WO2021169067A1 - 电极、电极的制作方法及其装置 - Google Patents

电极、电极的制作方法及其装置 Download PDF

Info

Publication number
WO2021169067A1
WO2021169067A1 PCT/CN2020/092260 CN2020092260W WO2021169067A1 WO 2021169067 A1 WO2021169067 A1 WO 2021169067A1 CN 2020092260 W CN2020092260 W CN 2020092260W WO 2021169067 A1 WO2021169067 A1 WO 2021169067A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film layer
conductive
electrode
metal nanowire
Prior art date
Application number
PCT/CN2020/092260
Other languages
English (en)
French (fr)
Inventor
徐维佑
黄薇臻
张良亦
陈汉威
Original Assignee
宸美(厦门)光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宸美(厦门)光电有限公司 filed Critical 宸美(厦门)光电有限公司
Publication of WO2021169067A1 publication Critical patent/WO2021169067A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/44Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/38 - H01L21/428
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Definitions

  • the invention relates to an electrode, an electrode manufacturing method and a device thereof.
  • transparent conductors can allow light to pass through at the same time and provide appropriate conductivity, so they are often used in many display or touch-related devices.
  • transparent conductors can be various metal oxides, such as indium tin oxide (ITO), indium zinc oxide (IZO), cadmium tin oxide (Cadmium Tin Oxide, CTO) or aluminum doped Zinc oxide (Aluminum-doped Zinc Oxide, AZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • CTO cadmium tin oxide
  • CTO cadmium Tin Oxide
  • Al doped Zinc oxide Al doped Zinc oxide
  • AZO aluminum doped Zinc oxide
  • An object of the present invention is to provide an electrode that forms a coating structure on a specific surface of a conductive nanostructure (such as a metal nanowire), and the two form a parallel characteristic to achieve the purpose of improving electrical characteristics to meet low resistance and flexibility. Sexual application.
  • a conductive nanostructure such as a metal nanowire
  • Another object of some embodiments of the present invention is to provide a method for fabricating an electrode.
  • Forming a coating structure on a conductive nanostructure is a direct forming addition process, which is relatively simple and can reduce materials. cost.
  • Another object of some embodiments of the present invention is to provide an electrode device, by designing peripheral leads to be directly formed from modified conductive nanostructures (such as metal nanowires), so as to achieve a structure that does not need to be overlapped to form a width
  • modified conductive nanostructures such as metal nanowires
  • an electrode is characterized by comprising: conductive nanostructures and a film layer added to the conductive nanostructures, and the interface between the conductive nanostructures and the film layer substantially has a coating structure.
  • the coating structure includes a plating layer, and the plating layer completely covers the interface between the conductive nanostructure and the film layer.
  • the coating structure includes an electroless plating layer, an electroplating layer, or a combination thereof.
  • the film layer has an incompletely cured state, and the coating structure is formed along the surface of the conductive nanostructure and located at the interface between the conductive nanostructure and the film layer.
  • the film layer has a first layer area and a second layer area, and the curing state of the second layer area is higher than the curing state of the first layer area; in the first layer area, The covering structure is formed along the surface of the conductive nanostructure and located at the interface between the conductive nanostructure and the film layer. In the second layer region, at least part of the surface of the conductive nanostructure has a coating structure, or the surface of the conductive nanostructure has a coating structure without a coating structure. Compared with the two-layer area, in the area with a smaller degree of curing, a larger proportion of the surface of the conductive nanostructure is covered by the covering structure.
  • the film layer is filled between the adjacent conductive nanostructures, and the coating structure does not exist alone in the film layer.
  • the conductive nanostructure includes a metal nanowire, and the coating structure completely covers the interface between the metal nanowire and the film layer, and a uniform coating layer is formed at the interface.
  • the uniform coating layer may be a coating layer with uniform thickness.
  • the covering structure is a layered structure made of a conductive material, an island-shaped protrusion structure, a dot-shaped protrusion structure, or a combination thereof.
  • the conductive material is silver, gold, platinum, iridium, rhodium, palladium, osmium, or an alloy containing the foregoing materials.
  • the covering structure is a single-layer structure made of a single metal material or alloy material; or the covering structure is two or more layers made of two or more metal materials or alloy materials. Layer structure.
  • the cladding structure is an electroless copper plating layer, an electroless copper plating, an electroless copper-nickel plating layer, an electroless silver plating layer, or a combination thereof.
  • the covering structure is an electroless plating layer, and the electroless plating layer completely covers the interface between the conductive nanostructure and the film layer. In other words, there is an electroless plating layer between the surface of the conductive nanostructure and the film layer.
  • it includes: applying a film layer on a conductive layer containing conductive nanostructures, and making the film layer reach a pre-cured or incompletely cured state; and performing a modification step to make a film
  • the covering structure is formed on at least a part of the surface of the conductive nanostructure, so that the interface between the conductive nanostructure and the film layer substantially has the covering structure.
  • the modification step includes: immersing the film layer and the conductive nanostructure in an electroless plating solution, and the electroless plating solution infiltrates the film layer and contacts the conductive nanostructure to make the metal Precipitated from the surface of the conductive nanostructure.
  • the electroless plating layer completely covers the interface between the conductive nanostructure and the film layer.
  • the covering structure is formed along the surface of the conductive nanostructure and located at the interface between the conductive nanostructure and the film layer.
  • adding a film layer to a conductive layer containing conductive nanostructures includes: coating a polymer on the conductive layer; controlling curing conditions to make the polymer reach a pre-cured or incompletely cured state .
  • the polymer is a light-curing type, a heat-curing type or other curing types.
  • applying a film layer on a conductive layer containing conductive nanostructures includes: coating a polymer on the conductive layer; controlling curing conditions to make the polymer form the film layer, and the film layer There is a first layer area and a second layer area, and the curing state of the second layer area is higher than the curing state of the first layer area.
  • controlling the curing conditions includes introducing oxygen and controlling the concentration of oxygen in the first layer region and the second layer region.
  • the modification step includes: an electroless plating step, an electroplating step, or a combination thereof
  • a method for manufacturing a touch panel is characterized by comprising: providing a substrate having a display area and a peripheral area; and disposing metal nanowires in the display area and the peripheral area to form a metal nanowire Wire layer; add a film layer on the metal nanowire layer, and make the film layer reach a pre-cured or incompletely cured state; the patterning step includes: patterning the metal nanowire layer and the metal nanowire layer in the display area
  • the film layer is used to form a touch sensing electrode and the metal nanowire layer and the film layer located in the peripheral area are patterned to form a peripheral lead.
  • the touch sensing electrode is electrically connected to the peripheral lead; a modification step is performed to make A covering structure is formed on the surface of the metal nanowire of the peripheral lead, so that the interface between the metal nanowire and the film layer substantially has the covering structure.
  • the modification step includes: contacting the film layer of the peripheral lead with the metal nanowire layer with an electroless plating solution, and the electroless plating solution penetrates into the film layer and interacts with the metal nanowire layer. The contact causes the metal to precipitate on the surface of the metal nanowire.
  • the modification step includes an electroless plating step, an electroplating step, or a combination thereof.
  • a device includes an electrode, the electrode includes: a conductive nanostructure and a film layer added to the conductive nanostructure, the interface between the conductive nanostructure and the film layer is substantially Has a covering structure.
  • the device includes a touch panel, a touch panel, an antenna structure, a coil, an electrode plate, a display, a portable phone, a tablet computer, a wearable device, a vehicle device, a notebook computer, or a polarizer, etc. .
  • Fig. 1A is a schematic diagram of the first step according to some embodiments of the present invention.
  • 1B is a schematic diagram of the second step according to some embodiments of the present invention.
  • 1C is a schematic diagram of the third step according to some embodiments of the present invention.
  • FIG. 2 is a schematic top view of a touch panel according to some embodiments of the present invention.
  • Fig. 2A is a schematic cross-sectional view along the line A-A of Fig. 2;
  • Fig. 2B is a schematic cross-sectional view of the line B-B in Fig. 2;
  • 3A to 3D are schematic diagrams of a manufacturing method of a touch panel according to some embodiments of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a touch panel according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a touch panel according to another embodiment of the present invention.
  • Fig. 5A is a schematic cross-sectional view of the line A-A of Fig. 5;
  • FIG. 6 is a schematic diagram of a touch panel according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a touch panel according to another embodiment of the present invention.
  • FIG. 8 shows the total thickness of the first area and the second area under the condition of passing 20% oxygen and curing different energy to the film layer, and the thickness of the second area after being etched by alkali solution;
  • Figure 9 shows an SEM image of metal nanowires undergoing electroless plating without a film
  • FIG. 10 is an SEM image of the metal nanowires evolving into silver nanowires with cladding structure with the electroless plating time.
  • the error or range of the index value is generally within 20%, preferably within 10%, and more preferably Within five percent. If there is no clear description in the text, the values mentioned are regarded as approximate values, that is, they have the error or range indicated by "about”, “about” or “approximately”.
  • conductive nanostructures generally mean that the sheet resistance of the layer/film composed of nanostructures is less than 500 ohms/square, preferably less than 200 ohms/square, and more Preferably, it is less than 100 ohm/square; and nanostructure generally refers to a nano-sized structure, such as but not limited to having at least one dimension (such as wire diameter, length, width, thickness, etc.) in the order of 10-9 meters The linear structure, column structure, sheet structure, grid structure, tubular structure and so on.
  • Some embodiments of the present invention provide a method for modifying conductive nanostructures (taking nanowires as an example), which may include the following steps:
  • the metal nanowires 190 are first laid on the substrate 110 to form a metal nanowire layer NWL, such as a nano silver wire layer, a nano gold wire layer or a nano copper wire layer coating.
  • NWL such as a nano silver wire layer, a nano gold wire layer or a nano copper wire layer coating.
  • the specific method of this embodiment is as follows: a dispersion or ink with metal nanowires 190 is formed on the substrate 110 by a coating method, and dried to coat the surface of the substrate 110 with the metal nanowires 190, and then It is formed into a metal nanowire layer NWL disposed on the substrate 110.
  • the solvent and other substances are volatilized, and the metal nanowires 190 are distributed on the surface of the substrate 110 in a random manner; preferably, the metal nanowires 190 will be fixed on the surface of the substrate 110 and not
  • the metal nanowire layer NWL is formed until it falls off, and the metal nanowires 190 can contact each other to provide a continuous current path, thereby forming a conductive network.
  • the metal nanowires 190 form a mutual Contact to form a path for passing electrons. Taking silver nanowires as an example, one silver nanowire and another silver nanowire will be in direct contact at the crossing position, thus forming a low-resistance electron transfer path.
  • the sheet resistance of a region or a structure when the sheet resistance of a region or a structure is higher than 108 ohms/square (ohm/square), it can be considered as electrical insulation, preferably higher than 104 ohms/square (ohm/square). ), 3000 ohm/square (ohm/square), 1000 ohm/square (ohm/square), 350 ohm/square (ohm/square), or 100 ohm/square (ohm/square). In one embodiment, the sheet resistance of the silver nanowire layer composed of silver nanowires is less than 100 ohm/square.
  • the film layer 130 is set to cover the metal nanowire 190 and the degree of curing of the film layer 130 is controlled.
  • a suitable polymer is coated on the metal nanowires 190, and the polymer with a fluid state/property can penetrate between the metal nanowires 190 to form a filler, and the metal nanowires 190 will be embedded in the film layer 130.
  • a composite structure CS is formed; and the conditions for polymer coating and curing, such as temperature, light curing parameters, etc., are controlled to make the polymer appear pre-cured or incompletely cured; or the film layer 130 has different curing degrees, For example, the lower region (ie, the region close to the substrate 110) has a greater degree of curing than the upper region (ie, the region far from the substrate 110), and the upper region is in the aforementioned pre-cured or incompletely cured state. That is to say, in this step, the polymer is applied and the film layer 130 is added to the metal nanowire 190, and the metal nanowire 190 will be embedded in the pre-cured or incompletely cured film 130 to form the composite structure CS.
  • the conditions for polymer coating and curing such as temperature, light curing parameters, etc.
  • the film layer 130 is formed of an insulating material.
  • the material of the film layer 130 may be a non-conductive resin or other organic materials, such as polyacrylate, epoxy resin, polyurethane, polysilane, polysiloxane, poly(silicon-acrylic), poly Ethylene (polyethylene; PE), polypropylene (Polypropylene; PP), polyvinyl butyral (PVB), polycarbonate (PC), acrylonitrile-butadiene-styrene copolymer (Acrylonitrile) butadiene styrene; ABS), poly(3,4-ethylenedioxythiophene) (PEDOT), poly(styrene sulfonic acid) (PSS) or ceramic materials, etc.
  • a non-conductive resin or other organic materials such as polyacrylate, epoxy resin, polyurethane, polysilane, polysiloxane, poly(silicon-acrylic), poly Ethylene (polyethylene; PE), poly
  • the film layer 130 may be formed by spin coating, spray coating, printing, or the like.
  • the thickness of the film layer 130 is approximately 20 nanometers to 10 micrometers, or 50 nanometers to 200 nanometers, or 30 to 100 nanometers.
  • the thickness of the film layer 130 may be approximately 90 nanometers or 100 nanometers.
  • the metal nanowire 190 and the film layer 130 are drawn as an integral structure layer, but the present invention is not limited to this.
  • the metal nanowire 190 and the film layer 130 may constitute other types of structure layers. , Such as the structure on top of each other and so on.
  • the method of controlling the curing state of the film layer 130 is to use curing conditions of different energy to cure the film layer, so that the film layer reaches a degree of incomplete curing.
  • the curing behavior of the film layer is the use of the bonding change of the film layer during curing, so the curing degree of a film layer can be defined as the ratio of the bonding strength of the film layer to the bonding strength of the fully cured film layer ( This embodiment is expressed as a percentage). For example, for the film material of a commercially available product, originally it is necessary to use 500mJ of light energy to irradiate in a low-oxygen atmosphere for 4 minutes to achieve complete curing.
  • the film layer 130 can be controlled to have different curing states at different depths (that is, thickness), and gas can be introduced when the film layer is cured, so that the gas concentration on the surface and the bottom of the film layer is different, thereby promoting the film layer
  • the curing reaction on the surface produces the phenomenon of gas blocking curing, resulting in the first layer area and the second layer area of the film with different degrees of curing.
  • the curing state of the second layer area belongs to the bottom of the film layer, which is the area with a higher degree of curing.
  • the cured state of the first layer area belongs to the surface of the film, which is the area with a lower degree of curing.
  • the specific method is to control the gas (such as oxygen) concentration and/or curing energy under curing conditions.
  • the gas concentration can be 20% oxygen, 10% oxygen, 3% oxygen or ⁇ 1% oxygen, etc., and the curing energy will be based on the film layer.
  • the higher the oxygen concentration the more obvious the phenomenon of oxygen barrier curing on the surface of the film will be promoted, and the thicker the thickness of the region with a lower degree of curing in the first region, and the higher the degree of curing in the second region.
  • the thickness of the region is relatively thin, so if the thickness of the first region is from thick to thin, the order is 20% oxygen, 10% oxygen, 3% oxygen or ⁇ 1% oxygen.
  • the curing degree of the first region is about 60%, and the thickness of the first region is about 23.4nm (or 12% of the total film thickness). %); and the curing degree of the second region is about 99-100% (close to complete curing), and the thickness of the second region is about 168.1 nm (or 88% of the total film thickness).
  • Fig. 8 shows the total thickness of the first area (uncured) and the second area (close to fully cured or fully cured) formed by irradiation with curing energies of 250mJ, 500mJ, and 1000mJ under the condition that the film layer is exposed to 20% oxygen.
  • the thickness of the second region remaining after the film layer is etched by the alkaline solution It can be observed that as the curing energy increases, the thickness of the first region will decrease accordingly (that is, the thickness reduced after etching). When the curing energy is 1000mJ, the thickness of the first region is about 8.8nm (or 5% of the total film thickness); and the thickness of the second region is about 195.9nm (or 95% of the total film thickness) ).
  • the coating structure 180 can be grown along the surface of the metal nanowire 190 by controlling the curing degree or curing depth of the film layer 130.
  • the dispersion or the ink may also contain polymers and similar compositions, but this is not the focus of the present invention.
  • the degree of curing of the film layer 130 can be controlled at 0%, 20%, 30%, 60%, 75%, 95%, 98%, 0%-95%, 0%-98%, 95%-98%, 60% -98%, 60%-75% and other conditions.
  • the incomplete curing or only pre-curing referred to in the embodiments of the present invention can be defined as the bonding strength of the film layer is different from the bonding strength of the fully cured film layer, that is, the ratio of the two is not 100%.
  • the scope of the embodiments of the present invention can be defined as the bonding strength of the film layer is different from the bonding strength of the fully cured film layer, that is, the ratio of the two is not 100%.
  • a modification step is then performed to form a metal nanowire layer NWL composed of a plurality of modified metal nanowires 190. That is, after the modification, at least a part of the initial metal nanowire 190 is modified to form a covering structure 180 on the surface thereof to form the modified metal nanowire 190.
  • the symbols "v" and "o" represent the metal nanowires 190 before and after modification, respectively.
  • an electroless plating/electrolytic method may be used to form the covering structure 180, and the covering structure 180 may be a layered structure made of a conductive material, an island-shaped protrusion structure, a dot-shaped protrusion structure, or a combination thereof.
  • the coverage rate accounts for more than 80%, 90-95%, 90-99%, or 90-100% of the total surface area (a coverage rate of 100% means that the surface of the initial metal nanowire 190 is not exposed); the aforementioned conductivity
  • the material may be silver, gold, platinum, nickel, copper, iridium, rhodium, palladium, osmium, or alloys containing the foregoing materials, or alloys that do not contain the foregoing materials, or the like.
  • the cladding structure 180 is a single-layer structure made of a single conductive material, for example, an electroless copper plating layer, an electroplating copper layer, or an electroless copper-nickel alloy plating layer is formed; or the cladding structure 180 has more than two types
  • an electroless copper plating layer is formed first, and then an electroless silver plating layer is formed.
  • the following electroless copper plating solutions solutions containing copper ions, chelating agents, alkaline agents, reducing agents, buffers and stabilizers, etc.
  • the metal nanowires 190 and the film layer 130 are immersed in the electroless plating
  • the copper solution and the electroless copper plating solution can penetrate into the pre-cured or incompletely cured film layer 130 and contact the surface of the metal nanowire 190 by capillary phenomenon.
  • the metal nanowire 190 is used as a catalytic point or a nucleation point to facilitate After the precipitation of copper, an electroless copper plating layer is deposited on the metal nanowire 190 to form a cladding structure 180.
  • the cladding structure 180 generally grows according to the initial shape of the metal nanowire 190, and forms a structure covering the metal nanowire 190 with the modification time; on the contrary, there is no metal nanowire 190 in the original composite structure CS. In other words, after good control, the coating structure 180 is formed on the interface between the metal nanowire 190 and the film layer 130, and there is no surface in the film layer 130 that does not contact the metal nanowire 190 The covering structure 180 exists alone.
  • the metal nanowires 190 in the conductive network will be covered by the covering structure 180, and the covering structure 180 will be located between the interface formed by the metal nanowires 190 and the film layer 130; the covering structure 180
  • the metal nanowire 190 covered with it can be regarded as a whole, and the gap between the nanowire and the nanowire is still occupied by the material of the film layer 130.
  • the film layer 130 and the electroless plating solution/electrolyte solution can be made of materials that match each other.
  • a non-alkali-resistant polymer can be used to make the film layer 130
  • the electroless plating solution can be an alkaline solution.
  • an electroless plating solution can also be used to attack (like etching) the incompletely cured film layer 130 to facilitate the aforementioned modification reaction.
  • the metal nanowire 190 and the film layer 130 are immersed in the electroless plating solution/electrolytic solution, the solution will first attack the incompletely cured film layer 130.
  • the metal ions such as copper ions
  • Metal nanowires 190 such as silver nanowires
  • the film layer 130 acts as a control layer or a limiting layer in the above reaction process, which limits the growth reaction of the coating structure 180 to the interface between the metal nanowires 190 and the film layer 130, so that the coating structure 180 can be controlled.
  • Figure 9 shows that the metal nanowire 190 is subjected to the above electroless plating without the protection of the film 130. It can be found that the copper layer grows randomly and uncontrollably. Some metal nanowires 190 grow thick copper layers, but some metal nanowires 190 grow thick copper layers. There is no copper layer on the wire 190; that is to say, the film layer 130 can achieve the effect of limiting the position of copper precipitation to the interface between the metal nanowire 190 and the film layer 130, so the application of the present invention has a better effect in sensing/transmitting signals. Good consistency.
  • a curing step may be included to completely cure the film layer 130.
  • the film layer 130 can be completely cured by light, heat or other methods.
  • the following table is a specific embodiment of the present invention. It can be found that the degree of curing of the film layer 130 is 0%, 95%, 98%, 0%-95%, 0%-98%, 95%-98% and other conditions. Copper can effectively reduce the surface resistance (or sheet resistance) of the film.
  • the degree of curing can be measured in many ways. In addition to the calculation of the bond strength mentioned above, for example, solvent extraction is performed on the polymer film, and the weight of the uncured polymer dissolved in the solvent is measured. The total weight of the polymer is compared to calculate the solubility percentage (%Sol); another example is for thermosetting polymer materials, thermal analysis technology can also be used to determine the degree of curing.
  • the covering structure 180 is formed on the surface of each metal nanowire 190 and covers the entire surface of the metal nanowire 190, and grows outward.
  • a highly conductive material may be used to make the covering structure 180, for example, copper is used as the covering structure 180 to cover the surface of the silver nanowire and located at the interface between the silver nanowire and the film layer.
  • the conductivity of silver materials is higher than that of copper materials, the overall conductivity of the silver nanowire layer is low due to the size of the silver nanowires and the contact state (but the resistance is still low and sufficient to transmit Electrical signal), and after modification, the conductivity of the silver nanowire 190 with the covering structure 180 is higher than that of the unmodified silver nanowire 190, that is, the modified metal nanowire layer NWL can form a low
  • the conductive layer of resistance value (compared to the unmodified metal nanowire layer NWL, the surface resistance can be reduced by about 100 to 10000 times); and the conductive layer can be used to make electrode structures for various purposes, such as flexible Conductive substrates or wireless charging coils, antenna structures, etc. in the field.
  • the electrode structure may include at least a metal nanowire and a film layer additionally covering the metal nanowire, and at least a part or all of the surface of the metal nanowire (ie, the interface between the metal nanowire 190 and the film layer 130) has a coating Coating, the introduction of batch coating can improve the conductivity of the metal nanowire layer NWL.
  • FIG. 10 is an SEM evolution diagram of the metal nanowire 190 evolving into a silver nanowire with a coating structure 180 with the electroless plating time.
  • the copper layer is along the surface of the metal nanowire (ie the interface corresponding to the metal nanowire 190 and the film layer 130), after plating, the observed shape of copper will be quite similar to the initial type of the metal nanowire The copper will grow uniformly to form an outer layer structure with similar size (such as thickness).
  • the present invention can be applied to manufacture touch panels (as shown in FIG. 2) using the aforementioned method, such as but not limited to touch panels used with displays.
  • the touch panel 100 includes a substrate 110, a peripheral lead 120, and a touch panel.
  • the sensing electrode TE where the touch sensing electrode TE includes a plurality of unmodified initial conductive nanostructures, the peripheral lead 120 includes a plurality of modified conductive nanostructures, and the modified conductive nanostructures have a coating structure 180( Referring to FIG. 1C), the conductive nanostructure may be a metal nanowire 190.
  • FIG. 2 is a schematic top view of a touch panel 100 according to some embodiments of the present invention. Referring to FIG.
  • the touch panel 100 may include a substrate 110, a peripheral lead 120, a mark 140, and a touch sensing electrode TE.
  • the touch sensing electrode TE is approximately located in the display area VA, and is composed of a plurality of unmodified initial metal nanowires.
  • the metal nanowire layer NWL formed by 190 is patterned; the modified metal nanowire 190 has a covering structure 180, and the modified metal nanowire 190 is patterned to form a peripheral lead 120 or/and a mark 140.
  • the conductivity can be improved, thereby making the peripheral lead 120; in addition, in the display area VA, the metal nanowire 190 and the additional film
  • the layer 130 is in direct contact (that is, the metal nanowires 190 in the display area VA are not modified).
  • the covering structure 180 is not formed on the surface of the metal nanowires 190 in the display area VA, so the display can be maintained
  • the conductive network formed by the metal nanowires 190 in the region VA has good optical properties.
  • the substrate 110 has a display area VA and a peripheral area PA.
  • the peripheral area PA is arranged on the side of the display area VA.
  • the peripheral area PA may be arranged around the display area VA (that is, covering the right, left, and The upper and lower sides) are frame-shaped areas, but in other embodiments, the peripheral area PA may be an L-shaped area disposed on the left and lower sides of the display area VA. As shown in FIG.
  • peripheral leads 120 there are eight sets of peripheral leads 120 in this embodiment, all of which are arranged in the peripheral area PA of the substrate 110; the touch sensing electrode TE is arranged in the display area VA of the substrate 110 and is electrically connected to the peripheral leads 120.
  • FIGS. 3A to 3D show the manufacturing method of the aforementioned touch panel 100: first, a substrate 110 is provided, on which a pre-defined peripheral area PA and a display area VA are provided. Next, unmodified metal nanowires 190 are disposed on the substrate 110 to form a metal nanowire layer NWL in the peripheral area PA and the display area VA (as shown in FIG. 3A); then, a film layer 130 is disposed on the unmodified On the metal nanowire 190, the film layer 130 is made to cover the unmodified metal nanowire 190, and the film layer 130 is in a pre-cured or incompletely cured state (as shown in FIG.
  • the metal nanowire layer NWL in the display area VA is not After modification, the metal nanowire layer NWL located in the peripheral area PA will be modified, that is to say, due to the aforementioned modification step, the peripheral lead 120 is composed of the modified metal nanowire 190.
  • a metal nanowire layer NWL including at least metal nanowires 190 is first coated on the peripheral area PA and the display area VA on the substrate 110;
  • the first part of the metal nanowire layer NWL is mainly located in the display area VA, and the second part is mainly formed in the peripheral area PA.
  • the specific method in this embodiment is: forming a dispersion or slurry (ink) with metal nanowires 190 on the substrate 110 by a coating method, and drying it to coat the surface of the substrate 110 with the metal nanowires 190. Furthermore, it is formed into a metal nanowire layer NWL disposed on the substrate 110.
  • the solvent and other substances are volatilized, and the metal nanowires 190 are distributed on the surface of the substrate 110 in a random manner; preferably, the metal nanowires 190 will be fixed on the surface of the substrate 110 and not To fall off to form the metal nanowire layer NWL, and the metal nanowires 190 can be in contact with each other to provide a continuous current path, thereby forming a conductive network. In other words, the metal nanowires 190 are in contact with each other at crossing positions to form electron transfer. path of.
  • one silver nanowire and another silver nanowire will form a direct contact state at the crossing position (that is, the silver-silver contact interface), so a low-resistance electron transfer path is formed. Subsequent modification operations will not affect or change the low-resistance structure of the "silver-silver contact".
  • the surface of the metal nanowire 190 is coated with a high-conductivity coating structure 180, which will improve the electrical characteristics of the end product. Effect.
  • the above-mentioned dispersion may be water, alcohol, ketone, ether, hydrocarbon or aromatic solvent (benzene, toluene, xylene, etc.); the above-mentioned dispersion may also contain additives, surfactants or adhesives.
  • Mixtures such as carboxymethyl cellulose (CMC), 2-hydroxyethyl cellulose (hydroxyethyl Cellulose; HEC), hydroxypropyl methylcellulose (HPMC), sulfonate, sulfate , Disulfonate, sulfosuccinate, phosphate or fluorine-containing surfactant, etc.
  • the dispersion or slurry containing the metal nanowires 190 can be formed on the surface of the substrate 110 and the aforementioned metal layer ML in any manner, such as but not limited to: screen printing, nozzle coating, roller coating, etc.; In one embodiment, a roll-to-roll (RTR) process may be used to coat the dispersion or slurry containing the metal nanowires 190 on the continuously supplied substrate 110 and the surface of the aforementioned metal layer ML.
  • RTR roll-to-roll
  • metal nanowires is a collective term that refers to a collection of metal wires containing multiple element metals, metal alloys or metal compounds (including metal oxides), and the number of metal nanowires contained therein , Does not affect the scope of protection claimed by the present invention; and at least one cross-sectional dimension (ie the diameter of the cross-section) of a single metal nanowire is less than about 500 nm, preferably less than about 100 nm, and more preferably less than about 50 nm; and the present invention is called
  • the “wire” metal nanostructure mainly has a high aspect ratio, for example, between about 10 and 100,000.
  • the aspect ratio (length: diameter of the cross section) of the metal nanowire can be greater than About 10, preferably greater than about 50, and more preferably greater than about 100; the metal nanowire can be any metal, including but not limited to silver, gold, copper, nickel, and gold-plated silver. Other terms, such as silk, fiber, tube, etc., if they also have the above-mentioned size and high aspect ratio, are also within the scope of the present invention.
  • the step of coating the film layer 130 is performed.
