WO2021167301A1 - 사판식 압축기 제어 방법 및 사판식 압축기 - Google Patents

사판식 압축기 제어 방법 및 사판식 압축기 Download PDF

Info

Publication number
WO2021167301A1
WO2021167301A1 PCT/KR2021/001892 KR2021001892W WO2021167301A1 WO 2021167301 A1 WO2021167301 A1 WO 2021167301A1 KR 2021001892 W KR2021001892 W KR 2021001892W WO 2021167301 A1 WO2021167301 A1 WO 2021167301A1
Authority
WO
WIPO (PCT)
Prior art keywords
swash plate
plate compressor
measuring
compressor
value
Prior art date
Application number
PCT/KR2021/001892
Other languages
English (en)
French (fr)
Inventor
곽정명
김용희
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210015624A external-priority patent/KR20210105811A/ko
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to DE112021001110.3T priority Critical patent/DE112021001110T5/de
Priority to CN202180015119.4A priority patent/CN115103960B/zh
Priority to US17/759,008 priority patent/US20230035718A1/en
Publication of WO2021167301A1 publication Critical patent/WO2021167301A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/20Control of pumps with rotary cylinder block
    • F04B27/22Control of pumps with rotary cylinder block by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/24Control not provided for in a single group of groups F04B27/02 - F04B27/22
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/12Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by varying the length of stroke of the working members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0207Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0209Rotational speed

