WO2021166726A1 - Electroless plating primer including polymer and metal fine particles - Google Patents

Electroless plating primer including polymer and metal fine particles Download PDF

Info

Publication number
WO2021166726A1
WO2021166726A1 PCT/JP2021/004682 JP2021004682W WO2021166726A1 WO 2021166726 A1 WO2021166726 A1 WO 2021166726A1 JP 2021004682 W JP2021004682 W JP 2021004682W WO 2021166726 A1 WO2021166726 A1 WO 2021166726A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
base material
metal
monomer
copolymer
Prior art date
Application number
PCT/JP2021/004682
Other languages
French (fr)
Japanese (ja)
Inventor
有輝 星野
雄大 森元
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN202180015302.4A priority Critical patent/CN115135803A/en
Priority to KR1020227024956A priority patent/KR20220143007A/en
Priority to JP2022501817A priority patent/JPWO2021166726A1/ja
Publication of WO2021166726A1 publication Critical patent/WO2021166726A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2053Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
    • C23C18/2066Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2053Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment only one step pretreatment
    • C23C18/206Use of metal other than noble metals and tin, e.g. activation, sensitisation with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents

Definitions

  • the present invention relates to an electroless plating base material containing polymers and metal fine particles.
  • a uniform thickness film can be obtained regardless of the type and shape of the substrate simply by immersing the substrate in the plating solution, and the metal plating film can be applied to non-conductor materials such as plastics, ceramics, and glass. It is widely used in various fields such as decorative applications such as giving a sense of quality and aesthetics to resin molded bodies such as automobile parts, and wiring technology for electromagnetic shielding, printed circuit boards, large-scale integrated circuits, etc. ing. Usually, when a metal plating film is formed on a base material (object to be plated) by electroless plating, a pretreatment for improving the adhesion between the base material and the metal plating film is performed.
  • the surface to be treated is first roughened and / or made hydrophilic by various etching means, and then an adsorbent that promotes adsorption of the plating catalyst on the surface to be treated is supplied onto the surface to be treated for sensitization.
  • a treatment (sensitization) and an activation treatment (activation) in which the plating catalyst is adsorbed on the surface to be treated are performed.
  • the sensitization treatment immerses the object to be treated in an acidic solution of stannous chloride, which causes a metal (Sn 2+ ) that can act as a reducing agent to adhere to the surface to be treated. Then, the sensitized surface to be treated is immersed in an acidic solution of palladium chloride as an activation treatment.
  • the palladium ions in the solution are reduced by the metal (tin ion: Sn 2+ ) which is a reducing agent and adhere to the surface to be treated as an active palladium catalyst nucleus.
  • the metal tin ion: Sn 2+
  • it is immersed in an electroless plating solution to form a metal plating film on the surface to be treated.
  • the composition containing various highly branched polymers and metal fine particles proposed as a base material for electroless plating described above other functions on the substrate (for example, adhesion, heat resistance, photosensitivity, dielectric property, etc.) ) Is required to be added to other base resins having their respective functions, but the above-mentioned base resin is contained because it contains other base resins that do not exhibit the function as a plating base agent.
  • the agent may significantly impair the precipitation property of the plating. That is, the electroless plating base material containing the highly branched polymer and metal fine particles proposed so far has a problem that the plating precipitation property may decrease when another base resin having no function of the plating base material is added. was there.
  • the present invention has been made to solve this conventional problem, and even if a plating base material having a composition containing a base resin that imparts adhesion is used, a plating base that exhibits excellent plating precipitation property is exhibited.
  • An object of the present invention is to provide a base material capable of forming a stratum. Furthermore, an object of the present invention is to provide a new base material used as a pretreatment step of electroless plating, which can realize cost reduction in its production.
  • a polymer containing a fluorine atom specifically, a polymer having a trifluoromethyl group and a metal dispersibility group in the molecule has excellent metal dispersibility.
  • the present invention was completed by finding that a layer obtained by combining the polymer and metal fine particles and applying the polymer onto a base material has excellent plating properties as an underlayer for electroless metal plating.
  • the present invention is, as a first aspect, an electroless plating base material for forming a metal plating film on a base material by an electroless plating treatment.
  • a copolymer containing a structural unit derived from a monomer b having a double bond The present invention relates to (B) metal fine particles and (C) a base material containing a solvent.
  • a second aspect of the present invention relates to the base material according to the first aspect, which comprises a complex in which the (B) metal fine particles are adhered or coordinated to the metal dispersible group in the (A) copolymer.
  • the base material according to the first aspect or the second aspect wherein the monomer a is a compound having either a vinyl group or a (meth) acryloyl group.
  • the base material according to the third aspect wherein the monomer a is a compound represented by the following formula (1).
  • M represents a single bond, a carbonyloxy group, an amide group or a phenylene group
  • J is a linear or branched group having 1 to 10 carbon atoms having at least one trifluoromethyl group.
  • R 6 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the monomer b has either a vinyl group or a (meth) acryloyl group.
  • the base material according to the first aspect or the second aspect which is a compound.
  • the base material according to the fifth aspect, wherein the monomer b is a compound represented by the following formula (2) or (3).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • L represents O or N
  • R 2 exists only when L represents N. Representing a hydrogen atom, or R 1 and R 2 may be combined with the atom to which they are attached to form a 4- to 6-membered cyclic amide.
  • R 3 represents a hydrogen atom or a methyl group.
  • R 4 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, or an alkoxyl having 1 to 10 carbon atoms.
  • the base material according to any one of the viewpoints As a ninth aspect, the first to eighth aspects, wherein the copolymer (A) further contains a structural unit derived from a monomer c having a crosslinkable group and one radically polymerizable double bond in the molecule. Regarding the base material described in any one of the items. As a tenth aspect, the base material according to the ninth aspect, wherein the monomer c is a compound having either a vinyl group or a (meth) acryloyl group. As an eleventh aspect, the base material according to the tenth aspect, wherein the monomer c is a compound represented by the following formula (4).
  • X represents a single bond, a carbonyloxy group, an amide group or a phenylene group
  • Y is an alkylene group having 1 to 6 carbon atoms and an oxyalkylene group having 1 to 6 carbon atoms, which are branched.
  • the monomer mixture giving the (A) copolymer contains the monomer c in an amount which is 5 to 300% of the number of moles of the monomer b, and the ninth aspect to the eleventh aspect.
  • the base material according to any one of the viewpoints.
  • the metal fine particles (B) are iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), palladium (Pd), silver (Ag), tin (Sn), platinum (
  • the base material according to any one of the first to twelfth viewpoints which is a fine particle of at least one kind of metal selected from the group consisting of Pt) and gold (Au).
  • the base material according to the thirteenth aspect wherein the metal fine particles (B) are palladium fine particles.
  • the base material according to any one of the first to fifteenth aspects which contains (D) a base resin further having a non-radical polymerizable crosslinkable group.
  • a 17th viewpoint it relates to the base material according to any one of the 1st to 16th viewpoints, which further contains (E) a cross-linking agent.
  • the present invention relates to an electroless metal plating base layer composed of a film containing the electroless plating base agent according to any one of the first to seventeenth viewpoints.
  • the nineteenth aspect relates to the metal plating film formed on the base layer of the electroless metal plating according to the eighteenth aspect.
  • the present invention relates to a metal coating substrate.
  • the present invention relates to a method for producing a metal coating base material, which comprises the following steps (1) and (2).
  • the base material of the present invention can easily form a base layer for non-electrostatic plating simply by applying it on a base material. Further, according to the present invention, it is possible to form a base layer for plating which is excellent in adhesion to a substrate and does not affect the precipitation property of plating. Moreover, the base material of the present invention can be easily varnished with various compositions, and can have high metal fine particle dispersion stability. Further, since the polymer used for the base material of the present invention can be easily prepared with a small number of processes, it is possible to simplify the manufacturing process of the plating base material and reduce the manufacturing cost.
  • the electroless metal plating base layer formed from the electroless plating base agent of the present invention can easily form a metal plating film simply by immersing it in an electroless plating bath, and can easily form a base material, a base layer, and a metal.
  • a metal film base material provided with a plating film can be easily obtained. That is, even if a plating base agent containing a base resin that imparts adhesion of the present invention is used, a base layer that exhibits excellent plating precipitation can be formed on the base material.
  • the base material of the present invention is a base material containing (A) a copolymer having the above-mentioned specific structural unit, (B) metal fine particles, and (C) a solvent, and if necessary, containing other components.
  • the base material of the present invention is suitably used as a catalyst for forming a metal plating film on a substrate by electroless plating.
  • each component will be described.
  • the component (A) has a structural unit derived from a monomer a having a crosslinkable group and one radically polymerizable double bond in the molecule, and a metal dispersible group and one radically polymerizable double bond in the molecule. It is a copolymer containing a structural unit derived from the monomer b having.
  • Monomer a is a monomer having at least one trifluoromethyl group and one radically polymerizable double bond in the molecule.
  • the monomer a include a compound represented by the following formula (1).
  • M represents a single bond, a carbonyloxy group, an amide group or a phenylene group
  • J is a linear or branched group having 1 to 10 carbon atoms having at least one trifluoromethyl group.
  • R 6 represents an alkyl group having a hydrogen atom or 1 to 4 carbon atoms.
  • M represents a carbonyloxy group or an amide group
  • it can take the structures of the following formulas (1-1) to (1-3), but the structure of the formula (1-1) is preferable.
  • J is a perfluoromethyl group (that is, a trifluoromethyl group), a perfluoroethyl group, a 2,2,2-trifluoroethyl group, a 1,1,2,2,2-pentafluoroethyl group, 2,2.
  • J is preferably a 2,2,2-trifluoroethyl group, a hexafluoroisopropyl group or a 2- (perfluorohexyl) ethyl group.
  • Such a monomer a are not limited, but include the following.
  • 2,2,2-trifluoroethyl acrylate, hexafluoro-2-propyl methacrylate, 2- (perfluorohexyl) ethyl methacrylate and the like can be mentioned.
  • the monomer b is a compound having a metal dispersible group and one radically polymerizable double bond in the molecule.
  • the metal dispersible group improves the dispersibility in the composition of the metal fine particles by interacting with the metal fine particles of the component (B) such as adhesion and / or coordination, thereby forming the metal fine particles in the composition. It is a basis for stable existence.
  • a group selected from the group consisting of a group having an amide bond and a group having an imide bond is preferable.
  • the radically polymerizable double bond is preferably a compound having one of either a vinyl group or a (meth) acryloyl group.
  • the monomer b include compounds represented by the following formula (2) or formula (3).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • L represents O or N
  • R 2 exists only when L represents N. Representing a hydrogen atom, or R 1 and R 2 may be combined with the atom to which they are attached to form a 4- to 6-membered cyclic amide.
  • R 3 represents a hydrogen atom or a methyl group
  • R 4 may be a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, or a branch having 1 to 10 carbon atoms.
  • alkoxyl group or represents an alkoxyl alkyl group branched having 1 to 10 carbon atoms
  • L represents an O or N
  • R 5 is present only when L represents N
  • R 4 and R 5 may be combined with the atoms to which they are attached to form a 4- to 6-membered cyclic amide, or a 4- to 6-membered cyclic imide.
  • Examples of such a monomer b include N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, N-vinylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, and N-propyl (meth).
  • the monomer b the monomer represented by the formula (2) is preferable from the viewpoint of the coordinating ability of the monomer to the metal, the monomer having an N-vinylamide group is more preferable, and N- Vinylpyrrolidone, N-vinylformamide, and N-vinylacetamide are more preferable.
  • One of these monomers b may be used alone, or two or more thereof may be used in combination.
  • the component (A) is also a copolymer containing, in addition to the monomer a and the monomer b, a structural unit derived from the monomer c having a crosslinkable group and one radically polymerizable double bond in the molecule.
  • the crosslinkable group include an N-alkoxymethyl group, an N-hydroxymethyl group, an epoxy group which may have a substituent Q, an alicyclic epoxy group which may have a substituent Q, and a substituent Q.
  • examples thereof include an oxetane group which may be used.
  • the substituent Q include an alkyl group having 1 to 4 carbon atoms and a phenyl group which may be substituted with a halogen.
  • the monomer c include a compound represented by the following formula (4).
  • X represents a single bond, a carbonyloxy group, an amide group or a phenylene group
  • Y is an alkylene group having 1 to 6 carbon atoms, an oxyalkylene group having 1 to 6 carbon atoms, and a carbon atom.
  • Z is the number of carbon atoms having at least one trifluoromethyl group.
  • 1 to 10 represents an alkyl group having a linear or branched structure
  • R 7 represents an alkyl group having a hydrogen atom or 1 to 4 carbon atoms.
  • the alkylene group having 1 to 6 carbon atoms represented by Y may be linear or branched, and specific examples thereof are not limited, but are methylene group and ethane-1,1-diyl.
  • Oxyalkylene group having from 1 to 6 carbon atoms is, on linear, may be either branched, -O-R 8 - and an alkylene group having 1 described above as specific examples of a group which satisfies the R 8 6 It is the same.
  • Alkyl ether group having from 1 to 6 carbon atoms is, on linear, may be either branched, -R 9 -O-R 9 - is a group satisfying, the invention is not limited to specific examples of R 9 Not, but independently of each other, methylene group, ethane-1,1-diyl group, ethane-1,2-diyl group, propane-1,2-diyl group, propane-1,3-diyl group, propane-2, Examples thereof include 2-diyl group, butane-1,4-diyl group and pentane-1,5-diyl group. However the total number of carbon atoms of the two R 9 is a 6.
  • Thioalkylene groups having from 1 to 6 carbon atoms is, on linear, may be either branched, -S-R 8 - a group that satisfies R 8 are as described above.
  • the thioalkyl ether group having 1 to 6 carbon atoms may be linear or branched, and is a group satisfying —R 9 ⁇ SR 9 ⁇ , and R 9 is as described above.
  • Such a monomer c are not limited, but include the following.
  • Examples of the monomer having one radically polymerizable double bond and further having an N-alkoxymethyl group include N-butoxymethylacrylamide, N-isobutoxymethylacrylamide, N-methoxymethylacrylamide, and N-methoxymethylmethacrylamide. , N-methylol acrylamide and the like.
  • Examples of the monomer having one radically polymerizable double bond and further having an N-hydroxymethyl group include, but are not limited to, N-hydroxymethylacrylamide and N-hydroxymethylmethacrylamide. Be done.
  • the monomer having one radically polymerizable double bond and further having an epoxy group is not limited, for example, glycidyl acrylate, glycidyl methacrylate, glycidyl ⁇ -ethylacrylate, ⁇ -n-propyl.
  • Glycidyl acrylate, ⁇ -n-butyl glycidyl acrylate, acrylic acid-3,4-epoxybutyl, methacrylic acid-3,4-epoxybutyl, acrylate-6,7-epoxyheptyl, methacrylic acid-6,7- Epoxide heptyl, ⁇ -ethylacrylic acid-6,7-epoxyheptyl, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, 3,4-epoxycyclohexyl methacrylate and the like can be mentioned. ..
  • glycidyl methacrylate -6,7-epoxyheptyl methacrylate
  • o-vinylbenzyl glycidyl ether o-vinylbenzyl glycidyl ether
  • m-vinylbenzyl glycidyl ether p-vinylbenzyl glycidyl ether
  • 3,4-epoxycyclohexyl methacrylate preferably used. These may be used alone or in combination.
  • the monomer having one radically polymerizable double bond and further having an oxetane group is not limited, and examples thereof include (meth) acrylic acid ester having an oxetane group.
  • monomers 3- (methacryloyloxymethyl) oxetane, 3- (acryloyloxymethyl) oxetane, 3- (methacryloyloxymethyl) -3-ethyl-oxetan, 3- (acryloyloxymethyl) -3- Ethyl-oxetan, 3- (methacryloyloxymethyl) -2-trifluoromethyloxetane, 3- (acryloyloxymethyl) -2-trifluoromethyloxetane, 3- (methacryloyloxymethyl) -2-phenyl-oxetan, 3- (Acryloyloxymethyl) -2-phenyl-oxetan, 2- (methacryloyloxymethyl) oxe
  • other monomers can be used together with the above-mentioned monomer a, the above-mentioned monomer b, and the above-mentioned monomer c when producing the copolymer of the component (A).
  • Such other monomers include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, methoxytriethylene glycol methacrylate, and 2 -Ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, ⁇ -butyrolactone methacrylate, 2-propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclode
  • the resistance of the obtained copolymer of the component (A) to a plating solution or the like can be imparted by using the above-mentioned other monomers. ..
  • the method for obtaining the specific copolymer used in the present invention is not particularly limited, but for example, in a solvent in which the above-mentioned monomer a, the above-mentioned monomer b, the above-mentioned monomer c, and if desired, another monomer and a polymerization initiator or the like coexist, 50 It is obtained by carrying out a polymerization reaction at a temperature of about 110 ° C.
  • the solvent used is not particularly limited as long as it dissolves a monomer having a specific functional group, a monomer having no specific functional group used if desired, a polymerization initiator and the like. Specific examples will be described in ⁇ (C) Solvent> described later.
  • the specific copolymer obtained by the above method is usually in the state of a solution dissolved in a solvent.
  • the solution of the specific copolymer obtained by the above method is put into diethyl ether or water under stirring to precipitate, and the generated precipitate is filtered and washed, and then at room temperature under normal pressure or reduced pressure. It can be dried or heat-dried to obtain a powder of a specific copolymer.
  • the polymerization initiator and the unreacted monomer coexisting with the specific copolymer can be removed, and as a result, the purified powder of the specific copolymer can be obtained. If the powder cannot be sufficiently purified by one operation, the obtained powder may be redissolved in a solvent and the above operation may be repeated.
  • the specific copolymer may be used in the form of a powder or in the form of a solution in which the purified powder is redissolved in a solvent described later.
  • the specific copolymer of the component (A) may be a mixture of a plurality of types of specific copolymers.
  • the ratio of copolymerizing the monomer a and the monomer b is preferably 0.05 mol to 5 mol of the monomer a with respect to 1 mol of the monomer b, particularly from the viewpoint of reactivity and plating property. It is preferably 0.1 mol to 3 mol.
  • the ratio of copolymerizing the monomer b and the monomer c is preferably 0.05 mol to 3 mol, particularly, 0.05 mol to 3 mol of the monomer c with respect to 1 mol of the monomer b from the viewpoint of reactivity and plating property. It is preferably 0.1 mol to 1 mol.
  • the total number of moles of the monomer a and the monomer b, or the monomer a, the monomer b and the monomer are used.
  • the amount of moles is 1 to 200%, more preferably 10 to 100% of the total number of moles of c.
  • the (B) metal fine particles used in the base material of the present invention are not particularly limited, and the metal species include iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), palladium (Pd), and silver. Examples thereof include (Ag), tin (Sn), platinum (Pt) and gold (Au), and alloys thereof, and one kind of these metals may be used, or two or more kinds of alloys may be used. Among them, palladium fine particles are mentioned as preferable metal fine particles.
  • the metal oxide may be used as the metal fine particles.
  • the metal fine particles are obtained by reducing metal ions by, for example, a method of irradiating a solution of a metal salt with light with a high-pressure mercury lamp, a method of adding a compound having a reducing action (so-called reducing agent) to the solution, or the like.
  • a metal salt solution is added to a solution in which the component polymer (A) is dissolved and irradiated with ultraviolet rays, or a metal salt solution and a reducing agent are added to the solution to obtain metal ions.
  • a base material containing the component polymer (A) and the metal fine particles can be prepared while forming a complex of the component polymer (A) and the metal fine particles.
  • the reducing agent is not particularly limited, and various reducing agents can be used, and it is preferable to select the reducing agent according to the metal species and the like contained in the obtained base material.
  • Examples of the reducing agent that can be used include boron hydride metal salts such as sodium boron hydride and potassium boron hydride; aluminum lithium hydride, potassium aluminum hydride, aluminum cesium hydride, aluminum berylium hydride, and hydrogenation.
  • Aluminum hydride salts such as aluminum magnesium and aluminum hydride calcium; hydrazine compounds; citric acid and its salts; succinic acid and its salts; ascorbic acid and its salts; primary or secondary such as methanol, ethanol, isopropanol and polyols.
  • tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, diethylmethylamine, tetramethylethylenediamine [TMEDA], ethylenediaminetetraacetic acid [EDTA]; hydroxylamine; tri-n-propylphosphine, tri-n- Butylphosphine, tricyclohexylphosphine, tribenzylphosphine, triphenylphosphine, triethoxyphosphine, 1,2-bis (diphenylphosphino) ethane [DPPE], 1,3-bis (diphenylphosphino) propane [DPPP], 1 , 1'-bis (diphenylphosphino) ferrocene [DPPF], 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl [BINAP] and the like.
  • DPPE 1,2-bis (diphenylpho
  • the average particle size of the primary particles of the metal fine particles is preferably 1 to 100 nm. By setting the average particle size of the primary particles of the metal fine particles to 100 nm or less, the surface area is not reduced and sufficient catalytic activity can be obtained.
  • the average particle size of the primary particles is more preferably 75 nm or less, and particularly preferably 1 to 30 nm.
  • the average particle size of the primary particles can be measured by the following method. [Measurement of average particle size of primary particles] After dispersing the metal fine particles in ethanol, they are dropped onto a carbon support membrane and dried to prepare a sample, and then the obtained sample is microscopically subjected to a TEM device (Hitachi, Ltd .: H-8000 acceleration voltage 200 kV). The average particle size can be determined.
  • the amount of the copolymer, which is the component (A), added to the base material of the present invention is preferably 20 parts by mass or more and 10,000 parts by mass or less with respect to 100 parts by mass of the metal fine particles (B).
  • the amount of the (A) copolymer added to 100 parts by mass of the (B) metal fine particles is 20 parts by mass or more, the metal fine particles can be sufficiently dispersed, and when it is 20 parts by mass or less, the metal fine particles can be sufficiently dispersed.
  • the dispersibility of the metal fine particles is insufficient, and precipitates and agglomerates are likely to be formed. More preferably, it is 30 parts by mass or more.
  • 10,000 parts by mass or more of the (A) copolymer is added to 100 parts by mass of (B) metal fine particles, the amount of Pd per unit area after coating becomes insufficient, so that the precipitation property of plating becomes poor. It may decrease.
  • the electroless plating base material of the present invention contains the above-mentioned (A) copolymer, (B) metal fine particles, and (C) solvent, and further contains other components if necessary.
  • the copolymer which is the component (A) and the metal fine particles (B) form a composite, that is, the base material is the component (A). It is preferable to contain a composite formed by a certain copolymer and the metal fine particles (B).
  • the composite is a composite in which both of them coexist in contact with or in close contact with the metal fine particles due to the action of the metal dispersible group of the side chain of the copolymer which is the component (A), and form a particulate form.
  • it is expressed as a composite having a structure in which metal fine particles are attached or coordinated to the metal dispersible group of the copolymer which is the component (A).
  • the "adhered or coordinated structure” refers to a state in which a part or all of the metal dispersible groups of the copolymer which is the component (A) interacts with the metal fine particles, thereby forming a complex-like structure. Is considered to form. Therefore, when palladium fine particles are used as the metal fine particles, it is considered that the Pd atom on the surface layer interacts with the metal dispersible group to form a structure in which the component polymer (A) surrounds the metal fine particles.
  • the "complex" in the present invention includes not only those in which the metal fine particles and the copolymer (A) are bonded to form one complex as described above, but also the metal fine particles ( A) Copolymers as components may be included in which they exist independently without forming a bonding portion (those that appear to form one particle). ..
  • the formation of the composite of the copolymer (A) component and the (B) metal fine particles is carried out at the same time as the preparation of the base material containing the copolymer (A) component and the metal fine particles, and the method is as follows. , A method of exchanging a ligand with a polymer which is a component (A) after synthesizing metal fine particles stabilized to some extent by a metal dispersible group, or a metal ion in a solution of a polymer which is a component (A). There is a method of forming a complex by directly reducing.
  • a metal salt solution is added to a solution in which the copolymer which is the component (A) is dissolved and irradiated with ultraviolet rays, or a metal salt solution and a reducing agent are added to the solution.
  • a complex can also be formed by reducing metal ions, such as by adding them.
  • the metal ion and the copolymer (A) component are dissolved in a solvent and reduced with primary or secondary alcohols such as methanol, ethanol, 2-propanol and polyol.
  • the desired metal fine particle composite can be obtained.
  • the metal ion source used here the above-mentioned metal salt can be used.
  • the solvent to be used is not particularly limited as long as it can dissolve a polymer having a metal ion and a metal dispersible group in a required concentration or more, but specifically, methanol, ethanol, n-propanol, 2-propanol and the like.
  • Alcohols such as methylene chloride and chloroform; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran and tetrahydropyran; nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide (DMF) ), N-methyl-2-pyrrolidone (NMP) and the like; sulfoxides such as dimethyl sulfoxide and the like and a mixed solution of these solvents are mentioned, and alcohols, halogenated hydrocarbons, cyclic ethers and the like are preferable.
  • halogenated hydrocarbons such as methylene chloride and chloroform
  • cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran and tetrahydropyran
  • nitriles such as acetonitrile and butyronitrile
  • the temperature of the reduction reaction can usually be in the range of 0 ° C. to the boiling point of the solvent, and is preferably room temperature (about 25 ° C.) to 100 ° C. Is the range of.
  • the desired metal fine particle composite can be obtained by dissolving the metal ion and the copolymer (A) component in a solvent and reacting them in a hydrogen gas atmosphere.
  • the metal ion source used here include the above-mentioned metal salts, hexacarbonyl chrome [Cr (CO) 6 ], pentacarbonyl iron [Fe (Co) 5 ], and octacarbonyl dicobalt [Co 2 (CO) 8 ]. , Tetracarbonyl nickel [Ni (CO) 4 ] and other metal carbonyl complexes can be used.
  • the desired metal fine particle composite can be obtained by dissolving the metal ion and the copolymer (A) component in a solvent and causing a thermal decomposition reaction.
  • the metal ion source used here the above-mentioned metal salt, metal carbonyl complex, other zero-valent metal complex, and metal oxide such as silver oxide can be used.
  • the solvent used is not particularly limited as long as it can dissolve the metal ion and the copolymer (A) component in a required concentration or more, but specifically, methanol, ethanol, n-propanol, isopropanol, etc.
  • Alcohols such as ethylene glycol; halogenated hydrocarbons such as methylene chloride and chloroform; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran and tetrahydropyran; nitriles such as acetonitrile and butyronitrile; benzene, toluene and the like Examples thereof include aromatic hydrocarbons and a mixed solution of these solvents, and toluene is preferable.
  • the temperature at which the metal ion and the copolymer which is the component (A) having a metal dispersible group are mixed can usually be in the range of 0 ° C. to the boiling point of the solvent, and is preferably near the boiling point of the solvent, for example, toluene. In the case, it is 110 ° C. (heating reflux).
  • the composite of the copolymer and the metal fine particles, which is the component (A) thus obtained, can be in the form of a solid substance such as powder through a purification treatment such as reprecipitation.
  • the base material of the present invention contains the copolymer (A) component, (B) metal fine particles (preferably a composite composed of these), and (C) solvent, and further, if necessary.
  • the base material contains other components, and the base material may be in the form of a varnish used when forming the [base layer of electroless metal plating] described later.
  • the electroless plating base material of the present invention can contain the base resin which is the component (D), if desired.
  • the component (D) a component having a non-radical polymerizable crosslinkable group, which is a group that undergoes a crosslink reaction with the crosslinkable group in the component (A) by heat, is preferable. The one described as is preferable. By adding such a component (D), it may be possible to further improve other functions (for example, adhesion, heat resistance, photosensitivity, dielectric property, etc.) of the obtained base layer.
  • the content is 0 parts by mass based on a total of 100 parts by mass of the copolymer of the component (A) and the metal fine particles of the component (B). It is preferably from 0 part by mass to 200 parts by mass, and more preferably from 0 part by mass to 150 parts by mass. If the content of the component (D) is excessive, the plating precipitation property may decrease.
  • the electroless plating base material of the present invention can contain a cross-linking agent which is the component (E), if desired.
  • Examples of the cross-linking agent as the component (E) include an epoxy compound, a methylol compound, a blocked isocyanate compound, a phenoplast compound, a compound having two or more trialkoxysilyl groups, a compound such as an alkoxysilane compound having an amino group, an alkoxy group, and the like.
  • epoxy compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-Hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N', N', -tetraglycidyl-m-xylene diamine, 1,3-bis (N, N-diglycidyl aminomethyl) cyclohexane, and N, N, N', N'-tetraglycidyl-4, 4'-diaminodiphen
  • methylol compound examples include compounds such as alkoxymethylated glycol uryl, alkoxymethylated benzoguanamine, and alkoxymethylated melamine.
  • alkoxymethylated glycol uryl examples include 1,3,4,6-tetrax (methoxymethyl) glycol uryl, 1,3,4,6-tetrax (butoxymethyl) glycol uryl, 1,3,4. , 6-Tetrax (hydroxymethyl) glycoluryl, 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea, 1,1,3,3-tetrakis (methoxymethyl) Examples thereof include urea, 1,3-bis (hydroxymethyl) -4,5-dihydroxy-2-imidazolinone, and 1,3-bis (methoxymethyl) -4,5-dimethoxy-2-imidazolinone.
  • alkoxymethylated benzoguanamine examples include tetramethoxymethylbenzoguanamine and the like.
  • Mitsui Cytec Co., Ltd. trade name: Cymel (registered trademark) 1123
  • Sanwa Chemical Co., Ltd. trade name: Nicarac (registered trademark) BX-4000, BX-37, BL- 60, BX-55H) and the like.
  • alkoxymethylated melamine examples include hexamethoxymethylmelamine and the like.
  • Commercially available products include methoxymethyl type melamine compounds manufactured by Mitsui Cytec Co., Ltd. (trade name: Cymel (registered trademark) 300, 301, 303, 350), butoxymethyl type melamine compound (trade name: Mycoat (registered trademark)).
  • Examples of commercially available products of the melamine compound include trade name: Cymel (registered trademark) 303 (manufactured by Mitsui Cytec Co., Ltd.), and commercial products of the benzoguanamine compound include trade name: Cymel (registered trademark) 1123 ( Mitsui Cytec Co., Ltd.) and the like.
  • the above-mentioned blocked isocyanate compound has two or more isocyanate groups in one molecule in which the isocyanate group is blocked by an appropriate protective group, and when exposed to a high temperature during thermosetting, the protective group (block portion) becomes hot. It dissociates and comes off, and the generated isocyanate group causes a cross-linking reaction with the resin.
  • Such a polyfunctional blocked isocyanate compound can be obtained, for example, by reacting a polyfunctional isocyanate compound having two or more isocyanate groups in one molecule with an appropriate blocking agent.
  • polyfunctional isocyanate compound examples include 1,4-tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate, and 2,2,4-trimethyl-1,6-hexamethylene diisocyanate.
  • isocyanurate body biuret body, ethylene glycol adduct body, propylene glycol adduct body, trimethylpropane adduct body, ethanolamine adduct body, polyester polyol adduct body, polyether polyol adduct body, polyamide adduct body, polyami (Adduct body) can be mentioned.
  • the blocking agent examples include methanol, ethanol, isopropanol, n-butanol, heptanol, hexanol, 2-ethoxyhexanol, cyclohexanol, octanol, isononyl alcohol, stearyl alcohol, benzyl alcohol, 2-ethoxyethanol, methyl lactate, and the like.
  • Examples thereof include acidimides such as amides, succinateimide, maleateimide and phthalateimide, and urea compounds such as urea, thiourea and ethyleneurea. Further, it may be an internal block type due to a uretdione bond (dimerization of isocyanate groups).
  • VESTANAT [registered trademark] B1358A, B1358 / 100, B1370, VESTAGON [registered trademark] B1065, B1400, B1530, BF1320, BF1540 (all manufactured by Evonik Industries).
  • examples of the polyfunctional blocked isocyanate compound include homopolymers or copolymers obtained by radical polymerization of (meth) acrylate having a blocked isocyanate group.
  • the copolymer means a polymer obtained by polymerizing two or more kinds of monomers.
  • the copolymer may be a copolymer obtained by polymerizing two or more kinds of (meth) acrylates having a blocked isocyanate group, or polymerizing a (meth) acrylate having a blocked isocyanate group and another (meth) acrylate. It may be the obtained copolymer.
  • (meth) acrylates having such a blocked isocyanate group include, for example, Showa Denko KK Karens [registered trademark] MOI-BM, AOI-BM, MOI-BP, AOI-BP, and the like. Examples thereof include the MOI-DEM, the MOI-CP, the MOI-MP, the MOI-OEt, the MOI-OBu, and the MOI-OiPr.
  • These polyfunctional blocked isocyanate compounds may be used alone or in combination of two or more.
  • phenoplast compound examples include the following compounds, but the phenoplast compound is not limited to the following compound examples.
  • the compound having two or more trialkoxysilyl groups include 1,4-bis (trimethoxysilyl) benzene, 1,4-bis (triethoxysilyl) benzene, and 4,4'-bis (tri). Methoxysilyl) biphenyl, 4,4'-bis (triethoxysilyl) biphenyl, bis (trimethoxysilyl) ethane, bis (triethoxysilyl) ethane, bis (trimethoxysilyl) methane, bis (triethoxysilyl) methane, Bis (trimethoxysilyl) ethylene, bis (triethoxysilyl) ethylene, 1,3-bis (trimethoxysilylethyl) tetramethyldisiloxane, 1,3-bis (triethoxysilylethyl) tetramethyldisiloxane, bis ( Triethoxysilylmethyl) amine, bis (trimethoxysilylmethyl
  • alkoxysilane compound having an amino group examples include, for example, N, N'-bis [3- (trimethoxysilyl) propyl] -1,2-ethanediamine, N, N'-bis [3- (tri). Ethoxysilyl) propyl] -1,2-ethanediamine, N- [3- (trimethoxysilyl) propyl] -1,2-ethanediamine, N- [3- (triethoxysilyl) propyl] -1,2- Ethandiamine, bis- ⁇ 3- (trimethoxysilyl) propyl ⁇ amine, bis- ⁇ 3- (triethoxysilyl) propyl ⁇ amine, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, trimethoxy ⁇ 3 -(Methylamino) propylsilane, 3- (N-allylamino) propyltrimethoxysilane,
  • organic metal compound having an alkoxy group and / or a chelating ligand include, for example, diisopropoxyethylacetoneacetate aluminum, diisopropoxyacetylacetonealuminum, triacetylacetonealuminum, tetrakisisopropoxytitanium, and tetrakis.
  • N-alkoxymethylacrylamide polymer examples include N-hydroxymethyl (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, and N-butoxymethyl (meth).
  • examples thereof include polymers produced by using an acrylamide compound or a methacrylicamide compound substituted with a hydroxymethyl group such as acrylamide or an alkoxymethyl group.
  • polymers include poly (N-butoxymethylacrylamide), a copolymer of N-butoxymethylacrylamide and styrene, a copolymer of N-hydroxymethylmethacrylamide and methylmethacrylate, and N.
  • examples thereof include a copolymer of -ethoxymethylmethacrylamide and benzylmethacrylate, and a copolymer of N-butoxymethylacrylamide, benzylmethacrylate and 2-hydroxypropylmethacrylate.
  • the weight average molecular weight of such a polymer is 1,000 to 200,000, more preferably 3,000 to 150,000, and even more preferably 3,000 to 50,000.
  • Examples of the polymer of the compound having an epoxy group include a polymer produced by using a compound having an epoxy group such as glycidyl methacrylate, 3,4-epoxycyclohexylmethylmethacrylate, and 3,4-epoxycyclohexylmethylmethacrylate. Be done.
  • polymers include poly (3,4-epoxycyclohexylmethylmethacrylate), poly (glycidylmethacrylate), copolymers of glycidylmethacrylate and methylmethacrylate, and 3,4-epoxycyclohexylmethylmethacrylate.
  • examples thereof include a copolymer with methyl methacrylate and a copolymer with glycidyl methacrylate and styrene.
  • the weight average molecular weight of such a polymer is 1,000 to 200,000, more preferably 3,000 to 150,000, and even more preferably 3,000 to 50,000.
  • Examples of the polymer of the compound having an alkoxysilyl group described above include a polymer produced by using a compound having an alkoxysilyl group such as 3-methacryloxypropyltrimethoxysilane.
  • polymers include poly (3-methacryloxypropyltrimethoxysilane), a copolymer of 3-methacryloxypropyltrimethoxysilane and styrene, and 3-methacryloxypropyltrimethoxysilane and methyl.
  • examples thereof include a copolymer with methacrylate.
  • the weight average molecular weight of such a polymer is 1,000 to 200,000, more preferably 3,000 to 150,000, and even more preferably 3,000 to 50,000.
  • poly ((meth) acryloxypropyltrimethoxysilane) means a poly (meth) acrylate having an alkoxysilyl group.
  • the content is 0 parts by mass based on a total of 100 parts by mass of the copolymer of the component (A) and the metal fine particles of the component (B). It is preferably from 0 parts by mass to 100 parts by mass, and more preferably from 0 parts by mass to 50 parts by mass.
  • additives such as a surfactant, various surface conditioners, and thickeners may be appropriately added as long as the effects of the present invention are not impaired.
  • surfactant examples include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether; polyoxyethylene octylphenyl ether and polyoxy.
  • Polyoxyethylene alkylaryl ethers such as ethylene nonylphenyl ether; polyoxyethylene / polyoxypropylene block copolymers; sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan tristearate, Solbitan fatty acid esters such as sorbitan trioleate; polyoxyethylene nonionic surfactants such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, and polyoxyethylene sorbitan trioleate.
  • EF Top (registered trademark) EF-301, EF-303, EF-352 [above, manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd.], Megafuck (registered trademark) F-171, F-173, R -08, R-30 [above, manufactured by DIC Co., Ltd.], Novec (registered trademark) FC-430, FC-431 [above, manufactured by Sumitomo 3M Co., Ltd.], Asahi Guard (registered trademark) AG-710 Fluorine-based surfactants such as [manufactured by Asahi Glass Co., Ltd.] and Surflon (registered trademark) S-382 [manufactured by AGC Seimi Chemical Co., Ltd.] can be mentioned.
  • a silicone-based leveling agent such as Shin-Etsu Silicone (registered trademark) KP-341 [manufactured by Shin-Etsu Chemical Co., Ltd.]; BYK (registered trademark) -302, 307, 322, 323. , 330, 333, 370, 375, 378 [above, manufactured by Big Chemie Japan Co., Ltd.] and the like.
  • thickener examples include polyacrylic acids (including crosslinked ones) such as carboxyvinyl polymer (carbomer); polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyvinyl acetate (PVAc), and polystyrene (PS). ) And other vinyl polymers; polyethylene oxides; polyester; polycarbonate; polyamide; polyurethane; dextrin, agar, caraginan, alginic acid, Arabic gum, guar gum, tragant gum, locust bean gum, starch, pectin, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose Polysaccharides such as, and proteins such as gelatin and casein.
  • polyacrylic acids including crosslinked ones
  • carboxyvinyl polymer carboxyvinyl polymer
  • PVP polyvinylpyrrolidone
  • PVA polyvinyl alcohol
  • PVAc polyvinyl acetate
  • PS polyst
  • each of the above polymers includes not only homopolymers but also copolymers. These thickeners may be used alone or in combination of two or more.
  • the viscosity and rheological characteristics of the base material can be adjusted by adding a thickener as necessary, and the base material can be appropriately applied according to the application method, application location, and the like. Can be adopted / selected.
  • additives may be used alone or in combination of two or more.
  • the amount of the additive used is preferably 0.001 to 50 parts by mass, preferably 0.005 parts by mass, based on 100 parts by mass of the complex formed of the polymer as the component (A) and the metal fine particles as the component (B). To 10 parts by mass is more preferable, and 0.01 to 5 parts by mass is even more preferable.
  • the electroless plating base material of the present invention described above can be applied onto a base material to form an electroless metal plating base layer.
  • the base layer of this electroless metal plating is also an object of the present invention.
  • the base material is not particularly limited, but a non-conductive base material or a conductive base material can be preferably used.
  • the non-conductive base material include glass, ceramic, etc .; polyethylene resin, polypropylene resin, vinyl chloride resin, nylon (polyamide resin), polyimide resin, polycarbonate resin, acrylic resin, PEN (polyethylene naphthalate) resin, PET (polyethylene).
  • examples thereof include terephthalate) resin, PEEK (polyether ether ketone) resin, ABS (acrylonitrile-butadiene-styrene copolymer) resin, epoxy resin, polyacetal resin, LCP (liquid crystal polymer) resin, and the like.
  • the conductive substrate examples include ITO (tin-doped indium oxide), ATO (antimon-doped tin oxide), FTO (fluorine-doped tin oxide), AZO (aluminum-doped zinc oxide), GZO (gallium-doped zinc oxide), and the like.
  • a base material in which a thin film is formed of these conductive base materials on the non-conductive base material can also be used. Further, the base material may be a three-dimensional molded product.
  • the component polymer (A) and fine metal particles (B) preferably a composite composed of these
  • the component polymer (A) and fine metal particles (B) are used.
  • (And, if necessary, (D) base resin, (E) cross-linking agent and other components) are dissolved or dispersed in (C) solvent to form a varnish, and the varnish is used as a group to form a metal plating film.
  • bar coating method, flexographic printing, gravure printing, spin coating method, spray coating method, inkjet method, pen lithography, contact printing, ⁇ CP, NIL and nTP are preferable.
  • spin coating method since it can be applied in a single time, there is an advantage that even a highly volatile solution can be used and a highly uniform application can be performed.
  • spray coating method a highly uniform coating can be performed with a very small amount of varnish, which is industrially very advantageous.
  • the inkjet method, pen lithography, contact printing, ⁇ CP, NIL, or nTP is used, fine patterns such as wiring can be efficiently formed (drawn), which is industrially very advantageous.
  • the solvent used here the polymer which is the component (A), (B) fine metal particles (preferably a composite composed of these), and optionally the component (D), the component (E) and other components are dissolved.
  • the solvent used here it is not particularly limited as long as it disperses, but for example, water; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, chlorobenzene and dichlorobenzene; methanol, ethanol, n-propanol, isopropanol, n-butanol, and the like.
  • Alcohols such as 2-butanol, n-hexanol, n-octanol, 2-octanol, 2-ethylhexanol; cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, phenyl cellosolve; propylene glycol monomethyl ether (PGME), propylene glycol Monoethyl ether, propylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, triethylene glycol monomethyl ether, tripropylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, Glycol ethers such as diethylene glycol dibutyl ether, diethylene glycol ethyl methyl ether, diethylene glycol
  • solvents may be used alone or may be a mixture of two or more kinds of solvents.
  • glycols such as ethylene glycol, propylene glycol and butylene glycol may be added for the purpose of adjusting the viscosity of the varnish.
  • concentration to be dissolved or dispersed in the solvent is arbitrary, but the concentration of the non-solvent component in the varnish [the polymer which is the component ((A)) and the metal fine particles (B) (preferably) of all the components except the solvent contained in the base material. Concentration of (complex composed of these), optionally (D) base polymer, (E) cross-linking agent, other components, etc.)] is 0.05 to 90% by mass, preferably 0.1 to 80% by mass. be.
  • the method for drying the solvent is not particularly limited, and for example, it may be evaporated in an appropriate atmosphere, that is, in an atmosphere, an inert gas such as nitrogen, or in a vacuum, using a hot plate or an oven. This makes it possible to obtain a base layer having a uniform film-forming surface.
  • the firing temperature is not particularly limited as long as the solvent can be evaporated, but it is preferably performed at 40 to 250 ° C.
  • electroless plating, metal plating film, metal film base material By electroless plating the base layer of the electroless metal plating formed on the base material obtained as described above, a metal plating film is formed on the base layer.
  • the metal plating film thus obtained, and the metal coating base material provided on the base material in the order of the electroless metal plating base layer and the metal plating film are also the objects of the present invention.
  • the electroless plating treatment (process) is not particularly limited and can be performed by any generally known electroless plating treatment.
  • the plating is performed using a conventionally known electroless plating solution.
  • a general method is to immerse the base layer of electroless metal plating formed on the base material in a liquid (bath).
  • the electroless plating solution mainly contains a metal ion (metal salt), a complexing agent, and a reducing agent, and is a pH adjuster, a pH buffer, and a reaction accelerator (second complexing agent) according to other uses.
  • a metal ion metal salt
  • a complexing agent for improving the wettability of the surface to be treated, etc.
  • second complexing agent for imparting gloss to the plating film, for improving the wettability of the surface to be treated, etc.
  • the metal used for the metal plating film formed by electroless plating include iron, cobalt, nickel, copper, palladium, silver, tin, platinum, gold and alloys thereof, which are appropriately selected according to the purpose. Will be done.
  • the complexing agent and the reducing agent may be appropriately selected according to the metal ions.
  • a commercially available electroless plating solution may be used as the electroless plating solution.
  • an electroless nickel plating chemical (Melplate (registered trademark) NI series) manufactured by Meltex Co., Ltd. and an electroless copper plating chemical (Melplate (Melplate)) may be used.
  • Electroless nickel plating solution (ICP Nicolon (registered trademark) series, Top Piena 650) manufactured by Okuno Pharmaceutical Co., Ltd., electroless copper plating solution (OPC-700 electroless copper MK, ATS Ad Copper IW, CT, OPC Copper (registered trademark) AF series, HFS, NCA), electroless tin plating solution (Substar SN-5), electroless gold plating solution (flash gold 330, self gold OTK) -IT), electroless silver plating solution (Muden Silver); electroless palladium plating solution (pallet II) manufactured by Kojima Chemical Co., Ltd., electroless gold plating solution (Dip G series, NC gold series); Sasaki Chemical Electroless silver plating solution manufactured by Yakuhin Co., Ltd.
  • ICP Nicolon (registered trademark) series, Top Piena 650) manufactured by Okuno Pharmaceutical Co., Ltd. electroless copper plating solution (OPC-700 electroless copper MK, ATS Ad Copper IW, CT
  • Electroless copper plating solution (Print Gant (registered trademark) PV, PVE) manufactured by Atotech Japan Co., Ltd. can be preferably used.
  • the formation speed of the metal film is adjusted by adjusting the temperature, pH, immersion time, metal ion concentration, presence / absence of stirring and stirring speed, presence / absence of supply of air / oxygen, supply speed, and the like. And the film thickness can be controlled.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • HEA 2-Hydroxyethyl acrylate
  • NVA N-Vinylacetamide
  • GMA Glycidyl methacrylate cyclomer
  • M100 3,4-Epoxycyclohexylmethylmethacrylate (manufactured by Daicel)
  • Viscoat 3F 2,2,2-trifluoroethyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
  • HFIP-M Hexafluoro-2-propyl methacrylate (manufactured by Central Glass)
  • FAMAC-6 2- (Perfluorohexyl) Ethyl Methacrylate (manufactured by Unimatec)
  • AMBN 2,2'-azobis-2-methylbutyronitrile
  • PGME propylene glycol monomethyl ether
  • IPE diisopropyl ether
  • BL-10 polyvinyl acetal resin
  • ⁇ Synthesis example 1> A polymer solution (solid content concentration: 30 mass) obtained by dissolving 2.03 g of styrene, 1.63 g of NVA, 2.23 g of HEA, and 0.29 g of AMBN in 14.37 g of PGME and reacting at 80 ° C. for 20 hours. %) was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P1). The obtained polymer had Mn of 6,806 and Mw of 11,797.
  • the solution (solid content concentration: 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer.
  • the precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P4).
  • the obtained copolymer had Mn of 7,669 and Mw of 16,610.
  • the coalesced solution (solid content concentration: 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer.
  • the precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P5).
  • the obtained copolymer had Mn of 6,146 and Mw of 13,143.
  • the coalesced solution (solid content concentration: 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer.
  • the precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P7).
  • the obtained copolymer had Mn of 5,257 and Mw of 9,324.
  • this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite.
  • the precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M1) as a black powder.
  • this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite.
  • the precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M2) as a black powder.
  • this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite.
  • the precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M3) as a black powder.
  • this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite.
  • the precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M4) as a black powder.
  • this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite.
  • the precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M5) as a black powder.
  • this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite.
  • the precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M6) as a black powder.
  • this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite.
  • the precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M7) as a black powder.
  • this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite.
  • the precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M8) as a black powder.
  • this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite.
  • the precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M9) as a black powder.
  • this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite.
  • the precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M10) as a black powder.
  • this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite.
  • the precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M11) as a black powder.
  • this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite.
  • the precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M12) as a black powder.
  • this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite.
  • the precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M13) as a black powder.
  • the components (C) and (D) were added to the complexes M1 to M13 of the Pd particles at the ratios shown in Table 1 below to prepare an electroless plating base material.
  • the electroless plating base material containing M1 to M3 is used as a comparative example.
  • Examples include electroless plating base materials containing M4 to M13, respectively.
  • Preparation of plating solution ⁇ Preparation Example 1> 200 mL Beaker with 100 mL of pure water, Basic Print Gantt V (Atotech) 17 mL, Copper Solution Print Gantt V (Atotech) 9 mL, Starter Print Gantt PV (Atotech) 1.6 mL, Stabilizer Print Gantt PV (Atotech) 0. 24 mL, reducer Cu (manufactured by Atotech) 3.2 mL, 18.5 mass% NaOH aqueous solution 4 mL were charged, and pure water was further added to bring the total volume of the solution to 200 mL. This solution was stirred to obtain an electroless copper plating solution.
  • Plating is uniformly deposited on the entire surface of the coating film.
  • X Plating is not uniformly deposited on the entire surface of the coating film.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Chemically Coating (AREA)

Abstract

[Problem] To provide an electroless plating primer that includes a polymer and metal fine particles. [Solution] An electroless plating primer for forming a metal plating film on a base material by electroless plating treatment, wherein the primer includes (A) a copolymer that includes a structural unit derived from a monomer a having at least one trifluoromethyl group and one radical polymerizable double bond in the molecule and a structural unit derived from a monomer b having a metal dispersive group and one radical polymerizable double bond in the molecule, (B) metal fine particles, and (C) a solvent.

Description

高分子及び金属微粒子を含む無電解めっき下地剤Electroless plating base material containing polymer and metal fine particles
 本発明は、高分子、金属微粒子を含む無電解めっき下地剤に関する。 The present invention relates to an electroless plating base material containing polymers and metal fine particles.
 無電解めっきは、基材をめっき液に浸漬するだけで、基材の種類や形状に関係なく厚さの均一な被膜が得られ、プラスチックやセラミック、ガラス等の不導体材料にも金属めっき膜を形成できることから、例えば、自動車部品などの樹脂成形体への高級感や美観の付与といった装飾用途や、電磁遮蔽、プリント基板及び大規模集積回路等の配線技術など、種々の分野において幅広く用いられている。
 通常、無電解めっきにより基材(被めっき体)上に金属めっき膜を形成する場合、基材と金属めっき膜の密着性を高めるための前処理が行われる。具体的には、まず種々のエッチング手段によって被処理面を粗面化及び/又は親水化し、次いで、被処理面上へのめっき触媒の吸着を促す吸着物質を被処理面上に供給する感受性化処理(sensitization)と、被処理面上にめっき触媒を吸着させる活性化処理(activation)とを行う。典型的には、感受性化処理は塩化第一スズの酸性溶液中に被処理物を浸漬し、これにより、還元剤として作用し得る金属(Sn2+)が被処理面に付着する。そして、感受性化された被処理面に対して、活性化処理として塩化パラジウムの酸性溶液中に被処理物を浸漬させる。これにより、溶液中のパラジウムイオンは還元剤である金属(スズイオン:Sn2+)によって還元され、活性なパラジウム触媒核として被処理面に付着する。こうした前処理後、無電解めっき液に浸漬して、金属めっき膜を被処理面上に形成する。
In non-electrolytic plating, a uniform thickness film can be obtained regardless of the type and shape of the substrate simply by immersing the substrate in the plating solution, and the metal plating film can be applied to non-conductor materials such as plastics, ceramics, and glass. It is widely used in various fields such as decorative applications such as giving a sense of quality and aesthetics to resin molded bodies such as automobile parts, and wiring technology for electromagnetic shielding, printed circuit boards, large-scale integrated circuits, etc. ing.
Usually, when a metal plating film is formed on a base material (object to be plated) by electroless plating, a pretreatment for improving the adhesion between the base material and the metal plating film is performed. Specifically, the surface to be treated is first roughened and / or made hydrophilic by various etching means, and then an adsorbent that promotes adsorption of the plating catalyst on the surface to be treated is supplied onto the surface to be treated for sensitization. A treatment (sensitization) and an activation treatment (activation) in which the plating catalyst is adsorbed on the surface to be treated are performed. Typically, the sensitization treatment immerses the object to be treated in an acidic solution of stannous chloride, which causes a metal (Sn 2+ ) that can act as a reducing agent to adhere to the surface to be treated. Then, the sensitized surface to be treated is immersed in an acidic solution of palladium chloride as an activation treatment. As a result, the palladium ions in the solution are reduced by the metal (tin ion: Sn 2+ ) which is a reducing agent and adhere to the surface to be treated as an active palladium catalyst nucleus. After such pretreatment, it is immersed in an electroless plating solution to form a metal plating film on the surface to be treated.
 これに対して、アンモニウム基を有する高分岐ポリマー及び金属微粒子を含む組成物を無電解めっきの下地剤(めっき触媒)として使用した例が報告され、従来の無電解めっき処理の前処理工程(粗面化処理)において問題となっていたクロム化合物(クロム酸)の使用を回避し、また前処理の工程数を削減するなど、環境面やコスト面、煩雑な操作性などの種々の改善を図った無電解めっき下地剤の提案がなされている(特許文献1)。 On the other hand, an example in which a composition containing a highly branched polymer having an ammonium group and metal fine particles is used as a base material (plating catalyst) for electroless plating has been reported, and a pretreatment step (coarse) of the conventional electroless plating treatment has been reported. Various improvements such as environmental aspects, cost aspects, and complicated operability have been achieved, such as avoiding the use of chromium compounds (chromic acid), which has been a problem in surface treatment), and reducing the number of pretreatment steps. A proposal for an electroless plating base material has been made (Patent Document 1).
国際特許出願公開第2012/141215号パンフレットInternational Patent Application Publication No. 2012/141215 Pamphlet
 上述の無電解めっきの下地剤として提案された種々の高分岐ポリマー及び金属微粒子を含む組成物にあっては、基板上への他の機能(例えば密着性、耐熱性、感光性、誘電性等)を付与するためにそれぞれの機能を有する他のベース樹脂を添加することが必要とされるが、めっき下地剤としての機能を発揮しない他のベース樹脂が含有されていることで、上記の下地剤はめっきの析出性を著しく損なうことがある。
 すなわち、これまで提案された高分岐ポリマー及び金属微粒子を含む無電解めっき下地剤は、めっき下地剤の機能を有しない他のベース樹脂を添加したとき、めっき析出性が低下することがあるという問題があった。
 本発明はこの従来の課題を解決すべくなされたものであって、密着性を付与するベース樹脂が配合されている組成のめっき下地剤を用いても、優れためっき析出性を発現するめっき下地層を形成できる下地剤の提供を目的とする。さらに本発明はその製造においても低コスト化を実現できる、無電解めっきの前処理工程として用いられる新たな下地剤の提供を目的とする。
In the composition containing various highly branched polymers and metal fine particles proposed as a base material for electroless plating described above, other functions on the substrate (for example, adhesion, heat resistance, photosensitivity, dielectric property, etc.) ) Is required to be added to other base resins having their respective functions, but the above-mentioned base resin is contained because it contains other base resins that do not exhibit the function as a plating base agent. The agent may significantly impair the precipitation property of the plating.
That is, the electroless plating base material containing the highly branched polymer and metal fine particles proposed so far has a problem that the plating precipitation property may decrease when another base resin having no function of the plating base material is added. was there.
The present invention has been made to solve this conventional problem, and even if a plating base material having a composition containing a base resin that imparts adhesion is used, a plating base that exhibits excellent plating precipitation property is exhibited. An object of the present invention is to provide a base material capable of forming a stratum. Furthermore, an object of the present invention is to provide a new base material used as a pretreatment step of electroless plating, which can realize cost reduction in its production.
 本発明者らは、上記目的を達成するために鋭意検討した結果、フッ素原子を含有するポリマー具体的には、分子内にトリフルオロメチル基及び金属分散性基を有するポリマーが優れた金属分散性を有し、該ポリマーと金属微粒子とを組み合わせ、これを基材上に塗布して得られる層が、無電解金属めっきの下地層としてめっき性に優れることを見出し、本発明を完成させた。 As a result of diligent studies to achieve the above object, the present inventors have found that a polymer containing a fluorine atom, specifically, a polymer having a trifluoromethyl group and a metal dispersibility group in the molecule has excellent metal dispersibility. The present invention was completed by finding that a layer obtained by combining the polymer and metal fine particles and applying the polymer onto a base material has excellent plating properties as an underlayer for electroless metal plating.
 すなわち本発明は、第1観点として、基材上に無電解めっき処理により金属めっき膜を形成するための無電解めっき下地剤であって、
(A)分子内に少なくとも1個のトリフルオロメチル基及び1個のラジカル重合性二重結合を有するモノマーaに由来する構成単位と、分子内に金属分散性基及び1個のラジカル重合性二重結合を有するモノマーbに由来する構成単位を含む共重合体、
(B)金属微粒子、及び
(C)溶剤
を含む下地剤に関する。
 第2観点として、前記(A)共重合体中の金属分散性基に、前記(B)金属微粒子が付着又は配位した複合体を含む、第1観点に記載の下地剤に関する。
 第3観点として、前記モノマーaが、ビニル基及び(メタ)アクリロイル基の何れか一方を有する化合物である、第1観点又は第2観点に記載の下地剤に関する。
 第4観点として、前記モノマーaが、下式(1)で表される化合物である第3観点に記載の下地剤に関する。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Mは、単結合、カルボニルオキシ基、アミド基又はフェニレン基を表し、Jは、少なくとも1個のトリフルオロメチル基を有する炭素原子数1乃至は10の直鎖または分岐構造のアルキル基を表し、Rは水素原子又は炭素原子数1ないし4のアルキル基を表す。) 第5観点として、前記モノマーbが、ビニル基及び(メタ)アクリロイル基の何れか一方を有する化合物である、第1観点又は第2観点に記載の下地剤に関する。
 第6観点として、前記モノマーbが、下式(2)又は(3)で表される化合物である第5観点に記載の下地剤に関する。
Figure JPOXMLDOC01-appb-C000005
(式(2)中、Rは、水素原子又は炭素原子数1乃至6のアルキル基を表し、Lは、O又はNを表し、Rは、LがNを表す場合にのみ存在し、水素原子を表すか、又は、R及びRは、それらが結合する原子と一緒になって、4乃至6員の環状アミドを形成してもよい。
式(3)中、Rは水素原子またはメチル基を表し、
は水素原子又は炭素原子数1乃至10の分岐しても良いアルキル基、炭素原子数1乃至10の分岐しても良いアルコキシル基又は、炭素原子数1乃至10の分岐しても良いアルコキシルアルキル基を表し、Lは、O又はNを表し、Rは、LがNを表す場合にのみ存在し、水素原子を表すか、又は、R及びRは、それらが結合する原子と一緒になって、4乃至6員の環状アミド、又は、4乃至6員の環状イミドを形成してもよい。)
 第7観点として、前記モノマーbがN-ビニルピロリドン、N-ビニルアセトアミド又はN-ビニルホルムアミドである第6観点に記載の下地剤に関する。
 第8観点として、前記(A)共重合体を与えるモノマー混合物は、前記モノマーbのモル数に対して5~500%のモル数となる量の前記モノマーaを含む、第1観点乃至第7観点のうちいずれか一項に記載の下地剤に関する。
 第9観点として、前記共重合体(A)が、分子内に架橋性基及び1個のラジカル重合性二重結合を有するモノマーcに由来する構成単位を更に含む第1観点乃至第8観点のうちのいずれか一項に記載の下地剤に関する。
 第10観点として、前記モノマーcが、ビニル基及び(メタ)アクリロイル基の何れか一方を有する化合物である、第9観点に記載の下地剤に関する。
 第11観点として、前記モノマーcが、下式(4)で表される化合物である第10観点に記載の下地剤に関する。
Figure JPOXMLDOC01-appb-C000006
(式(4)中、Xは、単結合、カルボニルオキシ基、アミド基又はフェニレン基を表し、Yは炭素原子数1ないし6のアルキレン基、炭素原子数1ないし6のオキシアルキレン基、分岐しても良い炭素原子数1ないし6のアルキルエーテル基、炭素原子数1ないし6のチオアルキレン基又は炭素原子数1ないし6のチオアルキルエーテル基を表し、Zは、架橋性基を表し、Rは水素原子又は炭素原子数1ないし4のアルキル基を表す。)
 第12観点として、前記(A)共重合体を与えるモノマー混合物は、前記モノマーbのモル数に対して5~300%のモル数となる量の前記モノマーcを含む、第9観点乃至第11観点のうちいずれか一項に記載の下地剤に関する。
 第13観点として、前記(B)金属微粒子が、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)、銀(Ag)、スズ(Sn)、白金(Pt)及び金(Au)からなる群より選択される少なくとも一種の金属の微粒子である、第1観点乃至第12観点のうちいずれか一項に記載の下地剤に関する。
 第14観点として、前記(B)金属微粒子が、パラジウム微粒子である、第13観点に記載の下地剤に関する。
 第15観点として、前記(B)金属微粒子が、1~100nmの一次粒子平均粒径を有する微粒子である、第1観点乃至第14観点のうちいずれか一項に記載の下地剤に関する。
 第16観点として、(D)非ラジカル重合性架橋性基をさらに有するベース樹脂を含有する第1観点乃至第15観点の何れか一項に記載の下地剤に関する。
 第17観点として、(E)架橋剤をさらに含有する第1観点乃至第16観点の何れか一項に記載の下地剤に関する。
 第18観点として、第1観点乃至第17観点のうち何れか一項に記載の無電解めっき下地剤を含む膜からなる、無電解金属めっきの下地層に関する。
 第19観点として、第18観点に記載の無電解金属めっきの下地層の上に形成された金属めっき膜に関する。
 第20観点として、基材と、該基材上に形成された第18観点に記載の無電解金属めっきの下地層と、該無電解金属めっきの下地層の上に形成された金属めっき膜とを具備する、金属被膜基材に関する。
 第21観点として、下記(1)工程及び(2)工程を含む、金属被膜基材の製造方法に関する。
(1)工程:第1観点乃至第17観点のうち何れか一つに記載の無電解めっき下地剤を基材上に塗布し、無電解金属めっきの下地層を該基材の上に形成する工程、
(2)工程:該下地層を形成した基材を無電解めっき浴に浸漬し、金属めっき膜を該下地層の上に形成する工程。
That is, the present invention is, as a first aspect, an electroless plating base material for forming a metal plating film on a base material by an electroless plating treatment.
(A) A structural unit derived from a monomer a having at least one trifluoromethyl group and one radically polymerizable double bond in the molecule, and a metal dispersible group and one radically polymerizable double bond in the molecule. A copolymer containing a structural unit derived from a monomer b having a double bond,
The present invention relates to (B) metal fine particles and (C) a base material containing a solvent.
A second aspect of the present invention relates to the base material according to the first aspect, which comprises a complex in which the (B) metal fine particles are adhered or coordinated to the metal dispersible group in the (A) copolymer.
As a third aspect, the base material according to the first aspect or the second aspect, wherein the monomer a is a compound having either a vinyl group or a (meth) acryloyl group.
As a fourth aspect, the base material according to the third aspect, wherein the monomer a is a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000004
(In the formula (1), M represents a single bond, a carbonyloxy group, an amide group or a phenylene group, and J is a linear or branched group having 1 to 10 carbon atoms having at least one trifluoromethyl group. Represents an alkyl group of structure, R 6 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.) As a fifth aspect, the monomer b has either a vinyl group or a (meth) acryloyl group. The base material according to the first aspect or the second aspect, which is a compound.
As a sixth aspect, the base material according to the fifth aspect, wherein the monomer b is a compound represented by the following formula (2) or (3).
Figure JPOXMLDOC01-appb-C000005
(In the formula (2), R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, L represents O or N, and R 2 exists only when L represents N. Representing a hydrogen atom, or R 1 and R 2 may be combined with the atom to which they are attached to form a 4- to 6-membered cyclic amide.
In formula (3), R 3 represents a hydrogen atom or a methyl group.
R 4 is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, an alkoxyl group having 1 to 10 carbon atoms, or an alkoxyl having 1 to 10 carbon atoms. Representing an alkyl group, L represents O or N, R 5 is present only if L represents N and represents a hydrogen atom, or R 4 and R 5 are with the atom to which they are attached. Together, they may form a 4- to 6-membered cyclic amide or a 4- to 6-membered cyclic imide. )
As a seventh aspect, the base material according to the sixth aspect, wherein the monomer b is N-vinylpyrrolidone, N-vinylacetamide or N-vinylformamide.
As an eighth aspect, the monomer mixture giving the (A) copolymer contains the monomer a in an amount that is 5 to 500% of the number of moles of the monomer b, from the first aspect to the seventh aspect. The base material according to any one of the viewpoints.
As a ninth aspect, the first to eighth aspects, wherein the copolymer (A) further contains a structural unit derived from a monomer c having a crosslinkable group and one radically polymerizable double bond in the molecule. Regarding the base material described in any one of the items.
As a tenth aspect, the base material according to the ninth aspect, wherein the monomer c is a compound having either a vinyl group or a (meth) acryloyl group.
As an eleventh aspect, the base material according to the tenth aspect, wherein the monomer c is a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000006
(In the formula (4), X represents a single bond, a carbonyloxy group, an amide group or a phenylene group, and Y is an alkylene group having 1 to 6 carbon atoms and an oxyalkylene group having 1 to 6 carbon atoms, which are branched. May represent an alkyl ether group having 1 to 6 carbon atoms, a thioalkylene group having 1 to 6 carbon atoms or a thioalkyl ether group having 1 to 6 carbon atoms, where Z represents a crosslinkable group and R 7 Represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
As a twelfth aspect, the monomer mixture giving the (A) copolymer contains the monomer c in an amount which is 5 to 300% of the number of moles of the monomer b, and the ninth aspect to the eleventh aspect. The base material according to any one of the viewpoints.
From the thirteenth viewpoint, the metal fine particles (B) are iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), palladium (Pd), silver (Ag), tin (Sn), platinum ( The base material according to any one of the first to twelfth viewpoints, which is a fine particle of at least one kind of metal selected from the group consisting of Pt) and gold (Au).
As a fourteenth aspect, the base material according to the thirteenth aspect, wherein the metal fine particles (B) are palladium fine particles.
As a fifteenth viewpoint, the base material according to any one of the first to fourteenth viewpoints, wherein the metal fine particles (B) are fine particles having a primary particle average particle size of 1 to 100 nm.
As a sixteenth aspect, the base material according to any one of the first to fifteenth aspects, which contains (D) a base resin further having a non-radical polymerizable crosslinkable group.
As a 17th viewpoint, it relates to the base material according to any one of the 1st to 16th viewpoints, which further contains (E) a cross-linking agent.
As the eighteenth viewpoint, the present invention relates to an electroless metal plating base layer composed of a film containing the electroless plating base agent according to any one of the first to seventeenth viewpoints.
The nineteenth aspect relates to the metal plating film formed on the base layer of the electroless metal plating according to the eighteenth aspect.
As a twentieth viewpoint, a base material, an electroless metal plating base layer formed on the base material according to the eighteenth viewpoint, and a metal plating film formed on the electroless metal plating base layer. The present invention relates to a metal coating substrate.
As a 21st viewpoint, the present invention relates to a method for producing a metal coating base material, which comprises the following steps (1) and (2).
(1) Step: The electroless plating base material according to any one of the first to 17th viewpoints is applied onto a base material, and an electroless metal plating base layer is formed on the base material. Process,
(2) Step: A step of immersing the base material on which the base layer is formed in an electroless plating bath to form a metal plating film on the base layer.
 本発明の下地剤は、基材上に塗布するだけで容易に無電属めっきの下地層を形成することができる。また本発明によれば、基板への密着性に優れ、めっきの析出性を影響しないめっきの下地層を形成することができる。しかも本発明の下地剤は、様々な組成にて容易にワニス化が可能であり、高い金属微粒子分散安定性を有するものとすることができる。
 さらに、本発明の下地剤に使用するポリマーは、少ないプロセスで簡便に調製可能であることから、めっき下地剤の製造工程の簡略化と製造コストの低減も図ることができる。
 また、本発明の無電解めっき下地剤から形成された無電解金属めっきの下地層は、無電解めっき浴に浸漬するだけで、容易に金属めっき膜を形成でき、基材と下地層、そして金属めっき膜とを備える金属被膜基材を容易に得ることができる。
 すなわち、本発明の密着性を付与するベース樹脂が配合されているめっき下地剤を用いても、基材上に優れためっき析出性を発現する下地層を形成することができる。
The base material of the present invention can easily form a base layer for non-electrostatic plating simply by applying it on a base material. Further, according to the present invention, it is possible to form a base layer for plating which is excellent in adhesion to a substrate and does not affect the precipitation property of plating. Moreover, the base material of the present invention can be easily varnished with various compositions, and can have high metal fine particle dispersion stability.
Further, since the polymer used for the base material of the present invention can be easily prepared with a small number of processes, it is possible to simplify the manufacturing process of the plating base material and reduce the manufacturing cost.
Further, the electroless metal plating base layer formed from the electroless plating base agent of the present invention can easily form a metal plating film simply by immersing it in an electroless plating bath, and can easily form a base material, a base layer, and a metal. A metal film base material provided with a plating film can be easily obtained.
That is, even if a plating base agent containing a base resin that imparts adhesion of the present invention is used, a base layer that exhibits excellent plating precipitation can be formed on the base material.
 以下、本発明について詳細に説明する。
 本発明の下地剤は、(A)上述の特定の構成単位を有する共重合体、(B)金属微粒子、及び(C)溶剤を含み、必要に応じてその他成分を含む下地剤である。
 本発明の下地剤は基材上に無電解めっき処理により金属めっき膜を形成するための触媒として好適に使用される。以下、各成分について説明する。
<(A)共重合体>
Hereinafter, the present invention will be described in detail.
The base material of the present invention is a base material containing (A) a copolymer having the above-mentioned specific structural unit, (B) metal fine particles, and (C) a solvent, and if necessary, containing other components.
The base material of the present invention is suitably used as a catalyst for forming a metal plating film on a substrate by electroless plating. Hereinafter, each component will be described.
<(A) Copolymer>
 (A)成分は、分子内に架橋性基及び1個のラジカル重合性二重結合を有するモノマーaに由来する構成単位と分子内に金属分散性基及び1個のラジカル重合性二重結合を有するモノマーbに由来する構成単位を含む共重合体である。 The component (A) has a structural unit derived from a monomer a having a crosslinkable group and one radically polymerizable double bond in the molecule, and a metal dispersible group and one radically polymerizable double bond in the molecule. It is a copolymer containing a structural unit derived from the monomer b having.
[モノマーa]
 モノマーaは、分子内に少なくとも1個のトリフルオロメチル基及び1個のラジカル重合性二重結合を有するモノマーである。
[Monomer a]
Monomer a is a monomer having at least one trifluoromethyl group and one radically polymerizable double bond in the molecule.
 具体的なモノマーaとしては、例えば、下式(1)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
(式(1)中、Mは、単結合、カルボニルオキシ基、アミド基又はフェニレン基を表し、Jは、少なくとも1個のトリフルオロメチル基を有する炭素原子数1乃至は10の直鎖または分岐構造のアルキル基を表し、Rは水素原子又は炭素原子数1ないし4のアルキル基を表す。)
 Mはカルボニルオキシ基又はアミド基を表す場合に下記式(1-1)~(1-3)の構造をとることができるが、式(1-1)の構造が好ましい。
Figure JPOXMLDOC01-appb-C000008
Specific examples of the monomer a include a compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000007
(In the formula (1), M represents a single bond, a carbonyloxy group, an amide group or a phenylene group, and J is a linear or branched group having 1 to 10 carbon atoms having at least one trifluoromethyl group. Represents an alkyl group of structure, and R 6 represents an alkyl group having a hydrogen atom or 1 to 4 carbon atoms.)
 When M represents a carbonyloxy group or an amide group, it can take the structures of the following formulas (1-1) to (1-3), but the structure of the formula (1-1) is preferable.
Figure JPOXMLDOC01-appb-C000008
 Jはパーフルオロメチル基(即ち、トリフルオロメチル基)、パーフルオロエチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、2,2,2-トリフルオロ-1-(トリフルオロメチル)エチル基、パーフルオロプロピル基、3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,2,2,3,3,3-ヘプタフルオロプロピル基、ヘキサフルオロイソプロピル基、パーフルオロブチル基、4,4,4-トリフルオロブチル基、3,3,4,4,4-ペンタフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、1,1,2,2,3,3,4,4,4-ノナフルオロブチル基または2-(パーフルオロヘキシル)エチル基等が挙げられる。
 これらの中でも、Jは2,2,2-トリフルオロエチル基、ヘキサフルオロイソプロピル基または2-(パーフルオロヘキシル)エチル基であることが好ましい。
J is a perfluoromethyl group (that is, a trifluoromethyl group), a perfluoroethyl group, a 2,2,2-trifluoroethyl group, a 1,1,2,2,2-pentafluoroethyl group, 2,2. 2-Trifluoro-1- (trifluoromethyl) ethyl group, perfluoropropyl group, 3,3,3-trifluoropropyl group, 2,2,3,3,3-pentafluoropropyl group, 1,1, 2,2,3,3,3-heptafluoropropyl group, hexafluoroisopropyl group, perfluorobutyl group, 4,4,4-trifluorobutyl group, 3,3,4,5,4-pentafluorobutyl group , 2,2,3,3,4,4,4-heptafluorobutyl group, 1,1,2,2,3,3,4,4,4-nonafluorobutyl group or 2- (perfluorohexyl) Ethyl group and the like can be mentioned.
Among these, J is preferably a 2,2,2-trifluoroethyl group, a hexafluoroisopropyl group or a 2- (perfluorohexyl) ethyl group.
 このようなモノマーaの具体例としては限定されるものではないが、以下のものが挙げられる。例えば2,2,2-トリフルオロエチルアクリレート、ヘキサフルオロ-2-プロピルメタクリレート、2-(パーフルオロヘキシル)エチルメタクリレートなどが挙げられる。 Specific examples of such a monomer a are not limited, but include the following. For example, 2,2,2-trifluoroethyl acrylate, hexafluoro-2-propyl methacrylate, 2- (perfluorohexyl) ethyl methacrylate and the like can be mentioned.
[モノマーb]
 本発明において、モノマーbは、分子内に金属分散性基及び1個のラジカル重合性二重結合を有する化合物である。
 金属分散性基は、(B)成分の金属微粒子と付着及び/又は配位等の相互作用をすることによって、金属微粒子の組成物中における分散性を向上させ、それにより金属微粒子を組成物中に安定に存在させるための基である。このような金属分散性基としては、カルボニルと、それに共有結合で結合した窒素原子を有する部位、すなわち、-C(=O)-N-部位を有する置換基が好ましく、より具体的には、アミド結合を有する基及びイミド結合を有する基からなる群から選ばれる基が好ましい。
 ラジカル重合性二重結合としては、好ましくはビニル基又は(メタ)アクリロイル基の何れか一方を1つ有する化合物であることが好ましい。なお、モノマーbがラジカル重合性二重結合として(メタ)アクリロイル基を有する化合物である場合、該(メタ)アクリロイル基に含まれるカルボニル基[-C(=O)-]が、金属分散性基としてのアミド基におけるカルボニル基と重複する構造となっていてもよい。
[Monomer b]
In the present invention, the monomer b is a compound having a metal dispersible group and one radically polymerizable double bond in the molecule.
The metal dispersible group improves the dispersibility in the composition of the metal fine particles by interacting with the metal fine particles of the component (B) such as adhesion and / or coordination, thereby forming the metal fine particles in the composition. It is a basis for stable existence. As such a metal dispersible group, a substituent having a carbonyl and a nitrogen atom covalently bonded to the carbonyl, that is, a substituent having an -C (= O) -N-site is preferable, and more specifically, a substituent having a -C (= O) -N-site is preferable. A group selected from the group consisting of a group having an amide bond and a group having an imide bond is preferable.
The radically polymerizable double bond is preferably a compound having one of either a vinyl group or a (meth) acryloyl group. When the monomer b is a compound having a (meth) acryloyl group as a radically polymerizable double bond, the carbonyl group [-C (= O)-] contained in the (meth) acryloyl group is a metal dispersible group. It may have a structure that overlaps with the carbonyl group in the amide group as.
 具体的なモノマーbとしては、例えば、下記式(2)または式(3)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(式(2)中、Rは、水素原子又は炭素原子数1乃至6のアルキル基を表し、Lは、O又はNを表し、Rは、LがNを表す場合にのみ存在し、水素原子を表すか、又は、R及びRは、それらが結合する原子と一緒になって、4乃至6員の環状アミドを形成してもよい。
式(3)中、Rは水素原子またはメチル基を表し、Rは水素原子又は炭素原子数1乃至10の分岐しても良いアルキル基、炭素原子数1乃至10の分岐しても良いアルコキシル基又は、炭素原子数1乃至10の分岐しても良いアルコキシルアルキル基を表し、Lは、O又はNを表し、Rは、LがNを表す場合にのみ存在し、水素原子を表すか、又は、R及びRは、それらが結合する原子と一緒になって、4乃至6員の環状アミド、又は、4乃至6員の環状イミドを形成してもよい。)
Specific examples of the monomer b include compounds represented by the following formula (2) or formula (3).
Figure JPOXMLDOC01-appb-C000009
(In the formula (2), R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, L represents O or N, and R 2 exists only when L represents N. Representing a hydrogen atom, or R 1 and R 2 may be combined with the atom to which they are attached to form a 4- to 6-membered cyclic amide.
In the formula (3), R 3 represents a hydrogen atom or a methyl group, and R 4 may be a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, or a branch having 1 to 10 carbon atoms. alkoxyl group or represents an alkoxyl alkyl group branched having 1 to 10 carbon atoms, L represents an O or N, R 5 is present only when L represents N, tables hydrogen atom Alternatively, R 4 and R 5 may be combined with the atoms to which they are attached to form a 4- to 6-membered cyclic amide, or a 4- to 6-membered cyclic imide. )
 このようなモノマーbとしては、例えばN-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-イソブチル(メタ)アクリルアミド、N-ヘキシル(メタ)アクリルアミド、N-オクチル(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-メトキシブチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド、N-イソブトキシエチル(メタ)アクリルアミド、N-ビニルフタルイミド、N-ビニルコハク酸イミド等が挙げられる。 Examples of such a monomer b include N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide, N-vinylamide, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, and N-propyl (meth). Acrylamide, N-butyl (meth) acrylamide, N-isobutyl (meth) acrylamide, N-hexyl (meth) acrylamide, N-octyl (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-methoxybutyl (meth) Acrylamide, N-ethoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) acrylamide, N-isobutoxyethyl (meth) acrylamide, N-vinylphthalimide, N-vinylsuccinimide And so on.
 中でも、モノマーbとしては、モノマーの金属への配位能の観点から式(2)で表されるモノマーが好ましく、N-ビニルアミド基を有するモノマーがより好ましく、入手性等を考慮すると、N-ビニルピロリドン、N-ビニルホルムアミド、N-ビニルアセトアミドが更に好ましい。
 これらモノマーbは一種を単独で使用してもよく、また二種以上を併用してもよい
Among them, as the monomer b, the monomer represented by the formula (2) is preferable from the viewpoint of the coordinating ability of the monomer to the metal, the monomer having an N-vinylamide group is more preferable, and N- Vinylpyrrolidone, N-vinylformamide, and N-vinylacetamide are more preferable.
One of these monomers b may be used alone, or two or more thereof may be used in combination.
[モノマーc]
 (A)成分は、モノマーa、モノマーb以外に、分子内に架橋性基及び1個のラジカル重合性二重結合を有するモノマーcに由来する構成単位をさらに含む共重合体でもある。
 架橋性基としては、N-アルコキシメチル基、N-ヒドロキシメチル基、置換基Qを有しても良いエポキシ基、置換基Qを有しても良い脂環式エポキシ基、置換基Qを有しても良いオキセタン基等が挙げられる。置換基Qとしてはハロゲンで置換されても良い炭素原子数1ないし4のアルキル基、フェニル基等が挙げられる。
[Monomer c]
The component (A) is also a copolymer containing, in addition to the monomer a and the monomer b, a structural unit derived from the monomer c having a crosslinkable group and one radically polymerizable double bond in the molecule.
Examples of the crosslinkable group include an N-alkoxymethyl group, an N-hydroxymethyl group, an epoxy group which may have a substituent Q, an alicyclic epoxy group which may have a substituent Q, and a substituent Q. Examples thereof include an oxetane group which may be used. Examples of the substituent Q include an alkyl group having 1 to 4 carbon atoms and a phenyl group which may be substituted with a halogen.
 具体的なモノマーcとしては、例えば、下式(4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
(式(4)中、Xは、単結合、カルボニルオキシ基、アミド基又はフェニレン基を表し、Yは炭素原子数1ないし6のアルキレン基、炭素原子数1ないし6のオキシアルキレン基、炭素原子数1ないし6のアルキルエーテル基、炭素原子数1ないし6のチオアルキレン基又は炭素原子数1ないし6のチオアルキルエーテル基を表し、Zは、少なくとも1個のトリフルオロメチル基を有する炭素原子数1乃至は10の直鎖または分岐構造のアルキル基を表し、Rは水素原子又は炭素原子数1ないし4のアルキル基を表す。)
Specific examples of the monomer c include a compound represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000010
(In the formula (4), X represents a single bond, a carbonyloxy group, an amide group or a phenylene group, and Y is an alkylene group having 1 to 6 carbon atoms, an oxyalkylene group having 1 to 6 carbon atoms, and a carbon atom. Represents an alkyl ether group of number 1 to 6, a thioalkylene group having 1 to 6 carbon atoms, or a thioalkyl ether group having 1 to 6 carbon atoms, and Z is the number of carbon atoms having at least one trifluoromethyl group. 1 to 10 represents an alkyl group having a linear or branched structure, and R 7 represents an alkyl group having a hydrogen atom or 1 to 4 carbon atoms.)
 Yで表される炭素原子数1ないし6のアルキレン基は、直鎖状、分岐状のいずれでもよく、その具体例としては限定されるものではないが、メチレン基、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基等が挙げられる。 The alkylene group having 1 to 6 carbon atoms represented by Y may be linear or branched, and specific examples thereof are not limited, but are methylene group and ethane-1,1-diyl. Group, ethane-1,2-diyl group, propane-1,2-diyl group, propane-1,3-diyl group, propane-2,2-diyl group, butane-1,4-diyl group, pentane-1 , 5-Diyl group, hexane-1,6-Diyl group and the like.
 炭素原子数1ないし6のオキシアルキレン基は、直鎖上、分岐状のいずれでもよく、-O-R-を満たす基でありRの具体例としては上述した1ないし6のアルキレン基と同じである。 Oxyalkylene group having from 1 to 6 carbon atoms is, on linear, may be either branched, -O-R 8 - and an alkylene group having 1 described above as specific examples of a group which satisfies the R 8 6 It is the same.
 炭素原子数1ないし6のアルキルエーテル基は、直鎖上、分岐状のいずれでもよく、-R-O-R-を満たす基であり、Rの具体例としては限定されるものではないが、それぞれ独立してメチレン基、エタン-1,1-ジイル基、エタン-1,2-ジイル基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基等が挙げられる。但し二つのRの炭素原子数の合計は6とする。 Alkyl ether group having from 1 to 6 carbon atoms is, on linear, may be either branched, -R 9 -O-R 9 - is a group satisfying, the invention is not limited to specific examples of R 9 Not, but independently of each other, methylene group, ethane-1,1-diyl group, ethane-1,2-diyl group, propane-1,2-diyl group, propane-1,3-diyl group, propane-2, Examples thereof include 2-diyl group, butane-1,4-diyl group and pentane-1,5-diyl group. However the total number of carbon atoms of the two R 9 is a 6.
 炭素原子数1ないし6のチオアルキレン基は、直鎖上、分岐状のいずれでもよく、-S-R-を満たす基でありRは上述した通りである。 Thioalkylene groups having from 1 to 6 carbon atoms is, on linear, may be either branched, -S-R 8 - a group that satisfies R 8 are as described above.
 炭素原子数1ないし6のチオアルキルエーテル基は、直鎖上、分岐状のいずれでもよく、-R-S-R-を満たす基でありRは上述した通りである。 The thioalkyl ether group having 1 to 6 carbon atoms may be linear or branched, and is a group satisfying —R 9 −SR 9 −, and R 9 is as described above.
 このようなモノマーcの具体例としては限定されるものではないが、以下のものが挙げられる。 Specific examples of such a monomer c are not limited, but include the following.
 1個のラジカル重合性二重結合を有し、さらにN-アルコキシメチル基を有するモノマーとしては、N-ブトキシメチルアクリルアミド、N-イソブトキシメチルアクリルアミド、N-メトキシメチルアクリルアミド、N-メトキシメチルメタクリルアミド、N-メチロールアクリルアミド等が挙げられる。 Examples of the monomer having one radically polymerizable double bond and further having an N-alkoxymethyl group include N-butoxymethylacrylamide, N-isobutoxymethylacrylamide, N-methoxymethylacrylamide, and N-methoxymethylmethacrylamide. , N-methylol acrylamide and the like.
 1個のラジカル重合性二重結合を有し、さらにN-ヒドロキシメチル基を有するモノマーとしては、限定されるものではないが、例えば、N-ヒドロキシメチルアクリルアミド、N-ヒドロキシメチルメタクリルアミド等が挙げられる。 Examples of the monomer having one radically polymerizable double bond and further having an N-hydroxymethyl group include, but are not limited to, N-hydroxymethylacrylamide and N-hydroxymethylmethacrylamide. Be done.
 1個のラジカル重合性二重結合を有し、さらにエポキシ基を有するモノマーとしては、限定されるものではないが例えばアクリル酸グリシジル、メタクリル酸グリシジル、α-エチルアクリル酸グリシジル、α-n-プロピルアクリル酸グリシジル、α-n-ブチルアクリル酸グリシジル、アクリル酸-3,4-エポキシブチル、メタクリル酸-3,4-エポキシブチル、アクリル酸-6,7-エポキシヘプチル、メタクリル酸-6,7-エポキシヘプチル、α-エチルアクリル酸-6,7-エポキシヘプチル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、3,4-エポキシシクロへキシルメタクリレートなどが挙げられる。これらのうち、メタクリル酸グリシジル、メタクリル酸-6,7-エポキシヘプチル、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、3,4-エポキシシクロへキシルメタクリレートなどが好ましく用いられる。これらは、単独であるいは組み合わせて用いられる。 The monomer having one radically polymerizable double bond and further having an epoxy group is not limited, for example, glycidyl acrylate, glycidyl methacrylate, glycidyl α-ethylacrylate, α-n-propyl. Glycidyl acrylate, α-n-butyl glycidyl acrylate, acrylic acid-3,4-epoxybutyl, methacrylic acid-3,4-epoxybutyl, acrylate-6,7-epoxyheptyl, methacrylic acid-6,7- Epoxide heptyl, α-ethylacrylic acid-6,7-epoxyheptyl, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, 3,4-epoxycyclohexyl methacrylate and the like can be mentioned. .. Among these, glycidyl methacrylate, -6,7-epoxyheptyl methacrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, 3,4-epoxycyclohexyl methacrylate and the like. It is preferably used. These may be used alone or in combination.
 1個のラジカル重合性二重結合を有し、さらにオキセタン基を有するモノマーとしては、限定されるものではないが、例えば、オキセタン基を有する(メタ)アクリル酸エステルなどを挙げることができる。このようなモノマーの中では、3-(メタクリロイルオキシメチル)オキセタン、3-(アクリロイルオキシメチル)オキセタン、3-(メタクリロイルオキシメチル)-3-エチル-オキセタン、3-(アクリロイルオキシメチル)-3-エチル-オキセタン、3-(メタクリロイルオキシメチル)-2-トリフルオロメチルオキセタン、3-(アクリロイルオキシメチル)-2-トリフルオロメチルオキセタン、3-(メタクリロイルオキシメチル)-2-フェニル-オキセタン、3-(アクリロイルオキシメチル)-2-フェニル-オキセタン、2-(メタクリロイルオキシメチル)オキセタン、2-(アクリロイルオキシメチル)オキセタン、2-(メタクリロイルオキシメチル)-4-トリフルオロメチルオキセタン、2-(アクリロイルオキシメチル)-4-トリフルオロメチルオキセタンが好ましく、3-(メタクリロイルオキシメチル)-3-エチル-オキセタン、3-(アクリロイルオキシメチル)-3-エチル-オキセタン等が好ましく用いられる。
 これらの中でも、基板との密着性の観点からXはカルボニルオキシ基又はメチレン基であることが好ましく、Zはエポキシ基であることが好ましい。
The monomer having one radically polymerizable double bond and further having an oxetane group is not limited, and examples thereof include (meth) acrylic acid ester having an oxetane group. Among such monomers, 3- (methacryloyloxymethyl) oxetane, 3- (acryloyloxymethyl) oxetane, 3- (methacryloyloxymethyl) -3-ethyl-oxetan, 3- (acryloyloxymethyl) -3- Ethyl-oxetan, 3- (methacryloyloxymethyl) -2-trifluoromethyloxetane, 3- (acryloyloxymethyl) -2-trifluoromethyloxetane, 3- (methacryloyloxymethyl) -2-phenyl-oxetan, 3- (Acryloyloxymethyl) -2-phenyl-oxetan, 2- (methacryloyloxymethyl) oxetane, 2- (acryloyloxymethyl) oxetane, 2- (methacryloyloxymethyl) -4-trifluoromethyloxetane, 2- (acryloyloxymethyl) Methyl) -4-trifluoromethyloxetane is preferable, and 3- (methacryloyloxymethyl) -3-ethyl-oxetane, 3- (acryloyloxymethyl) -3-ethyl-oxetane and the like are preferably used.
Among these, X is preferably a carbonyloxy group or a methylene group, and Z is preferably an epoxy group from the viewpoint of adhesion to the substrate.
 本発明では、(A)成分の共重合体を製造する際に、上記モノマーa、上記モノマーbおよび上記モノマーcとともに、その他モノマーを使用することもできる。そのようなその他モノマーとしては、メチルメタクリレート、エチルメタクリレート、イソプロピルメタクリレート、ベンジルメタクリレート、ナフチルメタクリレート、アントリルメタクリレート、アントリルメチルメタクリレート、フェニルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、メトキシトリエチレングリコールメタクリレート、2-エトキシエチルメタクリレート、テトラヒドロフルフリルメタクリレート、3-メトキシブチルメタクリレート、γ-ブチロラクトンメタクリレート、2-プロピル-2-アダマンチルメタクリレート、8-メチル-8-トリシクロデシルメタクリレート、8-エチル-8-トリシクロデシルメタクリレート、メチルアクリレート、エチルアクリレート、イソプロピルアクリレート、ベンジルアクリレート、ナフチルアクリレート、アントリルアクリレート、アントリルメチルアクリレート、フェニルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、メトキシトリエチレングリコールアクリレート、2-エトキシエチルアクリレート、テトラヒドロフルフリルアクリレート、3-メトキシブチルアクリレート、γ-ブチロラクトンアクリレート、2-プロピル-2-アダマンチルアクリレート、8-メチル-8-トリシクロデシルアクリレート、8-エチル-8-トリシクロデシルアクリレート、スチレン、ビニルナフタレン、ビニルアントラセン、及びビニルビフェニル等が挙げられる。 In the present invention, other monomers can be used together with the above-mentioned monomer a, the above-mentioned monomer b, and the above-mentioned monomer c when producing the copolymer of the component (A). Such other monomers include methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, benzyl methacrylate, naphthyl methacrylate, anthryl methacrylate, anthryl methyl methacrylate, phenyl methacrylate, cyclohexyl methacrylate, isobornyl methacrylate, methoxytriethylene glycol methacrylate, and 2 -Ethoxyethyl methacrylate, tetrahydrofurfuryl methacrylate, 3-methoxybutyl methacrylate, γ-butyrolactone methacrylate, 2-propyl-2-adamantyl methacrylate, 8-methyl-8-tricyclodecyl methacrylate, 8-ethyl-8-tricyclodecyl Methacrylate, methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, anthryl acrylate, anthryl methyl acrylate, phenyl acrylate, cyclohexyl acrylate, isobornyl acrylate, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydro Flufuryl acrylate, 3-methoxybutyl acrylate, γ-butyrolactone acrylate, 2-propyl-2-adamantyl acrylate, 8-methyl-8-tricyclodecyl acrylate, 8-ethyl-8-tricyclodecyl acrylate, styrene, vinyl naphthalene , Vinyl anthracene, vinyl biphenyl and the like.
 本発明においては、(A)成分の共重合体を製造する際に、上記その他モノマーを用いることで、得られる(A)成分の共重合体の、めっき液等に対する耐性を付与することもできる。 In the present invention, when the copolymer of the component (A) is produced, the resistance of the obtained copolymer of the component (A) to a plating solution or the like can be imparted by using the above-mentioned other monomers. ..
 本発明に用いる特定共重合体を得る方法は特に限定されないが、例えば、上記モノマーa、上記モノマーb、上記モノマーcと所望によりその他モノマーと重合開始剤等とを共存させた溶剤中において、50乃至110℃の温度下で重合反応させることにより得られる。その際、用いられる溶剤は、特定官能基を有するモノマー、所望により用いられる特定官能基を有さないモノマー及び重合開始剤等を溶解するものであれば特に限定されない。具体例としては、後述する<(C)溶剤>に記載する。
 前記方法により得られる特定共重合体は、通常、溶剤に溶解した溶液の状態である。
The method for obtaining the specific copolymer used in the present invention is not particularly limited, but for example, in a solvent in which the above-mentioned monomer a, the above-mentioned monomer b, the above-mentioned monomer c, and if desired, another monomer and a polymerization initiator or the like coexist, 50 It is obtained by carrying out a polymerization reaction at a temperature of about 110 ° C. At that time, the solvent used is not particularly limited as long as it dissolves a monomer having a specific functional group, a monomer having no specific functional group used if desired, a polymerization initiator and the like. Specific examples will be described in <(C) Solvent> described later.
The specific copolymer obtained by the above method is usually in the state of a solution dissolved in a solvent.
 また、上記方法で得られた特定共重合体の溶液を、攪拌中のジエチルエーテルや水等に投入して沈殿させ、生成した沈殿物を濾過・洗浄した後に、常圧又は減圧下で、常温乾燥又は加熱乾燥し、特定共重合体の粉体とすることができる。前記操作により、特定共重合体と共存する重合開始剤及び未反応のモノマーを除去することができ、その結果、精製した特定共重合体の粉体が得られる。一度の操作で充分に精製できない場合は、得られた粉体を溶剤に再溶解させ、上記の操作を繰り返し行えば良い。 Further, the solution of the specific copolymer obtained by the above method is put into diethyl ether or water under stirring to precipitate, and the generated precipitate is filtered and washed, and then at room temperature under normal pressure or reduced pressure. It can be dried or heat-dried to obtain a powder of a specific copolymer. By the above operation, the polymerization initiator and the unreacted monomer coexisting with the specific copolymer can be removed, and as a result, the purified powder of the specific copolymer can be obtained. If the powder cannot be sufficiently purified by one operation, the obtained powder may be redissolved in a solvent and the above operation may be repeated.
 本発明においては、特定共重合体は粉体形態で、あるいは精製した粉末を後述する溶剤に再溶解した溶液形態で用いてもよい。 In the present invention, the specific copolymer may be used in the form of a powder or in the form of a solution in which the purified powder is redissolved in a solvent described later.
 また、本発明においては、(A)成分の特定共重合体は、複数種の特定共重合体の混合物であってもよい。 Further, in the present invention, the specific copolymer of the component (A) may be a mixture of a plurality of types of specific copolymers.
 本発明において、前記モノマーaと前記モノマーbを共重合させる割合は、反応性や、めっき性の観点から、好ましくは前記モノマーb 1モルに対して前記モノマーa 0.05モル乃至5モル、特に好ましくは0.1モル乃至3モルである。
 本発明において、前記モノマーbと前記モノマーcを共重合させる割合は、反応性や、めっき性の観点から、好ましくは前記モノマーb 1モルに対して前記モノマーc 0.05モル乃至3モル、特に好ましくは0.1モル乃至1モルである。
In the present invention, the ratio of copolymerizing the monomer a and the monomer b is preferably 0.05 mol to 5 mol of the monomer a with respect to 1 mol of the monomer b, particularly from the viewpoint of reactivity and plating property. It is preferably 0.1 mol to 3 mol.
In the present invention, the ratio of copolymerizing the monomer b and the monomer c is preferably 0.05 mol to 3 mol, particularly, 0.05 mol to 3 mol of the monomer c with respect to 1 mol of the monomer b from the viewpoint of reactivity and plating property. It is preferably 0.1 mol to 1 mol.
 本発明において、(A)成分である共重合体を製造する際に上記その他モノマーを用いる場合は、前記モノマーaとモノマーbのモル数の合計に対して、または前記モノマーa、モノマーb及びモノマーcのモル数の合計に対して、1乃至200%のモル数の量、より好ましくは10乃至100%のモル数の量である。 In the present invention, when the other monomer is used in producing the copolymer as the component (A), the total number of moles of the monomer a and the monomer b, or the monomer a, the monomer b and the monomer are used. The amount of moles is 1 to 200%, more preferably 10 to 100% of the total number of moles of c.
<(B)金属微粒子>
 本発明の下地剤に用いられる(B)金属微粒子としては特に限定されず、金属種としては鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)、銀(Ag)、スズ(Sn)、白金(Pt)及び金(Au)並びにこれらの合金が挙げられ、これらの金属の1種類でもよいし2種以上の合金でも構わない。中でも好ましい金属微粒子としてはパラジウム微粒子が挙げられる。なお、金属微粒子として、前記金属の酸化物を用いてもよい。
<(B) Metal fine particles>
The (B) metal fine particles used in the base material of the present invention are not particularly limited, and the metal species include iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), palladium (Pd), and silver. Examples thereof include (Ag), tin (Sn), platinum (Pt) and gold (Au), and alloys thereof, and one kind of these metals may be used, or two or more kinds of alloys may be used. Among them, palladium fine particles are mentioned as preferable metal fine particles. The metal oxide may be used as the metal fine particles.
 前記金属微粒子は、例えば金属塩の溶液を高圧水銀灯により光照射する方法や、該溶液に還元作用を有する化合物(所謂還元剤)を添加する方法等により、金属イオンを還元することによって得られる。例えば、上記(A)成分ポリマーを溶解した溶液に金属塩の溶液を添加してこれに紫外線を照射したり、或いは、該溶液に金属塩の溶液及び還元剤を添加するなどして、金属イオンを還元することにより、(A)成分ポリマーと金属微粒子の複合体を形成させながら、(A)成分ポリマー及び金属微粒子を含む下地剤を調製することができる。 The metal fine particles are obtained by reducing metal ions by, for example, a method of irradiating a solution of a metal salt with light with a high-pressure mercury lamp, a method of adding a compound having a reducing action (so-called reducing agent) to the solution, or the like. For example, a metal salt solution is added to a solution in which the component polymer (A) is dissolved and irradiated with ultraviolet rays, or a metal salt solution and a reducing agent are added to the solution to obtain metal ions. By reducing the above, a base material containing the component polymer (A) and the metal fine particles can be prepared while forming a complex of the component polymer (A) and the metal fine particles.
 前記金属塩としては、塩化金酸、硝酸銀、硫酸銅、硝酸銅、酢酸銅、塩化スズ、塩化第一白金、塩化白金酸、Pt(dba)[dba=ジベンジリデンアセトン]、Pt(cod)[cod=1,5-シクロオクタジエン]、Pt(CH(cod)、塩化パラジウム、酢酸パラジウム(Pd(OC(=O)CH)、硝酸パラジウム、Pd(dba)・CHCl、Pd(dba)、塩化ロジウム、酢酸ロジウム、演歌ルテニウム、酢酸ルテニウム、Ru(cod)(cot)[cot=シクロオクタトリエン]、塩化イリジウム、酢酸イリジウム、Ni(cod)等が挙げられる。
 前記還元剤としては、特に限定されるものではなく、種々の還元剤を用いることができ、得られる下地剤に含有させる金属種等により還元剤を選択することが好ましい。用いることができる還元剤としては、例えば、水素化ホウ素ナトリウム、水素化ホウ素カリウム等の水素化ホウ素金属塩;水素化アルミニウムリチウム、水素化アルミニウムカリウム、水素化アルミニウムセシウム、水素化アルミニウムベリリウム、水素化アルミニウムマグネシウム、水素化アルミニウムカルシウム等の水素化アルミニウム塩;ヒドラジン化合物;クエン酸及びその塩;コハク酸及びその塩;アスコルビン酸及びその塩;メタノール、エタノール、イソプロパノール、ポリオール等の第一級又は第二級アルコール類;トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、ジエチルメチルアミン、テトラメチルエチレンジアミン[TMEDA]、エチレンジアミン四酢酸[EDTA]等の第三級アミン類;ヒドロキシルアミン;トリ-n-プロピルホスフィン、トリ-n-ブチルホスフィン、トリシクロヘキシルホスフィン、トリベンジルホスフィン、トリフェニルホスフィン、トリエトキシホスフィン、1,2-ビス(ジフェニルホスフィノ)エタン[DPPE]、1,3-ビス(ジフェニルホスフィノ)プロパン[DPPP]、1,1’-ビス(ジフェニルホスフィノ)フェロセン[DPPF]、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル[BINAP]等のホスフィン類などが挙げられる。
Examples of the metal salt include gold chloride acid, silver nitrate, copper sulfate, copper nitrate, copper acetate, tin chloride, first platinum chloride, platinum chloride acid, Pt (dba) 2 [dba = dibenzylidene acetone], Pt (cod). 2 [cod = 1,5-cyclooctadiene], Pt (CH 3 ) 2 (cod), palladium chloride, palladium acetate (Pd (OC (= O) CH 3 ) 2 ), palladium nitrate, Pd 2 (dba) 3. CHCl 3 , Pd (dba) 2 , rhodium chloride, rhodium acetate, ruthenium ensemble, ruthenium acetate, Ru (cod) (cot) [cot = cyclooctatriene], iridium chloride, iridium acetate, Ni (cod) 2, etc. Can be mentioned.
The reducing agent is not particularly limited, and various reducing agents can be used, and it is preferable to select the reducing agent according to the metal species and the like contained in the obtained base material. Examples of the reducing agent that can be used include boron hydride metal salts such as sodium boron hydride and potassium boron hydride; aluminum lithium hydride, potassium aluminum hydride, aluminum cesium hydride, aluminum berylium hydride, and hydrogenation. Aluminum hydride salts such as aluminum magnesium and aluminum hydride calcium; hydrazine compounds; citric acid and its salts; succinic acid and its salts; ascorbic acid and its salts; primary or secondary such as methanol, ethanol, isopropanol and polyols. Class alcohols; tertiary amines such as trimethylamine, triethylamine, diisopropylethylamine, diethylmethylamine, tetramethylethylenediamine [TMEDA], ethylenediaminetetraacetic acid [EDTA]; hydroxylamine; tri-n-propylphosphine, tri-n- Butylphosphine, tricyclohexylphosphine, tribenzylphosphine, triphenylphosphine, triethoxyphosphine, 1,2-bis (diphenylphosphino) ethane [DPPE], 1,3-bis (diphenylphosphino) propane [DPPP], 1 , 1'-bis (diphenylphosphino) ferrocene [DPPF], 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl [BINAP] and the like.
 前記金属微粒子の一次粒子平均粒径は1~100nmが好ましい。該金属微粒子の一次粒子平均粒径を100nm以下とすることで、表面積の減少が少なく十分な触媒活性が得られる。一次粒子平均粒径としては、75nm以下が更に好ましく、1~30nmが特に好ましい。
 一次粒子平均粒径は次の方法により測定することができる。
[一次粒子平均粒径の測定]
 金属微粒子をエタノールに分散後、カーボン支持膜上に滴下し、乾燥させてサンプルを作製後、得られたサンプルをTEM装置(日立製作所製:H-8000加速電圧200kV)にて顕微鏡法で一次粒子平均粒径を求めることができる。
The average particle size of the primary particles of the metal fine particles is preferably 1 to 100 nm. By setting the average particle size of the primary particles of the metal fine particles to 100 nm or less, the surface area is not reduced and sufficient catalytic activity can be obtained. The average particle size of the primary particles is more preferably 75 nm or less, and particularly preferably 1 to 30 nm.
The average particle size of the primary particles can be measured by the following method.
[Measurement of average particle size of primary particles]
After dispersing the metal fine particles in ethanol, they are dropped onto a carbon support membrane and dried to prepare a sample, and then the obtained sample is microscopically subjected to a TEM device (Hitachi, Ltd .: H-8000 acceleration voltage 200 kV). The average particle size can be determined.
 本発明の下地剤における上記(A)成分である共重合体の添加量は、上記(B)金属微粒子100質量部に対して20質量部以上10,000質量部以下とすることが好ましい。(B)金属微粒子100質量部に対する(A)共重合体の添加量を20質量部以上とすることで、上記金属微粒子を十分に分散させることができ、また、20質量部以下であると、上記金属微粒子の分散性が不充分であり、沈殿物や凝集物を生じやすくなる。より好ましくは、30質量部以上である。また、(B)金属微粒子100質量部に対して(A)共重合体を10,000質量部以上添加すると、塗布後の単位面積当たりのPd量が不十分となるため、めっきの析出性が低下するおそれがある。 The amount of the copolymer, which is the component (A), added to the base material of the present invention is preferably 20 parts by mass or more and 10,000 parts by mass or less with respect to 100 parts by mass of the metal fine particles (B). When the amount of the (A) copolymer added to 100 parts by mass of the (B) metal fine particles is 20 parts by mass or more, the metal fine particles can be sufficiently dispersed, and when it is 20 parts by mass or less, the metal fine particles can be sufficiently dispersed. The dispersibility of the metal fine particles is insufficient, and precipitates and agglomerates are likely to be formed. More preferably, it is 30 parts by mass or more. Further, when 10,000 parts by mass or more of the (A) copolymer is added to 100 parts by mass of (B) metal fine particles, the amount of Pd per unit area after coating becomes insufficient, so that the precipitation property of plating becomes poor. It may decrease.
<下地剤>
 本発明の無電解めっき下地剤は、前記(A)共重合体、(B)金属微粒子、及び(C)溶剤を含むものであり、さらに、必要に応じてその他成分を含むものである。本発明の無電解めっき下地剤において、前記(A)成分である共重合体と前記(B)金属微粒子が複合体を形成していることが好ましく、すなわち前記下地剤が前記(A)成分である共重合体と前記(B)金属微粒子により形成された複合体を含むことが好ましい。
<Base material>
The electroless plating base material of the present invention contains the above-mentioned (A) copolymer, (B) metal fine particles, and (C) solvent, and further contains other components if necessary. In the electroless plating base material of the present invention, it is preferable that the copolymer which is the component (A) and the metal fine particles (B) form a composite, that is, the base material is the component (A). It is preferable to contain a composite formed by a certain copolymer and the metal fine particles (B).
 ここで複合体とは、前記(A)成分である共重合体の側鎖の金属分散性基の作用により、金属微粒子に接触又は近接した状態で両者が共存し、粒子状の形態を為すものであり、言い換えると、前記(A)成分である共重合体の金属分散性基に金属微粒子が付着又は配位した構造を有する複合体であると表現される。
 ここで“付着又は配位した構造”とは、(A)成分である共重合体の金属分散性基の一部又は全部が金属微粒子と相互作用した状態をいい、これによって錯体のような構造を形成していると考えられる。そのため、金属微粒子としてパラジウム微粒子を採用した場合、表層のPd原子が金属分散性基と相互作用することにより、(A)成分ポリマーが金属微粒子を取り囲む構造を形成していると考えられる。
Here, the composite is a composite in which both of them coexist in contact with or in close contact with the metal fine particles due to the action of the metal dispersible group of the side chain of the copolymer which is the component (A), and form a particulate form. In other words, it is expressed as a composite having a structure in which metal fine particles are attached or coordinated to the metal dispersible group of the copolymer which is the component (A).
Here, the "adhered or coordinated structure" refers to a state in which a part or all of the metal dispersible groups of the copolymer which is the component (A) interacts with the metal fine particles, thereby forming a complex-like structure. Is considered to form. Therefore, when palladium fine particles are used as the metal fine particles, it is considered that the Pd atom on the surface layer interacts with the metal dispersible group to form a structure in which the component polymer (A) surrounds the metal fine particles.
 従って、本発明における「複合体」には、上述のように金属微粒子と(A)成分である共重合体が結合して一つの複合体を形成しているものだけでなく、金属微粒子と(A)成分である共重合体が結合部分を形成することなく、夫々独立して存在しているもの(見かけ上、1つの粒子を形成しているようにみえるもの)も含まれていてもよい。 Therefore, the "complex" in the present invention includes not only those in which the metal fine particles and the copolymer (A) are bonded to form one complex as described above, but also the metal fine particles ( A) Copolymers as components may be included in which they exist independently without forming a bonding portion (those that appear to form one particle). ..
 前記(A)成分である共重合体と(B)金属微粒子の複合体の形成は、(A)成分である共重合体と金属微粒子を含む下地剤の調製時に同時に実施され、その方法としては、金属分散性基によりある程度安定化した金属微粒子を合成した後に(A)成分である重合体により配位子を交換する方法や、(A)成分である共重合体の溶液中で、金属イオンを直接還元することにより複合体を形成する方法がある。また、上述のように、上記(A)成分である共重合体を溶解した溶液に金属塩の溶液を添加してこれに紫外線を照射する、或いは、該溶液に金属塩の溶液及び還元剤を添加するなどして、金属イオンを還元することによっても複合体を形成できる。 The formation of the composite of the copolymer (A) component and the (B) metal fine particles is carried out at the same time as the preparation of the base material containing the copolymer (A) component and the metal fine particles, and the method is as follows. , A method of exchanging a ligand with a polymer which is a component (A) after synthesizing metal fine particles stabilized to some extent by a metal dispersible group, or a metal ion in a solution of a polymer which is a component (A). There is a method of forming a complex by directly reducing. Further, as described above, a metal salt solution is added to a solution in which the copolymer which is the component (A) is dissolved and irradiated with ultraviolet rays, or a metal salt solution and a reducing agent are added to the solution. A complex can also be formed by reducing metal ions, such as by adding them.
 直接還元方法としては、金属イオンと(A)成分である共重合体を溶媒に溶解し、メタノール、エタノール、2-プロパノール、ポリオール等の第一級又は第二級アルコール類で還元させることにより、目的とする金属微粒子複合体を得ることができる。
 ここで用いられる金属イオン源としては、上述の金属塩が使用できる。
 使用する溶媒としては、金属イオンと金属分散性基を有するポリマーを必要濃度以上に溶解できる溶媒であれば特に限定はされないが、具体的には、メタノール、エタノール、n-プロパノール、2-プロパノール等のアルコール類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類;テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類;アセトニトリル、ブチロニトリル等のニトリル類;N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)等のアミド類;ジメチルスルホキシド等のスルホキシド類など及びこれらの溶媒の混合液が挙げられ、好ましくは、アルコール類、ハロゲン化炭化水素類、環状エーテル類が挙げられ、より好ましくは、エタノール、2-プロパノール、クロロホルム、テトラヒドロフランなどが挙げられる。
 還元反応(金属イオンと(A)成分である共重合体を混合する)の温度は、通常0℃乃至溶媒の沸点の範囲を使用することができ、好ましくは室温(およそ25℃)乃至100℃の範囲である。
As a direct reduction method, the metal ion and the copolymer (A) component are dissolved in a solvent and reduced with primary or secondary alcohols such as methanol, ethanol, 2-propanol and polyol. The desired metal fine particle composite can be obtained.
As the metal ion source used here, the above-mentioned metal salt can be used.
The solvent to be used is not particularly limited as long as it can dissolve a polymer having a metal ion and a metal dispersible group in a required concentration or more, but specifically, methanol, ethanol, n-propanol, 2-propanol and the like. Alcohols; halogenated hydrocarbons such as methylene chloride and chloroform; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran and tetrahydropyran; nitriles such as acetonitrile and butyronitrile; N, N-dimethylformamide (DMF) ), N-methyl-2-pyrrolidone (NMP) and the like; sulfoxides such as dimethyl sulfoxide and the like and a mixed solution of these solvents are mentioned, and alcohols, halogenated hydrocarbons, cyclic ethers and the like are preferable. , And more preferably, ethanol, 2-propanol, chloroform, tetrahydrofuran and the like can be mentioned.
The temperature of the reduction reaction (mixing the metal ion and the copolymer which is the component (A)) can usually be in the range of 0 ° C. to the boiling point of the solvent, and is preferably room temperature (about 25 ° C.) to 100 ° C. Is the range of.
 他の直接還元方法としては、金属イオンと(A)成分である共重合体を溶媒に溶解し、水素ガス雰囲気下で反応させることにより、目的とする金属微粒子複合体を得ることができる。
 ここで用いられる金属イオン源としては、上述の金属塩や、ヘキサカルボニルクロム[Cr(CO)]、ペンタカルボニル鉄[Fe(Co)]、オクタカルボニルジコバルト[Co(CO)]、テトラカルボニルニッケル[Ni(CO)]等の金属カルボニル錯体が使用できる。また金属オレフィン錯体や金属ホスフィン錯体、金属窒素錯体等の0価の金属錯体も使用できる。
 使用する溶媒としては、金属イオンと(A)成分である共重合体を必要濃度以上に溶解できる溶媒であれば特に限定はされないが、具体的には、エタノール、プロパノール等のアルコール類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類;テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類;アセトニトリル、ブチロニトリル等のニトリル類など及びこれらの溶媒の混合液が挙げられ、好ましくはテトラヒドロフランが挙げられる。
 金属イオンと(A)成分である共重合体を混合する温度は、通常0℃乃至溶媒の沸点の範囲を使用することができる。
As another direct reduction method, the desired metal fine particle composite can be obtained by dissolving the metal ion and the copolymer (A) component in a solvent and reacting them in a hydrogen gas atmosphere.
Examples of the metal ion source used here include the above-mentioned metal salts, hexacarbonyl chrome [Cr (CO) 6 ], pentacarbonyl iron [Fe (Co) 5 ], and octacarbonyl dicobalt [Co 2 (CO) 8 ]. , Tetracarbonyl nickel [Ni (CO) 4 ] and other metal carbonyl complexes can be used. Further, zero-valent metal complexes such as metal olefin complexes, metal phosphine complexes, and metal nitrogen complexes can also be used.
The solvent used is not particularly limited as long as it can dissolve the metal ion and the copolymer (A) component in a required concentration or more, but specifically, alcohols such as ethanol and propanol; methylene chloride. , Halogenated hydrocarbons such as chloroform; cyclic ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran; nitriles such as acetonitrile and butyronitrile and a mixture of these solvents are mentioned, preferably tetrahydrofuran. ..
The temperature at which the metal ion and the copolymer as the component (A) are mixed can usually be in the range of 0 ° C. to the boiling point of the solvent.
 また、直接還元方法として、金属イオンと(A)成分である共重合体を溶媒に溶解し、熱分解反応させることにより、目的とする金属微粒子複合体を得ることができる。
 ここで用いられる金属イオン源としては、上述の金属塩や金属カルボニル錯体やその他の0価の金属錯体、酸化銀等の金属酸化物が使用できる。
 使用する溶媒としては、金属イオンと(A)成分である共重合体を必要濃度以上に溶解できる溶媒であれば特に限定はされないが、具体的には、メタノール、エタノール、n-プロパノール、イソプロパノール、エチレングリコール等のアルコール類;塩化メチレン、クロロホルム等のハロゲン化炭化水素類;テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、テトラヒドロピラン等の環状エーテル類;アセトニトリル、ブチロニトリル等のニトリル類;ベンゼン、トルエン等の芳香族炭化水素類など及びこれらの溶媒の混合液が挙げられ、好ましくはトルエンが挙げられる。
 金属イオンと金属分散性基を有する(A)成分である共重合体を混合する温度は、通常0℃乃至溶媒の沸点の範囲を使用することができ、好ましくは溶媒の沸点近傍、例えばトルエンの場合は110℃(加熱還流)である。
Further, as a direct reduction method, the desired metal fine particle composite can be obtained by dissolving the metal ion and the copolymer (A) component in a solvent and causing a thermal decomposition reaction.
As the metal ion source used here, the above-mentioned metal salt, metal carbonyl complex, other zero-valent metal complex, and metal oxide such as silver oxide can be used.
The solvent used is not particularly limited as long as it can dissolve the metal ion and the copolymer (A) component in a required concentration or more, but specifically, methanol, ethanol, n-propanol, isopropanol, etc. Alcohols such as ethylene glycol; halogenated hydrocarbons such as methylene chloride and chloroform; cyclic ethers such as tetrahydrofuran (THF), 2-methyltetrahydrofuran and tetrahydropyran; nitriles such as acetonitrile and butyronitrile; benzene, toluene and the like Examples thereof include aromatic hydrocarbons and a mixed solution of these solvents, and toluene is preferable.
The temperature at which the metal ion and the copolymer which is the component (A) having a metal dispersible group are mixed can usually be in the range of 0 ° C. to the boiling point of the solvent, and is preferably near the boiling point of the solvent, for example, toluene. In the case, it is 110 ° C. (heating reflux).
 こうして得られる(A)成分である共重合体と金属微粒子の複合体は、再沈殿等の精製処理を経て、粉末などの固形物の形態とすることができる。 The composite of the copolymer and the metal fine particles, which is the component (A) thus obtained, can be in the form of a solid substance such as powder through a purification treatment such as reprecipitation.
 本発明の下地剤は、前記(A)成分である共重合体、(B)金属微粒子(好ましくはこれらよりなる複合体)、及び(C)溶剤を含むものであり、さらに、必要に応じてその他成分を含むものであって、該下地剤は、後述する[無電解金属めっきの下地層]の形成時に用いるワニスの形態であってもよい。 The base material of the present invention contains the copolymer (A) component, (B) metal fine particles (preferably a composite composed of these), and (C) solvent, and further, if necessary. The base material contains other components, and the base material may be in the form of a varnish used when forming the [base layer of electroless metal plating] described later.
 本発明の無電解めっき下地剤は、所望により、(D)成分であるベース樹脂を含有させることができる。(D)成分としては、(A)成分中の架橋性基と熱により架橋反応する基である、非ラジカル重合性の架橋性基を有するものが好ましく、例えば、WO2014/171376に(B)成分として記載されているものが好ましい。このような(D)成分を添加することにより、得られる下地層の他の機能(例えば密着性、耐熱性、感光性、誘電性等)をより向上させることができる場合がある。 The electroless plating base material of the present invention can contain the base resin which is the component (D), if desired. As the component (D), a component having a non-radical polymerizable crosslinkable group, which is a group that undergoes a crosslink reaction with the crosslinkable group in the component (A) by heat, is preferable. The one described as is preferable. By adding such a component (D), it may be possible to further improve other functions (for example, adhesion, heat resistance, photosensitivity, dielectric property, etc.) of the obtained base layer.
 本発明のめっき下地剤に(D)成分を含有させる場合の含有量は、(A)成分の共重合体と、(B)成分の金属微粒子との合計100質量部に基づいて、0質量部乃至200質量部であることが好ましく、より好ましくは0質量部乃至150質量部である。(D)成分の含有量が過大である場合にはめっき析出性が低下することがある。 When the plating base material of the present invention contains the component (D), the content is 0 parts by mass based on a total of 100 parts by mass of the copolymer of the component (A) and the metal fine particles of the component (B). It is preferably from 0 part by mass to 200 parts by mass, and more preferably from 0 part by mass to 150 parts by mass. If the content of the component (D) is excessive, the plating precipitation property may decrease.
 本発明の無電解めっき下地剤は、所望により、(E)成分である架橋剤を含有させることができる。 The electroless plating base material of the present invention can contain a cross-linking agent which is the component (E), if desired.
 (E)成分である架橋剤としては、エポキシ化合物、メチロール化合物、ブロックイソシアネート化合物、フェノプラスト化合物、トリアルコキシシリル基を2個以上有する化合物、アミノ基を有するアルコキシシラン化合物等の化合物、アルコキシ基及び/又はキレート配位子を有する有機金属化合物、N-アルコキシメチルアクリルアミドの重合体、エポキシ基を有する化合物の重合体、アルコキシシリル基を有する化合物の重合体、イソシアネート基を有する化合物の重合体、及びメラミンホルムアルデヒド樹脂等の重合体が挙げられる。 Examples of the cross-linking agent as the component (E) include an epoxy compound, a methylol compound, a blocked isocyanate compound, a phenoplast compound, a compound having two or more trialkoxysilyl groups, a compound such as an alkoxysilane compound having an amino group, an alkoxy group, and the like. / Or an organic metal compound having a chelate ligand, a polymer of N-alkoxymethylacrylamide, a polymer of a compound having an epoxy group, a polymer of a compound having an alkoxysilyl group, a polymer of a compound having an isocyanate group, and Examples thereof include compounds such as melamine formaldehyde resin.
 上述したエポキシ化合物の具体例としては、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、及びN,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン等が挙げられる。 Specific examples of the above-mentioned epoxy compounds include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1, 6-Hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N', N', -tetraglycidyl-m-xylene diamine, 1,3-bis (N, N-diglycidyl aminomethyl) cyclohexane, and N, N, N', N'-tetraglycidyl-4, 4'-diaminodiphenylmethane And so on.
 上述したメチロール化合物の具体例としては、アルコキシメチル化グリコールウリル、アルコキシメチル化ベンゾグアナミン、及びアルコキシメチル化メラミン等の化合物が挙げられる。 Specific examples of the above-mentioned methylol compound include compounds such as alkoxymethylated glycol uryl, alkoxymethylated benzoguanamine, and alkoxymethylated melamine.
 アルコキシメチル化グリコールウリルの具体例としては、例えば、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素、1,1,3,3-テトラキス(メトキシメチル)尿素、1,3-ビス(ヒドロキシメチル)-4,5-ジヒドロキシ-2-イミダゾリノン、および1,3-ビス(メトキシメチル)-4,5-ジメトキシ-2-イミダゾリノン等が挙げられる。市販品として、三井サイテック(株)製グリコールウリル化合物(商品名:サイメル(登録商標)1170、パウダーリンク(登録商標)1174)等の化合物、メチル化尿素樹脂(商品名:UFR(登録商標)65)、ブチル化尿素樹脂(商品名:UFR(登録商標)300、U-VAN10S60、U-VAN10R、U-VAN11HV)、DIC(株)製尿素/ホルムアルデヒド系樹脂(高縮合型、商品名:ベッカミン(登録商標)J-300S、同P-955、同N)等が挙げられる。 Specific examples of alkoxymethylated glycol uryl include 1,3,4,6-tetrax (methoxymethyl) glycol uryl, 1,3,4,6-tetrax (butoxymethyl) glycol uryl, 1,3,4. , 6-Tetrax (hydroxymethyl) glycoluryl, 1,3-bis (hydroxymethyl) urea, 1,1,3,3-tetrakis (butoxymethyl) urea, 1,1,3,3-tetrakis (methoxymethyl) Examples thereof include urea, 1,3-bis (hydroxymethyl) -4,5-dihydroxy-2-imidazolinone, and 1,3-bis (methoxymethyl) -4,5-dimethoxy-2-imidazolinone. As commercially available products, compounds such as glycoluril compounds manufactured by Mitsui Cytec Co., Ltd. (trade name: Cymel (registered trademark) 1170, powder link (registered trademark) 1174), methylated urea resin (trade name: UFR (registered trademark) 65) ), Butylated urea resin (trade name: UFR (registered trademark) 300, U-VAN10S60, U-VAN10R, U-VAN11HV), urea / formaldehyde resin manufactured by DIC Co., Ltd. (high condensation type, trade name: Beccamin () Registered trademarks) J-300S, P-955, N) and the like.
 アルコキシメチル化ベンゾグアナミンの具体例としては、例えば、テトラメトキシメチルベンゾグアナミン等が挙げられる。市販品として、三井サイテック(株)製(商品名:サイメル(登録商標)1123)、(株)三和ケミカル製(商品名:ニカラック(登録商標)BX-4000、同BX-37、同BL-60、同BX-55H)等が挙げられる。 Specific examples of alkoxymethylated benzoguanamine include tetramethoxymethylbenzoguanamine and the like. As commercial products, Mitsui Cytec Co., Ltd. (trade name: Cymel (registered trademark) 1123), Sanwa Chemical Co., Ltd. (trade name: Nicarac (registered trademark) BX-4000, BX-37, BL- 60, BX-55H) and the like.
 アルコキシメチル化メラミンの具体例としては、例えば、ヘキサメトキシメチルメラミン等が挙げられる。市販品として、三井サイテック(株)製メトキシメチルタイプメラミン化合物(商品名:サイメル(登録商標)300、同301、同303、同350)、ブトキシメチルタイプメラミン化合物(商品名:マイコート(登録商標)506、同508)、三和ケミカル製メトキシメチルタイプメラミン化合物(商品名:ニカラック(登録商標)MW-30、同MW-22、同MW-11、同MS-001、同MX-002、同MX-730、同MX-750、同MX-035)、ブトキシメチルタイプメラミン化合物(商品名:ニカラック(登録商標)MX-45、同MX-410、同MX-302)等が挙げられる。 Specific examples of alkoxymethylated melamine include hexamethoxymethylmelamine and the like. Commercially available products include methoxymethyl type melamine compounds manufactured by Mitsui Cytec Co., Ltd. (trade name: Cymel (registered trademark) 300, 301, 303, 350), butoxymethyl type melamine compound (trade name: Mycoat (registered trademark)). ) 506, 508), Sanwa Chemical's methoxymethyl type melamine compound (trade name: Nicarac (registered trademark) MW-30, MW-22, MW-11, MS-001, MX-002, the same MX-730, MX-750, MX-035), butoxymethyl type melamine compound (trade name: Nicarac (registered trademark) MX-45, MX-410, MX-302) and the like.
 また、このようなアミノ基の水素原子がメチロール基又はアルコキシメチル基で置換されたメラミン化合物、尿素化合物、グリコールウリル化合物及びベンゾグアナミン化合物を縮合させて得られる化合物であってもよい。例えば、米国特許第6323310号に記載されているメラミン化合物およびベンゾグアナミン化合物から製造される高分子量の化合物が挙げられる。前記メラミン化合物の市販品としては、商品名:サイメル(登録商標)303(三井サイテック(株)製)等が挙げられ、前記ベンゾグアナミン化合物の市販品としては、商品名:サイメル(登録商標)1123(三井サイテック(株)製)等が挙げられる。 Further, it may be a compound obtained by condensing such a melamine compound, a urea compound, a glycoluril compound and a benzoguanamine compound in which the hydrogen atom of the amino group is substituted with a methylol group or an alkoxymethyl group. For example, high molecular weight compounds produced from the melamine and benzoguanamine compounds described in US Pat. No. 6,323,310. Examples of commercially available products of the melamine compound include trade name: Cymel (registered trademark) 303 (manufactured by Mitsui Cytec Co., Ltd.), and commercial products of the benzoguanamine compound include trade name: Cymel (registered trademark) 1123 ( Mitsui Cytec Co., Ltd.) and the like.
 上述したブロックイソシアネート化合物とは、イソシアネート基が適当な保護基によりブロックされたイソシアネート基を一分子中2個以上有し、熱硬化時の高温に曝されると、保護基(ブロック部分)が熱解離して外れ、生じたイソシアネート基が樹脂との間で架橋反応を起こすものである。 The above-mentioned blocked isocyanate compound has two or more isocyanate groups in one molecule in which the isocyanate group is blocked by an appropriate protective group, and when exposed to a high temperature during thermosetting, the protective group (block portion) becomes hot. It dissociates and comes off, and the generated isocyanate group causes a cross-linking reaction with the resin.
 このような多官能ブロックイソシアネート化合物は、例えば、一分子中2個以上のイソシアネート基を有する多官能イソシアネート化合物に対して適当なブロック剤を反応させて得ることができる。 Such a polyfunctional blocked isocyanate compound can be obtained, for example, by reacting a polyfunctional isocyanate compound having two or more isocyanate groups in one molecule with an appropriate blocking agent.
 前記多官能イソシアネート化合物としては、例えば、1,4-テトラメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、2,2,4-トリメチル-1,6-ヘキサメチレンジイソシアネート、1,3,6-ヘキサメチレントリイソシアネート、リジンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、1,3-ビス(イソシアネートメチル)シクロヘキサン、1,4-シクロヘキシルジイソシアネート、2,6-ビス(イソシアネートメチル)テトラヒドロジシクロペンタジエン、ビス(イソシアネートメチル)ジシクロペンタジエン、ビス(イソシアネートメチル)アダマンタン、2,5-ジイソシアネートメチルノルボルネン、ノルボルナンジイソシアネート、ジシクロヘプタントリイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、1,5-ナフタレンジイソシアネート、p-フェニレンジイソシアネート、1,3-ビス(イソシアネートメチル)ベンゼン、ジアニシジンジイソシアネート、3,3’-ジメチルジフェニル-4,4’-ジイソシアネート、ジフェニルエーテルジイソシアネート、2,6-ビス(イソシアネートメチル)デカヒドロナフタレン、ビス(ジイソシアネートトリル)フェニルメタン、1,1’-メチレンビス(3-メチル-4-イソシアネートベンゼン)、1,3-ビス(1-イソシアネート-1-メチルエチル)ベンゼン、1,4-ビス(1-イソシアネート-1-メチルエチル)ベンゼン、4,4’-ビフェニレンジイソシアネート、3,3’-ジメチル-4,4’-ビフェニレンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネート、ビス(イソシアネートメチル)チオフェン、ビス(イソシアネートメチル)テトラヒドロチオフェン、及びこれらの変性化合物(例えば、イソシアヌレート体、ビウレット体、エチレングリコールアダクト体、プロピレングリコールアダクト体、トリメチロールプロパンアダクト体、エタノールアミンアダクト体、ポリエステルポリオールアダクト体、ポリエーテルポリオールアダクト体、ポリアミドアダクト体、ポリアミンアダクト体)を挙げることができる。 Examples of the polyfunctional isocyanate compound include 1,4-tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate, and 2,2,4-trimethyl-1,6-hexamethylene diisocyanate. 1,3,6-hexamethylene triisocyanate, lysine diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 1,3-bis (isocyanatemethyl) cyclohexane, 1,4-cyclohexyldiisocyanate, 2,6-bis ( Isocyanatemethyl) tetrahydrodicyclopentadiene, bis (isocyanatemethyl) dicyclopentadiene, bis (isocyanatemethyl) adamantan, 2,5-diisocyanatemethylnorbornene, norbornandiisocyanate, dicycloheptanetriisocyanate, 4,4'-diphenylmethanediisocyanate, 2 , 4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, 1,5-naphthalenedisocyanate, p-phenylenedi isocyanate, 1,3-bis (isocyanatemethyl) benzene, dianisidine Diisocyanate, 3,3'-dimethyldiphenyl-4,4'-diisocyanate, diphenyl ether diisocyanate, 2,6-bis (isocyanate methyl) decahydronaphthalene, bis (diisocyanate trill) phenylmethane, 1,1'-methylenebis (3-) Methyl-4-isocyanate benzene), 1,3-bis (1-isocyanate-1-methylethyl) benzene, 1,4-bis (1-isocyanate-1-methylethyl) benzene, 4,4'-biphenylenediisocyanate, 3,3'-dimethyl-4,4'-biphenylenediocyanate, 3,3'-dimethoxy-4,4'-biphenylenediisocyanate, bis (isocyanatemethyl) thiophene, bis (isocyanatemethyl) tetrahydrothiophene, and modified compounds thereof. (For example, isocyanurate body, biuret body, ethylene glycol adduct body, propylene glycol adduct body, trimethylpropane adduct body, ethanolamine adduct body, polyester polyol adduct body, polyether polyol adduct body, polyamide adduct body, polyami (Adduct body) can be mentioned.
 前記ブロック剤としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、ヘプタノール、ヘキサノール、2-エトキシヘキサノール、シクロヘキサノール、オクタノール、イソノニルアルコール、ステアリルアルコール、ベンジルアルコール、2-エトキシエタノール、乳酸メチル、乳酸エチル、乳酸アミル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル)、トリエチレングリコールモノエチルエーテル、N,N-ジメチルアミノエタノール、N,N-ジエチルアミノエタノール、N,N-ジブチルアミノエタノール等のアルコール類、フェノール、エチルフェノール、プロピルフェノール、ブチルフェノール、オクチルフェノール、ノニルフェノール、ニトロフェノール、クロロフェノール、o-クレゾール、m-クレゾール、p-クレゾール、キシレノール等のフェノール類、α-ピロリドン、β-ブチロラクタム、β-プロピオラクタム、γ-ブチロラクタム、δ-バレロラクタム、ε-カプロラクタム等のラクタム類、アセトンオキシム、メチルエチルケトンオキシム、メチルイソブチルケトンオキシム、ジエチルケトンオキシム、シクロヘキサノンオキシム、アセトフェノンオキシム、ベンゾフェノンオキシム等のオキシム類、ピラゾール、3,5-ジメチルピラゾール、3-メチルピラゾール、4-ベンジル-3,5-ジメチルピラゾール、4-ニトロ-3,5-ジメチルピラゾール、4-ブロモ-3,5-ジメチルピラゾール、3-メチル-5-フェニルピラゾール等のピラゾール類、ブチルメルカプタン、ヘキシルメルカプタン、ドデシルメルカプタン、ベンゼンチオール等のメルカプタン類、マロン酸ジエステル、アセト酢酸エステル、マロン酸ジニトリル、アセチルアセトン、メチレンジスルホン、ジベンゾイルメタン、ジピバロイルメタン、アセトンジカルボン酸ジエステル等の活性メチレン系化合物類、ジブチルアミン、ジイソプロピルアミン、ジ-tert-ブチルアミン、ジ(2-エチルヘキシル)アミン、ジシクロヘキシルアミン、ベンジルアミン、ジフェニルアミン、アニリン、カルバゾール等のアミン類、イミダゾール、2-エチルイミダゾール等のイミダゾール類、メチレンイミン、エチレンイミン、ポリエチレンイミン、プロピレンイミン等のイミン類、アセトアニリド、アクリルアミド、酢酸アミド、ダイマー酸アミド等の酸アミド類、コハク酸イミド、マレイン酸イミド、フタル酸イミド等の酸イミド類、尿素、チオ尿素、エチレン尿素等の尿素化合物類を挙げることができる。また、ウレトジオン結合(イソシアネート基の2量化)による内部ブロック型であってもよい。 Examples of the blocking agent include methanol, ethanol, isopropanol, n-butanol, heptanol, hexanol, 2-ethoxyhexanol, cyclohexanol, octanol, isononyl alcohol, stearyl alcohol, benzyl alcohol, 2-ethoxyethanol, methyl lactate, and the like. Ethyl lactate, amyl lactate, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether), tri Alcohols such as ethylene glycol monoethyl ether, N, N-dimethylaminoethanol, N, N-diethylaminoethanol, N, N-dibutylaminoethanol, phenol, ethylphenol, propylphenol, butylphenol, octylphenol, nonylphenol, nitrophenol, Phenols such as chlorophenol, o-cresol, m-cresol, p-cresol, xylenol, lactams such as α-pyrrolidone, β-butyrolactam, β-propiolactam, γ-butyrolactam, δ-valerolactam, ε-caprolactam Oximes such as acetone oxime, methyl ethyl ketone oxime, methyl isobutyl ketone oxime, diethyl ketone oxime, cyclohexanone oxime, acetophenone oxime, benzophenone oxime, pyrazole, 3,5-dimethylpyrazole, 3-methylpyrazole, 4-benzyl-3, Pyrazoles such as 5-dimethylpyrazole, 4-nitro-3,5-dimethylpyrazole, 4-bromo-3,5-dimethylpyrazole, 3-methyl-5-phenylpyrazole, butyl mercaptan, hexyl mercaptan, dodecyl mercaptan, benzene Mercaptans such as thiols, malonic acid diesters, acetoacetate, dinitrile malonate, acetylacetone, methylenedisulfone, dibenzoylmethane, dipivaloylmethane, active methylene compounds such as acetone dicarboxylic acid diester, dibutylamine, diisopropylamine , Di-tert-butylamine, di (2-ethylhexyl) amine, dicyclohexylamine, benzylamine, diphenyl Amines such as nylamine, aniline and carbazole, imidazoles such as imidazole and 2-ethylimidazole, imines such as methyleneimine, ethyleneimine, polyethyleneimine and propyleneimine, acids such as acetanilide, acrylamide, acetate amide and dimer acid amide. Examples thereof include acidimides such as amides, succinateimide, maleateimide and phthalateimide, and urea compounds such as urea, thiourea and ethyleneurea. Further, it may be an internal block type due to a uretdione bond (dimerization of isocyanate groups).
 前記多官能ブロックイソシアネート化合物の市販品としては、例えば、下記製品を挙げることができる。
 タケネート〔登録商標〕B-815N、同B-830、同B-842N、同B-846N、同B-870、同B-870N、同B-874、同B-874N、同B-882、同B-882N、同B-5010、同B-7005、同B-7030、同B-7075(以上、三井化学(株)製)。
Examples of commercially available products of the polyfunctional blocked isocyanate compound include the following products.
Takenate [registered trademark] B-815N, B-830, B-842N, B-846N, B-870, B-870N, B-874, B-874N, B-882, same B-882N, B-5010, B-7005, B-7030, B-7075 (all manufactured by Mitsui Chemicals, Inc.).
 デュラネート〔登録商標〕ME20-B80S、同MF-B60B、同MF-B60X、同MF-B90B、同MF-K60B、同MF-K60X、同SBN-70D、同17B-60P、同17B-60PX、同TPA-B80E、同TPA-B80X、同E402-B80B、同E402-B80T、同K6000(以上、旭化成ケミカルズ(株)製)、コロネート〔登録商標〕2503、同2507、同2512、同2513、同2515、同2520、同2554、同BI-301、同AP-M、ミリオネート MS-50(以上、東ソー(株)製)。 Duranate (registered trademark) ME20-B80S, MF-B60B, MF-B60X, MF-B90B, MF-K60B, MF-K60X, SBN-70D, 17B-60P, 17B-60PX, TPA-B80E, TPA-B80X, E402-B80B, E402-B80T, K6000 (all manufactured by Asahi Kasei Chemicals Co., Ltd.), Coronate (registered trademark) 2503, 2507, 2512, 2513, 2515 , 2520, 2554, BI-301, AP-M, Millionate MS-50 (all manufactured by Toso Co., Ltd.).
 バーノック〔登録商標〕D-500、同D-550、同DB-980K(以上、DIC(株)製)。 Burnock [registered trademark] D-500, D-550, DB-980K (all manufactured by DIC Corporation).
 スミジュール〔登録商標〕BL-3175、同BL-4165、同BL-4265、同BL-1100、同BL-1265、デスモジュール〔登録商標〕TPLS-2957、同TPLS-2062、同TPLS-2078、同TPLS-2117、同BL-3475、デスモサーム〔登録商標〕2170、同2265(以上、住化バイエルウレタン(株)製)。 Sumijour [registered trademark] BL-3175, BL-4165, BL-4265, BL-1100, BL-1265, Death Module [registered trademark] TPLS-2957, TPLS-2062, TPLS-2078, TPLS-2117, BL-3475, Desmosarm [registered trademark] 2170, 2265 (all manufactured by Sumika Bayer Urethane Co., Ltd.).
 TRIXENE BI-7641、同BI-7642、同BI-7986、同BI-7987、同BI-7950、同BI-7951、同BI-7960、同BI-7961、同BI-7963、同BI-7981、同BI-7982、同BI-7984、同BI-7986、同BI-7990、同BI-7991、同BI-7992、同BI-7770、同BI-7772、同BI-7779、同DP9C/214(以上、バクセンデンケミカルズ社製)。 TRIXENE BI-7461, BI-7642, BI-7986, BI-7987, BI-7950, BI-7951, BI-7960, BI-7961, BI-7963, BI-7981, BI-7982, BI-7984, BI-7986, BI-7990, BI-7991, BI-7992, BI-7770, BI-7772, BI-7779, DP9C / 214 ( Above, manufactured by Baksenden Chemicals Co., Ltd.).
 VESTANAT〔登録商標〕B1358A、同B1358/100、同B1370、VESTAGON〔登録商標〕B1065、同B1400、同B1530、同BF1320、同BF1540(以上、エボニックインダストリーズ社製)。 VESTANAT [registered trademark] B1358A, B1358 / 100, B1370, VESTAGON [registered trademark] B1065, B1400, B1530, BF1320, BF1540 (all manufactured by Evonik Industries).
 また、前記多官能ブロックイソシアネート化合物としては、ブロックイソシアネート基を有する(メタ)アクリレートをラジカル重合して得られるホモポリマー又はコポリマーを挙げることができる。ここで、コポリマーとは、2種以上のモノマーを重合して得られるポリマーを意味する。コポリマーは、ブロックイソシアネート基を有する2種以上の(メタ)アクリレートを重合して得られるコポリマーであってもよいし、ブロックイソシアネート基を有する(メタ)アクリレート及びその他の(メタ)アクリレートを重合して得られるコポリマーであってもよい。このようなブロックイソシアネート基を有する(メタ)アクリレートの市販品としては、例えば、昭和電工(株)製カレンズ〔登録商標〕MOI-BM、同AOI-BM、同MOI-BP、同AOI-BP、同MOI-DEM、同MOI-CP、同MOI-MP、同MOI-OEt、同MOI-OBu、同MOI-OiPrを挙げることができる。 Further, examples of the polyfunctional blocked isocyanate compound include homopolymers or copolymers obtained by radical polymerization of (meth) acrylate having a blocked isocyanate group. Here, the copolymer means a polymer obtained by polymerizing two or more kinds of monomers. The copolymer may be a copolymer obtained by polymerizing two or more kinds of (meth) acrylates having a blocked isocyanate group, or polymerizing a (meth) acrylate having a blocked isocyanate group and another (meth) acrylate. It may be the obtained copolymer. Commercially available products of (meth) acrylates having such a blocked isocyanate group include, for example, Showa Denko KK Karens [registered trademark] MOI-BM, AOI-BM, MOI-BP, AOI-BP, and the like. Examples thereof include the MOI-DEM, the MOI-CP, the MOI-MP, the MOI-OEt, the MOI-OBu, and the MOI-OiPr.
 これらの多官能ブロックイソシアネート化合物は単独で用いてもよく、2種以上を組み合わせて用いてもよい。 These polyfunctional blocked isocyanate compounds may be used alone or in combination of two or more.
 上述したフェノプラスト化合物の具体例としては以下の化合物が挙げられるが、フェノプラスト化合物は以下の化合物例に限定されるものではない。 Specific examples of the above-mentioned phenoplast compound include the following compounds, but the phenoplast compound is not limited to the following compound examples.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 トリアルコキシシリル基を2個以上有する化合物の具体例としては、例えば、1,4-ビス(トリメトキシシリル)ベンゼン、1,4-ビス(トリエトキシシリル)ベンゼン、4,4’-ビス(トリメトキシシリル)ビフェニル、4,4’-ビス(トリエトキシシリル)ビフェニル、ビス(トリメトキシシリル)エタン、ビス(トリエトキシシリル)エタン、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリメトキシシリル)エチレン、ビス(トリエトキシシリル)エチレン、1,3-ビス(トリメトキシシリルエチル)テトラメチルジシロキサン、1,3-ビス(トリエトキシシリルエチル)テトラメチルジシロキサン、ビス(トリエトキシシリルメチル)アミン、ビス(トリメトキシシリルメチル)アミン、ビス(トリエトキシシリルプロピル)アミン、ビス(トリメトキシシリルプロピル)アミン、ビス(3-トリメトキシシリルプロピル)カーボネート、ビス(3-トリエトキシシリルプロピル)カーボネート、ビス[(3-トリメトキシシリル)プロピル]ジスルフィド、ビス[(3-トリエトキシシリル)プロピル]ジスルフィド、ビス[(3-トリメトキシシリル)プロピル]チオウレア、ビス[(3-トリエトキシシリル)プロピル]チオウレア、ビス[(3-トリメトキシシリル)プロピル]ウレア、ビス[(3-トリエトキシシリル)プロピル]ウレア、1,4-ビス(トリメトキシシリルメチル)ベンゼン、1,4-ビス(トリエトキシシリルメチル)ベンゼン、トリス(トリメトキシシリルプロピル)アミン、トリス(トリエトキシシリルプロピル)アミン、1,1,2-トリス(トリメトキシシリル)エタン、1,1,2-トリス(トリエトキシシリル)エタン、トリス(3-トリメトキシシリルプロピル)イソシアヌレート、及びトリス(3-トリエトキシシリルプロピル)イソシアヌレート等の化合物が挙げられる。 Specific examples of the compound having two or more trialkoxysilyl groups include 1,4-bis (trimethoxysilyl) benzene, 1,4-bis (triethoxysilyl) benzene, and 4,4'-bis (tri). Methoxysilyl) biphenyl, 4,4'-bis (triethoxysilyl) biphenyl, bis (trimethoxysilyl) ethane, bis (triethoxysilyl) ethane, bis (trimethoxysilyl) methane, bis (triethoxysilyl) methane, Bis (trimethoxysilyl) ethylene, bis (triethoxysilyl) ethylene, 1,3-bis (trimethoxysilylethyl) tetramethyldisiloxane, 1,3-bis (triethoxysilylethyl) tetramethyldisiloxane, bis ( