WO2021168868A1 - 光信号复制装置 - Google Patents

光信号复制装置 Download PDF

Info

Publication number
WO2021168868A1
WO2021168868A1 PCT/CN2020/077363 CN2020077363W WO2021168868A1 WO 2021168868 A1 WO2021168868 A1 WO 2021168868A1 CN 2020077363 W CN2020077363 W CN 2020077363W WO 2021168868 A1 WO2021168868 A1 WO 2021168868A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
light
pump light
coupler
pump
Prior art date
Application number
PCT/CN2020/077363
Other languages
English (en)
French (fr)
Inventor
费雷拉·菲利佩
戈尔季延科丁·弗拉基米尔
谭斯斯
多兰·尼克
Original Assignee
华为技术有限公司
阿斯顿大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司, 阿斯顿大学 filed Critical 华为技术有限公司
Priority to PCT/CN2020/077363 priority Critical patent/WO2021168868A1/zh
Priority to CN202080093859.5A priority patent/CN115004099A/zh
Priority to EP20921636.5A priority patent/EP4083701A4/en
Publication of WO2021168868A1 publication Critical patent/WO2021168868A1/zh
Priority to US17/897,001 priority patent/US20220404682A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/225Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/39Non-linear optics for parametric generation or amplification of light, infrared or ultraviolet waves
    • G02F1/392Parametric amplification
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/313Digital deflection, i.e. optical switching in an optical waveguide structure
    • G02F1/3132Digital deflection, i.e. optical switching in an optical waveguide structure of directional coupler type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3536Four-wave interaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/1001Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F7/00Parametric amplifiers

Definitions

  • the embodiments of the present application relate to the field of wireless communication, and in particular, to an optical signal replication device.
  • optical parametric amplifier is an amplifier that can amplify optical signals in an optical fiber communication system.
  • Optical parametric amplifier is a device that can directly amplify optical signals without converting optical signals into electrical signals.
  • the principle of the optical parametric amplifier is based on the stimulated radiation of the laser, which realizes the amplification effect by converting the energy of the pump light into the energy of the signal light.
  • the optical signal duplication device (copier) is a device for preprocessing the optical signal in the optical parametric amplifier.
  • the pump laser transmits pump light to the optical signal duplication device, and the transmitter transmits signal light to the optical signal duplication device.
  • the optical signal replication device can transmit the pump light and the signal light to the signal processing module included in the optical parametric amplifier.
  • the pump light and signal light generate invalid signals during the transmission process of the optical signal replication device, and the optical signal replication device transmits the pump light, signal light, and invalid signals to the signal processing module.
  • the optical signal duplication device sends pump light, signal light, and invalid signals to the signal processing module.
  • the invalid signals occupy the transmission bandwidth of the optical parametric amplifier, and the effective transmission bandwidth of the optical parametric amplifier is small.
  • the embodiments of the present application provide an optical signal replication device and an optical parametric amplifier.
  • the optical signal duplication device can separate the signal light from the invalid signal and transmit it to the signal processing module, which can increase the effective transmission bandwidth of the optical parametric amplifier.
  • the first aspect of the present application provides an optical signal replication device, which includes: a first coupler, a second coupler, a first non-linear medium, a second non-linear medium, and a first phase shifter;
  • the first end of the first coupler is connected to the pump laser, the second end is connected to the transmitter, the third end is connected to the first end of the first nonlinear medium, and the fourth end is connected to the first phase shifter.
  • the first end is connected; the second end of the first nonlinear medium is connected to the first end of the second coupler; the second end of the first phase shifter is connected to the second end of the second nonlinear medium One end is connected; the second end of the second nonlinear medium is connected to the second end of the second coupler; the first end of the first coupler is guided into the first pump emitted by the pump laser Light, the second end of the first coupler receives the first signal light emitted by the transmitter, and the first coupler couples the first pump light and the first signal light in a first ratio After that, the third end of the first coupler outputs the second pump light and the second signal light to the first nonlinear medium, and the fourth end of the first coupler is directed to the first phase shifter Output third pump light and third signal light; after the first non-linear medium receives the second pump light and the second signal light, the second pump light and the second signal light A three-wave mixing effect or a four-wave mixing effect occurs in the first nonlinear medium, and the second pump
  • the optical signal replication device included in the optical parametric amplifier generates invalid signals during the process of transmitting signal light and pumping light.
  • the optical signal duplication device can separate the signal light from the invalid signal and transmit it to the signal processing module.
  • the signal processing module can directly process the signal light that does not include invalid signals, and the invalid signals will not occupy the transmission bandwidth of the optical parametric amplifier, and the effective transmission bandwidth of the optical parametric amplifier is relatively large.
  • the optical signal replication device the first phase shift amount is 2 ⁇ i, i is a positive integer greater than zero, the first invalid signal is a first crosstalk signal, and the The second invalid signal is the second crosstalk signal.
  • the second pump light and the second signal light after the second pump light and the second signal light are introduced into the first non-linear medium, the second pump light and the second signal light will undergo three-wave mixing in the first non-linear medium Effect or four-wave mixing effect, the second pump light and the second signal light will produce the first crosstalk signal after the three-wave mixing effect or the four-wave mixing effect;
  • the third pump light is introduced into the first phase shifter After the third signal light, the first phase shifter increases the phase of the third pump light by 2 ⁇ i to generate the fourth pump light; after the fourth pump light and the third signal light are introduced into the second nonlinear medium, the first phase shifter
  • the four-pump light and the third signal light will have a three-wave mixing effect or four-wave mixing effect in the second nonlinear medium, and the fourth pump light and the third signal light will have a three-wave mixing effect or four-wave mixing effect After the effect, the second crosstalk signal will be generated; after the second coupler couples the optical signals input from the first end and the second end of
  • the second signal light and the third signal light interfere constructively at the third end of the second coupler, and the third end of the second coupler outputs the signal generated after constructive interference.
  • Light the optical signal duplication device realizes the separation between signal light and crosstalk signal.
  • the signal processing module can directly process the signal light that does not contain crosstalk signals, and the crosstalk signals will not occupy optical parameters.
  • the transmission bandwidth of the amplifier, the effective transmission bandwidth of the optical parametric amplifier is relatively large.
  • the optical signal duplication device the first phase shift amount is ⁇ /2+ ⁇ i, i is a positive integer greater than zero, and the first invalid signal is the first idle signal. Frequency light, the second invalid signal is a second idle frequency light.
  • the second pump light and the second signal light after the second pump light and the second signal light are introduced into the first non-linear medium, the second pump light and the second signal light will undergo three-wave mixing in the first non-linear medium Effect or four-wave mixing effect.
  • the first idle frequency light After the second pump light and the second signal light have three-wave mixing effect or four-wave mixing effect, the first idle frequency light will be generated; the third pump is introduced into the first phase shifter After the light and the third signal light, the first phase shifter increases the phase of the third pump light by ⁇ /2+ ⁇ i to generate the fourth pump light; the fourth pump light and the third pump light are introduced into the second nonlinear medium.
  • the fourth pump light and the third signal light will have a three-wave mixing effect or a four-wave mixing effect in the second nonlinear medium, and the fourth pump light and the third signal light will have a three-wave mixing effect Or after the four-wave mixing effect, the second idle frequency light will be generated; after the second coupler couples the optical signals input from the first end and the second end of the second coupler in proportion, the first idle frequency light and the first The two idle-frequency lights interfere with each other at the third end of the second coupler. The second signal light and the third signal light interfere constructively at the third end of the second coupler. The third end of the second coupler The signal light generated after constructive interference is output.
  • the optical signal duplication device realizes the separation between signal light and idle frequency light. In this way, the signal processing module can directly process the signal light that does not contain idle frequency light.
  • the idle frequency light will not occupy the transmission bandwidth of the optical parametric amplifier.
  • the effective transmission bandwidth of the optical parametric amplifier is relatively large.
  • the optical signal replication device further includes a second phase shifter; the first end of the second phase shifter is connected to the second nonlinear The medium is connected; the second end of the second phase shifter is connected to the second end of the second coupler; the fourth pump light and the third signal light are introduced into the second phase shifter And after the second invalid signal, the second phase shifter adds a second phase shift to the phase of the fourth pump light and then generates the fifth pump light. The end transmits the fifth pump light to the second end of the second coupler.
  • the optical signal duplication device includes a second phase shifter, and the operator can control the output position of the pump light in the optical signal duplication device by changing the second phase shift amount of the second phase shifter, This possible implementation improves the accuracy of the optical signal duplication device.
  • the above optical signal duplication device the first ratio is 1:1; the first coupler presses the first pump light with the first signal light After the ratio coupling of 1:1, the third end of the first coupler outputs the second pump light and the second signal light to the first nonlinear medium.
  • the signal intensity is 50% of the signal intensity of the first pump light, the phase difference between the second pump light and the first pump light is ⁇ /2, and the second signal
  • the signal intensity of the light is 50% of the signal intensity of the first signal light, and the phase of the second signal light is the same as that of the first signal light
  • the fourth end of the first coupler is The second nonlinear medium outputs the third pump light and the third signal light, and the signal intensity of the third pump light is 50% of the signal intensity of the first pump light
  • the third pump light and the first pump light have the same phase
  • the signal intensity of the third signal light is 50% of the signal intensity of the first signal light
  • the third signal The phase difference between the light and the first signal light is ⁇ /2.
  • the coupling ratio of the first coupler included in the optical signal replication device is 1:1. This possible implementation manner improves the feasibility of the solution.
  • the optical signal replication device further includes a second phase shifter; the first end of the second phase shifter is connected to the second nonlinear The medium is connected; the second end of the second phase shifter is connected to the second end of the second coupler; the fourth pump light and the third signal light are received in the second phase shifter And after the second invalid signal, the second phase shifter adds a second phase shift to the phase of the fourth pump light and then generates the fifth pump light. The end transmits the fifth pump light to the second end of the second coupler.
  • the pump light when the second phase shift amount is 2 ⁇ i, the pump light will be derived from the fourth end of the second coupler of the optical signal replication device. In this way, the signal light and the pump light can be separated, and this possible implementation method improves the accuracy of the optical signal duplication device.
  • the optical signal replication device the second phase shift amount is ⁇ +2 ⁇ i, and i is a positive integer greater than zero; the first end of the second coupler receives The third pump light, the second end of the second coupler receives the fifth pump light, and the third pump light and the fifth pump light are located on the second end of the second coupler. After the four ends interfere with each other, the third pump light and the fifth pump light interfere constructively at the third end of the second coupler, and the third end of the second coupler outputs Pump light generated after constructive interference.
  • the pump light when the second phase shift amount is ⁇ +2 ⁇ i, the pump light will be derived from the third end of the second coupler of the optical signal replication device. This possible implementation method improves the feasibility of the solution.
  • the second aspect of the present application provides an optical signal replication device, which includes: a first circulator, a second circulator, a third coupler, a third phase shifter, and a third nonlinear medium;
  • the first end of the first circulator is connected to the transmitter, the second end is connected to the first end of the third coupler, and the third end is connected to the third attenuator;
  • the first end of the second circulator is connected to
  • the pump laser is connected, the second end is connected to the second end of the third coupler, and the third end is connected to the fourth attenuator;
  • the third end of the third coupler is connected to the third phase shifter
  • the first end is connected, the fourth end of the third coupler is connected to the first end of the third nonlinear medium;
  • the second end of the third phase shifter is connected to the second end of the nonlinear medium Connection; after the first end of the first circulator receives the fourth signal light emitted by the transmitter, the second end of the first circulator outputs the first end
  • the second end will input the sixth signal light, the eighth pump light, and the fourth invalid signal to the second end of the third phase shifter; the second end of the third phase shifter receives The sixth signal light, the eighth pump light, and the fourth invalid signal, the third phase shifter adds a fourth phase shift amount to the eighth pump light and then generates the tenth pump light , The first end of the third phase shifter will input the sixth signal light, the tenth pump light, and the fourth invalid signal to the third end of the third coupler; After the triple coupler proportionally couples the optical signals received at the third end and the fourth end, the third invalid signal and the fourth invalid signal interfere with each other at the first end of the third coupler.
  • the fifth signal light and the sixth signal light constructively interfere, and the first end of the third coupler outputs the constructively interfered signal light to the second end of the first circulator,
  • the second end of the third coupler outputs the pump light after constructive interference and the invalid signal after constructive interference;
  • the second end of the first circulator receives the signal light after constructive interference After that, the third end of the first circulator will output the signal light after constructive interference to the third attenuator.
  • the optical signal replication device included in the optical parametric amplifier will generate invalid signals during the process of transmitting signal light and pumping light.
  • the optical signal duplication device can separate the signal light from the invalid signal and transmit it to the signal processing module.
  • the signal processing module can directly process the signal light that does not include invalid signals, and the invalid signals will not occupy the transmission bandwidth of the optical parametric amplifier, and the effective transmission bandwidth of the optical parametric amplifier is relatively large.
  • the optical signal replication device the third phase shift amount is 2 ⁇ i, i is a positive integer greater than zero, and the third invalid signal is a third crosstalk signal, so The fourth invalid signal is a fourth crosstalk signal.
  • the optical signal duplication device realizes the separation between the signal light and the crosstalk signal.
  • the signal processing module can directly perform processing on the signal light that does not contain the crosstalk signal. Processing, the crosstalk signal will not occupy the transmission bandwidth of the optical parametric amplifier, and the effective transmission bandwidth of the optical parametric amplifier is relatively large.
  • the optical signal duplication device the third phase shift amount is ⁇ /2+2 ⁇ i, i is a positive integer greater than zero, and the third invalid signal is a third Idle frequency light, the fourth invalid signal is a fourth idle frequency light.
  • the optical signal duplicating device realizes the separation between signal light and idle frequency light.
  • the signal processing module can detect whether there is no idle frequency.
  • the optical signal light is directly processed, and the idle frequency light will not occupy the transmission bandwidth of the optical parametric amplifier, and the effective transmission bandwidth of the optical parametric amplifier is relatively large.
  • the foregoing optical signal duplication device the third ratio is 1:1; the third coupler combines the fourth signal light with the sixth pump After the light is coupled in a ratio of 1:1, the third end of the third coupler outputs the fifth signal light and the seventh pump light to the first end of the third phase shifter, and the fifth signal light
  • the signal intensity of is 50% of the signal intensity of the fourth signal light
  • the phase of the fifth signal light is the same as the phase of the fourth signal light
  • the signal intensity of the seventh pump light is the Fifty percent of the signal intensity of the sixth pump light
  • the phase difference between the seventh pump light and the sixth pump light is ⁇ /2
  • the fourth end of the third coupler The sixth signal light and the eighth pump light are output to the first end of the third nonlinear medium, and the signal intensity of the sixth signal light is a percentage of the signal intensity of the fourth signal light No. 50, the phase difference between the sixth signal light and the fourth signal light is ⁇ /2, and the signal intensity of the eighth pump light is 100% of the signal intensity of
  • a third aspect of the present application provides an optical parametric amplifier.
  • the optical parametric amplifier includes: an optical signal replication device, a signal processing device, and a signal amplifying device.
  • the signal processing device is used to process the optical signal output by the optical signal replication device.
  • the signal processing device includes a first attenuator and a second attenuator, the signal amplifying device is used to amplify the optical signal processed by the signal processing device, and the optical signal duplicating device is the first aspect or the first aspect described above. Any one of the possible implementations of the optical signal replication device described in the aspect.
  • a fourth aspect of the present application provides an optical parametric amplifier.
  • the optical parametric amplifier includes: an optical signal replication device, a signal processing device, and a signal amplifying device.
  • the signal processing device is used to process the optical signal output by the optical signal replication device.
  • the signal processing device includes a first attenuator and a second attenuator, the signal amplifying device is used to amplify the optical signal processed by the signal processing device, and the optical signal duplicating device is the second aspect or the second aspect described above. Any one of the possible implementations of the optical signal replication device described in the aspect.
  • the optical signal replication device included in the optical parametric amplifier will generate invalid signals during the process of transmitting signal light and pumping light.
  • the optical signal duplication device can separate the signal light from the invalid signal and transmit it to the signal processing module.
  • the signal processing module can directly process the signal light that does not include invalid signals, and the invalid signals will not occupy the transmission bandwidth of the optical parametric amplifier, and the effective transmission bandwidth of the optical parametric amplifier is relatively large.
  • FIG. 1 is a schematic structural diagram of an optical parametric amplifier provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an embodiment of an optical signal duplication device provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of another embodiment of an optical signal duplication device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another embodiment of an optical signal duplication device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another embodiment of an optical signal replication device provided by an embodiment of the present application.
  • the optical signal copying device is connected to the signal emitting device.
  • the signal transmitting device is a device that provides optical signals to the optical parametric amplifier.
  • the signal transmitting device includes a pump laser and a transmitter.
  • the pump laser transmits pump light to the optical signal duplication device, and the transmitter transmits signal light to the optical signal duplication device.
  • the complex device can transmit the pump light and the signal light to the signal processing device included in the optical parametric amplifier, and the signal processing device is the signal processing module in the optical parametric amplifier.
  • the pump light and signal light will generate invalid signals during the transmission process of the optical signal replication device, and the optical signal replication device will transmit the pump light, signal light and invalid signals to the signal processing device.
  • the optical signal duplication device sends pump light, signal light, and invalid signals to the signal processing device.
  • the invalid signal will occupy the transmission bandwidth of the signal processing device, and further, the invalid signal will occupy the transmission bandwidth of the signal amplifying device. From the perspective of the overall optical parametric amplifier, in this way, the invalid signal occupies the transmission bandwidth of the optical parametric amplifier, and the effective transmission bandwidth of the optical parametric amplifier is small.
  • an embodiment of the present application provides an optical signal replication device and a related optical parametric amplifier, which can increase the effective transmission bandwidth of the optical parametric amplifier.
  • Fig. 1 is a schematic structural diagram of an optical parametric amplifier provided by an embodiment of the present application.
  • the optical parametric amplifier 100 provided by the embodiment of the present application includes: an optical signal replication module 101, a signal processing module 102, and a signal amplification module 103.
  • the optical signal replication module 101 is connected to the signal processing module 102, and the signal processing module 102 is connected to the signal amplifying module 103.
  • the optical signal replication module is a module for optical signal processing in the optical parametric amplifier, which is also an optical signal replication device.
  • the optical signal copying device is the pre-structure of the signal amplifying device.
  • the optical signal copying device is usually composed of a first-level phase insensitive amplifier (PIA). Its main function is to produce a signal processing module and signal amplification. Optical signal required by the module.
  • PPA phase insensitive amplifier
  • the optical signal replication module mentioned in the embodiments of the present application can be applied to any scene that needs to perform signal processing. Specifically, it can be applied to an optical parametric amplifier. It can be a phase sensitive amplifier (PSA).
  • PSA phase sensitive amplifier
  • the signal processing module is a module that processes the signal light signal in the optical parametric amplifier. After the signal processing module receives the optical signal sent by the optical signal replication module, it can process the received optical signal.
  • the signal processing methods include power equalization, phase control, polarization control, and other signal processing methods, which are not specifically limited here.
  • the signal amplifying module the signal amplifying module is used to realize the amplification of the optical signal.
  • FIG. 2 is a schematic diagram of an embodiment of an optical signal duplication device provided by an embodiment of the present application.
  • the optical signal replication device mentioned in the embodiment of the present application includes: a first coupler, a second coupler, a first nonlinear medium, a second nonlinear medium, and The first phase shifter.
  • the nonlinear coefficient of the nonlinear medium mentioned in the embodiment of this application is large, and the dispersion of the nonlinear medium is small.
  • the nonlinear medium provided in the embodiment of the present application may be a highly nonlinear fiber (HNLF), a photonic crystal fiber (PCF), or a periodically polarized niobium fiber.
  • HNLF highly nonlinear fiber
  • PCF photonic crystal fiber
  • PPLN periodically polarized niobium fiber.
  • Periodically polled lithium niobate (PPLN) and other types of nonlinear media are not specifically limited here.
  • phase shifter mentioned in the embodiments of this application refers to an element used to change the phase of the transmission wave in the microwave circuit.
  • the phase shifter mentioned in the embodiment of the present application may be a fiber bragg grating (FBG), an electro-optic modulator, or other types of phase shifters such as an acousto-optic modulator. The details are not limited here.
  • the first end of the first coupler is connected to the pump laser, the second end is connected to the transmitter, the third end is connected to the first end of the first nonlinear medium, and the fourth end is connected to the first phase.
  • the first end of the shifter is connected.
  • the coupler mentioned in the embodiment of this application is an optical fiber coupler.
  • Optical fiber couplers also known as splitters, connectors, and adapters, are components used to split or combine optical signals. It can be applied to various transmission networks such as telecommunication network, cable TV network, local area network, etc.