Definitions

  • the present disclosure relates to a technique for controlling a compressor of an air conditioner, and more particularly, to a swash plate compressor control method for controlling a variable capacity swash plate compressor capable of output control, and a swash plate compressor.
  • An air conditioning system for a vehicle includes a compressor, a condenser, an expansion valve, and an evaporator.
  • the compressor compresses the refrigerant gas discharged from the evaporator into a high-temperature and high-pressure state that is easy to liquefy and delivers it to the condenser.
  • the compressor pumps and recirculates the refrigerant to continue cooling.
  • the condenser liquefies the high-temperature and high-pressure refrigerant gas by exchanging heat with the outside air to cool it, and the expansion valve adiabatically expands the liquid refrigerant to drop the temperature and pressure, thereby changing it to a state that is easy to evaporate in the evaporator.
  • the evaporator absorbs or vaporizes heat by exchanging the liquid refrigerant with outside air introduced into the room.
  • the outside air is cooled by taking heat away from the refrigerant and is blown into the interior of the vehicle by a blower.
  • Compressors are classified into reciprocating compressors and rotary compressors according to compression methods.
  • the reciprocating compressor compresses the working fluid (refrigerant) while the part that compresses the working fluid (refrigerant) reciprocates.
  • a rotary compressor compresses a working fluid (refrigerant) while rotating.
  • the reciprocating compressor includes a crank type compressor that transmits driving force of a driving source to a plurality of pistons using a crank, a swash plate type compressor that transmits to a rotating shaft in which a swash plate is installed, and a wobble plate type compressor using a wobble plate.
  • the swash plate compressor is divided into a fixed swash plate compressor in which the capacity of the swash plate is fixed and a variable capacity swash plate compressor in which the capacity can be controlled by changing the angle of the swash plate.
  • variable swash plate compressor determines the capacity of the compressor by controlling the duty of an external control valve (ECV) in order to handle the heat load required by the air conditioner.
  • ECV external control valve
  • variable swash plate compressor has a problem in compressor controllability as follows.
  • variable swash plate compressor controls only the duty of the capacity control valve (ECV) according to the thermal load, there is a problem in that a sudden change in inclination angle of the swash plate, hunting, and torque change occur.
  • ECV capacity control valve
  • variable swash plate compressor since the conventional variable swash plate compressor does not have a function for detecting and protecting belt slip and compressor sticking, there is a problem in that the compressor is damaged when belt slip or compressor sticking occurs.
  • the present invention has been proposed to solve the above conventional problems, and if the torque calculated using compressor information is overloaded, to provide a swash plate compressor control method and a swash plate compressor to prevent overload by reducing the inclination angle of the swash plate The purpose.
  • Another object of the present invention is to provide a swash plate compressor control method and a swash plate compressor in which a clutch drive or a swash plate inclination angle is controlled based on the number of revolutions per minute to prevent damage to the swash plate compressor due to belt slip and compressor sticking. do it with
  • the present invention determines whether the swash plate compressor is in a low refrigerant state, and generates an error alarm when it is in a low refrigerant state, thereby preventing mechanical sticking of the swash plate compressor due to lack of internal lubrication in a low refrigerant state. to serve a different purpose.
  • the method for controlling the swash plate compressor includes measuring the compressor operation information of the swash plate compressor 100 in the measuring step (S110) and the measuring step (S110).
  • compressor operation information including stroke and revolutions per minute may be measured.
  • the stroke may be measured through a stroke sensor provided in the swash plate compressor 100 .
  • compressor operation information further including a discharge pressure may be measured.
  • compressor operation information further including suction pressure may be measured.
  • the measuring step (S110) is a cycle measuring step (S115) of measuring the reciprocating motion period of the piston of the swash plate compressor 100, based on the piston reciprocating motion cycle measured in the cycle measuring step (S115) of the swash plate compressor 100 It may include an RPM calculation step (S117) of calculating the number of revolutions per minute of the swash plate compressor 100 based on the piston reciprocating motion cycle measured in the stroke calculation step (S116) and the cycle measurement step (S115) for calculating the stroke. have.
  • the overload determination step ( S140 ) if the calculated torque value exceeds the torque set value, it may be determined that overload occurs, and if the calculated torque value is less than or equal to the torque set value, it may be determined as a normal load.
  • the refrigerant discharge amount adjusting step of adjusting the inclination angle of the swash plate based on the air temperature that has flowed through the evaporator of the air conditioner (S160) may be further included.
  • the refrigerant discharge amount adjusting step (S160) is an air temperature measuring step (S161) of measuring a temperature measurement value that is the temperature of the air flowing through the evaporator, and comparing the air temperature measurement value of the air temperature measurement step (S161) with the air temperature setting value. It may include an inclination angle adjustment step (S163) of adjusting the inclination angle of the swash plate based on the comparison result of the temperature comparison step (S162) and the air temperature comparison step (S162).
  • the inclination angle adjustment step (S163) when the air temperature measurement value exceeds the air temperature set value in the air temperature comparison step (S162), the inclination angle increasing step (S164) of increasing the inclination angle of the swash plate and the air temperature measurement in the air temperature comparison step (S162) If the value is less than the air temperature set value, it may include an inclination angle reduction step (S165) of reducing the inclination angle of the swash plate.
  • the swash plate compressor control method according to the first embodiment of the present invention may further include a transmission step (S130) of transmitting the torque calculated value calculated in the torque calculation step (S120) to the engine control device.
  • the swash plate compressor control method according to the second embodiment targets the air temperature measurement step (S161) of measuring the air temperature measurement value that is the temperature of the air flowing through the evaporator of the air conditioner, the difference between the air temperature measurement value and the air temperature set value
  • the target ECV opening amount calculation step (S167) of calculating the target ECV opening amount from the target stroke calculated in the target stroke calculation step (S166) of calculating the stroke, the target ECV opening amount calculation step (S167), and the actual ECV opening amount It may include a step (S168) of adjusting the ECV opening amount to be adjusted by weight.
  • the swash plate compressor control method further includes a stroke comparison step (S169) of comparing the measured stroke with the target stroke after the ECV opening degree adjustment step (S168), and the stroke comparison step (S169) ), when the stroke and the target stroke do not match, the step of calculating the ECV opening amount ( S167 ) and the step of adjusting the ECV opening amount ( S168 ) may be performed again.
  • the method for controlling a swash plate compressor is a measurement step (S210) of measuring the number of revolutions per minute of the swash plate type compressor (100), the per minute measured in the measurement step (S210)
  • the comparison step (S220) of comparing the measured revolutions per minute value and the calculated revolutions per minute value with the calculated revolutions per minute value, if the revolutions per minute measured value and the revolutions per minute calculated value are different in the comparison step (S220), the clutch is stopped and an error alarm is generated.
  • S240 may be included.
  • the error alarm generation is characterized in that a warning lamp is turned on or a diagnostic code is generated.
  • the swash plate compressor control method is a measurement step (S310) of measuring the number of revolutions per minute of the swash plate compressor 100, the per minute measured in the measurement step (S310) If the measured revolutions per minute value and the revolutions per minute calculated value are different from the measured revolutions per minute value and the calculated revolutions per minute in the comparison step (S320) and the comparison step (S320) of comparing the rotation speed measured value and the revolutions per minute calculated value, the inclination angle of the swash plate is reduced to a minimum, and an error alarm is raised. and a protection step (S330) that occurs.
  • the error alarm generation is characterized in that a warning lamp is turned on or a diagnostic code is generated.
  • the swash plate compressor is a housing having a crank chamber 112 , a cylinder bore 122 , a suction chamber 132 and a discharge chamber 134 , and is rotatable in the housing.
  • the rotating shaft 140 to be mounted, the swash plate 150 rotated in the crankcase 112 in association with the rotating shaft 140, and the swash plate 150 are interlocked to reciprocate inside the cylinder bore 122, and the cylinder bore Refrigerant through the above-described compressor control method based on the piston 160 forming the compression chamber together with 122, the measuring device 170 measuring the reciprocating motion period of the piston 160, and the measurement value of the measuring device 170 and a control device 180 that performs at least one of discharge amount control, torque control, slip prevention, and sticking prevention.
  • the measuring device 170 may be a stroke sensor that measures a magnetic field change due to a groove formed in the piston 160 when the piston 160 reciprocates.
  • the swash plate compressor may further include a first pressure sensor disposed in the discharge chamber 134 to measure the discharge pressure, and a second pressure sensor disposed in the suction chamber 132 to measure the suction pressure.
  • a method for controlling a swash plate compressor includes the steps of measuring compressor operation information of the swash plate compressor; a low-refrigerant state determination step of determining a low-refrigerant state of the swash plate compressor; and an error alarm step of generating an error alarm when the swash plate compressor is in a low refrigerant state.
  • the measuring step measures compressor operation information including the stroke
  • the low refrigerant state determination step includes the swash plate type when a difference between the current value of the stroke and the preset appropriate value of the stroke exceeds a first reference value. It is characterized in that it is determined that the compressor is in a low refrigerant state.
  • the measuring step measures compressor operation information including stroke and discharge pressure, and the air temperature that has flowed through the evaporator of the air conditioner, and the low refrigerant state determination step uses the stroke and discharge pressure and the air temperature to determine the
  • the current refrigerant amount of the swash plate compressor is calculated, and when a difference between a preset normal value of the refrigerant amount and the current refrigerant amount exceeds a second reference value, the swash plate compressor is determined to be in a low refrigerant state.
  • the swash plate compressor control method and the swash plate compressor reduce the swash plate inclination angle when the torque calculated using the compressor information is overload, thereby preventing the overload of the swash plate compressor and securing the safety of the swash plate compressor. can have an effect.
  • the swash plate compressor control method and the swash plate compressor control the refrigerant discharge amount through control of the swash plate inclination angle and capacity control valve when the torque is insufficient, thereby securing the controllability and reliability of the swash plate compressor and improving riding comfort and fuel economy. It works.
  • the swash plate compressor control method has the effect of quickly reaching the target temperature while preventing abrupt torque fluctuations, hunting, etc. by directly controlling the stroke of the swash plate compressor to adjust the temperature to the target temperature.
  • the swash plate compressor control method compares the revolutions per minute measured value of the swash plate compressor with the revolutions per minute calculated value calculated using the engine speed to determine whether belt slip and the compressor are stuck, and control the clutch according to the determination result By doing so, it is possible to protect the compressor from belt slip and compressor sticking.
  • the swash plate compressor control method compares the revolutions per minute measured value of the swash plate compressor with the revolutions per minute calculated value calculated using the engine speed to determine whether belt slip and compressor sticking, and the capacity control valve according to the determination result By controlling the compressor, it is possible to protect the compressor from belt slip and compressor sticking.
  • the swash plate compressor control method determines whether the swash plate compressor is in a low refrigerant state, and generates an error alarm if it is in a low refrigerant state. can prevent
  • FIG. 1 is a view for explaining a swash plate compressor according to an embodiment of the present invention.
  • FIG. 2 and 3 are diagrams for explaining the control device of FIG. 1 .
  • FIG. 4 is a flowchart for explaining a method for controlling a swash plate compressor according to the first embodiment of the present invention.
  • 5 and 6 are flowcharts for explaining the measurement step of FIG. 4 .
  • FIG. 7 is a flowchart for explaining the refrigerant discharge amount control step of FIG.
  • FIG. 8 is a flowchart for explaining a method for controlling a swash plate compressor according to a second embodiment of the present invention.
  • FIG. 9 is a flowchart for explaining a method for controlling a swash plate compressor according to a third embodiment of the present invention.
  • FIG. 10 is a flowchart for explaining a method for controlling a swash plate compressor according to a fourth embodiment of the present invention.
  • FIG. 11 is a flowchart for explaining a method for controlling a swash plate compressor according to a fifth embodiment of the present invention.
  • FIG. 12 is a flowchart for explaining a method for controlling a swash plate compressor according to a sixth embodiment of the present invention.
  • FIG. 1 is a diagram for explaining a swash plate compressor according to an embodiment of the present invention
  • FIGS. 2 and 3 are diagrams for explaining the control device of FIG. 1 .
  • the swash plate compressor 100 to which the compressor control method according to the embodiment of the present invention is applied is a variable capacity swash plate compressor 100 capable of output control through swash plate inclination angle control as an example.
  • FIG. 1 shows the swash plate compressor 100 in which the measuring device 170 is installed to easily explain the embodiment of the present invention, it is not limited thereto, and the reciprocating motion period of the piston 160 can be measured. If it is a sensor, it can be applied, and its structure can also be changed.
  • the inclination angle of the swash plate means an angle between the swash plate 150 and a virtual plane perpendicular to the rotation axis 140 at a point crossing the center point of the swash plate 150 .
  • the reduction of the inclination angle of the swash plate means that the outer periphery of the swash plate 150 is disposed close to the inclined surface by reducing the angle between the virtual surface and the swash plate 150 .
  • the increase in the inclination angle of the swash plate means that the outer periphery of the swash plate 150 is disposed far from the inclined surface by increasing the angle between the virtual surface and the swash plate 150 .
  • the swash plate compressor 100 includes a housing having a crank chamber 112 , a cylinder bore 122 , a suction chamber 132 , and a discharge chamber 134 .
  • the housing includes a front housing 110 in which a crank chamber 112 is formed, a cylinder block 120 in which a plurality of cylinder bores 122 are formed, and a rear housing 130 in which an intake chamber 132 and a discharge chamber 134 are formed. is composed by
  • the housing is formed by being coupled with the cylinder block 120 interposed between the front housing 110 and the rear housing 130 . At this time, the housing forms the outer shape (ie, the swash plate compressor 100 ).
  • the swash plate compressor 100 may further include a rotation shaft 140 inserted through the center of the front housing 110 and the cylinder block 120 . At this time, the swash plate 150 having the shoe 155 disposed at the end in the radial direction is inserted into the rotation shaft 140 .
  • the swash plate compressor 100 may further include a piston 160 disposed inside the cylinder bore 122 formed in the cylinder block 120 .
  • the piston 160 has a shoe coupling portion 165 disposed in the direction in which the square housing is located.
  • the shoe coupling part 165 extends horizontally to a predetermined length and is coupled to the shoe 155 of the swash plate 150 .
  • the piston 160 reciprocates inside the cylinder bore 122 as the swash plate 150 rotates at a predetermined inclination angle. At this time, the piston 160 constitutes a compression chamber together with the cylinder bore 122 .
  • the swash plate compressor 100 may further include a measuring device 170 for measuring the reciprocating motion period of the piston 160 .
  • the measuring device 170 is connected to the compression chamber to measure the reciprocating motion period of the piston 160 .
  • a groove for positioning is formed in the piston 160 .
  • the measuring device 170 measures a magnetic field change due to a groove formed in the piston 160 when the piston 160 reciprocates to measure the reciprocating motion period of the piston 160 .
  • the swash plate compressor 100 may further include a control device 180 that performs at least one of refrigerant discharge amount control, torque control, slip prevention, and sticking prevention through a compressor control method to be described later.
  • control device 180 controls the output of the swash plate compressor 100 to protect the overload and control the refrigerant discharge amount through the swash plate compressor control method (the swash plate compressor control method of the first embodiment) to be described later. module 181 .
  • the output control module 181 calculates a torque calculation value by using the compressor information including the stroke, revolutions per minute, suction pressure, and discharge pressure of the swash plate compressor 100 .
  • the compressor information includes a stroke, revolutions per minute, suction pressure, and discharge pressure.
  • the output control module 181 determines whether overload occurs in the swash plate compressor 100 by comparing the calculated torque calculation value and the torque set value. At this time, the output control module 181 determines that the overload occurs when the torque calculation value exceeds the torque setting value. The output control module 181 determines a normal load when the torque calculation value is equal to or less than the torque set value.
  • the output control module 181 controls the swash plate inclination angle when it is determined that the overload occurs to prevent (resolve) the overload of the swash plate compressor 100 .
  • the output control module 181 reduces the output of the swash plate compressor 100 by reducing the inclination angle of the swash plate, and the overload of the swash plate compressor 100 is prevented (resolved) due to the reduction in output.
  • the output control module 181 controls the refrigerant discharge amount by controlling the inclination angle of the swash plate when it is determined that the load is normal.
  • the output control module 181 adjusts the refrigerant discharge amount by adjusting the inclination angle of the swash plate based on the temperature of the air flowing through the evaporator of the air conditioner. At this time, the output control module 181 adjusts the refrigerant discharge amount by increasing or decreasing the inclination angle of the swash plate according to the difference between the air temperature measurement value and the air temperature set value.
  • the output control module 181 may control the refrigerant discharge amount by controlling the opening amount of the capacity control valve 192 (ECV) based on the calculated target stroke when it is determined that the load is normal.
  • the output control module 181 calculates the target stroke from the difference between the air temperature measurement value and the air temperature set value.
  • the output control module 181 calculates the target ECV opening degree from the calculated target stroke.
  • the output control module 181 controls the opening degree of the ECV 192 through the ECV driving module (not shown).
  • the output control module 181 adjusts the ECV opening amount until the actual ECV opening amount and the target ECV opening amount coincide.
  • the control device 180 controls the swash plate compressor 100 by belt slip or compressor sticking through a swash plate compressor control method (a swash plate compressor control method of the second embodiment) to be described later. ) includes a first protection module 183 to prevent damage.
  • the first protection module 183 compares the measured revolutions per minute of the swash plate compressor 100 with the calculated revolutions per minute. In this case, the first protection module 183 may calculate the revolutions per minute calculated value by using the revolutions per minute and the pulley ratio of the engine. When the measured revolutions per minute value and the revolutions per minute calculated value match, the first protection module 183 determines that belt slip or compressor sticking has occurred, stops the clutch 194 and generates an error alarm.
  • the control device 180 controls the belt slip or adheres the compressor through a swash plate compressor control method (a swash plate compressor control method according to the third embodiment) to be described later.
  • a second protection module 185 to prevent damage to the swash plate compressor 100 may be included.
  • the second protection module 185 adjusts the opening degree of the ECV 192 to minimize the swash plate inclination angle, thereby damaging the swash plate compressor 100 . to prevent
