WO2021169138A1 - 一种盘式永磁齿轮及基于盘式永磁齿轮的传动结构 - Google Patents

一种盘式永磁齿轮及基于盘式永磁齿轮的传动结构 Download PDF

Info

Publication number
WO2021169138A1
WO2021169138A1 PCT/CN2020/100323 CN2020100323W WO2021169138A1 WO 2021169138 A1 WO2021169138 A1 WO 2021169138A1 CN 2020100323 W CN2020100323 W CN 2020100323W WO 2021169138 A1 WO2021169138 A1 WO 2021169138A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
gear
magnet gear
driven
driving
Prior art date
Application number
PCT/CN2020/100323
Other languages
English (en)
French (fr)
Inventor
王之焕
王仲明
Original Assignee
王之焕
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王之焕 filed Critical 王之焕
Publication of WO2021169138A1 publication Critical patent/WO2021169138A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/108Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with an axial air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts

Definitions

  • the invention relates to the field of permanent magnet transmission, in particular to a disk type permanent magnet gear and a transmission structure based on the disk type permanent magnet gear.
  • Magnetic gears made of permanent magnet materials have a series of advantages such as non-contact transmission, no wear, no working noise and high transmission efficiency, so they are more and more widely used in various fields.
  • axial magnetic transmission In the prior art, there are two main types of axial magnetic transmission of magnetic gears: one is radial magnetic transmission. In this transmission method, two cylindrical magnetic gears perform magnetic force through the radial magnetic field coupling on their cylindrical surfaces. Transmission. Because the magnetic coupling area between the two cylinders is too small for the magnetic gears of this type of magnetic transmission, the torque that can be transmitted is difficult to increase.
  • Another type of transmission method is axial magnetic transmission. In this transmission method, two disk-shaped permanent magnet gears are magnetically driven through the axial magnetic field coupling of the disk plane.
  • Patent CN201620231862.X discloses a disk type permanent magnet gear transmission device, which includes a magnetic gear driving disk and a magnetic gear driven disk whose circular surfaces are separated from each other by an end distance. The disk surfaces of the gear driving disc and the magnetic gear driven disc partially overlap in the projection direction.
  • the magnetic gear driving disc and the magnetic gear driven disc are both embedded with a plurality of permanent magnets of equal volume, the permanent magnets are evenly distributed along the circumferential direction of the circular surface, and the magnetic poles of the permanent magnets on the same circular surface are sequentially SNSN sequence arrangement; please refer to Figure 2 and Figure 3, patent CN201720009054.3, discloses a permanent magnet gear transmission for variable speed transmission and torque transmission, which includes a permanent magnet gear driving wheel 23 and a permanent magnet gear driven wheel 24
  • the permanent magnet gear driven wheel 24 includes two mutually spaced discs coaxially connected, and a part of the circumference of the permanent magnet gear drive wheel 23 is embedded in the gap of the permanent magnet gear driven wheel 24 without contact.
  • a plurality of permanent magnets are uniformly embedded in the circumference of each disk of the permanent magnet gear driving wheel 23 and the permanent magnet gear driven wheel 24, and the magnetic poles of the permanent magnets are sequentially arranged in the order of S-N-S-N.
  • the patent CN201910205667.8 discloses a method of manufacturing a permanent magnet transmission gear, in which the structure of a single permanent magnet gear wheel is the same as the previous two documents, and the magnetic poles of the permanent magnets on each wheel are straight The times are arranged in the order of SNSN.
  • the permanent magnet transmission gear includes a driving wheel 31 and a driven wheel 33.
  • the driving wheel 31 is a single wheel disk.
  • the driven wheel 33 includes two wheel disks arranged coaxially.
  • the disc magnetic gears all rely on the repulsive force of the magnetic poles of the same sex and the attraction force of the opposite magnetic poles to rotate to achieve rotation.
  • the high-speed rotation of the magnetic field of the permanent magnet on the driving wheel causes the magnetic field between the permanent magnet on the driven wheel and the permanent magnet of the driving wheel to change greatly, which is prone to magnetic attenuation, which leads to the driving wheel.
  • the torque transmitted by the magnetic coupling between the driven wheel and the driven wheel is sharply reduced.
  • the object of the present invention is to provide a disk type permanent magnet gear, which reduces the change of the magnetic field when the permanent magnet gear rotates.
  • a disk-type permanent magnet gear includes a gear base plate, a transmission shaft penetrating the middle of the gear base plate, and a plurality of permanent magnets embedded in the gear base plate; each permanent magnet runs along the gear base plate The magnetic poles of each permanent magnet are exposed on at least one circular surface of the gear base, and all the permanent magnets exposed on the same circular surface of the gear base have the same polarity.
  • the disc permanent magnet gear of the present invention Compared with the prior art permanent magnet gear using SNSN permanent magnet pole sequence, the disc permanent magnet gear of the present invention only uses any group of permanent magnets with the same magnetic pole setting direction on the existing permanent magnet gear under the same basic conditions. The same or greater transmission torque can be obtained; at the same time, the disk-type permanent magnet gear of the present invention is only driven by the repulsive force between the magnetic poles of the same polarity. Therefore, the disk-type permanent magnet gear increases the magnetic transmission force and reduces The change of the magnetic field caused by the change of the magnetic pole during rotation is reduced, the generation of transmission shock is avoided, and the stability of rotation is improved.
  • the disk-type permanent magnet gear can be driven at a high speed.
  • the two poles of each permanent magnet are exposed on the circular surfaces on both sides of the gear base, and the magnetic poles of all the permanent magnets on each circular surface are the same.
  • the cross-sectional shape of the permanent magnet is a tooth shape.
  • the gear base is made of non-magnetic material.
  • the present invention also provides a disk type permanent magnet gear transmission structure, which includes a driving permanent magnet gear and a driven permanent magnet gear.
  • the driving permanent magnet gear and the driven permanent magnet gear do not contact each other, and part of the edge of the driving permanent magnet gear It overlaps with the projections of a part of the edge of the driven permanent magnet gear in the axial direction of the driving permanent magnet gear;
