WO2021168801A1 - 中继通信QoS保证的方法及相关装置 - Google Patents

中继通信QoS保证的方法及相关装置 Download PDF

Info

Publication number
WO2021168801A1
WO2021168801A1 PCT/CN2020/077214 CN2020077214W WO2021168801A1 WO 2021168801 A1 WO2021168801 A1 WO 2021168801A1 CN 2020077214 W CN2020077214 W CN 2020077214W WO 2021168801 A1 WO2021168801 A1 WO 2021168801A1
Authority
WO
WIPO (PCT)
Prior art keywords
qos
service
policy
network device
rule
Prior art date
Application number
PCT/CN2020/077214
Other languages
English (en)
French (fr)
Inventor
刘建华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202080084606.1A priority Critical patent/CN114762368A/zh
Priority to PCT/CN2020/077214 priority patent/WO2021168801A1/zh
Publication of WO2021168801A1 publication Critical patent/WO2021168801A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a method and related devices for QoS guarantee of relay communication.
  • a PC5 interface is introduced between devices.
  • the current PC5 interface can be used to transmit Device to Device Discovery (D2D Discovery), Device to Device Communication (D2D Communication), and Vehicle to Everything (V2X).
  • D2D Discovery Device to Device Discovery
  • D2D Communication Device to Device Communication
  • V2X Vehicle to Everything
  • a PC5 interface is introduced between the UE and the UE.
  • Fig. 1A is a schematic diagram of the location of the PC5 interface, as shown in Fig. 1A, which is used for D2D communication and V2X communication.
  • FIG. 1B is a schematic diagram of the relay in V2X.
  • the Road Side Unit acts as a relay to transmit uplink (Up-Link, UL) data between the vehicle and the network.
  • the relay communicates through the PC5 interface, and the relay communicates with the network through the Uu interface.
  • the UE1 and UE2 are connected through a Sidelink Shared Channel (SL).
  • SL Sidelink Shared Channel
  • the embodiment of the present application provides a method and related device for guaranteeing the QoS of relay communication, which effectively regulates the matching problem of the QoS flow of the Uu interface and the PC5 interface in the relay service.
  • an embodiment of the present application provides a method for QoS guarantee of relay communication, including:
  • the first device receives a first quality of service QoS policy from a first network device, where the first QoS policy is used to determine a first QoS rule for a first relay service, and the first QoS rule is applied to the first
  • the first QoS flow of the relay service the first QoS flow is the QoS flow between the first device and the second device, and the first relay service is the difference between the second device and the second network device
  • the first QoS policy is a QoS policy for the PC5 interface
  • the first device receives a second QoS rule from a third network device, the second QoS rule is a QoS rule for the first relay service determined according to the second QoS policy, and the second QoS rule is applied to all
  • the second QoS flow of the first relay service is the QoS flow between the first device and the third network device, and the second QoS policy is the QoS policy for the Uu interface .
  • the first device receives the first quality of service QoS policy from the first network device
  • the first device receives the second QoS rule from the third network device
  • the first relay service is the second
  • the first QoS policy is used to determine the first QoS rule for the first relay service
  • the first QoS rule is applied to the first QoS flow of the first relay service.
  • a QoS flow is the QoS flow between the first device and the second device, the first QoS policy is the QoS policy for the PC5 interface; the second QoS rule is the QoS rule for the first relay service determined according to the second QoS policy , The second QoS rule is applied to the second QoS flow of the first relay service, the second QoS flow is the QoS flow between the first device and the third network device, and the second QoS policy is the QoS policy for the Uu interface. It can be seen that, by interacting with the first network device and the third network device, the first device can effectively determine the matching problem of the QoS flow of the Uu interface of the first relay service and the PC5 interface.
  • an embodiment of the present application provides a method for QoS guarantee of relay communication, including:
  • the first network device sends a first quality of service QoS policy, where the first QoS policy is used by the first device to determine a first QoS rule for the first relay service, and the first QoS rule is applied to the first relay
  • the first QoS flow of the service is the QoS flow between the first device and the second device
  • the first relay service is the QoS flow between the second device and the second network device
  • the first QoS policy is a QoS policy for the PC5 interface
  • the first network device sends a second QoS policy to a third network device, and the second QoS policy is used by the third network device to determine and send a second QoS for the first relay service to the first device Rule, the second QoS rule is applied to the second QoS flow of the first relay service, the second QoS flow is the QoS flow between the first device and the third network device, the The second QoS policy is a QoS policy for the Uu interface.
  • the first network device sends the first quality of service QoS policy
  • the first network device sends the second QoS policy to the third network device, where the first relay service is the second device and the first network device.
  • the first QoS policy is used by the first device to determine the first QoS rule for the first relay service, and the first QoS rule is applied to the first QoS flow of the first relay service.
  • a QoS flow is the QoS flow between the first device and the second device
  • the second QoS policy is used by the third network device to determine and send the second QoS rule for the first relay service to the first device, and the second QoS rule
  • the second QoS flow applied to the first relay service, the second QoS flow is the QoS flow between the first device and the third network device
  • the second QoS policy is the QoS policy for the Uu interface. It can be seen that the first network device interacts with the third network device and sends the first QoS policy, so that the QoS flow of the Uu interface of the first relay service and the PC5 interface are effectively matched.
  • an embodiment of the present application provides a method for QoS guarantee of relay communication, including:
  • the third network device sends a first quality of service QoS policy, where the first QoS policy is used by the first device and/or the second device to determine the first QoS rule for the first relay service, and the first relay service is For the relay service between the second device and the second network device, the first QoS rule is applied to the first QoS flow of the first relay service, and the first QoS flow is the first QoS flow A QoS flow between a device and the second device, where the first QoS policy is a QoS policy for a PC5 interface;
  • the third network device obtains a second QoS policy, determines a second QoS rule for the first relay service according to the second QoS policy, and sends the second QoS rule to the first device, so The second QoS rule is applied to the second QoS flow of the first relay service, the second QoS flow is the QoS flow between the first device and the second network device, and the second QoS policy is QoS strategy for Uu interface.
  • the third network device sends the first quality of service QoS policy
  • the third network device obtains the second QoS policy, and determines the second QoS rule for the first relay service according to the second QoS policy.
  • send the second QoS rule to the first device the first relay service is the relay service between the second device and the second network device, and the first QoS rule is applied to the first QoS flow of the first relay service.
  • a QoS flow is the QoS flow between the first device and the second device
  • the first QoS policy is the QoS policy for the PC5 interface
  • the second QoS rule is applied to the second QoS flow of the first relay service
  • the second QoS flow It is the QoS flow between the first device and the second network device
  • the second QoS policy is the QoS policy for the Uu interface.
  • the third network device sends the first QoS policy and interacts with the first device with the second QoS rule, so that the QoS flow of the Uu interface of the first relay service and the PC5 interface are effectively matched.
  • an embodiment of the present application provides an apparatus for QoS guarantee of relay communication, which is applied to a first device.
  • the apparatus includes a processing unit and a communication unit, and the processing unit is configured to: A first quality of service QoS policy of a network device, where the first QoS policy is used to determine a first QoS rule for a first relay service, and the first QoS rule is applied to the first relay service of the first relay service.
  • the first QoS flow is the QoS flow between the first device and the second device, and the first relay service is the relay service between the second device and the second network device
  • the first QoS policy is a QoS policy for the PC5 interface
  • a second QoS rule from a third network device is received through the communication unit, and the second QoS rule is a QoS policy for the first medium determined according to the second QoS policy.
  • the second QoS rule is applied to the second QoS flow of the first relay service, and the second QoS flow is the QoS between the first device and the third network device flow
  • the second QoS policy is a QoS policy for the Uu interface.
  • an embodiment of the present application provides an apparatus for QoS guarantee of relay communication, which is applied to a first network device.
  • the apparatus includes a processing unit and a communication unit, and the processing unit is configured to: A quality of service QoS policy, the first QoS policy is used by the first device to determine the first QoS rule for the first relay service, and the first QoS rule is applied to the first QoS flow of the first relay service ,
  • the first QoS flow is the QoS flow between the first device and the second device, the first relay service is the relay service between the second device and the second network device, and the
  • the first QoS policy is a QoS policy for the PC5 interface; and a second QoS policy is sent to the third network device through the communication unit, and the second QoS policy is used by the third network device to determine and report to the first network device.
  • the device sends a second QoS rule for the first relay service, the second QoS rule is applied to the second QoS flow of the first relay service, and the second QoS flow is the relationship between the first device and the For the QoS flow between the third network devices, the second QoS policy is a QoS policy for the Uu interface.
  • an embodiment of the present application provides an apparatus for QoS guarantee of relay communication, which is applied to a third network device.
  • the apparatus includes a processing unit and a communication unit, and the processing unit is configured to: A quality of service QoS policy, the first QoS policy is used by the first device and/or the second device to determine the first QoS rule for the first relay service, and the first relay service is the second device and For the relay service between the second network device, the first QoS rule is applied to the first QoS flow of the first relay service, and the first QoS flow is the first device and the second QoS flow.
  • the first QoS policy is a QoS policy for the PC5 interface; and a second QoS policy is acquired, and a second QoS rule for the first relay service is determined according to the second QoS policy , And send the second QoS rule to the first device, the second QoS rule is applied to the second QoS flow of the first relay service, and the second QoS flow is the relationship between the first device and the For the QoS flow between the second network devices, the second QoS policy is a QoS policy for the Uu interface.
  • an embodiment of the present application provides a first device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and configured Executed by the processor, the program includes instructions for executing the steps in any method in the first aspect of the embodiments of the present application.
  • an embodiment of the present application provides a first network device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and are The configuration is executed by the processor, and the program includes instructions for executing steps in any method in the second aspect of the embodiments of the present application.
  • an embodiment of the present application provides a third network device, including a processor, a memory, a communication interface, and one or more programs, wherein the one or more programs are stored in the memory and are The configuration is executed by the processor, and the program includes instructions for executing the steps in any method of the third aspect of the embodiments of the present application.
  • an embodiment of the present application provides a chip, including a processor, configured to call and run a computer program from a memory, so that the device installed with the chip executes the first aspect or the second aspect of the embodiment of the present application. Part or all of the steps described in any method of the aspect or the third aspect.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute Part or all of the steps described in any method of the first aspect, the second aspect, or the third aspect of the embodiment.
  • an embodiment of the present application provides a computer program, wherein the computer program is operable to cause a computer to execute the method described in any one of the first, second, or third aspects of the embodiments of the present application Some or all of the steps.
  • the computer program may be a software installation package.
  • FIG. 1A is a schematic diagram of the location of a PC5 interface provided by an embodiment of the present application.
  • FIG. 1B is a schematic diagram of a relay in V2X provided by an embodiment of the present application.
  • FIG. 1C is a schematic diagram of a second device accessing a network device through a first device according to an embodiment of the present application
  • FIG. 1D is a schematic diagram of a system architecture using a relay service provided by an embodiment of the present application.
  • FIG. 1E is a flowchart of relay transmission initialization signaling interaction provided by an embodiment of the present application.
  • FIG. 2A is a schematic flowchart of a QoS parameter configuration method provided by an embodiment of the present application
  • FIG. 2B is a schematic flowchart of another QoS parameter configuration method provided by an embodiment of the present application.
  • 2C is a schematic flowchart of another QoS parameter configuration method provided by an embodiment of the present application.
  • 2D is a schematic flowchart of another QoS parameter configuration method provided by an embodiment of the present application.
  • 2E is a schematic flowchart of another QoS parameter configuration method provided by an embodiment of the present application.
  • FIG. 3 is a block diagram of functional units of a device for QoS guarantee of relay communication provided by an embodiment of the present application
  • FIG. 4 is a block diagram of the functional unit composition of another device for QoS guarantee of relay communication provided by an embodiment of the present application;
  • FIG. 5 is a block diagram of functional units of another device for QoS guarantee of relay communication provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a first device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a first network device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a third network device provided by an embodiment of the present application.
  • the second device connects to the first device (relay UE or r-UE for short) through D2D communication, and the first device connects to the network device. That is, the w-UE can connect to the relay node that the UE serves, and communicate with the r-UE in D2D mode.
  • the r-UE is responsible for forwarding the data packets of the w-UE to the network or from the network to the w-UE.
  • the second device may be a wearable/eMTC/NB-IoT device, for example, and the first device may be a terminal device such as a mobile phone, for example.
  • the example communication system 100 may be, for example, a global system of mobile communication (GSM) system, a code division multiple access (Code Division Multiple Access, CDMA) system, and a wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • LTE Long Term Evolution
  • LTE-A Advanced Long Term Evolution
  • New Radio, NR New Radio
  • UMTS Universal Mobile Telecommunication System
  • WLAN Wireless Local Area Networks
  • WiFi Wireless Fidelity
  • the communication system in the embodiments of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (DC) scenario, and can also be applied to a standalone (SA) deployment.
  • CA Carrier Aggregation
  • DC dual connectivity
  • SA standalone
  • Network scene The embodiment of the application does not limit the applied frequency spectrum.
  • the embodiments of this application can be applied to licensed spectrum or unlicensed spectrum.
  • the first device 110 in the embodiment of the present application may refer to user equipment, access first device, user unit, user station, mobile station, mobile station, remote station, remote first device, mobile device, user first device, and second device.
  • a device wireless communication device, user agent, or user device.
  • the first device can also be a cellular phone, a cordless phone, a session initiation protocol (session initiation protocol, SIP) phone, a wireless local loop (wireless local loop, WLL) station, a personal digital assistant (personal digital assistant, PDA), and a wireless Handheld devices, computing devices, or other processing devices connected to wireless modems, relay devices, in-vehicle devices, wearable devices with communication functions, the first device in the future 5G network or the public land mobile communication network that will evolve in the future (public land mobile communication network)
  • the first device in the network, PLMN), etc. which are not limited in the embodiment of the present application.
  • the network device 120 in the embodiment of the present application may be a device for communicating with the first device.
  • the network device may be an evolved NodeB (eNB or eNodeB) in an LTE system, or a cloud wireless access network.
  • the wireless controller in the (cloud radio access network, CRAN) scenario, or the network device can be a relay device, an access point, an in-vehicle device, a wearable device, and a network device in the future 5G network or a future evolved PLMN network
  • the network equipment of the 5G system, one or a group of antenna panels (including multiple antenna panels) of the base station in the 5G system, or, it can also be a network node that constitutes a gNB or transmission point, such as a baseband unit (BBU), or, Distributed unit (DU), etc., are not limited in the embodiment of the present application.
  • the gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include an active antenna unit (AAU).
  • the CU implements some of the functions of the gNB, and the DU implements some of the functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implements radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and realizes the functions of the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • AAU realizes some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , Or, sent by DU+AAU.
  • the network device may be a device that includes one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in an access network (radio access network, RAN), and the CU can also be divided into network equipment in a core network (core network, CN), which is not limited in this application.
  • the first device 110 or the network device 120 includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided in accordance with the embodiments of the application.
  • the execution subject of the method provided in the embodiment of the present application may be the first device, or a functional module in the first device that can call and execute the program.
  • NCIS business is mainly for AR/VR, games and other applications, and has high requirements for service quality such as speed, delay, packet loss rate, and high-speed encoding and decoding. For example: For VR games, it needs to reach a rate of 10Gbps, and the packet loss rate cannot exceed 10E-4.
  • the session established for the NCIS service is an NCIS session, and UEs in the same NCIS session can be considered to form an NCIS group, for example, a team in a game.
  • the UEs in the NCIS group have the following possible communication methods, which can be used in combination:
  • -Close to each other for example: use D2D technology for broadcast or multicast, or establish sidelink (also known as using PC5 interface) for one-to-one communication (unicast);
