (1.11)
    • C12Y111/01Peroxidases (1.11.1)
    • C12Y111/01006Catalase (1.11.1.6)

Definitions

  • ROS Reactive oxygen species
  • Cytokine storm for example, is a serious immune dysregulation due to overproduction of cytokines, which often occurs during virus infection, organ transplant, immunotherapy, and autoimmune diseases and may result in death if untreated.
  • increasing level ROS can induce cell apoptosis through DNA damage, lipid peroxidation and protein oxidation.
  • the cell death further exacerbates the immune responses, which help to recruit and activate phagocytes to the disease site, further producing ROS and pro-inflammatory cytokines such as IL-6 and IL-1 ⁇ .
  • the cross-enhancing production of ROS and cytokines further aggravates apoptosis, inflammation and immune response (e.g., activation of T cells) , resulting in occurrence of cytokine storm.
  • Catalase represents one of the most important enzymes, which can effectively breakdown hydrogen peroxide (H 2 O 2 ) , the major component of ROS, to water and oxygen, preventing its direct oxidative damages to the cells and tissues, as well as cutoff its subsequent reaction with other chemical species that generate other types of toxic ROS.
  • CAT is abundant in various cells (e.g.
  • every CAT molecule can breakdown ⁇ 10 7 H 2 O 2 molecules in a second, enabling its use as a powerful antioxidant for the protection of cells and tissues from potential ROS damages.
  • the present invention provides a nanoparticle comprising an enzyme capable of neutralizing reactive oxygen species in a subject and a polymer encapsulating the enzyme.
  • the present invention provides a pharmaceutical composition comprising a plurality of the nanoparticles and a pharmaceutically acceptable carrier or excipient.
  • the present invention provides a method of preparing the nanocapsule, which comprises conjugating the enzyme with a modify agent in a first solvent and encapsulating the conjugated enzyme within a polymer in a second solvent.
  • the present invention provides a method of treating a disease or disorder selected from pneumonia, a viral infection, a bacterial infection, an immune disorder, cytokine release syndrome, or oxidative stress, comprising administering the nanoparticle or the pharmaceutical composition to a person in need thereof.
  • FIG. 1 depicts transmission electron microscopy (TEM) of nCAT (+) (scale bar: 100 nm)
  • FIG. 2 depicts dynamic light scattering of native CAT, nCAT (0) , and nCAT (+) .
  • FIG. 3 depicts zeta potential of native CAT, nCAT (0) , and nCAT (+) .
  • FIG. 4 depicts enzyme kinetics of native CAT, nCAT (0) and nCAT (+) .
  • FIG. 5 depicts dynamic light scattering of native CAT and nCAT.
  • FIG. 6A depicts a rapid decrease H 2 O 2 concentration from 25 mM to 10 mM with 6.5ug/mL n (CAT) in 30 mins.
  • FIG. 6B depicts enzyme stability of n (CAT) and activity of n (CAT) (5000 U/mL in PBS) at 4°C for 28 days.
  • FIG. 6C depicts enzyme stability of n (CAT) and activity of n (CAT) (5000 U/mL in PBS) at room temperature (25°C) for 28 Days.
  • FIG. 7 depicts viability of human pulmonary alveolar epithelia cells (HPAEpiC) cultured with different concentrations of n (CAT) for 24 h as measured by CCK-8 assays.
  • FIG. 8 depicts cell viability of HPAEpiC cultured in a media containing 1000 ⁇ M H 2 O 2 for 24 h followed by culturing with different concentrations of n (CAT) for 12 h.
  • FIG. 9 depicts cell viability of HPAEpiC cultured in n (CAT) -containing media for 12 h, after which 1000 ⁇ M H 2 O 2 was added to the media and the cells were cultured for 24 h.
  • FIG. 10 depicts fluorescence imaging of healthy mice after intratracheal administration of 2.5 mg/kg of fluorescently labeled native CAT or n (CAT) .
  • FIG. 11 depicts H&E staining of main organs of BALB/c mice after administration of 2.5 mg/kg of CAT or n (CAT) through intratracheal nebulization.
  • FIG. 12 depicts fluorescence imaging of healthy mice after intratracheal administration of 20 mg/kg of fluorescently labeled native CAT or n (CAT) .
  • FIG. 13B depicts renal function assessment of the mice administrated with n (CAT) by intratracheal nebulization (inn) or intravenous injection (i.v) .
  • Mean ⁇ s.e.m., n 3.
  • FIG. 14 depicts H&E staining of main organs of BALB/c mice after administration of 20 mg/kg of n (CAT) through intratracheal nebulization (Inn) and intravenous injection.
  • CAT n
  • Inn intratracheal nebulization
  • FIG. 16A depicts pharmacokinetics of native CAT and n (CAT) in mice intravenously injected with 20 mg/kg of native CAT or n (CAT) .
  • FIG. 16B depicts the area under the curve (AUC) of the pharmacokinetic profiles.
  • FIG. 17 depicts fluorescence imaging of healthy mice 6 h and 24 h after intravenous administration of 20 mg/kg of fluorescently labeled native CAT or n (CAT) .
  • FIG. 18 depicts photograph of a mouse cutaneously injected with PBS, n (Cat) , H 2 O 2 , n (GOx) , and n (GOx-Cat) at different sites.
  • FIG. 19 depicts skin tissue slices obtained from each of the injecting sites: (i) & (ii) hematoxylin and eosin (H&E) staining of skin tissues of mice; original magnifications are 40x (i) and 200x (ii) ; (iii) cell apoptosis in mouse skin tissue slices.
  • H&E hematoxylin and eosin
  • This invention relates to the field of drug delivery and nanomedicine. It describes the application of a pharmaceutical composition comprising nanocapsules of catalase (CAT) , denoted hereinafter as nCAT, in neutralizing excessive levels of reactive oxygen species (ROS) caused by immune disorders, organ transplant, and other factors.
  • CAT catalase
  • ROS reactive oxygen species
  • This invention relates to a scale up synthesis of nCAT, which can be achieved by a simple batch process.
  • Such nCAT can be utilized as a universal antioxidant for a broad range of therapeutic purposes, such as the treatment and/or reduction of symptoms of pneumonia, cytokine release syndrome (CRS) caused by virus infection and immunotherapy, autoimmune diseases, antiaging applications, anti-inflammation applications, cosmetic applications, and remediation for smokers.
  • CRS cytokine release syndrome
  • this invention provides a nanocapsule-based delivery platform or pharmaceutical composition for effective delivery of CAT. In another aspect, this invention provides a scale up synthesis of CAT nanocapsules.
  • a pharmaceutical composition comprising CAT encapsulated in a nanoscale polymer shell is provided.
  • a method of synthesizing CAT nanocapsules is provided.
  • CAT is encapsulated within a thin layer of poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC) to form nCAT with a number average diameter of ⁇ 30 nm.
  • PMPC (2-methacryloyloxyethyl phosphorylcholine
  • the surface charge and chemistry of the nanocapsules can be finely tuned by the incorporation of monomers with desired functional groups (e.g., amino groups) .
  • the scale up synthesis of nCAT allows the production of nanocapsules in the gram level using in a single batch process.
  • the diameter of the nanocapsule may be less than about 100 nm, less than about 90 nm, less than about 80 nm, less than about 70 nm, less than about 60 nm, less than about 50 nm, less than about 40 nm, less than about 30 nm, less than about 20 nm, less than about 10 nm, less than about 5 nm, or less than about 1 nm.
  • the polymer in the CAT nanoparticle comprises a neutral monomer and a cross-linker.
  • the neutral monomer is selected from acrylamide (AAM) , poly (ethylene glycol) methyl ether acrylate (mPEG) , 2-methacryloyloxyethyl phosphorycholine and a mixture thereof.
  • the cross-linker is selected from glycerol dimethacrylate (GDMA) , 1, 3-glycerol dimethacrylate, glycerol 1, 3-diglycerolate diacrylate, N, N’ -bis (acryloyl) cystamine, bis [2- (methacryloyloxy) ethyl] phosphate, bisacryloylated polypeptide, N, N′-methylenebis (acrylamide) (BIS) and a mixture thereof.
  • GDMA glycerol dimethacrylate
  • N, N’ -bis (acryloyl) cystamine bis [2- (methacryloyloxy) ethyl] phosphate
  • bisacryloylated polypeptide N, N′-methylenebis (acrylamide) (BIS) and a mixture thereof.
  • the polymer is the CAT nanoparticle further comprises a positively charged monomer.
  • the positively charged monomer is selected from N- (3-aminopropyl) methacrylamide (APM) , N- (3-Aminopropyl) methacrylamide hydrochloride, acryl-spermine, Dimethylamino ethyl methacrylate, (3-Acrylamidopropyl) trimethylammonium hydrochloride, N- (3- ( (4- ( (3-aminopropyl) amino) butyl) amino) propyl) methacrylamide, N- (3- ( (4-aminobutyl) amino) propyl) acrylamide, N- (3- ( (4-aminobutyl) amino) propyl) methacrylamide, N- (2- ( (2-aminoethyl) (methyl) amino) ethyl) acrylamide, N- (2- ( (2-aminoethyl) (methyl) amino) ethyl) acryl
  • nanocapsule and the method of preparing the nanocapsule can be adapted to other anti-ROS enzymes.
  • anti-ROS enzymes which can be encapsulated into the nanocapsule, include superoxide dismutase (SOD) , glutathione peroxidase, thioredoxin peroxidase, catalase, or a mixture thereof.
  • this invention provides in-vivo delivery of CAT.
  • nCAT can be delivered systemically and locally through intravenous injection, subcutaneous injection or inhalation.
  • the nanometer size and the non-fouling surface allow sustained sequestration of the nanocapsules in the serum or the target organ such as lung.
  • this invention provides a method of treating or reducing the side effects of immune disorders and/or ROS damages cause by many diseases or medical conditions.
  • Common reactive oxygen species include hydrogen peroxide, superoxide, singlet oxygen, ozone, hypohalous acids, and organic peroxides.
  • nCAT Compared with CAT, nCAT has one or more of prolonged half-life, improved proteolytic stability and reduced immunogenicity, opening the possibilities to treat immune disorders and ROS damage in pneumonia, autoimmune diseases and side-effects caused by immunotherapies.
  • the nanoparticle can be used in treatment of immune disorders and ROS damage, and can be used to deliver other anti-ROS enzymes, such as superoxide dismutase (SOD) , glutathione peroxidase, thioredoxin peroxidase, or a mixture thereof, to achieve similar therapeutic effects as CAT.
  • SOD superoxide dismutase
  • glutathione peroxidase glutathione peroxidase
  • thioredoxin peroxidase or a mixture thereof
  • this disclosure provides a method of protecting a lung tissue of a mammal from damaging by H 2 O 2 .
  • a therapeutically effective amount of catalase nanoparticle is administered to human pulmonary alveolar epithelia cells.
  • the nanoparticle comprises less than 5000 U/ml of nCAT, about 200 U/ml of nCAT, about 80 U/ml of nCAT, or about 40 U/ml of nCAT.
  • nCAT may have an enzyme concentration of 1 mg/ml and the activity of the enzyme is 5000U/mg. After exposure to 40 U/ml of nCAT, the viability of human pulmonary alveolar epithelia cell increases from 62%to 78%. Furthermore, after exposure to 80 U/ml of nCAT, the viability of human pulmonary alveolar epithelia cell increases from 62%to 100%.
  • this disclosure provides a method of treating a COVID-19 patient.
  • the patient is treated with a therapeutically effective amount of nCAT nanoparticles.
  • the nCAT can be administered to the patient by intravenous injection, subcutaneous injection, or inhalation.
  • nCAT is administered by inhalation, e.g., twice daily, and each dose of nanoparticle comprises, for example, from about 2 mg to about 10 mg of nCAT.
  • at least one physiological parameter/clinical sign of the COVID-19 patient improves, e.g., reaching a normal range (parameters and ranges listed in Table 4) .
  • the patient after at least one course of treatment with nCAT (e.g., 14 days) , the patient’s blood oxygen saturation level (SpO 2 ) reaches a range from 90%to 100%.
  • SpO 2 blood oxygen saturation level
  • this disclosure provides methods of inhibiting or preventing pneumonia in a COVID-19 patient.
  • the patient does not have pneumonia before treatment, and is treated with a therapeutically effective amount of catalase nanoparticle (nCAT) .
  • the administration may be accomplished by intravenous injection, subcutaneous injection, or inhalation.
  • the patient is administered by inhalation twice daily and each dose of nanoparticle comprises from about 2 mg to about 10 mg of nCAT. After at least one course of treatment with nCAT, the patient does not develop pneumonia.
  • this disclosure provides methods of inhibiting or preventing progression of one or more symptoms of COVID-19 in a patient in need thereof.
  • the COVID-19 patient is not in a critical or severe stage of the disease before treatment, and is treated with a therapeutically effective amount of catalase nanoparticle (nCAT) .
  • nCAT may be administered to the patient by intravenous injection, subcutaneous injection, or inhalation.
  • the patient is treated by inhalation twice daily and each dose of nanoparticle comprises from about 2 mg to about 10 mg nCAT.
  • the clinical courses of COVID-19 can be divided into three main categories: no symptom or mild to moderate (mild symptoms up to mild pneumonia) : about 81%; severe (dyspnea, hypoxia, or>50%lung involvement on imaging) : about 14%; critical (respiratory failure, shock, or multiorgan system dysfunction) : about 5%.
  • the patient receiving the treatment may not progress to a severe or critical stage of COVID-19 after at least one course of treatment.
  • the combined proportion of COVID-19 patients having either severe or critical symptoms is less than about 19%, less than about 15%, less than about 12%, less than about 10%, less than about 8%, less than about 6%, less than about 4%, less than about 3%, less than about 2%, or less than about 1%.
  • agent is used herein to denote a chemical compound(such as an organic or inorganic compound, a mixture of chemical compounds) , a biological macromolecule(such as a nucleic acid, an antibody, including parts thereof as well as humanized, chimeric and human antibodies and monoclonal antibodies, a protein or portion thereof, e.g., a peptide, a lipid, a carbohydrate) , or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues.
  • Agents include, for example, agents whose structure is known, and those whose structure is not known. The ability of such agents to inhibit AR or promote AR degradation may render them suitable as “therapeutic agents” in the methods and compositions of this disclosure.
  • a “patient, ” “subject, ” or “individual” are used interchangeably and refer to either a human or a non-human animal. These terms include mammals, such as humans, primates, livestock animals (including bovines, porcines, etc. ) , companion animals (e.g., canines, felines, etc. ) and rodents(e.g., mice and rats) .
  • Treating” a condition or patient refers to taking steps to obtain beneficial or desired results, including clinical results
  • treatment is an approach for obtaining beneficial or desired results, including clinical results.
  • Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized(i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total) , whether detectable or undetectable.
  • Treatment can also mean prolonging survival as compared to expected survival if not receiving treatment.
  • preventing is art-recognized, and when used in relation to a condition, such as a local recurrence(e.g., pain) , a disease such as cancer, a syndrome complex such as heart failure or any other medical condition, is well understood in the art, and includes administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition.
  • a condition such as a local recurrence(e.g., pain)
  • a disease such as cancer
  • a syndrome complex such as heart failure or any other medical condition
  • prevention of cancer includes, for example, reducing the number of detectable cancerous growths in a population of patients receiving a prophylactic treatment relative to an untreated control population, and/or delaying the appearance of detectable cancerous growths in a treated population versus an untreated control population, e.g., by a statistically and/or clinically significant amount.
  • a dministering” or “administration of” a substance, a compound or an agent to a subject can be carried out using one of a variety of methods known to those skilled in the art.
  • a compound or an agent can be administered, intravenously, arterially, intradermally, intramuscularly, intraperitoneally, subcutaneously, ocularly, sublingually, orally (by ingestion) , intranasally (by inhalation) , intraspinally, intracerebrally, and transdermally (by absorption, e.g., through a skin duct) .
  • a compound or agent can also appropriately be introduced by rechargeable or biodegradable polymeric devices or other devices, e.g., patches and pumps, or formulations, which provide for the extended, slow or controlled release of the compound or agent.
  • Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.
  • a compound or an agent is administered orally, e.g., to a subject by ingestion.
  • the orally administered compound or agent is in an extended release or slow release formulation, or administered using a device for such slow or extended release.
  • a “therapeutically effective amount” or a “therapeutically effective doSe” of a drug or agent is an amount of a drug or an agent that, when administered to a subject, will have the intended therapeutic effect.
  • the full therapeutic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses.
  • a therapeutically effective amount may be administered in one or more administrations.
  • the precise effective amount needed for a subject will depend upon, for example, the subject’s size, health and age, and the nature and extent of the condition being treated, such as cancer or MDS. The skilled worker can readily determine the effective amount for a given situation by routine experimentation.
  • compositions, excipients, adjuvants, polymers and other materials and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
  • pharmaceutically acceptable carrier means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filter, diluent, excipient, solvent or encapsulating material useful for formulating a drug for medicinal or therapeutic use.
  • the polymer nanocapsules are 10 nm-20 nm, 20-25 nm, 25 nm-30 nm, 30 nm-35 nm, 35 nm-40 nm, 40 nm-45 nm, 45 nm-50 nm, 50 nm-55 nm, 55 nm-60 nm, 60 nm-65 nm, 70-75 nm, 75 nm-80 nm, 80 nm-85 nm, 85 nm-90 nm, 90 nm-95 nm, 95 nm-100nm, or 100 nm-110 nm.
  • the polymer nanocapsules are approximately 10 nm, 11 nm, 12 nm, 13 nm, 14 nm, 15 nm, 16 nm, 17 nm, 18 nm, 19 nm, 20 nm, 21 nm, 22 nm, 23 nm, 24 nm, 25 nm, 26 nm, 27 nm, 28 nm, 29 nm, 30 nm, 31 nm, 32 nm, 33 nm, 34 nm, 35 nm, 36 nm, 37 nm, 38 nm, 39 nm, 40 nm, 41 nm, 42 nm, 43 nm, 44 nm, 45 nm, 46 nm, 47 nm, 48 nm, 49 nm, 50 nm, 51 nm, 52 nm, 53 nm, 54 nm, 55 nm, 56 nm, 57 nm,
  • the polymer nanocapsules are 120 nm-130 nm, 130 nm-140 nm, 140 nm-150 nm, 150 nm-160 nm, 160 nm-170 nm, 170 nm-180 nm, 180 nm-190 nm, 190 nm-200 nm, 200 nm-210 nm, 220 nm-230 nm, 230 nm-240 nm, 240 nm-250 nm, or larger than 250 nm in diameter.
  • polymer nanocapsules disclosed herein include nontargeting and targeting ability, higher efficiency, and/or lower adverse immune response.
  • the higher efficiency may result from increased uptake and more directed delivery.
  • nCAT composition The scale up synthesis of nCAT composition is composed of two steps, including:
  • a NAS stock solution was prepared by dissolving 10 mg NAS in 400 ⁇ L dimethyl sulfoxide (DMSO) .
  • DMSO dimethyl sulfoxide
  • the NAS stock solution was then mixed with a CAT solution at a molar of 20: 1 (NAS: CAT) .
  • a CAT solution at a molar of 20: 1 (NAS: CAT) .
  • 340 ⁇ L NAS stock solution was added to 60 mL CAT solution (10 mg/mL) in 1x phosphate buffered saline (PBS) ) .
  • PBS phosphate buffered saline
  • the reaction was then kept at room temperature (R. T. ) for 1 hour under magnetic stirring (200 rpm) .
  • 2-methacryloyloxyethyl phosphorycholine (MPC) stock solution was prepared by dissolving 20 g MPC in 50 mL ultrapure water.
  • N- (3-Aminopropyl) methacrylamide hydrochloride (APM) stock solution was prepared by dissolving 1 g APM in 10 mL ultrapure water.
  • N, N′ -Methylenebis (acrylamide) (BIS) stock solution was prepared by dissolving 1 g BIS in 10 mL DMSO.