  • the driving permanent magnet gear includes at least one disc permanent magnet gear, and
  • the driven permanent magnet gear includes at least one disc Permanent magnet gear,
  • the disc permanent magnet gear includes: a gear base plate, a transmission shaft penetrating the middle of the gear base plate, and a plurality of permanent magnets embedded in the gear base plate;
  • the gear base plate is evenly spaced in the circumferential direction; the magnetic poles of each permanent magnet are exposed on at least one round surface of the gear base plate, and all the permanent magnet poles exposed on the same side round surface of the gear base plate have the same polarity
  • the two poles of each permanent magnet of the disk-type permanent magnet gear are exposed on the circular surfaces on both sides of the gear base, and the magnetic poles of all the permanent magnets on each circular surface are the same.
  • each permanent magnet of the disk-type permanent magnet gear is a tooth shape.
  • the gear base of the disc permanent magnet gear is made of non-magnetic material.
  • the number of permanent magnets on the driving permanent magnet gear and the driven permanent magnet gear can be set according to a preset transmission ratio of the driving permanent magnet gear and the driven permanent magnet gear.
  • both the driving permanent magnet gear and the driven permanent magnet gear include one disk-type permanent magnet gear, and the diameter of the driving permanent magnet gear and the driven permanent magnet gear are the same.
  • the distance between the permanent magnets on the driving permanent magnet gear is greater than the cross-sectional width of the permanent magnets of the driven permanent magnet gear; the distance between the permanent magnets on the driven permanent magnet gear is greater than that of the permanent magnet gear.
  • the cross-sectional width of the magnet is greater than the cross-sectional width of the magnet.
  • the driving permanent magnet gear includes one of the disk type permanent magnet gears
  • the driven permanent magnet gear includes two disk type permanent magnet gears
  • the two disk type permanent magnet gears of the driven permanent magnet gear Coaxially and spaced apart; part of the edge of the driving permanent magnet gear is arranged between the two disk permanent magnet gears of the driven permanent magnet gear without contact; the round surfaces on both sides of the driving permanent magnet gear
  • the magnetic pole polarity of the upper permanent magnet is the same as that of the permanent magnet on the circular surface of the driven permanent magnet gear close to the circular surface.
  • the transmission structure of this scheme makes full use of the repulsive force of the double-sided magnetic field of the active permanent magnet gear to transmit torque, so that the expected transmission torque can be achieved by using a smaller magnetic gear volume during production. Therefore, the magnetic gear It can be made very thin and small, and can be widely used in micro-instruments.
  • the two disk permanent magnet gears in the driven permanent magnet gear have the same diameter, and the diameter of the driving permanent magnet gear is larger than the diameter of the disk permanent magnet gear in the driven permanent magnet gear.
  • Fig. 1 is a schematic diagram of the structure of a disc-type permanent magnet gear transmission device in the prior art
  • Figure 2 is a schematic view of the structure of a permanent magnet gear transmission in the prior art
  • FIG. 3 is a schematic diagram of the permanent magnet structure provided on the permanent magnet gear in the permanent magnet gear transmission in the prior art
  • Figure 4 is a schematic diagram of the structure of a permanent magnet transmission gear in the prior art
  • Figure 5 is a schematic diagram of the structure of the disc permanent magnet gear wheel of the present invention.
  • Fig. 6 is a schematic diagram of the first transmission structure of the disc permanent magnet gear of the present invention.
  • Fig. 7 is a schematic diagram of the second transmission structure of the disc permanent magnet gear of the present invention.
  • the orientation or positional relationship indicated by the term " ⁇ " etc. is based on the orientation or positional relationship shown in the drawings, or is the orientation or position that the product of the invention is usually placed in use.
  • the positional relationship is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the pointed device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation of the present invention.
  • the terms "first”, second”, etc. are only used for distinguishing description, and cannot be understood as indicating or implying relative importance.
  • the present invention provides a disk-type permanent magnet gear, which includes a gear base 402, a transmission shaft 401 that penetrates the middle of the gear base 402, and is embedded in the gear base 402 ⁇ Multiple permanent magnets 403.
  • the permanent magnets 403 are evenly spaced along the circumferential direction of the gear base plate 402, and the magnetic poles of each permanent magnet are exposed on at least one round surface of the gear base plate 402, and all permanent magnets on the same side round surface of the gear base plate 402 are exposed 403 has the same pole polarity. Since the permanent magnets are embedded in the gear base plate, the centrifugal force generated when the gear base plate is driven by high-speed rotation will not have any influence on the permanent magnets. Therefore, the disk-type permanent magnet gear can be driven at a high speed.
  • the gear base 402 is made of non-magnetic materials, such as various non-ferrous metals and alloys, and various organic or inorganic materials with a certain strength. Therefore, the gear base 402 will not affect the magnetic field of the permanent magnet 403. Have any impact.
  • the permanent magnet 403 can be set at a predetermined position of the gear base plate 402 by embedding or inlaying.
  • the permanent magnets on the gear base 402 can also be formed by filling magnetic fillers on predetermined positions of the base material, and then axially magnetizing the magnetic fillers after shaping.
  • the magnetic filler may be metal magnetic powder, iron-cobalt powder, iron-nickel powder, or iron-barium powder.
  • each permanent magnet is exposed on the circular surfaces on both sides of the gear base plate 402, and all the permanent magnets on each circular surface have the same polarity.
  • the cross-sectional shape of each permanent magnet of the disk-type permanent magnet gear is a tooth shape for smooth transmission.
  • the present invention further provides a disk type permanent magnet gear transmission structure, which includes a driving permanent magnet gear and a driven permanent magnet gear, the driving permanent magnet gear and the slave
  • the moving permanent magnet gears are not in contact with each other, and the projections of part of the edge of the driving permanent magnet gear and the part of the driven permanent magnet gear in the axial direction of the driving permanent magnet gear overlap each other.
  • the driving permanent magnet gear and the driven permanent magnet gear both include at least one of the disk-type permanent magnet gears, and the magnetic poles of the permanent magnets on the circular surface where the driving permanent magnet gear and the driven permanent magnet gear are close to each other The same, and a repulsive magnetic coupling area is formed between the driving permanent magnet gear and the driven permanent magnet gear.
  • the disk permanent magnet gear transmission structure of this embodiment the permanent magnet poles on the same side surface of each disk permanent magnet gear are arranged at intervals and have the same polarity. Therefore, the disk type permanent magnet gear transmission structure of this embodiment only uses the repulsive magnetic field between the permanent magnets for transmission. Under the same basic conditions, the disk type permanent magnet gear only uses any set of magnetic poles on the existing permanent magnet gear. Permanent magnets with the same orientation can obtain the same or greater transmission torque.
  • the disk type permanent magnet gear of the present invention increases the magnetic force transmission.
  • the power reduces the change of the magnetic field caused by the change of the magnetic pole during the rotation, avoids the generation of the transmission vibration, and improves the stability of the rotation.
  • the transmission structure of the disc permanent magnet gear includes a driving permanent magnet gear A and a driven permanent magnet gear B
  • the driving permanent magnet gear A includes one of the Disk type permanent magnet gear
  • said driven permanent magnet gear B includes one said disk type permanent magnet gear.
  • the driving permanent magnet gear A and the driven permanent magnet gear B are close to each other but not in contact with each other, and part of the circumference of the gear base plate 404 of the driving permanent magnet gear and part of the edge of the gear base plate 405 of the driven permanent magnet gear are in the driving permanent magnet.
  • the projections on the gear axis overlap each other.
  • the distance between the permanent magnets on the driving permanent magnet gear is greater than the cross-sectional width of the permanent magnets of the driven permanent magnet gear; the distance between the permanent magnets on the driven permanent magnet gear is greater than the permanent magnets of the driving permanent magnet gear The width of the section.
  • the transmission ratio of the driving permanent magnet gear and the driven permanent magnet gear is the same as the ratio of the number of permanent magnets on the driving permanent magnet gear and the driven permanent magnet gear.
  • the driving permanent magnet gear and the driven permanent magnet gear can be changed by changing the transmission ratio.
  • the number ratio of permanent magnets between gears is used to adjust the transmission ratio
  • the diameters of the gear bases of the driving permanent magnet gear A and the driven permanent magnet gear B are the same.
  • the distance between the permanent magnets on the driving permanent magnet gear is greater than the cross-sectional width of the permanent magnets of the driven permanent magnet gear; the distance between the permanent magnets on the driven permanent magnet gear is greater than that of the driving permanent magnet gear.
  • the cross-sectional width of the magnet is greater than the cross-sectional width of the magnet.
  • the permanent magnet gear transmission structure in this embodiment uses the same repulsive force to work, so the torque transmission can be kept unchanged under the condition of high-speed rotation.
  • the transmission structure of the disc permanent magnet gear is a variable speed transmission structure, which includes a driving permanent magnet gear and a driven permanent magnet gear, and the driving permanent magnet gear includes a In the disk type permanent magnet gear, the driven permanent magnet gear includes two coaxial and spaced disk type permanent magnet gears. Part of the edge of the gear base plate 406 of the driving permanent magnet gear is arranged between the first gear base plate 409 and the second gear base plate 410 of the driven permanent magnet gear without contact. The magnetic poles of the permanent magnets 403 on the circular surfaces on both sides of the gear base plate 406 of the active permanent magnet gear are the same as the permanent magnets on the circular surface of the driven permanent magnet gear base plate close to the circular surface.
  • the driving shaft 407 of the driving permanent magnet gear drives the gear base plate 406 of the driving permanent magnet gear to rotate.
  • the permanent magnets of the first gear base 409 of the gear and the permanent magnets of the second gear base 410 generate repulsive force each other, which in turn drives the first gear base 409 and the second gear base 410 of the driven permanent magnet gear to rotate. Since the active permanent magnet gear drives two driven permanent magnet gears at the same time, the magnetic force of the circular surfaces on both sides of the active permanent magnet gear is applied, so a larger transmission torque is generated and the effect of speed change is achieved.
  • the diameter of the first gear base plate of the driven permanent magnet gear and the second gear base plate of the driven permanent magnet gear are the same, and the diameter of the gear base plate of the driving permanent magnet gear is larger than the diameter of the first gear base plate of the driven permanent magnet gear.
  • the diameter of the gear base and the second gear base of the driven permanent magnet gear are the same, and the diameter of the gear base plate of the driving permanent magnet gear is larger than the diameter of the first gear base plate of the driven permanent magnet gear.
  • the transmission structure in this embodiment makes full use of the repulsive force of the double-sided magnetic field of the active permanent magnet gear to transmit torque, and reduces the volume of the magnetic gear required to achieve the target torque. Therefore, the magnetic gear can be made very thin and small in application. , Can be widely used in micro-instruments.
  • the transmission structure of the disk-type permanent magnet gear uses the wheel formed by the first gear base and the second gear base as the active permanent magnet gear for transmission.
  • the transmission structure has a variable speed effect.
  • the transmission structure of the disk-type permanent magnet gear further includes a planetary magnetic gear transmission structure and a magnetic rack and pinion structure that can perform face-to-face magnetic transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

本发明提供一种盘式永磁齿轮及基于盘式永磁齿轮的传动结构,所述盘式永磁齿轮包括齿轮基盘、穿设于所述齿轮基盘中部的传动轴以及嵌设于所述齿轮基盘中的多个永磁体;各永磁体沿所述齿轮基盘的周向均匀间隔分布;各永磁体的磁极均露出于齿轮基盘的至少一侧圆面,且露出于所述齿轮基盘同一侧面的所有永磁体磁极的极性相同。相比于现有技术中采用S-N-S-N永磁体磁极序列的永磁齿轮,本发明的盘式永磁齿轮仅采用现有永磁齿轮上其中一组磁极设置方向相同的永磁体便能获得相同或者更大的传动扭矩;同时,盘式永磁齿轮通过相同极性的磁极间的斥力来传动,增加了磁力传动力,减小了转动时磁极改变带来的磁场变化,避免了传动顿振的产生。

Description

一种盘式永磁齿轮及基于盘式永磁齿轮的传动结构 技术领域
本发明涉及永磁传动领域,具体涉及一种盘式永磁齿轮及基于盘式永磁齿轮的传动结构。
背景技术
采用永磁材料制作的磁力齿轮由于其具备不接触传动、无磨损、无工作噪音和传动效率高等一系列优点,因而在各种领域获得越来越广泛的应用。现有技术中,磁齿轮的轴磁力传动方式主要有两大类:其中一类为径向磁力传动,该种传动方式中,两个圆柱形磁齿轮通过其圆柱表面的径向磁场耦合进行磁力传动,这类磁力传动的磁齿轮由于两个圆柱之间磁力耦合的区域太小,因而所能传动的力矩很难提高。另一类传动方式为轴向磁力传动,该种传动方式中,两个圆盘形永磁齿轮通过其圆盘平面的轴向磁场耦合进行磁力传动,这类现有的磁力传动的磁齿轮由于两个圆盘之间磁力耦合的区域比较大,因而所能传动的力矩有近一步增大的潜力。现有技术中,请参阅图1,专利CN201620231862.X公开了一种盘式永磁齿轮变速装置,其包括圆表面相互隔开一端距离的磁齿轮主动盘与磁齿轮从动盘,所述磁齿轮主动盘与磁齿轮从动盘的圆盘表面在投影方向上部分重叠。所述磁齿轮主动盘与磁齿轮从动盘上均嵌设有多个等体积永磁体,所述永磁体沿圆形表面的周向均匀分布,且同一圆面上的永磁体磁极顺次按照S-N-S-N的顺序排列;请参阅图2和图3,专利CN201720009054.3,公开了一种用于变速传动和扭矩传递的永磁齿轮变速器,其包括永磁齿轮主动轮23与永磁齿轮从动轮24,所述永磁齿轮从动轮24包括同轴连接的两个相互间隔的圆盘,所述永磁齿轮主动轮23的部分圆周不接触地嵌入所述永磁齿轮从动轮24的间隙中。所述永磁齿轮主动轮23与永磁齿轮从动轮24的每个圆盘的圆周都均匀嵌入有多个永磁体,所述永磁体的磁极顺次按照S-N-S-N的顺序排列。;请参阅图4,专利CN201910205667.8公开了一种永磁传动齿轮的制作方法,该方法中单个永磁齿轮轮盘的结构与前两份文件相同,每个轮盘上永磁体的磁极顺次按照S-N-S-N的顺序排列。所述永磁传动齿轮包括主动轮31和从动轮33,所述主动轮31为单个轮盘,所述从动轮33包括同轴设置的两个轮盘,所述主动轮31的部分圆周不接触地嵌入所述从动轮33的间隙中。由于上述盘式永磁齿轮中每个轮盘的永磁体磁极排列方式均为按照S-N-S-N的顺序排列,因此上述圆盘磁齿轮均依靠同性磁极的斥力与异性磁极的吸力交替作用实现旋转。然而,上述圆盘磁齿轮在高速旋转传动时,主动轮上永磁体的磁场高速旋转导致了被动轮上的永磁体与主动轮永磁体间的磁场变化极大,容易产生磁衰减,导致主动轮与从动轮间磁力耦合传递的力矩急剧减小。
发明内容
本发明的目是提供一种盘式永磁齿轮,减小永磁齿轮转动时磁场的变化。
一种盘式永磁齿轮,包括齿轮基盘、穿设于所述齿轮基盘中部的传动轴以及嵌设于所述齿轮基盘中的多个永磁体;各永磁体沿所述齿轮基盘的周向均匀间隔分布;各永磁体的磁极均露出于齿轮基盘的至少一侧圆面,且露出于所述齿轮基盘同一侧圆面的所有永磁体磁极的极性相同。
相比于现有技术中采用S-N-S-N永磁体磁极序列的永磁齿轮,本发明的盘式永磁齿轮在基本条件相同情况下仅采用现有永磁齿轮上任意一组磁极设置方向相同的永磁体便能获得相同或者更大的传动扭矩;同时,本发明的盘式永磁齿轮仅通过相同极性的磁极间的斥力来传动,因此,所述盘式永磁齿轮增加了磁力传动力,减小了转动时磁极改变带来的磁场变化,避免了传动顿振的产生,提高了转动的平稳性。此外,由于永磁体均镶嵌在齿轮基盘内,当齿轮基盘通过高速旋转来进行传动时产生的离心力不会对永磁体有任何影响,因此,所述盘式永磁齿轮能够高速传动。
进一步地,各永磁体的两极均露出于齿轮基盘的两侧圆面,每个圆面上的所有永磁体的磁极极性相同。
进一步地,所述永磁体的截面形状为齿形。
进一步地,所述齿轮基盘采用非导磁材料。