  • the second protection module 185 compares the revolutions per minute measured value of the swash plate compressor 100 with the revolutions per minute calculated value. In this case, the second protection module 185 may calculate the revolutions per minute calculated value using the revolutions per minute and the pulley ratio of the engine. The second protection module 185 determines that belt slip or compressor sticking has occurred when the measured revolutions per minute value and the revolutions per minute calculated value match, and reduces the ECV opening amount to reduce the swash plate inclination angle to a minimum and generate an error alarm. . Through this, the second protection module 185 minimizes (ie, stops) the movement of the piston 160 to prevent damage to the swash plate compressor 100 .
  • FIG. 4 is a flowchart illustrating a method for controlling a swash plate compressor according to the first embodiment of the present invention.
  • 5 and 6 are flowcharts for explaining the measuring step of FIG. 4
  • FIG. 7 is a flowchart for explaining the refrigerant discharge amount adjusting step of FIG. 4 .
  • the swash plate compressor control method calculates a torque using compressor information including the stroke, revolutions per minute, suction pressure and discharge pressure of the above-described swash plate compressor 100, and calculates the torque.
  • the swash plate inclination angle is reduced to prevent overload, and when the torque is insufficient, the refrigerant discharge amount is controlled through the swash plate inclination angle control.
  • the swash plate inclination angle means an angle between the swash plate 150 and a virtual plane perpendicular to the rotation axis 140 at a point crossing the center point of the swash plate 150 .
  • the reduction of the inclination angle of the swash plate means that the outer periphery of the swash plate 150 is disposed close to the inclined surface by reducing the angle between the virtual surface and the swash plate 150 .
  • the increase in the inclination angle of the swash plate means that the outer periphery of the swash plate 150 is disposed far from the inclined surface by increasing the angle between the virtual surface and the swash plate 150 .
  • the output of the swash plate compressor 100 is varied by varying the reciprocating motion interval (ie, stroke) of the piston 160 through the swash plate inclination angle control. Controls the output (torque) of (100).
  • the swash plate compressor control method includes a measuring step (S110), a torque calculation step (S120), a transmission step (S130), an overload determination step (S140), an overload prevention step (S150), and a refrigerant discharge amount adjustment step (S160).
  • the compressor operation information of the swash plate compressor 100 is measured.
  • compressor operation information including stroke, revolutions per minute, and discharge pressure is measured.
  • the measuring step (S110) is a stroke measuring step (S111) for measuring the stroke of the swash plate type compressor (100), an RPM measuring step for measuring the number of revolutions per minute of the swash plate type compressor (100) (S112) and It may include a discharge pressure measuring step (S114) of measuring the discharge pressure of the swash plate compressor (100).
  • FIG. 5 shows that steps S111 to S114 are sequentially performed in order to easily explain the measurement step S110, in actual implementation, they may be performed at the same time.
  • the stroke measuring step S111 the RPM measuring step S112 , and the discharge pressure measuring step S114 , the stroke, revolutions per minute, and discharge pressure may be measured using sensors installed in the swash plate compressor 100 .
  • the discharge pressure may be measured through the APT sensor disposed on the discharge side pipe of the condenser.
  • the discharge pressure may be measured using a sensor disposed in the discharge chamber 134 of the swash plate compressor 100 . That is, in the discharge pressure measuring step S114 , the discharge pressure may be measured using the discharge pressure sensor disposed in the discharge chamber 134 .
  • the measuring step ( S110 ) may further measure the suction pressure of the swash plate compressor 100 .
  • the suction pressure may be measured using a pressure sensor disposed in the suction chamber 132 of the swash plate compressor 100 .
  • the suction pressure may be calculated using the information of the air conditioner.
  • the measuring step (S110) is based on the cycle measuring step (S115) of measuring the reciprocating motion cycle of the piston of the swash plate compressor 100, the piston reciprocating motion cycle measured in the cycle measuring step (S115) RPM calculation for calculating the number of revolutions per minute of the swash plate compressor 100 based on the piston reciprocating motion cycle measured in the stroke calculation step (S116) and the cycle measurement step (S115) for calculating the stroke of the swash plate compressor 100 It may include a step (S117) and a discharge pressure measurement step (S119).
  • the piston reciprocating motion period is measured through the measuring device 170 shown in FIG. 1 described above as an example.
  • the discharge pressure measurement step S119 is the same as the discharge pressure measurement step S114 of FIG. 5 .
  • the torque calculation value of the swash plate compressor 100 is calculated based on the compressor operation information measured in the measurement step S110 .
  • the torque calculation value calculated in the torque calculation step S120 is transmitted to the engine control device 200 .
  • the torque calculation value calculated in the torque calculation step ( S120 ) is compared with a torque set value to determine whether the swash plate compressor 100 is overloaded. At this time, in the overload determination step (S140), if the torque calculation value exceeds the torque set value, it is determined that overload occurs. In the overload determination step ( S140 ), if the calculated torque value is less than or equal to the torque set value, it is determined as a normal load.
  • the swash plate inclination angle of the swash plate compressor 100 is reduced to prevent the occurrence of overload in the swash plate compressor 100 . That is, in the overload prevention step (S150), the stroke of the piston 160 is minimized by reducing the inclination angle of the swash plate. At this time, when the stroke of the piston 160 is minimized, the output is reduced, thereby eliminating the overload of the swash plate compressor 100 .
  • the overload prevention step (S150) after relieving the overload of the swash plate compressor 100 through the swash plate inclination angle control, it returns to the measuring step (S110). Through this, the swash plate compressor control method has the effect of preventing overload of the swash plate compressor and securing the safety of the swash plate compressor.
  • the refrigerant discharge amount adjusting step (S160) if it is determined that the load is normal in the overload determination step (S140), the refrigerant discharge amount is adjusted by adjusting the inclination angle of the swash plate based on the air temperature that has flowed through the evaporator of the air conditioner. At this time, the refrigerant discharge amount adjusting step (S160) returns to the measuring step (S110) after adjusting the refrigerant discharge amount.
  • the swash plate compressor control method has the effect of improving the riding comfort and fuel efficiency while securing the controllability and reliability of the swash plate compressor.
  • the refrigerant discharge amount adjustment step S160 may include an air temperature measurement step S161 , an air temperature comparison step S162 , and an inclination angle adjustment step S163 .
  • a temperature measurement value that is the temperature of the air flowing through the evaporator is measured.
  • the air temperature measurement value measured in the air temperature measurement step (S161) is compared with the air temperature set value.
  • the swash plate inclination angle is adjusted based on the comparison result of the air temperature comparison step ( S162 ).
  • the air temperature is controlled through the swash plate inclination angle control, and then the air temperature comparison step ( S162 ) is returned.
  • the step of adjusting the inclination angle ( S163 ) may include an step of increasing the inclination angle ( S164 ) and a step of decreasing the inclination angle ( S165 ).
  • the inclination angle increasing step (S164) increases the inclination angle of the swash plate when the air temperature measurement value exceeds the air temperature set value in the air temperature comparison step (S162). That is, when the air temperature measurement value exceeds the air temperature set value, it means that the output of the swash plate compressor 100 is lower than the required output. Accordingly, in the step of increasing the inclination angle ( S164 ), the output of the swash plate compressor 100 is increased by increasing the inclination angle of the swash plate. In the inclination angle increasing step (S164), after increasing the inclination angle of the swash plate, it returns to the air temperature comparison step (S162).
  • the inclination angle reduction step (S165) when the air temperature measurement value in the air temperature comparison step (S162) is less than the air temperature set value, the inclination angle of the swash plate is reduced. That is, when the air temperature measurement value is less than the air temperature set value, it means that the output of the swash plate compressor 100 is higher than the required output. Accordingly, in the step of reducing the inclination angle ( S165 ), the output of the swash plate compressor 100 is reduced by reducing the inclination angle of the swash plate. In the inclination angle reduction step (S165), after reducing the inclination angle of the swash plate, it returns to the air temperature comparison step (S162).
  • the inclination angle increasing step S164 ends the inclination angle adjusting step S163 if the air temperature measurement value in the air temperature comparison step S162 matches the air temperature set value, and returns to the air temperature comparison step S162.
  • the swash plate compressor control method directly controls the stroke of the swash plate compressor through the swash plate inclination angle control in order to adjust the temperature to the target temperature, thereby preventing sudden torque fluctuations, hunting, etc. and quickly reaching the target temperature.
  • FIG. 8 is a flowchart illustrating a method for controlling a swash plate compressor according to a second embodiment of the present invention.
  • the swash plate compressor control method according to the second embodiment of the present invention may be implemented dependently on the above-described inclination angle adjustment step ( S163 ).
  • a target stroke calculation step (S166), a target ECV opening degree calculation step (S167), an ECV opening degree adjustment step (S168), and stroke comparison It may include step S169.
  • the target stroke is calculated from the difference between the air temperature measurement value and the air temperature set value.
  • the target ECV opening degree is calculated from the target stroke calculated in the target stroke calculation step S166.
  • the actual ECV opening amount is adjusted to the target ECV opening amount.
  • the stroke comparison step S169 the stroke measured in the measurement step S110 is compared with the target stroke. At this time, in the stroke comparison step (S169), if the stroke and the target stroke coincide, the operation returns to the air temperature comparison step (S162). In the stroke comparison step S169, if the stroke and the target stroke do not match, the target ECV opening amount calculating step S167 and the ECV opening degree adjusting step S168 are re-performed.
  • the swash plate compressor control method has the effect of rapidly reaching the target temperature while preventing abrupt torque fluctuations, hunting, etc. by directly controlling the stroke of the swash plate compressor to adjust the temperature to the target temperature.
  • FIG. 9 is a flowchart illustrating a method for controlling a swash plate compressor according to a third embodiment of the present invention.
  • the swash plate compressor control method according to the third embodiment of the present invention is a control method for preventing the clutch-type swash plate compressor 100 from being damaged due to belt slip, compressor sticking, and the like.
  • the method for controlling a swash plate compressor according to the third embodiment of the present invention includes a measuring step S210 , a comparing step S220 , and a protecting step S240 .
  • the measuring step (S210) the number of revolutions per minute of the swash plate compressor 100 is measured.
  • the measured revolutions per minute is set as the measured revolutions per minute and a comparison step (S220) is performed.
  • the revolutions per minute measured value (RPM measured value) measured in the measuring step (S210) is compared with the revolutions per minute calculated value (RPM calculated value).
  • the revolutions per minute calculated value may be calculated using the revolutions per minute of the engine and the pulley ratio.
  • the comparison step ( S220 ) if the measured revolutions per minute value and the revolutions per minute calculated value match, the process returns to the measuring step ( S210 ).
  • the measured revolutions per minute and the calculated revolutions per minute may be different. If the clutch 194 is in a driving state in a state in which belt slippage or compressor sticking occurs in the swash plate compressor 100 , damage to the swash plate compressor 100 and the clutch 194 may occur.
  • the protection step (S240) in order to prevent damage to the swash plate compressor 100 and the clutch 194, the clutch 194 is stopped and an alarm is generated.
  • the protection step ( S240 ) may include a clutch stop step ( S242 ) and an error alarm generation step ( S244 ).
  • the clutch 194 in the driving state is stopped to prevent damage to the swash plate compressor 100 and the clutch 194 . That is, in the compressor control method, damage to the swash plate compressor 100 and the clutch 194 can be prevented by stopping the clutch 194 to separate it from the compressor to stop the driving of the swash plate compressor 100 .
  • an error alarm is generated to warn that the belt slip or the compressor sticking has occurred in the swash plate compressor 100 .
  • an error alarm may be generated by turning on a warning lamp.
  • an error alarm may be generated by generating a diagnostic code and transmitting it to the engine control device. Referring to FIG. 2 , the first protection module 183 may generate a diagnostic code and transmit it to the engine control device 200 .
  • step S230 the clutch 194 is in a stopped state in step S230 or an error alarm is generated in step S244 , and then the process returns to the measurement step S210 .
  • the swash plate compressor control method compares the revolutions per minute measured value of the swash plate compressor with the revolutions per minute calculated value calculated using the engine speed to determine whether the belt slip and the compressor are stuck, and control the clutch according to the determination result By doing so, it is possible to protect the compressor from belt slip and compressor sticking.
  • FIG. 10 is a flowchart for explaining a method for controlling a swash plate compressor according to a fourth embodiment of the present invention.
  • the swash plate compressor control method according to the fourth embodiment of the present invention is a control method for preventing the clutchless type swash plate compressor 100 from being damaged due to belt slip, compressor sticking, and the like.
  • the method for controlling a swash plate compressor according to the third embodiment of the present invention includes a measuring step ( S310 ), a comparison step ( S320 ), and a protection step ( S330 ).
  • the measuring step (S310) the number of revolutions per minute of the swash plate compressor 100 is measured.
  • the measured revolutions per minute is set as the measured revolutions per minute and a comparison step (S320) is performed.
  • the revolutions per minute measured value (RPM measured value) measured in the measuring step S310 is compared with the revolutions per minute calculated value (RPM calculated value).
  • the revolutions per minute calculated value may be calculated using the revolutions per minute and the pulley ratio of the engine.
  • the comparison step (S320) if the measured revolutions per minute and the calculated revolutions per minute are identical, the process returns to the measuring step (S310).
  • the measured revolutions per minute and the calculated revolutions per minute may be different. If the piston 160 reciprocates in a state where belt slip or compressor sticking occurs in the swash plate compressor 100 , damage to the swash plate compressor 100 such as piston 160 damage may occur.
  • the stroke of the piston 160 is stopped by controlling the inclination angle of the swash plate.
  • the swash plate compressor control method is between the piston 160 and the inner wall of the cylinder bore 122 of the compressor when belt slip or compressor sticking occurs. to prevent damage to the swash plate compressor 100 due to the friction of
  • the protection step ( S330 ) may include an inclination angle reduction step ( S332 ) and an error alarm generation step ( S334 ).
  • the inclination angle of the swash plate is reduced to a minimum.
  • the ECV opening amount may be reduced to reduce the inclination angle of the swash plate. That is, the compressor control method minimizes (stops) the movement of the piston 160 by minimizing the inclination angle of the swash plate.
  • an error alarm is generated to warn that the belt slip or the compressor sticking has occurred in the swash plate compressor 100 .
  • an error alarm may be generated by turning on a warning lamp.
  • an error alarm may be generated by generating a diagnostic code and transmitting it to the engine control device. Referring to FIG. 3 , the second protection module 185 may generate a diagnostic code and transmit it to the engine control device 200 .
  • the swash plate compressor control method compares the revolutions per minute measured value of the swash plate compressor with the revolutions per minute calculated value calculated using the engine speed to determine whether belt slip and compressor sticking, and the capacity control valve according to the determination result By controlling the compressor, it is possible to protect the compressor from belt slip and compressor sticking.
  • the fifth and sixth embodiments are characterized in that it is determined whether the swash plate compressor is in a low refrigerant state, and an error alarm is generated when it is determined that the swash plate compressor is in a low refrigerant state.
  • the fifth and sixth embodiments determine whether the swash plate compressor is in a low refrigerant state, and generate an error alarm when it is in a low refrigerant state, thereby preventing the mechanical sticking of the swash plate compressor due to lack of internal lubrication in the low refrigerant state. can be prevented
  • the fifth embodiment determines whether the swash plate compressor is in a low refrigerant state based on stroke information of the swash plate compressor.
  • the method for controlling a swash plate compressor of the fifth embodiment includes a measuring step (S410) of measuring compressor operation information of the swash plate compressor; Determining whether a low refrigerant detection condition (S420); Low-refrigerant state determination step of determining the low-refrigerant state of the swash plate compressor (S430); and an error alarm step (S450) of generating an error alarm when the swash plate compressor is in a low refrigerant state.
  • the compressor operation information including the stroke is measured.
  • the stroke of the compressor may be measured through a stroke sensor provided in the swash plate compressor.
  • the piston reciprocating motion of the swash plate compressor may be measured, and the stroke of the swash plate compressor may be calculated based on the measured piston reciprocating motion period.
  • the low refrigerant detection condition refers to a time when the performance of the air conditioner is maximum in a state in which the vehicle does not move. For example, it refers to the time when the performance of the air conditioner is at its maximum in the idle state when the ignition of the car is ON and the car does not move.
  • the swash plate compressor is determined to be in the low-refrigerant state.
  • the degree of superheat and subcooling of the refrigerant is changed, and the state of the suction refrigerant of the compressor is changed.
  • the compressor stroke is controlled differently from the case of the normal refrigerant amount. Therefore, the low refrigerant state of the compressor can be diagnosed by using the difference in the stroke values. Considering the accuracy of the sensor that measures the stroke, if the difference between the current stroke and the appropriate stroke is 15% or more, it is desirable to determine the low refrigerant state.
  • the error alarm generation in the error alarm step S450 is characterized in that a warning lamp is turned on or a diagnostic code is generated.
  • the sixth embodiment determines whether the swash plate compressor is in a low refrigerant state by calculating the amount of refrigerant in the swash plate compressor.
  • the method for controlling a swash plate compressor of the sixth embodiment includes a measuring step ( S510 ) of measuring compressor operation information of the swash plate compressor; Determining whether a low refrigerant detection condition (S520); Low-refrigerant state determination step of determining the low-refrigerant state of the swash plate compressor (S530, S540); and an error alarm step (S550) of generating an error alarm when the swash plate compressor is in a low refrigerant state.
  • the compressor operation information including the stroke and discharge pressure, and the temperature of the air flowing through the evaporator of the air conditioner are measured.
  • the step ( S520 ) of determining whether the low refrigerant detection condition is the same as that of the fifth embodiment of FIG. 11 , so a description thereof will be omitted.
  • the current amount of refrigerant of the swash plate compressor is calculated using the stroke, discharge pressure, and the air temperature (S530), and a preset amount of refrigerant When the difference between the normal value of and the current amount of refrigerant exceeds the second reference value ⁇ , it is determined that the swash plate compressor is in a low refrigerant state (S540).
  • the current refrigerant amount calculation ( S530 ) of the swash plate compressor may be calculated using the stroke, discharge pressure, and air temperature. Specifically, if a whirling equation is created using stroke, discharge pressure, and air temperature, an arithmetic expression for predicting the amount of refrigerant in the system of the HVAC can be created. In various embodiments, the calculation of the current refrigerant amount is a regression expression by additionally including the temperature information of the fan (FAN) voltage of the condenser, the blower voltage of the evaporator, and the temperature information of the outside air blown into the vehicle interior by the blower of the evaporator.
  • FAN fan
  • the error alarm generation in the error alarm step S450 is characterized in that a warning lamp is turned on or a diagnostic code is generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