  • Ammonium persulfate (APS) stock solution was prepared by dissolving 1 g APS in 10 mL ultrapure water.
  • nCAT nCAT (0)
  • 33 mL MPC stock solution and 7 mL BIS stock solution were added to a 500 mL glass bottle.
  • 30 mL 10X phosphate-buffered saline (10x PBS) and 17 mL water were added, and the mixture was purged with nitrogen for 20 min under magnetic stirring (200 rpm) .
  • 45 mL CAT solution (from 1, after surface conjugation) was added into the mixture (molar ratio of CAT: MPC: BIS is 1: 24000: 2400) under magnetic stirring (200 rpm) .
  • 2.65 mL pure tetramethylethylenediamine (TEMED) and 10 mL APS stock solution were added to the mixture, and the mixture was kept at R. T. for 2 hours.
  • TEMED tetramethylethylenediamine
  • nCAT nCAT (+)
  • 30 mL MPC stock solution 8 mL APM stock solution and 7 mL BIS stock solution were added to a 500 mL glass bottle.
  • 30 mL 10x PBS and 17 mL water were added, and the mixture was purged with nitrogen for 20 min under magnetic stirring (200 rpm) .
  • 45 mL CAT solution from 1) after surface conjugation was added into the mixture (molar ratio of CAT: MPC: BIS is 1: 24000: 2400) under magnetic stirring (200 rpm) .
  • 2.65 mL pure tetramethylethylenediamine (TEMED) and 10 mL APS stock solution were added to the mixture, and the mixture was kept at R. T. for 2 hours.
  • TEMED tetramethylethylenediamine
  • nCAT (0) and nCAT (+) solutions were adjusted to a final concentration of 1 mg/mL (CAT concentration) with 1x PBS for further applications.
  • nCAT The synthesized nCAT after dialysis exhibits a spherical morphology with an average diameter of ⁇ 30 nm, which was measured by transmission electron microscopy (TEM) (Fig. 1) .
  • the zeta potential of nCAT (0) is 0.7 ⁇ 0.3 mV, and that of nCAT (+) is 1.5 ⁇ 0.2 mV (Fig. 3) .
  • the activity of CAT before and after encapsulation remained unchanged (Fig. 4) which was confirmed by the decomposition rate of H 2 O 2 , indicating that the encapsulation does not interfere with enzymatic activities.
  • Fig. 1 shows a transmission electron microscopic (TEM) image of n (CAT) , displaying a size of 20 ⁇ 30 nm.
  • Fig. 3 shows zeta potential of native CAT and n (CAT) . Compared native CAT with a negative zeta potential ( ⁇ -4.0 mV) , n (CAT) exhibits a slightly positive zeta potential of ⁇ 1.5 mV due to the copolymerization of APM in the polymer shells.
  • Fig. 4 shows the activity of native CAT and n (CAT) at different H 2 O 2 concentrations, suggesting n (CAT) retains more than 95%of the native CAT activity.
  • Fig. 1 shows a transmission electron microscopic (TEM) image of n (CAT) , displaying a size of 20 ⁇ 30 nm.
  • Fig. 3 shows zeta potential of native CAT and n (CAT) . Compared native CAT with a negative zeta potential ( ⁇ -4.0
  • CAT 5 shows size distribution of native CAT and n (CAT) , which is centered at 10 and 25 nm, respectively.
  • the highly retained activity enables the n (CAT) to rapidly eliminate H 2 O 2 upon inhalation or intravenous administration.
  • FIG. 6A shows a rapidly decreasing H 2 O 2 -concentration profile from 25 mM to 10 mM in the presence of 4IU/mL n (CAT) within 30 mins, conforming the effective detoxicating ability of n (CAT) .
  • n (CAT) As-synthesized n (CAT) is highly stable, as shown in FIG. 6B&C, the activity of n (CAT) (5000 U/mL in PBS) remains unchanged at 4°C or 25°C for 28 days.
  • n (CAT) 5000 U/mL in PBS) remains unchanged at 4°C or 25°C for 28 days.
  • Such a characteristic is essential for the transport, distribution, and use in patients at different regions affected by COVID-19.
  • Table 1 The representative properties of nCAT prepared according to this disclosure are summarized in Table 1.
  • nCAT is considered as a potential antioxidant for the treatment of immune disorders caused by different diseases or immunotherapies through various delivery routes.
  • Pneumonia is a common illness that continues to be the major killer of young children in developing countries and elderly people in developed countries. Bacteria have a predominant role in adults with pneumonia, and viruses are the putative causative agents in a third of cases of community-acquired pneumonia, in particular influenza viruses, rhinoviruses, and coronaviruses (particularly, SARS and COVID-19) .
  • cytokines are released to attract neutrophils to affected sites. Activated neutrophils may engulf the microorganisms through phagocytosis and kill the ingested microorganisms through production of ROS, proteolytic enzymes and cytokines.
  • acute inflammation in pneumonia is self-limited.
  • the ROS generated may not able to eliminate the viruses, resulting in excessive production of ROS and cytokine storm, which may further aggravate the inflammation and trigger the occurrence of cytokine storm.
  • coronavirus disease e.g.
  • Inhalation is a highly effective approach to deliver CAT into the lung.
  • direct delivery of CAT through inhalation is limited by several factors.
  • pulmonary surfactants, proteases, and alveolar macrophages in the lung can rapidly deactivate or internalize the CAT delivered.
  • the use of the nCAT can effectively protect the activity of CAT inhaled, breaking down the H 2 O 2 , reduce the inflammation and the risks of cytokine storm.
  • RA rheumatoid arthritis
  • SLE systemic lupus erythematosus
  • APS anti-phospholipid syndrome
  • multiple sclerosis rheumatoid arthritis
  • RA rheumatoid arthritis
  • SLE systemic lupus erythematosus
  • APS anti-phospholipid syndrome
  • multiple sclerosis multiple sclerosis.
  • ROS reactive oxygen species
  • Immunotherapy has become a powerful clinical strategy for treating diseases including cancers.
  • An increasing number of immunotherapy drugs have been approved or under examination for clinical uses.
  • Broader implementation of immunotherapies is still limited by cytokine release syndrome (CRS) raised by the therapeutics.
  • CRS cytokine release syndrome
  • CAT-T Chimeric antigen receptor T
  • monocytes and macrophages contribute to the development of CRS and neurotoxicity in CAR-T therapy. It is noted that ROS production is an essential factor for macrophage differentiation within tumor microenvironment.
  • nCAT can be used to mitigate the side effects associated with immunotherapy of cancers.
  • n (CAT) human pulmonary alveolar epithelia cells
  • HPAEpiC human pulmonary alveolar epithelia cells
  • n (CAT) To examine the efficacy of using n (CAT) to rescue lung tissues that were damaged by H 2 O 2 , HPAEpiC were cultured in a media containing 1000 ⁇ M of H 2 O 2 for 24 h, after which cells were cultured in media with n (CAT) for 12 h and cell viability was measured by CCK-8 assay (Fig. 8) . It was found that exposing the cells to H 2 O 2 led to dramatically reduced cell viability ( ⁇ 50%) . Culturing these damaged cells with 20 U/mL of n (CAT) increased the cell viability to 72%, confirming the rescuing ability of n (CAT) for cells that were damaged by H 2 O 2 . The viability remains similar with increasing n (CAT) concentration.
  • n (CAT) To examine the efficacy of n (CAT) to protect lung tissues from damaging by H 2 O 2 , HPAEpiC were cultured in n (CAT) -containing media for 12 h, after which 1000 ⁇ M H 2 O 2 was added to the media and the cells were cultured for 24 h.
  • Fig. 9 shows the cell viability measured using CCK-8 assay.
  • Pre-culturing the cells with 40U/L and 80 U/L of n (CAT) significantly improve cell viability from 62%to 78%to 100%, respectively, upon exposure to H 2 O 2 .
  • This study demonstrates that administrating n (CAT) through nebulization could help to protect lung tissues from being damaged by H 2 O 2 .
  • n (CAT) was synthesized and examined for the treatment of COVID-19 through intratracheal nebulization and intravenous injection.
  • n 2.5 mg/kg n (CAT) was administrated to BALB/c mice (3 per group) .
  • the major organs were harvested after 6 and 24 h, which were used to examine the biodistribution.
  • n 20 mg/kg n (CAT) was administrated to BALB/c mice (4 per group) by intratracheal aerosol. Blood samples were collected after 0.1, 1, 3, 6, and 24 h. The major organs were harvested after 24h.
  • n (CAT) The biodistribution of n (CAT) in mice was examined using Alexa-Fluor-750 labeled native CAT and n (CAT) , which were administrated to BALB/c mice by intratracheal nebulization at a dose of 2.5 mg/kg (3 per group) .
  • the mice received native CAT showed fluorescent signal at the lung after 6 hours, and the fluorescent intensity was decreased significantly after 24 hours.
  • the mice received n (CAT) show significantly higher fluorescent intensity after 6 hours, which was well retained after 24 hours (Fig. 10) . This observation demonstrates that n (CAT) can be effectively delivered to the lung with excellent stability.
  • a high level of macrophages, proteases, and pulmonary surfactants may exist in the alveolar of infected patients, which could result in rapid decade of enzyme activity.
  • encapsulating catalase with a thin shell of polymer help retain the activity dramatically, through protecting the enzyme from denature by surfactant, from degradation by proteases, and from phagocytosis.
  • CAT as-administrated n
  • Fig. 11 shows the H&E staining of the main organs after the administration of native CAT or n (CAT) through intratracheal nebulization. No obvious tissue damage can be observed, indicating intratracheal nebulization of 2.5 mg/kg n (CAT) did not result in any observable toxicity.
  • n (CAT) To further examine the potential toxicity of n (CAT) , a high dose (20 mg/kg) of native CAT and n (CAT) with fluorescent label n (CAT) was administrated to BALB/c mice (4 per group) by intratracheal aerosol. Blood samples were collected after 0.1, 1, 3, 6, and 24 hours to examine the pharmacokinetics and toxicity. The major organs were also harvested after 1, 6 and 24 hours to examine the biodistribution.
  • Fig. 12 shows the biodistribution of native CAT and n (CAT) 1, 6, and 24 hours after the administration. Similar to the observation with a low dose (2.5 mg/kg) , most of the n (CAT) administrated was retained in the lung within 24 hours. Florescent signal was observed in liver and kidney for the mice with n (CAT) , suggesting a portion of n (CAT) was translocated to the blood circulation system from the lung.
  • n liver toxicity, kidney toxicity, and systemic toxicity was examined.
  • ALT alanine aminotransferase
  • AST aspartate aminotransferase
  • ALP alkaline phosphatase
  • the renal function was assessed via the levels of uric acid (UA) and urea (Fig. 13B) .
  • the level of urea maintains unchanged after 24 hours, and no significant difference between the experimental groups and control was observed.
  • the level of uric acid was slightly increased from 68 ⁇ M/L to 105 ⁇ M/L after intratracheal nebulization.
  • WBC white blood cells
  • LYMO lymphocytes
  • MONO monocytes
  • GAA granulocytes
  • Fig. 14 shows the H&E staining of the main organs after the administration of 20 mg/kg n (CAT) through intratracheal nebulization and intravenous injection. No obvious tissue damage can be observed, indicating intratracheal nebulization of 20 mg/kg n (CAT) did not result in any observable toxicity.
  • CAT human pulmonary alveolar epithelia cells
  • n (CAT) 2 mg of n (CAT) per day to human through intratracheal nebulization.
  • n (CAT) was mainly located within the lung, while a portion of n (CAT) may be translocated into the blood circulation system and cleared out by the liver.
  • n (CAT) 2 mg n (CAT) in rhesus macaques is approximately a dose of 0.5-0.6 mg/kg.
  • n (CAT) was administrated intravenously to BALB/c mice (4 per group) and blood samples were collected after 0.1, 1, 3, 6, and 24 hours. The major organs were harvested after 6 and 24 h for biodistribution studies.
  • Fig. 16A shows the pharmacokinetics of mice intravenously injected with 20 mg/kg of native CAT and n (CAT) .
  • n (CAT) shows a serum half-life of 8.9 hour, which was 16.8-fold longer than the native CAT (0.5 hour) .
  • AUC area under the curve
  • the prolonged circulation time and enhanced drug exposure of n (CAT) could contribute to better therapeutic efficacy of CAT.
  • Fig. 17 shows the biodistribution of native CAT and n (CAT) 6 and 24 hours after intravenous administration of native CAT and n (CAT) .
  • Accumulation of both native CAT and n (CAT) in liver and kidney was observed after 6 hours, and most florescent signal disappeared in the liver and kidney after 24 hours.
  • PMPC based nanocapsules generally do not show accumulation in the liver and kidney.
  • the observed accumulation of n (CAT) is most likely associated with the positive charge of these n (CAT) , which can be readily adjusted and corrected during the encapsulation process. After correcting the surface charge, minimized accumulation of n (CAT) in the liver and kidney, as well as a further prolonged circulation time, is expected.
  • n (CAT) The toxicity of n (CAT) administrated through intravenous injection, including liver toxicity, kidney toxicity, and systemic toxicity was examined.
  • the hepatic function of the mice was assessed via the plasma levels of alanine aminotransferase (ALT) , aspartate aminotransferase (AST) , and alkaline phosphatase (ALP) (Fig. 15A) .
  • ALT alanine aminotransferase
  • AST aspartate aminotransferase
  • ALP alkaline phosphatase
  • the renal function was assessed via the levels of uric acid (UA) and urea (Fig. 15B) .
  • the level of urea maintains unchanged after 24 hours, and no significant difference between the experimental groups and control was observed.
  • the level of uric acid was slightly increased from 68 ⁇ M/L to 155 ⁇ M/L after intravenous injection.
  • the systemic toxicity was investigated by cell counts of white blood cells (WBC) , lymphocytes (LYMO) , monocytes (MONO) , and granulocytes (GRA) (Fig. 15C) . No significant difference between the experimental groups and the control group was observed, indicating the absence of systematic toxicity and excellent biocompatibility of n (CAT) .
  • n (CAT) intravenous administration of 20 mg/kg of n (CAT) in mice did not resulted in any noticeable toxicity.
  • As-administrated n (CAT) showed a significantly prolonged circulation time than native CAT ( ⁇ 18 folds of improvement) .
  • Accumulation of n (CAT) in liver and kidney was observed, which can be readily minimized through reducing the surface charge of n (CAT) .
  • n (CAT) glucose oxidase
  • GOx-CAT glucose oxidase
  • H&E hematoxylin and eosin
  • TUNEL staining kit As shown in Fig. 19, H 2 O 2 administration caused tearing and ballooning in the dermis of the skin; n (GOx) administration resulted in similar tissue ballooning and neutrophil infiltration albeit to a milder extent, indicating pathophysiological response and injury due to the generated H 2 O 2 (Fig. 19, i&ii) . No tissue damage was observed in the spots injected with PBS, n (CAT) and n (GOx- T) .
  • n (CAT) could effectively reduce the toxicity and tissue damage associated with H 2 O 2 .
  • apoptosis was determined by TUNEL staining (green) identified with Cy3-conjugated monoclonal ⁇ -smooth muscle actin antibody (red) .
  • DAPI was used for nuclear staining (blue) .
  • the immunostained slices were evaluated and photographed with fluorescence microscopy (original magnification 200x) .
  • L29 contains 0.2 mg/ml nCAT.
  • L29 treatment group Besides a standard background treatment (e.g. antiviral drug, antibacterial, oxygen therapy, or a combination thereof) , all subjects in the L29 treatment group will receive 2 mg of L29, inhale, BID (every morning and evening) , for 14 days. All subjects in the blank control group will only receive a standard background treatment (antiviral drug+antibacterial+oxygen therapy) , for 14 days.
  • a standard background treatment e.g. antiviral drug, antibacterial, oxygen therapy, or a combination thereof
  • Patient physiological parameters/clinical signs at different time points of the study will be recorded.
  • the monitored physiological parameters/clinical signs are listed in Table 3.
  • the time frame for performing the clinical studies is from Day-1 to Day 14.
  • the treatment may be extended for more than one course of treatment (14 days) , if clinical results suggest an extension is necessary.
  • the patient physiological parameters/clinical signs are monitored from the time of screening to the end of treatment, for all patients randomized.
  • the time to reach the target level of patient physiological parameters/clinical signs for each symptom will be calculated based on the record and compared between L29 treatment group and standard of care (SoC) control group.
  • SoC standard of care
  • the patients selected for the study have to satisfy the following criteria: (1) adult male or female patients aged 18-85 years old; (2) newly diagnosed COVID-19 patients who meet the diagnostic criteria set forth in the "Guidance of Diagnosis and Treatment for Patients with Coronavirus Disease 2019 (COVID-19) (Procedural Version 5 Amendment) ", issued by the National Health Commission of the People′s Republic of China on 8 February 2020; (3) level of blood oxygen saturation is not less than 85%; and (4) agree to participate in the study and voluntarily comply with the relevant requirements of the study.
  • Patients whose conditions fall within following criteria will be excluded: (1) patients with other diseases that may affect, in the opinion of study researchers, the implementation of the study or the observation of the efficacy data; (2) patients with severe Coronavirus Disease 2019 (COVID-19) , that is based on "Guidance of Diagnosis and Treatment for Patients with Coronavirus Disease 2019 (COVID-19) (Procedural Version 5 Amendment) " with respect to the criteria for clinical severity classification; (3) female patients with known pregnancy and in lactation at screening; (4) patients with previous allergies to L29; and (5) any other condition that, in the opinion of the investigator, may affect the conduct of the study, reduce compliance or increase the risk of patients.
  • the improvements in physiological parameters/clinical signs among the selected COVID-19 patients are expected to occur within or after one or more courses of treatment.
  • the normal readings of representative key physiological parameters/clinical signs are listed in Table 4.It is believed that within or after one or more courses of treatment, at least one of listed physiological parameters/clinical signs of the selected COVID-19 patients will reach normal range.
  • Abnormal electrocardiogram during COVID-19 infection includes: T-wave depression and inversion; ST-segment depression; Q waves.
  • Example 11 Prevention and Inhibition of COVID-19 Infected Patients to Develop Pneumonia and/or Progression of the Disease from Mild/Moderate Stage to Critical Stage.
  • L29 e.g. 0.2 mg/ml nCAT from examples 1 and 2 are further tested on diagnosed COVID-19 patients, who show no symptoms, or have mild to moderate symptoms of the disease.
  • the clinical courses, such as illness severity can be divided into three main categories: no symptom or mild to moderate (mild symptoms up to mild pneumonia) : 81%; severe (dyspnea, hypoxia, or>50%lung involvement on imaging) : 14%; critical (respiratory failure, shock, or multiorgan system dysfunction) : 5%.
  • L29 can effective prevent or inhibit the diagnosed COVID-19 patients from developing pneumonia (COVID-19 pneumonia) within or after one or more course of treatment (e.g. 14 days) . Furthermore, L29 may effectively prevent or inhibit the diagnosed COVID-19 patients, who show no symptoms, or have mild to moderate symptoms of the disease, from developing severe/critical symptoms of the disease within or after one or more courses of treatment. At last, it is believed that L29 can effectively reduce the proportion of COVID-19 patients, who develop severe or critical symptoms, which often lead death of COVID-19 patients.
  • the combined proportion of COVID-19 patients, who develop severe or critical symptoms is less than about 19%, less than about 15%, less than about 12%, less than about 10%, less than about 8%, less than about 6%, less than about 4%, less than about 3%, less than about 2%, or less than about 1%.