本发明还提供一种盘式永磁齿轮传动结构,包括主动永磁齿轮与从动永磁齿轮,所述主动永磁齿轮与从动永磁齿轮相互不接触,且主动永磁齿轮的部分边缘与从动永磁齿轮的部分边缘在主动永磁齿轮轴向上的投影相互重叠;所述主动永磁齿轮包括至少一个盘式永磁齿轮,且所述从动永磁齿轮包括至少一个盘式永磁齿轮,所述盘式永磁齿轮包括:齿轮基盘、穿设于所述齿轮基盘中部的传动轴以及嵌设于所述齿轮基盘中的多个永磁体;各永磁体沿所述齿轮基盘的周向均匀间隔分布;各永磁体的磁极均露出于齿轮基盘的至少一侧圆面,且露出于所述齿轮基盘同一侧圆面的所有永磁体磁极的极性相同;所述主动永磁齿轮和从动永磁齿轮相互靠近的侧面上永磁体的磁极极性相同,且所述主动永磁齿轮与从动永磁齿轮之间形成斥力磁力耦合区。
进一步地,所述盘式永磁齿轮的各永磁体的两极均露出于齿轮基盘的两侧圆面,每个圆面上的所有永磁体的磁极极性相同。
进一步地,所述盘式永磁齿轮的各永磁体的截面形状为齿形。
进一步地,:所述盘式永磁齿轮的齿轮基盘采用非导磁材料。
进一步地,所述主动永磁齿轮与从动永磁齿轮上永磁体个数可根据预设的主动永磁齿轮 与从动永磁齿轮传动比来设置。
进一步地,所述主动永磁齿轮与所述从动永磁齿轮均包括一个所述盘式永磁齿轮,且所述主动永磁齿轮与所述从动永磁齿轮的直径相同。
进一步地,所述主动永磁齿轮上永磁体之间的间距大于从动永磁齿轮的永磁体的截面宽度;所述从动永磁齿轮上永磁体之间的间距大于主动永磁齿轮的永磁体的截面宽度。
进一步地,所述主动永磁齿轮包括一个所述盘式永磁齿轮,所述从动永磁齿轮包括两个所述盘式永磁齿轮,从动永磁齿轮的两个盘式永磁齿轮同轴且相互间隔设置;所述主动永磁齿轮的部分边缘不接触地设于所述从动永磁齿轮的两个盘式永磁齿轮之间;所述主动永磁齿轮的两侧圆面上永磁体的磁极极性与靠近该圆面的从动永磁齿轮的圆面上永磁体磁极极性相同。相比于现有技术,本方案的传动结构充分的利用主动永磁齿轮的双面磁场的斥力传递扭矩,使得生产时采用更小的磁齿轮体积就能达到预期的传动扭矩,因此,磁齿轮可做的很薄且很小,能广泛的应用于在微型仪器仪表中。
进一步地,所述从动永磁齿轮中的两个盘式永磁齿轮直径相同,所述主动永磁齿轮的直径大于所述从动永磁齿轮中的盘式永磁齿轮的直径。
附图说明
图1为现有技术盘式永磁齿轮变速装置的结构示意图;
图2为现有技术永磁齿轮变速器的结构示意图;
图3为现有技术永磁齿轮变速器中设置在永磁齿轮上的永磁体结构示意图;
图4为现有技术永磁传动齿轮的结构示意图;
图5为本发明的盘式永磁齿轮单轮的结构示意图;
图6为本发明的盘式永磁齿轮的第一种传动结构示意图;
图7为本发明的盘式永磁齿轮的第二种传动结构示意图。
在附图5中,标号与结构对应关系如下:401-传动轴,402-齿轮基盘,403-永磁体。
在附图6中,标号与结构对应关系如下:404-主动永磁齿轮A的齿轮基盘,403-永磁体,405-从动永磁齿轮B的齿轮基盘。
在附图7中,406-主动永磁齿轮的齿轮基盘,407-主动永磁齿轮的传动轴,403--永磁体,,408-从动永磁齿轮的传动轴,409-从动永磁齿轮的第一齿轮基盘,-410-从动永磁齿轮第二齿轮基盘。
具体实施方式
本说明书所附图式所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明揭示的技术内容得能涵盖的范围内。任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。
同时,在本发明的描述中,需要说明的是,术语“上”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
为了能清楚的说明本发明制作方法的技术特点,下面通过具体实施方式,并结合本附图,对本发明进行详细说明。同时本发明省略对公知组件和具体技术的描述以避免不必要的限制本发明。
实施例1
如图5所示,本发明提供一种盘式永磁齿轮,其包括齿轮基盘402,穿设于所述齿轮基盘402中部的传动轴401,以及嵌设于所述齿轮基盘402中的多个永磁体403。各永磁体403沿齿轮基盘402的周向均匀间隔分布,各永磁体的磁极均露出于齿轮基盘402的至少一侧圆面,且露出于齿轮基盘402同一侧圆面的所有永磁体403磁极极性相同。由于永磁体均镶嵌在齿轮基盘内,当齿轮基盘通过高速旋转来进行传动时产生的离心力不会对永磁体有任何影响,因此,所述盘式永磁齿轮能够高速传动。
其中,所述的齿轮基盘402选用非导磁材料,如各种有色金属及合金,各种具有一定强度的有机或无机材料,因此,所述齿轮基盘402不会对永磁体403的磁场产生任何影响。
其中,所述永磁体403的可以通过预埋或者镶嵌的方法设置在齿轮基盘402的预定位置。此外,所述齿轮基盘402上的永磁体还可以通过在基体材料的预定位置上填充磁性填料,定型后再对磁性填料进行轴向充磁来形成。所述磁性填料可以为金属磁粉和铁钴粉、铁镍粉或铁钡粉等。