본 개시는 압축기 정보를 이용하여 산출한 토크가 과부하이면 사판 경사각을 감소시켜 과부하를 방지하도록 한 사판식 압축기 제어 방법 및 사판식 압축기를 제시한다. 제시된 사판식 압축기 제어 방법은 사판식 압축기의 압축기 동작 정보를 측정하고, 압축기 동작 정보를 근거로 사판식 압축기의 토크 연산값을 산출하고, 토크 연산값을 토크 설정값과 비교하는 과부하 여부 판단 단계 및 과부하 여부 판단 단계에서 과부하 발생으로 판단하면 사판식 압축기의 사판 경사각을 감소시키는 과부하 방지 단계를 포함한다.

Description

사판식 압축기 제어 방법 및 사판식 압축기
본 개시는 공기조화장치의 압축기를 제어하는 기술에 관한 것으로, 더욱 상세하게는 출력 제어가 가능한 가변 용량 사판식 압축기를 제어하는 사판식 압축기 제어 방법 및 사판식 압축기에 관한 것이다.
본 개시는 2020년 02월 19일에 한국특허청에 제출된 한국 특허 출원 제 10-2020-0020132호의 출원일의 이익을 주장하며, 그 내용 전부는 본 개시에 포함된다.
또한, 본 개시는 2021년 02월 03일에 한국특허청에 제출된 한국 특허 출원 제 10-2021-0015624호의 출원일의 이익을 주장하며, 그 내용 전부는 본 개시에 포함된다.
자동차의 공기조화장치는 압축기(Compressor), 응축기(condenser), 팽창밸브(expansion valve) 및 증발기(evaporator)를 포함하여 구성된다.
압축기는 증발기로부터 토출된 냉매가스를 액화하기 쉬운 고온고압 상태로 압축하여 응축기로 전달한다. 압축기는 냉방이 지속되도록 냉매를 펌핑하여 재순환시킨다. 응축기는 고온고압의 냉매가스를 외기와 열교환시켜 냉각함으로써 액화시키고, 팽창밸브는 액상 냉매를 단열 팽창시켜 온도와 압력을 강하시켜 증발기에서 증발하기 용이한 상태로 변화시킨다. 증발기는 액상 냉매를 실내로 도입되는 외기와 열교환시켜 열을 흡수하거나 기화시킨다. 외기는 냉매에 열을 빼앗겨 냉각되며 블로어에 의해 차 실내로 송풍된다.
압축기는 압축 방식에 따라 왕복식 압축기 및 회전식 압축기로 구분된다. 왕복식 압축기는 작동유체(냉매)를 압축하는 부분이 왕복운동하면서 작동유체(냉매)를 압축한다. 회전식 압축기는 회전운동을 하면서 작동 유체(냉매)를 압축한다.
왕복식 압축기는 크랭크를 사용하여 구동원의 구동력을 복수개의 피스톤으로 전달하는 크랭크식 압축기와, 사판이 설치된 회전축으로 전달하는 사판식 압축기 및 워블 플레이트를 사용하는 워블 플레이트식 압축기가 있다.
사판식 압축기는 사판의 각도가 일정하게 고정되어 용량이 고정되는 고정형 사판식 압축기와, 사판의 각도가 가변되어 용량 제어가 가능한 가변 용량 사판식 압축기로 구분된다.
일반적으로, 가변형 사판식 압축기는 공기조화장치에서 요구되는 열부하를 감당하기 위해 용량 제어 밸브(ECV; External Control Valve)의 듀티(Duty)를 제어하여 압축기의 용량을 결정한다.
하지만, 종래의 가변형 사판식 압축기는 하기와 같이 압축기 제어성에 문제를 가지고 있다.
종래의 가변형 사판식 압축기는 열부하에 따른 용량 제어 밸브(ECV)의 듀티만을 제어하기 때문에 급격한 사판 경사각의 변동, 헌팅 및 토크 변동 등이 발생하는 문제점이 있다.
또한, 종래의 가변형 사판식 압축기는 벨트 슬립, 압축기 고착에 대한 감지 및 보호 기능이 없기 때문에, 벨트 슬립 또는 압축기 고착이 발생하는 경우 압축기가 파손되는 문제점이 있다.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, 압축기 정보를 이용하여 산출한 토크가 과부하이면 사판 경사각을 감소시켜 과부하를 방지하도록 한 사판식 압축기 제어 방법 및 사판식 압축기를 제공하는 것을 목적으로 한다.
또한, 본 발명은 분당 회전수를 근거로 클러치 구동 또는 사판 경사각을 제어하여 벨트 슬립 및 압축기 고착에 의한 사판식 압축기의 파손을 방지하도록 한 사판식 압축기 제어 방법 및 사판식 압축기를 제공하는 것을 다른 목적으로 한다.
또한, 본 발명은 사판식 압축기의가 저냉매 상태인지 여부를 판단하고, 저냉매 상태인 경우 에러 알람을 발생시킴으로써, 저냉매 상태에서 내부 윤활 부족으로 인한 사판식 압축기의 기계적인 고착 현상을 방지하는 것을 다른 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명의 제1 실시 예에 따른 사판식 압축기 제어 방법은 사판식 압축기(100)의 압축기 동작 정보를 측정하는 측정 단계(S110), 측정 단계(S110)에서 측정한 압축기 동작 정보를 근거로 사판식 압축기(100)의 토크 연산값을 산출하는 토크 산출 단계(S120), 토크 산출 단계(S120)에서 산출한 토크 연산값을 토크 설정값과 비교하는 과부하 여부 판단 단계(S140) 및 과부하 여부 판단 단계(S140)에서 과부하 발생으로 판단하면 사판식 압축기(100)의 사판 경사각을 감소시키는 과부하 방지 단계(S150)를 포함한다.
측정 단계(S110)에서는 스트로크 및 분당 회전수를 포함하는 압축기 동작 정보를 측정할 수 있다. 이때, 측정 단계(S110)에서는 사판식 압축기(100)에 구비된 스트로크 센서를 통해 스트로크를 측정할 수 있다.
한편, 측정 단계(S110)에서는 토출 압력을 더 포함하는 압축기 동작 정보를 측정할 수 있다. 측정 단계(S110)에서는 흡입 압력을 더 포함하는 압축기 동작 정보를 측정할 수 있다.
측정 단계(S110)는 사판식 압축기(100)의 피스톤 왕복 운동 주기를 측정하는 주기 측정 단계(S115), 주기 측정 단계(S115)에서 측정된 피스톤 왕복 운동 주기를 근거로 사판식 압축기(100)의 스트로크를 산출하는 스트로크 산출 단계(S116) 및 주기 측정 단계(S115)에서 측정된 피스톤 왕복 운동 주기를 근거로 사판식 압축기(100)의 분당 회전수를 산출하는 RPM 산출 단계(S117)를 포함할 수 있다.
과부하 여부 판단 단계(S140)에서는 토크 연산값이 토크 설정값을 초과하면 과부하 발생으로 판단하고, 토크 연산값이 토크 설정값 이하이면 정상 부하로 판단할 수 있다.
본 발명의 제1 실시 예에 따른 사판식 압축기 제어 방법은 과부하 여부 판단 단계(S140)에서 정상 부하로 판단하면 공기조화장치의 증발기를 관류한 공기 온도를 근거로 사판 경사각을 조절하는 냉매 토출량 조절 단계(S160)를 더 포함할 수 있다.
냉매 토출량 조절 단계(S160)는 증발기를 관류한 공기 온도인 온도 측정값을 측정하는 공기 온도 측정 단계(S161), 공기 온도 측정 단계(S161)의 공기 온도 측정값을 공기 온도 설정값과 비교하는 공기 온도 비교 단계(S162) 및 공기 온도 비교 단계(S162)의 비교 결과를 근거로 사판 경사각을 조절하는 경사각 조절 단계(S163)를 포함할 수 있다.
경사각 조절 단계(S163)는 공기 온도 비교 단계(S162)에서 공기 온도 측정값이 공기 온도 설정값을 초과하면 사판 경사각을 증가시키는 경사각 증가 단계(S164) 및 공기 온도 비교 단계(S162)에서 공기 온도 측정값이 공기 온도 설정값 미만이면 사판 경사각을 감소시키는 경사각 감소 단계(S165)를 포함할 수 있다.
본 발명의 제1 실시 예에 따른 사판식 압축기 제어 방법은 토크 산출 단계(S120)에서 산출한 토크 연산값을 엔진 제어 장치로 전송하는 전송 단계(S130)를 더 포함할 수 있다.본 발명의 제2 실시 예에 따른 사판식 압축기 제어 방법은 공기조화장치의 증발기를 관류한 공기 온도인 공기 온도 측정값을 측정하는 공기 온도 측정 단계(S161), 공기 온도 측정값 및 공기 온도 설정값의 차이로부터 목표 스트로크를 산출하는 목표 스트로크 산출 단계(S166), 목표 스트로크 산출 단계(S166)에서 산출된 목표 스트로크로부터 목표 ECV 개도량을 산출하는 목표 ECV 개도량 산출 단계(S167) 및 실제 ECV 개도량을 목표 ECV 개도량으로 조절하는 ECV 개도량 조절 단계(S168)를 포함할 수 있다.
본 발명의 제2 실시 예에 따른 사판식 압축기 제어 방법은 ECV 개도량 조절 단계(S168) 이후에 측정된 스트로크와 목표 스트로크를 비교하는 스트로크 비교 단계(S169)를 더 포함하고, 스트로크 비교 단계(S169)에서 스트로크와 목표 스트로크가 불일치하면 상기 ECV 개도량 산출 단계(S167) 및 ECV 개도량 조절 단계(S168)를 재수행할 수 있다.
상기한 목적을 달성하기 위하여 본 발명의 제3 실시 예에 따른 사판식 압축기 제어 방법은 사판식 압축기(100)의 분당 회전수를 측정하는 측정 단계(S210), 측정 단계(S210)에서 측정한 분당 회전수 측정값과 분당 회전수 산출값과 비교하는 비교 단계(S220), 비교 단계(S220)에서 분당 회전수 측정값과 분당 회전수 산출값이 다르면 클러치를 정지시키고, 에러 알람을 발생하는 보호 단계(S240)를 포함할 수 있다. 상기 에러 알람 발생은 경고등을 점등하거나, 또는 진단코드를 생성하는 것을 특징으로 한다.
상기한 목적을 달성하기 위하여 본 발명의 제4 실시 예에 따른 사판식 압축기 제어 방법은 사판식 압축기(100)의 분당 회전수를 측정하는 측정 단계(S310), 측정 단계(S310)에서 측정한 분당 회전수 측정값과 분당 회전수 산출값과 비교하는 비교 단계(S320) 및 비교 단계(S320)에서 분당 회전수 측정값과 분당 회전수 산출값이 다르면 사판의 경사각을 최소로 감소시키고, 에러 알람을 발생하는 보호 단계(S330)를 포함한다. 상기 에러 알람 발생은 경고등을 점등하거나, 또는 진단코드를 생성하는 것을 특징으로 한다.
상기한 목적을 달성하기 위하여 본 발명의 실시 예에 따른 사판식 압축기는 크랭크실(112), 실린더 보어(122), 흡입실(132) 및 토출실(134)을 갖는 하우징, 하우징에 회전 가능하게 장착되는 회전축(140), 회전축(140)에 연동되어 크랭크실(112)의 내부에서 회전되는 사판(150), 사판(150)에 연동되어 실린더 보어(122)의 내부에서 왕복 운동하고, 실린더 보어(122)와 함께 압축실을 형성하는 피스톤(160), 피스톤(160)의 왕복운동 주기를 측정하는 측정 장치(170) 및 측정 장치(170)의 측정치를 근거로 상술한 압축기 제어 방법을 통해 냉매 토출량 제어, 토크 제어, 슬립 방지, 고착 방지 중 적어도 하나를 실시하는 제어 장치(180)를 포함한다. 측정 장치(170)는 피스톤(160)이 왕복 운동될 때 피스톤(160)에 형성된 홈에 의한 자기장 변화를 측정하는 스트로크 센서일 수 있다. 본 발명의 실시 예에 따른 사판식 압축기는 토출실(134)에 배치되어 토출 압력을 측정하는 제1 압력 센서, 흡입실(132)에 배치되어 흡입 압력을 측정하는 제2 압력 센서를 더 포함할 수 있다.
상기한 목적을 달성하기 위하여 본 발명의 제5, 6 실시 예에 따른 사판식 압축기 제어 방법은 사판식 압축기의 압축기 동작 정보를 측정하는 측정 단계; 상기 사판식 압축기의 저냉매 상태를 판단하는 저냉매 상태 판단 단계; 및 상기 사판식 압축기가 저냉매 상태인 경우 에러 알람을 발생하는 에러 알람 단계; 를 포함한다.
상기 측정 단계는 스트로크를 포함하는 압축기 동작 정보를 측정하고, 상기 저냉매 상태 판단 단계는 상기 스트로크의 현재 값과 기 설정된 상기 스트로크의 적정 값의 차이가 제1 기준 값을 초과하는 경우, 상기 사판식 압축기를 저냉매 상태로 판단하는 것을 특징으로 한다.
상기 측정 단계는 스트로크와 토출 압력을 포함하는 압축기 동작 정보, 및 공기조화장치의 증발기를 관류한 공기 온도를 측정하고, 상기 저냉매 상태 판단 단계는 상기 스트로크와 토출 압력 및 상기 공기 온도를 이용하여 상기 사판식 압축기의 현재 냉매량을 연산하고, 기 설정된 냉매량의 정상 값과 상기 현재 냉매량의 차이가 제2 기준 값을 초과하는 경우, 상기 사판식 압축기를 저냉매 상태로 판단하는 것을 특징으로 한다.
본 발명에 의하면, 사판식 압축기 제어 방법 및 사판식 압축기는 압축기 정보를 이용하여 산출한 토크가 과부하이면 사판 경사각을 감소시킴으로써, 사판식 압축기의 과부하 발생을 방지하고, 사판식 압축기의 안전성을 확보할 수 있는 효과가 있다.
또한, 사판식 압축기 제어 방법 및 사판식 압축기는 토크가 부족한 경우 사판 경사각 및 용량 제어 밸브 제어를 통해 냉매 토출량을 제어함으로써, 사판식 압축기의 제어성 및 신뢰성을 확보하면서 승차감 및 연비를 향상시킬 수 있는 효과가 있다.
또한, 사판식 압축기 제어 방법은 온도를 목표 온도에 맞추기 위해 사판식 압축기의 스트로크를 직접제어함으로써, 급격한 토크 변동, 헌팅 등을 예방하면서 목표 온도에 신속하게 도달할 수 있는 효과가 있다.
또한, 사판식 압축기 제어 방법은 사판식 압축기의 분당 회전수 측정값과 엔진 속도를 이용하여 산출한 분당 회전수 산출값을 비교하여 벨트 슬립 및 압축기 고착 유무를 판단하고, 판단 결과에 따라 클러치를 제어함으로써, 벨트 슬립 및 압축기 고착으로부터 압축기를 보호할 수 있는 효과가 있다.
또한, 사판식 압축기 제어 방법은 사판식 압축기의 분당 회전수 측정값과 엔진 속도를 이용하여 산출한 분당 회전수 산출값을 비교하여 벨트 슬립 및 압축기 고착 유무를 판단하고, 판단 결과에 따라 용량 제어 밸브를 제어함으로써, 벨트 슬립 및 압축기 고착으로부터 압축기를 보호할 수 있는 효과가 있다.
또한, 사판식 압축기 제어 방법은 사판식 압축기의가 저냉매 상태인지 여부를 판단하고, 저냉매 상태인 경우 에러 알람을 발생시킴으로써, 저냉매 상태에서 내부 윤활 부족으로 인한 사판식 압축기의 기계적인 고착 현상을 방지할 수 있다.
도 1은 본 발명의 실시 예에 따른 사판식 압축기를 설명하기 위한 도면.
도 2 및 도 3은 도 1의 제어 장치를 설명하기 위한 도면.
도 4는 본 발명의 제1 실시 예에 따른 사판식 압축기 제어 방법을 설명하기 위한 흐름도.
도 5 및 도 6은 도 4의 측정 단계를 설명하기 위한 흐름도.
도 7은 도 4의 냉매 토출량 조절 단계를 설명하기 위한 흐름도.
도 8은 본 발명의 제2 실시 예에 따른 사판식 압축기 제어 방법을 설명하기 위한 흐름도.
도 9는 본 발명의 제3 실시 예에 따른 사판식 압축기 제어 방법을 설명하기 위한 흐름도.
도 10은 본 발명의 제4 실시 예에 따른 사판식 압축기 제어 방법을 설명하기 위한 흐름도.
도 11은 본 발명의 제5 실시 예에 따른 사판식 압축기 제어 방법을 설명하기 위한 흐름도.
도 12는 본 발명의 제6 실시 예에 따른 사판식 압축기 제어 방법을 설명하기 위한 흐름도.
개시된 실시예의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명이 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것일 뿐이다.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시 예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