  • the second end of the first nonlinear medium is connected to the first end of the second coupler.
  • the second end of the first phase shifter is connected to the first end of the second nonlinear medium.
  • the second end of the second nonlinear medium is connected to the second end of the second coupler.
  • the third end of the second coupler is connected to the first attenuator, and the fourth end of the second coupler is connected to the second attenuator.
  • the optical signal replication device in the optical parametric amplifier is connected to the signal processing module.
  • the signal processing module includes a first attenuator and a second attenuator, and the signal processing module may also include other components, which are not specifically limited here.
  • the first end of the first coupler receives the first pump light emitted by the pump laser, and the second end of the first coupler receives the first signal light emitted by the transmitter.
  • the third end of the first coupler outputs the second pump light and the second signal light to the first nonlinear medium, and the first coupler The fourth end of the output of the third pump light and the third signal light to the first phase shifter.
  • the first coupler couples the first pump light and the first signal light according to a certain ratio, and the specific coupling ratio may be a 1:1 coupling.
  • the third end of the third coupler After the third coupler couples the fourth signal light and the sixth pump light in a ratio of 1:1, the third end of the third coupler outputs the fifth signal light and the seventh light to the first end of the third phase shifter.
  • the signal intensity of the fifth signal light is 50% of the signal intensity of the fourth signal light
  • the phase of the fifth signal light and the fourth signal light are the same
  • the signal intensity of the seventh pump light is the sixth Fifty percent of the signal intensity of the pump light
  • the phase difference between the seventh pump light and the sixth pump light is ⁇ /2;
  • the fourth end of the third coupler outputs the sixth signal light and the eighth pump light to the first end of the third nonlinear medium, the signal intensity of the sixth signal light is 5% of the signal intensity of the fourth signal light 10.
  • the phase difference between the sixth signal light and the fourth signal light is ⁇ /2, the signal intensity of the eighth pump light is 50% of the signal intensity of the sixth pump light, and the eighth pump light
  • the phase is the same as that of the sixth pump light.
  • the optical signal copying device is connected to the transmitting device, and the transmitting device is a device that generates optical signals.
  • the transmitting device may include a pump laser and a transmitter, and the transmitting device may also include other components related to optical signals, which are not specifically limited here.
  • the second pump light and the second signal light After receiving the second pump light and the second signal light in the first non-linear medium, the second pump light and the second signal light will generate a three-wave mixing effect or a four-wave mixing effect in the first non-linear medium. After the pump light and the second signal light have a three-wave mixing effect or a four-wave mixing effect, a first invalid signal will be generated.
  • the first invalid signal may be a crosstalk signal, and the first invalid signal may also be idle frequency light, which is not specifically limited here.
  • the second pump light and the second signal light can have a three-wave mixing effect or a four-wave mixing effect in the first nonlinear medium. Which effect specifically occurs, Determined by the type of nonlinear medium.
  • the first phase shifter After receiving the third pump light and the third signal light in the first phase shifter, the first phase shifter generates the fourth pump light after adding a first phase shift to the third pump light.
  • the fourth pump light and the third signal light After receiving the fourth pump light and the third signal light in the second nonlinear medium, the fourth pump light and the third signal light will have a three-wave mixing effect or a four-wave mixing effect in the second nonlinear medium. After the fourth pump light and the third signal light have a three-wave mixing effect or a four-wave mixing effect, a second invalid signal will be generated.
  • the second invalid signal may be a crosstalk signal, and the second invalid signal may also be idle frequency light, which is not specifically limited here.
  • the fourth pump light and the third signal light can have a three-wave mixing effect or a four-wave mixing effect in the second nonlinear medium. Which effect specifically occurs, Determined by the type of nonlinear medium.
  • the first end of the second coupler inputs the second pump light, the second signal light and the first invalid signal, and the second end of the second coupler inputs the fourth pump light, the third signal light and the second invalid signal,
  • the second coupler proportionally couples the transmission signal input from the first end and the second end of the second coupler
  • the second coupler couples the optical signals input from the first end of the second coupler and the second end of the second coupler according to a certain ratio, and the specific coupling ratio may be 1:1 coupling.
  • the first invalid signal and the second invalid signal cancel each other out after interference occurs at the third end of the second coupler .
  • the second signal light and the third signal light have constructive interference at the third end of the second coupler, and the third end of the second coupler outputs the signal light generated after constructive interference.
  • the first phase shift amount is 2 ⁇ i
  • i is a positive integer greater than zero.
  • the second pump light and the second signal light will have a three-wave mixing effect or a four-wave mixing effect in the first nonlinear medium.
  • the first crosstalk signal will be generated.
  • the first phase shifter After receiving the third pump light and the third signal light in the first phase shifter, the first phase shifter increases the phase of the third pump light by 2 ⁇ i to generate the fourth pump light.
  • the fourth pump light and the third signal light After receiving the fourth pump light and the third signal light in the second nonlinear medium, the fourth pump light and the third signal light will have a three-wave mixing effect or a four-wave mixing effect in the second nonlinear medium. After the fourth pump light and the third signal light have a three-wave mixing effect or a four-wave mixing effect, a second crosstalk signal will be generated.
  • the first invalid signal is the first crosstalk signal
  • the second invalid signal is the second crosstalk signal.
  • the first crosstalk signal and the second crosstalk signal will cancel each other after interference occurs at the third end of the first coupler, so as to realize the reproduction device.
  • the separation between the signal light and the crosstalk signal in the output signal is the first invalid signal.
  • the first phase shift amount is ⁇ /2+ ⁇ i
  • i is a positive integer greater than zero.
  • the first invalid signal is the first idle frequency light
  • the second invalid signal is the second idle frequency light.
  • the first idle frequency light and the second idle frequency light will cancel each other after interference occurs at the third end of the first coupler, thereby Realize the separation between the signal light and idle frequency light in the signal output by the optical signal duplication device.
  • the optical signal replication device included in the optical parametric amplifier will generate invalid signals during the process of transmitting signal light and pumping light.
  • the optical signal duplication device can separate the signal light from the invalid signal and transmit it to the signal processing module.
  • the signal processing module can directly process the signal light that does not include invalid signals, and the invalid signals will not occupy the transmission bandwidth of the optical parametric amplifier, and the effective transmission bandwidth of the optical parametric amplifier is relatively large.
  • FIG. 3 is a schematic diagram of an embodiment of an optical signal duplication device provided by an embodiment of the present application.
  • the optical signal duplicating device provided in this embodiment may further include a second phase shifter.
  • the first end of the second phase shifter is connected to the second nonlinear medium.
  • the second end of the second phase shifter is connected to the second end of the second coupler.
  • the second phase shifter After receiving the fourth pump light, the third signal light, and the second invalid signal in the second phase shifter, the second phase shifter increases the phase of the fourth pump light by the second phase shift amount and then generates the fifth pump light .
  • the second end of the second phase shifter transmits the fifth pump light to the second end of the second coupler.
  • the second phase shift amount when the second phase shift amount is 2 ⁇ i, i is a positive integer greater than zero.
  • the first end of the second coupler receives the third pump light
  • the second end of the second coupler receives the fifth pump light
  • the third pump light and the fifth pump light are at the third end of the second coupler
  • the third pump light and the fifth pump light interfere constructively at the fourth end of the second coupler
  • the fourth end of the second coupler outputs the pump light generated after constructive interference.
  • the third end of the second coupler outputs signal light
  • the fourth end of the second coupler outputs pump light, so that the separation between pump light and signal light can be realized.
  • the second phase shift amount when the second phase shift amount is ⁇ +2 ⁇ i, i is a positive integer greater than zero.
  • the first end of the second coupler receives the third pump light
  • the second end of the second coupler receives the fifth pump light
  • the third pump light and the fifth pump light are at the fourth end of the second coupler
  • the third pump light and the fifth pump light interfere constructively at the third end of the second coupler
  • the third end of the second coupler outputs the pump light generated after constructive interference.
  • the second phase shift amount applied by the second phase shifter to the pump light can be controlled to control the pump light to be output together with the signal light from the third end of the second coupler.
  • the optical signal replication device included in the optical parametric amplifier will generate invalid signals during the process of transmitting signal light and pumping light.
  • the optical signal duplication device can separate the signal light from the invalid signal and transmit it to the signal processing module.
  • the signal processing module can directly process the signal light that does not include invalid signals, and the invalid signals will not occupy the transmission bandwidth of the optical parametric amplifier, and the effective transmission bandwidth of the optical parametric amplifier is relatively large.
  • FIG. 4 is a schematic diagram of an embodiment of an optical signal duplication device provided by an embodiment of the present application.
  • P is the phase of the pump light
  • S is the phase of the signal light
  • I is the phase of the idle frequency light
  • XT is the phase of the crosstalk signal.
  • the phase of the first pump light input from the first end of the first coupler is ⁇ p
  • the phase of the first signal light input from the second end of the first coupler is ⁇ s .
  • the first pump light The phase of the second pump light output from the third end of a coupler is ⁇ p
  • the phase of the second signal light is ⁇ s + ⁇ /2
  • the phase of the third pump light output from the fourth end of the first coupler is The phase is ⁇ p + ⁇ /2
  • the phase of the third signal light is ⁇ s .
  • the first phase shifter adds the first phase shift amount ⁇ p (1) to the third pump light to generate the fourth pump light, and the phase of the fourth pump light is ⁇ p + ⁇ /2+ ⁇ p (1) .
  • the second pump light and the second signal light are input to the first nonlinear medium.
  • idle frequency light and crosstalk signals will be generated.
  • the formula generated in the nonlinear medium shows that the phase of the first idle frequency light is 2 ⁇ p- ⁇ s
  • the formula of the crosstalk signal generated in the nonlinear medium shows that the phase of the first crosstalk signal is ⁇ p + ⁇ /2.
  • the fourth pump light and the third signal light are input to the second nonlinear medium.
  • idle frequency light and crosstalk signals will be generated.
  • the formula generated in the nonlinear medium shows that the phase of the second idle frequency light is 2 ⁇ p +2 ⁇ p (1)- ⁇ s +3 ⁇ /2.
  • the phase of the second crosstalk signal can be known. The phase is ⁇ p + ⁇ p (1) + ⁇ .
  • the second phase shifter After the fourth pump light, the third signal light, the second idle frequency light, and the second crosstalk signal are input to the second phase shifter, the second phase shifter will add a second phase shift amount to the fourth pump light ⁇ p (2) generates the fifth pump light.
  • the phase of the fifth pump light is ⁇ p + ⁇ /2+ ⁇ p (1)+ ⁇ p (2).
  • the first end of the second coupler inputs the second pump light, the second idle frequency light and the first invalid signal
  • the second end of the second coupler inputs the fourth pump light, the third signal light and the second invalid signal
  • the signal light output from the third end of the second coupler has two phases, respectively ⁇ p and ⁇ p + ⁇ + ⁇ p (1)+ ⁇ p( 2)
  • the pump light output from the third end of the second coupler has two phases, respectively ⁇ s+ ⁇ /2 and ⁇ s+ ⁇ /2
  • the idle frequency light output from the third end of the second coupler has two phases, respectively 2 ⁇ p - ⁇ s and 2 ⁇ p +2 ⁇ p (1)- ⁇ s+2 ⁇
  • the signal has two phases, ⁇ p + ⁇ /2, and ⁇ p + ⁇ p (1)+3 ⁇ /2.
  • the signal light output from the fourth end of the second coupler has two phases, respectively ⁇ p + ⁇ /2 and ⁇ p + ⁇ /2+ ⁇ p (1)+ ⁇ p (2).
  • the pump light output from the fourth end has two phases, respectively ⁇ s + ⁇ /2, ⁇ s + ⁇ /2
  • the idle frequency light output from the fourth end of the second coupler has two phases, respectively 2 ⁇ p - ⁇ s + ⁇ /2,2 ⁇ p +2 ⁇ p (1)- ⁇ s +3 ⁇ /2
  • the crosstalk signal output from the fourth terminal of the second coupler has two phases, ⁇ p+ ⁇ and ⁇ p + ⁇ p (1)+ ⁇ .
  • the first invalid signal is a first crosstalk signal
  • the second invalid signal is a second crosstalk signal.
  • the crosstalk signal output by the third end of the second coupler will be interfered and cancelled, and the signal light and the crosstalk signal can be separated at the third end of the second coupler.
  • the first invalid signal is a first idle frequency light
  • the second invalid signal is a second idle frequency light.
  • the idle frequency light output from the third end of the second coupler will be interfered and cancelled, and the signal light and idle frequency light can be separated at the third end of the second coupler.
  • i is a positive integer greater than zero.
  • the first end of the second coupler receives the third pump light
  • the second end of the second coupler receives the fifth pump light
  • the third pump light and the fifth pump light are at the third end of the second coupler
  • the third pump light and the fifth pump light interfere constructively at the fourth end of the second coupler
  • the fourth end of the second coupler outputs the pump light generated after constructive interference.
  • i is a positive integer greater than zero.
  • the first end of the second coupler receives the third pump light
  • the second end of the second coupler receives the fifth pump light
  • the third pump light and the fifth pump light are at the fourth end of the second coupler
  • the third pump light and the fifth pump light interfere constructively at the third end of the second coupler
  • the third end of the second coupler outputs the pump light generated after constructive interference.
  • FIG. 5 is a schematic diagram of an embodiment of a copy device provided by an embodiment of the present application.
  • the optical signal replication device mentioned in the embodiment of the present application includes: a first circulator, a second circulator, a third coupler, a third phase shifter, and a third non Linear medium.
  • the circulator is a multi-port device that sequentially transmits incident waves entering any port of the circulator to the next port in a direction determined by the static bias magnetic field.
  • the circulator is a non-reversible device with several terminals.
  • the type of the circulator in the embodiment of the present application may be a micro-optical fiber circulator, an electronic circulator, or other types of circulators, which are not specifically limited here.
  • the coupler, phase shifter, and nonlinear medium mentioned in the embodiment of this application are similar to the coupler, phase shifter, and nonlinear medium mentioned in the embodiment shown in FIG. Do repeat.
  • the first end of the first circulator is connected to the transmitter, the second end is connected to the first end of the third coupler, and the third end is connected to the third attenuator.
  • the first end of the second circulator is connected to the pump laser, the second end is connected to the second end of the third coupler, and the third end is connected to the fourth attenuator.
  • the optical signal replication device in the optical parametric amplifier is connected to the signal processing module.
  • the signal processing module may include a third attenuator and a fourth attenuator, and the signal processing module may also include other components, which are not specifically limited here.
  • the third end of the third coupler is connected to the first end of the third phase shifter, and the fourth end of the third coupler is connected to the first end of the third nonlinear medium.
  • the second end of the third phase shifter is connected to the second end of the nonlinear medium.
  • the second end of the first circulator after the first end of the first circulator receives the fourth signal light emitted by the transmitter, the second end of the first circulator outputs the fourth signal light to the first end of the third coupler. After the first end of the second circulator receives the sixth pump light emitted by the pump laser, the second end of the second circulator outputs the sixth pump light to the second end of the third coupler.
  • the first end of the third coupler receives the fourth signal light derived from the second end of the first circulator, and the second end of the third coupler receives the sixth pump light emitted by the second end of the second circulator
  • the third end of the third coupler outputs the fifth signal light and the seventh pump light to the first end of the third phase shifter
  • the fourth end of the third coupler outputs the sixth signal light and the eighth pump light to the first end of the third nonlinear medium.
  • the third coupler couples the sixth pump light and the fourth signal light according to a certain ratio, and the specific coupling ratio may be 50 to 50 coupling.
  • the third phase shifter when the optical signal is transmitted counterclockwise in the optical signal replication device, after the first end of the third phase shifter receives the fifth signal light and the seventh pump light, the third phase shifter pairs the seventh After the pump light is increased by the third phase shift amount, the ninth pump light is generated, and the second end of the third phase shifter outputs the fifth signal light and the ninth pump light to the third nonlinear medium.
  • the fifth signal light and the ninth pump light After the second end of the third nonlinear medium receives the fifth signal light and the ninth pump light, the fifth signal light and the ninth pump light produce three-wave mixing effect or four-wave mixing effect in the third nonlinear medium , The fifth signal light and the ninth pump light will produce a third invalid signal after the three-wave mixing effect or the four-wave mixing effect occurs, and the first end of the third nonlinear medium will go to the fourth end of the third coupler Input the fifth signal light, the ninth pump light, and the third invalid signal.
  • the optical signal is transmitted clockwise in the optical signal replication device
  • the sixth signal light and the eighth pump light are in the third non-linear medium.
  • Three-wave mixing effect or four-wave mixing effect occurs in linear medium.
  • the fourth invalid signal will be generated.
  • the third nonlinear medium The second end of the third phase shifter will input the sixth signal light, the eighth pump light and the fourth invalid signal to the second end of the third phase shifter.
  • the second end of the third phase shifter receives the sixth signal light, the eighth pump light, and the fourth invalid signal, and the third phase shifter generates the tenth pump light after adding a fourth phase shift amount to the eighth pump light ,
  • the first end of the third phase shifter will input the sixth signal light, the tenth pump light and the fourth invalid signal to the third end of the third coupler.
  • the third coupler proportionally couples the optical signals received by the third end and the fourth end, the third invalid signal and the fourth invalid signal interfere with each other at the first end of the third coupler, and the fifth signal light Constructive interference occurs with the sixth signal light
  • the first end of the third coupler outputs the signal light after constructive interference to the second end of the first circulator
  • the fifth signal light and the sixth signal light are coupled in the third
  • the second end of the coupler interferes and cancels each other out
  • the second end of the third coupler outputs the pump light after constructive interference and the invalid signal after constructive interference.
  • the third coupler couples the optical signals received by the third end and the fourth end according to a certain ratio, and the specific coupling ratio may be a 1:1 coupling.
  • the third end of the third coupler After the third coupler couples the fourth signal light and the sixth pump light in a ratio of 1:1, the third end of the third coupler outputs the fifth signal light and the seventh light to the first end of the third phase shifter.
  • the signal intensity of the fifth signal light is 50% of the signal intensity of the fourth signal light
  • the phase of the fifth signal light and the fourth signal light are the same
  • the signal intensity of the seventh pump light is the sixth Fifty percent of the signal intensity of the pump light
  • the phase difference between the seventh pump light and the sixth pump light is ⁇ /2;
  • the fourth end of the third coupler outputs the sixth signal light and the eighth pump light to the first end of the third nonlinear medium, the signal intensity of the sixth signal light is 5% of the signal intensity of the fourth signal light 10.
  • the phase difference between the sixth signal light and the fourth signal light is ⁇ /2, the signal intensity of the eighth pump light is 50% of the signal intensity of the sixth pump light, and the eighth pump light
  • the phase is the same as that of the sixth pump light.
  • the third end of the first circulator After the second end of the first circulator receives the signal light after constructive interference, the third end of the first circulator will output the signal light after constructive interference to the third attenuator.
  • the third invalid signal is the third crosstalk signal
  • the fourth invalid signal is the fourth crosstalk signal
  • the third coupler couples the optical signals received by the third end and the fourth end in a ratio of 1:1
  • the third crosstalk signal and the fourth crosstalk signal interfere with each other at the first end of the third coupler, and cancel each other out.
  • the fifth signal light and the sixth signal light have constructive interference
  • the first end of the third coupler outputs the signal light after constructive interference to the second end of the first circulator
  • the second end of the third coupler outputs The pump light after constructive interference and the crosstalk signal after constructive interference.
  • the third invalid signal is the third idle frequency light
  • the fourth invalid signal is the fourth idle frequency light
  • the third coupler couples the optical signals received by the third end and the fourth end in a ratio of 1:1
  • the third idle frequency light and the fourth idle frequency light interfere with each other at the first end of the third coupler.
  • the first end of the third coupler outputs the signal light after constructive interference to the second end of the first circulator, and the second end of the third coupler outputs the pump light after constructive interference and constructive interference. After the idle frequency light.
  • the optical signal replication device included in the optical parametric amplifier will generate invalid signals during the process of transmitting signal light and pumping light.
  • the optical signal duplication device can separate the signal light from the invalid signal and transmit it to the signal processing module.
  • the signal processing module can directly process the signal light that does not include invalid signals, and the invalid signals will not occupy the transmission bandwidth of the optical parametric amplifier, and the effective transmission bandwidth of the optical parametric amplifier is relatively large.
  • optical signal duplication device provided by the embodiments of the application is described in detail above. Specific examples are used in this article to illustrate the principles and implementations of the application. The descriptions of the above embodiments are only used to help understand the methods and methods of the application. Its core idea. At the same time, for those of ordinary skill in the art, according to the idea of the application, there will be changes in the specific implementation and the scope of application. In summary, the content of this specification should not be construed as a limitation of the application.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本申请实施例公开了一种光信号复制装置以及光参量放大器,应用于通信领域,本申请实施例中,光参量放大器中包括的光信号复制装置在传输信号光以及泵浦光的过程当中产生无效信号。光信号复制装置可以将信号光与无效信号分离之后传输至信号处理模块中。这样,信号处理模块可以对不包括无效信号的信号光直接进行处理,无效信号将不会占据光参量放大器的传输带宽,光参量放大器的有效传输带宽较大。