优选地,各永磁体的两极均露出于齿轮基盘402的两侧圆面,且每个圆面上的所有永磁体磁极极性相同。优选地,所述盘式永磁齿轮的各永磁体的截面形状为齿形,以便平稳传动。
实施例2
基于实施例1中的盘式永磁齿轮结构,本发明还进一步提供一种盘式永磁齿轮的传动结 构,其包括主动永磁齿轮与从动永磁齿轮,所述主动永磁齿轮与从动永磁齿轮相互不接触,且主动永磁齿轮的部分边缘与从动永磁齿轮的部分边缘在主动永磁齿轮轴向上的投影相互重叠。其中,所述主动永磁齿轮和从动永磁齿轮均包括至少一个所述盘式永磁齿轮,所述主动永磁齿轮和从动永磁齿轮相互靠近的圆面上永磁体的磁极极性相同,且所述主动永磁齿轮与从动永磁齿轮之间形成斥力磁力耦合区。
请同时参阅图3,相比于现有技术,本实施例的盘式永磁齿轮传动结构中,每个盘式永磁齿轮同一侧面上的各永磁体磁极间隔设置且极性相同。因此,本实施例的盘式永磁齿轮传动结构只利用永磁体间的斥力磁场来传动,在基本条件相同情况下,所述盘式永磁齿轮仅采用现有永磁齿轮上任意一组磁极设置方向相同的永磁体便能获得相同或者更大的传动扭矩。同时,由于主动永磁齿轮与从动永磁齿轮间仅通过相同极性的磁极间的斥力来传动,因此,相比于现有永磁齿轮,本发明的盘式永磁齿轮增加了磁力传动力,减小了转动时磁极改变带来的磁场变化,避免了传动顿振的产生,提高了转动的平稳性。
具体地,在一实施例中,如图6所示,所述盘式永磁齿轮的传动结构包括主动永磁齿轮A与从动永磁齿轮B,所述主动永磁齿轮A包括一个所述盘式永磁齿轮,所述从动永磁齿轮B包括一个所述盘式永磁齿轮。所述主动永磁齿轮A与从动永磁齿轮B相互靠近但不接触,且主动永磁齿轮的齿轮基盘404的部分圆周与从动永磁齿轮的齿轮基盘405部分边缘在主动永磁齿轮轴向上的投影相互重叠。其中,所述主动永磁齿轮上永磁体之间的间距大于从动永磁齿轮的永磁体的截面宽度;所述从动永磁齿轮上永磁体之间的间距大于主动永磁齿轮的永磁体的截面宽度。工作时,主动永磁齿轮A与从动永磁齿轮B上极性相同的永磁体相互接近,形成斥力磁力耦合区,当主动永磁齿轮A转动时,主动永磁齿轮A上的永磁体403与从动永磁齿轮B上的永磁体相斥,即主动永磁齿轮A通过斥力磁力耦合带从动永磁齿轮B转动。所述主动永磁齿轮与从动永磁齿轮的传动比与主动永磁齿轮与从动永磁齿轮上永磁体个数之比相同,实际应用时可通过改变主动永磁齿轮与从动永磁齿轮间永磁体个数比来调节传动比
优选地,所述主动永磁齿轮A与从动永磁齿轮B的齿轮基盘的直径大小相同。
优选地,所述主动永磁齿轮上永磁体之间的间距大于从动永磁齿轮的永磁体的截面宽度;所述从动永磁齿轮上永磁体之间的间距大于主动永磁齿轮的永磁体的截面宽度。
本实施例中的永磁齿轮传动结构采用同性相斥的斥力工作,因而可以在高速旋转的情况下保持扭矩传递不变。
在另一实施例中,如图7所示,所述盘式永磁齿轮的传动结构为变速传动结构,其包括主动永磁齿轮与从动永磁齿轮,所述主动永磁齿轮包括一个所述盘式永磁齿轮,所述从动永磁齿轮包括两个同轴且间隔设置的盘式永磁齿轮。所述主动永磁齿轮的齿轮基盘406的部分 边缘不接触地设于所述从动永磁齿轮的第一齿轮基盘409和第二齿轮基盘410之间。所述主动永磁齿轮的齿轮基盘406两侧圆面上永磁体403的磁极极性与靠近该圆面的从动永磁齿轮基盘圆面上永磁体磁极极性相同。工作时,主动永磁齿轮的传动轴407带动主动永磁齿轮的齿轮基盘406转动,此时,主动永磁齿轮的齿轮基盘406两侧圆面上的永磁体403分别与从动永磁齿轮的第一齿轮基盘409的永磁体、第二齿轮基盘410的永磁体相互产生斥力,进而带动所述从动永磁齿轮的第一齿轮基盘409和第二齿轮基盘410转动。由于所述主动永磁齿轮同时带动两个从动永磁齿轮时,主动永磁齿轮两侧圆面的磁力都得到了应用,因此产生了更大的传动扭矩,具有变速的效果。优选地,从动永磁齿轮第一齿轮基盘和从动永磁齿轮第二齿轮基盘的直径相同,且所述主动永磁齿轮的齿轮基盘直径大于所述从动永磁齿轮第一齿轮基盘和从动永磁齿轮第二齿轮基盘的直径。
本实施例中的传动结构充分的利用主动永磁齿轮双面磁场的斥力传递扭矩,缩减了需要达到目标扭矩所需的磁齿轮体积,因此,在应用中磁齿轮可做的很薄且很小,能广泛应用在微型仪器仪表中。
此外,在本实施例的一变形例中,所述盘式永磁齿轮的传动结构以所述第一齿轮基盘和第二齿轮基盘构成的轮盘为主动永磁齿轮进行传动。该传动结构具备变速效果。在其他实施例中,所述盘式永磁齿轮的传动结构还包括行星磁齿轮传动结构和磁力齿条结构等可以进行面对面磁传动的结构。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,在不脱离本发明构思的前提下做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明由所提交的权利要求书确定的专利保护范围。