이하, 본 발명의 실시 예에 따른 사판식 압축기를 첨부된 도면을 참조하여 설명하면 아래와 같다. 도 1은 본 발명의 실시 예에 따른 사판식 압축기를 설명하기 위한 도면이고, 도 2 및 도 3은 도 1의 제어 장치를 설명하기 위한 도면이다.
도 1을 참조하면, 본 발명의 실시 예에 따른 압축기 제어 방법이 적용되는 사판식 압축기(100)는 사판 경사각 제어를 통해 출력 제어가 가능한 가변 용량 사판식 압축기(100)인 것을 일례로 한다. 여기서, 도 1에서는 본 발명의 실시 예를 용이하게 설명하기 위해 측정 장치(170)가 설치된 사판식 압축기(100)를 도시하였으나, 이에 한정되지 않고 피스톤(160)의 왕복 운동 주기를 측정할 수 있는 센서라면 적용이 가능하며, 그 구조 또한 변경될 수 있다.
또한, 사판 경사각은 사판(150)의 중심점과 교차하는 지점에서 회전축(140)과 수직을 이루는 가상면과 사판(150) 사이의 각도를 의미한다. 사판 경사각의 감소는 가상면과 사판(150) 사이의 각도를 감소시켜 사판(150)의 외주가 경사면에 가깝게 배치되는 것을 의미한다. 사판 경사각의 증가는 가상면과 사판(150) 사이의 각도를 증가시켜 사판(150)의 외주가 경사면과 멀게 배치되는 것을 의미한다.
사판식 압축기(100)는 크랭크실(112), 실린더 보어(122), 흡입실(132) 및 토출실(134)을 갖는 하우징을 포함한다.
하우징은 크랭크실(112)이 형성된 전방 하우징(110), 복수 개의 실린더 보어(122)가 형성된 실린더 블록(120), 흡입실(132) 및 토출실(134)이 형성된 후방 하우징(130)을 포함하여 구성된다.
하우징은 전방 하우징(110) 및 후방 하우징(130) 사이에 실린더 블록(120)이 개재된 상태로 결합되어 형성된다. 이때, 하우징은 사판식 압축기(100)의 외형(즉,을 형성한다.
사판식 압축기(100)는 전방 하우징(110) 및 실린더 블록(120)의 중앙을 경유하여 삽입된 회전축(140)을 더 포함할 수 있다. 이때, 회전축(140)에는 반경 방향 단부에 슈(155)가 배치된 사판(150)이 삽입 배치된다.
사판식 압축기(100)는 실린더 블록(120)에 형성된 실린더 보어(122) 내부에 배치된 피스톤(160)을 더 포함할 수 있다.
피스톤(160)은 정방 하우징이 위치한 방향에 슈 결합부(165)가 배치된다. 슈 결합부(165)는 소정 길이로 수평하게 연장되어 사판(150)의 슈(155)에 결합된다. 피스톤(160)은 사판(150)이 소정의 경사각을 이룬 상태에서 회전함에 따라 실린더 보어(122)의 내부에서 왕복 운동한다. 이때, 피스톤(160)은 실린더 보어(122)와 함께 압축실을 구성한다.
사판식 압축기(100)는 피스톤(160)의 왕복 운동 주기를 측정하는 측정 장치(170)를 더 포함할 수 있다. 측정 장치(170)는 압축실에 연결되어 피스톤(160)의 왕복 운동 주기를 측정한다.
일례로, 피스톤(160)에는 위치 결정을 위한 홈이 형성된다. 측정 장치(170)는 피스톤(160)이 왕복 운동할 때 피스톤(160)에 형성된 홈에 의한 자기장 변화를 측정하여 피스톤(160)의 왕복 운동 주기를 측정한다.
사판식 압축기(100)는 후술할 압축기 제어 방법을 통해 냉매 토출량 제어, 토크 제어, 슬립 방지, 고착 방지 중 적어도 하나를 실시하는 제어 장치(180)를 더 포함할 수 있다.
도 2를 참조하면, 제어 장치(180)는 후술할 사판식 압축기 제어 방법(제1 실시 예의 사판식 압축기 제어 방법)을 통해 사판식 압축기(100)의 과부하 보호 및 냉매 토출량 제어를 수행하는 출력 제어 모듈(181)을 포함한다.
출력 제어 모듈(181)은 사판식 압축기(100)의 스트로크, 분당 회전수, 흡입 압력 및 토출 압력을 포함하는 압축기 정보를 이용하여 토크 연산값을 산출한다. 이때, 압축기 정보는 스트로크, 분당 회전수, 흡입 압력 및 토출 압력을 포함한다.
출력 제어 모듈(181)은 산출한 토크 연산값 및 토크 설정값을 비교하여 사판식 압축기(100)의 과부하 발생 여부를 판단한다. 이때, 출력 제어 모듈(181)은 토크 연산값이 토크 설정값을 초과하면 과부하 발생으로 판단한다. 출력 제어 모듈(181)은 토크 연산값이 토크 설정값 이하이면 정상 부하로 판단한다.
출력 제어 모듈(181)은 과부하 발생으로 판단하면 사판 경사각을 제어하여 사판식 압축기(100)의 과부하를 방지(해소)한다. 출력 제어 모듈(181)은 사판 경사각을 감소시켜 사판식 압축기(100)의 출력을 감소시키고, 출력 감소로 인해 사판식 압축기(100)의 과부하가 방지(해소)된다.
출력 제어 모듈(181)은 정상 부하로 판단하면 사판 경사각 제어를 통해 냉매 토출량을 제어한다. 출력 제어 모듈(181)은 공기조화장치의 증발기를 관류한 공기 온도를 근거로 사판 경사각을 조절하여 냉매 토출량을 조절한다. 이때, 출력 제어 모듈(181)은 공기 온도 측정값과 공기 온도 설정값의 차이에 따라 사판 경사각을 증감시켜 냉매 토출량을 조절한다.
출력 제어 모듈(181)은 정상 부하로 판단하면 산출한 목표 스트로크를 기준으로 용량 제어 밸브(192; ECV) 개도량 제어를 통해 냉매 토출량을 제어할 수도 있다. 출력 제어 모듈(181)은 공기 온도 측정값 및 공기 온도 설정값의 차이로부터 목표 스트로크를 산출한다. 출력 제어 모듈(181)은 산출한 목표 스트로크로부터 목표 ECV 개도량을 산출한다. 출력 제어 모듈(181)은 ECV 구동 모듈(미도시)을 통해 ECV(192)의 개도량을 제어한다. 출력 제어 모듈(181)은 실제 ECV 개도량과 목표 ECV 개도량이 일치할 때까지 ECV 개도량을 조절한다.
사판식 압축기(100)가 클러치 타입인 경우, 제어 장치(180)는 후술할 사판식 압축기 제어 방법(제2 실시 예의 사판식 압축기 제어 방법)을 통해 벨트 슬립 또는 압축기 고착에 의한 사판식 압축기(100)의 파손을 방지하는 제1 보호 모듈(183)을 포함한다.
제1 보호 모듈(183)은 사판식 압축기(100)의 분당 회전수 측정값을 분당 회전수 산출값과 비교한다. 이때, 제1 보호 모듈(183)은 엔진의 분당 회전수 및 풀리비를 이용하여 분당 회전수 산출값을 산출할 수 있다. 제1 보호 모듈(183)은 분당 회전수 측정값과 분당 회전수 산출값이 일치하면 벨트 슬립 또는 압축기 고착이 발생한 것으로 판단하여 클러치(194)를 정지시키고 에러 알람을 발생한다.
도 3을 참조하면, 사판식 압축기(100)가 클러치 리스 타입인 경우, 제어 장치(180)는 후술할 사판식 압축기 제어 방법(제3 실시 예의 사판식 압축기 제어 방법)을 통해 벨트 슬립 또는 압축기 고착에 의한 사판식 압축기(100)의 파손을 방지하는 제2 보호 모듈(185)을 포함할 수 있다.
클러치 리스 타입의 사판식 압축기(100)는 클러치(194)가 없기 때문에, 제2 보호 모듈(185)은 ECV(192)의 개도량을 조절하여 사판 경사각을 최소화함으로써 사판식 압축기(100)의 파손을 방지한다.
제2 보호 모듈(185)은 사판식 압축기(100)의 분당 회전수 측정값을 분당 회전수 산출값과 비교한다. 이때, 제2 보호 모듈(185)은 엔진의 분당 회전수 및 풀리비를 이용하여 분당 회전수 산출값을 산출할 수 있다. 제2 보호 모듈(185)은 분당 회전수 측정값과 분당 회전수 산출값이 일치하면 벨트 슬립 또는 압축기 고착이 발생한 것으로 판단하여 ECV 개도량을 감소시켜 사판 경사각을 최소로 감소시키고 에러 알람을 발생한다. 이를 통해, 제2 보호 모듈(185)은 피스톤(160)의 움직임을 최소화(즉, 정지)시켜 사판식 압축기(100)의 파손을 방지한다.
이하, 본 발명의 제1 실시 예에 따른 사판식 압축기 제어 방법을 첨부된 도면을 참조하여 설명하면 아래와 같다. 도 4는 본 발명의 제1 실시 예에 따른 사판식 압축기 제어 방법을 설명하기 위한 흐름도이다. 도 5 및 도 6은 도 4의 측정 단계를 설명하기 위한 흐름도이고, 도 7은 도 4의 냉매 토출량 조절 단계를 설명하기 위한 흐름도이다.
본 발명의 제1 실시 예에 따른 사판식 압축기 제어 방법은 상술한 사판식 압축기(100)의 스트로크, 분당 회전수, 흡입 압력 및 토출 압력을 포함하는 압축기 정보를 이용하여 토크를 산출하고, 토크를 근거로 과부하이면 사판 경사각을 감소시켜 과부하를 방지하고, 토크가 부족한 경우 사판 경사각 제어를 통해 냉매 토출량을 제어한다.
여기서, 사판 경사각은 사판(150)의 중심점과 교차하는 지점에서 회전축(140)과 수직을 이루는 가상면과 사판(150) 사이의 각도를 의미한다. 사판 경사각의 감소는 가상면과 사판(150) 사이의 각도를 감소시켜 사판(150)의 외주가 경사면에 가깝게 배치되는 것을 의미한다. 사판 경사각의 증가는 가상면과 사판(150) 사이의 각도를 증가시켜 사판(150)의 외주가 경사면과 멀게 배치되는 것을 의미한다.
본 발명의 제1 실시 예에 따른 사판식 압축기 제어 방법에서는 사판 경사각 제어를 통해 피스톤(160)의 왕복 운동 간격(즉, 스트로크)을 가변시켜 사판식 압축기(100)의 출력을 가변함으로써 사판식 압축기(100)의 출력(토크)을 제어한다.
도 4를 참조하면, 사판식 압축기 제어 방법은 측정 단계(S110), 토크 산출 단계(S120), 전송 단계(S130), 과부하 여부 판단 단계(S140), 과부하 방지 단계(S150), 냉매 토출량 조절 단계(S160)를 포함한다.
측정 단계(S110)에서는 사판식 압축기(100)의 압축기 동작 정보를 측정한다. 측정 단계(S110)에서는 스트로크, 분당 회전수 및 토출 압력을 포함하는 압축기 동작 정보를 측정한다.
도 5를 참조하면, 측정 단계(S110)는 사판식 압축기(100)의 스트로크를 측정하는 스트로크 측정 단계(S111), 사판식 압축기(100)의 분당 회전수를 측정하는 RPM 측정 단계(S112) 및 사판식 압축기(100)의 토출 압력을 측정하는 토출압 측정 단계(S114)를 포함할 수 있다. 여기서, 도 5에서는 측정 단계(S110)를 용이하게 설명하기 위해서 S111 단계 내지 S114 단계가 순차적으로 수행되는 것으로 도시하였으나, 실제 구현시 동일 시점에 수행될 수 있다.
이때, 스트로크 측정 단계(S111), RPM 측정 단계(S112) 및 토출압 측정 단계(S114)에서는 사판식 압축기(100) 내에 설치된 센서들을 이용하여 스트로크, 분당 회전수 및 토출 압력을 측정할 수 있다.
일례로, 토출압 측정 단계(S114)에서는 응축기의 토출측 배관에 배치된 APT 센서를 통해 토출 압력을 측정할 수 있다. 토출압 측정 단계(S114)에서는 사판식 압축기(100)의 토출실(134)에 배치된 센서를 이용하여 토출 압력을 측정할 수도 있다. 즉, 토출압 측정 단계(S114)에서는 토출실(134)에 배치된 토출 압력 센서를 이용하여 토출 압력을 측정할 수 있다.
한편, 측정 단계(S110)는 사판식 압축기(100)의 흡입 압력을 더 측정할 수도 있다. 일례로, 측정 단계(S110)에서는 사판식 압축기(100)의 흡입실(132)에 배치된 압력 센서를 이용하여 흡입 압력을 측정할 수 있다. 측정 단계(S110)에서는 공기조화장치의 정보를 이용하여 흡입 압력을 산출할 수도 있다.
한편, 도 6을 참조하면, 측정 단계(S110)는 사판식 압축기(100)의 피스톤 왕복 운동 주기를 측정하는 주기 측정 단계(S115), 주기 측정 단계(S115)에서 측정된 피스톤 왕복 운동 주기를 근거로 사판식 압축기(100)의 스트로크를 산출하는 스트로크 산출 단계(S116), 주기 측정 단계(S115)에서 측정된 피스톤 왕복 운동 주기를 근거로 사판식 압축기(100)의 분당 회전수를 산출하는 RPM 산출 단계(S117) 및 토출압 측정 단계(S119)를 포함할 수 있다.
여기서, 주기 측정 단계(S115)에서는 상술한 도 1에 도시된 측정 장치(170)를 통해 피스톤 왕복 운동 주기를 측정하는 것을 일례로 한다. 토출압 측정 단계(S119)는 도 5의 토출압 측정 단계(S114)와 동일하다.
다시 도 4를 참조하면, 토크 산출 단계(S120)에서는 측정 단계(S110)에서 측정한 압축기 동작 정보를 근거로 사판식 압축기(100)의 토크 연산값을 산출한다. 전송 단계(S130)에서는 토크 산출 단계(S120)에서 산출한 토크 연산값을 엔진 제어 장치(200)로 전송한다.
과부하 여부 판단 단계(S140)에서는 토크 산출 단계(S120)에서 산출한 토크 연산값을 토크 설정값과 비교하여 사판식 압축기(100)의 과부하 여부 판단한다. 이때, 과부하 여부 판단 단계(S140)에서는 토크 연산값이 토크 설정값을 초과하면 과부하 발생으로 판단한다. 과부하 여부 판단 단계(S140)에서는 토크 연산값이 토크 설정값 이하이면 정상 부하로 판단한다.
과부하 방지 단계(S150)에서는 과부하 여부 판단 단계(S140)에서 과부하 발생으로 판단하면 사판식 압축기(100)의 사판 경사각을 감소시켜 사판식 압축기(100)에서의 과부하 발생을 방지한다. 즉, 과부하 방지 단계(S150)에서는 사판 경사각을 감소시킴에 따라 피스톤(160)의 스트로크를 최소화한다. 이때, 피스톤(160)의 스트로크가 최소화되면 출력이 감소되어 사판식 압축기(100)의 과부하를 해소할 수 있다. 과부하 방지 단계(S150)에서는 사판 경사각 제어를 통해 사판식 압축기(100)의 과부하를 해소한 후에는 측정 단계(S110)로 복귀한다. 이를 통해, 사판식 압축기 제어 방법은 사판식 압축기의 과부하 발생을 방지하고, 사판식 압축기의 안전성을 확보할 수 있는 효과가 있다.
냉매 토출량 조절 단계(S160)에서는 과부하 여부 판단 단계(S140)에서 정상 부하로 판단하면 공기조화장치의 증발기를 관류한 공기 온도를 근거로 사판 경사각을 조절하여 냉매 토출량을 조절한다. 이때, 냉매 토출량 조절 단계(S160)는 냉매 토출량을 조절한 후에는 측정 단계(S110)로 복귀한다. 이를 통해, 사판식 압축기 제어 방법은 사판식 압축기의 제어성 및 신뢰성을 확보하면서 승차감 및 연비를 향상시킬 수 있는 효과가 있다.
도 7을 참조하면, 냉매 토출량 조절 단계(S160)는 공기 온도 측정 단계(S161), 공기 온도 비교 단계(S162) 및 경사각 조절 단계(S163)를 포함할 수 있다.
공기 온도 측정 단계(S161)에서는 증발기를 관류한 공기 온도인 온도 측정값을 측정한다.
공기 온도 비교 단계(S162)에서는 공기 온도 측정 단계(S161)에서 측정된 공기 온도 측정값을 공기 온도 설정값과 비교한다.
경사각 조절 단계(S163)에서는 공기 온도 비교 단계(S162)의 비교 결과를 근거로 사판 경사각을 조절한다. 이때, 경사각 조절 단계(S163)에서는 사판 경사각 제어를 통해 공기 온도를 제어한 후 공기 온도 비교 단계(S162)로 복귀한다.
이를 위해, 경사각 조절 단계(S163)는 경사각 증가 단계(S164) 및 경사각 감소 단계(S165)를 포함할 수 있다.