  • the UEs in the group may come from the same public land mobile network (Public Land Mobile Network, PLMN), or may come from different PLMNs.
  • PLMN Public Land Mobile Network
  • the UE-to-network relay system architecture is shown in Figure 1D.
  • the UE-to-network relay from the user equipment to the network serves the communication of the remote UE.
  • SGI is the communication between the core network and the packet data network (Packet Data Network, PDN) gateway.
  • PDN Packet Data Network
  • the relay transmission initialization signaling interaction flowchart shown in Figure 1E includes the following steps:
  • Step 1 The network side initially attaches and/or Relay UE requests PDN connection, E-UTRAN Initial Attach and/or UE requested PDN connectivity.
  • Step 2 The relay device and the remote device complete the discovery procedure, Discovery Procedure
  • Step 3 The relay device and the remote device complete one-to-one communication connection establishment, Establishment of connection For one-to-one Communication.
  • the relay device may establish a new PDN connection for relay, and the Relay UE may establish a new PDN connection for Relay.
  • Step 4 The remote device reports the IP address/prefix allocation, IP address/prefix allocation, to the relay device.
  • Step 5 The remote device reports the remote device report (remote user ID, IP address information) to the network side, Remote UE Report (Remote User ID, IP info)
  • Step 6 The network-side entity forwards the remote device report (remote user ID, IP address information), Remote UE Report (Remote User ID, IP info).
  • the relay UE needs to use a suitable PDN connection in order to transmit the relay data of the remote UE.
  • Which PDN connection is used to transmit relay data is determined by the relay UE.
  • the relay UE can use a dedicated PDN connection to transmit all relay data.
  • the relay UE will establish an appropriate PDU session to transmit remote UE data.
  • an embodiment of the present application proposes a method for QoS guarantee of relay communication service quality, which will be described in detail below with reference to the accompanying drawings.
  • an embodiment of the present application proposes a method for guaranteeing relay communication QoS, which will be described in detail below with reference to the accompanying drawings.
  • FIG. 2A is a schematic flowchart of a method for QoS guarantee of relay communication according to an embodiment of the present application. As shown in the figure, the method includes:
  • Step 2A01 The first device receives a first quality of service QoS policy from the first network device, where the first QoS policy is used to determine a first QoS rule for the first relay service, and the first QoS rule is applied to all The first QoS flow of the first relay service, the first QoS flow is the QoS flow between the first device and the second device, and the first relay service is the second device and the second device For relay services between network devices, the first QoS policy is a QoS policy for the PC5 interface;
  • the first relay service includes any one of the following: Internet Protocol IP service, Ethernet Ethernet service, and unstructured Unstructured service.
  • Step 2A02 The first device receives a second QoS rule from a third network device, where the second QoS rule is a QoS rule for the first relay service determined according to the second QoS policy, and the second QoS rule The second QoS flow applied to the first relay service, the second QoS flow is the QoS flow between the first device and the third network device, and the second QoS policy is for the Uu interface QoS strategy.
  • this application does not limit the execution order of steps 2A01 and 2A02. You can also execute 2A02 first, and then execute 2A01, or execute 2A01 and 2A02 at the same time, which does not affect the implementation of this application.
  • the first device is a relay device
  • the second device is a remote device
  • the first QoS policy and the second QoS policy meet end-to-end QoS requirements, where the end-to-end QoS requirements refer to remote terminals and core network entities (such as User Plane Function (UPF) ) QoS requirements between network elements), that is, the QoS requirements on the Uu interface and the QoS requirements on the PC5 interface are combined to meet the QoS end-to-end requirements of the relay service.
  • the end-to-end QoS requirements refer to remote terminals and core network entities (such as User Plane Function (UPF) ) QoS requirements between network elements
  • the first QoS rule includes the PC5 service quality index PQI of the first QoS flow
  • the second QoS rule includes the fifth generation 5G service quality index 5QI of the second QoS flow.
  • the first QoS rule includes the identifier of the first QoS flow (for example, the flow ID of the PC5 interface, that is, PFI), and the second QoS rule includes the identifier of the second QoS flow ,
  • the identifier is an identity identifier ID or an index Index.
  • first QoS rule and the second QoS rule may also include a packet filter set.
  • the first network device is a policy control function (PCF) network element or a session management function (SMF) network element
  • the second network device is a UPF network element
  • the third network device is the SMF network element.
  • PCF policy control function
  • SMF session management function
  • the QoS requirements or attributes on the PC5 interface are shown in Table 1, and the QoS requirements and attributes of the Uu interface are shown in Table 2.
  • PQI is the PC5 service quality index PC5QoS Index
  • 5QI is the 5G service quality index 5G QoS Index.
  • the first device receives the first quality of service QoS policy from the first network device
  • the first device receives the second QoS rule from the third network device
  • the first relay service is the second device.
  • the first QoS policy is used to determine the first QoS rule for the first relay service
  • the first QoS rule is applied to the first QoS flow of the first relay service.
  • the QoS flow is the QoS flow between the first device and the second device, the first QoS policy is the QoS policy for the PC5 interface; the second QoS rule is the QoS rule for the first relay service determined according to the second QoS policy, The second QoS rule is applied to the second QoS flow of the first relay service, the second QoS flow is the QoS flow between the first device and the third network device, and the second QoS policy is the QoS policy for the Uu interface. It can be seen that, by interacting with the first network device and the third network device, the first device can effectively determine the matching problem of the QoS flow of the Uu interface of the first relay service and the PC5 interface.
  • the method further includes: the first device determining the first QoS rule of the first relay service according to the first QoS policy.
  • the first device determines the first QoS rule of the first relay service, and the first device synchronizes the first QoS rule to the second device, so that the first device and the second device determine to carry the first relay.
  • the method further includes: the first device sends the first QoS policy to the second device, and the first QoS policy is used by the second device to determine the first QoS policy.
  • the first QoS rule of the relay service is used by the second device to determine the first QoS policy.
  • the first device may be transmitted through PC5 signaling or PC5 radio resource control RRC signaling during the establishment of the PC5 connection.
  • the second device determines the first QoS rule for the first relay service, and the second device synchronizes the first QoS rule to the first device, so that the first device and the second device determine whether to carry uplink data or downlink data.
  • QoS flow of the Uu interface of the data
  • FIG. 2B is a schematic flowchart of a method for QoS guarantee of relay communication provided by an embodiment of the present application. As shown in the figure, the method includes:
  • Step 2B01 The first network device sends a first quality of service QoS policy, where the first QoS policy is used by the first device to determine a first QoS rule for the first relay service, and the first QoS rule is applied to the first relay service.
  • the first QoS flow of a relay service the first QoS flow is the QoS flow between the first device and the second device, and the first relay service is the second device and the second network device
  • the first QoS policy is a QoS policy for the PC5 interface
  • Step 2B02 The first network device sends a second QoS policy to a third network device, and the second QoS policy is used by the third network device to determine and send to the first device the information for the first relay service.
  • the second QoS rule, the second QoS rule is applied to the second QoS flow of the first relay service, and the second QoS flow is the QoS flow between the first device and the third network device ,
  • the second QoS policy is a QoS policy for the Uu interface.
  • this application does not limit the execution order of steps 2B01 and 2B02. You can also execute 2B02 first, and then execute 2B01, or execute 2B01 and 2B02 at the same time, which does not affect the implementation of this application.
  • the first network device is a PCF network element
  • the second network device is a UPF network element
  • the third network device is the SMF network element.
  • the first relay service includes any one of the following: Internet Protocol IP service, Ethernet Ethernet service, and unstructured Unstructured service.
  • the first QoS rule includes the PC5 service quality index PQI of the first QoS flow
  • the second QoS rule includes the fifth generation 5G service quality index 5QI of the second QoS flow.
  • the first QoS rule includes an identifier of the first QoS flow
  • the second QoS rule includes an identifier of the second QoS flow
  • the identifier is an identity identifier ID or an index.
  • the first network device sends the first quality of service QoS policy, and the first network device sends the second QoS policy to the third network device.
  • the first relay service is the second device and the second network device.
  • the first QoS policy is used by the first device to determine the first QoS rule for the first relay service, and the first QoS rule is applied to the first QoS flow of the first relay service.
  • QoS flow is the QoS flow between the first device and the second device.
  • the second QoS policy is used by the third network device to determine and send the second QoS rule for the first relay service to the first device.
  • the second QoS rule applies In the second QoS flow of the first relay service, the second QoS flow is the QoS flow between the first device and the third network device, and the second QoS policy is the QoS policy for the Uu interface. It can be seen that the first network device interacts with the third network device and sends the first QoS policy, so that the Uu interface of the first relay service and the QoS flow of the PC5 interface effectively match.
  • sending the first QoS policy by the first network device includes: sending the first QoS policy by the first network device to the first device.
  • the second device may be outside the signal coverage area of the first network device.
  • the first network device only sends the first QoS policy to the first device, so that the first device determines the first QoS rule of the first relay service, and the first device synchronizes the first QoS rule to the second device In this way, the first device and the second device determine the QoS flow of the Uu interface that carries the uplink data or downlink data of the first relay service.
  • the sending of the first QoS policy by the first network device includes: the first network device sending the first QoS policy to the first device and the second device respectively.
  • the second device may be within the signal coverage area of the first network device.
  • the first network device sends the first QoS policy to the first device and the second device at the same time, so that the first device and/or the second device can determine the first QoS rule of the first relay service.
  • the first device and the second device determine the QoS flow of the Uu interface that carries the uplink data or downlink data of the first relay service.
  • FIG. 2C is a schematic flowchart of a method for QoS guarantee of relay communication provided by an embodiment of the present application. As shown in the figure, the method includes:
  • Step 2C01 The third network device sends a first quality of service QoS policy, where the first QoS policy is used by the first device and/or the second device to determine the first QoS rule for the first relay service, and the first The subsequent service is a relay service between the second device and the second network device, the first QoS rule is applied to the first QoS flow of the first relay service, and the first QoS flow is For the QoS flow between the first device and the second device, the first QoS policy is a QoS policy for the PC5 interface;
  • Step 2C02 The third network device obtains a second QoS policy, determines a second QoS rule for the first relay service according to the second QoS policy, and sends the second QoS rule to the first device Rule, the second QoS rule is applied to the second QoS flow of the first relay service, the second QoS flow is the QoS flow between the first device and the second network device, and the second The QoS strategy is a QoS strategy for the Uu interface.
  • the first network device is a PCF network element
  • the second network device is a UPF network element
  • the third network device is the SMF network element.
  • the first relay service includes any one of the following: Internet Protocol IP service, Ethernet Ethernet service, and unstructured Unstructured service.
  • the first QoS rule includes the PC5 service quality index PQI of the first QoS flow
  • the second QoS rule includes the fifth generation 5G service quality index 5QI of the second QoS flow.
  • the first QoS rule includes an identifier of the first QoS flow
  • the second QoS rule includes an identifier of the second QoS flow
  • the identifier is an identity identifier ID or an index.
  • the third network device sends the first quality of service QoS policy, the third network device obtains the second QoS policy, and determines the second QoS rule for the first relay service according to the second QoS policy, and Send the second QoS rule to the first device.
  • the first relay service is the relay service between the second device and the second network device.
  • the first QoS rule is applied to the first QoS flow of the first relay service.
  • the QoS flow is the QoS flow between the first device and the second device
  • the first QoS policy is the QoS policy for the PC5 interface
  • the second QoS rule is applied to the second QoS flow of the first relay service
  • the second QoS flow is For the QoS flow between the first device and the second network device
  • the second QoS policy is a QoS policy for the Uu interface. It can be seen that the third network device sends the first QoS policy and interacts with the first device with the second QoS rule, so that the QoS flow of the Uu interface of the first relay service and the PC5 interface are effectively matched.
  • acquiring the second QoS policy by the third network device includes: the third network device receiving the second QoS policy from the first network device.
  • FIG. 2D is a schematic flowchart of a method for QoS guarantee of relay communication provided by an embodiment of the present application. As shown in the figure, the method is described from the perspective of multi-side interaction. Specifically:
  • step 2D01 the PCF network element sends the first QoS policy to the first device, and sends the second QoS policy to the SMF network element.
  • Step 2D02 The first device receives the first QoS policy, and sends the first QoS policy to the second device.
  • Step 2D03 The SMF network element receives the second QoS policy, determines a second QoS rule for the first relay service according to the second QoS policy, and sends the second QoS rule to the first device .
  • Step 2D04 The first device determines a first QoS rule for the first relay service according to the first QoS policy.
  • Step 2D05 The first device receives the first data from the UPF on the second QoS flow indicated by the second QoS rule.
  • Step 2D06 The first device sends the first data to the second device on the first QoS flow indicated by the first QoS rule.
  • Step 2D07 The second device receives the first data on the first QoS flow indicated by the first QoS rule.
  • the PCF network element can send the first QoS policy of the PC5 interface to the first device, and the second QoS policy of the Uu interface to the SMF, and the first device forwards the first QoS policy to the second device.
  • SMF determines the second QoS rule of the first relay service according to the second QoS policy, and synchronizes it to the first device, so that the first device is configured with the QoS flow of the Uu interface of the first intermediate service, and the first device and the second device then
  • the first QoS rule of the first relay service is determined according to the first QoS policy, so as to realize the data interaction between the UPF network element and the second device.
  • FIG. 2E is a schematic flowchart of a method for QoS guarantee of relay communication provided by an embodiment of the present application. As shown in the figure, the method is described from the perspective of multi-side interaction. Specifically:
  • Step 2E01 The SMF network element sends the first QoS policy to the first device.
  • Step 2E02 The first device sends the first QoS policy to the second device.
  • Step 2E03 The SMF network element determines the second QoS rule of the first relay service of the UPF network element according to the second QoS policy, and sends the second QoS rule to the first device.
  • the UFP network element may send a data transmission request of the first relay service to the SMF network element to trigger the SMF network element to perform this step.
  • Step 2E04 The first device receives the second QoS rule, determines the first QoS rule according to the first QoS policy, and sends the data transmission request of the first relay service to the second device.
  • Step 2E05 The second device receives the data transmission request, determines the first QoS rule according to the first QoS policy, and sends it to the second device through the first QoS flow indicated by the first QoS rule The second data.
  • Step 2E06 The second device receives the second data through the first QoS flow, and sends the second data to the SMF network element through the second QoS flow indicated by the second QoS rule.
  • Step 2E07 The SMF network element receives the second data through the second QoS flow, and sends the second data to the UPF network element.
  • the SMF network element interacts with the first device and the first device interacts with the second device to determine the first QoS flow of the PC5 interface of the first relay service and the second QoS flow of the Uu interface, and then realize Data transmission between the second device and the UPF network element.
  • the first device and the network device include hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiment of this application can divide the first device and the network device into functional units according to the above method examples.
  • each functional unit can be divided corresponding to each function, or two or more functions can be integrated into one processing unit.
  • the above-mentioned integrated unit can be realized either in the form of hardware or in the form of software program modules. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 3 shows a block diagram of the functional unit composition of a device for QoS guarantee of relay communication.
  • the apparatus 300 for guaranteeing relay communication QoS is applied to the first device, and specifically includes: a processing unit 302 and a communication unit 303.
  • the processing unit 302 is configured to control and manage the actions of the first device.
  • the processing unit 302 is configured to support the first device to perform related processes of the technology described herein.
  • the communication unit 303 is used to support communication between the first device and other devices.
  • the first device may also include a storage unit 301 for storing program codes and data of the first device.
  • the processing unit 302 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), and an application-specific integrated circuit (Application-Specific Integrated Circuit). Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication unit 303 may be a communication interface, a transceiver, a transceiving circuit, etc., and the storage unit 301 may be a memory.
  • the processing unit 302 is a processor
  • the communication unit 303 is a communication interface
  • the storage unit 301 is a memory
  • the first device involved in the embodiment of the present application may be the first device shown in FIG. 6.