  • the film layer 130 is disposed on the unmodified metal nanowire 190 so that the film layer 130 covers the unmodified metal nanowire 190, and then the patterning step and the modification step are performed in sequence.
  • the polymer of the film layer 130 after coating can penetrate between the metal nanowires 190 to form a filler, and the metal nanowires 190 are embedded in the film layer 130 to form a composite structure CS.
  • the unmodified metal nanowires 190 will be embedded in the film layer 130 to form a composite structure CS.
  • the film layer 130 is formed of an insulating material.
  • the material of the film layer 130 may be a non-conductive resin or other organic materials.
  • the film layer 130 may be formed by spin coating, spray coating, printing, or the like.
  • the thickness of the film layer 130 is approximately 20 nanometers to 10 micrometers, or 50 nanometers to 200 nanometers, or 30 to 100 nanometers.
  • the thickness of the film layer 130 may be approximately 90 nanometers or 100 nanometers.
  • the polymer ie, the film layer 130
  • the film layer 130 will be in an incompletely cured or pre-cured state. For details, please refer to the foregoing description.
  • Patterning is then performed, as shown in Figure 3C.
  • the metal nanowire layer NWL and the film layer 130 formed by the unmodified metal nanowires 190 in the display area VA are patterned to form an electrode structure; similarly, there is no electrode structure in the peripheral area PA.
  • the metal nanowire layer NWL and the film layer 130 formed by the modified metal nanowire 190 are also patterned to form an electrode structure, and the electrode structure in these two regions constitutes an electrode group applicable to touch sensing.
  • the metal nanowire layer NWL containing unmodified metal nanowires 190 in the display area VA and the peripheral area PA can be etched at the same time, and the etching shield (such as photoresist) can be used in the same process at one time.
  • a patterned metal nanowire layer NWL is formed in the display area VA and the peripheral area PA.
  • the etching solution can be used for components that can etch silver, for example, the main component of the etching solution is H3PO4 (the ratio is about 55% to 70%) And HNO3 (approximately 5% to 15%) to remove silver materials in the same process.
  • the main component of the etching solution is ferric chloride/nitric acid or phosphoric acid/hydrogen peroxide.
  • the patterned metal nanowire layer NWL fabricated on the peripheral area PA is the peripheral lead 120.
  • the peripheral lead 120 and the mark 140 formed by the second part of the metal nanowire layer NWL can be fabricated on the peripheral area PA (refer to FIG. 2 for cooperation).
  • the mark 140 can be widely interpreted as a pattern of non-electrical function, but it is not limited to this.
  • the peripheral lead 120 and the mark 140 may be made of the same metal nanowire layer NWL.
  • the metal nanowire layer NWL of the display area VA is patterned.
  • the first part of the metal nanowire layer NWL in the display area VA can be patterned with the aforementioned etching solution to make the touch sensing electrode TE of this embodiment in the display area VA (e.g., photoresist).
  • the touch sensing electrode TE can be electrically connected to the peripheral lead 120.
  • the touch sensing electrode TE may be a metal nanowire layer NWL including at least an unmodified metal nanowire 190.
  • the patterned metal nanowire layer NWL forms touch sensing electrodes TE in the display area VA, and forms peripheral leads 120 in the peripheral area PA.
  • the electrodes in the two areas are made of the same layer of material to achieve electrical connection. Perform signal transmission between the display area VA and the surrounding area PA.
  • the metal nanowire layer NWL and the film layer 130 can also form a mark 140 in the peripheral area PA.
  • the mark 140 can be widely interpreted as a pattern with non-electrical function, but is not limited to this.
  • the peripheral lead 120 and the mark 140 may be made of the same metal nanowire layer NWL.
  • a modification step is performed to form a metal nanowire layer NWL composed of a plurality of modified metal nanowires 190. That is, after the modification, at least a part of the initial metal nanowires 190 in the metal nanowire layer NWL is modified to form a covering structure 180 on the surface thereof to form the modified metal nanowires 190.
  • an electroless plating method may be used to form the coating structure 180, and an electroless plating solution may be used to infiltrate the incompletely cured film layer 130 to cause the reactive metal ions in the electroless plating solution to precipitate on the surface of the metal nanowire 190.
  • the covering structure 180 is formed, which can be a layered structure made of conductive material, an island-like protrusion structure, a dot-like protrusion structure or a combination thereof; the covering structure 180 can also be a single material or a single material made of an alloy material. Layer or multi-layer structure, or single-layer or multi-layer structure made of multiple materials or alloy materials.
  • the modification step is performed along the surface of the metal nanowire 190, so the shape of the covering structure 180 will grow substantially in accordance with the shape of the metal nanowire 190.
  • the growth conditions of the coating structure 180 (such as the electroless plating time, the composition concentration of the electroless plating solution, etc.) can be controlled so that the coating structure 180 does not grow excessively, but only covers the metal nanowire 190 Surface;
  • the incompletely cured film layer 130 also plays a role of limiting and controlling.
  • the covering structure 180 formed in the modification step will not separate/grow on the film layer 130 without contacting the metal nanowire 190, and a covering structure will be formed between the surface of the metal nanowire 190 and the film layer 130.
  • the covering structure 180 formed by electroless/electrolytic plating has a high density. Compared with the size of the peripheral lead 120 (for example, a line width of 10um), the defect size of the covering structure 180 is 0.01 of the size of the peripheral lead 120. ⁇ 0.001 times, so even if the cladding structure 180 has defects, it will not cause problems such as disconnection of the peripheral leads 120.
  • the modification step is only performed in the peripheral area PA.
  • the “v” symbol is drawn in the touch sensing electrode TE shown in FIG. 3D to represent that the touch sensing electrode TE contains unmodified
  • the initial metal nanowires 190 and the "o" symbol is drawn in the peripheral lead 120 shown in FIG. 3D to represent that the peripheral lead 120 is composed of modified metal nanowires 190.
  • the covering structure 180 is not drawn.
  • a photoresist or similar material can be covered on the display area VA to block the touch sensing electrode TE, so that the electroless plating solution can penetrate into the incompletely cured film layer 130 in the peripheral area PA.
  • the reactive metal ions are precipitated on the surface of the metal nanowire 190 in the peripheral area PA by the oxidation-reduction reaction to form the covering structure 180 to form the modified metal nanowire 190.
  • the touch sensing electrode TE is still made of metal nanowires 190 before modification, it has good light transmittance, for example, the light transmittance (Transmission) of visible light (for example, the wavelength is between 400nm-700nm) is greater than about 90 %, 91%, 92%, 93% or more.
  • the touch panel 100 shown in FIG. 2 can be manufactured by the above steps.
  • the patterned metal nanowire layer NWL in the display area VA constitutes the touch sensing electrode TE of the touch panel 100; and the peripheral area
  • the patterned metal nanowire layer NWL in the PA constitutes the peripheral lead 120 of the touch panel 100
  • the metal nanowire 190 in the peripheral lead 120 has a covering structure 180 (the symbol "o" in the figure represents the modified The metal nanowire 190), the peripheral lead 120 can be connected to an external controller for touch control or other signal transmission.
  • the covering structure 180 can have the same or similar structural appearance as the metal nanowire 190, and the film layer 130 is filled between adjacent metal nanowires 190.
  • a substrate 110 is provided, on which a pre-defined peripheral area PA and a display area VA are provided.
  • a substrate 110 is provided, on which a pre-defined peripheral area PA and a display area VA are provided.
  • a film layer 130 on the unmodified metal nanowires 190 ,
  • the film layer 130 is covered on the unmodified metal nanowires 190, and the film layer 130 is in a pre-cured or incompletely cured state; then a modification step is performed to form the metal nanowires 190 with a covering structure 180 , Where the metal nanowires 190 located in the display area VA are not modified, and the metal nanowires 190 located in the peripheral area PA will be modified; then patterning is performed to form a patterned metal nanowire layer NWL, which is located in the display area VA The pre-modified metal nanowire layer NWL is patterned to form the touch sensing
  • the modification step of this embodiment can use photoresist or similar materials to cover the display area VA to shield the first part of the metal nanowire layer NWL in the display area VA, and only for the metal nanowire layer NWL in the peripheral area PA.
  • the second part is modified to make the reactive metal ions in the electroless plating solution precipitate on the surface of the metal nanowires 190 in the peripheral area PA to form the covering structure 180 to form the modified metal nanowires 190.
  • the patterning step of this embodiment can use an etching solution that can simultaneously etch the metal nanowires 190 before modification and the metal nanowires 190 after modification, together with an etching shield (such as a photoresist), so as to be in the display area at one time in the same process.
  • a patterned metal nanowire layer NWL is made on the VA and the peripheral area PA.
  • the ability to simultaneously etch the pre-modified metal nanowires 190 and the post-modified metal nanowires 190 refers to the ratio of the etching medium to the etching rate of the pre-modified metal nanowires 190 and the post-modified metal nanowires 190. In about 0.1-10 or 0.01-100.
  • the etching solution can be used to etch copper and silver components, such as the etching solution.
  • the main components are H3PO4 (approximately 55% to 70%) and HNO3 (approximately 5% to 15%) to remove copper and silver materials in the same process.
  • the main component of the etching solution is ferric chloride/nitric acid or phosphoric acid/hydrogen peroxide.
  • an etching mask (such as a photoresist) can be used to pattern the first part of the metal nanowire layer NWL in the display area VA with the aforementioned etching solution to fabricate the touch sensing electrode TE of this embodiment.
  • the touch sensing electrode TE can be electrically connected to the peripheral lead 120.
  • the touch sensing electrode TE may be a metal nanowire layer NWL including at least the metal nanowire 190 before modification.
  • the modified metal nanowires 190 form peripheral leads 120, so that the touch sensing electrode TE is electrically connected to the peripheral leads 120 for signal transmission.
  • the metal nanowire layer NWL can also form a mark 140 in the peripheral area PA, and the mark 140 can be widely interpreted as a pattern of non-electrical function, but it is not limited to this.
  • the peripheral lead 120 and the mark 140 may be made of modified metal nanowires 190 in the same layer.
  • the metal nanowire layer NWL located in the display area VA and the peripheral area PA can be patterned by different etching steps (that is, using different etching solutions).
  • the metal nanowire layer NWL is nanometer
  • the etching solution used in the display area VA can be an etching solution that can only etch silver
  • the etching solution used in the peripheral area PA can be an etching solution that can etch silver/copper. Capable of etching solution.
  • the touch panel 100 of the present invention can also be manufactured through the above-mentioned steps, and the specific structure is as described above, and will not be repeated here.
  • the cross section of the peripheral lead 120 and the mark 140 in this article is a quadrilateral (for example, the rectangle drawn in FIG. 2A), but the peripheral lead 120 and the mark have a structure type
  • the state and quantity can be changed according to actual applications, and are not limited by the text and drawings in this article.
  • the mark 140 is set in the bonding area BA of the peripheral area PA (please refer to FIG. 2 and FIG. 2A).
  • the step of connecting the board to the touch panel 100 ie, the bonding step
  • the mark 140 can be any check mark, pattern or label required in the process, which is within the protection category of the present invention.
  • the mark 140 can have any possible shape, such as a circle, a quadrilateral, a cross, an L shape, a T shape, and so on.
  • the non-conductive area 136 is a gap to isolate adjacent peripheral leads 120.
  • the non-conductive area 136 is a gap to isolate the adjacent touch sensing electrodes TE; in one embodiment, the above-mentioned etching method can be used to form the gap between adjacent touch sensing electrodes TE.
  • the touch sensing electrode TE and the first intermediate layer M1 can be made of the same metal nanowire layer NWL (such as a silver nanowire layer), so the metal nanowire layer will form a touch in the display area VA.
  • NWL such as a silver nanowire layer
  • the sensing electrode TE is controlled, and a peripheral lead 120 is formed in the peripheral area PA.
  • the touch sensing electrode TE and the peripheral lead 120 form a connection structure at the junction of the display area VA and the peripheral area PA to facilitate the touch sensing electrode TE and the peripheral lead 120 forms a conducting circuit.
  • the peripheral leads 120 of the touch panel 100 can be directly formed by yellow light and etching process, which is a high-precision process and does not require alignment, so there is no need to reserve alignment errors in the peripheral area. Space, thereby reducing the width of the peripheral area PA, thereby achieving the narrow bezel requirement of the display.
  • the width of the peripheral leads 120 of the touch panel 100 of some embodiments of the present invention is about 5um to 30um, and the distance between adjacent peripheral leads 120 is about 5um to 30um, or the peripheral leads 120 of the touch panel 100
  • the width is about 3um to 20um, the distance between adjacent peripheral leads 120 is about 3um to 20um, and the width of the peripheral area PA can also reach a size less than 2mm, which is reduced by about 20% compared to traditional touch panel products. More border sizes.
  • the touch sensing electrodes TE are arranged in a non-staggered arrangement.
  • the touch sensing electrode TE is an elongated electrode extending along the first direction D1 and having a width change in the second direction D2, and does not intersect each other.
  • the touch sensing electrode TE It may have an appropriate shape, and should not limit the scope of the present invention.
  • the touch sensing electrode TE adopts a single-layer configuration, in which the touch position can be obtained by detecting the change of the capacitance value of each touch sensing electrode TE.
  • the composite structure CS of the display area VA can have conductivity and light permeability, for example, the visible light of the touch sensing electrode TE (
  • the light transmittance (Transmission) with a wavelength between about 400nm-700nm may be greater than about 80%, and the surface resistance (surface resistance) may be between about 10 to 1000 ohm/square; or,
  • the light transmittance (Transmission) of the visible light (for example, the wavelength is between about 400nm-700nm) of the touch sensing electrode TE is greater than about 85%, and the surface resistance is about 50 to 500 ohms/square (ohm/square). square).
  • the light transmittance (Transmission) of the visible light (for example, a wavelength between about 400 nm and 700 nm) of the touch sensing electrode TE is greater than about 88% or greater than about 90%. In one embodiment, the haze of the touch sensing electrode TE is less than 3.0, 2.5, 2.0, or 1.5.
  • the formed metal nanowires 190 may be further subjected to post-processing to improve the contact characteristics of the metal nanowires 190 at the intersections, for example, to increase the contact area, thereby increasing its electrical conductivity.
  • the post-processing may include, for example, heating , Plasma, corona discharge, UV ozone, pressure or a combination of the above process steps.
  • a roller can be used to apply pressure thereon.
  • a pressure of 50 to 3400 psi can be applied to the metal nanowire layer by one or more rollers, preferably In order to be able to apply a pressure of 100 to 1000 psi, 200 to 800 psi, or 300 to 500 psi; the above-mentioned step of applying pressure is preferably implemented before the step of coating the film layer 130.
  • heating and pressure post-processing can be performed at the same time; in detail, the formed metal nanowire 190 can be heated by applying pressure through one or more rollers as described above, for example, by the rollers.
  • the pressure is 10 to 500 psi, preferably 40 to 100 psi; while heating the roller to between about 70°C and 200°C, preferably between about 100°C and 175°C, the conductivity of the metal nanowire 190 can be improved.
  • the metal nanowires 190 can preferably be exposed to a reducing agent for post-processing.
  • the metal nanowires 190 composed of nano-silver wires can preferably be exposed to a silver reducing agent for post-processing.