Abstract

It relates to a nanocapsule comprising an enzyme capable of neutralizing excessive production of reactive oxygen species in a subject with the enzyme being encapsulated in a polymer. It also relates to a scale up synthesis of the nanocapsule. It further relates to a method of treating a disease or disorder e. g. a viral pneumonia (for example COVID-19 pneumonia), an immune disorder, cytokine release syndrome, or oxidative stress, comprising administering said nanocapsule to a person in need thereof.

Description

Catalase Nanocapsules and Methods for Use
RELATED APPLICATIONS
This application claims the benefit of priority to United States Provisional Patent Application serial number 62/982,649, filed February 27, 2020. The contents of that application are hereby incorporated by reference in their entirety.
BACKGROUND
Reactive oxygen species (ROS) play essential physiological roles as signaling molecules in various cell types, participating in almost every biological process, including vascular physiology, oxygen sensing, immune responses and gene transcription. Meanwhile, ROS are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can effectively kill pathogens by creating directly oxidative stress to the pathogens or by stimulating immune system to combat with the pathogens. Nevertheless, excessive production of ROS, which are cytotoxic, may damage cells and tissues and trigger immune dysregulation. Regulating ROS production, in this context, is essential to combat pathogens while prevent immune dysregulation.
Cytokine storm, for example, is a serious immune dysregulation due to overproduction of cytokines, which often occurs during virus infection, organ transplant, immunotherapy, and autoimmune diseases and may result in death if untreated. In the development of cytokine storm, increasing level ROS can induce cell apoptosis through DNA damage, lipid peroxidation and protein oxidation. The cell death further exacerbates the immune responses, which help to recruit and activate phagocytes to the disease site, further producing ROS and pro-inflammatory cytokines such as IL-6 and IL-1β. The cross-enhancing production of ROS and cytokines further aggravates apoptosis, inflammation and immune response (e.g., activation of T cells) , resulting in occurrence of cytokine storm.
To regulate ROS production and prevent their oxidative injury, biological systems have developed complicated antioxidant system that enable effective catabolism of ROS. Catalase (CAT) represents one of the most important enzymes, which can effectively breakdown hydrogen peroxide (H 2O 2) , the major component of ROS, to water and oxygen, preventing its direct oxidative damages to the cells and tissues, as well as cutoff its subsequent reaction with other chemical species that generate other types of toxic ROS. CAT is abundant in various cells  (e.g. erythrocytes) and organs (e.g., liver) , as well as in the serum (~10 U/mL) ; every CAT molecule can breakdown~10 7 H 2O 2 molecules in a second, enabling its use as a powerful antioxidant for the protection of cells and tissues from potential ROS damages.
Despite the abundant presence of CAT in biological system, insufficiency of CAT may occur systemically or locally in specific tissues or organs, particularly, for patients with pneumonia, virus infection, autoimmune diseases, and patients under immunotherapies. Under these conditions, effective administration of CAT, a potent antioxidant, can mitigate the oxidative injury and related cell and tissue damages, and prevent occurrence of cytokine storm. However, the effective delivery of CAT is still hampered by its enzyme stability, short circulation time, rapid immunogenicity, and undesired biodistribution. In lights of these limitation, there exists a need to develop a novel delivery of CAT nanocapsules as a potent antioxidant for effective breakdown of toxic ROS for a broad range of applications such therapeutic, cosmetic uses, and remediation for smokers.
SUMMARY OF THE INVENTION
In one aspect, the present invention provides a nanoparticle comprising an enzyme capable of neutralizing reactive oxygen species in a subject and a polymer encapsulating the enzyme.
In one aspect, the present invention provides a pharmaceutical composition comprising a plurality of the nanoparticles and a pharmaceutically acceptable carrier or excipient.
In one aspect, the present invention provides a method of preparing the nanocapsule, which comprises conjugating the enzyme with a modify agent in a first solvent and encapsulating the conjugated enzyme within a polymer in a second solvent.
In one aspect, the present invention provides a method of treating a disease or disorder selected from pneumonia, a viral infection, a bacterial infection, an immune disorder, cytokine release syndrome, or oxidative stress, comprising administering the nanoparticle or the pharmaceutical composition to a person in need thereof.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 depicts transmission electron microscopy (TEM) of nCAT (+) (scale bar: 100 nm) 
FIG. 2 depicts dynamic light scattering of native CAT, nCAT (0) , and nCAT (+) .
FIG. 3 depicts zeta potential of native CAT, nCAT (0) , and nCAT (+) .
FIG. 4 depicts enzyme kinetics of native CAT, nCAT (0) and nCAT (+) .
FIG. 5 depicts dynamic light scattering of native CAT and nCAT.
FIG. 6A depicts a rapid decrease H 2O 2 concentration from 25 mM to 10 mM with 6.5ug/mL n (CAT) in 30 mins.
FIG. 6B depicts enzyme stability of n (CAT) and activity of n (CAT) (5000 U/mL in PBS) at 4℃ for 28 days.
FIG. 6C depicts enzyme stability of n (CAT) and activity of n (CAT) (5000 U/mL in PBS) at room temperature (25℃) for 28 Days.
FIG. 7 depicts viability of human pulmonary alveolar epithelia cells (HPAEpiC) cultured with different concentrations of n (CAT) for 24 h as measured by CCK-8 assays.
FIG. 8 depicts cell viability of HPAEpiC cultured in a media containing 1000μM H 2O 2 for 24 h followed by culturing with different concentrations of n (CAT) for 12 h.
FIG. 9 depicts cell viability of HPAEpiC cultured in n (CAT) -containing media for 12 h, after which 1000μM H 2O 2 was added to the media and the cells were cultured for 24 h.
FIG. 10 depicts fluorescence imaging of healthy mice after intratracheal administration of 2.5 mg/kg of fluorescently labeled native CAT or n (CAT) .
FIG. 11 depicts H&E staining of main organs of BALB/c mice after administration of 2.5 mg/kg of CAT or n (CAT) through intratracheal nebulization.
FIG. 12 depicts fluorescence imaging of healthy mice after intratracheal administration of 20 mg/kg of fluorescently labeled native CAT or n (CAT) .
FIG. 13A depicts hepatic assessment of the mice administrated with n (CAT) by intratracheal nebulization (inn) or intravenous injection (i. v) . Mean±s.e.m., n=3.
FIG. 13B depicts renal function assessment of the mice administrated with n (CAT) by intratracheal nebulization (inn) or intravenous injection (i.v) . Mean±s.e.m., n=3.
FIG. 13C depicts hematology assessment of the mice administrated with n (CAT) by intratracheal nebulization (inn) or intravenous injection (i. v) . Mean±s.e.m., n=3.
FIG. 14 depicts H&E staining of main organs of BALB/c mice after administration of 20 mg/kg of n (CAT) through intratracheal nebulization (Inn) and intravenous injection.
FIG. 15 depicts hepatic, renal function, and hematology assessment of rhesus macaques administrated with n (CAT) by intratracheal nebulization. Mean±s.e.m., n=3.
FIG. 16A depicts pharmacokinetics of native CAT and n (CAT) in mice intravenously injected with 20 mg/kg of native CAT or n (CAT) .
FIG. 16B depicts the area under the curve (AUC) of the pharmacokinetic profiles.
FIG. 17 depicts fluorescence imaging of  healthy mice  6 h and 24 h after intravenous administration of 20 mg/kg of fluorescently labeled native CAT or n (CAT) .
FIG. 18 depicts photograph of a mouse cutaneously injected with PBS, n (Cat) , H 2O 2, n (GOx) , and n (GOx-Cat) at different sites.
FIG. 19 depicts skin tissue slices obtained from each of the injecting sites: (i) & (ii) hematoxylin and eosin (H&E) staining of skin tissues of mice; original magnifications are 40x (i) and 200x (ii) ; (iii) cell apoptosis in mouse skin tissue slices.
DETAILED DESCRIPTION
This invention relates to the field of drug delivery and nanomedicine. It describes the application of a pharmaceutical composition comprising nanocapsules of catalase (CAT) , denoted hereinafter as nCAT, in neutralizing excessive levels of reactive oxygen species (ROS) caused by immune disorders, organ transplant, and other factors. This invention relates to a scale up synthesis of nCAT, which can be achieved by a simple batch process. Such nCAT can be utilized as a universal antioxidant for a broad range of therapeutic purposes, such as the treatment and/or reduction of symptoms of pneumonia, cytokine release syndrome (CRS) caused by virus infection and immunotherapy, autoimmune diseases, antiaging applications, anti-inflammation applications, cosmetic applications, and remediation for smokers.
In one aspect, this invention provides a nanocapsule-based delivery platform or pharmaceutical composition for effective delivery of CAT. In another aspect, this invention provides a scale up synthesis of CAT nanocapsules.
According to certain embodiments this invention, a pharmaceutical composition comprising CAT encapsulated in a nanoscale polymer shell is provided. In some embodiments of this invention, a method of synthesizing CAT nanocapsules is provided. In a representative embodiment, CAT is encapsulated within a thin layer of poly (2-methacryloyloxyethyl phosphorylcholine) (PMPC) to form nCAT with a number average diameter of~30 nm. The surface charge and chemistry of the nanocapsules can be finely tuned by the incorporation of monomers with desired functional groups (e.g., amino groups) . The scale up synthesis of nCAT  allows the production of nanocapsules in the gram level using in a single batch process. The diameter of the nanocapsule may be less than about 100 nm, less than about 90 nm, less than about 80 nm, less than about 70 nm, less than about 60 nm, less than about 50 nm, less than about 40 nm, less than about 30 nm, less than about 20 nm, less than about 10 nm, less than about 5 nm, or less than about 1 nm.
In certain embodiments, the polymer in the CAT nanoparticle comprises a neutral monomer and a cross-linker. In some embodiments, the neutral monomer is selected from acrylamide (AAM) , poly (ethylene glycol) methyl ether acrylate (mPEG) , 2-methacryloyloxyethyl phosphorycholine and a mixture thereof. In some embodiments, the cross-linker is selected from glycerol dimethacrylate (GDMA) , 1, 3-glycerol dimethacrylate, glycerol 1, 3-diglycerolate diacrylate, N, N’ -bis (acryloyl) cystamine, bis [2- (methacryloyloxy) ethyl] phosphate, bisacryloylated polypeptide, N, N′-methylenebis (acrylamide) (BIS) and a mixture thereof.
In further embodiments, the polymer is the CAT nanoparticle further comprises a positively charged monomer. In some embodiments, the positively charged monomer is selected from N- (3-aminopropyl) methacrylamide (APM) , N- (3-Aminopropyl) methacrylamide hydrochloride, acryl-spermine, Dimethylamino ethyl methacrylate, (3-Acrylamidopropyl) trimethylammonium hydrochloride, N- (3- ( (4- ( (3-aminopropyl) amino) butyl) amino) propyl) methacrylamide, N- (3- ( (4-aminobutyl) amino) propyl) acrylamide, N- (3- ( (4-aminobutyl) amino) propyl) methacrylamide, N- (2- ( (2-aminoethyl) (methyl) amino) ethyl) acrylamide, N- (2- ( (2-aminoethyl) (methyl) amino) ethyl) methacrylamide, N- (piperazin-1-ylmethyl) acrylamide, N- (piperazin-1-ylmethyl) methacrylamide, N- (2- (bis (2-aminoethyl) amino) ethyl) acrylamide, and N- (2- (bis (2-minoethyl) amino) ethyl) methacrylamide.
The above disclosed nanocapsule and the method of preparing the nanocapsule can be adapted to other anti-ROS enzymes. Examples of anti-ROS enzymes, which can be encapsulated into the nanocapsule, include superoxide dismutase (SOD) , glutathione peroxidase, thioredoxin peroxidase, catalase, or a mixture thereof.
In certain aspects, this invention provides in-vivo delivery of CAT. nCAT can be delivered systemically and locally through intravenous injection, subcutaneous injection or  inhalation. The nanometer size and the non-fouling surface allow sustained sequestration of the nanocapsules in the serum or the target organ such as lung.
In certain aspect, this invention provides a method of treating or reducing the side effects of immune disorders and/or ROS damages cause by many diseases or medical conditions. Common reactive oxygen species (ROS) include hydrogen peroxide, superoxide, singlet oxygen, ozone, hypohalous acids, and organic peroxides.
Compared with CAT, nCAT has one or more of prolonged half-life, improved proteolytic stability and reduced immunogenicity, opening the possibilities to treat immune disorders and ROS damage in pneumonia, autoimmune diseases and side-effects caused by immunotherapies. The nanoparticle can be used in treatment of immune disorders and ROS damage, and can be used to deliver other anti-ROS enzymes, such as superoxide dismutase (SOD) , glutathione peroxidase, thioredoxin peroxidase, or a mixture thereof, to achieve similar therapeutic effects as CAT.
In certain aspects, this disclosure provides a method of protecting a lung tissue of a mammal from damaging by H 2O 2. In certain embodiment, a therapeutically effective amount of catalase nanoparticle is administered to human pulmonary alveolar epithelia cells. In certain embodiments, the nanoparticle comprises less than 5000 U/ml of nCAT, about 200 U/ml of nCAT, about 80 U/ml of nCAT, or about 40 U/ml of nCAT. In further embodiments, nCAT may have an enzyme concentration of 1 mg/ml and the activity of the enzyme is 5000U/mg. After exposure to 40 U/ml of nCAT, the viability of human pulmonary alveolar epithelia cell increases from 62%to 78%. Furthermore, after exposure to 80 U/ml of nCAT, the viability of human pulmonary alveolar epithelia cell increases from 62%to 100%.
In certain aspects, this disclosure provides a method of treating a COVID-19 patient. In certain embodiments, the patient is treated with a therapeutically effective amount of nCAT nanoparticles. The nCAT can be administered to the patient by intravenous injection, subcutaneous injection, or inhalation. In certain embodiments, nCAT is administered by inhalation, e.g., twice daily, and each dose of nanoparticle comprises, for example, from about 2 mg to about 10 mg of nCAT. After the patient receives the treatment, for example at least one course of treatment of 14 days with nCAT, at least one physiological parameter/clinical sign of the COVID-19 patient improves, e.g., reaching a normal range (parameters and ranges listed in  Table 4) . In certain embodiments, after at least one course of treatment with nCAT (e.g., 14 days) , the patient’s blood oxygen saturation level (SpO 2) reaches a range from 90%to 100%.
In certain aspects, this disclosure provides methods of inhibiting or preventing pneumonia in a COVID-19 patient. In certain embodiments, the patient does not have pneumonia before treatment, and is treated with a therapeutically effective amount of catalase nanoparticle (nCAT) . The administration may be accomplished by intravenous injection, subcutaneous injection, or inhalation. In certain embodiments, the patient is administered by inhalation twice daily and each dose of nanoparticle comprises from about 2 mg to about 10 mg of nCAT. After at least one course of treatment with nCAT, the patient does not develop pneumonia.