  • the processing unit 302 is used to perform any step performed by the first device in the above method embodiment, and when performing data transmission such as sending, it can optionally call the communication unit 303 to complete the corresponding operate.
  • the processing unit 302 can optionally call the communication unit 303 to complete the corresponding operate. The detailed description will be given below.
  • the processing unit 302 is configured to receive a first quality of service QoS policy from a first network device through the communication unit 303, where the first QoS policy is used to determine a first QoS rule for the first relay service, so The first QoS rule is applied to the first QoS flow of the first relay service, the first QoS flow is the QoS flow between the first device and the second device, and the first relay service is For the relay service between the second device and the second network device, the first QoS policy is a QoS policy for the PC5 interface; and the second QoS rule from the third network device is received through the communication unit 303,
  • the second QoS rule is a QoS rule for the first relay service determined according to the second QoS policy, the second QoS rule is applied to the second QoS flow of the first relay service, and the second QoS flow is the QoS flow between the first device and the third network device, and the second QoS policy is a QoS policy for the Uu interface.
  • the first device receives the first quality of service QoS policy from the first network device
  • the first device receives the second QoS rule from the third network device
  • the first relay service is the second device.
  • the first QoS policy is used to determine the first QoS rule for the first relay service
  • the first QoS rule is applied to the first QoS flow of the first relay service.
  • the QoS flow is the QoS flow between the first device and the second device, the first QoS policy is the QoS policy for the PC5 interface; the second QoS rule is the QoS rule for the first relay service determined according to the second QoS policy, The second QoS rule is applied to the second QoS flow of the first relay service, the second QoS flow is the QoS flow between the first device and the third network device, and the second QoS policy is the QoS policy for the Uu interface. It can be seen that, by interacting with the first network device and the third network device, the first device can effectively determine the matching problem of the QoS flow of the Uu interface of the first relay service and the PC5 interface.
  • the processing unit 302 is further configured to determine the first QoS rule of the first relay service according to the first QoS policy.
  • the processing unit 302 is further configured to: send the first QoS policy to the second device through the communication unit 303, and the first QoS policy is used for the second device to determine The first QoS rule of the first relay service.
  • the first network device is a PCF network element or an SMF network element
  • the second network device is a UPF network element
  • the third network device is the SMF network element.
  • the first relay service includes any one of the following: an Internetwork Protocol IP service, an Ethernet service, and an unstructured Unstructured service.
  • the first QoS rule includes the PC5 service quality index PQI of the first QoS flow
  • the second QoS rule includes the fifth generation 5G service quality index 5QI of the second QoS flow.
  • the first QoS rule includes an identifier of the first QoS flow
  • the second QoS rule includes an identifier of the second QoS flow
  • the identifier is an identity identifier ID or an index.
  • FIG. 4 shows a block diagram of the functional unit composition of another device for QoS guarantee of relay communication.
  • the apparatus 400 for guaranteeing relay communication QoS is applied to a first network device, and the first network device includes a processing unit 402 and a communication unit 403.
  • the processing unit 402 is used to control and manage the actions of the first network device.
  • the processing unit 502 is used to support the first network device to perform steps 201 and 205 in FIG. 2A and/or other processes used in the technology described herein.
  • the communication unit 403 is used to support communication between the first network device and other devices.
  • the first network device may also include a storage unit 401 for storing program codes and data of the first device.
  • the processing unit 402 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), and an application-specific integrated circuit (Application-Specific Integrated Circuit). Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication unit 403 may be a communication interface, a transceiver, a transceiving circuit, etc., and the storage unit 401 may be a memory.
  • the processing unit 402 is a processor
  • the communication unit 403 is a communication interface
  • the storage unit 401 is a memory
  • the first device involved in the embodiment of the present application may be the first network device shown in FIG. 7.
  • the processing unit 402 is configured to send a first quality of service QoS policy through the communication unit 403, where the first QoS policy is used by the first device to determine the first QoS rule for the first relay service, and the first The QoS rules are applied to the first QoS flow of the first relay service, the first QoS flow is the QoS flow between the first device and the second device, and the first relay service is the first For the relay service between the second device and the second network device, the first QoS policy is a QoS policy for the PC5 interface; and the second QoS policy is sent to the third network device through the communication unit 403, and the second QoS policy is The QoS policy is used by the third network device to determine and send to the first device a second QoS rule for the first relay service, and the second QoS rule is applied to the second QoS of the first relay service flow, the second QoS flow is a QoS flow between the first device and the third network device, and the second QoS policy is a Q
  • the first network device sends the first quality of service QoS policy, and the first network device sends the second QoS policy to the third network device.
  • the first relay service is the second device and the second network device.
  • the first QoS policy is used by the first device to determine the first QoS rule for the first relay service, and the first QoS rule is applied to the first QoS flow of the first relay service.
  • QoS flow is the QoS flow between the first device and the second device.
  • the second QoS policy is used by the third network device to determine and send the second QoS rule for the first relay service to the first device.
  • the second QoS rule applies In the second QoS flow of the first relay service, the second QoS flow is the QoS flow between the first device and the third network device, and the second QoS policy is the QoS policy for the Uu interface. It can be seen that the first network device interacts with the third network device and sends the first QoS policy, so that the QoS flow of the Uu interface of the first relay service and the PC5 interface are effectively matched.
  • the processing unit 402 is specifically configured to send the first QoS policy to the first device through the communication unit 403.
  • the processing unit 402 is specifically configured to: separately send to the first device and the second device through the communication unit 403 The first QoS policy.
  • the first network device is a PCF network element
  • the second network device is a UPF network element
  • the third network device is the SMF network element.
  • the first relay service includes any one of the following: an Internetwork Protocol IP service, an Ethernet service, and an unstructured Unstructured service.
  • the first QoS rule includes the PC5 service quality index PQI of the first QoS flow
  • the second QoS rule includes the fifth generation 5G service quality index 5QI of the second QoS flow.
  • the first QoS rule includes an identifier of the first QoS flow
  • the second QoS rule includes an identifier of the second QoS flow
  • the identifier is an identity identifier ID or an index.
  • FIG. 5 shows a block diagram of the functional unit composition of another device for QoS guarantee of relay communication.
  • the apparatus 500 for guaranteeing relay communication QoS is applied to a first network device, and the first network device includes a processing unit 502 and a communication unit 503.
  • the processing unit 502 is used to control and manage the actions of the first network device.
  • the processing unit 502 is used to support the first network device to perform steps 201 and 205 in FIG. 2A and/or other processes used in the technology described herein.
  • the communication unit 503 is used to support communication between the first network device and other devices.
  • the first network device may also include a storage unit 501 for storing program codes and data of the first device.
  • the processing unit 502 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), and an application-specific integrated circuit (Application-Specific Integrated Circuit). Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication unit 503 may be a communication interface, a transceiver, a transceiving circuit, etc., and the storage unit 501 may be a memory.
  • the processing unit 502 is a processor
  • the communication unit 503 is a communication interface
  • the storage unit 501 is a memory
  • the first device involved in the embodiment of the present application may be the third network device shown in FIG. 8.
  • the processing unit 502 is configured to send a first quality of service QoS policy through the communication unit 503, where the first QoS policy is used by the first device and/or the second device to determine the first QoS for the first relay service Rule, the first relay service is a relay service between the second device and the second network device, and the first QoS rule is applied to the first QoS flow of the first relay service,
  • the first QoS flow is the QoS flow between the first device and the second device, the first QoS policy is the QoS policy for the PC5 interface; and the second QoS policy is acquired, according to the second
  • the QoS policy determines the second QoS rule for the first relay service, and sends the second QoS rule to the first device, and the second QoS rule is applied to the second QoS rule of the first relay service.
  • QoS flow the second QoS flow is the QoS flow between the first device and the second network device, and the second QoS policy is a QoS policy for
  • the third network device sends the first quality of service QoS policy, the third network device obtains the second QoS policy, and determines the second QoS rule for the first relay service according to the second QoS policy, and Send the second QoS rule to the first device.
  • the first relay service is the relay service between the second device and the second network device.
  • the first QoS rule is applied to the first QoS flow of the first relay service.
  • the QoS flow is the QoS flow between the first device and the second device
  • the first QoS policy is the QoS policy for the PC5 interface
  • the second QoS rule is applied to the second QoS flow of the first relay service
  • the second QoS flow is For the QoS flow between the first device and the second network device
  • the second QoS policy is a QoS policy for the Uu interface. It can be seen that the third network device sends the first QoS policy and interacts with the first device with the second QoS rule, so that the QoS flow of the Uu interface of the first relay service and the PC5 interface are effectively matched.
  • the processing unit 502 is specifically configured to receive the second QoS policy from the first network device through the communication unit 503.
  • the first network device is a PCF network element
  • the second network device is a UPF network element
  • the third network device is the SMF network element.
  • the first relay service includes any one of the following: an Internetwork Protocol IP service, an Ethernet service, and an unstructured Unstructured service.
  • the first QoS rule includes the PC5 service quality index PQI of the first QoS flow
  • the second QoS rule includes the fifth generation 5G service quality index 5QI of the second QoS flow.
  • the first QoS rule includes the PC5 service quality index PQI of the first QoS flow
  • the second QoS rule includes the fifth generation 5G service quality index 5QI of the second QoS flow.
  • FIG. 6 is a schematic structural diagram of a first device 600 according to an embodiment of the present application.
  • the first device 600 includes a processor 610, a memory 620, a communication interface 630, and at least one A communication bus used to connect the processor 610, the memory 620, and the communication interface 630.
  • the memory 620 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or A portable read-only memory (compact disc read-only memory, CD-ROM), the memory 620 is used for related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • the communication interface 630 is used to receive and send data.
  • the processor 610 may be one or more central processing units (CPUs). When the processor 610 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 610 in the first device 600 is configured to read one or more program codes 621 stored in the memory 620, and perform the following operations: call the communication interface 630 to receive the first quality of service from the first network device QoS policy, the first QoS policy is used to determine the first QoS rule for the first relay service, the first QoS rule is applied to the first QoS flow of the first relay service, the first QoS flow is the QoS flow between the first device and the second device, the first relay service is the relay service between the second device and the second network device, and the first QoS policy is for QoS policy of the PC5 interface; and invoking the communication interface 630 to receive a second QoS rule from a third network device, the second QoS rule being a QoS rule for the first relay service determined according to the second QoS policy, The second QoS rule is applied to the second QoS flow of the first relay service, and the second QoS flow is the QoS flow between the first device and the third network device,
  • each operation may also correspond to the corresponding description of the method embodiment shown in FIG. 2A, and the first device 600 may be used to execute the method on the first device side of the foregoing method embodiment of the present application.
  • the first device can effectively determine the matching problem of the QoS flow of the Uu interface and the PC5 interface of the first relay service by interacting with the first network device and the third network device.
  • FIG. 7 is a schematic structural diagram of a first network device 700 according to an embodiment of the present application.
  • the first network device 700 includes a processor 710, a memory 720, a communication interface 730, and At least one communication bus used to connect the processor 710, the memory 720, and the communication interface 730.
  • the memory 720 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM), the memory 720 is used for related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • CD-ROM Compact disc read-only memory
  • the communication interface 730 is used to receive and send data.
  • the processor 710 may be one or more central processing units (CPU).
  • CPU central processing units
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 710 in the first network device 700 is configured to read one or more program codes 721 stored in the memory 720, and perform the following operations: call the communication interface 730 to send the first quality of service QoS policy,
  • the first QoS policy is used by the first device to determine the first QoS rule for the first relay service, the first QoS rule is applied to the first QoS flow of the first relay service, and the first QoS flow is The QoS flow between the first device and the second device, the first relay service is the relay service between the second device and the second network device, and the first QoS policy is for the PC5 interface QoS policy; call the communication interface 730 to send a second QoS policy to the third network device, the second QoS policy is used by the third network device to determine and send to the first device for the first relay service
  • the second QoS rule is applied to the second QoS flow of the first relay service, and the second QoS flow is the QoS between the first device and the third network device flow, the second
  • each operation may also correspond to the corresponding description of the method embodiment shown in FIG. 2B.
  • the first network device 700 interacts with the third network device and sends the first QoS policy, so that the QoS flow of the Uu interface of the first relay service and the PC5 interface are effectively matched .
  • FIG. 8 is a schematic structural diagram of a third network device 800 according to an embodiment of the present application.
  • the third network device 800 includes a processor 810, a memory 820, a communication interface 830, and At least one communication bus used to connect the processor 810, the memory 820, and the communication interface 830.
  • the memory 820 includes but is not limited to random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or A portable read-only memory (compact disc read-only memory, CD-ROM), the memory 820 is used for related instructions and data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • the communication interface 830 is used to receive and send data.
  • the processor 810 may be one or more central processing units (CPUs).
  • CPUs central processing units
  • the CPU may be a single-core CPU or a multi-core CPU.
  • the processor 810 in the third network device 800 is configured to read one or more program codes 821 stored in the memory 820, and perform the following operations: call the communication interface 830 to send the first quality of service QoS policy,
  • the first QoS policy is used by the first device and/or the second device to determine the first QoS rule for the first relay service, where the first relay service is between the second device and the second network device
  • the first QoS rule is applied to the first QoS flow of the first relay service, and the first QoS flow is the QoS flow between the first device and the second device
  • the first QoS policy is a QoS policy for the PC5 interface; and a second QoS policy is obtained, and a second QoS rule for the first relay service is determined according to the second QoS policy, and the second QoS rule is reported to the first device Send the second QoS rule, the second QoS rule is applied to the second QoS flow of the first relay service, and the second QoS flow is the Qo
  • each operation can also correspond to the corresponding description of the method embodiment shown in FIG. 2C.
  • the third network device sends the first QoS policy and interacts with the first device with the second QoS rule, so that the QoS flow of the Uu interface of the first relay service and the PC5 interface are effectively matched. .
  • An embodiment of the present application also provides a chip, wherein the chip includes a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes as described in the first device in the above method embodiment Some or all of the steps.
  • the embodiment of the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the method as described in the above method embodiment. Part or all of the steps described by a device.
  • the embodiment of the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the network in the above-mentioned method embodiment. Part or all of the steps described by the side device.
  • the embodiments of the present application also provide a computer program product, wherein the computer program product includes a computer program, and the computer program is operable to cause a computer to perform some or all of the steps described in the first device in the above method embodiment .
  • the computer program product may be a software installation package.
  • the steps of the method or algorithm described in the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read Only Memory, ROM), and erasable programmable read-only memory ( Erasable Programmable ROM (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in an access network device, a target network device, or a core network device.
  • the processor and the storage medium may also exist as discrete components in the access network device, the target network device, or the core network device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a Digital Video Disc (DVD)), or a semiconductor medium (for example, a Solid State Disk (SSD)) )Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请实施例公开了一种中继通信QoS保证的方法及相关装置,方法包括:第一设备接收来自第一网络设备的第一服务质量QoS策略,第一QoS策略用于确定针对第一中继业务的第一QoS规则,第一QoS规则应用于第一中继业务的第一QoS flow,第一QoS flow为第一设备与第二设备之间的QoS flow,第一中继业务为第二设备和第二网络设备之间的中继业务,第一QoS策略为针对PC5接口的QoS策略;第一设备接收来自第三网络设备的第二QoS规则,第二QoS规则为根据第二QoS策略确定的针对第一中继业务的QoS规则,第二QoS规则应用于第一中继业务的第二QoS flow,第二QoS flow为第一设备与第三网络设备之间的QoS flow,第二QoS策略为针对Uu接口的QoS策略。可见,本申请有效规范中继业务中Uu接口和PC5接口的QoS flow的匹配问题。