Description

光信号复制装置 技术领域
本申请实施例涉及无线通信领域,尤其涉及一种光信号复制装置。
背景技术
光参量放大器(optical amplifier),是光纤通信系统中能对光信号进行放大的一种放大器。光参量放大器是一种无需将光信号转换为电信号即可直接放大光信号的设备。光参量放大器的原理是基于激光的受激辐射,通过将泵浦光的能量转变为信号光的能量实现放大作用。
光信号复制装置(copier),是光参量放大器中对光信号进行预处理的一种装置。泵浦激光器向光信号复制装置传输泵浦光,发射机向光信号复制装置传输信号光。这样,光信号复制装置可以将泵浦光以及信号光传输至光参量放大器中包括的信号处理模块中。然而,泵浦光以及信号光在光信号复制装置的传输过程中产生无效信号,光信号复制装置会将泵浦光、信号光以及无效信号传输至信号处理模块中。
光信号复制装置向信号处理模块发送泵浦光、信号光以及无效信号,无效信号占据光参量放大器的传输带宽,光参量放大器的有效传输带宽小。
发明内容
本申请实施例提供了一种光信号复制装置以及光参量放大器。光信号复制装置可以将信号光与无效信号分离之后传输至信号处理模块中,可以提高光参量放大器的有效传输带宽。
本申请第一方面提供一种光信号复制装置,该光信号复制装置中包括:第一耦合器、第二耦合器、第一非线性介质、第二非线性介质以及第一相移器;所述第一耦合器的第一端与泵浦激光器连接,第二端与发射机连接,第三端与所述第一非线性介质的第一端连接,第四端与第一相移器的第一端连接;所述第一非线性介质的第二端与所述第二耦合器的第一端连接;所述第一相移器的第二端与所述第二非线性介质的第一端连接;所述第二非线性介质的第二端与所述第二耦合器的第二端连接;所述第一耦合器的第一端导入所述泵浦激光器发射的第一泵浦光,所述第一耦合器的第二端接收所述发射机发射的第一信号光,所述第一耦合器将所述第一泵浦光与所述第一信号光按第一比例耦合之后,所述第一耦合器的第三端向所述第一非线性介质输出第二泵浦光以及第二信号光,所述第一耦合器的第四端向所述第一相移器输出第三泵浦光以及第三信号光;所述第一非线性介质接收所述第二泵浦光与所述第二信号光之后,所述第二泵浦光与所述第二信号光在所述第一非线性介质中发生三波混频效应或四波混频效应,所述第二泵浦光与所述第二信号光发生三波混频效应或四波混频效应之后产生第一无效信号;所述第一相移器中接收所述第三泵浦光与所述第三信号光之后,所述第一相移器对所述第三泵浦光增加第一相移之后生成第四泵浦光;所述第二非线性介质中接收所述第四泵浦光与所述第三信号光之后,所述第四泵浦光与所述第三信号光在所述第二非线性介质中发生三波混频效应或四波混频效应,所述第四泵浦光与所述第三信号光发生三波混频效应或四波混频效应之后产生第二无效信号;所述第二 耦合器的第一端输入由所述第一非线性介质输出的所述第二泵浦光、第二信号光以及第一无效信号,所述第二耦合器的第二端输入第四泵浦光,第三信号光以及第二无效信号,所述第二耦合器对所述第二耦合器的第一端以及第二端输入的光信号按第二比例进行耦合;所述第二耦合器对所述第二耦合器的第一端以及第二端输入的光信号按比例进行耦合之后,所述第一无效信号与所述第二无效信号在所述第二耦合器的第三端发生干涉之后相互抵消,所述第二信号光与所述第三信号光在所述第二耦合器的第三端发生相长干涉,所述第二耦合器的第三端输出相长干涉之后产生的信号光。
本申请实施例中,光参量放大器中包括的光信号复制装置在传输信号光以及泵浦光的过程当中会产生无效信号。光信号复制装置可以将信号光与无效信号分离之后传输至信号处理模块中。这样,信号处理模块可以对不包括无效信号的信号光直接进行处理,无效信号将不会占据光参量放大器的传输带宽,光参量放大器的有效传输带宽较大。
在第一方面一种可能的实现方式中,上述光信号复制装置:所述第一相移量为2πi,i为大于零的正整数,所述第一无效信号为第一串扰信号,所述第二无效信号为第二串扰信号。
该种可能的实现方式中,第一非线性介质中导入第二泵浦光与第二信号光之后,第二泵浦光与第二信号光在第一非线性介质中将会发生三波混频效应或四波混频效应,第二泵浦光与第二信号光发生三波混频效应或四波混频效应之后将会产生第一串扰信号;第一相移器中导入第三泵浦光与第三信号光之后,第一相移器将第三泵浦光的相位增加2πi之后生成第四泵浦光;第二非线性介质中导入第四泵浦光与第三信号光之后,第四泵浦光与第三信号光在第二非线性介质中将会发生三波混频效应或四波混频效应,第四泵浦光与第三信号光发生三波混频效应或四波混频效应之后将会产生第二串扰信号;第二耦合器对第二耦合器的第一端以及第二端输入的光信号按比例进行耦合之后,第一串扰信号与第二串扰信号在第二耦合器的第三端发生干涉之后相互抵消,第二信号光与第三信号光在第二耦合器的第三端发生相长干涉,第二耦合器的第三端输出相长干涉之后产生的信号光。该种可能的实现方式中,光信号复制装置实现了信号光与串扰信号之间的分离,这样,信号处理模块可以对不含有串扰信号的信号光直接进行处理,串扰信号将不会占据光参量放大器的传输带宽,光参量放大器的有效传输带宽较大。
在第一方面一种可能的实现方式中,上述光信号复制装置:所述第一相移量为π/2+πi,i为大于零的正整数,所述第一无效信号为第一闲频光,所述第二无效信号为第二闲频光。
该种可能的实现方式中,第一非线性介质中导入第二泵浦光与第二信号光之后,第二泵浦光与第二信号光在第一非线性介质中将会发生三波混频效应或四波混频效应,第二泵浦光与第二信号光发生三波混频效应或四波混频效应之后将会产生第一闲频光;第一相移器中导入第三泵浦光与第三信号光之后,第一相移器将第三泵浦光的相位增加π/2+πi之后生成第四泵浦光;第二非线性介质中导入第四泵浦光与第三信号光之后,第四泵浦光与第三信号光在第二非线性介质中将会发生三波混频效应或四波混频效应,第四泵浦光与第三信号光发生三波混频效应或四波混频效应之后将会产生第二闲频光;第二耦合器对第二 耦合器的第一端以及第二端输入的光信号按比例进行耦合之后,第一闲频光与第二闲频光在第二耦合器的第三端发生干涉之后相互抵消,第二信号光与第三信号光在第二耦合器的第三端发生相长干涉,第二耦合器的第三端输出相长干涉之后产生的信号光。光信号复制装置实现了信号光与闲频光之间的分离,这样,信号处理模块可以对不含有闲频光的信号光直接进行处理,闲频光将不会占据光参量放大器的传输带宽,光参量放大器的有效传输带宽较大。
在第一方面一种可能的实现方式中,上述光信号复制装置:所述光信号复制装置还包括第二相移器;所述第二相移器的第一端与所述第二非线性介质相连;所述第二相移器的第二端与所述第二耦合器的第二端连接;所述第二相移器中导入所述第四泵浦光、所述第三信号光以及所述第二无效信号之后,所述第二相移器对所述第四泵浦光的相位增加第二相移量之后生成第五泵浦光,所述第二相移器的第二端向所述第二耦合器的第二端传输所述第五泵浦光。
该种可能的实现方式中,光信号复制装置中包括第二相移器,操作员可以通过改变第二相移器的第二相移量来控制光信号复制装置中泵浦光的输出位置,该种可能的实现方式提升了光信号复制装置的准确性。
在第一方面一种可能的实现方式中,上述光信号复制装置:所述第一比例为1比1;所述第一耦合器将所述第一泵浦光与所述第一信号光按1比1的比例耦合之后,所述第一耦合器的第三端向所述第一非线性介质输出所述第二泵浦光以及所述第二信号光,所述第二泵浦光的信号强度为所述第一泵浦光的信号强度的百分之五十,所述第二泵浦光与所述第一泵浦光之间的相位差为π/2,所述第二信号光的信号强度为所述第一信号光的信号强度的百分之五十,所述第二信号光与所述第一信号光的相位相同;所述第一耦合器的第四端向所述第二非线性介质输出所述第三泵浦光以及所述第三信号光,所述第三泵浦光的信号强度为所述第一泵浦光的信号强度的百分之五十,所述第三泵浦光与所述第一泵浦光的相位相同,所述第三信号光的信号强度为所述第一信号光的信号强度的百分之五十,所述第三信号光与所述第一信号光之间的相位差为π/2。
该种可能的实现方式中,光信号复制装置中包括的第一耦合器的耦合比例为1比1,该种可能的实现方式提升了方案的可实现性。
在第一方面一种可能的实现方式中,上述光信号复制装置:所述光信号复制装置还包括第二相移器;所述第二相移器的第一端与所述第二非线性介质相连;所述第二相移器的第二端与所述第二耦合器的第二端连接;所述第二相移器中接收所述第四泵浦光、所述第三信号光以及所述第二无效信号之后,所述第二相移器对所述第四泵浦光的相位增加第二相移量之后生成第五泵浦光,所述第二相移器的第二端向所述第二耦合器的第二端传输所述第五泵浦光。
该种可能的实现方式中,当第二相移量为2πi时,泵浦光将从光信号复制装置的第二耦合器的第四端导出。这样便可以实现信号光与泵浦光之间的分离,该种可能的实现方式提升了光信号复制装置的准确性。
在第一方面一种可能的实现方式中,上述光信号复制装置:所述第二相移量为π+2πi,i为大于零的正整数;所述第二耦合器的第一端接收所述第三泵浦光,所述第二耦合器的第二端接收所述第五泵浦光,所述第三泵浦光与所述第五泵浦光在所述第二耦合器的第四端发生干涉之后相互抵消,所述第三泵浦光与所述第五泵浦光在所述第二耦合器的第三端发生相长干涉,所述第二耦合器的第三端输出相长干涉后产生的泵浦光。
该种可能的实现方式中,当第二相移量为π+2πi时,泵浦光将从光信号复制装置的第二耦合器的第三端导出。该种可能的实现方式提升了方案的可实现性。
本申请第二方面提供一种光信号复制装置,该光信号复制装置中包括:第一环形器、第二环形器、第三耦合器、第三相移器以及第三非线性介质;所述第一环形器的第一端与发射机连接,第二端与所述第三耦合器的第一端连接,第三端与第三衰减器连接;所述第二环形器的第一端与泵浦激光器连接,第二端与所述第三耦合器的第二端连接,第三端与第四衰减器连接;所述第三耦合器的第三端与所述第三相移器的第一端连接,所述第三耦合器的第四端与所述第三非线性介质的第一端连接;所述第三相移器的第二端与所述非线性介质的第二端连接;所述第一环形器的第一端接收所述发射机发射出的第四信号光之后,所述第一环形器的第二端向所述第三耦合器的第一端输出所述第四信号光;所述第二环形器的第一端接收所述泵浦激光器发射出的第六泵浦光之后,所述第二环形器的第二端向所述第三耦合器的第二端输出所述第六泵浦光;所述第三耦合器的第一端接收所述第一环形器的第二端所导出的所述第四信号光,所述第三耦合器的第二端接收所述第二环形器的第二端所发射的第六泵浦光,所述第三耦合器将所述第四信号光以及所述第六泵浦光按比例耦合之后,所述第三耦合器的第三端向所述第三相移器的第一端输出第五信号光以及第七泵浦光,所述第三耦合器的第四端向所述第三非线性介质的第一端输出第六信号光以及第八泵浦光;当光信号在所述光信号复制装置中逆时针传输时,所述第三相移器的第一端接收所述第五信号光以及所述第七泵浦光之后,所述第三相移器对所述第七泵浦光增加第三相移量之后生成第九泵浦光,所述第三相移器的第二端向所述第三非线性介质输出所述第五信号光以及所述第九泵浦光;所述第三非线性介质的第二端接收所述第五信号光与所述第九泵浦光之后;所述第五信号光与所述第九泵浦光在所述第三非线性介质中发生三波混频效应或四波混频效应,所述第五信号光与所述第九泵浦光发生三波混频效应或四波混频效应之后将会产生第三无效信号,所述第三非线性介质的第一端将向所述第三耦合器的第四端输入所述第五信号光、所述第九泵浦光以及所述第三无效信号;当光信号在所述光信号复制装置中顺时针传输时,所述第三非线性介质的第一端接收所述第六信号光以及所述第八泵浦光之后,所述第六信号光与所述第八泵浦光在所述第三非线性介质中发生三波混频效应或四波混频效应,所述第六信号光与所述第八泵浦光发生三波混频效应或四波混频效应之后将会产生第四无效信号,所述第三非线性介质的第二端将向所述第三相移器的第二端输入所述第六信号光、所述第八泵浦光以及所述第四无效信号;所述第三相移器的第二端接收所述第六信号光、所述第八泵浦光以及所述第四无效信号,所述第三相移器对所述第八泵浦光增加第四相移量之后生成第十泵浦光,所述第三相移器的第一端将向所述第三耦合器的第三端输入所述第六信号光、所述第十泵浦光以及所述第四无效信号;所述第 三耦合器将第三端以及第四端接收到的光信号按比例耦合之后,所述第三无效信号与所述第四无效信号在所述第三耦合器的第一端出发生干涉相互抵消,所述第五信号光与所述第六信号光发生相长干涉,所述第三耦合器的第一端向所述第一环形器的第二端输出发生相长干涉后的信号光,所述第三耦合器的第二端输出发生相长干涉后的泵浦光以及发生相长干涉后的无效信号;所述第一环形器的第二端接收到发生相长干涉后的信号光之后,所述第一环形器的第三端将向所述第三衰减器输出发生相长干涉后的信号光。