In certain aspects, this disclosure provides methods of inhibiting or preventing progression of one or more symptoms of COVID-19 in a patient in need thereof. In certain embodiments, the COVID-19 patient is not in a critical or severe stage of the disease before treatment, and is treated with a therapeutically effective amount of catalase nanoparticle (nCAT) . nCAT may be administered to the patient by intravenous injection, subcutaneous injection, or inhalation. In certain embodiments, the patient is treated by inhalation twice daily and each dose of nanoparticle comprises from about 2 mg to about 10 mg nCAT. The clinical courses of COVID-19, such as illness severity, can be divided into three main categories: no symptom or mild to moderate (mild symptoms up to mild pneumonia) : about 81%; severe (dyspnea, hypoxia, or>50%lung involvement on imaging) : about 14%; critical (respiratory failure, shock, or multiorgan system dysfunction) : about 5%. The patient receiving the treatment may not progress to a severe or critical stage of COVID-19 after at least one course of treatment. In certain embodiments, the combined proportion of COVID-19 patients having either severe or critical symptoms is less than about 19%, less than about 15%, less than about 12%, less than about 10%, less than about 8%, less than about 6%, less than about 4%, less than about 3%, less than about 2%, or less than about 1%.
Definitions
Unless otherwise defined herein, scientific and technical terms used in this application shall have the meanings that are commonly understood by those of ordinary skill in the art. Generally, nomenclature used in connection with, and techniques of, chemistry, cell and tissue culture, molecular biology, cell and cancer biology, neurobiology, neurochemistry, virology,  immunology, microbiology, pharmacology, genetics and protein and nucleic acid chemistry, described herein, are those well-known and commonly used in the art.
The methods and techniques of the present disclosure are generally performed, unless otherwise indicated,according to conventional methods well known in the art and as described in various general and more specific references that are cited and discussed throughout this specification. See, e.g. “Principles of Neural Science” , McGraw-Hill Medical, New York, N.Y. (2000) ; Motulsky, “Intuitive Biostatistics” , Oxford University Press, Inc. (1995); Lodish et al., “Molecular Cell Biology, 4th ed. ”, W. H. Freeman&Co., New York (2000) ; Griffiths et al., “Introduction to Genetic Analysis, 7th ed. ”, W. H. Freeman&Co., N.Y. (1999);and Gilbert et al., “Developmental Biology, 6th ed. ”, Sinauer Associates, Inc., Sunderland, MA(2000).
Chemistry terms used herein, unless otherwise defined herein, are used according to conventional usage in the art, as exemplified by “The McGraw-Hill Dictionary of Chemical Terms”, Parker S., Ed., McGraw-Hill, San Francisco, C. A. (1985) .
All of the above, and any other publications, patents and published patent applications referred to in this application are specifically incorporated by reference herein. In case of conflict, the present specification,including its specific definitions,will control.
The term “agent” is used herein to denote a chemical compound(such as an organic or inorganic compound, a mixture of chemical compounds) , a biological macromolecule(such as a nucleic acid, an antibody, including parts thereof as well as humanized, chimeric and human antibodies and monoclonal antibodies, a protein or portion thereof, e.g., a peptide, a lipid, a carbohydrate) , or an extract made from biological materials such as bacteria, plants, fungi, or animal (particularly mammalian) cells or tissues. Agents include, for example, agents whose structure is known, and those whose structure is not known. The ability of such agents to inhibit AR or promote AR degradation may render them suitable as “therapeutic agents” in the methods and compositions of this disclosure.
A “patient, ” “subject, ” or “individual” are used interchangeably and refer to either a human or a non-human animal. These terms include mammals, such as humans, primates, livestock animals (including bovines, porcines, etc. ) , companion animals (e.g., canines, felines, etc. ) and rodents(e.g., mice and rats) .
“Treating” a condition or patient refers to taking steps to obtain beneficial or desired results, including clinical results As used herein, and as well understood in the art, “treatment”  is an approach for obtaining beneficial or desired results, including clinical results. Beneficial or desired clinical results can include, but are not limited to, alleviation or amelioration of one or more symptoms or conditions, diminishment of extent of disease, stabilized(i.e. not worsening) state of disease, preventing spread of disease, delay or slowing of disease progression, amelioration or palliation of the disease state, and remission (whether partial or total) , whether detectable or undetectable. “Treatment” can also mean prolonging survival as compared to expected survival if not receiving treatment.
The term “preventing” is art-recognized, and when used in relation to a condition, such as a local recurrence(e.g., pain) , a disease such as cancer, a syndrome complex such as heart failure or any other medical condition, is well understood in the art, and includes administration of a composition which reduces the frequency of, or delays the onset of, symptoms of a medical condition in a subject relative to a subject which does not receive the composition. Thus, prevention of cancer includes, for example, reducing the number of detectable cancerous growths in a population of patients receiving a prophylactic treatment relative to an untreated control population, and/or delaying the appearance of detectable cancerous growths in a treated population versus an untreated control population, e.g., by a statistically and/or clinically significant amount.
“A dministering” or “administration of” a substance, a compound or an agent to a subject can be carried out using one of a variety of methods known to those skilled in the art. For example, a compound or an agent can be administered, intravenously, arterially, intradermally, intramuscularly, intraperitoneally, subcutaneously, ocularly, sublingually, orally (by ingestion) , intranasally (by inhalation) , intraspinally, intracerebrally, and transdermally (by absorption, e.g., through a skin duct) . A compound or agent can also appropriately be introduced by rechargeable or biodegradable polymeric devices or other devices, e.g., patches and pumps, or formulations, which provide for the extended, slow or controlled release of the compound or agent. Administering can also be performed, for example, once, a plurality of times, and/or over one or more extended periods.
Appropriate methods of administering a substance, a compound or an agent to a subject will also depend, for example, on the age and/or the physical condition of the subject and the chemical and biological properties of the compound or agent (e.g., solubility, digestibility, bioavailability, stability and toxicity) . In some embodiments, a compound or an agent is  administered orally, e.g., to a subject by ingestion. In some embodiments, the orally administered compound or agent is in an extended release or slow release formulation, or administered using a device for such slow or extended release.
A “therapeutically effective amount” or a “therapeutically effective doSe” of a drug or agent is an amount of a drug or an agent that, when administered to a subject, will have the intended therapeutic effect. The full therapeutic effect does not necessarily occur by administration of one dose, and may occur only after administration of a series of doses. Thus, a therapeutically effective amount may be administered in one or more administrations. The precise effective amount needed for a subject will depend upon, for example, the subject’s size, health and age, and the nature and extent of the condition being treated, such as cancer or MDS. The skilled worker can readily determine the effective amount for a given situation by routine experimentation.
The phrase “pharmaceutically acceptable”is art-recognized. In certain embodiments, the term includes compositions, excipients, adjuvants, polymers and other materials and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.
The phrase “pharmaceutically acceptable carrier” as used herein means a pharmaceutically acceptable material, composition or vehicle, such as a liquid or solid filter, diluent, excipient, solvent or encapsulating material useful for formulating a drug for medicinal or therapeutic use.
In certain embodiments, the polymer nanocapsules are 10 nm-20 nm, 20-25 nm, 25 nm-30 nm, 30 nm-35 nm, 35 nm-40 nm, 40 nm-45 nm, 45 nm-50 nm, 50 nm-55 nm, 55 nm-60 nm, 60 nm-65 nm, 70-75 nm, 75 nm-80 nm, 80 nm-85 nm, 85 nm-90 nm, 90 nm-95 nm, 95 nm-100nm, or 100 nm-110 nm. In certain embodiments, the polymer nanocapsules are approximately 10 nm, 11 nm, 12 nm, 13 nm, 14 nm, 15 nm, 16 nm, 17 nm, 18 nm, 19 nm, 20 nm, 21 nm, 22 nm, 23 nm, 24 nm, 25 nm, 26 nm, 27 nm, 28 nm, 29 nm, 30 nm, 31 nm, 32 nm, 33 nm, 34 nm, 35 nm, 36 nm, 37 nm, 38 nm, 39 nm, 40 nm, 41 nm, 42 nm, 43 nm, 44 nm, 45 nm, 46 nm, 47 nm, 48 nm, 49 nm, 50 nm, 51 nm, 52 nm, 53 nm, 54 nm, 55 nm, 56 nm, 57 nm, 58 nm, 59 nm, 60 nm, 61 nm, 62 nm, 63 nm, 64 nm, 65 nm, 66 nm, 67 nm, 68 nm, 69 nm, 70 nm, 71 nm, 72 nm, 73 nm, 74 nm, 75 nm, 76 nm, 77 nm, 78 nm, 79 nm, 80 nm, 81 nm, 82 nm, 83 nm, 84 nm, 85 nm, 86 nm, 87 nm,  88 nm, 89 nm, 90 nm, 91 nm, 92 nm, 93 nm, 94 nm, 95 nm, 96 nm, 97 nm, 98 nm, 99 nm, 100 nm, 101 nm, 102 nm, 103 nm, 104 nm, 105 nm, 106 nm, 107 nm, 108 nm, 109 nm, 110 nm, 111 nm, 112 nm, 113 nm, 114 nm, 115 nm, 116 nm, 117 nm, 118 nm, 119 nm, or 120 nm in diameter. In certain embodiments, the polymer nanocapsules are 120 nm-130 nm, 130 nm-140 nm, 140 nm-150 nm, 150 nm-160 nm, 160 nm-170 nm, 170 nm-180 nm, 180 nm-190 nm, 190 nm-200 nm, 200 nm-210 nm, 220 nm-230 nm, 230 nm-240 nm, 240 nm-250 nm, or larger than 250 nm in diameter.
In certain embodiments, polymer nanocapsules disclosed herein include nontargeting and targeting ability, higher efficiency, and/or lower adverse immune response. For example, the higher efficiency may result from increased uptake and more directed delivery.
Examples
The invention now being generally described, it will be more readily understood by reference to the following examples which are included merely for purposes of illustration of certain aspects and embodiments, of the present invention, and are not intended to limit the invention.
Example 1. Scale Up Synthesis of nCAT Composition
The scale up synthesis of nCAT composition is composed of two steps, including:
1) Surface conjugation with acrylic acid N-hydroxysuccinimide ester (NAS)
A NAS stock solution was prepared by dissolving 10 mg NAS in 400μL dimethyl sulfoxide (DMSO) . The NAS stock solution was then mixed with a CAT solution at a molar of 20: 1 (NAS: CAT) . As an example, 340μL NAS stock solution was added to 60 mL CAT solution (10 mg/mL) in 1x phosphate buffered saline (PBS) ) . The reaction was then kept at room temperature (R. T. ) for 1 hour under magnetic stirring (200 rpm) .
2) CAT encapsulation
2-methacryloyloxyethyl phosphorycholine (MPC) stock solution was prepared by dissolving 20 g MPC in 50 mL ultrapure water. N- (3-Aminopropyl) methacrylamide hydrochloride (APM) stock solution was prepared by dissolving 1 g APM in 10 mL ultrapure water. N, N′ -Methylenebis (acrylamide) (BIS) stock solution was prepared by dissolving 1 g BIS in 10 mL DMSO. Ammonium persulfate (APS) stock solution was prepared by dissolving 1 g APS in 10 mL ultrapure water.
To prepare neutrally charged nCAT (nCAT (0) ) , 33 mL MPC stock solution and 7 mL BIS stock solution were added to a 500 mL glass bottle. Then, 30 mL 10X phosphate-buffered saline (10x PBS) and 17 mL water were added, and the mixture was purged with nitrogen for 20 min under magnetic stirring (200 rpm) . 45 mL CAT solution (from 1, after surface conjugation) was added into the mixture (molar ratio of CAT: MPC: BIS is 1: 24000: 2400) under magnetic stirring (200 rpm) . 2.65 mL pure tetramethylethylenediamine (TEMED) and 10 mL APS stock solution were added to the mixture, and the mixture was kept at R. T. for 2 hours.
To prepare positively charged nCAT (nCAT (+) ) , 30 mL MPC stock solution, 8 mL APM stock solution and 7 mL BIS stock solution were added to a 500 mL glass bottle. Then, 30 mL 10x PBS and 17 mL water were added, and the mixture was purged with nitrogen for 20 min under magnetic stirring (200 rpm) . 45 mL CAT solution from 1) after surface conjugation was added into the mixture (molar ratio of CAT: MPC: BIS is 1: 24000: 2400) under magnetic stirring (200 rpm) . 2.65 mL pure tetramethylethylenediamine (TEMED) and 10 mL APS stock solution were added to the mixture, and the mixture was kept at R. T. for 2 hours.
After polymerization, the unreacted molecules and as-formed polymers (unbonded to nanocapsules) were removed using dialysis, diafiltration, or ultrafiltration. For large scale synthesis, diafiltration and ultrafiltration are the preferable methods. The resulted nCAT (0) and nCAT (+) solutions were adjusted to a final concentration of 1 mg/mL (CAT concentration) with 1x PBS for further applications.
Example 2. Characterization of nCAT and Residual Activity Test after Encapsulation
The synthesized nCAT after dialysis exhibits a spherical morphology with an average diameter of~30 nm, which was measured by transmission electron microscopy (TEM) (Fig. 1) . The successful encapsulation of CAT was also supported by the hydrodynamic sizes measured by dynamic light scattering (DLS) (Fig. 2) . The zeta potential of nCAT (0) is 0.7±0.3 mV, and that of nCAT (+) is 1.5±0.2 mV (Fig. 3) . The activity of CAT before and after encapsulation remained unchanged (Fig. 4) , which was confirmed by the decomposition rate of H 2O 2, indicating that the encapsulation does not interfere with enzymatic activities.
Catalase nanocapsules were synthesized and purified followed the protocol described. Fig. 1 shows a transmission electron microscopic (TEM) image of n (CAT) , displaying a size of 20~30 nm. Fig. 3 shows zeta potential of native CAT and n (CAT) . Compared native CAT with a negative zeta potential (~-4.0 mV) , n (CAT) exhibits a slightly positive zeta potential of~1.5  mV due to the copolymerization of APM in the polymer shells. Fig. 4 shows the activity of native CAT and n (CAT) at different H 2O 2 concentrations, suggesting n (CAT) retains more than 95%of the native CAT activity. Fig. 5 shows size distribution of native CAT and n (CAT) , which is centered at 10 and 25 nm, respectively. The highly retained activity enables the n (CAT) to rapidly eliminate H 2O 2 upon inhalation or intravenous administration. These studies confirm successful encapsulation of CAT that formed n (CAT) .
FIG. 6A shows a rapidly decreasing H 2O 2-concentration profile from 25 mM to 10 mM in the presence of 4IU/mL n (CAT) within 30 mins, conforming the effective detoxicating ability of n (CAT) . Meanwhile, as-synthesized n (CAT) is highly stable, as shown in FIG. 6B&C, the activity of n (CAT) (5000 U/mL in PBS) remains unchanged at 4℃ or 25℃ for 28 days. Such a characteristic is essential for the transport, distribution, and use in patients at different regions affected by COVID-19. The representative properties of nCAT prepared according to this disclosure are summarized in Table 1.