Description

中继通信QoS保证的方法及相关装置 技术领域
本申请涉及通信技术领域,尤其涉及一种中继通信QoS保证的方法及相关装置。
背景技术
移动通信系统未来发展中,为了更好的满足用户需求,提升设备之间信息交互的效率,在设备与设备之间引入了PC5接口。当前PC5接口已可用于传输设备到设备发现(Device to Device Discovery,D2D Discovery)、设备到设备通信(Device to Device Communication,D2D Communication)和车辆到万物(Vehicle to Everything,V2X)。为了提升网络传输效率,降低用户设备UE功率消耗,在UE与UE之间引入PC5接口,图1A为PC5接口位置示意图,如图1A所示,用于D2D通信和V2X通信。
同时,为了扩展网络覆盖等原因,在用户设备(User Equipment,UE)与网络(network,NW)之间引入了中继relay。图1B为V2X中的relay示意图,如图1B所示,路边设备(Road Side Unit,RSU)作为relay,传递车辆与网络之间的上行链路(Up-Link,UL)数据,其中车辆与relay之间通过PC5接口通信,relay与network之间通过Uu口通信。UE1与UE2之间通过侧行链路(Sidelink Shared Channel,SL)连接。随着业务的多样化,PC5接口上可以同时传递多种业务,建立多个承载,比如设备到设备(Device to Device,D2D)通信中可能包含语音、视频等不同业务类型。
发明内容
本申请实施例提供一种中继通信QoS保证的方法及相关装置,有效规范中继业务中Uu接口和PC5接口的QoS flow的匹配问题。
第一方面,本申请实施例提供一种中继通信QoS保证的方法,包括:
第一设备接收来自第一网络设备的第一服务质量QoS策略,所述第一QoS策略用于确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;
所述第一设备接收来自第三网络设备的第二QoS规则,所述第二QoS规则为根据第二QoS策略确定的针对第一中继业务的QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
可以看出,本申请实施例中,第一设备接收来自第一网络设备的第一服务质量QoS策略,第一设备接收来自第三网络设备的第二QoS规则,第一中继业务为第二设备和第二网络设备之间的中继业务,第一QoS策略用于确定针对第一中继业务的第一QoS规则,第一QoS规则应用于第一中继业务的第一QoS flow,第一QoS flow为第一设备与第二设备之间的QoS flow,第一QoS策略为针对PC5接口的QoS策略;第二QoS规则为根据第二QoS策略确定的针对第一中继业务的QoS规则,第二QoS规则应用于第一中继业务的第二QoS flow,第二QoS flow为第一设备与第三网络设备之间的QoS flow,第二QoS策略为针对Uu接口的QoS策略。可见,第一设备通过与第一网络设备、第三网络设备交互,能够有效确定第一中继业务的Uu接口和PC5接口的QoS flow的匹配问题。
第二方面,本申请实施例提供一种中继通信QoS保证的方法,包括:
第一网络设备发送第一服务质量QoS策略,所述第一QoS策略用于第一设备确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;
所述第一网络设备向第三网络设备发送第二QoS策略,所述第二QoS策略用于所述第三网络设备确定并向所述第一设备发送针对第一中继业务的第二QoS规则,所述第二QoS规则应用于所述第一中继业 务的第二QoS flow,所述第二QoS flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
可以看出,本申请实施例中,第一网络设备发送第一服务质量QoS策略,第一网络设备向第三网络设备发送第二QoS策略,其中,第一中继业务为第二设备和第二网络设备之间的中继业务,第一QoS策略用于第一设备确定针对第一中继业务的第一QoS规则,第一QoS规则应用于第一中继业务的第一QoS flow,第一QoS flow为第一设备与第二设备之间的QoS flow,第二QoS策略用于第三网络设备确定并向第一设备发送针对第一中继业务的第二QoS规则,第二QoS规则应用于第一中继业务的第二QoS flow,第二QoS flow为第一设备与第三网络设备之间的QoS flow,第二QoS策略为针对Uu接口的QoS策略。可见,第一网络设备与第三网络设备进行交互,并发送第一QoS策略,使得第一中继业务的Uu接口和PC5接口的QoS flow有效匹配。
第三方面,本申请实施例提供一种中继通信QoS保证的方法,包括:
第三网络设备发送第一服务质量QoS策略,所述第一QoS策略用于第一设备和/或第二设备确定针对第一中继业务的第一QoS规则,所述第一中继业务为所述第二设备和所述第二网络设备之间的中继业务,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与所述第二设备之间的QoS flow,所述第一QoS策略为针对PC5接口的QoS策略;
所述第三网络设备获取第二QoS策略,根据所述第二QoS策略确定针对所述第一中继业务的第二QoS规则,并向所述第一设备发送所述第二QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与第二网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
可以看出,本申请实施例中,第三网络设备发送第一服务质量QoS策略,第三网络设备获取第二QoS策略,根据第二QoS策略确定针对第一中继业务的第二QoS规则,并向第一设备发送第二QoS规则,第一中继业务为第二设备和第二网络设备之间的中继业务,第一QoS规则应用于第一中继业务的第一QoS flow,第一QoS flow为第一设备与第二设备之间的QoS flow,第一QoS策略为针对PC5接口的QoS策略,第二QoS规则应用于第一中继业务的第二QoS flow,第二QoS flow为第一设备与第二网络设备之间的QoS flow,第二QoS策略为针对Uu接口的QoS策略。可见,第三网络设备通过发送第一QoS策略,并与第一设备交互第二QoS规则,使得第一中继业务的Uu接口和PC5接口的QoS flow有效匹配。
第四方面,本申请实施例提供一种中继通信QoS保证的装置,应用于第一设备,所述装置包括处理单元和通信单元,所述处理单元用于:通过所述通信单元接收来自第一网络设备的第一服务质量QoS策略,所述第一QoS策略用于确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;以及通过所述通信单元接收来自第三网络设备的第二QoS规则,所述第二QoS规则为根据第二QoS策略确定的针对第一中继业务的QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
第五方面,本申请实施例提供一种中继通信QoS保证的装置,应用于第一网络设备,所述装置包括处理单元和通信单元,所述处理单元用于:通过所述通信单元发送第一服务质量QoS策略,所述第一QoS策略用于第一设备确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;以及通过所述通信单元向第三网络设备发送第二QoS策略,所述第二QoS策略用于所述第三网络设备确定并向所述第一设备发送针对第一中继业务的第二QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
第六方面,本申请实施例提供一种中继通信QoS保证的装置,应用于第三网络设备,所述装置包括 处理单元和通信单元,所述处理单元用于:通过所述通信单元发送第一服务质量QoS策略,所述第一QoS策略用于第一设备和/或第二设备确定针对第一中继业务的第一QoS规则,所述第一中继业务为所述第二设备和所述第二网络设备之间的中继业务,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与所述第二设备之间的QoS flow,所述第一QoS策略为针对PC5接口的QoS策略;以及获取第二QoS策略,根据所述第二QoS策略确定针对所述第一中继业务的第二QoS规则,并向所述第一设备发送所述第二QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与第二网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
第七方面,本申请实施例提供一种第一设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第一方面任一方法中的步骤的指令。
第八方面,本申请实施例提供一种第一网络设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第二方面任一方法中的步骤的指令。
第九方面,本申请实施例提供一种第三网络设备,包括处理器、存储器、通信接口以及一个或多个程序,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第三方面任一方法中的步骤的指令。
第十方面,本申请实施例提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如本申请实施例第一方面或第二方面或第三方面任一方法中所描述的部分或全部步骤。
第十一方面,本申请实施例提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如本申请实施例第一方面或第二方面或第三方面任一方法中所描述的部分或全部步骤。
第十二方面,本申请实施例提供了一种计算机程序,其中,所述计算机程序可操作来使计算机执行如本申请实施例第一方面或第二方面或第三方面任一方法中所描述的部分或全部步骤。该计算机程序可以为一个软件安装包。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1A是本申请实施例提供的一种PC5接口位置示意图;
图1B是本申请实施例提供的一种V2X中的relay示意图;
图1C是本申请实施例提供的一种第二设备通过第一设备接入到网络设备的示意图;
图1D是本申请实施例提供的一种使用中继服务的系统架构的示意图;
图1E是本申请实施例提供的一种中继传输初始化信令交互流程图;
图2A是本申请实施例提供的一种QoS参数配置方法的流程示意图;
图2B是本申请实施例提供的另一种QoS参数配置方法的流程示意图;
图2C是本申请实施例提供的另一种QoS参数配置方法的流程示意图;
图2D是本申请实施例提供的另一种QoS参数配置方法的流程示意图;
图2E是本申请实施例提供的另一种QoS参数配置方法的流程示意图;
图3是本申请实施例提供的一种中继通信QoS保证的装置的功能单元组成框图;
图4是本申请实施例提供的另一种中继通信QoS保证的装置的功能单元组成框图;
图5是本申请实施例提供的另一种中继通信QoS保证的装置的功能单元组成框图;
图6是本申请实施例提供的一种第一设备的结构示意图;
图7是本申请实施例提供的一种第一网络设备的结构示意图;
图8是本申请实施例提供的一种第三网络设备的结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行描述。
如图1C所示,第二设备(简称w-UE或remote UE或远端UE)通过D2D通信的方式连接第一设备(简称relay UE或r-UE),第一设备接入到网络设备,即w-UE可以连接到UE充当的中继节点,与r-UE之间以D2D的方式进行通信,r-UE负责将w-UE的数据包转发到网络或从网络转发给w-UE,第二设备例如可以是可穿戴/eMTC/NB-IoT设备,第一设备例如可以是手机等终端设备。
该示例通信系统100例如可以是:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、新无线(New Radio,NR)系统、NR系统的演进系统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access tounlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
通常来说,传统的通信系统支持的连接数有限,也易于实现,然而,随着通信技术的发展,移动通信系统将不仅支持传统的通信,还将支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。可选地,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。本申请实施例对应用的频谱并不限定。例如,本申请实施例可以应用于授权频谱,也可以应用于免授权频谱。
本申请实施例中的第一设备110可以指用户设备、接入第一设备、用户单元、用户站、移动站、移动台、远方站、远程第一设备、移动设备、用户第一设备、第一设备、无线通信设备、用户代理或用户装置。第一设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、中继设备、车载设备、可穿戴设备,未来5G网络中的第一设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的第一设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备120可以是用于与第一设备通信的设备,该网络设备可以是LTE系统中的演进型基站(evoled NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继设备、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(baseband unit,BBU),或,分布式单元(distributed unit,DU)等,本申请实施例并不限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network, RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
在本申请实施例中,第一设备110或网络设备120包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是第一设备,或者,是第一设备中能够调用程序并执行程序的功能模块。
目前,随着5G应用的不断发展,网络控制互动服务(Network Controlled Interactive Services,NCIS)业务作为一个新的业务形态被引入到标准中进行相关的标准化业务。NCIS业务主要针对AR/VR、游戏等应用,对速率、时延、丢包率、高速编解码等业务质量有很高的要求。例如:对于VR游戏,需要达到10Gbps速率,丢包率不可超过10E-4。针对NCIS业务建立的会话为NCIS会话,在相同NCIS会话的UE可以认为组成一个NCIS组,例如:游戏中组队。NCIS组内的UE有以下可能的通信方式,可以组合使用:
-彼此临近,例如:使用D2D技术进行广播或组播,或建立sidelink(也称为使用PC5接口)进行1对1通信(单播);
-远离彼此,例如使用UE-网络-服务器-对端网络-对端UE(也称为使用Uu接口)。
组内的UE可以来自相同的陆上公用移动通信网(Public Land Mobile Network,PLMN),也可以来自不同的PLMN。举例来说,一个NCIS组中有5个UE,其中3个是PLMN 1的UE,2个是PLMN 2的UE,3个PLMN 1的UE可以使用D2D技术在PC5接口互相直接通信,同时又与2个PLMN 2的UE使用网络进行通信。
UE-to-network relay系统架构如图1D,用户设备到网络中继UE-to-network relay来服务remote UE的通信,其中,SGI为核心网与分组数据网络(PacketDataNetwork,PDN)网关之间的接口,该架构能够提供更加高速、可靠等的服务。
如图1E所示的中继传输初始化信令交互流程图,包括如下步骤:
步骤1,网络侧初始附加和/或Relay UE请求PDN连接,E-UTRAN Initial Attach and/or UE requested PDN connecticity。
步骤2,中继设备与远端设备完成发现步骤,Discovery Procedure
步骤3,中继设备与远端设备完成一对一通信的连接建立,Establishment of connection For one-to-one Communication。