本申请实施例中,光参量放大器中包括的光信号复制装置在传输信号光以及泵浦光的过程当中将会产生无效信号。光信号复制装置可以将信号光与无效信号分离之后传输至信号处理模块中。这样,信号处理模块可以对不包括无效信号的信号光直接进行处理,无效信号将不会占据光参量放大器的传输带宽,光参量放大器的有效传输带宽较大。
在第二方面一种可能的实现方式中,上述光信号复制装置:所述第三相移量为2πi,i为大于零的正整数,所述第第三无效信号为第三串扰信号,所述第四无效信号为第四串扰信号。
该种可能的实现方式中,当第三相移量为2πi时,光信号复制装置实现了信号光与串扰信号之间的分离,这样,信号处理模块可以对不含有串扰信号的信号光直接进行处理,串扰信号将不会占据光参量放大器的传输带宽,光参量放大器的有效传输带宽较大。
在第二方面一种可能的实现方式中,上述光信号复制装置:所述第三相移量为π/2+2πi,i为大于零的正整数,所述第第三无效信号为第三闲频光,所述第四无效信号为第四闲频光。
该种可能的实现方式中,当第三相移量为π/2+2πi时,光信号复制装置实现了信号光与闲频光之间的分离,这样,信号处理模块可以对不含有闲频光的信号光直接进行处理,闲频光将不会占据光参量放大器的传输带宽,光参量放大器的有效传输带宽较大。
在第二方面一种可能的实现方式中,上述光信号复制装置:所述第三比例为1比1;所述第三耦合器将所述所述第四信号光与所述第六泵浦光按1比1的比例耦合之后,所述第三耦合器的第三端向所述第三相移器的第一端输出第五信号光以及第七泵浦光,所述第五信号光的信号强度为所述第四信号光的信号强度的百分之五十,所述第五信号光与所述第四信号光的相位相同,所述第七泵浦光的信号强度为所述第六泵浦光的信号强度的百分之五十,所述第七泵浦光与所述第六泵浦光之间的相位差为π/2;所述第三耦合器的第四端向所述第三非线性介质的第一端输出所述第六信号光以及所述第八泵浦光,所述第六信号光的信号强度为所述第四信号光的信号强度的百分之五十,所述第六信号光与所述第四信号光之间的相位差为π/2,所述第八泵浦光的信号强度为所述第六泵浦光的信号强度的百分之五十,所述第八泵浦光与所述第六泵浦光之间的相位相同。
该种可能的实现方式中,光信号复制装置中包括的第三耦合器的耦合比例为1比1,该种可能的实现方式提升了方案的可实现性。本申请第三方面提供一种光参量放大器,该光参量放大器中包括:光信号复制装置、信号处理装置、信号放大装置,所述信号处理装置用于处理所述光信号复制装置输出的光信号,所述信号处理装置包括第一衰减器以及第二 衰减器,所述信号放大装置用于放大所述信号处理装置处理过的光信号,所述光信号复制装置为上述第一方面或第一方面任意一种可能实现方式中所描述的光信号复制装置。
本申请第四方面提供一种光参量放大器,该光参量放大器中包括:光信号复制装置、信号处理装置、信号放大装置,所述信号处理装置用于处理所述光信号复制装置输出的光信号,所述信号处理装置包括第一衰减器以及第二衰减器,所述信号放大装置用于放大所述信号处理装置处理过的光信号,所述光信号复制装置为上述第二方面或第二方面任意一种可能实现方式中所描述的光信号复制装置。
从以上技术方案可以看出,本申请实施例具有以下优点:
本申请实施例中,光参量放大器中包括的光信号复制装置在传输信号光以及泵浦光的过程当中将会产生无效信号。光信号复制装置可以将信号光与无效信号分离之后传输至信号处理模块中。这样,信号处理模块可以对不包括无效信号的信号光直接进行处理,无效信号将不会占据光参量放大器的传输带宽,光参量放大器的有效传输带宽较大。
附图说明
图1是本申请实施例提供的光参量放大器的结构示意图;
图2是本申请实施例提供的一种光信号复制装置的一实施例示意图;
图3是本申请实施例提供的一种光信号复制装置的另一实施例示意图;
图4是本申请实施例提供的一种光信号复制装置的另一实施例示意图;
图5是本申请实施例提供的一种光信号复制装置的另一实施例示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
光信号复制装置与信号发射装置连接。信号发射装置是向光参量放大器提供光信号的装置,信号发射装置中包括泵浦激光器以及发射机。泵浦激光器向光信号复制装置传输泵浦光,发射机向光信号复制装置传输信号光。这样,复装置可以将泵浦光以及信号光传输至光参量放大器中包括的信号处理装置中,信号处理装置即为光参量放大器中的信号处理模块。然而,泵浦光以及信号光在光信号复制装置的传输过程中将会产生无效信号,光信号复制装置会将泵浦光、信号光以及无效信号传输至信号处理装置中。
光信号复制装置向信号处理装置发送泵浦光、信号光以及无效信号。无效信号将会占据信号处理装置的传输带宽,进而,无效信号将会占据信号放大装置的传输带宽。从光参量放大器整体的角度来看,这样,无效信号便是占据了光参量放大器的传输带宽,光参量放大器的有效传输带宽小。
针对现有的光参量放大器存在的上述问题,本申请实施例提供了一种光信号复制装置以及相关光参量放大器,能够增加光参量放大器的有效传输带宽。
图1是本申请实施例提供的光参量放大器的结构示意图。
请参阅图1,如图1所示,本申请实施例提供的光参量放大器100包括:光信号复制模块101,信号处理模块102以及信号放大模块103。
其中,光信号复制模块101与信号处理模块102连接,信号处理模块102与信号放大模块103连接。
光信号复制模块,是光参量放大器中对光信号处理的一种模块,也就是光信号复制装置。光信号复制装置是信号放大装置的前级结构,光信号复制装置通常由一级相位非敏感型光参量放大器(phase insensitive amplifier,PIA)组成,它的主要作用是产生满足信号处理模块以及信号放大模块要求的光信号。
本申请实施例中,可以理解的是,本申请实施例所提及的光信号复制模块可以应用于任何需要执行信号处理的场景中,具体的,可以应用于光参量放大器中,该光参量放大器可以是相位敏感型放大器(phase sensitive amplifier,PSA)。
信号处理模块,是光参量放大器中对信号光信号进行处理的模块。信号处理模块接收到光信号复制模块所发送的光信号之后,可以对接收到的光信号进行处理。可选的,信号处理的方式包括功率均衡、相位控制、偏振控制以及其他信号处理方式,具体此处不做限定。
信号放大模块,信号放大模块用于实现光信号的放大。
基于图1所描述的光参量放大器的结构示意图,对本申请实施例提供的光信号复制装置进行描述。
图2是本申请实施例提供的一种光信号复制装置的一实施例示意图。
请参阅图2,如图2所示,本申请实施例中所提及的光信号复制装置包括:包括:第一耦合器、第二耦合器、第一非线性介质、第二非线性介质以及第一相移器。
本申请实施例中所提及的非线性介质的非线性系数大,且非线性介质的色散小。可选的,本申请实施例中所提供的非线性介质可以是高非线性光纤(highly nonlinear fiber,HNLF),可以是光子晶体光纤(photonic crystal fiber,PCF),还可以是周期性极化铌酸锂波导(periodically poled lithium niobate,PPLN)等其他类型的非线性介质,具体此处不做限定。
本申请实施例中所提及的相移器是指用来改变微波电路中传输波相位的元件。可选的,本申请实施例中所提及的相移器可以是光纤布拉格光栅(fiber bragg grating,FBG),可以是电光调制器,还可以是声光调制器等其他类型的相移器,具体此处不做限定。
本申请实施例中,第一耦合器的第一端与泵浦激光器连接,第二端与发射机连接,第三端与第一非线性介质的第一端连接,第四端与第一相移器的第一端连接。
本申请实施例中所提及的耦合器为光纤耦合器。光纤耦合器,又称分歧器、连接器以及适配器,是用于实现光信号分路或合路的元件。在电信网路、有线电视网路、区域网路等多种传输网路中都会应用到。
第一非线性介质的第二端与第二耦合器的第一端连接。
第一相移器的第二端与第二非线性介质的第一端连接。
第二非线性介质的第二端与第二耦合器的第二端连接。
第二耦合器的第三端与第一衰减器连接,第二耦合器的第四端与第二衰减器连接。
本申请实施例中,光参量放大器中的光信号复制装置与信号处理模块连接。可选的,该信号处理模块中包括第一衰减器以及第二衰减器,信号处理模块还可以包括其他元器件,具体此处不做限定。
本申请实施例中,第一耦合器的第一端接收泵浦激光器发射的第一泵浦光,第一耦合器的第二端接收发射机发射的第一信号光。第一耦合器将第一泵浦光与第一信号光按比例耦合之后,第一耦合器的第三端向第一非线性介质输出第二泵浦光以及第二信号光,第一耦合器的第四端向第一相移器输出第三泵浦光以及第三信号光。
本申请实施例中,第一耦合器将第一泵浦光与第一信号光按照一定的比例耦合,具体的耦合比例可以是以1比1的方式耦合。
第三耦合器将第四信号光与第六泵浦光按1比1的比例耦合之后,第三耦合器的第三端向第三相移器的第一端输出第五信号光以及第七泵浦光,第五信号光的信号强度为第四信号光的信号强度的百分之五十,第五信号光与第四信号光的相位相同,第七泵浦光的信号强度为第六泵浦光的信号强度的百分之五十,第七泵浦光与第六泵浦光之间的相位差为π/2;
第三耦合器的第四端向第三非线性介质的第一端输出第六信号光以及第八泵浦光,第六信号光的信号强度为第四信号光的信号强度的百分之五十,第六信号光与第四信号光之间的相位差为π/2,第八泵浦光的信号强度为第六泵浦光的信号强度的百分之五十,第八泵浦光与第六泵浦光之间的相位相同。
本申请实施例中,光信号复制装置与发射装置连接,发射装置是产生光信号的装置。可选的,发射装置中可以包括泵浦激光器以及发射机,发射装置中还可以包括其他与光信号相关的元器件,具体此处不做限定。
第一非线性介质中接收第二泵浦光与第二信号光之后,第二泵浦光与第二信号光在第一非线性介质中发生三波混频效应或四波混频效应,第二泵浦光与第二信号光发生三波混频效应或四波混频效应之后将会产生第一无效信号。
本申请实施例中,可选的,第一无效信号可以是串扰信号,第一无效信号还可以是闲频光,具体此处不做限定。
本申请实施例中,可选的,第二泵浦光与第二信号光在第一非线性介质中可以发生三波混频效应,也可以发生四波混频效应,具体发生那一种效应,由非线性介质的种类决定。
第一相移器中接收第三泵浦光与第三信号光之后,第一相移器对第三泵浦光增加第一相移之后生成第四泵浦光。
第二非线性介质中接收第四泵浦光与第三信号光之后,第四泵浦光与第三信号光在第二非线性介质中将会发生三波混频效应或四波混频效应,第四泵浦光与第三信号光发生三波混频效应或四波混频效应之后将会产生第二无效信号。
本申请实施例中,可选的,第二无效信号可以是串扰信号,第二无效信号还可以是闲频光,具体此处不做限定。
本申请实施例中,可选的,第四泵浦光与第三信号光在第二非线性介质中可以发生三波混频效应,也可以发生四波混频效应,具体发生那一种效应,由非线性介质的种类决定。
第二耦合器的第一端输入第二泵浦光、第二信号光以及第一无效信号,第二耦合器的第二端输入第四泵浦光,第三信号光以及第二无效信号,第二耦合器对第二耦合器的第一端以及第二端输入的传输信号按比例进行耦合;
本申请实施例中,第二耦合器将第二耦合器的第一端以及第二耦合器的第二端输入的光信号按照一定的比例耦合,具体的耦合比例可以是以1比1的方式耦合。
第二耦合器对第二耦合器的第一端以及第二端输入的传输信号按比例进行耦合之后,第一无效信号与第二无效信号在第二耦合器的第三端发生干涉之后相互抵消,第二信号光与第三信号光在第二耦合器的第三端发生相长干涉,第二耦合器的第三端输出相长干涉之后产生的信号光。
本申请实施例中,可选的,当第一相移量为2πi时,i为大于零的正整数。第一非线性介质中接收第二泵浦光与第二信号光之后,第二泵浦光与第二信号光在第一非线性介质中将会发生三波混频效应或四波混频效应,第二泵浦光与第二信号光发生三波混频效应或四波混频效应之后将会产生第一串扰信号。
第一相移器中接收第三泵浦光与第三信号光之后,第一相移器将第三泵浦光的相位增加2πi之后生成第四泵浦光。
第二非线性介质中接收第四泵浦光与第三信号光之后,第四泵浦光与第三信号光在第二非线性介质中将会发生三波混频效应或四波混频效应,第四泵浦光与第三信号光发生三波混频效应或四波混频效应之后将会产生第二串扰信号。
第一无效信号为第一串扰信号,第二无效信号为第二串扰信号,第一串扰信号与第二串扰信号将在第一耦合器的第三端发生干涉之后相互抵消,从而实现复制装置所输出的信号中信号光与串扰信号之间的分离。
本申请实施例中,可选的,当第一相移量为π/2+πi时,i为大于零的正整数。第一无效信号为第一闲频光,第二无效信号为第二闲频光,第一闲频光与第二闲频光将在第一耦合器的第三端发生干涉之后相互抵消,从而实现光信号复制装置所输出的信号中信号光与闲频光之间的分离。