Table 1. Major Specifics of the Catalase Nanocapsules n (CAT)
Particle Size 25 nm
Enzyme Concentration
1 mg/mL
Enzyme Activity 5000-6000 U/mL
Endotoxin Concentration <0.5 EU/mL
pH transparent solution, pH 7.0-7.4
Store Condition 2-10℃, should be stable for at least one month
Example 3. Clinical Relevance of nCAT as a Potent Antioxidant
It has been sufficiently proved in various proteins (enzymes, growth factors and antibodies) that protein nanocapsules have a significantly increased plasma half-life and activities compared with their native forms. Meanwhile, the immunogenicity of different proteins can be significantly reduced. The biocompatibility and systemic toxicity of nanocapsules have also been evaluated in non-human primates. Followed by injection of 10 mg/kg nanocapsules in rhesus macaques, no obvious fluctuations in liver function and renal function were observed. The complete blood count tests further confirmed an absence of hematopoietic malfunction. Therefore, nCAT is considered as a potential antioxidant for the treatment of immune disorders caused by different diseases or immunotherapies through various delivery routes.
Example 4. Prevention, Inhibition, and Reduction of Excessive Production of ROS and Cytokine Storm in Patients with Pneumonia
Pneumonia is a common illness that continues to be the major killer of young children in developing countries and elderly people in developed countries. Bacteria have a predominant role in adults with pneumonia, and viruses are the putative causative agents in a third of cases of community-acquired pneumonia, in particular influenza viruses, rhinoviruses, and coronaviruses (particularly, SARS and COVID-19) .
In pneumonia, as alveolar macrophages fail to contain the invading pathogens, cytokines are released to attract neutrophils to affected sites. Activated neutrophils may engulf the microorganisms through phagocytosis and kill the ingested microorganisms through production of ROS, proteolytic enzymes and cytokines. In an ideal scenario, acute inflammation in pneumonia is self-limited. However, for patients with viral infection, the ROS generated may not able to eliminate the viruses, resulting in excessive production of ROS and cytokine storm, which may further aggravate the inflammation and trigger the occurrence of cytokine storm. For example, coronavirus disease (e.g. SARS and COVID-19) has led to near one hundred thousand infections with thousands of deaths globally. It has been noted that the persons infected show excessively high level of pro-inflammatory cytokines, and cytokine storm has been regarded as the key factor causing fatality. Meanwhile, it has been noted that pneumonia leads to significantly elevated lung H 2O 2 concentration. Therefore, effective delivery of CAT into the infected sites can be used to protect the lung tissues against oxidative injury and prevent the occurrence of cytokine storm.
Inhalation is a highly effective approach to deliver CAT into the lung. However, direct delivery of CAT through inhalation is limited by several factors. For example, pulmonary surfactants, proteases, and alveolar macrophages in the lung, can rapidly deactivate or internalize the CAT delivered. The use of the nCAT can effectively protect the activity of CAT inhaled, breaking down the H 2O 2, reduce the inflammation and the risks of cytokine storm.
Example 5. Relief of Symptoms of Autoimmune Diseases
Autoimmune diseases, which affect approximately 5% of the population, comprise a heterogeneous group of poorly understood disorders, including rheumatoid arthritis (RA) , systemic lupus erythematosus (SLE) , anti-phospholipid syndrome (APS) , and multiple sclerosis. Although the production of ROS by neutrophils is important for normal neutrophil functions  during infection, increasing evidence has indicated that neutrophil-derived ROS actively participate in the pathogenesis of autoimmune diseases. In RA, for example, immune complexes such as rheumatoid factors and anti-citrullinated protein antibodies activate neutrophils via FCγ receptors. This triggers degranulation of neutrophils in synovial fluid or onto articular surface, creating an environment (e.g., joints) with concentrated ROS, proteases and cytotixic factors, which may damage the articular cartilage and underlying bone, and other tissues. It is also noted that patients with RA exhibit increased production of ROS in the blood and synovium. Several studies have also demonstrated a significant correlation between the level of ROS and the severity of the disease. Similar observations were also reported for patients with other autoimmune diseases. Based on the pathological studies, delivery of nCAT systematically or locally (e.g, intra-articular injection) can effectively neutralize the H 2O 2 and relieve the symptoms of systemic autoimmune diseases.
Example 6. Mitigation of Side Effects of Cytokine Release Syndrome (CRS) Caused by Immunotherapies
Immunotherapy has become a powerful clinical strategy for treating diseases including cancers. An increasing number of immunotherapy drugs have been approved or under examination for clinical uses. Broader implementation of immunotherapies, however, is still limited by cytokine release syndrome (CRS) raised by the therapeutics. The rapid release of cytokines leads to adverse symptoms such as increased heartbeat, nausea and low blood pressure and other side effects. Chimeric antigen receptor T (CAT-T) cell therapy, for example, is a new pillar in cancer therapeutics. However, its application is limited by the associated toxicities, including CRS and neurotoxicity. Recent data suggests that monocytes and macrophages contribute to the development of CRS and neurotoxicity in CAR-T therapy. It is noted that ROS production is an essential factor for macrophage differentiation within tumor microenvironment. Reducing the ROS level helps to downregulate the differentiation macrophages and lowers the risk of CRS. It has also been demonstrated that inhibiting ROS production helps to suppress tumorigenesis in different cancer models. In this context, nCAT can be used to mitigate the side effects associated with immunotherapy of cancers.
Example 7. Remedial Antioxidant for Smokers
There are sufficient evidences showing that smoking introduces oxidative stress to the lung and leads to reduced expression of CAT in the alveolar and other tissues in the lung. Such  effect results in various diseases associated. In this context, delivery of nCAT through inhalation can provide a powerful antioxidant, which protects the smokers from such diseases.
Example 8. In Vitro Cytotoxicity and Efficacy of n (CAT)
To examine the cytotoxicity of n (CAT) , human pulmonary alveolar epithelia cells (HPAEpiC) were cultured with n (CAT) in PBS, and the viability was measured using CCK-8 assay after 24 h (Fig. 7) . As shown, the cells cultured with n (CAT) show similar or higher viability than the control group when the n (CAT) concentration is 5,000 U/mL or lower, indicating n (CAT) is non-cytotoxic even at high concentration. In fact, the presence of n (CAT) does improve the cell viability. Cytotoxicity was observed only at a higher n (CAT) concentration of 10,000 U/mL.
To examine the efficacy of using n (CAT) to rescue lung tissues that were damaged by H 2O 2, HPAEpiC were cultured in a media containing 1000μM of H 2O 2 for 24 h, after which cells were cultured in media with n (CAT) for 12 h and cell viability was measured by CCK-8 assay (Fig. 8) . It was found that exposing the cells to H 2O 2 led to dramatically reduced cell viability (~50%) . Culturing these damaged cells with 20 U/mL of n (CAT) increased the cell viability to 72%, confirming the rescuing ability of n (CAT) for cells that were damaged by H 2O 2. The viability remains similar with increasing n (CAT) concentration.
To examine the efficacy of n (CAT) to protect lung tissues from damaging by H 2O 2, HPAEpiC were cultured in n (CAT) -containing media for 12 h, after which 1000μM H 2O 2 was added to the media and the cells were cultured for 24 h. Fig. 9 shows the cell viability measured using CCK-8 assay. Pre-culturing the cells with 40U/L and 80 U/L of n (CAT) significantly improve cell viability from 62%to 78%to 100%, respectively, upon exposure to H 2O 2. This study demonstrates that administrating n (CAT) through nebulization could help to protect lung tissues from being damaged by H 2O 2.
Based on the body weight-weight dependent data of epithelia lining liquid (ELF) obtained in sheep (0.37 ml/lg) , a 70 kg human would possess 26 ml of ELF. Delivery of 10,000 U of n (CAT) to the lung could provide a n (CAT) concentration of~380 U/mL in ELF. Assuming a delivery efficiency of~50%, direct delivery of 2 mg n (CAT) (5,000 U/mg) could provide a n (CAT) concentration of~200 U/mL, which is sufficient to rescue and protect the lung tissue from damage by H 2O 2 released.
Example 9. Pharmacokinetics, Biodistribution, and Toxicity
It has been demonstrated that protein molecules, regardless of their molecular weight, surface charge and function, could be encapsulated to form nanocapsules with similar surface characteristics, pharmacokinetics and biodistribution and without noticeable toxicity. In this example, n (CAT) was synthesized and examined for the treatment of COVID-19 through intratracheal nebulization and intravenous injection.
9.1. Intratracheal Nebulization
To examine the pharmacokinetics, biodistribution, and toxicity of n (CAT) administrated through intratracheal nebulization. Three studies were performed:
1) 2.5 mg/kg n (CAT) was administrated to BALB/c mice (3 per group) . The major organs were harvested after 6 and 24 h, which were used to examine the biodistribution.
2) 20 mg/kg n (CAT) was administrated to BALB/c mice (4 per group) by intratracheal aerosol. Blood samples were collected after 0.1, 1, 3, 6, and 24 h. The major organs were harvested after 24h.
3) 2 mg n (CAT) was administrated to a group of three rhesus macaques (2 years old, 3.5-4.5kg) through intratracheal nebulization each day for 7 days. Blood samples were collected daily for hepatic function, renal function, and hematology assessment. In this study, the dose vs. the body weight is~0.5-0.6 mg/kg.
9.1.1. Mice with 2.5 mg/kg n (CAT)
The biodistribution of n (CAT) in mice was examined using Alexa-Fluor-750 labeled native CAT and n (CAT) , which were administrated to BALB/c mice by intratracheal nebulization at a dose of 2.5 mg/kg (3 per group) . The mice received native CAT showed fluorescent signal at the lung after 6 hours, and the fluorescent intensity was decreased significantly after 24 hours. The mice received n (CAT) show significantly higher fluorescent intensity after 6 hours, which was well retained after 24 hours (Fig. 10) . This observation demonstrates that n (CAT) can be effectively delivered to the lung with excellent stability.
A high level of macrophages, proteases, and pulmonary surfactants may exist in the alveolar of infected patients, which could result in rapid decade of enzyme activity. As demonstrated in our early studies, encapsulating catalase with a thin shell of polymer help retain the activity dramatically, through protecting the enzyme from denature by surfactant, from degradation by proteases, and from phagocytosis.
Meanwhile, the main organs of the mice 24 hours after intratracheal nebulization were harvested. It was found that, except lung, other main organs (heart, liver, spleen and kidney) showed negligible fluorescent signal. This observation indicates that as-administrated n (CAT) was mainly retained within the lung. Fig. 11 shows the H&E staining of the main organs after the administration of native CAT or n (CAT) through intratracheal nebulization. No obvious tissue damage can be observed, indicating intratracheal nebulization of 2.5 mg/kg n (CAT) did not result in any observable toxicity.
9.1.2 Mice with 20 mg/kg n (CAT)
To further examine the potential toxicity of n (CAT) , a high dose (20 mg/kg) of native CAT and n (CAT) with fluorescent label n (CAT) was administrated to BALB/c mice (4 per group) by intratracheal aerosol. Blood samples were collected after 0.1, 1, 3, 6, and 24 hours to examine the pharmacokinetics and toxicity. The major organs were also harvested after 1, 6 and 24 hours to examine the biodistribution.
Fig. 12 shows the biodistribution of native CAT and n (CAT) 1, 6, and 24 hours after the administration. Similar to the observation with a low dose (2.5 mg/kg) , most of the n (CAT) administrated was retained in the lung within 24 hours. Florescent signal was observed in liver and kidney for the mice with n (CAT) , suggesting a portion of n (CAT) was translocated to the blood circulation system from the lung.
The toxicity of n (CAT) , including liver toxicity, kidney toxicity, and systemic toxicity was examined. The hepatic function of the mice was assessed via the plasma levels of alanine aminotransferase (ALT) , aspartate aminotransferase (AST) , and alkaline phosphatase (ALP) (Fig. 13A) . The levels of ALT, AST, and ALP were remained within their normal levels; no significant difference between the experimental groups and control was observed intratracheal nebulization. These data suggest that intratracheal nebulization of 20 mg/kg n (CAT) do not result in any observable liver toxicity.
The renal function was assessed via the levels of uric acid (UA) and urea (Fig. 13B) . The level of urea maintains unchanged after 24 hours, and no significant difference between the experimental groups and control was observed. The level of uric acid was slightly increased from 68μM/L to 105μM/L after intratracheal nebulization.
The systemic toxicity was investigated by cell counts of white blood cells (WBC) , lymphocytes (LYMO) , monocytes (MONO) , and granulocytes (GRA) . No significance between  the experimental groups and the control group was observed, indicating the absence of systematic toxicity and excellent biocompatibility of n (CAT) (Fig. 13C) .
Fig. 14 shows the H&E staining of the main organs after the administration of 20 mg/kg n (CAT) through intratracheal nebulization and intravenous injection. No obvious tissue damage can be observed, indicating intratracheal nebulization of 20 mg/kg n (CAT) did not result in any observable toxicity.
In summary, these results demonstrated that intratracheal nebulization of 20 mg/kg n (CAT) did not result in any noticeable toxicity, and as-administrated n (CAT) mainly was located within the lung within 24 hours after the administration.
9.1.3 2 mg n (CAT) in rhesus macaques per day for 7 days (0.5-0.6 mg/kg)
As shown in the vitro studies using human pulmonary alveolar epithelia cells (HPAEpiC) , it has been demonstrated that delivery of 2 mg n (CAT) could provide a n (CAT) concentration of ~200 U/mL, which is sufficient to rescue and protect alveolar epithelia cells from damage by H 2O 2 released.
To examine the toxicity of administrating 2 mg n (CAT) to human, a group of three rhesus macaques (2 years old, 3.5-4.5kg) was administrated with 2 mg n (CAT) in PBS each day for 7 days through intratracheal nebulization. The blood samples were collected for hepatic function, renal function, and hematology assessment. As shown in Fig. 15, the parameters for the hepatic function, renal function ad hematology of the rhesus macaques were remained in the normal range during this study, indicating it is safe to administrate 2 mg n (CAT) to human through intratracheal nebulization.