경사각 증가 단계(S164)는 공기 온도 비교 단계(S162)에서 공기 온도 측정값이 공기 온도 설정값을 초과하면 사판 경사각을 증가시킨다. 즉, 공기 온도 측정값이 공기 온도 설정값을 초과하는 경우 사판식 압축기(100)의 출력이 요구 출력보다 낮은 것을 의미한다. 이에, 경사각 증가 단계(S164)에서는 사판 경사각을 증가시켜 사판식 압축기(100)의 출력을 증가시킨다. 경사각 증가 단계(S164)에서는 사판 경사각을 증가시킨 후에 공기 온도 비교 단계(S162)로 복귀한다.
경사각 감소 단계(S165)는 공기 온도 비교 단계(S162)에서 공기 온도 측정값이 공기 온도 설정값 미만이면 사판 경사각을 감소시킨다. 즉, 공기 온도 측정값이 공기 온도 설정값 미만인 경우 사판식 압축기(100)의 출력이 요구 출력보다 높은 것을 의미한다. 이에, 경사각 감소 단계(S165)에서는 사판 경사각을 감소시켜 사판식 압축기(100)의 출력을 감소시킨다. 경사각 감소 단계(S165)에서는 사판 경사각을 감소시킨 후에 공기 온도 비교 단계(S162)로 복귀한다.
이때, 경사각 증가 단계(S164)는 공기 온도 비교 단계(S162)에서 공기 온도 측정값이 공기 온도 설정값과 일치하면 경사각 조절 단계(S163)를 종료하고, 공기 온도 비교 단계(S162)로 복귀한다.
이를 통해, 사판식 압축기 제어 방법은 온도를 목표 온도에 맞추기 위해서 사판 경사각 제어를 통해 사판식 압축기의 스트로크를 직접 제어함으로써, 급격한 토크 변동, 헌팅 등을 예방하면서 목표 온도에 신속하게 도달할 수 있는 효과가 있다.
이하, 본 발명의 제2 실시 예에 따른 사판식 압축기 제어 방법을 첨부된 도면을 참조하여 설명하면 아래와 같다. 도 8은 본 발명의 제2 실시 예에 따른 사판식 압축기 제어 방법을 설명하기 위한 흐름도이다. 여기서, 본 발명의 제2 실시 예에 따른 사판식 압축기 제어 방법은 상술한 경사각 조절 단계(S163)에 종속적으로 구현될 수도 있다.
도 8을 참조하면, 본 발명의 제2 실시 예에 따른 사판식 압축기 제어 방법은목표 스트로크 산출 단계(S166), 목표 ECV 개도량 산출 단계(S167), ECV 개도량 조절 단계(S168) 및 스트로크 비교 단계(S169)를 포함할 수도 있다.
목표 스트로크 산출 단계(S166)에서는 공기 온도 측정값 및 공기 온도 설정값의 차이로부터 목표 스트로크를 산출한다.
목표 ECV 개도량 산출 단계(S167)에서는 목표 스트로크 산출 단계(S166)에서 산출된 목표 스트로크로부터 목표 ECV 개도량을 산출한다.
ECV 개도량 조절 단계(S168)에서는 실제 ECV 개도량을 목표 ECV 개도량으로 조절한다.
스트로크 비교 단계(S169)에서는 측정 단계(S110)에서 측정된 스트로크와 목표 스트로크를 비교한다. 이때, 스트로크 비교 단계(S169)에서는 스트로크와 목표 스트로크가 일치하면 공기 온도 비교 단계(S162)로 복귀한다. 스트로크 비교 단계(S169)에서는 스트로크와 목표 스트로크가 불일치하면 목표 ECV 개도량 산출 단계(S167) 및 ECV 개도량 조절 단계(S168)를 재수행한다.
이처럼, 사판식 압축기 제어 방법은 온도를 목표 온도에 맞추기 위해 사판식 압축기의 스트로크를 직접제어함으로써, 급격한 토크 변동, 헌팅 등을 예방하면서 목표 온도에 신속하게 도달할 수 있는 효과가 있다.
이하, 본 발명의 제3 실시 예에 따른 사판식 압축기 제어 방법을 첨부된 도면을 참조하여 설명하면 아래와 같다. 도 9는 본 발명의 제3 실시 예에 따른 사판식 압축기 제어 방법을 설명하기 위한 흐름도이다.
본 발명의 제3 실시 예에 따른 사판식 압축기 제어 방법은 클러치 타입의 사판식 압축기(100)가 벨트 슬립, 압축기 고착 등에 의해 파손되는 것을 방지사기 위한 제어 방법이다.
도 9를 참조하면, 본 발명의 제3 실시 예에 따른 사판식 압축기 제어 방법은 측정 단계(S210), 비교 단계(S220) 및 보호 단계(S240)를 포함한다.
측정 단계(S210)에서는 사판식 압축기(100)의 분당 회전수를 측정한다. 측정 단계(S210)에서는 측정한 분당 회전수를 분당 회전수 측정값으로 설정한 후 비교 단계(S220)를 수행한다.
비교 단계(S220)에서는 측정 단계(S210)에서 측정한 분당 회전수 측정값(RPM 측정값)과 분당 회전수 산출값(RPM 산출값)과 비교한다. 이때, 비교 단계(S220)에서는 엔진의 분당 회전수 및 풀리비를 이용하여 분당 회전수 산출값을 산출할 수 있다. 비교 단계(S220)에서는 분당 회전수 측정값과 분당 회전수 산출값이 일치하면 측정 단계(S210)로 복귀한다.
사판식 압축기(100)에 벨트 슬립 또는 압축기 고착이 발생하면 분당 회전수 측정값과 분당 회전수 산출값이 다를 수 있다. 사판식 압축기(100)에 벨트 슬립 또는 압축기 고착이 발생한 상태에서 클러치(194)가 구동 상태이면 사판식 압축기(100) 및 클러치(194)의 파손이 발생할 수 있다.
이에, 분당 회전수 측정값과 분당 회전수 산출값이 다르면(S220; 예), 사판식 압축기(100) 및 클러치(194)의 파손이 발생할 수 있으므로 보호 단계(S240)를 수행한다.
보호 단계(S240)에서는 사판식 압축기(100) 및 클러치(194)의 파손을 방지하기 위해서 클러치(194)를 정지시키고 알람을 발생한다. 이를 위해, 보호 단계(S240)는 클러치 정지 단계(S242) 및 에러 알람 발생 단계(S244)를 포함할 수 있다.
클러치 정지 단계(S242)에서는 구동 상태인 클러치(194)를 정지시켜 사판식 압축기(100) 및 클러치(194)의 파손을 방지한다. 즉, 압축기 제어 방법은 클러치(194)를 정지시켜 압축기와 분리시켜 사판식 압축기(100)의 구동을 정지시킴으로써 사판식 압축기(100) 및 클러치(194)의 파손을 방지할 수 있다.
이와 함께, 에러 알람 발생 단계(S244)에서는 사판식 압축기(100)에 벨트 슬립 또는 압축기 고착이 발생했음을 경고하는 에러 알람을 발생한다. 이때, 에러 알람 발생 단계(S244)에서는 경고등을 점등을 통해 에러 알람을 발생할 수도 있다. 다양한 실시예에서 에러 알람 발생 단계(S244)에서는 진단코드를 생성하여 엔진 제어 장치로 전송함으로써 에러 알람을 발생할 수도 있다. 도 2를 참조하면, 제1 보호 모듈(183)은 진단코드를 생성하여 엔진 제어 장치(200)로 전송할 수 있다.
다시 도 9를 참조하면, S230 단계에서 클러치(194)가 정지 상태이거나, S244 단계에서 에러 알람을 발생한 후에 측정 단계(S210)로 복귀한다.
이처럼, 사판식 압축기 제어 방법은 사판식 압축기의 분당 회전수 측정값과 엔진 속도를 이용하여 산출한 분당 회전수 산출값을 비교하여 벨트 슬립 및 압축기 고착 유무를 판단하고, 판단 결과에 따라 클러치를 제어함으로써, 벨트 슬립 및 압축기 고착으로부터 압축기를 보호할 수 있는 효과가 있다.
이하, 본 발명의 제4 실시 예에 따른 사판식 압축기 제어 방법을 첨부된 도면을 참조하여 설명하면 아래와 같다. 도 10은 본 발명의 제4 실시 예에 따른 사판식 압축기 제어 방법을 설명하기 위한 흐름도이다.
본 발명의 제4 실시 예에 따른 사판식 압축기 제어 방법은 클러치 리스 타입의 사판식 압축기(100)가 벨트 슬립, 압축기 고착 등에 의해 파손되는 것을 방지사기 위한 제어 방법이다.
도 10을 참조하면, 본 발명의 제3 실시 예에 따른 사판식 압축기 제어 방법은 측정 단계(S310), 비교 단계(S320) 및 보호 단계(S330)를 포함한다.
측정 단계(S310)에서는 사판식 압축기(100)의 분당 회전수를 측정한다. 측정 단계(S310)에서는 측정한 분당 회전수를 분당 회전수 측정값으로 설정한 후 비교 단계(S320)를 수행한다.
비교 단계(S320)에서는 측정 단계(S310)에서 측정한 분당 회전수 측정값(RPM 측정값)을 분당 회전수 산출값(RPM 산출값)과 비교한다. 이때, 비교 단계(S320)에서는 엔진의 분당 회전수 및 풀리비를 이용하여 분당 회전수 산출값을 산출할 수 있다. 비교 단계(S320)에서는 분당 회전수 측정값과 분당 회전수 산출값이 일치하면 측정 단계(S310)로 복귀한다.
사판식 압축기(100)에 벨트 슬립 또는 압축기 고착이 발생하면 분당 회전수 측정값과 분당 회전수 산출값이 다를 수 있다. 사판식 압축기(100)에 벨트 슬립 또는 압축기 고착이 발생한 상태에서 피스톤(160)이 왕복 운동하면 피스톤(160) 파손 등과 같은 사판식 압축기(100)의 파손이 발생할 수 있다.
이에, 분당 회전수 측정값과 분당 회전수 산출값이 다르면(S320; 예), 벨트 슬립 또는 압축기 고착이 발생한 것으로 판단하여 보호 단계(S330)를 수행한다.
보호 단계(S330)에서는 사판 경사각을 제어하여 피스톤(160)의 스트로크를 정지시킨다, 이를 통해, 사판식 압축기 제어 방법은 벨트 슬립 또는 압축기 고착 발생시 피스톤(160)과 압축기의 실린더 보어(122) 내벽 사이의 마찰에 의한 사판식 압축기(100)의 파손을 방지한다.
이를 위해, 보호 단계(S330)는 경사각 감소 단계(S332) 및 에러 알람 발생 단계(S334)를 포함할 수 있다.
경사각 감소 단계(S332)에서는 사판 경사각을 최소로 감소시킨다. 이때, 경사각 감소 단계(S332)에서는 ECV 개도량을 감소시켜 사판 경사각을 감소시킬 수 있다. 즉, 압축기 제어 방법은 사판 경사각을 최소화함으로써 피스톤(160)의 움직임을 최소화(정지)시킨다.
이와 함께, 에러 알람 발생 단계(S334)에서는 사판식 압축기(100)에 벨트 슬립 또는 압축기 고착이 발생했음을 경고하는 에러 알람을 발생한다. 이때, 에러 알람 발생 단계(S334)에서는 경고등을 점등을 통해 에러 알람을 발생할 수도 있다. 다양한 실시예에서 에러 알람 발생 단계(S244)에서는 진단코드를 생성하여 엔진 제어 장치로 전송함으로써 에러 알람을 발생할 수도 있다. 도 3을 참조하면, 제2 보호 모듈(185)은 진단코드를 생성하여 엔진 제어 장치(200)로 전송할 수 있다.
이처럼, 사판식 압축기 제어 방법은 사판식 압축기의 분당 회전수 측정값과 엔진 속도를 이용하여 산출한 분당 회전수 산출값을 비교하여 벨트 슬립 및 압축기 고착 유무를 판단하고, 판단 결과에 따라 용량 제어 밸브를 제어함으로써, 벨트 슬립 및 압축기 고착으로부터 압축기를 보호할 수 있는 효과가 있다.
이하에서는 도 11 내지 도 12를 참조하여, 본 발명의 제5, 6 실시예에 따른 사판식 압축기 제어 방법을 설명한다. 제5, 6 실시예는 사판식 압축기가 저냉매인 상태인지 여부를 판단하고, 저냉매 상태로 판단된 경우 에러 알람을 발생하는 것을 특징으로 한다. 제5, 6 실시예는 사판식 압축기의가 저냉매 상태인지 여부를 판단하고, 저냉매 상태인 경우 에러 알람을 발생시킴으로써, 저냉매 상태에서 내부 윤활 부족으로 인한 사판식 압축기의 기계적인 고착 현상을 방지할 수 있다.
제5 실시예는 사판식 압축기의 스트로크 정보에 기초하여 사판식 압축기가 저냉매인 상태인지 여부를 판단한다.
도 11을 참조하여 제5 실시예를 설명하면, 제5 실시예의 사판식 압축기 제어 방법은 사판식 압축기의 압축기 동작 정보를 측정하는 측정 단계(S410); 저냉매 감지 조건인지 여부를 판단하는 단계(S420); 사판식 압축기의 저냉매 상태를 판단하는 저냉매 상태 판단 단계(S430); 사판식 압축기가 저냉매 상태인 경우 에러 알람을 발생하는 에러 알람 단계(S450)를 포함한다.
사판식 압축기의 압축기 동작 정보를 측정하는 측정 단계(S410)는 스트로크를 포함하는 압축기 동작 정보를 측정한다. 압축기의 스트로크 측정은 사판식 압축기에 구비된 스트로크 센서를 통해서 스트로크를 측정할 수 있다. 또한, 사판식 압축기의 피스톤 왕복 운동 죽기를 측정하고, 측정된 피스톤 왕복 운동 주기를 근거로 사판식 압축기의 스트로크를 산출할 수도 있다.
저냉매 감지 조건인지 여부를 판단하는 단계(S420)에서, 저냉매 감지 조건은 자동차가 움직이지 않는 상태에서 공기조화장치의 성능이 최대일 때를 말한다. 예를 들면 자동차의 시동이 ON 되고 자동차가 움직이지 않는 아이들(IDLE) 상태에서 에어컨의 성능이 최대인 때를 말한다. 저냉매 감지 조건에서 사판식 압축기의 저냉매 상태를 판단할 경우, 사판식 압축기의 저냉매 상태 판정 정확도를 더 높일 수 있다.
저냉매 상태 판단 단계는 스트로크의 현재 값과 기 설정된 상기 스트로크의 적정 값의 차이가 제1 기준 값(α)을 초과하는 경우, 상기 사판식 압축기를 저냉매 상태로 판단한다. 저냉매시에는 냉매의 과열도 및 과냉도가 달라지고 압축기의 흡입 냉매의 상태가 달라진다. 저냉매시에는 정상 냉매량일 경우와 다르게 압축기 스트로크가 제어된다. 따라서 이러한 스토로크 값의 차이를 이용하면 압축기의 저냉매 상태를 진단할 수 있다. 스트로크를 측정하는 센서의 정확도를 고려할 때 현재 스트로크와 적정 스트로크와의 차이가 15% 이상일 경우 저냉매 상태로 판단하는 것이 바람직하다.
에러 알람 단계(S450)에서 에러 알람 발생은 경고등을 점등하거나, 또는 진단코드를 생성하는 것을 특징으로 한다.
제6 실시예는 사판식 압축기의 냉매량을 산출하여 사판식 압축기가 저냉매인 상태인지 여부를 판단한다.
도 12를 참조하여, 제6 실시예를 설명하면, 제6 실시예의 사판식 압축기 제어 방법은 사판식 압축기의 압축기 동작 정보를 측정하는 측정 단계(S510); 저냉매 감지 조건인지 여부를 판단하는 단계(S520); 사판식 압축기의 저냉매 상태를 판단하는 저냉매 상태 판단 단계(S530, S540); 사판식 압축기가 저냉매 상태인 경우 에러 알람을 발생하는 에러 알람 단계(S550)를 포함한다.
사판식 압축기의 압축기 동작 정보를 측정하는 측정 단계(S510)는 스트로크와 토출 압력을 포함하는 압축기 동작 정보, 및 공기조화장치의 증발기를 관류한 공기 온도를 측정한다.
저냉매 감지 조건인지 여부를 판단하는 단계(S520)는 도 11의 제5 실시예와 동일하므로 설명을 생략한다.
사판식 압축기의 저냉매 상태를 판단하는 저냉매 상태 판단 단계(S530, S540)는 상기 스트로크와 토출 압력 및 상기 공기 온도를 이용하여 상기 사판식 압축기의 현재 냉매량을 연산하고(S530), 기 설정된 냉매량의 정상 값과 상기 현재 냉매량의 차이가 제2 기준 값(β)을 초과하는 경우, 상기 사판식 압축기를 저냉매 상태로 판단한다(S540).
사판식 압축기의 현재 냉매량 연산(S530)은 스트로크와 토출 압력 및 공기 온도를 이용하여 연산할 수 있다. 구체적으로 스트로크와 토출 압력 및 공기 온도를 이용하여 휘귀식을 만들면 공조조화장치의 시스템 내 냉매량을 예측하는 연산식을 만들 수 있다. 다양한 실시예에서 현재 냉매량 연산은 응축기의 팬(FAN) 전압, 증발기의 블로어(Blower) 전압, 증발기의 블로어(Blower)에 의해 자동차 실내로 송풍되는 외기의 온도 정보를 추가로 포함하여 회귀식을 만들 수 있다.
에러 알람 단계(S450)에서 에러 알람 발생은 경고등을 점등하거나, 또는 진단코드를 생성하는 것을 특징으로 한다.
이상에서 본 발명에 따른 바람직한 실시 예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형 예 및 수정 예를 실시할 수 있을 것으로 이해된다.