本申请实施例中,光参量放大器中包括的光信号复制装置在传输信号光以及泵浦光的过程当中将会产生无效信号。光信号复制装置可以将信号光与无效信号分离之后传输至信 号处理模块中。这样,信号处理模块可以对不包括无效信号的信号光直接进行处理,无效信号将不会占据光参量放大器的传输带宽,光参量放大器的有效传输带宽较大。
图3是本申请实施例提供的一种光信号复制装置的一实施例示意图。
请参阅图3,基于上述实施例中说明的如图2所示的光信号复制装置,本实施例中提供的光信号复制装置还可以包括第二相移器。
第二相移器的第一端与第二非线性介质相连。
第二相移器的第二端与第二耦合器的第二端连接。
第二相移器中接收第四泵浦光、第三信号光以及第二无效信号之后,第二相移器对第四泵浦光的相位增加第二相移量之后生成第五泵浦光。第二相移器的第二端向第二耦合器的第二端传输第五泵浦光。
本申请实施例中,当第二相移量为2πi时,i为大于零的正整数。第二耦合器的第一端接收第三泵浦光,第二耦合器的第二端接收第五泵浦光,第三泵浦光与第五泵浦光在第二耦合器的第三端发生干涉之后相互抵消,第三泵浦光与第五泵浦光在第二耦合器的第四端发生相长干涉,第二耦合器的第四端输出相长干涉后产生的泵浦光。第二耦合器的第三端输出信号光,第二耦合器的第四端输出泵浦光,这样便可以实现泵浦光与信号光的之间的分离。
本申请实施例中,当第二相移量为π+2πi时,i为大于零的正整数。第二耦合器的第一端接收第三泵浦光,第二耦合器的第二端接收第五泵浦光,第三泵浦光与第五泵浦光在第二耦合器的第四端发生干涉之后相互抵消,第三泵浦光与第五泵浦光在第二耦合器的第三端发生相长干涉,第二耦合器的第三端输出相长干涉后产生的泵浦光。本申请实施例可以通过控制第二相移器对泵浦光施加的第二相移量,进而控制泵浦光从第二耦合器的第三端与信号光一同输出。
本申请实施例中,光参量放大器中包括的光信号复制装置在传输信号光以及泵浦光的过程当中将会产生无效信号。光信号复制装置可以将信号光与无效信号分离之后传输至信号处理模块中。这样,信号处理模块可以对不包括无效信号的信号光直接进行处理,无效信号将不会占据光参量放大器的传输带宽,光参量放大器的有效传输带宽较大。
图4是本申请实施例提供的一种光信号复制装置的一实施例示意图。
请参阅图4,光信号复制装置中光信号的传输过程将在下述的实施例中进行详细说明。
示例性的,本申请实施例中,如下图所示,P为泵浦光的相位,S为信号光的相位,I为闲频光的相位,XT为串扰信号的相位。
第一耦合器的第一端输入的第一泵浦光的相位为φ p,第一耦合器的第二端输入的第一信号光的相位为φ s,经过第一耦合器耦合之后,第一耦合器的第三端输出的第二泵浦光的相位为φ p,第二信号光的相位为φ s+π/2,第一耦合器的第四端输出的第三泵浦光的相位为φ p+π/2,第三信号光的相位为φ s
第一相移器对第三泵浦光增加第一相移量Δφ p(1)之后生成第四泵浦光,第四泵浦光的相位为φ p+π/2+Δφ p(1)。
第二泵浦光以及第二信号光输入第一非线性介质,在第一非线性介质中发生三波混频 或四波混频效应之后,将会产生闲频光与串扰信号,根据闲频光在非线性介质中产生的公式可知第一闲频光的相位为2φ ps,根据串扰信号在非线性介质中产生的公式可知第一串扰信号的相位为φ p+π/2。
第四泵浦光以及第三信号光输入第二非线性介质,在第二非线性介质中发生三波混频或四波混频效应之后,将会产生闲频光与串扰信号,根据闲频光在非线性介质中产生的公式可知第二闲频光的相位为2φ p+2Δφ p(1)-φ s+3π/2,根据串扰信号在非线性介质中产生的公式可知第二串扰信号的相位为φ p+Δφ p(1)+π。
第四泵浦光、第三信号光、第二闲频光以及第二串扰信号输入至第二相移器之后,第二相移器将会对第四泵浦光增加一个第二相移量Δφ p(2)生成第五泵浦光。第五泵浦光的相位为φ p+π/2+Δφ p(1)+Δφ p(2)。
第二耦合器的第一端输入第二泵浦光、第二闲频光以及第一无效信号,第二耦合器的第二端输入第四泵浦光、第三信号光以及第二无效信号。第二耦合器对第二耦合器的第一端以及第二耦合器的第二端输入的光信号进行耦合之后,第二耦合器的第三端输出的信号光具有两种相位,分别为φ p和φ p+π+Δφ p(1)+Δφ p(2),第二耦合器的第三端输出的泵浦光具有两种相位,分别为φs+π/2以及φs+π/2,第二耦合器的第三端输出的闲频光具有两种相位,分别为2φ p-φs以及2φ p+2Δφ p(1)-φs+2π,第二耦合器的第三端输出的串扰信号具有两种相位,分别为φ p+π/2,以及φ p+Δφ p(1)+3π/2。
第二耦合器的第四端输出的信号光具有两种相位,分别为φ p+π/2以及φ p+π/2+Δφ p(1)+Δφ p(2),第二耦合器的第四端输出的泵浦光具有两种相位,分别为φ s+π/2,φ s+π/2,第二耦合器的第四端输出的闲频光具有两种相位,分别为2φ ps+π/2,2φ p+2Δφ p(1)-φ s+3π/2,第二耦合器的第四端输出的串扰信号具有两种相位,分别为φp+π以及φ p+Δφ p(1)+π。
当第一相移量Δφ p(1)为2πi时,i为大于零的正整数。第一无效信号为第一串扰信号,第二无效信号为第二串扰信号。第二耦合器的第三端所输出的串扰信号将会发生干涉抵消,进而第二耦合器的第三端处可以实现信号光与串扰信号之间的分离。
当第一相移量Δφ p(1)为π/2+πi时,i为大于零的正整数。第一无效信号为第一闲频光,第二无效信号为第二闲频光。第二耦合器的第三端所输出的闲频光将会发生干涉抵消,进而第二耦合器的第三端处可以实现信号光与闲频光之间的分离。
当第二相移量Δφ p(2)为2πi时,i为大于零的正整数。第二耦合器的第一端接收第三泵浦光,第二耦合器的第二端接收第五泵浦光,第三泵浦光与第五泵浦光在第二耦合器的第三端发生干涉之后相互抵消,第三泵浦光与第五泵浦光在第二耦合器的第四端发生相长干涉,第二耦合器的第四端输出相长干涉后产生的泵浦光。
当第二相移量Δφ p(2)为π/2+πi时,i为大于零的正整数。第二耦合器的第一端接收第三泵浦光,第二耦合器的第二端接收第五泵浦光,第三泵浦光与第五泵浦光在第二耦合器的第四端发生干涉之后相互抵消,第三泵浦光与第五泵浦光在第二耦合器的第三端发生相长干涉,第二耦合器的第三端输出相长干涉后产生的泵浦光。
图5是本申请实施例提供的一种复制装置的一实施例示意图。
请参阅图5,如图5所示,本申请实施例中所提及的光信号复制装置包括:第一环形器、第二环形器、第三耦合器、第三相移器以及第三非线性介质。
本申请实施例中,环行器是将进入其任一端口的入射波,按照由静偏磁场确定的方向顺序传入下一个端口的多端口器件。环行器是有数个端的非可逆器件。可选的,本申请实施例中的环形器的类型可以是微光学光纤环形器,可以是电子环形器,还可以是其他种类的环形器,具体此处不做限定。
本申请实施例中所提及的耦合器、相移器以及非线性介质与上述图2所示的实施例中所提及的耦合器、相移器以及非线性介质相类似,具体此处不做赘述。
第一环形器的第一端与发射机连接,第二端与第三耦合器的第一端连接,第三端与第三衰减器连接。
第二环形器的第一端与泵浦激光器连接,第二端与第三耦合器的第二端连接,第三端与第四衰减器连接。
本申请实施例中,光参量放大器中的光信号复制装置与信号处理模块连接。可选的,该信号处理模块中可以包括第三衰减器以及第四衰减器,信号处理模块还可以包括其他元器件,具体此处不做限定。
第三耦合器的第三端与第三相移器的第一端连接,第三耦合器的第四端与第三非线性介质的第一端连接。
第三相移器的第二端与非线性介质的第二端连接。
本申请实施例中,第一环形器的第一端接收发射机发射出的第四信号光之后,第一环形器的第二端向第三耦合器的第一端输出第四信号光。第二环形器的第一端接收泵浦激光器发射出的第六泵浦光之后,第二环形器的第二端向第三耦合器的第二端输出第六泵浦光。
第三耦合器的第一端接收第一环形器的第二端所导出的第四信号光,第三耦合器的第二端接收第二环形器的第二端所发射的第六泵浦光,第三耦合器将第四信号光以及第六泵浦光按比例耦合之后,第三耦合器的第三端向第三相移器的第一端输出第五信号光以及第七泵浦光,第三耦合器的第四端向第三非线性介质的第一端输出第六信号光以及第八泵浦光。
本申请实施例中,第三耦合器将第六泵浦光与第四信号光按照一定的比例耦合,具体的耦合比例可以是以50比50的方式耦合。
本申请实施例中,当光信号在光信号复制装置中逆时针传输时,第三相移器的第一端接收第五信号光以及第七泵浦光之后,第三相移器对第七泵浦光增加第三相移量之后生成第九泵浦光,第三相移器的第二端向第三非线性介质输出第五信号光以及第九泵浦光。
第三非线性介质的第二端接收第五信号光与第九泵浦光之后,第五信号光与第九泵浦光在第三非线性介质中发生三波混频效应或四波混频效应,第五信号光与第九泵浦光发生三波混频效应或四波混频效应之后将会产生第三无效信号,第三非线性介质的第一端将向第三耦合器的第四端输入第五信号光、第九泵浦光以及第三无效信号。
当光信号在光信号复制装置中顺时针传输时,第三非线性介质的第一端接收第六信号光以及第八泵浦光之后,第六信号光与第八泵浦光在第三非线性介质中发生三波混频效应 或四波混频效应,第六信号光与第八泵浦光发生三波混频效应或四波混频效应之后将会产生第四无效信号,第三非线性介质的第二端将向第三相移器的第二端输入第六信号光、第八泵浦光以及第四无效信号。
第三相移器的第二端接收第六信号光、第八泵浦光以及第四无效信号,第三相移器对第八泵浦光增加第四相移量之后生成第十泵浦光,第三相移器的第一端将向第三耦合器的第三端输入第六信号光、第十泵浦光以及第四无效信号。
第三耦合器将第三端以及第四端接收到的光信号按比例耦合之后,第三无效信号与第四无效信号在第三耦合器的第一端出发生干涉相互抵消,第五信号光与第六信号光发生相长干涉,第三耦合器的第一端向第一环形器的第二端输出发生相长干涉后的信号光,第五信号光与第六信号光在第三耦合器的第二端发生干涉后相互抵消,第三耦合器的第二端输出发生相长干涉后的泵浦光以及发生相长干涉后的无效信号。
本申请实施例中,第三耦合器将第三端以及第四端接收的光信号按照一定的比例耦合,具体的耦合比例可以是以1比1的方式耦合。
第三耦合器将第四信号光与第六泵浦光按1比1的比例耦合之后,第三耦合器的第三端向第三相移器的第一端输出第五信号光以及第七泵浦光,第五信号光的信号强度为第四信号光的信号强度的百分之五十,第五信号光与第四信号光的相位相同,第七泵浦光的信号强度为第六泵浦光的信号强度的百分之五十,第七泵浦光与第六泵浦光之间的相位差为π/2;
第三耦合器的第四端向第三非线性介质的第一端输出第六信号光以及第八泵浦光,第六信号光的信号强度为第四信号光的信号强度的百分之五十,第六信号光与第四信号光之间的相位差为π/2,第八泵浦光的信号强度为第六泵浦光的信号强度的百分之五十,第八泵浦光与第六泵浦光之间的相位相同。
第一环形器的第二端接收到发生相长干涉后的信号光之后,第一环形器的第三端将向第三衰减器输出发生相长干涉后的信号光。
当第三相移量为2πi时,i为大于零的正整数,第三无效信号为第三串扰信号,第四无效信号为第四串扰信号。
第三耦合器将第三端以及第四端接收到的光信号按1比1的比例耦合之后,第三串扰信号与第四串扰信号在第三耦合器的第一端处发生干涉相互抵消,第五信号光与第六信号光发生相长干涉,第三耦合器的第一端向第一环形器的第二端输出发生相长干涉后的信号光,第三耦合器的第二端输出发生相长干涉后的泵浦光以及发生相长干涉后的串扰信号。
第三相移量为π/2+2πi时,i为大于零的正整数,第三无效信号为第三闲频光,第四无效信号为第四闲频光。
第三耦合器将第三端以及第四端接收到的光信号按1比1的比例耦合之后,第三闲频光与第四闲频光在第三耦合器的第一端处发生干涉相互抵消,第五信号光与第六信号光发生相长干涉。第三耦合器的第一端向第一环形器的第二端输出发生相长干涉后的信号光,第三耦合器的第二端输出发生相长干涉后的泵浦光以及发生相长干涉后的闲频光。
本申请实施例中,光参量放大器中包括的光信号复制装置在传输信号光以及泵浦光的 过程当中将会产生无效信号。光信号复制装置可以将信号光与无效信号分离之后传输至信号处理模块中。这样,信号处理模块可以对不包括无效信号的信号光直接进行处理,无效信号将不会占据光参量放大器的传输带宽,光参量放大器的有效传输带宽较大。
以上对本申请实施例所提供的光信号复制装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (13)