可选步骤3,中继设备可以建立一个新的PDN连接用于中继,Relay UE may establish a new PDN connection for Relay。
步骤4,远端设备向中继设备上报IP地址/前缀分配,IP address/prefix allocation。
步骤5,远端设备向网络侧上报远端设备报告(远端用户标识、IP地址信息),Remote UE Report(Remote User ID,IP info)
步骤6,网络侧实体转发远端设备报告(远端用户标识、IP地址信息),Remote UE Report(Remote User ID,IP info)。
上述过程中,可选步骤3中,relay UE为了传输remote UE的中继数据,relay UE需要使用合适的PDN connection。使用哪个PDN connection来传输中继数据由relay UE决定,一般地,relay UE可以把所有的中继数据都用一个专门的PDN connection来传输。5G架构中,relay UE会为了传输remote UE的数据建立合适的PDU session。上行数据:remote UE-》relay UE-》RAN-》5GC-》DNN-》Application server。下行反向。
为了给remote UE提供更好的服务,满足不同业务需求,例如:传输速率、时延、丢包率等,PC5 连接和relay UE的PDU session内都有QoS flow用来传输数据。不同的QoS flow支持不同的QoS需求。Relay UE怎么把PC5连接上的QoS flow和PDU session上的QoS flow匹配起来是个需要解决的问题。
针对上述问题,本申请实施例提出一种中继通信服务质量QoS保证的方法,下面结合附图进行详细说明。
针对上述问题,本申请实施例提出一种中继通信QoS保证的方法,下面结合附图进行详细说明。
请参阅图2A,图2A是本申请实施例提供的一种中继通信QoS保证的方法的流程示意图,如图所示,该方法包括:
步骤2A01、第一设备接收来自第一网络设备的第一服务质量QoS策略,所述第一QoS策略用于确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;
其中,所述第一中继业务包括以下任意一种:网际互联协议IP业务,以太网Ethernet业务、以及非结构化Unstructured业务。
步骤2A02、所述第一设备接收来自第三网络设备的第二QoS规则,所述第二QoS规则为根据第二QoS策略确定的针对第一中继业务的QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
需要说明的是,本申请不限定步骤2A01和2A02的执行顺序,也即可先执行2A02,然后再执行2A01,也可同时执行2A01和2A02,这均不影响本申请的实现。
其中,所述第一设备为中继设备,所述第二设备为远端设备。
其中,所述第一QoS策略和所述第二QoS策略满足端到端的QoS要求,此处端到端的QoS要求指的是远端终端和核心网实体(例如用户面功能(User Plane Function,UPF)网元)之间的QoS要求,即Uu接口上的QoS要求和PC5接口上的QoS要求组合起来满足中继业务的QoS端到端要求。
在一个可能的示例中,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
在一个可能的示例中,所述第一QoS规则包括所述第一QoS flow的标识(例如:PC5接口的flow ID,即PFI),所述第二QoS规则包含所述第二QoS flow的标识,所述标识为身份标识ID或者索引Index。
此外,所述第一QoS规则和所述第二QoS规则还可以包括数据包过滤集packet filter set。
可选的,所述第一网络设备为策略控制功能(Policy Control Function,PCF)网元或者会话管理功能(Session management function,SMF)网元,所述第二网络设备为UPF网元,所述第三网络设备为所述SMF网元。
其中,PC5接口上的QoS要求或者属性见表1,Uu接口的QoS要求和属性见表2,其中,PQI为PC5服务质量索引PC5QoS Index,5QI为5G业务质量索引5G QoS Index。
表1、PC5接口上的QoS要求或者属性
Figure PCTCN2020077214-appb-000001
Figure PCTCN2020077214-appb-000002
表2、Uu接口的QoS要求和属性
Figure PCTCN2020077214-appb-000003
Figure PCTCN2020077214-appb-000004
Figure PCTCN2020077214-appb-000005
举例来说,如果一个IP业务的端到端的QoS要求为:可靠性-10 -4,时延--30ms,那么PCF网元在PC5接口上产生的QoS要求可以为PQI=1,Uu接口上的产生的QoS要求可以为5QI=82。
可以看出,本实施例中,第一设备接收来自第一网络设备的第一服务质量QoS策略,第一设备接收来自第三网络设备的第二QoS规则,第一中继业务为第二设备和第二网络设备之间的中继业务,第一QoS策略用于确定针对第一中继业务的第一QoS规则,第一QoS规则应用于第一中继业务的第一QoS flow,第一QoS flow为第一设备与第二设备之间的QoS flow,第一QoS策略为针对PC5接口的QoS策略;第二QoS规则为根据第二QoS策略确定的针对第一中继业务的QoS规则,第二QoS规则应用于第一中继 业务的第二QoS flow,第二QoS flow为第一设备与第三网络设备之间的QoS flow,第二QoS策略为针对Uu接口的QoS策略。可见,第一设备通过与第一网络设备、第三网络设备交互,能够有效确定第一中继业务的Uu接口和PC5接口的QoS flow的匹配问题。
在一个可能的示例中,所述方法还包括:所述第一设备根据所述第一QoS策略确定所述第一中继业务的所述第一QoS规则。
可见,本示例中,由第一设备确定第一中继业务的第一QoS规则,第一设备将第一QoS规则同步给第二设备,从而第一设备和第二设备确定承载第一中继业务的上行数据或下行数据的Uu接口的QoS flow。
在一个可能的示例中,所述方法还包括:所述第一设备向所述第二设备发送所述第一QoS策略,所述第一QoS策略用于所述第二设备定所述第一中继业务的所述第一QoS规则。
具体实现中,第一设备可以在PC5连接建立过程中通过PC5信令传递或者PC5无线资源控制RRC信令传递。
可见,本示例中,由第二设备确定第一中继业务的第一QoS规则,第二设备将第一QoS规则同步给第一设备,从而第一设备和第二设备确定承载上行数据或下行数据的Uu接口的QoS flow。
与上述实施例一致的,请参阅图2B,图2B是本申请实施例提供的一种中继通信QoS保证的方法的流程示意图,如图所示,该方法包括:
步骤2B01、第一网络设备发送第一服务质量QoS策略,所述第一QoS策略用于第一设备确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;
步骤2B02、所述第一网络设备向第三网络设备发送第二QoS策略,所述第二QoS策略用于所述第三网络设备确定并向所述第一设备发送针对第一中继业务的第二QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
需要说明的是,本申请不限定步骤2B01和2B02的执行顺序,也即可先执行2B02,然后再执行2B01,也可同时执行2B01和2B02,这均不影响本申请的实现。
其中,所述第一网络设备为PCF网元,所述第二网络设备为UPF网元,所述第三网络设备为所述SMF网元。
其中,所述第一中继业务包括以下任意一种:网际互联协议IP业务,以太网Ethernet业务、以及非结构化Unstructured业务。
在一个可能的示例中,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
在一个可能的示例中,所述第一QoS规则包括所述第一QoS flow的标识,所述第二QoS规则包含所述第二QoS flow的标识,所述标识为身份标识ID或者索引Index。
可以看出,本实施例中,第一网络设备发送第一服务质量QoS策略,第一网络设备向第三网络设备发送第二QoS策略,其中,第一中继业务为第二设备和第二网络设备之间的中继业务,第一QoS策略用于第一设备确定针对第一中继业务的第一QoS规则,第一QoS规则应用于第一中继业务的第一QoS flow,第一QoS flow为第一设备与第二设备之间的QoS flow,第二QoS策略用于第三网络设备确定并向第一设备发送针对第一中继业务的第二QoS规则,第二QoS规则应用于第一中继业务的第二QoS flow,第二QoS flow为第一设备与第三网络设备之间的QoS flow,第二QoS策略为针对Uu接口的QoS策略。可见,第一网络设备与第三网络设备进行交互,并发送第一QoS策略,使得第一中继业务的Uu接口和PC5接口的QoS  flow有效匹配。
在一个可能的示例中,所述第一网络设备发送第一QoS策略,包括:所述第一网络设备向所述第一设备发送所述第一QoS策略。
其中,所述第二设备可以处于所述第一网络设备的信号覆盖范围之外。
可见,本示例中,第一网络设备仅向第一设备发送第一QoS策略,从而第一设备确定第一中继业务的第一QoS规则,第一设备将第一QoS规则同步给第二设备,从而第一设备和第二设备确定承载第一中继业务的上行数据或下行数据的Uu接口的QoS flow。
在一个可能的示例中,所述第一网络设备发送第一QoS策略,包括:所述第一网络设备分别向所述第一设备和所述第二设备发送所述第一QoS策略。
其中,所述第二设备可以处于所述第一网络设备的信号覆盖范围之内。
可见,本示例中,第一网络设备同时向第一设备和第二设备发送第一QoS策略,从而第一设备和/或第二设备可以确定第一中继业务的第一QoS规则,从而第一设备和第二设备确定承载第一中继业务的上行数据或下行数据的Uu接口的QoS flow。
与上述实施例一致的,请参阅图2C,图2C是本申请实施例提供的一种中继通信QoS保证的方法的流程示意图,如图所示,该方法包括:
步骤2C01、第三网络设备发送第一服务质量QoS策略,所述第一QoS策略用于第一设备和/或第二设备确定针对第一中继业务的第一QoS规则,所述第一中继业务为所述第二设备和所述第二网络设备之间的中继业务,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与所述第二设备之间的QoS flow,所述第一QoS策略为针对PC5接口的QoS策略;
步骤2C02、所述第三网络设备获取第二QoS策略,根据所述第二QoS策略确定针对所述第一中继业务的第二QoS规则,并向所述第一设备发送所述第二QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与第二网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
需要说明的是,本申请不限定步骤2C01和2C02的执行顺序,也即可先执行2C02,然后再执行2C01,也可同时执行2C01和2C02,这均不影响本申请的实现。
其中,所述第一网络设备为PCF网元,所述第二网络设备为UPF网元,所述第三网络设备为所述SMF网元。
其中,所述第一中继业务包括以下任意一种:网际互联协议IP业务,以太网Ethernet业务、以及非结构化Unstructured业务。
在一个可能的示例中,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
在一个可能的示例中,所述第一QoS规则包括所述第一QoS flow的标识,所述第二QoS规则包含所述第二QoS flow的标识,所述标识为身份标识ID或者索引Index。
可以看出,本实施例中,第三网络设备发送第一服务质量QoS策略,第三网络设备获取第二QoS策略,根据第二QoS策略确定针对第一中继业务的第二QoS规则,并向第一设备发送第二QoS规则,第一中继业务为第二设备和第二网络设备之间的中继业务,第一QoS规则应用于第一中继业务的第一QoS flow,第一QoS flow为第一设备与第二设备之间的QoS flow,第一QoS策略为针对PC5接口的QoS策略,第二QoS规则应用于第一中继业务的第二QoS flow,第二QoS flow为第一设备与第二网络设备之间的QoS flow,第二QoS策略为针对Uu接口的QoS策略。可见,第三网络设备通过发送第一QoS策略,并与第一设备交互第二QoS规则,使得第一中继业务的Uu接口和PC5接口的QoS flow有效匹配。
在一个可能的示例中,所述第三网络设备获取第二QoS策略,包括:所述第三网络设备接收来自 第一网络设备的所述第二QoS策略。
与上述实施例一致的,请参阅图2D,图2D是本申请实施例提供的一种中继通信QoS保证的方法的流程示意图,如图所示,该方法从多侧交互的角度进行描述,具体包括:
步骤2D01,PCF网元向第一设备发送第一QoS策略,以及向SMF网元发送第二QoS策略。
步骤2D02,所述第一设备接收所述第一QoS策略,并向第二设备发送所述第一QoS策略。
步骤2D03,所述SMF网元接收所述第二QoS策略,根据所述第二QoS策略确定针对第一中继业务的第二QoS规则,并向所述第一设备发送所述第二QoS规则。
步骤2D04,所述第一设备根据所述第一QoS策略确定针对所述第一中继业务的第一QoS规则。
步骤2D05,所述第一设备在所述第二QoS规则所指示的第二QoS flow上接收来自UPF的第一数据。
步骤2D06,所述第一设备在所述第一QoS规则所指示的第一QoS flow上向所述第二设备发送所述第一数据。
步骤2D07,所述第二设备在所述第一QoS规则所指示的第一QoS flow上接收所述第一数据。
可见,本示例中,PCF网元能够将PC5接口的第一QoS策略发给第一设备,以及将Uu接口的第二QoS策略发给SMF,第一设备转发第一QoS策略给第二设备,SMF根据第二QoS策略确定第一中继业务的第二QoS规则,并同步给第一设备,从而第一设备被配置第一中级业务的Uu接口的QoS flow,第一设备和第二设备再根据第一QoS策略确定第一中继业务的第一QoS规则,从而实现UPF网元与第二设备之间的数据交互。
与上述实施例一致的,请参阅图2E,图2E是本申请实施例提供的一种中继通信QoS保证的方法的流程示意图,如图所示,该方法从多侧交互的角度进行描述,具体包括:
步骤2E01,SMF网元向第一设备发送第一QoS策略。
步骤2E02,所述第一设备将所述第一QoS策略发送给第二设备。
步骤2E03,所述SMF网元根据第二QoS策略确定UPF网元的第一中继业务的第二QoS规则,并向所述第一设备发送所述第二QoS规则。
其中,UFP网元可以向SMF网元发送第一中继业务的数据传输请求,触发SMF网元执行本步骤。
步骤2E04,所述第一设备接收所述第二QoS规则,并根据所述第一QoS策略确定第一QoS规则,并向第二设备发送所述第一中继业务的数据传输请求。
步骤2E05,所述第二设备接收所述数据传输请求,根据所述第一QoS策略确定所述第一QoS规则,并通过所述第一QoS规则所指示的第一QoS flow向第二设备发送第二数据。
步骤2E06,所述第二设备通过所述第一QoS flow接收所述第二数据,并通过所述第二QoS规则所指示的第二QoS flow向所述SMF网元发送所述第二数据。
步骤2E07,所述SMF网元通过所述第二QoS flow接收所述第二数据,并向所述UPF网元发送所述第二数据。
可见,本示例中,SMF网元通过与第一设备交互,第一设备与第二设备交互,确定第一中继业务的PC5接口的第一QoS flow和Uu接口的第二QoS flow,进而实现第二设备与UPF网元之间的数据传输。
上述主要从方法侧各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,第一设备和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对第一设备和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元 既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图3示出了一种中继通信QoS保证的装置的功能单元组成框图。中继通信QoS保证的装置300应用于第一设备,具体包括:处理单元302和通信单元303。处理单元302用于对第一设备的动作进行控制管理,例如,处理单元302用于支持第一设备执行本文所描述的技术的相关过程。通信单元303用于支持第一设备与其他设备的通信。第一设备还可以包括存储单元301,用于存储第一设备的程序代码和数据。