Claims (22)

  1. 사판식 압축기의 압축기 동작 정보를 측정하는 측정 단계;
    상기 측정 단계에서 측정한 압축기 동작 정보를 근거로 상기 사판식 압축기의 토크 연산값을 산출하는 토크 산출 단계;
    상기 토크 산출 단계에서 산출한 토크 연산값을 토크 설정값과 비교하는 과부하 여부 판단 단계; 및
    상기 과부하 여부 판단 단계에서 과부하 발생으로 판단하면 상기 사판식 압축기의 사판 경사각을 감소시키는 과부하 방지 단계; 를 포함하는 사판식 압축기 제어 방법.
  2. 제1항에 있어서,
    상기 측정 단계에서는 스트로크 및 분당 회전수를 포함하는 압축기 동작 정보를 측정하는 사판식 압축기 제어 방법.
  3. 제2항에 있어서,
    상기 측정 단계에서는 사판식 압축기에 구비된 스트로크 센서를 통해 상기 스트로크를 측정하는 사판식 압축기 제어 방법.
  4. 제2항에 있어서,
    상기 측정 단계에서는 토출 압력을 더 포함하는 압축기 동작 정보를 측정하는 사판식 압축기 제어 방법.
  5. 제4항에 있어서,
    상기 측정 단계에서는 흡입 압력을 더 포함하는 압축기 동작 정보를 측정하는 사판식 압축기 제어 방법.
  6. 제1항에 있어서,
    상기 측정 단계는,
    상기 사판식 압축기의 피스톤 왕복 운동 주기를 측정하는 주기 측정 단계;
    상기 주기 측정 단계에서 측정된 피스톤 왕복 운동 주기를 근거로 상기 사판식 압축기의 스트로크를 산출하는 스트로크 산출 단계; 및
    상기 주기 측정 단계에서 측정된 피스톤 왕복 운동 주기를 근거로 상기 사판식 압축기의 분당 회전수를 산출하는 RPM 산출 단계; 를 포함하는 사판식 압축기 제어 방법.
  7. 제1항에 있어서,
    상기 과부하 여부 판단 단계에서는 상기 토크 연산값이 상기 토크 설정값을 초과하면 과부하 발생으로 판단하는 사판식 압축기 제어 방법.
  8. 제1항에 있어서,
    상기 과부하 여부 판단 단계에서는 상기 토크 연산값이 상기 토크 설정값 이하이면 정상 부하로 판단하고,
    상기 과부하 여부 판단 단계에서 정상 부하로 판단하면 공기조화장치의 증발기를 관류한 공기 온도를 근거로 사판 경사각을 조절하는 냉매 토출량 조절 단계; 를 더 포함하는 사판식 압축기 제어 방법.
  9. 제8항에 있어서,
    상기 냉매 토출량 조절 단계는,
    상기 증발기를 관류한 공기 온도인 온도 측정값을 측정하는 공기 온도 측정 단계;
    상기 공기 온도 측정 단계의 공기 온도 측정값을 공기 온도 설정값과 비교하는 공기 온도 비교 단계; 및
    상기 공기 온도 비교 단계의 비교 결과를 근거로 사판 경사각을 조절하는 경사각 조절 단계; 를 포함하는 사판식 압축기 제어 방법.
  10. 제9항에 있어서,
    상기 경사각 조절 단계는,
    상기 공기 온도 비교 단계에서 상기 공기 온도 측정값이 상기 공기 온도 설정값을 초과하면 사판 경사각을 증가시키는 경사각 증가 단계; 및
    상기 공기 온도 비교 단계에서 상기 공기 온도 측정값이 상기 공기 온도 설정값 미만이면 사판 경사각을 감소시키는 경사각 감소 단계; 를 포함하는 사판식 압축기 제어 방법.
  11. 제1항에 있어서,
    상기 토크 산출 단계에서 산출한 토크 연산값을 엔진 제어 장치로 전송하는 전송 단계; 를 더 포함하는 사판식 압축기 제어 방법.
  12. 공기조화장치의 증발기를 관류한 공기 온도인 공기 온도 측정값을 측정하는 공기 온도 측정 단계;
    상기 공기 온도 측정값 및 공기 온도 설정값의 차이로부터 목표 스트로크를 산출하는 목표 스트로크 산출 단계;
    상기 목표 스트로크 산출 단계에서 산출된 목표 스트로크로부터 목표 ECV 개도량을 산출하는 목표 ECV 개도량 산출 단계; 및
    실제 ECV 개도량을 목표 ECV 개도량으로 조절하는 ECV 개도량 조절 단계; 를 포함하는 사판식 압축기 제어 방법.
  13. 제12항에 있어서,
    상기 ECV 개도량 조절 단계 이후에 측정된 스트로크와 목표 스트로크를 비교하는 스트로크 비교 단계; 를 더 포함하고,
    상기 스트로크 비교 단계에서 상기 스트로크와 상기 목표 스트로크가 불일치하면 상기 ECV 개도량 산출 단계; 및 상기 ECV 개도량 조절 단계; 를 재수행하는 사판식 압축기 제어 방법.
  14. 사판식 압축기의 분당 회전수를 측정하는 측정 단계;
    상기 측정 단계에서 측정한 분당 회전수 측정값과 분당 회전수 산출값과 비교하는 비교 단계; 및
    상기 비교 단계에서 상기 분당 회전수 측정값과 상기 분당 회전수 산출값이 다르면 클러치를 정지시키고, 에러 알람을 발생하는 보호 단계; 를 포함하고,
    상기 에러 알람 발생은
    경고등을 점등하거나, 또는 진단코드를 생성하는 것을 특징으로 하는 사판식 압축기 제어 방법.
  15. 사판식 압축기의 분당 회전수를 측정하는 측정 단계;
    상기 측정 단계에서 측정한 분당 회전수 측정값과 분당 회전수 산출값과 비교하는 비교 단계; 및
    상기 비교 단계에서 상기 분당 회전수 측정값과 상기 분당 회전수 산출값이 다르면 사판의 경사각을 최소로 감소시키고, 에러 알람을 발생하는 보호 단계; 를 포함하고,
    상기 에러 알람 발생은
    경고등을 점등하거나, 또는 진단코드를 생성하는 것을 특징으로 하는 사판식 압축기 제어 방법.
  16. 크랭크실, 실린더 보어, 흡입실, 및 토출실을 갖는 하우징;
    상기 하우징에 회전 가능하게 장착되는 회전축;
    상기 회전축에 연동되어 상기 크랭크실의 내부에서 회전되는 사판;
    상기 사판에 연동되어 상기 실린더 보어의 내부에서 왕복 운동하고, 상기 실린더 보어와 함께 압축실을 형성하는 피스톤;
    상기 피스톤의 왕복운동 주기를 측정하는 측정 장치; 및
    상기 측정 장치의 측정치를 근거로 제1항 내지 제13항 중 한 항에 따른 압축기 제어 방법을 통해 냉매 토출량 제어, 토크 제어, 슬립 방지, 및 고착 방지 중 적어도 하나를 실시하는 제어 장치; 를 포함하는 사판식 압축기.
  17. 제16항에 있어서,
    상기 측정 장치는 상기 피스톤이 왕복 운동될 때 상기 피스톤에 형성된 홈에 의한 자기장 변화를 측정하는 스트로크 센서인 사판식 압축기.
  18. 제16항에 있어서,
    토출실에 배치되어 토출 압력을 측정하는 제1 압력 센서; 를 더 포함하는 사판식 압축기.
  19. 제16항에 있어서,
    흡입실에 배치되어 흡입 압력을 측정하는 제2 압력 센서; 를 더 포함하는 사판식 압축기.
  20. 사판식 압축기의 압축기 동작 정보를 측정하는 측정 단계;
    상기 사판식 압축기의 저냉매 상태를 판단하는 저냉매 상태 판단 단계; 및
    상기 사판식 압축기가 저냉매 상태인 경우 에러 알람을 발생하는 에러 알람 단계; 를 포함하고,
    상기 에러 알람 발생은
    경고등을 점등하거나, 또는 진단코드를 생성하는 것을 특징으로 하는 사판식 압축기 제어 방법.
  21. 제20항에 있어서
    상기 측정 단계는 스트로크를 포함하는 압축기 동작 정보를 측정하고,
    상기 저냉매 상태 판단 단계는
    상기 스트로크의 현재 값과 기 설정된 상기 스트로크의 적정 값의 차이가 제1 기준 값을 초과하는 경우, 상기 사판식 압축기를 저냉매 상태로 판단하는 것을 특징으로 하는 사판식 압축기 제어 방법.
  22. 제20항에 있어서
    상기 측정 단계는 스트로크와 토출 압력을 포함하는 압축기 동작 정보, 및 공기조화장치의 증발기를 관류한 공기 온도를 측정하고,
    상기 저냉매 상태 판단 단계는
    상기 스트로크와 토출 압력 및 상기 공기 온도를 이용하여 상기 사판식 압축기의 현재 냉매량을 연산하고,
    기 설정된 냉매량의 정상 값과 상기 현재 냉매량의 차이가 제2 기준 값을 초과하는 경우, 상기 사판식 압축기를 저냉매 상태로 판단하는 것을 특징으로 하는 사판식 압축기 제어 방법.
PCT/KR2021/001892 2020-02-19 2021-02-15 사판식 압축기 제어 방법 및 사판식 압축기 WO2021167301A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112021001110.3T DE112021001110T5 (de) 2020-02-19 2021-02-15 Verfahren zur steuerung eines taumelscheibenkompressors und taumelscheibenkompressor
CN202180015119.4A CN115103960B (zh) 2020-02-19 2021-02-15 斜板型压缩机控制方法和斜板型压缩机
US17/759,008 US20230035718A1 (en) 2020-02-19 2021-02-15 Method for controlling swash plate compressor and swash plate compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0020132 2020-02-19
KR20200020132 2020-02-19
KR1020210015624A KR20210105811A (ko) 2020-02-19 2021-02-03 사판식 압축기 제어 방법 및 사판식 압축기
KR10-2021-0015624 2021-02-03