  • the silver reducing agent includes Borohydrides, such as sodium borohydride; boron nitrogen compounds, such as dimethylaminoborane (DMAB); or gas reducing agents, such as hydrogen (H2); and the exposure time is about 10 seconds to about 30 minutes, Preferably, it is about 1 minute to about 10 minutes.
  • the contact strength or area of the metal nanowire 190 at the intersection can be strengthened, and the contact surface (ie, the first surface 191) of the metal nanowire 190 at the intersection can not be modified. Influence.
  • the touch panel 100 may further include a protective layer 150, which can be applied to various different embodiments, and only the embodiment of FIG. 2B is taken as an example for illustration. 4 shows a schematic cross-sectional view of the protective layer 150 formed on the embodiment of FIG. 2B.
  • the material of the protective layer 150 can refer to the example material of the film layer 130 described above.
  • the protective layer 150 covers the touch panel 100 comprehensively, that is, the protective layer 150 covers the touch sensing electrode TE, the peripheral leads 120 and the mark 140.
  • the protective layer 150 can be filled in the non-conductive area 136 between adjacent peripheral leads 120 to isolate the adjacent peripheral leads 120, or the protective layer 150 can be filled in the non-conductive area 136 between adjacent touch sensing electrodes TE, thereby Isolate adjacent touch sensing electrodes TE.
  • FIG. 5 is a schematic top view of a touch panel 100 according to some embodiments of the present invention.
  • the touch sensing electrode TE of this embodiment adopts a double-layer configuration;
  • FIG. 5A is a cross-sectional view taken along line A-A in FIG. 5.
  • the first touch electrode TE1 and the second touch electrode TE2 are used to illustrate the configuration adopted in this embodiment.
  • the first touch electrode TE1 is formed on one surface (such as the upper surface) of the substrate 110
  • the second touch electrode TE2 is formed on the other surface (the lower surface) of the substrate 110, so that the first touch electrode TE1 and the second touch electrode TE2 They are electrically insulated from each other; and the first touch electrode TE1 is electrically connected to its corresponding peripheral lead 120; in the same way, the second touch electrode TE2 is connected to its corresponding peripheral lead 120.
  • the first touch electrode TE1 is a plurality of elongated electrodes arranged along the first direction D1
  • the second touch electrode TE2 is a plurality of elongated electrodes arranged along the second direction D2.
  • the elongated touch sensing electrode TE1 and the elongated touch sensing electrode TE2 extend in different directions, but are intersected with each other.
  • the first touch sensing electrode TE1 and the second touch sensing electrode TE2 can be used to transmit control signals and receive touch sensing signals, respectively. From then on, the touch position can be obtained by detecting the signal change (for example, the capacitance change) between the first touch sensing electrode TE1 and the second touch sensing electrode TE2.
  • the user can perform touch sensing at each point on the substrate 110.
  • the first touch sensing electrode TE1 and/or the second touch sensing electrode TE2 can be made of at least unmodified metal nanowires 190 and the film layer 130, and the peripheral leads 120 located on both sides of the substrate 110 And/or the mark 140 (the mark 140 is not drawn in FIG. 5 and FIG. 5A, but does not affect the description of this embodiment) can be made of the modified metal nanowire 190 and the film layer 130, that is, it is located on the substrate
  • the peripheral leads 120 and/or the marks 140 on both sides of 110 can be formed by forming the covering structure 180 on the surface of the metal nanowire 190 according to the aforementioned method.
  • the double-sided touch panel manufactured in the embodiment of the present invention can be manufactured in the following manner: first, a substrate 110 is provided, on which a pre-defined peripheral area PA and a display area VA are provided. Next, a metal nanowire layer NWL is formed on the first and second opposite surfaces (such as the upper surface and the lower surface) of the substrate 110 in the peripheral area PA and the display area VA of the first and second surfaces, respectively; and then the incompletely cured
  • the film layer 130 is on the metal nanowire layer NWL; then a double-sided patterning step, such as double-sided yellowing, etching, etc., is performed to produce a patterned metal nanowire layer NWL on the first and second surfaces of the substrate 110; then A double-sided modification step is performed to form a coating structure 180 on the metal nanowires 190 on the upper and lower surfaces of the substrate 110. For example, a modification step is performed on the peripheral area PA of the upper and lower surfaces of the substrate 110, and the modified metal nanowires 190 are The peripheral lead 120 is formed.
  • the patterned product may be immersed in the plating solution, and the upper and lower surfaces of the substrate 110 may be modified at the same time.
  • any surface (such as the upper surface or the lower surface) of the substrate 110 may further include a mark 140, which is also composed of modified metal nanowires 190.
  • the manufacturing method of the double-sided touch panel in the embodiment of the present invention can be formed by stacking two sets of single-sided touch panels in the same direction or in the opposite direction. Take reverse direction stacking as an example.
  • the touch electrodes of the first group of single-sided touch panels can be set up (for example, closest to the user, but not limited to this), and the second group of single-sided touch panels
  • the touch electrodes of the touch panel are arranged downward (for example, farthest away from the user, but not limited to this), and the two sets of touch panel substrates are assembled and fixed with optical glue or other similar adhesives to form a double Surface type touch panel.
  • the touch panel 100 in this embodiment further includes a shielded wire 160 disposed in the peripheral area PA.
  • the shield wire 160 mainly surrounds the touch sensing electrode TE and the peripheral lead 120, and the shield wire 160 extends to the bonding area and is electrically connected to the ground terminal of the flexible circuit board. Therefore, the shield wire 160 can shield or eliminate signal interference or static electricity. Electrostatic Discharge (ESD) protection, especially small current changes caused by human hands touching the connecting wires around the touch device.
  • ESD Electrostatic Discharge
  • the shielding wire 160 can be made of a modified metal nanowire 190, and the description of the peripheral lead 120 or the mark 140 can be referred to.
  • the shielding wire 160, the peripheral lead 120, and the mark 140 may be made of the modified metal nanowire 190 and the film layer 130 in the same layer, and the metal nanowire 190 (such as the silver nanowire layer) ) Can be modified according to the aforementioned process to have the covering structure 180, the specific method can refer to the previous implementation method; the touch sensing electrode TE is made of the unmodified metal nanowire layer NWL.
  • FIG. 7 shows another embodiment of the single-sided touch panel 100 of the present invention, which is a single-sided bridge touch panel.
  • the touch sensing electrode TE formed after the above-mentioned patterning step of the transparent conductive layer (ie, the metal nanowire layer NWL) formed on the substrate 110 may include: along the first direction The first touch sensing electrodes TE1 arranged in D1, the second touch sensing electrodes TE2 arranged along the second direction D2, and the connecting electrodes CE electrically connected to two adjacent first touch sensing electrodes TE1, that is, the first The touch sensing electrode TE1, the second touch sensing electrode TE2, and the connecting electrode CE are made of unmodified metal nanowires 190 and the film layer 130;
  • the insulating block 164 may be disposed on the connecting electrode CE, for example, two Silicon oxide forms the insulating block 164; and the bridging wire 162 is further disposed on the insulating block 164, for example,
  • the modified metal nanowire 190 and the film layer 130 can be used to make the peripheral lead 120, which is electrically connected to the first contact.
  • the sensing electrode TE1 and the second touch sensing electrode TE2 are controlled to transmit signals.
  • the metal nanowire modification method of the present invention can be applied to produce sensing electrodes that do not need to consider light transmittance, such as touch pads of notebook computers (but not limited to this), antenna structures, wireless charging coils, and so on.
  • the method of manufacturing the sensing electrode includes: disposing an unmodified metal nanowire 190 on the substrate 110 to form a metal nanowire layer NWL on the substrate 110; then disposing a film layer 130 on the unmodified metal nanowire On the wire 190, the film layer 130 is covered on the unmodified metal nanowire 190, and the film layer 130 is in a pre-cured or incompletely cured state; then patterning is performed to form a patterned metal nanowire layer NWL, In order to produce sensing electrodes for sensing touch position/touch gestures; then a modification step is performed to form a covering structure 180 on the aforementioned metal nanowire 190, so that the patterned metal nanowire layer NWL is modified That is to say, due to the aforementioned modification step, the sensing electrode used for sensing the touch
  • the cladding structure 180 can have the same or similar structural appearance as the metal nanowire 190, and the film layer 130 is filled between adjacent metal nanowires 190. Since objects such as the touch panel of the notebook computer, the antenna structure, and the coil for wireless charging do not need to transmit light, the above-mentioned modified metal nanowire 190 can be used to make the sensing electrode.
  • the sensing electrode of this embodiment can be connected to a wire to be connected to an external circuit to transmit a signal.
  • the wiring in this embodiment can be equivalent to the aforementioned peripheral lead 120, and is also composed of modified metal nanowires 190; in another embodiment, the wiring can be made of other conductive materials, such as silver wiring, Copper traces and so on.
  • sequence of the modifying step and the patterning step can be adjusted to each other.
  • the metal nanowire modification method of the present invention can be applied to produce electrode plates that do not require patterns, such as the cathode plate/anode plate of a battery (but not limited to this).
  • the method of manufacturing an electrode plate includes: disposing an unmodified metal nanowire 190 on the substrate 110 to form a metal nanowire layer NWL on the substrate 110; then disposing a film layer 130 on the unmodified metal nanowire On the wire 190, the film layer 130 is covered on the unmodified metal nanowire 190, and the film layer 130 is in a pre-cured or incompletely cured state; then a modification step is performed to form the metal nanowire 190 with a film
  • the covering structure 180 causes the metal nanowire layer NWL to be modified, that is to say, due to the aforementioned modification step, the entire surface of the electrode plate on the substrate is composed of the modified metal nanowire 190.
  • the cladding structure 180 can have the same or similar structural appearance as the metal nanowire 190, and the film layer 130 is filled between
  • the electrode plate of this embodiment can be connected with wires to connect with external circuits to transmit signals.
  • the wiring in this embodiment can be equivalent to the aforementioned peripheral lead 120, and is also composed of modified metal nanowires 190; in another embodiment, the wiring can be made of other conductive materials, such as silver wiring, Copper traces and so on.
  • the touch panel 100/sensing electrode/electrode plate described herein can be manufactured by a roll-to-roll process, and the roll-to-roll coating process uses conventional equipment And it can be fully automated, which can significantly reduce the cost of manufacturing touch panels.
  • the specific process of roll-to-roll coating is as follows: First, select a flexible substrate 110, and install the roll-shaped substrate 110 between the two rollers, and use the motor to drive the rollers so that the substrate 110 can run between the two rollers. The movement path of the continuity process.
  • a storage tank, a spray device, a brushing device and the like are used to deposit a slurry containing metal nanowires 190 on the surface of the substrate 110 to form metal nanowires 190; a spray head is used to deposit the polymer on the surface of the substrate 110.
  • the polymer is cured into the film layer 130, patterning and modification are performed. Subsequently, the completed touch panel 100 is rolled out by the roller at the end of the production line to form a touch sensor tape.
  • the touch sensor tape of this embodiment may further include the above-mentioned protective layer 150, which comprehensively covers the uncut touch panel 100 on the touch sensor roll, that is, the protective layer 150 can cover the touch sensor.
  • the uncut touch panels 100 on the roll are then cut and separated into individual touch panels 100.
  • the substrate 110 is preferably a transparent substrate. Specifically, it can be a rigid transparent substrate or a flexible transparent substrate.
  • the material can be selected from glass and acrylic (polymethylmethacrylate; PMMA). , Polyvinyl Chloride (PVC), Polypropylene (PP), Polyethylene Terephthalate (PET), Polyethylene Naphthalate (PEN), Polycarbonate (PC), polystyrene (PS), Cyclo Olefin Polymers (COP), Colorless Polyimide (CPI), Cycloolefin copolymer (cycloolefin copolymer) ; COC) and other transparent materials.
  • PVC Polyvinyl Chloride
  • PP Polypropylene
  • PET Polyethylene Terephthalate
  • PEN Polyethylene Naphthalate
  • PC Polycarbonate
  • PS polystyrene
  • COP Cyclo Olefin Polymers
  • COC Colorless Polyimide
  • the substrate 110 can be preferably subjected to pre-processing steps, such as a surface modification process, or an additional adhesive layer or a resin layer is coated on the surface of the substrate 110 .
  • the metal nanowires 190 may be silver nanowires or silver nanofibers, which may have an average diameter of about 20 to 100 nanometers, and an average length of about 20 to 100 microns, preferably The average diameter is about 20 to 70 nanometers, and the average length is about 20 to 70 microns (that is, the aspect ratio is 1000). In some embodiments, the diameter of the metal nanowire 190 can be between 70 nanometers and 80 nanometers, and the length is about 8 micrometers.
  • the roll-to-roll production line can adjust the sequence of multiple coating steps along the motion path of the substrate as required or can incorporate any number of additional stations as required.
  • pressure rollers or plasma equipment can be installed in the production line.
  • the touch panel of the embodiment of the present invention can be assembled with other electronic devices, such as a display with touch function.
  • the substrate 110 can be bonded to a display component, such as a liquid crystal display component or an organic light emitting diode (OLED) display component, both Optical glue or other similar adhesives can be used for bonding between them; and the touch sensing electrode TE can also be bonded by optical glue and the outer cover layer (such as protective glass).
  • the touch panels, antennas, etc. of the embodiments of the present invention can be applied to electronic devices such as portable phones, tablet computers, notebook computers, etc., and flexible products can also be applied.
  • the electrodes of the embodiments of the present invention can also be fabricated on the polarizer.
  • the electrodes of the embodiments of the present invention can also be fabricated on wearable devices (such as watches, glasses, smart clothes, smart shoes, etc.) and automotive devices (such as dashboards, driving recorders, car rearview mirrors, car windows, etc.).
  • the modified metal nanowires 190 can have better conductive properties than before the modification.
  • the error space reserved in the alignment process can be eliminated, so that the peripheral area can be effectively reduced width.
  • the conductive nanostructures on one or both sides of the substrate can be modified.
  • an additive process that is, a process directly on the conductive nanostructure
  • a subtractive process instead of a subtractive process, so the process efficiency can be improved and the material cost can be reduced.
  • Some embodiments of the present invention can be applied to flexible conductive substrates.
  • the exposed surface of the metal nanowire 190 is fully covered by the covering structure, that is, the covering structure is spaced between the metal nanowire and the film layer.
  • the cladding structure is not laminated on the metal nanowire layer in a layered or massive manner, but is affected by the initial shape of the metal nanowire, and the metal nanowire is used as a seed crystal. , And limited by the film layer, it grows uniformly along the interface between the metal nanowire and the film layer.
  • the film layer is used as a limiting layer to restrict/control the growth of the covering structure along the exposed surface of the metal nanowire 190. Due to the finite layer, the covering structure can be uniformly grown on the exposed surface of the metal nanowire 190.
  • the growth of the covering structure is controllable and uniform.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