  1. 一种光信号复制装置(copier),其特征在于,包括:第一耦合器、第二耦合器、第一非线性介质、第二非线性介质以及第一相移器;
    所述第一耦合器的第一端与泵浦激光器连接,第二端与发射机连接,第三端与所述第一非线性介质的第一端连接,第四端与第一相移器的第一端连接;
    所述第一非线性介质的第二端与所述第二耦合器的第一端连接;
    所述第一相移器的第二端与所述第二非线性介质的第一端连接;
    所述第二非线性介质的第二端与所述第二耦合器的第二端连接;
    所述第一耦合器的第一端接收所述泵浦激光器发射的第一泵浦光,所述第一耦合器的第二端接收所述发射机发射的第一信号光,所述第一耦合器将所述第一泵浦光与所述第一信号光按第一比例耦合之后,所述第一耦合器的第三端向所述第一非线性介质输出第二泵浦光以及第二信号光,所述第一耦合器的第四端向所述第一相移器输出第三泵浦光以及第三信号光;
    所述第一非线性介质接收所述第二泵浦光与所述第二信号光之后,所述第二泵浦光与所述第二信号光在所述第一非线性介质中发生三波混频效应或四波混频效应,所述第二泵浦光与所述第二信号光发生三波混频效应或四波混频效应之后产生第一无效信号;
    所述第一相移器中接收所述第三泵浦光与所述第三信号光之后,所述第一相移器对所述第三泵浦光增加第一相移之后生成第四泵浦光;
    所述第二非线性介质中接收所述第四泵浦光与所述第三信号光之后,所述第四泵浦光与所述第三信号光在所述第二非线性介质中发生三波混频效应或四波混频效应,所述第四泵浦光与所述第三信号光发生三波混频效应或四波混频效应之后产生第二无效信号;
    所述第二耦合器的第一端输入由所述第一非线性介质输出的所述第二泵浦光、第二信号光以及第一无效信号,所述第二耦合器的第二端输入第四泵浦光,第三信号光以及第二无效信号,所述第二耦合器对所述第二耦合器的第一端以及第二端输入的光信号按第二比例进行耦合;
    所述第二耦合器对所述第二耦合器的第一端以及第二端输入的光信号按比例进行耦合之后,所述第一无效信号与所述第二无效信号在所述第二耦合器的第三端发生干涉之后相互抵消,所述第二信号光与所述第三信号光在所述第二耦合器的第三端发生相长干涉,所述第二耦合器的第三端输出相长干涉之后产生的信号光。
  2. 根据权利要求1所述的光信号复制装置,其特征在于,所述第一相移量为2πi,i为大于零的正整数,所述第一无效信号为第一串扰信号,所述第二无效信号为第二串扰信号。
  3. 根据权利要求1所述的光信号复制装置,其特征在于,所述第一相移量为π/2+πi,i为大于零的正整数,所述第一无效信号为第一闲频光,所述第二无效信号为第二闲频光。
  4. 根据权利要求1所述的光信号复制装置,其特征在于,所述第一比例为1比1;
    所述第一耦合器将所述第一泵浦光与所述第一信号光按1比1的比例耦合之后,所述 第一耦合器的第三端向所述第一非线性介质输出所述第二泵浦光以及所述第二信号光,所述第二泵浦光的信号强度为所述第一泵浦光的信号强度的百分之五十,所述第二泵浦光与所述第一泵浦光之间的相位差为π/2,所述第二信号光的信号强度为所述第一信号光的信号强度的百分之五十,所述第二信号光与所述第一信号光的相位相同;
    所述第一耦合器的第四端向所述第二非线性介质输出所述第三泵浦光以及所述第三信号光,所述第三泵浦光的信号强度为所述第一泵浦光的信号强度的百分之五十,所述第三泵浦光与所述第一泵浦光的相位相同,所述第三信号光的信号强度为所述第一信号光的信号强度的百分之五十,所述第三信号光与所述第一信号光之间的相位差为π/2。
  5. 根据权利要求1至4所述的光信号复制装置,其特征在于,所述光信号复制装置还包括第二相移器;
    所述第二相移器的第一端与所述第二非线性介质相连;
    所述第二相移器的第二端与所述第二耦合器的第二端连接;
    所述第二相移器中接收所述第四泵浦光、所述第三信号光以及所述第二无效信号之后,所述第二相移器对所述第四泵浦光的相位增加第二相移量之后生成第五泵浦光,所述第二相移器的第二端向所述第二耦合器的第二端传输所述第五泵浦光。
  6. 根据权利要求5所述的光信号复制装置,其特征在于,所述第二相移量为2πi,i为大于零的正整数;
    所述第二耦合器的第一端接收所述第三泵浦光,所述第二耦合器的第二端接收所述第五泵浦光,所述第三泵浦光与所述第五泵浦光在所述第二耦合器的第三端发生干涉之后相互抵消,所述第三泵浦光与所述第五泵浦光在所述第二耦合器的第四端发生相长干涉,所述第二耦合器的第四端输出相长干涉后产生的泵浦光。
  7. 根据权利要求5所述的光信号复制装置,其特征在于,所述第二相移量为π+2πi,i为大于零的正整数;
    所述第二耦合器的第一端接收所述第三泵浦光,所述第二耦合器的第二端接收所述第五泵浦光,所述第三泵浦光与所述第五泵浦光在所述第二耦合器的第四端发生干涉之后相互抵消,所述第三泵浦光与所述第五泵浦光在所述第二耦合器的第三端发生相长干涉,所述第二耦合器的第三端输出相长干涉后产生的泵浦光。
  8. 一种光信号复制装置(copier),其特征在于,包括:第一环形器、第二环形器、第三耦合器、第三相移器以及第三非线性介质;
    所述第一环形器的第一端与发射机连接,第二端与所述第三耦合器的第一端连接,第三端与第三衰减器连接;
    所述第二环形器的第一端与泵浦激光器连接,第二端与所述第三耦合器的第二端连接,第三端与第四衰减器连接;
    所述第三耦合器的第三端与所述第三相移器的第一端连接,所述第三耦合器的第四端与所述第三非线性介质的第一端连接;
    所述第三相移器的第二端与所述非线性介质的第二端连接;
    所述第一环形器的第一端接收所述发射机发射出的第四信号光之后,所述第一环形器 的第二端向所述第三耦合器的第一端输出所述第四信号光;
    所述第二环形器的第一端接收所述泵浦激光器发射出的第六泵浦光之后,所述第二环形器的第二端向所述第三耦合器的第二端输出所述第六泵浦光;
    所述第三耦合器的第一端接收所述第一环形器的第二端所导出的所述第四信号光,所述第三耦合器的第二端接收所述第二环形器的第二端所发射的第六泵浦光,所述第三耦合器将所述第四信号光以及所述第六泵浦光按第三比例耦合之后,所述第三耦合器的第三端向所述第三相移器的第一端输出第五信号光以及第七泵浦光,所述第三耦合器的第四端向所述第三非线性介质的第一端输出第六信号光以及第八泵浦光;
    光信号在所述光信号复制装置中逆时针传输,所述第三相移器的第一端接收所述第五信号光以及所述第七泵浦光之后,所述第三相移器对所述第七泵浦光增加第三相移量之后生成第九泵浦光,所述第三相移器的第二端向所述第三非线性介质输出所述第五信号光以及所述第九泵浦光;
    所述第三非线性介质的第二端接收所述第五信号光与所述第九泵浦光之后;所述第五信号光与所述第九泵浦光在所述第三非线性介质中发生三波混频效应或四波混频效应,所述第五信号光与所述第九泵浦光发生三波混频效应或四波混频效应之后产生第三无效信号,所述第三非线性介质的第一端向所述第三耦合器的第四端输入所述第五信号光、所述第九泵浦光以及所述第三无效信号;
    光信号在所述光信号复制装置中顺时针传输,所述第三非线性介质的第一端接收所述第六信号光以及所述第八泵浦光之后,所述第六信号光与所述第八泵浦光在所述第三非线性介质中发生三波混频效应或四波混频效应,所述第六信号光与所述第八泵浦光发生三波混频效应或四波混频效应之后产生第四无效信号,所述第三非线性介质的第二端向所述第三相移器的第二端输入所述第六信号光、所述第八泵浦光以及所述第四无效信号;
    所述第三相移器的第二端接收所述第六信号光、所述第八泵浦光以及所述第四无效信号,所述第三相移器对所述第八泵浦光增加第四相移量之后生成第十泵浦光,所述第三相移器的第一端向所述第三耦合器的第三端输入所述第六信号光、所述第十泵浦光以及所述第四无效信号;
    所述第三耦合器将第三端以及第四端接收到的光信号按比例耦合之后,所述第三无效信号与所述第四无效信号在所述第三耦合器的第一端处发生干涉相互抵消,所述第五信号光与所述第六信号光发生相长干涉,所述第三耦合器的第一端向所述第一环形器的第二端输出发生相长干涉后的信号光,所述第三耦合器的第二端输出发生相长干涉后的泵浦光以及发生相长干涉后的无效信号;
    所述第一环形器的第二端接收到发生相长干涉后的信号光之后,所述第一环形器的第三端向所述第三衰减器输出发生相长干涉后的信号光。
  9. 根据权利要求8所述的光信号复制装置,其特征在于,所述第三相移量为2πi,i为大于零的正整数,所述第三无效信号为第三串扰信号,所述第四无效信号为第四串扰信号。
  10. 根据权利要求8所述的光信号复制装置,其特征在于,所述第三相移量为π /2+2πi,i为大于零的正整数,所述第三无效信号为第三闲频光,所述第四无效信号为第四闲频光。
  11. 根据权利要求8所述的光信号复制装置,其特征在于,所述第三比例为1比1;
    所述第三耦合器将所述第四信号光与所述第六泵浦光按1比1的比例耦合之后,所述第三耦合器的第三端向所述第三相移器的第一端输出第五信号光以及第七泵浦光,所述第五信号光的信号强度为所述第四信号光的信号强度的百分之五十,所述第五信号光与所述第四信号光的相位相同,所述第七泵浦光的信号强度为所述第六泵浦光的信号强度的百分之五十,所述第七泵浦光与所述第六泵浦光之间的相位差为π/2;
    所述第三耦合器的第四端向所述第三非线性介质的第一端输出所述第六信号光以及所述第八泵浦光,所述第六信号光的信号强度为所述第四信号光的信号强度的百分之五十,所述第六信号光与所述第四信号光之间的相位差为π/2,所述第八泵浦光的信号强度为所述第六泵浦光的信号强度的百分之五十,所述第八泵浦光与所述第六泵浦光之间的相位相同。
  12. 一种光参量放大器,其特征在于,所述光参量放大器包括:光信号复制装置、信号处理装置、信号放大装置,所述信号处理装置用于处理所述光信号复制装置输出的光信号,所述信号处理装置包括第一衰减器以及第二衰减器,所述信号放大装置用于放大所述信号处理装置处理过的光信号,所述光信号复制装置为如权利要求1至7中任一项所述的光信号复制装置。
  13. 一种光参量放大器,其特征在于,所述光参量放大器包括:光信号复制装置、信号处理装置、信号放大装置,所述信号处理装置用于处理所述光信号复制装置输出的光信号,所述信号处理装置包括第一衰减器以及第二衰减器,所述信号放大装置用于放大所述信号处理装置处理过的光信号,所述光信号复制装置为如权利要求8至11中任一项所述的光信号复制装置。
PCT/CN2020/077363 2020-02-29 2020-02-29 光信号复制装置 WO2021168868A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/077363 WO2021168868A1 (zh) 2020-02-29 2020-02-29 光信号复制装置
CN202080093859.5A CN115004099A (zh) 2020-02-29 2020-02-29 光信号复制装置
EP20921636.5A EP4083701A4 (en) 2020-02-29 2020-02-29 DEVICE FOR COPYING OPTICAL SIGNALS
US17/897,001 US20220404682A1 (en) 2020-02-29 2022-08-26 Optical signal copier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077363 WO2021168868A1 (zh) 2020-02-29 2020-02-29 光信号复制装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/897,001 Continuation US20220404682A1 (en) 2020-02-29 2022-08-26 Optical signal copier