In summary, based on the three studies presented above, it is concluded that it is safe to administrate 2 mg of n (CAT) per day to human through intratracheal nebulization. As administrated n (CAT) was mainly located within the lung, while a portion of n (CAT) may be translocated into the blood circulation system and cleared out by the liver.
Estimated by a dose based on the body weight, 2 mg n (CAT) in rhesus macaques is approximately a dose of 0.5-0.6 mg/kg. Consider a human possess a much higher body weight than rhesus macaques, it is concluded that a higher dose of n (CAT) can be administrated safely in human through intratracheal nebulization.
9.2 Intravenous Injection
To examine the pharmacokinetics, biodistribution, and toxicity of n (CAT) administrated through intravenous injection. 20 mg/kg n (CAT) was administrated intravenously to BALB/c mice (4 per group) and blood samples were collected after 0.1, 1, 3, 6, and 24 hours. The major organs were harvested after 6 and 24 h for biodistribution studies.
Fig. 16A shows the pharmacokinetics of mice intravenously injected with 20 mg/kg of native CAT and n (CAT) . Based on one-compartment model, n (CAT) shows a serum half-life of 8.9 hour, which was 16.8-fold longer than the native CAT (0.5 hour) . Further analysis of the drug exposure time through the “area under the curve (AUC) ” indicates that mice received n (CAT) had a significantly increased body exposure to catalase than the mice with native CAT (~2.5 folds improvement) (Fig. 16B) . The prolonged circulation time and enhanced drug exposure of n (CAT) could contribute to better therapeutic efficacy of CAT.
Fig. 17 shows the biodistribution of native CAT and n (CAT) 6 and 24 hours after intravenous administration of native CAT and n (CAT) . Accumulation of both native CAT and n (CAT) in liver and kidney was observed after 6 hours, and most florescent signal disappeared in the liver and kidney after 24 hours. Our previous studies suggest that PMPC based nanocapsules generally do not show accumulation in the liver and kidney. The observed accumulation of n (CAT) is most likely associated with the positive charge of these n (CAT) , which can be readily adjusted and corrected during the encapsulation process. After correcting the surface charge, minimized accumulation of n (CAT) in the liver and kidney, as well as a further prolonged circulation time, is expected.
The toxicity of n (CAT) administrated through intravenous injection, including liver toxicity, kidney toxicity, and systemic toxicity was examined. The hepatic function of the mice was assessed via the plasma levels of alanine aminotransferase (ALT) , aspartate aminotransferase (AST) , and alkaline phosphatase (ALP) (Fig. 15A) . The levels of ALT, AST, and ALP were remained within their normal levels; no significant difference between the experimental groups and control was observed intravenous injection. These data suggest that intravenous injection of 20 mg/Kg n (CAT) do not result in any observable liver toxicity.
The renal function was assessed via the levels of uric acid (UA) and urea (Fig. 15B) . The level of urea maintains unchanged after 24 hours, and no significant difference between the experimental groups and control was observed. The level of uric acid was slightly increased from 68μM/L to 155μM/L after intravenous injection. The systemic toxicity was investigated  by cell counts of white blood cells (WBC) , lymphocytes (LYMO) , monocytes (MONO) , and granulocytes (GRA) (Fig. 15C) . No significant difference between the experimental groups and the control group was observed, indicating the absence of systematic toxicity and excellent biocompatibility of n (CAT) .
Meanwhile, as shown in Fig. 14, H&E staining of the main organs after the administration of 20 mg/kg n (CAT) through intravenous injection. No obvious tissue damage can be observed, indicating intravenous injection of 20 mg/kg n (CAT) did not result in any observable toxicity.
In summary, intravenous administration of 20 mg/kg of n (CAT) in mice did not resulted in any noticeable toxicity. As-administrated n (CAT) showed a significantly prolonged circulation time than native CAT (~18 folds of improvement) . Accumulation of n (CAT) in liver and kidney was observed, which can be readily minimized through reducing the surface charge of n (CAT) .
9.3 Efficacy of n (CAT) in Protecting Tissues from Being Damaged by H 2O 2
To confirm the in vivo protective capability of n (CAT) against H 2O 2, glucose oxidase (GOx) was used to in situ generate H 2O 2. GOx nanocapsules (n (GOx) ) , n (CAT) , as well as the nanocapsules containing both GOx and CAT, denoted as n (GOx-CAT) , were respectively injected subcutaneously to a C57BL/6 mouse at different injection sites. As positive and negative controls, equal volumes of H 2O 2 solution (3%w/v) and phosphate buffer saline (PBS) were injected into separate skin sites of the same mouse. Skin lesions were observed in H 2O 2-treated and n (GOx) -treated sites 48 hours after injection. In contrast, skin damages were not observed in the spots injected with PBS, n (Cat) , or n (GOx-Cat) , confirming the ability of n (CAT) in protecting tissue from being damaged by H 2O 2 (Liu, Y. et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotechnol. 8, 187-192 (2013)) .
The mouse was sacrificed 48 hours post-injection and skin tissues at the injection sites were sectioned and stained with hematoxylin and eosin (H&E) and TUNEL staining kit. As shown in Fig. 19, H 2O 2 administration caused tearing and ballooning in the dermis of the skin; n (GOx) administration resulted in similar tissue ballooning and neutrophil infiltration albeit to a milder extent, indicating pathophysiological response and injury due to the generated H 2O 2 (Fig. 19, i&ii) . No tissue damage was observed in the spots injected with PBS, n (CAT) and n (GOx- T) . Cell apoptosis was evident in the skin tissue treated with either H 2O 2or n (GOx) , whereas the cell death in n (Cat) -or n (GOx-Cat) -treated skin tissues was minimal and comparable to that of PBS treated sample (Fig. 19, iii) . These observations clearly demonstrated that n (CAT) could effectively reduce the toxicity and tissue damage associated with H 2O 2. In Fig. 19, apoptosis was determined by TUNEL staining (green) identified with Cy3-conjugated monoclonal α-smooth muscle actin antibody (red) . DAPI was used for nuclear staining (blue) . The immunostained slices were evaluated and photographed with fluorescence microscopy (original magnification 200x) .
Experiment 10. Safety and Efficacy of Inhale L29 (e.g. 0.2 mg/ml nCAT) Enzyme Nanocapsules for the Treatment of Coronavirus Disease 2019 (COVID-19)
10.1 Outline of the Study
This is an open-label, randomized, blank-controlled treatment clinical study, which is designed to investigate the effect of L29 on improving of patient Quality of Life conditions, oxygen saturation, and clinical signs in patients with Coronavirus Disease 2019 (COVID-19) . The composition and preparation of L29 have been shown in Examples 1 and 2. In the current example, L29 contains 0.2 mg/ml nCAT.
In this study, an estimated total of 120 male and female patients who have been diagnosed with non-critical stage of coronavirus pneumonia (COVID-19) will be enrolled and randomly assigned to one of two study groups: L29 treatment group and standard of care (SoC) control group for 14 days (one of course o treatment) . Ifnecessary, the study may be extended to more than one course of treatment. The primary efficacy parameters include the time to physical recovery, oxygen saturation recovery to normal level (≥97%) , the proportion of patients with normal level of oxygen saturation after treatment, and the total drug and amount of dose used during treatment.
10.1 Experimental
The experimental conditions are summarized in Table 2.
Table 2. Study Design for Investigating the Effects of L29 on COVID 19 Patients.
Figure PCTCN2020083506-appb-000001
Besides a standard background treatment (e.g. antiviral drug, antibacterial, oxygen therapy, or a combination thereof) , all subjects in the L29 treatment group will receive 2 mg of L29, inhale, BID (every morning and evening) , for 14 days. All subjects in the blank control group will only receive a standard background treatment (antiviral drug+antibacterial+oxygen therapy) , for 14 days.
Outcome Measurement
Patient physiological parameters/clinical signs at different time points of the study will be recorded. The monitored physiological parameters/clinical signs are listed in Table 3. The time frame for performing the clinical studies is from Day-1 to Day 14. The treatment may be extended for more than one course of treatment (14 days) , if clinical results suggest an extension is necessary.
Table 3 Patient Physiological Parameters/Clinical Signs and Time Points for Sampling.
Figure PCTCN2020083506-appb-000002
Figure PCTCN2020083506-appb-000003
In general, the patient physiological parameters/clinical signs are monitored from the time of screening to the end of treatment, for all patients randomized. The time to reach the target level of patient physiological parameters/clinical signs for each symptom will be calculated based on the record and compared between L29 treatment group and standard of care (SoC) control group.
Inclusion Criteria
The patients selected for the study have to satisfy the following criteria: (1) adult male or female patients aged 18-85 years old; (2) newly diagnosed COVID-19 patients who meet the diagnostic criteria set forth in the "Guidance of Diagnosis and Treatment for Patients with Coronavirus Disease 2019 (COVID-19) (Procedural Version 5 Amendment) ", issued by the National Health Commission of the People′s Republic of China on 8 February 2020; (3) level of blood oxygen saturation is not less than 85%; and (4) agree to participate in the study and voluntarily comply with the relevant requirements of the study.
Exclusion Criteria
Patients whose conditions fall within following criteria will be excluded: (1) patients with other diseases that may affect, in the opinion of study researchers, the implementation of the study or the observation of the efficacy data; (2) patients with severe Coronavirus Disease 2019 (COVID-19) , that is based on "Guidance of Diagnosis and Treatment for Patients with Coronavirus Disease 2019 (COVID-19) (Procedural Version 5 Amendment) " with respect to the criteria for clinical severity classification; (3) female patients with known pregnancy and in lactation at screening; (4) patients with previous allergies to L29; and (5) any other condition that,  in the opinion of the investigator, may affect the conduct of the study, reduce compliance or increase the risk of patients.
Therapeutic Effects:
The improvements in physiological parameters/clinical signs among the selected COVID-19 patients are expected to occur within or after one or more courses of treatment. The normal readings of representative key physiological parameters/clinical signs are listed in Table 4.It is believed that within or after one or more courses of treatment, at least one of listed physiological parameters/clinical signs of the selected COVID-19 patients will reach normal range.
Table 4. Normal Ranges of Patient Physiological Parameters/Clinical Signs
Parameters Normal Range
Blood Oxygen Saturation Level (SpO 2) 90-100%
Arterial Blood Pressure (BP) (Systolic Equation) 100-140mmHg
Mean Arterial Pressure (MAP) 70-105mmHg
Right Atrial Pressure (RAP) 2-6mmHg
Pulmonary Artery Pressure (PAP) (Systolic Equation) 15-30mmHg
Left Atrial Pressure (LAP) 9-18mmHg
Cardiac Output (CO) 4.0-8.0L/min
Cardiac Index (CI) 2.5-4.0L/min/m 2
Stroke Volume (SV) 60-100mL/beat
Stroke Volume Index (SVI) 33-47mL/m 2/beat
Stroke Volume Variation (SVV) 10-15%
Aspartate Aminotransferase (AST) 10-40U/L
Creatine Kinase (CK) 8-60U/L
Creatine kinase-MB (CK-MB) 18-198U/L
Lactate Dehydrogenase (LDH) 109-245U/L
α-Hydroxybutyrate dehydrogenase (α-HBDH) 60-150U/L
Abnormal electrocardiogram during COVID-19 infection includes: T-wave depression and inversion; ST-segment depression; Q waves.
Example 11. Prevention and Inhibition of COVID-19 Infected Patients to Develop Pneumonia and/or Progression of the Disease from Mild/Moderate Stage to Critical Stage.
In this study, L29 (e.g. 0.2 mg/ml nCAT from examples 1 and 2) are further tested on diagnosed COVID-19 patients, who show no symptoms, or have mild to moderate symptoms of the disease. The clinical courses, such as illness severity, can be divided into three main categories: no symptom or mild to moderate (mild symptoms up to mild pneumonia) : 81%; severe (dyspnea, hypoxia, or>50%lung involvement on imaging) : 14%; critical (respiratory failure, shock, or multiorgan system dysfunction) : 5%.
The patient selection criteria, experimental designs, patient physiological parameters/clinical signs, treatment protocols, and data analysis are the same as Example 10. It is believed that L29 can effective prevent or inhibit the diagnosed COVID-19 patients from developing pneumonia (COVID-19 pneumonia) within or after one or more course of treatment (e.g. 14 days) . Furthermore, L29 may effectively prevent or inhibit the diagnosed COVID-19 patients, who show no symptoms, or have mild to moderate symptoms of the disease, from developing severe/critical symptoms of the disease within or after one or more courses of treatment. At last, it is believed that L29 can effectively reduce the proportion of COVID-19 patients, who develop severe or critical symptoms, which often lead death of COVID-19 patients. Specifically, it is believed that after at least one course of treatment with L29, the combined proportion of COVID-19 patients, who develop severe or critical symptoms, is less than about 19%, less than about 15%, less than about 12%, less than about 10%, less than about 8%, less than about 6%, less than about 4%, less than about 3%, less than about 2%, or less than about 1%.
REFERENCES
1. Liu, Y. et al. Biomimetic enzyme nanocomplexes and their use as antidotes and preventive measures for alcohol intoxication. Nat. Nanotechnol. 8, 187-192 (2013) .
2. Shi, X. et al. PEGylated human catalase elicits potent therapeutic effects on H1N1 influenza-induced pneumonia in mice. Appl. Microbiol. Biotechnol. 97, 10025-10033 (2013) .
3. Shi, X. et al. Ability of recombinant human catalase to suppress inflammation of the murine lung induced by influenza A. Inflammation 37, 809-817 (2014) .
4. Shi, X. et al. Therapeutic effect of recombinant human catalase on H1N1 influenza-induced pneumonia in mice. Inflammation 33, 166-172 (2010) .
5. Ansar, M., Ivanciuc, T., Garofalo, R. P. &Casola, A. Increased lung catalase activity confers protection against experimental RSV infection. Sci. Rep. 10, 3653 (2020) .
INCORPORATION BY REFERENCE
All publications and patents mentioned herein are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.
EQUIVALENTS
Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, numerous equivalents to the compounds and methods of use thereof described herein. Such equivalents are considered to be within the scope of this invention and are covered by the following claims. Those skilled in the art will also recognize that all combinations of embodiments described herein are within the scope of the invention.