其中,处理单元302可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元303可以是通信接口、收发器、收发电路等,存储单元301可以是存储器。当处理单元302为处理器,通信单元303为通信接口,存储单元301为存储器时,本申请实施例所涉及的第一设备可以为图6所示的第一设备。
具体实现时,所述处理单元302用于执行如上述方法实施例中由第一设备执行的任一步骤,且在执行诸如发送等数据传输时,可选择的调用所述通信单元303来完成相应操作。下面进行详细说明。
所述处理单元302用于:通过所述通信单元303接收来自第一网络设备的第一服务质量QoS策略,所述第一QoS策略用于确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;以及通过所述通信单元303接收来自第三网络设备的第二QoS规则,所述第二QoS规则为根据第二QoS策略确定的针对第一中继业务的QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
可以看出,本实施例中,第一设备接收来自第一网络设备的第一服务质量QoS策略,第一设备接收来自第三网络设备的第二QoS规则,第一中继业务为第二设备和第二网络设备之间的中继业务,第一QoS策略用于确定针对第一中继业务的第一QoS规则,第一QoS规则应用于第一中继业务的第一QoS flow,第一QoS flow为第一设备与第二设备之间的QoS flow,第一QoS策略为针对PC5接口的QoS策略;第二QoS规则为根据第二QoS策略确定的针对第一中继业务的QoS规则,第二QoS规则应用于第一中继业务的第二QoS flow,第二QoS flow为第一设备与第三网络设备之间的QoS flow,第二QoS策略为针对Uu接口的QoS策略。可见,第一设备通过与第一网络设备、第三网络设备交互,能够有效确定第一中继业务的Uu接口和PC5接口的QoS flow的匹配问题。
在一个可能的示例中,所述处理单元302还用于:根据所述第一QoS策略确定所述第一中继业务的所述第一QoS规则。
在一个可能的示例中,所述处理单元302还用于:通过所述通信单元303向所述第二设备发送所述第一QoS策略,所述第一QoS策略用于所述第二设备定所述第一中继业务的所述第一QoS规则。
在一个可能的示例中,所述第一网络设备为PCF网元或者SMF网元,所述第二网络设备为UPF网元,所述第三网络设备为所述SMF网元。
在一个可能的示例中,所述第一中继业务包括以下任意一种:网际互联协议IP业务,以太网Ethernet业务、以及非结构化Unstructured业务。
在一个可能的示例中,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
在一个可能的示例中,所述第一QoS规则包括所述第一QoS flow的标识,所述第二QoS规则包含所述第二QoS flow的标识,所述标识为身份标识ID或者索引Index。
在采用集成的单元的情况下,图4示出了另一种中继通信QoS保证的装置的功能单元组成框图。中继通信QoS保证的装置400应用于第一网络设备,该第一网络设备包括:处理单元402和通信单元403。处理单元402用于对第一网络设备的动作进行控制管理,例如,处理单元502用于支持第一网络设备执行图2A中的步骤201、205和/或用于本文所描述的技术的其它过程。通信单元403用于支持第一网络设备与其他设备的通信。第一网络设备还可以包括存储单元401,用于存储第一设备的程序代码和数据。
其中,处理单元402可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元403可以是通信接口、收发器、收发电路等,存储单元401可以是存储器。当处理单元402为处理器,通信单元403为通信接口,存储单元401为存储器时,本申请实施例所涉及的第一设备可以为图7所示的第一网络设备。
所述处理单元402用于:通过所述通信单元403发送第一服务质量QoS策略,所述第一QoS策略用于第一设备确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;以及通过所述通信单元403向第三网络设备发送第二QoS策略,所述第二QoS策略用于所述第三网络设备确定并向所述第一设备发送针对第一中继业务的第二QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
可以看出,本实施例中,第一网络设备发送第一服务质量QoS策略,第一网络设备向第三网络设备发送第二QoS策略,其中,第一中继业务为第二设备和第二网络设备之间的中继业务,第一QoS策略用于第一设备确定针对第一中继业务的第一QoS规则,第一QoS规则应用于第一中继业务的第一QoS flow,第一QoS flow为第一设备与第二设备之间的QoS flow,第二QoS策略用于第三网络设备确定并向第一设备发送针对第一中继业务的第二QoS规则,第二QoS规则应用于第一中继业务的第二QoS flow,第二QoS flow为第一设备与第三网络设备之间的QoS flow,第二QoS策略为针对Uu接口的QoS策略。可见,第一网络设备与第三网络设备进行交互,并发送第一QoS策略,使得第一中继业务的Uu接口和PC5接口的QoS flow有效匹配。
在一个可能的示例中,在通过所述通信单元403发送第一QoS策略方面,所述处理单元402具体用于:通过所述通信单元403向所述第一设备发送所述第一QoS策略。
在一个可能的示例中,在通过所述通信单元403发送第一QoS策略方面,所述处理单元402具体用于:通过所述通信单元403分别向所述第一设备和所述第二设备发送所述第一QoS策略。
在一个可能的示例中,所述第一网络设备为PCF网元,所述第二网络设备为UPF网元,所述第三网络设备为所述SMF网元。
在一个可能的示例中,所述第一中继业务包括以下任意一种:网际互联协议IP业务,以太网Ethernet业务、以及非结构化Unstructured业务。
在一个可能的示例中,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
在一个可能的示例中,所述第一QoS规则包括所述第一QoS flow的标识,所述第二QoS规则包含所述第二QoS flow的标识,所述标识为身份标识ID或者索引Index。
在采用集成的单元的情况下,图5示出了另一种中继通信QoS保证的装置的功能单元组成框图。中继通信QoS保证的装置500应用于第一网络设备,该第一网络设备包括:处理单元502和通信单元503。处理单元502用于对第一网络设备的动作进行控制管理,例如,处理单元502用于支持第一网络设备执行图2A中的步骤201、205和/或用于本文所描述的技术的其它过程。通信单元503用于支持第一网络设备与 其他设备的通信。第一网络设备还可以包括存储单元501,用于存储第一设备的程序代码和数据。
其中,处理单元502可以是处理器或控制器,例如可以是中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信单元503可以是通信接口、收发器、收发电路等,存储单元501可以是存储器。当处理单元502为处理器,通信单元503为通信接口,存储单元501为存储器时,本申请实施例所涉及的第一设备可以为图8所示的第三网络设备。
所述处理单元502用于:通过所述通信单元503发送第一服务质量QoS策略,所述第一QoS策略用于第一设备和/或第二设备确定针对第一中继业务的第一QoS规则,所述第一中继业务为所述第二设备和所述第二网络设备之间的中继业务,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与所述第二设备之间的QoS flow,所述第一QoS策略为针对PC5接口的QoS策略;以及获取第二QoS策略,根据所述第二QoS策略确定针对所述第一中继业务的第二QoS规则,并向所述第一设备发送所述第二QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与第二网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
可以看出,本实施例中,第三网络设备发送第一服务质量QoS策略,第三网络设备获取第二QoS策略,根据第二QoS策略确定针对第一中继业务的第二QoS规则,并向第一设备发送第二QoS规则,第一中继业务为第二设备和第二网络设备之间的中继业务,第一QoS规则应用于第一中继业务的第一QoS flow,第一QoS flow为第一设备与第二设备之间的QoS flow,第一QoS策略为针对PC5接口的QoS策略,第二QoS规则应用于第一中继业务的第二QoS flow,第二QoS flow为第一设备与第二网络设备之间的QoS flow,第二QoS策略为针对Uu接口的QoS策略。可见,第三网络设备通过发送第一QoS策略,并与第一设备交互第二QoS规则,使得第一中继业务的Uu接口和PC5接口的QoS flow有效匹配。
在一个可能的示例中,在获取第二QoS策略方面,所述处理单元502具体用于:通过所述通信单元503接收来自第一网络设备的所述第二QoS策略。
在一个可能的示例中,所述第一网络设备为PCF网元,所述第二网络设备为UPF网元,所述第三网络设备为所述SMF网元。
在一个可能的示例中,所述第一中继业务包括以下任意一种:网际互联协议IP业务,以太网Ethernet业务、以及非结构化Unstructured业务。
在一个可能的示例中,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
在一个可能的示例中,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
可以理解的是,由于方法实施例与装置实施例为相同技术构思的不同呈现形式,因此,本申请中方法实施例部分的内容应同步适配于装置实施例部分,此处不再赘述。
请参阅图6,图6是本申请实施例提供的一种第一设备600的结构示意图,如图6所示,所述第一设备600包括处理器610、存储器620、通信接口630和至少一个用于连接所述处理器610、所述存储器620、所述通信接口630的通信总线。
存储器620包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器620用于相关指令及数据。
通信接口630用于接收和发送数据。
处理器610可以是一个或多个中央处理器(central processing unit,CPU),在处理器610是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该第一设备600中的处理器610用于读取所述存储器620中存储的一个或多个程序代码621,执行以下操作:调用所述通信接口630接收来自第一网络设备的第一服务质量QoS策略,所述第一QoS策略用于确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;;以及调用所述通信接口630接收来自第三网络设备的第二QoS规则,所述第二QoS规则为根据第二QoS策略确定的针对第一中继业务的QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
需要说明的是,各个操作的实现还可以对应参照图2A所示的方法实施例的相应描述,该第一设备600可以用于执行本申请前述方法实施例的第一设备侧的方法。
在图6所描述的第一设备600中,第一设备通过与第一网络设备、第三网络设备交互,能够有效确定第一中继业务的Uu接口和PC5接口的QoS flow的匹配问题。
请参阅图7,图7是本申请实施例提供的一种第一网络设备700的结构示意图,如图7所示,所述第一网络设备700包括处理器710、存储器720、通信接口730和至少一个用于连接所述处理器710、所述存储器720、所述通信接口730的通信总线。
存储器720包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器720用于相关指令及数据。
通信接口730用于接收和发送数据。
处理器710可以是一个或多个中央处理器(central processing unit,CPU),在处理器710是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该第一网络设备700中的处理器710用于读取所述存储器720中存储的一个或多个程序代码721,执行以下操作:调用所述通信接口730发送第一服务质量QoS策略,所述第一QoS策略用于第一设备确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;调用所述通信接口730向第三网络设备发送第二QoS策略,所述第二QoS策略用于所述第三网络设备确定并向所述第一设备发送针对第一中继业务的第二QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
需要说明的是,各个操作的实现还可以对应参照图2B所示的方法实施例的相应描述。
在图7所描述的第一网络设备700中,第一网络设备700与第三网络设备进行交互,并发送第一QoS策略,使得第一中继业务的Uu接口和PC5接口的QoS flow有效匹配。
请参阅图8,图8是本申请实施例提供的一种第三网络设备800的结构示意图,如图8所示,所述第三网络设备800包括处理器810、存储器820、通信接口830和至少一个用于连接所述处理器810、所述存储器820、所述通信接口830的通信总线。
存储器820包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器820用于相关指令及数据。
通信接口830用于接收和发送数据。
处理器810可以是一个或多个中央处理器(central processing unit,CPU),在处理器810是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该第三网络设备800中的处理器810用于读取所述存储器820中存储的一个或多个程序代码821,执行以下操作:调用所述通信接口830发送第一服务质量QoS策略,所述第一QoS策略用于第一设备和/或第二设备确定针对第一中继业务的第一QoS规则,所述第一中继业务为所述第二设备和所述第二网络设备 之间的中继业务,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与所述第二设备之间的QoS flow,所述第一QoS策略为针对PC5接口的QoS策略;以及获取第二QoS策略,根据所述第二QoS策略确定针对所述第一中继业务的第二QoS规则,并向所述第一设备发送所述第二QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与第二网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
需要说明的是,各个操作的实现还可以对应参照图2C所示的方法实施例的相应描述。
在图8所描述的网络设备800中,第三网络设备通过发送第一QoS策略,并与第一设备交互第二QoS规则,使得第一中继业务的Uu接口和PC5接口的QoS flow有效匹配。
本申请实施例还提供了一种芯片,其中,该芯片包括处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如上述方法实施例中第一设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中第一设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中网络侧设备所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括计算机程序,所述计算机程序可操作来使计算机执行如上述方法实施例中第一设备所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备、目标网络设备或核心网设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备、目标网络设备或核心网设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。
以上所述的具体实施方式,对本申请实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (46)