Publications (1)

Publication Number Publication Date
WO2021167301A1 true WO2021167301A1 (ko) 2021-08-26

Family

ID=77391003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001892 WO2021167301A1 (ko) 2020-02-19 2021-02-15 사판식 압축기 제어 방법 및 사판식 압축기

Country Status (3)

Country Link
US (1) US20230035718A1 (ko)
DE (1) DE112021001110T5 (ko)
WO (1) WO2021167301A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030084674A1 (en) * 2001-10-22 2003-05-08 Masahiro Kawaguchi Variable displacement type compressor, air conditioner with the variable displacement type compressor, and method for controlling displacement in the variable displacement type compressor
JP2004308633A (ja) * 2003-02-21 2004-11-04 Denso Corp リミッタ装置
KR20100035049A (ko) * 2008-09-25 2010-04-02 한라공조주식회사 자동차용 공조장치의 압축기 제어방법
KR20190002971A (ko) * 2017-06-30 2019-01-09 한온시스템 주식회사 압축기
KR20190092234A (ko) * 2018-01-29 2019-08-07 한온시스템 주식회사 압축기의 제어장치, 그에 사용되는 전자식 제어밸브 및 그를 포함한 전동 압축기

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7014428B2 (en) * 2002-12-23 2006-03-21 Visteon Global Technologies, Inc. Controls for variable displacement compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030084674A1 (en) * 2001-10-22 2003-05-08 Masahiro Kawaguchi Variable displacement type compressor, air conditioner with the variable displacement type compressor, and method for controlling displacement in the variable displacement type compressor
JP2004308633A (ja) * 2003-02-21 2004-11-04 Denso Corp リミッタ装置
KR20100035049A (ko) * 2008-09-25 2010-04-02 한라공조주식회사 자동차용 공조장치의 압축기 제어방법
KR20190002971A (ko) * 2017-06-30 2019-01-09 한온시스템 주식회사 압축기
KR20190092234A (ko) * 2018-01-29 2019-08-07 한온시스템 주식회사 압축기의 제어장치, 그에 사용되는 전자식 제어밸브 및 그를 포함한 전동 압축기

Also Published As

Publication number Publication date
CN115103960A (zh) 2022-09-23
DE112021001110T5 (de) 2023-03-02
US20230035718A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
US5724941A (en) Malfunction diagnosis device of an internal combustion engine controller
US4265091A (en) Refrigerant compressor protecting device
EP1726829B1 (en) Control apparatus for variable capacity compressor and method of calculating torque of variable capacity compressor
JP3329275B2 (ja) 車両用空調装置
US7721563B2 (en) Apparatus for and method of calculating torque of variable capacity compressor
EP1505356B1 (en) Air conditioner
WO2021167301A1 (ko) 사판식 압축기 제어 방법 및 사판식 압축기
WO2010011081A1 (ko) 압축기 및 이를 구비한 공기조화기
ITMI20060553A1 (it) Sistema di regolazione della capacita' di efflusso di un compressore ed impianto di ciclo di refrigerazione
US5983656A (en) Air conditioning system
US6848262B2 (en) Compressor device and control method for the same
JPH05345513A (ja) コンプレッサ液圧縮検出装置およびコンプレッサ制御装置
JP2003312242A (ja) 車両用冷凍サイクル装置およびその制御方法
WO2018043797A1 (ko) 압축기 및 그것을 포함하는 칠러 시스템
CN115103960B (zh) 斜板型压缩机控制方法和斜板型压缩机
KR20210105811A (ko) 사판식 압축기 제어 방법 및 사판식 압축기
US20190092130A1 (en) Refrigeration cycle device
KR102440519B1 (ko) 차량의 에어컨 컴프레셔 클러치 파손 방지 장치 및 그 제어 방법
WO2020017917A1 (ko) 가변 용량 사판식 압축기
US6826919B2 (en) Vapor-compression refrigerant cycle and lock detection device of compressor
WO2023136694A1 (ko) 용량 가변형 사판식 압축기
WO2023113290A1 (ko) 전동 압축기 및 이의 제어방법
EP1034951B1 (en) Idling engine speed control apparatus
KR100229415B1 (ko) 자동차용 에어컨의 압축기 안전장치
WO2023068603A1 (ko) 차량의 열관리 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757017

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21757017

Country of ref document: EP

Kind code of ref document: A1