Claims (69)

  1. A nanoparticle comprising:
    an enzyme capable of neutralizing excessive production of reactive oxygen species in a subject; and
    a polymer encapsulating the enzyme.
  2. The nanoparticle of claim 1, wherein the enzyme comprises superoxide dismutase, glutathione peroxidase, thioredoxin peroxidase, or catalase.
  3. The nanoparticle of claim 1 or 2, wherein the enzyme comprises catalase.
  4. The nanoparticle of any one of the preceding claims, wherein the nanoparticle has a diameter less than about 100 nm.
  5. The nanoparticle of any one of the preceding claims, wherein the subject is a mammal.
  6. The nanoparticle of any one of the preceding claims, wherein the subject is a human.
  7. The nanoparticle of any one of the preceding claims, further comprising a solvent.
  8. The nanoparticle of any one of the preceding claims, wherein the enzyme is conjugated with a modifying agent.
  9. The nanoparticle of claim 8, wherein the modifying agent is acrylic acid N-hydroxysuccinimide ester.
  10. The nanoparticle of any one of the preceding claims, wherein the polymer comprises a neutral repeating unit and a cross-linking unit.
  11. The nanoparticle of claim 3, the neutral repeating unit is derived from an acrylate or an acrylamide, such as acrylamide, poly (ethylene glycol) methyl ether acrylate, or 2-methacryloyloxyethyl phosphorylcholine.
  12. The nanoparticle of claim 10 or 11, wherein the neutral repeating unit comprises 2-methacryloyloxyethyl phosphorylcholine.
  13. The nanoparticle of any one of claims 10-12, wherein the cross-linking unit is derived from a bis-acrylate, such as glycerol dimethacrylate, 1, 3-glycerol dimethacrylate, glycerol 1, 3-diglycerolate diacrylate, N, N'-bis (acryloyl) cystamine, bis [2- (methacryloyloxy) ethyl] phosphate, bisacryloylated polypeptide, or N, N′-methylenebis (acrylamide) .
  14. The nanoparticle of any one of claims 10-13, wherein the cross-linker is derived from N, N′-methylenebis (acrylamide) .
  15. The nanoparticle of any one of the preceding claims, further comprising a positively charged repeating unit.
  16. The nanoparticle of claim 15, wherein the positively charged repeating unit is derived from an amine-substituted acrylate or arylamide, such as N- (3-aminopropyl) methacrylamide (APM) , N- (3-Aminopropyl) methacrylamide hydrochloride, acryl-spermine, Dimethylamino ethyl methacrylate, (3-Acrylamidopropyl) trimethylammonium hydrochloride, N- (3- ( (4- ( (3-aminopropyl) amino) butyl) amino) propyl) methacrylamide, N- (3- ( (4-aminobutyl) amino) propyl) acrylamide, N- (3- ( (4-aminobutyl) amino) propyl) methacrylamide, N-(2- ( (2-aminoethyl) (methyl) amino) ethyl) acrylamide, N- (2- ( (2-aminoethyl) (methyl) amino) ethyl) methacrylamide, N- (piperazin-1-ylmethyl) acrylamide, N- (piperazin-1-ylmethyl) methacrylamide, N- (2- (bis (2-aminoethyl) amino) ethyl) acrylamide, and N- (2- (bis (2-minoethyl) amino) ethyl) methacrylamide.
  17. The nanoparticle of claim 15 or 16, wherein the positively charged monomer is derived from N- (3-aminopropyl) methacrylamide.
  18. The nanoparticle of any one of the preceding claims, further comprising tetramethylethylenediamine or ammonium persulfate.
  19. The nanoparticle of any one of claims 7-18, wherein the solvent comprises water, phosphate buffered saline, or dimethyl sulfoxide.
  20. The nanoparticle of any one of claims 1-14, wherein the nanoparticle is neutrally charged.
  21. The nanoparticle of any one of claims 15-19, wherein the nanoparticle is positively charged.
  22. The nanoparticle of any one of the preceding claims, wherein the nanoparticle has a diameter less than about 30 nm.
  23. The nanoparticle of any one of the preceding claims, wherein the nanoparticle has a diameter from about 5 nm to about 30 nm.
  24. A pharmaceutical composition, comprising a plurality of the nanoparticles of any one of the preceding claims and a pharmaceutically acceptable carrier or excipient.
  25. The pharmaceutical composition of claim 24, wherein the plurality of nanoparticles has a number average diameter less than about 100 nm, such as less than about 30 nm.
  26. A method of delivering the nanoparticle to a person in need thereof, comprising administering a nanoparticle of any one of claims 1-23 or a pharmaceutical composition of claim 24 or 25 to a person in need thereof.
  27. The method of claims 26, wherein the administration is accomplished by intravenous injection, subcutaneous injection, or inhalation.
  28. A method of preparing the nanocapsule of any one of claims 1-23, comprising:
    conjugating the enzyme with a modifying agent in a first solvent; and
    encapsulating the conjugated the enzyme within a polymer in a second solvent.
  29. The method of claim 28, wherein the modifying agent comprises acrylic acid N-hydroxysuccinimide ester.
  30. The method of claim 28 or 29, wherein the first solvent comprises water, phosphate buffered saline, or dimethyl sulfoxide.
  31. The method of any one of claims 28-30, wherein the polymer is formed by polymerizing a monomer mixture comprising 2-methacryloyloxyethyl phosphorycholine, N- (3- aminopropyl) methacrylamide hydrochloride, or N, N′-methylenebis (acrylamide) in the second solvent.
  32. The method of any one of claims 28-31, wherein the second solvent comprises water, phosphate buffered saline, or dimethyl sulfoxide.
  33. The method of any one of claims 28-32, wherein the encapsulation further comprises adding tetramethylethylenediamine, ammonium persulfate, or a mixture thereof to the second solvent.
  34. The method of any one of claims 28-33, wherein the monomer mixture comprises 2-methacryloyloxyethyl phosphorycholine and N, N′-methylenebis (acrylamide) and the resulting polymer is neutrally charged.
  35. The method of any one of claims 28-34, wherein the monomer mixture comprises 2-methacryloyloxyethyl phosphorylcholine, N- (3-aminopropyl) methacrylamide hydrochloride, and N, N′-methylenebis (acrylamide) and the resulting polymer is positively charged.
  36. The method of any one of claim 28-35, wherein the nanoparticle formed has a dimeter less than about 100 nm.
  37. The method of any one of claim 28-36, wherein the nanoparticle has a dimeter less than about 30 nm.
  38. A method of treating a disease or disorder selected from pneumonia, a viral infection, a bacterial infection, an immune disorder, cytokine release syndrome, or oxidative stress, comprising administering a nanoparticle of any one of claims 1-23 or a pharmaceutical composition of claim 24 or 25 to a person in need thereof.
  39. The method of claim 38, wherein the disease or disorder is an immune disorder selected from an autoimmune disease.
  40. The method of claim 38, wherein the disease or disorder is pneumonia and is a bacterial pneumonia or a viral pneumonia.
  41. The method of claim 40, wherein the pneumonia is a viral pneumonia, and the viral pneumonia is caused by an influenza virus, a rhinovirus, or a coronavirus (e.g. SARS or COVID-19) .
  42. The method of claim 38, wherein the disease or disorder is oxidative stress and is caused by a reactive oxygen species (ROS) .
  43. The method of claim 42, wherein ROS damages are caused by a disease or a condition selected from pneumonia, autoimmune diseases, and immunotherapies.
  44. A method of protecting a lung tissue of a mammal from oxidative damage, comprising administering a therapeutically effective amount of a nanoparticle of any one of claims 1-23 or a pharmaceutical composition of claim 24 or 25 to the lung tissues.
  45. The method of claim 44, wherein the oxidative damage is caused by abnormal levels of H 2O 2.
  46. The method of claim 44 or 45, wherein the lung tissue is human pulmonary alveolar epithelia cell.
  47. The method of claim 44 or 46, wherein the nanoparticle comprises less than 5000 U/ml of nCAT.
  48. The method of claim 44 or 46, wherein the nanoparticle comprises about 200 U/ml of nCAT.
  49. The method of claim 44 or 46, wherein the nanoparticle comprises about 40 U/mL of nCAT.
  50. The method of claim 44 or 46, wherein the nanoparticle comprises about 80 U/mL of nCAT.
  51. The method of any one of claims 47-50, wherein nCAT comprises 5000U/mg of catalase.
  52. The method of any one of claims 47-50, wherein nCAT improves the viability of human pulmonary alveolar epithelia cell.
  53. A method of treating a COVID-19 patient, comprising administering to the patient a therapeutically effective amount of a nanoparticle of any one of claims 1-23 or a pharmaceutical composition of claim 24 or 25.
  54. The method of claim 53, wherein administering the nanoparticles comprises administering the nanoparticles by intravenous injection, subcutaneous injection, or inhalation.
  55. The method of claim 53 or 54, wherein administering the nanoparticles comprises administering the nanoparticles by inhalation twice daily and each dose of nanoparticle comprises 2 mg of nCAT.
  56. The method of any one of claims 53-55, wherein the patient is not in critical stage before the treatment.
  57. The method of any one of claims 53-56 wherein at least one physiological parameter/clinical sign of the COVID 19 patient reaches a normal range (parameters and ranges listed in Table 4) after at least one course of treatment (e.g., 14 days) .
  58. The method of any one of claims 53-57, wherein the patient's blood oxygen saturation level (SpO 2) reaches a range from 90%to 100%after at least one course of treatment (e.g., 14 days) .
  59. A method of inhibiting or preventing pneumonia in a COVID-19 patient, comprising administering to the patient a therapeutically effective amount of nanoparticles of any one of claims 1-23 or a pharmaceutical composition of claim 24 or 25.
  60. The method of claim 59, wherein administering the nanoparticles comprises administering the nanoparticles by intravenous injection, subcutaneous injection, or inhalation.
  61. The method of claim 59 or 60, wherein administering the nanoparticles comprises administering the nanoparticles by inhalation twice daily and each dose of nanoparticle comprises 2 mg of nCAT.
  62. The method of any one of claims 59-61, wherein the patient does not have pneumonia before the treatment.
  63. The method of any one of claim 59-62, wherein the patient does not develop pneumonia after at least one course of treatment.
  64. A method of inhibiting or preventing progression of COVID-19 in a patient in need thereof, comprising administering to the patient a therapeutically effective amount of nanoparticles of any one of claims 1-23 or a pharmaceutical composition of claim 24 or 25.
  65. The method of claim 64, wherein administering the nanoparticles comprises administering the nanoparticles by intravenous injection, subcutaneous injection, or inhalation.
  66. The method of claim 64 or 65, wherein administering the nanoparticles comprises administering the nanoparticles by inhalation twice daily and each dose of nanoparticle comprises 2 mg of nCAT.
  67. The method of any one of claims 64-66, wherein the patient is not in critical or severe stage before the treatment.
  68. The method of any one of claims 64-67, wherein the patient does not progress to severe or critical stage of COVID-19 after at least one course of treatment.
  69. The method of any one of claims 64-68, wherein less than 10%of the COVID-19 patient progresses to severe or critical stage of the disease.
PCT/CN2020/083506 2020-02-27 2020-04-07 Catalase nanocapsules and methods for use WO2021168996A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/101766 WO2021169149A1 (en) 2020-02-27 2020-07-14 Catalase nanoparticles and methods for use
PCT/US2021/019803 WO2021173922A1 (en) 2020-02-27 2021-02-26 Catalase nanocapsules and methods for use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062982649P 2020-02-27 2020-02-27
US62/982,649 2020-02-27