Claims (13)

  1. 一种盘式永磁齿轮,其包括:齿轮基盘、穿设于所述齿轮基盘中部的传动轴以及嵌设于所述齿轮基盘中的多个永磁体;各永磁体沿所述齿轮基盘的周向均匀间隔分布;各永磁体的磁极均露出于齿轮基盘的至少一侧圆面,且露出于所述齿轮基盘同一侧圆面的所有永磁体磁极的极性相同。
  2. 根据权利要求1所述的盘式永磁齿轮,其特征在于:各永磁体的两极均露出于齿轮基盘的两侧圆面,每个圆面上的所有永磁体的磁极极性相同。
  3. 根据权利要求2所述的盘式永磁齿轮,其特征在于:所述永磁体的截面形状为齿形。
  4. 根据权利要求3所述的盘式永磁齿轮,其特征在于:所述齿轮基盘采用非导磁材料。
  5. 一种盘式永磁齿轮传动结构,其特征在于:包括主动永磁齿轮与从动永磁齿轮,所述主动永磁齿轮与从动永磁齿轮相互不接触,且主动永磁齿轮的部分边缘与从动永磁齿轮的部分边缘在主动永磁齿轮轴向上的投影相互重叠;所述主动永磁齿轮包括至少一个盘式永磁齿轮,且所述从动永磁齿轮包括至少一个盘式永磁齿轮,所述盘式永磁齿轮包括:齿轮基盘、穿设于所述齿轮基盘中部的传动轴以及嵌设于所述齿轮基盘中的多个永磁体;各永磁体沿所述齿轮基盘的周向均匀间隔分布;各永磁体的磁极均露出于齿轮基盘的至少一侧圆面,且露出于所述齿轮基盘同一侧圆面的所有永磁体磁极的极性相同;所述主动永磁齿轮和从动永磁齿轮相互靠近的侧面上永磁体的磁极极性相同,且所述主动永磁齿轮与从动永磁齿轮之间形成斥力磁力耦合区。
  6. 根据权利要求5所述的盘式永磁齿轮传动结构,其特征在于:所述盘式永磁齿轮的各永磁体的两极均露出于齿轮基盘的两侧圆面,每个圆面上的所有永磁体的磁极极性相同。
  7. 根据权利要求6所述的盘式永磁齿轮传动结构,其特征在于:所述盘式永磁齿轮的各永磁体的截面形状为齿形。
  8. 根据权利要求7所述的盘式永磁齿轮传动结构,其特征在于:所述盘式永磁齿轮的齿轮基盘采用非导磁材料。
  9. 根据权利要求8所述的盘式永磁齿轮传动结构,其特征在于:所述主动永磁齿轮与从动永磁齿轮上永磁体个数可根据预设的主动永磁齿轮与从动永磁齿轮传动比来设置。
  10. 根据权利要求9所述的盘式永磁齿轮传动结构,其特征在于:所述主动永磁齿轮与所述从动永磁齿轮均包括一个盘式永磁齿轮,且所述主动永磁齿轮与所述从动永磁齿轮的直径相同。
  11. 根据权利要求10所述的盘式永磁齿轮传动结构,其特征在于:所述主动永磁齿轮上永磁体之间的间距大于从动永磁齿轮的永磁体的截面宽度;所述从动永磁齿轮上永磁体之间的间距 大于主动永磁齿轮的永磁体的截面宽度。
  12. 根据权利要求6所述的盘式永磁齿轮传动结构,其特征在于:所述主动永磁齿轮包括一个盘式永磁齿轮,所述从动永磁齿轮包括两个盘式永磁齿轮,从动永磁齿轮中的两个盘式永磁齿轮同轴且相互间隔设置;所述主动永磁齿轮的部分边缘不接触地设于所述从动永磁齿轮的两个盘式永磁齿轮之间;所述主动永磁齿轮的两侧圆面上永磁体的磁极极性与靠近该圆面的从动永磁齿轮的圆面上永磁体磁极极性相同。
  13. 根据权利要求12所述的盘式永磁齿轮传动结构,其特征在于:所述从动永磁齿轮中的两个盘式永磁齿轮直径相同,所述主动永磁齿轮的直径大于所述从动永磁齿轮中的盘式永磁齿轮的直径。
PCT/CN2020/100323 2020-02-27 2020-07-06 一种盘式永磁齿轮及基于盘式永磁齿轮的传动结构 WO2021169138A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010126232.7 2020-02-27
CN202010126232.7A CN111162656A (zh) 2020-02-27 2020-02-27 一种盘式永磁齿轮