  1. 一种中继通信服务质量QoS保证的方法,其特征在于,包括:
    第一设备接收来自第一网络设备的第一服务质量QoS策略,所述第一QoS策略用于确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;
    所述第一设备接收来自第三网络设备的第二QoS规则,所述第二QoS规则为根据第二QoS策略确定的针对第一中继业务的QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备根据所述第一QoS策略确定所述第一中继业务的所述第一QoS规则。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送所述第一QoS策略,所述第一QoS策略用于所述第二设备定所述第一中继业务的所述第一QoS规则。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述第一网络设备为策略控制功能PCF网元或者会话管理功能SMF网元,所述第二网络设备为用户面功能UPF网元,所述第三网络设备为所述SMF网元。
  5. 根据权利要求4所述的方法,其特征在于,所述第一中继业务包括以下任意一种:网际互联协议IP业务,以太网Ethernet业务、以及非结构化Unstructured业务。
  6. 根据权利要求5所述的方法,其特征在于,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
  7. 根据权利要求5所述的方法,其特征在于,所述第一QoS规则包括所述第一QoS flow的标识,所述第二QoS规则包含所述第二QoS flow的标识,所述标识为身份标识ID或者索引Index。
  8. 一种中继通信QoS保证的方法,其特征在于,包括:
    第一网络设备发送第一服务质量QoS策略,所述第一QoS策略用于第一设备确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;
    所述第一网络设备向第三网络设备发送第二QoS策略,所述第二QoS策略用于所述第三网络设备确定并向所述第一设备发送针对第一中继业务的第二QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
  9. 根据权利要求8所述的方法,其特征在于,所述第一网络设备发送第一QoS策略,包括:
    所述第一网络设备向所述第一设备发送所述第一QoS策略。
  10. 根据权利要求8所述的方法,其特征在于,所述第一网络设备发送第一QoS策略,包括:
    所述第一网络设备分别向所述第一设备和所述第二设备发送所述第一QoS策略。
  11. 根据权利要求8-10任一项所述的方法,其特征在于,所述第一网络设备为PCF网元,所述第二网络设备为UPF网元,所述第三网络设备为所述SMF网元。
  12. 根据权利要求11所述的方法,其特征在于,所述第一中继业务包括以下任意一种:网际互联协议IP业务,以太网Ethernet业务、以及非结构化Unstructured业务。
  13. 根据权利要求12所述的方法,其特征在于,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
  14. 根据权利要求12所述的方法,其特征在于,所述第一QoS规则包括所述第一QoS flow的标识,所述第二QoS规则包含所述第二QoS flow的标识,所述标识为身份标识ID或者索引Index。
  15. 一种中继通信QoS保证的方法,其特征在于,包括:
    第三网络设备发送第一服务质量QoS策略,所述第一QoS策略用于第一设备和/或第二设备确定针对第一中继业务的第一QoS规则,所述第一中继业务为所述第二设备和所述第二网络设备之间的中继业务,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与所述第二设备之间的QoS flow,所述第一QoS策略为针对PC5接口的QoS策略;
    所述第三网络设备获取第二QoS策略,根据所述第二QoS策略确定针对所述第一中继业务的第二QoS规则,并向所述第一设备发送所述第二QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与第二网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
  16. 根据权利要求15所述的方法,其特征在于,所述第三网络设备获取第二QoS策略,包括:
    所述第三网络设备接收来自第一网络设备的所述第二QoS策略。
  17. 根据权利要求16所述的方法,其特征在于,所述第一网络设备为PCF网元,所述第二网络设备为UPF网元,所述第三网络设备为所述SMF网元。
  18. 根据权利要求17所述的方法,其特征在于,所述第一中继业务包括以下任意一种:网际互联协议IP业务,以太网Ethernet业务、以及非结构化Unstructured业务。
  19. 根据权利要求18所述的方法,其特征在于,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
  20. 根据权利要求19所述的方法,其特征在于,所述第一QoS规则包括所述第一QoS flow的标识,所述第二QoS规则包含所述第二QoS flow的标识,所述标识为身份标识ID或者索引Index。
  21. 一种中继通信QoS保证的装置,其特征在于,应用于第一设备,所述装置包括处理单元和通信单元,所述处理单元用于:通过所述通信单元接收来自第一网络设备的第一服务质量QoS策略,所述第一QoS策略用于确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;以及通过所述通信单元接收来自第三网络设备的第二QoS规则,所述第二QoS规则为根据第二QoS策略确定的针对第一中继业务的QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS  flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
  22. 根据权利要求21所述的装置,其特征在于,所述处理单元还用于:根据所述第一QoS策略确定所述第一中继业务的所述第一QoS规则。
  23. 根据权利要求21所述的装置,其特征在于,所述处理单元还用于:通过所述通信单元向所述第二设备发送所述第一QoS策略,所述第一QoS策略用于所述第二设备定所述第一中继业务的所述第一QoS规则。
  24. 根据权利要求21-23任一项所述的装置,其特征在于,所述第一网络设备为PCF网元或者SMF网元,所述第二网络设备为UPF网元,所述第三网络设备为所述SMF网元。
  25. 根据权利要求24所述的装置,其特征在于,所述第一中继业务包括以下任意一种:网际互联协议IP业务,以太网Ethernet业务、以及非结构化Unstructured业务。
  26. 根据权利要求25所述的装置,其特征在于,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
  27. 根据权利要求25所述的装置,其特征在于,所述第一QoS规则包括所述第一QoS flow的标识,所述第二QoS规则包含所述第二QoS flow的标识,所述标识为身份标识ID或者索引Index。
  28. 一种中继通信QoS保证的装置,其特征在于,应用于第一网络设备,所述装置包括处理单元和通信单元,所述处理单元用于:通过所述通信单元发送第一服务质量QoS策略,所述第一QoS策略用于第一设备确定针对第一中继业务的第一QoS规则,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与第二设备之间的QoS flow,所述第一中继业务为所述第二设备和第二网络设备之间的中继业务,所述第一QoS策略为针对PC5接口的QoS策略;以及通过所述通信单元向第三网络设备发送第二QoS策略,所述第二QoS策略用于所述第三网络设备确定并向所述第一设备发送针对第一中继业务的第二QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与所述第三网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的QoS策略。
  29. 根据权利要求28所述的装置,其特征在于,在通过所述通信单元发送第一QoS策略方面,所述处理单元具体用于:通过所述通信单元向所述第一设备发送所述第一QoS策略。
  30. 根据权利要求28所述的装置,其特征在于,在通过所述通信单元发送第一QoS策略方面,所述处理单元具体用于:通过所述通信单元分别向所述第一设备和所述第二设备发送所述第一QoS策略。
  31. 根据权利要求28-30任一项所述的装置,其特征在于,所述第一网络设备为PCF网元,所述第二网络设备为UPF网元,所述第三网络设备为所述SMF网元。
  32. 根据权利要求31所述的装置,其特征在于,所述第一中继业务包括以下任意一种:网际互联协议IP业务,以太网Ethernet业务、以及非结构化Unstructured业务。
  33. 根据权利要求32所述的装置,其特征在于,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
  34. 根据权利要求32所述的装置,其特征在于,所述第一QoS规则包括所述第一QoS flow的标识,所述第二QoS规则包含所述第二QoS flow的标识,所述标识为身份标识ID或者索引Index。
  35. 一种中继通信QoS保证的装置,其特征在于,应用于第三网络设备,所述装置包括处理单元和通信单元,所述处理单元用于:通过所述通信单元发送第一服务质量QoS策略,所述第一QoS策略用于第一设备和/或第二设备确定针对第一中继业务的第一QoS规则,所述第一中继业务为所述第二设备和所述第二网络设备之间的中继业务,所述第一QoS规则应用于所述第一中继业务的第一QoS flow,所述第一QoS flow为所述第一设备与所述第二设备之间的QoS flow,所述第一QoS策略为针对PC5接口的QoS策略;以及获取第二QoS策略,根据所述第二QoS策略确定针对所述第一中继业务的第二QoS规则,并向所述第一设备发送所述第二QoS规则,所述第二QoS规则应用于所述第一中继业务的第二QoS flow,所述第二QoS flow为所述第一设备与第二网络设备之间的QoS flow,所述第二QoS策略为针对Uu接口的 QoS策略。
  36. 根据权利要求35所述的装置,其特征在于,在获取第二QoS策略方面,所述处理单元具体用于:通过所述通信单元接收来自第一网络设备的所述第二QoS策略。
  37. 根据权利要求36所述的装置,其特征在于,所述第一网络设备为PCF网元,所述第二网络设备为UPF网元,所述第三网络设备为所述SMF网元。
  38. 根据权利要求37所述的装置,其特征在于,所述第一中继业务包括以下任意一种:网际互联协议IP业务,以太网Ethernet业务、以及非结构化Unstructured业务。
  39. 根据权利要求38所述的装置,其特征在于,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
  40. 根据权利要求38所述的装置,其特征在于,所述第一QoS规则包括所述第一QoS flow的PC5服务质量索引PQI,所述第二QoS规则包括所述第二QoS flow的第五代5G业务质量索引5QI。
  41. 一种第一设备,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-7任一项所述的方法中的步骤的指令。
  42. 一种第一网络设备,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求8-14任一项所述的方法中的步骤的指令。
  43. 一种第三网络设备,其特征在于,包括处理器、存储器、通信接口,以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求15-20任一项所述的方法中的步骤的指令。
  44. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-7或8-14或15-20中任一项所述的方法。
  45. 一种计算机可读存储介质,其特征在于,其存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如权利要求1-7或8-14或15-20中任一项所述的方法。
  46. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-7或8-14或15-20中任一项所述的方法。
PCT/CN2020/077214 2020-02-28 2020-02-28 中继通信QoS保证的方法及相关装置 WO2021168801A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080084606.1A CN114762368A (zh) 2020-02-28 2020-02-28 中继通信QoS保证的方法及相关装置
PCT/CN2020/077214 WO2021168801A1 (zh) 2020-02-28 2020-02-28 中继通信QoS保证的方法及相关装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/077214 WO2021168801A1 (zh) 2020-02-28 2020-02-28 中继通信QoS保证的方法及相关装置