一种电极、电极的制作方法及其装置,电极包含导电纳米结构及一外加于所述导电纳米结构的膜层,所述导电纳米结构与所述膜层的界面实质具有披覆结构。

Description

电极、电极的制作方法及其装置 技术领域
本发明涉及电极、电极的制作方法及其装置。
背景技术
近年来,透明导体可同时让光穿过并提供适当的导电性,因而常应用于许多显示或触控相关的装置中。一般而言,透明导体可以是各种金属氧化物,例如氧化铟锡(Indium Tin Oxide,ITO)、氧化铟锌(Indium Zinc Oxide,IZO)、氧化镉锡(Cadmium Tin Oxide,CTO)或掺铝氧化锌(Aluminum-doped Zinc Oxide,AZO)。然而,这些金属氧化物薄膜并不能满足显示设备的可挠性需求。因此,现今发展出了多种可挠性的透明导体,例如利用纳米等级的材料所制作的透明导体。
然而,所述的纳米等级的材料的工艺技术尚有许多需要解决的问题,例如传统上是利用减法工艺,例如利用蚀刻等步骤移除不需要的材料达成图案化,诸如此类的工艺会造成材料的浪费及工艺上的复杂性。又例如利用纳米线制作触控电极,纳米线与周边区的引线须进行搭接,所述搭接区域造成周边区的尺寸无法缩减,进而导致周边区的宽度较大,无法满足显示器的窄边框需求。
发明公开
本发明的一目的在于提供一种电极,形成披覆结构于导电纳米结构(如金属纳米线)的特定表面,两者形成并联特性,以达到提升电特性的目的,以满足低电阻与可挠性的应用。
本发明的部分实施方式中另一目的在于提供一种电极的制作方法,形成披覆结构于导电纳米结构(如金属纳米线)上是一种直接成型的加法工艺,工艺较为简单且可降低材料成本。
本发明的部分实施方式中再一目的在于提供一种电极装置,通过设计周边引线直接由改质后的导电纳米结构(如金属纳米线)成型,藉以达到不需搭接的结构,以形成宽度较小的周边区,进而满足窄边框的需求。
根据本发明的部分实施方式,一种电极,其特征在于,包含:导电纳米结 构及一外加于所述导电纳米结构的膜层,所述导电纳米结构与所述膜层的界面实质具有披覆结构。
于本发明的部分实施方式中,披覆结构包括镀层,所述镀层完全包覆导电纳米结构与膜层的界面。披覆结构包括化学镀层、电镀层或其组合。
于本发明的部分实施方式中,膜层具有一未完全固化状态,该披覆结构沿着所述导电纳米结构的表面所形成并位于所述导电纳米结构与所述膜层的界面。
于本发明的部分实施方式中,膜层具有一第一层区域与一第二层区域,该第二层区域的固化状态高于该第一层区域的固化状态;在第一层区域中,披覆结构沿着所述导电纳米结构的表面所形成并位于所述导电纳米结构与所述膜层的界面。在第二层区域中,至少部分的导电纳米结构的表面具有披覆结构,或者导电纳米结构的表面具有披覆结构均无披覆结构。两层区域相比,固化程度较小的区域,较大比例的导电纳米结构的表面被披覆结构所覆盖。
于本发明的部分实施方式中,相邻的所述导电纳米结构之间填充有该膜层,该膜层中没有单独存在的所述披覆结构。
于本发明的部分实施方式中,导电纳米结构包含金属纳米线,该披覆结构完全包覆所述金属纳米线与所述膜层的界面,并在所述界面形成均匀的披覆层。所述均匀的披覆层可为厚度均匀的披覆层。
于本发明的部分实施方式中,披覆结构为导电材料所制成的层状结构、岛状突起结构、点状突起结构或其组合。
于本发明的部分实施方式中,导电材料为银、金、铂、铱、铑、钯、锇或包含前述材料的合金。
于本发明的部分实施方式中,披覆结构为单一金属材料或合金材料所制成的单层结构;或者该披覆结构为两种以上的金属材料或合金材料所制成的两层或多层结构。
于本发明的部分实施方式中,披覆结构为化学镀铜层、电镀铜、化学镀铜镍层、化学镀银层或其组合。披覆结构为化学镀层,所述化学镀层完全包覆所述导电纳米结构与所述膜层的界面。也就是说,导电纳米结构的表面与所述膜层之间隔着化学镀层。
根据本发明的部分实施方式,包括:将一膜层外加于一含有导电纳米结构 的导电层上,并使该膜层达到预固化或未完全固化状态;以及进行一改质步骤,使一披覆结构成型于至少一部分的所述导电纳米结构的表面,使所述导电纳米结构与所述膜层的界面实质具有该披覆结构。
于本发明的部分实施方式中,该改质步骤包括:将该膜层与该导电纳米结构浸入化学镀溶液,所述化学镀溶液渗入该膜层中并与所述导电纳米结构接触,使金属析出于所述导电纳米结构的表面。化学镀层完全包覆所述导电纳米结构与所述膜层的界面。
于本发明的部分实施方式中,披覆结构沿着所述导电纳米结构的表面所形成并位于所述导电纳米结构与所述膜层的界面。
于本发明的部分实施方式中,将一膜层外加于一含有导电纳米结构的导电层上包括:涂布聚合物于该导电层上;控制固化条件使聚合物达到预固化或未完全固化状态。聚合物为光固化型、热固化型或其他固化型态。
于本发明的部分实施方式中,将一膜层外加于一含有导电纳米结构的导电层上包括:涂布聚合物于该导电层上;控制固化条件使聚合物形成该膜层,该膜层具有一第一层区域与一第二层区域,该第二层区域的固化状态高于该第一层区域的固化状态。
于本发明的部分实施方式中,控制固化条件包括引入氧气,并控制氧气在该第一层区域与该第二层区域的浓度。
于本发明的部分实施方式中,改质步骤包括:化学镀步骤、电镀步骤或其组合
根据本发明的部分实施方式,一种触控面板的制作方法,其特征在于,包含:提供基板,具有显示区与周边区;设置金属纳米线于该显示区与该周边区以形成一金属纳米线层;外加一膜层于该金属纳米线层上,并使该膜层达到预固化或未完全固化状态;进行图案化步骤,包括:图案化位于该显示区的该金属纳米线层与该膜层以形成一触控感应电极及图案化位于该周边区的该金属纳米线层与该膜层以形成一周边引线,该触控感应电极电性连接该周边引线;进行改质步骤,使一披覆结构成型于该周边引线的所述金属纳米线的表面,使所述金属纳米线与所述膜层的界面实质具有该披覆结构。
于本发明的部分实施方式中,改质步骤包括:将该周边引线的该膜层与该金属纳米线层接触化学镀溶液,所述化学镀溶液渗入该膜层中并与所述金属纳 米线接触,使金属析出于所述金属纳米线的表面。
于本发明的部分实施方式中,该改质步骤包含化学镀步骤、电镀步骤或其组合。
根据本发明的部分实施方式,一种装置,其包含一种电极,电极包含:导电纳米结构及一外加于所述导电纳米结构的膜层,所述导电纳米结构与所述膜层的界面实质具有披覆结构。
于本发明的部分实施方式中,装置包括触控面板、触摸板、天线结构、线圈、电极板、显示器、可携式电话、平板计算机、穿戴装置、车用装置、笔记本电脑或偏光片等等。
附图简要说明
图1A为根据本发明部分实施方式的第一步骤示意图;
图1B为根据本发明部分实施方式的第二步骤示意图;
图1C为根据本发明部分实施方式的第三步骤示意图;
图2为根据本发明的部分实施方式的触控面板的俯视示意图;
图2A为图2的线A-A的剖面示意图;
图2B为图2的线B-B的剖面示意图;
图3A至图3D为根据本发明的部分实施方式的触控面板的制作方法示意图;
图4为根据本发明的另一实施方式的触控面板的剖面示意图;
图5为根据本发明的另一实施方式的触控面板的示意图;
图5A为图5的线A-A的剖面示意图;
图6为根据本发明的另一实施方式的触控面板的示意图;
图7为根据本发明的另一实施方式的触控面板的示意图;
图8为膜层通入20%氧气、固化不同能量条件下的第一区域与第二区域的总厚度以及经碱液蚀刻后的第二区域的厚度;
图9显示金属纳米线在没有膜层下进行上化学镀的SEM图;
图10为随着化镀时间金属纳米线演变为具有披覆结构的纳米银线的SEM图。
附图标记说明:
100:触控面板
110:基板
120:周边引线
140:标记
130:膜层
136:非导电区域
190:金属纳米线
150:保护层
160:屏蔽导线
180:披覆结构
VA:显示区
PA:周边区
BA:接合区
TE1:第一触控电极
TE2:第二触控电极
TE:触控感应电极
NWL:金属纳米线层
D1:第一方向
D2:第二方向
实现本发明的最佳方式
以下将以附图揭露本发明的多个实施方式,为明确说明起见,许多实务上的细节将在以下叙述中一并说明。然而,应了解到,这些实务上的细节不应用以限制本发明。也就是说,在本发明部分实施方式中,这些实务上的细节是非必要的。此外,为简化附图起见,一些现有惯用的结构与组件在附图中将以简单示意的方式为之。
关于本文中所使用的「约」、「大约」或「大致」,一般是指数值的误差或范围于百分之二十以内,较好地是于百分之十以内,更佳地是于百分之五以内。文中若无明确说明,所提及的数值皆视为近似值,即具有如「约」、「大 约」或「大致」所表示的误差或范围。
本文中所使用的「导电纳米结构」,一般是指纳米结构所组成的层(layer)/膜(film)的片电阻小于500奥姆/平方,较好地是小于200奥姆/平方,更佳地是小于100奥姆/平方;而纳米结构一般是指纳米尺寸的结构,例如但不限于至少具有一个方向尺寸(例如线径、长度、宽度、厚度等等)为10-9公尺等级的线状结构、柱状结构、片状结构、网格状结构、管状结构等等。
本发明的部分实施方式提供一种将导电纳米结构(以纳米线为例)改质的方法,其可包括以下步骤:
如图1A,首先将金属纳米线190布于基板110上以形成金属纳米线层NWL,例如纳米银线层、纳米金线层或纳米铜线层涂。本实施例的具体作法为:将具有金属纳米线190的分散液或浆料(ink)以涂布方法成型于基板110上,并加以干燥使金属纳米线190覆着于基板110的表面,进而成型为设置于基板110上的金属纳米线层NWL。而在上述的固化/干燥步骤之后,溶剂等物质被挥发,而金属纳米线190以随机的方式分布于基板110的表面;较佳的,金属纳米线190会固着于基板110之表面上而不至脱落而形成所述的金属纳米线层NWL,且金属纳米线190可彼此接触以提供连续电流路径,进而形成一导电网络(conductive network),换言之,金属纳米线190彼此在交叉位置处形成相互接触以构成传递电子的路径。以银纳米线为例,一根银纳米线与另一银纳米线在交叉位置处会形成直接接触的态样,故形成低电阻的传递电子路径。在一实施例中,当一区域或一结构的片电阻高于108奥姆/平方(ohm/square)即可被认定为电绝缘,较佳地是高于104奥姆/平方(ohm/square),3000奥姆/平方(ohm/square),1000奥姆/平方(ohm/square),350奥姆/平方(ohm/square),或100奥姆/平方(ohm/square)的情况。在一实施例中,由银纳米线所构成的银纳米线层的片电阻小于100奥姆/平方。
接着如图1B,设置膜层130,使膜层130覆盖于金属纳米线190上,并控制膜层130的固化程度。在具体实施例中,将适当的聚合物涂布于金属纳米线190上,具有流动状态/性质的聚合物可以渗入金属纳米线190之间而形成填充物,金属纳米线190会嵌入膜层130之中形成复合结构CS;并控制聚合物涂布、固化的条件,例如控制温度、光固化参数等等,使聚合物呈现预固化或未完全固化;或是膜层130具有不同的固化程度,例如下层区域(即接近基 板110的区域)的固化程度大于上层区域(即远离基板110的区域),而上层区域即为前述的预固化或未完全固化状态。也就是说,在此步骤中,涂布聚合物以外加膜层130于金属纳米线190,而金属纳米线190会内嵌于预固化或未完全固化的膜层130而形成复合结构CS。于本发明的部分实施方式中,膜层130由绝缘材料所形成。举例而言,膜层130的材料可以是非导电的树脂或其他有机材料,诸如聚丙烯酸酯、环氧树脂、聚胺基甲酸酯、聚硅烷、聚硅氧、聚(硅-丙烯酸)、聚乙烯(polyethylene;PE)、聚丙烯(Polypropylene;PP)、聚乙烯醇缩丁醛(Polyvinyl butyral;PVB)、聚碳酸酯(polycarbonate;PC)、丙烯腈-丁二烯-苯乙烯共聚物(Acrylonitrile butadiene styrene;ABS)、聚(3,4-伸乙二氧基噻吩)(PEDOT)、聚(苯乙烯磺酸)(PSS)或陶瓷材料等等等。于本发明的部分实施方式中,可以藉由旋涂、喷涂、印刷等方式形成膜层130。于部分实施方式中,膜层130的厚度大约为20纳米至10微米、或50纳米至200纳米、或30至100纳米,举例而言,膜层130的厚度大约可为90纳米或100纳米。为图示简洁,在图1B中,将金属纳米线190与膜层130绘制成一整体的结构层,但本发明不以此为限,金属纳米线190与膜层130可能构成其他类型的结构层,例如上下相叠的结构等等。
在一实施例中,控制膜层130的固化状态的方法为采用不同能量之固化条件进行膜层固化,使膜层达到非完全固化程度。其中,膜层的固化行为为利用膜层于固化时之的键结变化,故某一膜层的固化程度可定义为该膜层键结强度对比于完全固化膜层的键结强度的比例(本实施例以百分比表示)。例如针对一市售商品的膜层材料,原本须采用500mJ光能量于低氧气氛下照射4分钟才能达到完全固化,本实施例采用500mJ光能量于低氧气氛下照射2分钟使其达到95%总体固化量的固化状态,也就是说该固化条件下以红外线光谱法所量测的键结强度为完全固化层的95%,因此定义该条件下所获得的固化膜层为95%总体固化量的固化状态。
在一实施例中,可控制膜层130在不同深度(即厚度)有不同的固化状态,可在膜层进行固化时通入气体,使膜层表面与底部之气体浓度不同,进而促使膜层表面的固化反应产生气体阻绝固化的现象,造成膜层具有不同固化程度的第一层区域与第二层区域,例如第二层区域的固化状态属于膜层底部,为固化程度较高的区域,相较之下,该第一层区域的固化状态则属于膜层表面,为 固化程度较低的区域。其具体方法为控制固化条件下的气体(如氧气)浓度及/或固化能量,气体浓度可以为20%氧气、10%氧气、3%氧气或<1%氧气等,固化能量则将依据膜层的材质进行选择,例如250mJ至1000mJ不等的UV光能量。于实施方式中,氧气浓度越高将促使膜层表面氧气阻绝固化的现象越为显着,亦使其第一区域的固化程度较低区域的厚度越厚,而第二区域的固化程度较高区域的厚度较薄,故若以第一区域的厚度由厚至薄的依序为20%氧气、10%氧气、3%氧气或<1%氧气。在一具体实施例中,通入20%氧气、固化能量500mJ的条件下,第一区域的固化程度约为60%,第一区域的厚度约为23.4nm(或占总膜层厚度的比例12%);而第二区域的固化程度约为99-100%(接近完全固化),第二区域的厚度约为168.1nm(或占总膜层厚度的比例88%)。图8为膜层通入20%氧气的条件下,分别以固化能量250mJ、500mJ与1000mJ所照射形成的第一区域(未固化)与第二区域(接近完全固化或完全固化)的总厚度,以及上述膜层经碱液蚀刻后所残留的第二区域的厚度。可以观察到,随着固化能量的增强时,第一区域的厚度将随的减薄(即蚀刻后所减少的厚度)。于固化能量为1000mJ时,第一区域的厚度约为8.8nm(或占总膜层厚度的比例5%);而第二区域的厚度约为195.9nm(或占总膜层厚度的比例95%)。
值得说明的是,本发明偏重于讨论外加于金属纳米线190的膜层130,利用控制外加于膜层130的固化程度或固化深度使披覆结构180可以沿着金属纳米线190的表面生长而形成于金属纳米线190与膜层130的界面的改质结构。在金属纳米线190分散液或浆料(ink)的涂布步骤中,分散液或浆料中也可能含有聚合物等类似组成,但其并非本发明的重点。膜层130的固化程度可控制在0%、20%、30%、60%、75%、95%、98%、0%-95%、0%-98%、95%-98%、60%-98%、60%-75%等条件。如同前述,本发明实施例所指的未完全固化或仅达预固化可定义为该膜层键结强度不同于完全固化膜层的键结强度,亦即两者的比例非100%就可以属于本发明实施例的范畴。
接着如图1C,接着进行改质步骤,以形成由多个改质后的金属纳米线190所组成的金属纳米线层NWL。也就是说,经过改质之后,初始金属纳米线190至少一部份被改质而在其表面形成披覆结构180以形成改质后的金属纳米线190。在图1B、1C中分别以符号“v”、“o”代表改质前后的金属纳米线190。在一具体实施例中,可利用化学镀/电解方法形成披覆结构180,而披覆结构 180可为导电材料所制成的层状结构、岛状突起结构、点状突起结构或其组合,披覆率约占总表面积的比率80%以上,90-95%,90-99%,或90-100%(披覆率100%表示没有初始金属纳米线190的表面被裸露);前述的导电材料可为银、金、铂、镍、铜、铱、铑、钯、锇或包含前述材料的合金、或不包含前述材料的合金等。在一具体实施例,披覆结构180为单一导电材料所制成的单层结构,例如形成化学镀铜层、电镀铜层或化学镀铜镍合金层;或者披覆结构180为两种以上的导电材料所制成的两层或多层结构,例如先形成化学镀铜层,然后再形成化学镀银层。
在一具体实施例中,可备制以下化学镀铜溶液(含铜离子溶液、螯合剂、碱剂、还原剂、缓冲剂及稳定剂等);将金属纳米线190与膜层130浸入化学镀铜溶液,化学镀铜溶液可渗入预固化或未完全固化的膜层130中并利用毛细现象等作用与金属纳米线190的表面接触,利用金属纳米线190作为催化点或成核点,以利铜的析出,进而将化学镀铜层沉积在金属纳米线190上形成披覆结构180。披覆结构180大致上会依照金属纳米线190的初始型态进行生长,并随着改质时间而形成包覆金属纳米线190的结构;相对的,在原本复合结构CS中没有金属纳米线190的位置则不会有铜的析出,换言之,经过良好的控制,披覆结构180均形成在金属纳米线190与膜层130的界面上,而膜层130中没有不接触金属纳米线190的表面而单独存在的披覆结构180。因此,在改质步骤之后,导电网络中的金属纳米线190会被披覆结构180所包覆,披覆结构180会位于金属纳米线190与膜层130形成的界面之间;披覆结构180与其所包覆的金属纳米线190可视为一整体,而在纳米线与纳米线之间的空隙仍是由膜层130的材料所占据。
在一具体实施例中,膜层130与化学镀溶液/电解溶液可为相互搭配的材质,例如可选用不耐碱性的聚合物制作膜层130,而化学镀溶液可选用碱性溶液,因此在此步骤中,除了利用前述膜层的未完全固化状态,更可利用化学镀溶液攻击(类似蚀刻)未完全固化的膜层130,以利于进行上述的改质反应。
以下进行原理的说明,但不以此为限。在金属纳米线190与膜层130浸入化学镀溶液/电解溶液的初期,溶液会先攻击未完全固化的膜层130,当溶液接触到金属纳米线190时,金属离子(例如铜离子)就以金属纳米线190(例如纳米银线)作为晶种开始发展,随浸泡时间而在金属纳米线190的表面成长上述的 批覆结构180。另一方面,膜层130在上述反应过程中做为控制层或限位层,其将批覆结构180的生长反应限制在金属纳米线190与膜层130的界面处,使批覆结构180得以受控而均匀生长。图9显示金属纳米线190在没有膜层130保护下进行上述的化学镀,可以发现铜层是随机不受控的生长,有些金属纳米线190上成长出厚大的铜层,却有些金属纳米线190上并未出现铜层;也就是说,膜层130可以达到将铜析出的位置限制在金属纳米线190与膜层130界面的效果,故本发明应用在感测/传递信号时具有较佳的一致性。