Publications (1)

Publication Number Publication Date
WO2021168996A1 true WO2021168996A1 (en) 2021-09-02

Family

ID=77489820

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/083506 WO2021168996A1 (en) 2020-02-27 2020-04-07 Catalase nanocapsules and methods for use
PCT/CN2020/101766 WO2021169149A1 (en) 2020-02-27 2020-07-14 Catalase nanoparticles and methods for use

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101766 WO2021169149A1 (en) 2020-02-27 2020-07-14 Catalase nanoparticles and methods for use

Country Status (1)

Country Link
WO (2) WO2021168996A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022098540A1 (en) * 2020-11-06 2022-05-12 Purdue Research Foundation Non-cationic soft polyphenol nanocapsules for effective systemic delivery of small interfering rna (sirna) for cancer treatment
GB2622559A (en) * 2022-05-10 2024-03-27 Johan Frostegaard Compositions, methods and uses

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123492A2 (en) * 2012-02-17 2013-08-22 Massachusetts Institute Of Technology Glucose-responsive microgels for closed loop insulin delivery
CN104549085A (en) * 2015-01-12 2015-04-29 中国科学院化学研究所 Antioxidant enzyme nano capsules as well as preparation method and application thereof
CN106669822A (en) * 2017-01-04 2017-05-17 河北工业大学 Preparation method of compound biomimetic mineralization nano biocatalyst
CN109266639A (en) * 2018-08-31 2019-01-25 华南协同创新研究院 A kind of dual immobilised enzymes and its preparation method and application
US20190365869A1 (en) * 2018-06-01 2019-12-05 Board Of Regents, The University Of Texas System Bioresponsive Particles

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795731B1 (en) * 2009-10-12 2014-08-05 University Of Central Florida Research Foundation, Inc. Cerium oxide nanoparticle-based device for the detection of reactive oxygen species and monitoring of chronic inflammation
JP2014522649A (en) * 2011-07-06 2014-09-08 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Multi-enzyme nanocomposite
WO2014124142A2 (en) * 2013-02-07 2014-08-14 The Cleveland Clinic Foundation Methods of treating spinal cord injury

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123492A2 (en) * 2012-02-17 2013-08-22 Massachusetts Institute Of Technology Glucose-responsive microgels for closed loop insulin delivery
CN104549085A (en) * 2015-01-12 2015-04-29 中国科学院化学研究所 Antioxidant enzyme nano capsules as well as preparation method and application thereof
CN106669822A (en) * 2017-01-04 2017-05-17 河北工业大学 Preparation method of compound biomimetic mineralization nano biocatalyst
US20190365869A1 (en) * 2018-06-01 2019-12-05 Board Of Regents, The University Of Texas System Bioresponsive Particles
CN109266639A (en) * 2018-08-31 2019-01-25 华南协同创新研究院 A kind of dual immobilised enzymes and its preparation method and application

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KHOMICH OLGA, KOCHETKOV SERGEY, BARTOSCH BIRKE, IVANOV ALEXANDER: "Redox Biology of Respiratory Viral Infections", VIRUSES, vol. 10, no. 8, 26 July 2018 (2018-07-26), XP055841040, DOI: 10.3390/v10080392 *
LIANG SHENG; LIU YANG; JIN XIN; LIU GAN; WEN JING; ZHANG LINLIN; LI JIE; YUAN XUBO; CHEN IRVIN S.; CHEN WEI; WANG HUI; SHI LINQI; : "Phosphorylcholine polymer nanocapsules prolong the circulation time and reduce the immunogenicity of therapeutic proteins", NANO RESEARCH, TSINGHUA UNIVERSITY PRESS, CN, vol. 9, no. 4, 1 February 2016 (2016-02-01), CN, pages 1022 - 1031, XP035675036, ISSN: 1998-0124, DOI: 10.1007/s12274-016-0991-3 *
QI HONGZHAO, YANG LIJUN, SHAN PEIPEI, ZHU SUJIE, DING HAN, XUE SHENG, WANG YIN, YUAN XUBO, LI PEIFENG: "The Stability Maintenance of Protein Drugs in Organic Coatings Based on Nanogels", PHARMACEUTICS, vol. 12, no. 2, 1 February 2020 (2020-02-01), XP055841039, DOI: 10.3390/pharmaceutics12020115 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022098540A1 (en) * 2020-11-06 2022-05-12 Purdue Research Foundation Non-cationic soft polyphenol nanocapsules for effective systemic delivery of small interfering rna (sirna) for cancer treatment
GB2622559A (en) * 2022-05-10 2024-03-27 Johan Frostegaard Compositions, methods and uses

Also Published As

Publication number Publication date
WO2021169149A1 (en) 2021-09-02

Similar Documents

Publication Publication Date Title
Zhang et al. A superoxide dismutase/catalase mimetic nanomedicine for targeted therapy of inflammatory bowel disease
Hu et al. Hyaluronic acid functional amphipathic and redox-responsive polymer particles for the co-delivery of doxorubicin and cyclopamine to eradicate breast cancer cells and cancer stem cells
TWI668019B (en) Membrane encapsulated nanoparticles and method of use
EA023208B1 (en) Pharmaceutical compositions comprising imidazoquinolin(amines) and derivatives thereof suitable for local administration
KR20180114517A (en) Phamaceutical composition for treating cancer
WO2021168996A1 (en) Catalase nanocapsules and methods for use
JP5663741B2 (en) Amino acid conjugated cyanoacrylate polymer particles
JP2019513837A (en) Anti-infective composition comprising phytoglycogen nanoparticles
WO2021203959A1 (en) Heparin nano drug carrier system for loading amino anti-tumor drug, and preparation method therefor
Kwon et al. Nanoreactor for cascade reaction between SOD and CAT and its tissue regeneration effect
WO2020143662A1 (en) Brain-targeted delivery system for carrier-free nasal nano preparation modified by chitosan oligosaccharide and preparation method therefor
Akhtar et al. Impact of PAMAM delivery systems on signal transduction pathways in vivo: Modulation of ERK1/2 and p38 MAP kinase signaling in the normal and diabetic kidney
JP5850518B2 (en) Polymeric cyclic nitroxide radical compound treatment for inflammation of ulcerative gastrointestinal tract
CN110384681B (en) Nanometer preparation for pulmonary fibrosis and preparation method thereof
Wu et al. Preparation of betulinic acid galactosylated chitosan nanoparticles and their effect on liver fibrosis
US20220339293A1 (en) Functionalized nanoparticles and their use in treating bacterial infections
US20180303910A1 (en) Methods and compositions for treating diseases
WO2021173922A1 (en) Catalase nanocapsules and methods for use
US11524078B2 (en) Water-soluble macromolecular derivative of Venetoclax
KR101782622B1 (en) Ceria nanoparticle for biomedical treatment and pharmaceutical composition including the ceria nanocomposite
JP2023516288A (en) Pharmaceutical compositions of therapeutic polyene macrolides and methods of use thereof
Xiang et al. Selective inhibition of glycolysis in hepatic stellate cells and suppression of liver fibrogenesis with vitamin A-derivative decorated camptothecin micelles
US11660345B2 (en) Method and composition for enhancing the delivery of anti-platelet drugs for the treatment of acute stroke
EP3508214A1 (en) Therapeutic agent for ischemic diseases
KR20150054543A (en) Liver-targeted nanoparticles, a preparation method thereof, and a pharmaceutical composition comprising the nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921079

Country of ref document: EP

Kind code of ref document: A1