Publications (1)

Publication Number Publication Date
WO2021168801A1 true WO2021168801A1 (zh) 2021-09-02

Family

ID=77489714

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077214 WO2021168801A1 (zh) 2020-02-28 2020-02-28 中继通信QoS保证的方法及相关装置

Country Status (2)

Country Link
CN (1) CN114762368A (zh)
WO (1) WO2021168801A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190124015A1 (en) * 2016-07-18 2019-04-25 Panasonic Intellectual Property Corporation Of America Support of quality of service for v2x transmissions
CN110169097A (zh) * 2017-01-09 2019-08-23 Idac控股公司 无线通信系统的中继
CN110366132A (zh) * 2018-04-09 2019-10-22 华为技术有限公司 通信方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190124015A1 (en) * 2016-07-18 2019-04-25 Panasonic Intellectual Property Corporation Of America Support of quality of service for v2x transmissions
CN110169097A (zh) * 2017-01-09 2019-08-23 Idac控股公司 无线通信系统的中继
CN110366132A (zh) * 2018-04-09 2019-10-22 华为技术有限公司 通信方法及装置

Also Published As

Publication number Publication date
CN114762368A (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
US11659432B2 (en) Method and apparatus for managing data communication in wireless communication network
US20200221538A1 (en) Data transmission method, terminal device, and network device
WO2019158102A1 (zh) 一种确定QoS描述信息的方法和装置
WO2021218888A1 (zh) 通信方法和装置
WO2021138807A1 (zh) 服务质量QoS参数配置方法及相关装置
WO2020221281A1 (zh) 用于获取无线承载配置的方法和装置
WO2020143690A1 (zh) 一种无线承载的配置方法、终端及通信装置
EP3697147B1 (en) Service configuration method and related product
WO2021243837A1 (zh) 基于ursp规则的应用数据路由方法及用户设备
WO2020098747A1 (zh) 传输路径的配置方法及装置
WO2021030989A1 (zh) 一种路径选择方法及装置、终端
WO2020087509A1 (zh) 无线通信方法、终端设备和网络设备
WO2019029568A1 (zh) 通信方法、终端设备和网络设备
US20220141705A1 (en) Reflective QoS Enhancements
US20220417972A1 (en) Fast Resource Allocation Adjustment and Media Access Control Awareness of Quality of Service Flows in Wireless Communications
WO2022078321A1 (zh) 上行信息发送方法及相关产品
WO2021056581A1 (zh) 上行信号的发送和接收方法以及装置
WO2021168801A1 (zh) 中继通信QoS保证的方法及相关装置
WO2018058391A1 (zh) 建立承载的方法、无线接入网设备和客户终端设备
WO2021226794A1 (zh) 数据传输方法及相关装置
WO2021169840A1 (zh) 使用预配置资源传输的方法及相关装置
CN114979964B (zh) 一种通信方法及装置
WO2021248402A1 (zh) 终端连接方法及装置
WO2023015481A1 (zh) 通信方法及通信装置
WO2021147024A1 (zh) 参数确定方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20921630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20921630

Country of ref document: EP

Kind code of ref document: A1