Publications (1)

Publication Number Publication Date
WO2021168868A1 true WO2021168868A1 (zh) 2021-09-02

Family

ID=77489796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077363 WO2021168868A1 (zh) 2020-02-29 2020-02-29 光信号复制装置

Country Status (4)

Country Link
US (1) US20220404682A1 (zh)
EP (1) EP4083701A4 (zh)
CN (1) CN115004099A (zh)
WO (1) WO2021168868A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2615570A (en) * 2022-02-11 2023-08-16 Univ Southampton Apparatus for use in four wave mixing and method for configuring a phase adjusting means therein to suppress unwanted idlers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102722060A (zh) * 2012-07-13 2012-10-10 西南交通大学 过滤闲频光实现增益优化的单泵浦光纤参量放大器
JP2013182140A (ja) * 2012-03-02 2013-09-12 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置、光信号発生器および信号対雑音比改善装置
CN103885266A (zh) * 2014-03-13 2014-06-25 江苏金迪电子科技有限公司 基于双共轭泵浦相位调制信号全光相位再生装置和方法
CN109417426A (zh) * 2016-03-24 2019-03-01 阿斯顿大学 用于传输光学信号的系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4431099B2 (ja) * 2005-09-06 2010-03-10 富士通株式会社 波長変換方式、光集積素子及び波長変換方法
JP4719115B2 (ja) * 2006-09-21 2011-07-06 富士通株式会社 光集積素子及び波長変換方式
GB2510916B (en) * 2013-02-19 2015-04-08 Univ Bristol Optical source

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013182140A (ja) * 2012-03-02 2013-09-12 Nippon Telegr & Teleph Corp <Ntt> 光増幅装置、光信号発生器および信号対雑音比改善装置
CN102722060A (zh) * 2012-07-13 2012-10-10 西南交通大学 过滤闲频光实现增益优化的单泵浦光纤参量放大器
CN103885266A (zh) * 2014-03-13 2014-06-25 江苏金迪电子科技有限公司 基于双共轭泵浦相位调制信号全光相位再生装置和方法
CN109417426A (zh) * 2016-03-24 2019-03-01 阿斯顿大学 用于传输光学信号的系统和方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GORDIENKO VLADIMIR; FERREIRA FILIPE M.; RIBEIRO VITOR; DORAN NICK: "Suppression of Nonlinear Crosstalk in a Polarization Insensitive FOPA by Mid-Stage Idler Removal", 2019 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), OSA, 3 March 2019 (2019-03-03), pages 1 - 3, XP033540697 *
LIAN JUNZI: "Research on Phase Sensitive Amplifiers in The Application of All Optical Regeneration And Multicasting of QPSK Signal", INFORMATION SCIENCE AND TECHNOLOGY, CHINESE MASTER’S THESES FULL-TEXT DATABASE, 15 June 2017 (2017-06-15), XP055841844 *
MENG YAN: "Investigation of All-optical Signal Processing Techniques Based on Fiber-optical Parametric Amplifiers", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE, CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 15 August 2017 (2017-08-15), XP055841841 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2615570A (en) * 2022-02-11 2023-08-16 Univ Southampton Apparatus for use in four wave mixing and method for configuring a phase adjusting means therein to suppress unwanted idlers

Also Published As

Publication number Publication date
CN115004099A (zh) 2022-09-02
US20220404682A1 (en) 2022-12-22
EP4083701A4 (en) 2022-12-21
EP4083701A1 (en) 2022-11-02

Similar Documents

Publication Publication Date Title
AU2008227105B2 (en) Bi-directional signal interface and apparatus using same
US7561803B2 (en) Bi-directional signal interface using photonic coupler
Chen et al. Simultaneous wideband radio-frequency self-interference cancellation and frequency downconversion for in-band full-duplex radio-over-fiber systems
US6262834B1 (en) Wideband single sideband modulation of optical carriers
CN103403616B (zh) 光信号放大器
US20070139762A1 (en) Translation of individual and entangled states of light by four-wave mixing in fibers
Billault et al. Free space optical communication receiver based on a spatial demultiplexer and a photonic integrated coherent combining circuit
EP1536578A2 (en) Differential polarization shift-keying optical transmission system
CN101350678B (zh) 光控微波波束形成网络中偏振模色散的补偿装置及方法
WO2021168868A1 (zh) 光信号复制装置
US10983276B2 (en) Birefringent waveguide circuit having an optical hybrid
Peng et al. A novel method to realize optical single sideband modulation with tunable optical carrier to sideband ratio
Malik et al. Optical signal to noise ratio improvement through unbalanced noise beating in phase-sensitive parametric amplifiers
Zhang et al. Maintenance of broadband detection in photonic time-stretched coherent radar employing phase diversity
Li et al. SFDR and gain enhancement in photonic downconversion link by linearization and full spectrum utilization
Vasundhara et al. Implementation of XOR gate using a nonlinear polarization rotation in highly nonlinear fiber
JP3230522B2 (ja) 信号通信方式
Fernandes et al. Digital monitoring and compensation of MDL based on higher-order Poincaré spheres
KR100848738B1 (ko) 광전달계의 편광보상기 및 광전달계의 편광보상방법
Jiang et al. Homodyne coherent optical communication system based on reflex electro-optic modulator
US11456805B2 (en) Dual polarization unit for coherent transceiver or receiver
US10114185B2 (en) Submarine optical fiber communications architectures
JPH04191709A (ja) 光伝送方法及びシステム
Nazari et al. On-chip magnetic-free optical multi-port circulator based on a locally linear parity–time symmetric system
Wang et al. Multiple‐wavelength Sagnac loop based microwave photonic notch filter with low group delay ripple

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921636

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020921636

Country of ref document: EP

Effective date: 20220727

NENP Non-entry into the national phase

Ref country code: DE