最后可包括固化步骤,以将膜层130完全固化。可利用光、热或其他方式进行膜层130的完全固化。
下表为本发明的具体实施例,可发现膜层130的固化程度在0%、95%、98%、0%~95%、0%~98%、95%~98%等条件下进行镀铜,可有效降低膜层的面电阻(或称片电阻)。固化程度的量测可采用多种方式,除了上述键结强度的计算,又例如对聚合物薄膜进行溶剂抽提,测量溶解在溶剂中的未固化聚合物的重量,且与固化的和未固化的聚合物的总重进行比较,计算出溶解度百分比(%Sol);又例如针对热固性聚合物材料,也可以采用热分析技术进行固化度的测定。
Figure PCTCN2020092260-appb-000001
在前述方法中,披覆结构180会在每一个金属纳米线190的表面成型且包覆金属纳米线190的整体表面,并向外成长。在一实施例中,可选用高导电材料制作披覆结构180,例如将铜做为披覆结构180覆盖于纳米银线的表面并位于纳米银线与膜层之间的界面。值得说明的是,虽然银材料的导电率高于铜材料,但由于纳米银线的尺寸及相互接触态样的因素,使得银纳米线层的整体导电度较低(但电阻仍低并足以传递电信号),而在改质之后,具有披覆结构180的纳米银线190的导电度高于未改质的纳米银线190,也就是说,改质后的金 属纳米线层NWL可形成低阻值的导电层(相较于未改质的金属纳米线层NWL,面电阻可降低约100~10000倍);而该导电层即可用于制作各种用途的电极结构,例如应用于可挠领域的导电基板或无线充电线圈、天线结构等等。具体而言,电极结构可至少包括金属纳米线及额外披覆于金属纳米线的膜层,至少一部分或全部的金属纳米线的表面(即金属纳米线190与膜层130对应的界面)具有披覆层,引入批覆层可提高金属纳米线层NWL的导电度。图10为随着化镀时间金属纳米线190演变为具有披覆结构180的纳米银线的SEM演进图。由于铜层是沿着金属纳米线的表面(即金属纳米线190与膜层130对应的界面),故经过施镀之后,所观察到的铜的型态会相当类似于金属纳米线的初始型态(例如均为线状结构),且铜会均匀的生长而形成尺寸(如厚度)相近的外层结构。
本发明利用前述方法可以应用于制作触控面板(如图2),例如但不限于与显示器搭配使用的触控面板,部分实施方式中的触控面板100包含基板110、周边引线120以及触控感应电极TE,其中触控感应电极TE包括多个未改质的初始导电纳米结构,周边引线120包括多个改质后的导电纳米结构,改质后的导电纳米结构上具有披覆结构180(可参照图1C),导电纳米结构可为金属纳米线190。图2为根据本发明的部分实施方式的触控面板100的俯视示意图。参阅图2,触控面板100可包含基板110、周边引线120、标记140以及触控感应电极TE,而触控感应电极TE大致位于显示区VA,其由多个未改质的初始金属纳米线190所构成的金属纳米线层NWL所图案化;改质后的金属纳米线190上具有披覆结构180,改质后的金属纳米线190被图案化而形成周边引线120或/及标记140。藉由将披覆结构180成型在金属纳米线190与膜层130之间的界面,故可以达到提高导电度,藉以制作周边引线120;另外,在显示区VA,金属纳米线190与外加的膜层130是直接接触(亦即显示区VA中的金属纳米线190是未改质的),换言之,披覆结构180不会成型于显示区VA中的金属纳米线190的表面,因此可维持显示区VA中金属纳米线190所形成的导电网络的良好光学特性。
上述的周边引线120、标记140以及触控感应电极TE的数量可为一或多个,而以下各具体实施例及附图中所绘制的数量仅为解说之用,并未限制本发明。参阅图2,基板110具有显示区VA与周边区PA,周边区PA设置于显示 区VA的侧边,例如周边区PA则可为设置于显示区VA的四周(即涵盖右侧、左侧、上侧及下侧)的框型区域,但在其他实施例中,周边区PA可为一设置于显示区VA的左侧及下侧的L型区域。又如图2所示,本实施例共有八组周边引线120,均设置于基板110的周边区PA;触控感应电极TE设置于基板110的显示区VA且电性连接周边引线120。本实施例更有两组标记140,均设置于基板110的周边区PA。
请参阅图3A至图3D,其显示前述触控面板100的制作方式:首先提供基板110,其上具有事先定义的周边区PA与显示区VA。接着,设置未改质的金属纳米线190于该基板110上,以形成金属纳米线层NWL于周边区PA与显示区VA(如图3A);接着设置膜层130于该些未改质的金属纳米线190上,使膜层130覆盖于未改质的金属纳米线190之上,且膜层130为预固化或未完全固化状态(如图3B);接着进行图案化,以形成具有图样金属纳米线层NWL(如图3C),其中位于显示区VA的金属纳米线层NWL被图案化形成触控感应电极TE(可配合图2),而周边区PA的金属纳米线层NWL被图案化形成周边引线120(请配合图2);接着进行改质步骤,将前述金属纳米线190上成型有披覆结构180(如图3D),其中位于显示区VA的金属纳米线层NWL未被改质,位于周边区PA的金属纳米线层NWL会被改质,也就是说由于前述的改质步骤,使得周边引线120由改质后的金属纳米线190所构成。
以下就上述步骤进行更详细的说明。
请参阅图3A,首先将至少包括金属纳米线190的金属纳米线层NWL,例如纳米银线层、纳米金线层或纳米铜线层涂布于基板110上的周边区PA与显示区VA;金属纳米线层NWL的第一部分主要是位在显示区VA,而第二部分主要成形于周边区PA。在本实施例的具体作法为:将具有金属纳米线190的分散液或浆料(ink)以涂布方法成型于基板110上,并加以干燥使金属纳米线190覆着于基板110的表面,进而成型为设置于基板110上的金属纳米线层NWL。而在上述的固化/干燥步骤之后,溶剂等物质被挥发,而金属纳米线190以随机的方式分布于基板110的表面;较佳的,金属纳米线190会固着于基板110的表面上而不至脱落而形成金属纳米线层NWL,且金属纳米线190可彼此接触以提供连续电流路径,进而形成一导电网络(conductive network),换言之,金属纳米线190彼此在交叉位置相互接触以构成传递电子的路径。以银纳 米线为例,一根银纳米线与另一银纳米线在交叉位置处会形成直接接触的态样(即为银-银的接触界面),故形成低电阻的传递电子路径,而后续的改质作业并不会影响或改变”银-银接触”的低电阻结构,更在金属纳米线190表面包覆高导电度的披覆结构180,故会对于终端产品的电特性产生提升的效果。
在本发明的实施例中,上述分散液可为水、醇、酮、醚、烃或芳族溶剂(苯、甲苯、二甲苯等等);上述分散液亦可包含添加剂、接口活性剂或粘合剂,例如羧甲基纤维素(carboxymethyl cellulose;CMC)、2-羟乙基纤维素(hydroxyethyl Cellulose;HEC)、羟基丙基甲基纤维素(hydroxypropyl methylcellulose;HPMC)、磺酸酯、硫酸酯、二磺酸盐、磺基琥珀酸酯、磷酸酯或含氟界面活性剂等等。而所述的含有金属纳米线190的分散液或浆料可以用任何方式成型于基板110及前述金属层ML的表面,例如但不限于:网版印刷、喷头涂布、滚轮涂布等工艺;在一种实施例中,可采用卷对卷(roll to roll;RTR)工艺将含有金属纳米线190的分散液或浆料涂布于连续供应的基板110及前述金属层ML的表面。
本文所用的「金属纳米线(metal nanowires)」为一集合名词,其指包含多个元素金属、金属合金或金属化合物(包括金属氧化物)的金属线的集合,其中所含金属纳米线的数量,并不影响本发明所主张的保护范围;且单一金属纳米线的至少一个截面尺寸(即截面的直径)小于约500nm,较佳小于约100nm,且更佳小于约50nm;而本发明所称的为”线(wire)”的金属纳米结构,主要具有高的纵横比,例如介于约10至100,000之间,更详细的说,金属纳米线的纵横比(长度:截面的直径)可大于约10,较佳大于约50,且更佳大于约100;金属纳米线可以为任何金属,包括(但不限于)银、金、铜、镍及镀金的银。而其他用语,诸如丝(silk)、纤维(fiber)、管(tube)等若同样具有上述的尺寸及高纵横比,亦为本发明所涵盖的范畴。
请参阅图3B,进行涂布膜层130的步骤。在一实施例中,设置膜层130于未改质的金属纳米线190上,使膜层130覆盖于未改质的金属纳米线190之上,再依序进行图案化步骤与改质步骤。在具体实施例中,涂布之后的膜层130的聚合物可以渗入金属纳米线190之间而形成填充物,金属纳米线190会嵌入膜层130之中形成复合结构CS。也就是说,未改质的金属纳米线190会内嵌于膜层130而形成复合结构CS。于本发明的部分实施方式中,膜层130 由绝缘材料所形成。举例而言,膜层130的材料可以是非导电的树脂或其他有机材料。于本发明的部分实施方式中,可以藉由旋涂、喷涂、印刷等方式形成膜层130。于部分实施方式中,膜层130的厚度大约为20纳米至10微米、或50纳米至200纳米、或30至100纳米,举例而言,膜层130的厚度大约可为90纳米或100纳米。而为了有效的进行改质步骤,聚合物(即膜层130)会形成未完全固化或预固化的状态,具体可参照前文的说明。
接着进行图案化,如图3C所示。在图案化步骤之后,显示区VA中由未改质的的金属纳米线190所形成的金属纳米线层NWL与膜层130就被定义出图案而形成电极结构;同样的,周边区PA中未改质的金属纳米线190所形成的金属纳米线层NWL与膜层130也被定义出图案而形成电极结构,而这两区域的电极结构就构成可应用于触控感应的电极组。
在一实施例中,可同时蚀刻显示区VA与周边区PA中含未改质的金属纳米线190的金属纳米线层NWL,配合蚀刻屏蔽(如光阻)以在同一工序中一次性的在显示区VA与周边区PA中制作具有图样金属纳米线层NWL。根据一具体实施例,金属纳米线层NWL为银纳米线所组成的情况下,蚀刻液可用于可蚀刻银的组分,例如蚀刻液的主成分为H3PO4(比例为约55%至70%)及HNO3(比例约5%至15%),以在同一工艺中移除银材料。在另一具体实施例中,蚀刻液的主成分为氯化铁/硝酸或为磷酸/双氧水等组成。
如图3C所示,在周边区PA上所制作出的具有图样的金属纳米线层NWL即为周边引线120。在另一实施例中,在周边区PA上可制作出由金属纳米线层NWL的第二部分所构成的周边引线120与标记140(可配合参考图2)。本实施例中,标记140可以广泛的被解读为非电性功能的图样,但不以此为限。在本发明的部分实施例中,周边引线120与标记140可为同层的金属纳米线层NWL所制作。
同样的,在图案化的步骤中,显示区VA的金属纳米线层NWL被图案化。换言之,可配合蚀刻屏蔽(如光阻),利用前述的蚀刻液将显示区VA的金属纳米线层NWL的第一部分进行图案化以制作本实施例的触控感应电极TE于显示区VA(如图3C所示),触控感应电极TE可电性连接周边引线120。具体而言,触控感应电极TE可为至少包括未改质金属纳米线190的金属纳米线层NWL。整体来说,图案化之后的金属纳米线层NWL在显示区VA形成触控感 应电极TE,而在周边区PA形成周边引线120,故两区的电极是同一层材料制作而达到电性连接以进行显示区VA与周边区PA信号的传输。而在另一实施例中,金属纳米线层NWL与膜层130在周边区PA也可形成标记140,标记140可以广泛的被解读为非电性功能的图样,但不以此为限。在本发明的部分实施例中,周边引线120与标记140可为同层的金属纳米线层NWL所制作。
请参阅图3D,接着进行改质步骤,以形成由多个改质后的金属纳米线190所组成的金属纳米线层NWL。也就是说,经过改质之后,金属纳米线层NWL中的初始金属纳米线190至少一部份被改质而在其表面形成披覆结构180以形成改质后的金属纳米线190。在一具体实施例中,可利用化镀方法形成披覆结构180,利用化学镀液渗入未完全固化的膜层130中,使化学镀液中的反应性金属离子在金属纳米线190表面析出而形成披覆结构180,其可为导电材料所制成的层状结构、岛状突起结构、点状突起结构或其组合;披覆结构180亦可为单一材料或合金态材料所制成的单层或多层结构,或是多种材料或合金态材料所制成的单层或多层结构。
值得说明的是,改质步骤是沿着金属纳米线190的表面进行,因此披覆结构180的型态会大致依照金属纳米线190的型态生长。在改质步骤中,可控制披覆结构180的生长条件(如化学镀时间、化学镀液组成浓度等等),使披覆结构180不会过度成长,而仅披覆于金属纳米线190的表面;另外,如前所述,未完全固化的膜层130也同样起到限位及控制的作用。据此,改质步骤所形成的披覆结构180就不会单独析出/成长于膜层130而不与金属纳米线190接触,金属纳米线190的表面与膜层130之间会成形有披覆结构180;在一实施例中,相邻的金属纳米线190之间仍填有前述的膜层130。另一方面,化学镀/电解镀所形成的披覆结构180具有高致密度,相较于周边引线120的尺寸(例如10um线宽),披覆结构180的缺陷尺寸是周边引线120尺寸的0.01~0.001倍,故即使披覆结构180出现缺陷,也不会造成周边引线120断线等问题。
请参阅图3D,本发明的部分实施方式中改质步骤仅在周边区PA进行,图3D所示的触控感应电极TE中绘制“v”符号,以代表触控感应电极TE包含未改质的初始金属纳米线190;而图3D所示的周边引线120中绘制“o”符号,以代表周边引线120是由改质后的金属纳米线190所组成,而为了图示简洁,图3D中并未绘制出披覆结构180。详细而言,可在上述图案化步骤之后,将 光阻或类似材料覆盖于显示区VA,以遮挡触控感应电极TE,而使化学镀液渗入在周边区PA的未完全固化的膜层130中,藉由氧化还原反应使反应性金属离子在周边区PA的金属纳米线190表面析出而形成披覆结构180,以形成改质后的金属纳米线190。由于触控感应电极TE仍是改质前的金属纳米线190所构成,故其具有良好的透光性,例如可见光(如波长介于400nm-700nm)的光穿透率(Transmission)大于约90%、91%、92%、93%或以上。
更可包括固化步骤,以将预固化或未完全固化的膜层130达到完全固化的状态。
藉由上述步骤即可制作如图2所示的触控面板100,举例来说,显示区VA中图案化的金属纳米线层NWL即构成触控面板100的触控感应电极TE;而周边区PA中图案化的金属纳米线层NWL即构成触控面板100的周边引线120,且周边引线120中的金属纳米线190上具有披覆结构180(图示中以”o”符号代表改质后的金属纳米线190),周边引线120可以与外部控制器进行连接进行触控或其他信号的传递。同于前述说明,披覆结构180可与金属纳米线190有相同或相近的结构外貌,在相邻金属纳米线190之间会填充有膜层130。
在一变化实施例中,可采用不同的工艺顺序制作本发明的触控面板100,例如首先提供基板110,其上具有事先定义的周边区PA与显示区VA。接着,设置未改质的金属纳米线190于该基板110上,以形成金属纳米线层NWL于周边区PA与显示区VA;接着设置膜层130于该些未改质的金属纳米线190上,使膜层130覆盖于未改质的金属纳米线190之上,且膜层130为预固化或未完全固化状态;接着进行改质步骤,将前述金属纳米线190上成型有披覆结构180,其中位于显示区VA的金属纳米线190未被改质,位于周边区PA的金属纳米线190会被改质;接着进行图案化,以形成具有图样金属纳米线层NWL,其中位于显示区VA的改质前金属纳米线层NWL被图案化形成触控感应电极TE,而周边区PA的改质后金属纳米线层NWL被图案化形成周边引线120,也就是说由于前述的改质步骤,使得周边引线120由改质后的金属纳米线190所构成。
以下仅针对调整后的步骤进行说明,其余省略部分可以参照前述实施例的说明。
本实施例的改质步骤可以采用光阻或类似材料覆盖于显示区VA,以遮挡 显示区VA的金属纳米线层NWL的第一部份,而仅针对周边区PA的金属纳米线层NWL的第二部份进行改质,使化学镀液中的反应性金属离子在周边区PA的金属纳米线190表面析出而形成披覆结构180,以形成改质后金属纳米线190。
本实施例的图案化步骤可以采用可同时蚀刻改质前金属纳米线190与改质后金属纳米线190的蚀刻液,配合蚀刻屏蔽(如光阻)以在同一工序中一次性的在显示区VA与周边区PA制作具有图样的金属纳米线层NWL。在一实施例中,可同时蚀刻改质前金属纳米线190与改质后金属纳米线190指的是蚀刻介质对改质前金属纳米线190与改质后金属纳米线190的蚀刻速率比值介于约0.1-10或0.01-100。
根据一具体实施例,金属纳米线层NWL为银纳米线所组成,且其表面上有铜的披覆结构180的情况下,蚀刻液可用于可蚀刻铜与银的组分,例如蚀刻液的主成分为H3PO4(比例为约55%至70%)及HNO3(比例约5%至15%),以在同一工艺中移除铜材料与银材料。在另一具体实施例中,蚀刻液的主成分为氯化铁/硝酸或为磷酸/双氧水等组成。
在图案化的步骤中,可配合蚀刻屏蔽(如光阻),利用前述的蚀刻液将显示区VA的金属纳米线层NWL的第一部分进行图案化以制作本实施例的触控感应电极TE于显示区VA,触控感应电极TE可电性连接周边引线120。具体而言,触控感应电极TE可为至少包括改质前金属纳米线190的金属纳米线层NWL。而在周边区PA,改质后金属纳米线190形成周边引线120,进而达到触控感应电极TE与周边引线120形成电性连接,以进行信号的传输。而在本实施例中,金属纳米线层NWL在周边区PA也可形成标记140,标记140可以广泛的被解读为非电性功能的图样,但不以此为限。在本发明的部分实施例中,周边引线120与标记140可为同层的改质后金属纳米线190所制作。
在一变化实施例中,位于显示区VA与周边区PA的金属纳米线层NWL可藉由不同的蚀刻步骤(亦即使用不同的蚀刻液)进行图案化,例如在金属纳米线层NWL为纳米银层,披覆结构180为铜层的情况下,显示区VA所使用的蚀刻液可选用仅对银有蚀刻能力的蚀刻液,周边区PA所使用的蚀刻液可选用对银/铜有蚀刻能力的蚀刻液。
藉由上述步骤同样可制作本发明的触控面板100,具体结构如前所述,于 此不再赘述。
请再回到图2、图2A、图2B,为了方便说明,本文的周边引线120与标记140的剖面是为一四边形(例如图2A所绘制的长方形),但周边引线120与标记的结构型态或数量皆可依实际应用而变化,并非以本文的文字与附图所限制。
在本实施例中,标记140是设置在周边区PA的接合区BA(请参照图2及图2A),其可为对接对位标记,也就是在将一外部电路板,如在软性电路板连接于触控面板100的步骤(即bonding步骤)用于将软性电路板(图未示)与触控面板100进行对位的记号。然而,本发明并不限制标记140的置放位置或功能,例如标记140可以是任何在工艺中所需的检查记号、图样或标号,均为本发明保护的范畴。标记140可以具有任何可能的形状,如圆形、四边形、十字形、L形、T形等等。
如图2A所示,在周边区PA中,相邻周边引线120之间具有非导电区域136,以电性阻绝相邻周边引线120进而避免短路。在本实施例中,非导电区域136为一间隙,以隔绝相邻周边引线120。
如图2B所示,在显示区VA中,相邻触控感应电极TE之间具有非导电区域136,以电性阻绝相邻触控感应电极TE进而避免短路。也就是说,相邻触控感应电极TE的侧面之间具有非导电区域136,而在本实施例中,非导电区域136为一间隙,以隔绝相邻触控感应电极TE;在一实施例中,可采用上述的蚀刻法制作相邻触控感应电极TE之间的间隙。在本实施例中,触控感应电极TE与第一中间层M1可利用同层的金属纳米线层NWL(如纳米银线层)所制作,故金属纳米线层会在显示区VA中形成触控感应电极TE,且在周边区PA中形成周边引线120,触控感应电极TE与周边引线120在显示区VA与周边区PA的交界处形成连接结构,以利触控感应电极TE与周边引线120形成导通的电路。
本发明的部分实施方式中,触控面板100的周边引线120可直接通过黄光、蚀刻工艺成型,其为高精度的工艺,且不须对位,故不须在周边区预留对位误差空间,藉以降低周边区PA的宽度,进而达到显示器的窄边框需求。具体而言,本发明部分实施方式的触控面板100的周边引线120的宽度为约5um至30um,相邻周边引线120之间的距离为约5um至30um,或者触控面板100的 周边引线120的宽度为约3um至20um,相邻周边引线120之间的距离为约3um至20um,而周边区PA的宽度也可以达到约小于2mm的尺寸,较传统的触控面板产品缩减约20%或更多的边框尺寸。
如图2,触控感应电极TE以非交错式的排列设置。举例而言,触控感应电极TE为沿第一方向D1延伸且在第二方向D2上具有宽度变化的长条型电极,彼此并不产生交错,但于其他实施方式中,触控感应电极TE可以具有适当的形状,而不应以此限制本发明的范围。本实施方式中,触控感应电极TE采用单层的配置,其中可以通过检测各个触控感应电极TE的自身的电容值变化,而得到触控位置。
在本实施方式中,显示区VA的复合结构CS(即未改质的金属纳米线190与膜层130的组合结构)可具有导电性与透光性,例如,触控感应电极TE的可见光(例如波长介于约400nm-700nm)的光穿透率(Transmission)可大于约80%,且表面电阻率(surface resistance)在约10至1000奥姆/平方(ohm/square)之间;或者,触控感应电极TE的可见光(例如波长介于约400nm-700nm)的光穿透率(Transmission)大于约85%,且表面电阻率(surface resistance)在约50至500奥姆/平方(ohm/square)之间。在一实施例中,触控感应电极TE的可见光(例如波长介于约400nm-700nm)的光穿透率(Transmission)大于约88%或大于约90%。在一实施例中,触控感应电极TE的雾度小于3.0、2.5、2.0、或1.5。
于部分实施方式中,所形成的金属纳米线190可进一步进行后处理以提高金属纳米线190在交叉点上的接触特性,例如提高接触面积,进而提升其导电度,此后处理可为包括如加热、电浆、电晕放电、UV臭氧、压力或上述工艺组合的过程步骤。例如,在固化形成金属纳米线层的步骤后,可利用滚轮施加压力于其上,在一实施例中,可藉由一或多个滚轮向金属纳米线层施加50至3400psi的压力,较佳为可施加100至1000psi、200至800psi或300至500psi的压力;而上述施加压力的步骤较佳地实施在涂布膜层130的步骤之前。于部分实施方式中,可同时进行加热与压力之后处理;详言之,所形成的金属纳米线190可经由如上文所述的一或多个滚轮施加压力,并同时加热,例如由滚轮施加的压力为10至500psi,较佳为40至100psi;同时将滚轮加热至约70℃与200℃之间,较佳至约100℃与175℃之间,其可提高金属纳米线190的导电度。于部分实施方式中,金属纳米线190较佳可暴露于还原剂中进行后处理, 例如由纳米银线组成的金属纳米线190较佳可暴露于银还原剂中进行后处理,银还原剂包括硼氢化物,如硼氢化钠;硼氮化合物,如二甲基胺基硼烷(DMAB);或气体还原剂,诸如氢气(H2);而所述的暴露时间约10秒至约30分钟,较佳约1分钟至约10分钟。而经过上述后处理步骤,可加强金属纳米线190在交叉点上的接触强度或面积,更能确保金属纳米线190在交叉点上的接触面(即第一表面191)不受改质处理的影响。
在一实施例中,触控面板100更可包括保护层150,其可应用于各种不同的实施例,仅以图2B的实施例作为范例说明。图4显示保护层150成型于图2B的实施例的剖面示意图。值得说明的是,保护层150的材料可参照前文所述的膜层130的示例材料。在一实施例中,保护层150是全面性的覆盖触控面板100,也就是说保护层150覆盖于触控感应电极TE、周边引线120以及标记140之上。保护层150可填入相邻周边引线120之间的非导电区域136,藉以隔绝相邻周边引线120,或者保护层150可填入相邻触控感应电极TE之间的非导电区域136,藉以隔绝相邻触控感应电极TE。
图5为根据本发明的部分实施方式的触控面板100的俯视示意图,本实施方式的触控感应电极TE采用双层的配置;图5A为图5的A-A线的剖面图。
为方便说明起见,以第一触控电极TE1与第二触控电极TE2来说明本实施方式采用的配置。第一触控电极TE1形成于基板110的一面(如上表面),第二触控电极TE2则形成于基板110的另一面(如下表面),使第一触控电极TE1、第二触控电极TE2彼此电性绝缘;而第一触控电极TE1电性连接于其所对应的周边引线120;同理,第二触控电极TE2连接于其所对应的的周边引线120。第一触控电极TE1为多个沿第一方向D1排列的长条状电极,第二触控电极TE2为多个沿第二方向D2排列的长条状电极。如图所示,长条状触控感应电极TE1与长条状触控感应电极TE2的延伸方向不同,而互相交错。第一触控感应电极TE1与第二触控感应电极TE2可分别用以传送控制信号与接收触控感应信号。自此,可以经由检测第一触控感应电极TE1与第二触控感应电极TE2之间的信号变化(例如电容变化),得到触控位置。藉由此设置,使用者可于基板110上的各点进行触控感应。如同前述实施例,第一触控感应电极TE1及/或第二触控感应电极TE2可至少为未改质的金属纳米线190与膜层130所制成,而位于基板110两面的周边引线120及/或标记140(图5与图5A并未绘 制标记140,但不影响本实施例的说明)则可为改质后的金属纳米线190与膜层130所制成,也就是说位于基板110两面的周边引线120及/或标记140可依照前述方法将披覆结构180成型于金属纳米线190的表面。
本发明的实施方式中所制作的双面型态的触控面板可依以下方式制作:首先提供基板110,其上具有事先定义的周边区PA与显示区VA。接着,于基板110的相对的第一与第二表面(如上表面与下表面)分别形成金属纳米线层NWL于第一与第二表面的周边区PA与显示区VA;接着形成未完全固化的膜层130于金属纳米线层NWL上;接着进行双面图案化步骤,例如双面黄光、蚀刻等,以在基板110的第一与第二表面制作具有图样的金属纳米线层NWL;接着进行双面改质步骤,使基板110上下表面的金属纳米线190上成型有披覆结构180,例如在基板110上下表面的周边区PA进行改质步骤,而改质后的金属纳米线190即构成周边引线120。
在一实施例中,可将图案化后的产品浸入镀液中,同时针对基板110的上下表面进行改质。
同于前述实施例,基板110的任一面(如上表面或下表面)更可包括标记140,其同样由改质后的金属纳米线190所构成。
值得说明的是,上述应用于双面型态的触控面板的具体作法可参照前文对于单面型态的说明,而前段内容所举例的实施方法也仅为示例之用,并不用于限制本发明。
本发明的实施方式中的双面型态的触控面板的制作方法可为将两组单面式的触控面板以同方向或反方向叠合所形成。以反方向叠合为例说明,可将第一组单面式的触控面板的触控电极朝上设置(例如最接近使用者,但不以此为限),第二组单面式的触控面板的触控电极则朝下设置(例如最远离使用者,但不以此为限),而以光学胶或其他类似黏合剂将两组触控面板的基板组装固定,藉借以组成双面型态的触控面板。
图6为根据本发明的部分实施方式的触控面板100的俯视示意图,在本实施方式的触控面板100更包含设置于周边区PA的屏蔽导线160。屏蔽导线160主要包围触控感应电极TE与周边引线120,且屏蔽导线160会延伸至接合区而电性连接于软性电路板的接地端,故屏蔽导线160可以屏蔽或消除信号干扰或是静电放电(Electrostatic Discharge,ESD)防护,特别是人手碰到触控装置周 围的连接导线而导致的微小电流变化。
屏蔽导线160可由改质后的金属纳米线190制成,可参照周边引线120或标记140的说明。在本发明的部分实施例中,屏蔽导线160、周边引线120与标记140可为同层的改质后的金属纳米线190与膜层130所制作,且金属纳米线190(如纳米银线层)可依据前述工艺被改质而具有披覆结构180,具体作法可参照前文实施方法;触控感应电极TE则为未改质的金属纳米线层NWL所制作。
图7则显示本发明单面式的触控面板100的另一实施例,其为一种单面架桥式(bridge)的触控面板。此实施例与上述实施例的差异至少在于,成形于基板110上的透明导电层(即金属纳米线层NWL)在上述图案化的步骤后形成的触控感应电极TE可包括:沿第一方向D1排列的第一触控感应电极TE1、沿第二方向D2排列的第二触控感应电极TE2及电性连接两相邻的第一触控感应电极TE1的连接电极CE,也就是说第一触控感应电极TE1、第二触控感应电极TE2及连接电极CE为未改质的金属纳米线190与膜层130所制成;另外,绝缘块164可设置于连接电极CE上,例如以二氧化硅形成绝缘块164;而桥接导线162再设置于绝缘块164上,例如以铜/ITO/金属纳米线等材料形成桥接导线162,并使桥接导线162连接于第二方向D2上相邻的两个第二触控感应电极TE2,绝缘块164位于连接电极CE与桥接导线162之间,以将连接电极CE以及桥接导线162电性隔绝,以使第一方向D1与第二方向D2上的触控电极彼此电性隔绝。
另外,周边区PA的金属纳米线层NWL通过前述的图案化、改质步骤之后,即可利用改质后的金属纳米线190与膜层130制作周边引线120,其电性连接于第一触控感应电极TE1、第二触控感应电极TE2,进而传递信号。
具体做法可参考前文,于此不再赘述。
本发明的金属纳米线改质方法可应用制作不需考虑透光度的感应电极,例如笔记本电脑的触摸板(但不以此为限)、天线结构、无线充电的线圈等等。具体而言,制作感应电极的方法包括:设置未改质的金属纳米线190于该基板110上,以形成金属纳米线层NWL于基板110上;接着设置膜层130于未改质的金属纳米线190上,使膜层130覆盖于未改质的金属纳米线190之上,且膜层130为预固化或未完全固化状态;接着进行图案化,以形成具有图样的金属纳 米线层NWL,以制作出用于感测触控位置/触控手势的感应电极;接着进行改质步骤,将前述金属纳米线190上成型有披覆结构180,使具有图样的金属纳米线层NWL被改质,也就是说由于前述的改质步骤,使得用于感测触控位置/触控手势的感应电极由改质后的金属纳米线190所构成。同于前述实施例,披覆结构180可与金属纳米线190有相同或相近的结构外貌,在相邻金属纳米线190之间会填充有膜层130。由于笔记本电脑的触摸板、天线结构、无线充电的线圈等对象不须透光,故可使用上述改质后的金属纳米线190制作感应电极。
本实施例的感应电极可连接走线,以与外部线路相连以传递信号。本实施例的走线可相当于前述的周边引线120,而同样由改质后的金属纳米线190所构成;在另一实施例中,走线可由其他导电材料制成,如银走线、铜走线等等。
在另一实施例中,改质步骤与图案化步骤可以相互调整其顺序。
上述各个步骤的具体实施方法可参照前文。
本发明的金属纳米线改质方法可应用制作不需图样的电极板,例如电池的阴极板/阳极板(但不以此为限)。具体而言,制作电极板的方法包括:设置未改质的金属纳米线190于该基板110上,以形成金属纳米线层NWL于基板110上;接着设置膜层130于未改质的金属纳米线190上,使膜层130覆盖于未改质的金属纳米线190之上,且膜层130为预固化或未完全固化状态;接着进行改质步骤,将前述金属纳米线190上成型有披覆结构180,使金属纳米线层NWL被改质,也就是说由于前述的改质步骤,使得基板上整面的电极板由改质后的金属纳米线190所构成。同于前述实施例,披覆结构180可与金属纳米线190有相同或相近的结构外貌,在相邻金属纳米线190之间会填充有膜层130。
本实施例的电极板可连接走线,以与外部线路相连以传递信号。本实施例的走线可相当于前述的周边引线120,而同样由改质后的金属纳米线190所构成;在另一实施例中,走线可由其他导电材料制成,如银走线、铜走线等等。
上述各个步骤的具体实施方法可参照前文。
在一部分实施方式中,本文所述的触控面板100/感应电极/电极板可藉由卷对卷(Roll to Roll)工艺来制作,卷对卷(Roll to Roll)涂覆工艺使用习知设备且可完全自动化,可显着降低制造触控面板的成本。卷对卷涂覆的具体工艺如 下:首先选用具可挠性的基板110,并使卷带状的基板110安装于两滚轮之间,利用马达驱动滚轮,以使基板110可沿两滚轮之间的动作路径进行连续性的工艺。例如,利用储存槽、喷雾装置、刷涂装置及其类似物将含金属纳米线190的浆料则沈积于基板110的表面上以形成金属纳米线190;利用喷涂头将聚合物沈积于基板110的表面上,并将聚合物固化成为膜层130、图案化及改质等步骤。随后,所完成的触控面板100藉由产线最后端的滚轮加以卷出形成触控传感器卷带。
本实施例的触控传感器卷带更可以包含上述的保护层150,其是全面性的覆盖触控传感器卷上未裁切的触控面板100,也就是说保护层150可覆盖于触控传感器卷上未裁切的多个触控面板100上,再被切割分离为个别的触控面板100。
于本发明的部分实施方式中,基板110较佳为透明基板,详细而言,可以为一硬式透明基板或一可挠式透明基板,其材料可以选自玻璃、压克力(polymethylmethacrylate;PMMA)、聚氯乙烯(polyvinyl Chloride;PVC)、聚丙烯(polypropylene;PP)、聚对苯二甲酸乙二醇酯(polyethylene terephthalate;PET)、聚萘二甲酸乙二醇酯(polyethylene naphthalate;PEN)、聚碳酸酯(polycarbonate;PC)、聚苯乙烯(polystyrene;PS)、环烯烃聚合物(Cyclo Olefin Polymers;COP)、无色聚酰亚胺(Colorless Polyimide;CPI)、环烯烃共聚物(cycloolefin copolymer;COC)等透明材料。为了提高基板110与金属纳米线190之间的附着力,基板110上可较佳的进行前处理步骤,例如进行表面改质工艺,或是在基板110的表面上额外涂布黏着层或树脂层。
于本发明的部分实施方式中,金属纳米线190可以是纳米银线或纳米银纤维(silver nanofibers),其可以具有平均约20至100纳米的直径,平均约20至100微米的长度,较佳为平均约20至70纳米的直径,平均约20至70微米的长度(即纵横比为1000)。于部分实施方式中,金属纳米线190的直径可介于70纳米至80纳米,而长度约8微米。
卷对卷产线可沿基板的动作路径依需求调整多个涂覆步骤的顺序或是可按需求并入任何数目的额外站台。举例而言,为了达到适当的后处理工艺,即可将压力滚轮或电浆设备安装于产线中。
本发明实施例的触控面板可与其他电子装置组装,例如具触控功能的显示 器,如可将基板110贴合于显示组件,例如液晶显示组件或有机发光二极管(OLED)显示组件,两者之间可用光学胶或其他类似黏合剂进行贴合;而触控感应电极TE上同样可利用光学胶与外盖层(如保护玻璃)进行贴合。本发明实施例的触控面板、天线等可应用于可携式电话、平板计算机、笔记本电脑等等电子设备,也可应用可挠性的产品。本发明实施例的电极亦可制作于偏光片上。本发明实施例的电极亦可制作于穿戴装置(如手表、眼镜、智慧衣服、智慧鞋等)、车用装置(如仪表板、行车纪录器、车用后视镜、车窗等)上。
本实施方式的其他细节大致上如上述实施方式所述,在此不再赘言。
本发明的不同实施例的结构可相互引用,并不为上述各具体实施方式的限制。
本发明的部分实施方式中,通过将金属纳米线190进行改质,而使经过改质的金属纳米线190可以具有较未改质之前更佳的导电特性。
本发明的部分实施方式中,通过直接将改质后的金属纳米线190制作成周边引线及/或标记,故可以取消对位的过程中所预留的误差空间,故可有效降低周边区的宽度。
本发明的部分实施方式中,可针对基板单面或双面的导电纳米结构进行改质。
本发明的部分实施方式中,利用加法(即直接在导电纳米结构上进行工艺)作业,而非减法式的工艺,故可提高工艺效率,降低材料成本。
本发明的部分实施方式可应用于可挠性的导电基板。
本发明的部分实施方式中,金属纳米线190的裸露表面被披覆结构全面性的包覆,也就是说,金属纳米线与膜层之间会间隔有披覆结构。
本发明的部分实施方式中,披覆结构并不是以层状或块状的方式层叠于金属纳米线层之上,而是受到金属纳米线的初始型态所影响,利用金属纳米线作为晶种,并受到膜层的局限,而均匀得沿着金属纳米线与膜层的界面生长。
本发明的部分实施方式中,膜层作为限位层,可限制/控制披覆结构沿着金属纳米线190的裸露表面生长。由于有限位层,披覆结构可均匀得成长于金属纳米线190的裸露表面。
本发明的部分实施方式中,披覆结构的生长是可控而均匀的。
虽然本发明已以多种实施方式揭露如上,然其并非用以限定本发明,任何 熟习此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视后附的权利要求范围所界定者为准。

Claims (20)

  1. 一种电极,其特征在于,包含:导电纳米结构及一外加于所述导电纳米结构的膜层,所述导电纳米结构与所述膜层的界面实质具有披覆结构。
  2. 根据权利要求1所述的电极,其特征在于,该披覆结构包括镀层,所述镀层完全包覆所述导电纳米结构与所述膜层的界面。
  3. 根据权利要求1所述的电极,其特征在于,所述膜层具有一未完全固化状态,该披覆结构沿着所述导电纳米结构的表面所形成并位于所述导电纳米结构与所述膜层的界面。
  4. 根据权利要求3所述的电极,其特征在于,在所述未完全固化状态下,所述膜层具有一第一层区域与一第二层区域,该第二层区域的固化状态高于该第一层区域的固化状态;在该第一层区域中,该披覆结构沿着所述导电纳米结构的表面所形成并位于所述导电纳米结构与所述膜层的界面。
  5. 根据权利要求1所述的电极,其特征在于,相邻的所述导电纳米结构之间填充有该膜层,该膜层中没有单独存在的所述披覆结构。
  6. 根据权利要求1所述的电极,其特征在于,所述导电纳米结构包含金属纳米线,该披覆结构完全包覆所述金属纳米线与所述膜层的界面,并在所述界面形成均匀的披覆层。
  7. 根据权利要求1所述的电极,其特征在于,该披覆结构为导电材料所制成的层状结构、岛状突起结构、点状突起结构或其组合。
  8. 根据权利要求7所述的电极,其中该导电材料为银、金、铜、镍、铂、铱、铑、钯、锇或包含前述材料的合金。
  9. 根据权利要求1所述的电极,其特征在于,该披覆结构为单一金属材料或合金材料所制成的单层结构;或者该披覆结构为两种以上的金属材料或合金材料所制成的两层或多层结构。
  10. 根据权利要求1所述的电极,其特征在于,该披覆结构为化学镀铜层、电镀铜、化学镀铜镍层、化学镀银层或其组合。
  11. 一种电极的制作方法,其特征在于,包括:
    将一膜层外加于一含有导电纳米结构的导电层上,并使该膜层达到预固化或未完全固化状态;以及
    进行一改质步骤,使一披覆结构成型于至少一部分的所述导电纳米结构的表面,使所述导电纳米结构与所述膜层的界面实质具有该披覆结构。
  12. 根据权利要求11所述的电极的制作方法,其特征在于,该改质步骤包括:将该膜层与该导电纳米结构浸入化学镀溶液,所述化学镀溶液渗入该膜层中并与所述导电纳米结构接触,使金属析出于所述导电纳米结构的表面。
  13. 根据权利要求12所述的电极的制作方法,其特征在于,该披覆结构沿着所述导电纳米结构的表面所形成并位于所述导电纳米结构与所述膜层的界面。
  14. 根据权利要求11所述的电极的制作方法,其特征在于,将一膜层外加于一含有导电纳米结构的导电层上包括:
    涂布一聚合物于该导电层上;
    控制固化条件使该聚合物达到预固化或未完全固化状态。
  15. 根据权利要求11所述的电极的制作方法,其特征在于,将一膜层外加于一含有导电纳米结构的导电层上包括:
    涂布一聚合物于该导电层上;
    控制固化条件使该聚合物达到预固化或未完全固化状态,所述预固化或未完全固化的膜层具有一第一层区域与一第二层区域,该第二层区域的固化状态高于该第一层区域的固化状态。
  16. 根据权利要求15所述的电极的制作方法,其特征在于,在该第一层区域中,该披覆结构沿着所述导电纳米结构的表面所形成并位于所述导电纳米结构与所述膜层的界面。
  17. 根据权利要求15所述的电极的制作方法,其特征在于,控制固化条件包括引入气体,并控制所述气体在该第一层区域与该第二层区域的浓度。
  18. 根据权利要求11所述的电极的制作方法,其特征在于,该改质步骤包括:化学镀步骤、电镀步骤或其组合。
  19. 一种包含根据权利要求1所述的电极的装置。
  20. 根据权利要求19所述的装置,其特征在于,该装置包括触控面板、触摸板、天线结构、线圈、电极板、显示器、可携式电话、平板计算机、穿戴装置、车用装置、笔记本电脑或偏光片。
PCT/CN2020/092260 2020-02-28 2020-05-26 电极、电极的制作方法及其装置 WO2021169067A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010130421.1A CN113325965A (zh) 2020-02-28 2020-02-28 电极、电极的制作方法及其装置
CN202010130421.1 2020-02-28

Publications (1)

Publication Number Publication Date
WO2021169067A1 true WO2021169067A1 (zh) 2021-09-02

Family

ID=75782421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092260 WO2021169067A1 (zh) 2020-02-28 2020-05-26 电极、电极的制作方法及其装置

Country Status (3)

Country Link
CN (1) CN113325965A (zh)
TW (2) TWM607393U (zh)
WO (1) WO2021169067A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050341A1 (zh) * 2021-09-30 2023-04-06 宸美(厦门)光电有限公司 触控面板及其制造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI816384B (zh) * 2022-04-29 2023-09-21 大陸商宸美(廈門)光電有限公司 觸控感應器及其製作方法
US11829539B1 (en) 2022-05-16 2023-11-28 Tpk Advanced Solutions Inc. Touch sensor and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326503A1 (en) * 2008-05-08 2010-12-30 Georgia Tech Research Corporation Fiber Optic Solar Nanogenerator Cells
CN204667371U (zh) * 2015-05-20 2015-09-23 南昌欧菲光科技有限公司 触控面板
CN106293172A (zh) * 2015-05-20 2017-01-04 南昌欧菲光科技有限公司 触控面板及其制作方法
CN110349693A (zh) * 2019-05-24 2019-10-18 青岛大学 一种快速导热的柔性电极及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139271A1 (en) * 2006-05-26 2007-12-06 Korea Advanced Institute Of Science And Technology Method for manufacturing a field emitter electrode using the array of carbon nanotubes
TW201409490A (zh) * 2012-08-27 2014-03-01 Taiwan Hi Tech Corp 透明導電膜製作方法
TWI515333B (zh) * 2014-03-17 2016-01-01 柯惠蘭 在鎂合金表面形成保護披覆層之方法及其保護披覆層
CN109426386B (zh) * 2017-08-31 2021-11-30 宸鸿光电科技股份有限公司 触控面板及其制作方法
CN110221718B (zh) * 2018-03-02 2023-07-04 宸鸿光电科技股份有限公司 触控面板的直接图案化方法及其触控面板
CN210091132U (zh) * 2019-05-22 2020-02-18 英属维尔京群岛商天材创新材料科技股份有限公司 触控面板
CN213302997U (zh) * 2020-02-28 2021-05-28 宸美(厦门)光电有限公司 电极及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326503A1 (en) * 2008-05-08 2010-12-30 Georgia Tech Research Corporation Fiber Optic Solar Nanogenerator Cells
CN204667371U (zh) * 2015-05-20 2015-09-23 南昌欧菲光科技有限公司 触控面板
CN106293172A (zh) * 2015-05-20 2017-01-04 南昌欧菲光科技有限公司 触控面板及其制作方法
CN110349693A (zh) * 2019-05-24 2019-10-18 青岛大学 一种快速导热的柔性电极及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050341A1 (zh) * 2021-09-30 2023-04-06 宸美(厦门)光电有限公司 触控面板及其制造方法

Also Published As

Publication number Publication date
CN113325965A (zh) 2021-08-31
TW202132119A (zh) 2021-09-01
TWM607393U (zh) 2021-02-11
TWI755023B (zh) 2022-02-11

Similar Documents

Publication Publication Date Title
WO2021169068A1 (zh) 触控面板、触控面板的制作方法及其装置
TWI734196B (zh) 觸控面板、其製作方法與觸控感測器卷帶
TW201913336A (zh) 觸控面板及其製作方法
WO2021169067A1 (zh) 电极、电极的制作方法及其装置
TWM607109U (zh) 觸控面板
TWI749630B (zh) 觸控面板及其製作方法
TWI743883B (zh) 觸控面板及其製作方法
TWM604962U (zh) 觸控面板及其裝置
TW202127210A (zh) 觸控面板及其製作方法
US11347359B2 (en) Touch panel, manufacturing method of touch panel, and device thereof
CN213302998U (zh) 触控面板及其装置
US20220100315A1 (en) Touch panel, manufacturing method of touch panel, and device thereof
CN213302997U (zh) 电极及其装置
CN211319188U (zh) 触控面板
TWI746132B (zh) 觸控面板、觸控面板的製作方法及觸控顯示裝置
TWI760825B (zh) 觸控面板、觸控面板的製作方法及其裝置
TW202125599A (zh) 觸控面板及其製作方法
CN213122931U (zh) 触控面板及触控装置
KR102423165B1 (ko) 터치 패널, 터치 패널의 제조 방법 및 그 디바이스
CN211403408U (zh) 触控面板
CN213092285U (zh) 触控面板及触控装置
KR102423164B1 (ko) 터치 패널, 터치 패널의 제조 방법 및 그 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20922313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20922313

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20922313

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 20/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20922313

Country of ref document: EP

Kind code of ref document: A1