Publications (1)

Publication Number Publication Date
WO2021169138A1 true WO2021169138A1 (zh) 2021-09-02

Family

ID=70566624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100323 WO2021169138A1 (zh) 2020-02-27 2020-07-06 一种盘式永磁齿轮及基于盘式永磁齿轮的传动结构

Country Status (2)

Country Link
CN (1) CN111162656A (zh)
WO (1) WO2021169138A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111162656A (zh) * 2020-02-27 2020-05-15 王之焕 一种盘式永磁齿轮
CN114198479B (zh) * 2020-09-02 2024-04-05 江苏多维科技有限公司 一种磁吸式变矩器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10215488A1 (de) * 2002-04-09 2003-10-23 Uli Streich Magnetisches Getriebe
CN1920331A (zh) * 2006-09-13 2007-02-28 李岭群 一种用于变速传递扭矩的磁齿轮组
CN102739013A (zh) * 2005-04-08 2012-10-17 安德鲁·博伊德·弗伦奇 磁性驱动装置
CN202535252U (zh) * 2012-04-05 2012-11-14 鞍山钦元节能设备制造有限公司 一种永磁传动机构永磁体的布置结构
CN111162656A (zh) * 2020-02-27 2020-05-15 王之焕 一种盘式永磁齿轮

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009290977A (ja) * 2008-05-29 2009-12-10 Tetsuo Kato 静止した永久磁石の磁場を磁束振動の磁場に変換して力学的エネルギー、電気エネルギーを取り出す方法
CN202565205U (zh) * 2011-12-12 2012-11-28 周雪华 永磁体斥力组磁力机
CN102611279A (zh) * 2012-04-05 2012-07-25 鞍山钦元节能设备制造有限公司 一种永磁传动机构永磁体的布置方式
CN212258751U (zh) * 2020-02-27 2020-12-29 王之焕 一种盘式永磁齿轮

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10215488A1 (de) * 2002-04-09 2003-10-23 Uli Streich Magnetisches Getriebe
CN102739013A (zh) * 2005-04-08 2012-10-17 安德鲁·博伊德·弗伦奇 磁性驱动装置
CN1920331A (zh) * 2006-09-13 2007-02-28 李岭群 一种用于变速传递扭矩的磁齿轮组
CN202535252U (zh) * 2012-04-05 2012-11-14 鞍山钦元节能设备制造有限公司 一种永磁传动机构永磁体的布置结构
CN111162656A (zh) * 2020-02-27 2020-05-15 王之焕 一种盘式永磁齿轮

Also Published As

Publication number Publication date
CN111162656A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2021169138A1 (zh) 一种盘式永磁齿轮及基于盘式永磁齿轮的传动结构
WO2015139404A1 (zh) 一种基于螺旋传动方式的轴向电涡流阻尼器
JP2012180934A (ja) 磁気駆動装置
CN103904950B (zh) 高转矩盘式永磁减速装置
CN102044919B (zh) 采用永久磁铁的电机用转子
CN110707899A (zh) 一种永磁力传动结构
CN103607097A (zh) 一种用于永磁涡流传动装置的平盘型聚磁式磁路结构
JP2005253292A (ja) 高トルク伝達非接触歯車
CN108716513B (zh) 电磁驱动双离合器
CN110971073A (zh) 一种永磁减速传动的电机
CN100406782C (zh) 一种环槽永磁聚能结构磁齿轮组
CN103107679B (zh) 一种圆盘式时滞效应较小的永磁涡流联轴器
CN106803714A (zh) 一种变速磁齿轮的基本结构
KR20210023335A (ko) 컨베이어용 마그네틱 커플링
CN203457031U (zh) 一种用于永磁涡流传动装置的平盘型聚磁式磁路结构
CN105276018A (zh) 一种扭矩限制器
CN212258751U (zh) 一种盘式永磁齿轮
CN103107674B (zh) 一种圆盘式时滞效应较小的永磁涡流联轴器的磁盘
CA2799860C (en) Apparatus for transferring torque magnetically
CN212785139U (zh) 一种永磁传动的变速机构
JP2005114163A (ja) 磁気式遊星歯車装置
CN208084395U (zh) 毛发修剪器传动机构
CN211830538U (zh) 一种永磁力传动结构
CN201181897Y (zh) 一种可变速的转动传动机构
CN101237180A (zh) 一种可变速的转动传动机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921930

Country of ref document: EP

Kind code of ref document: A1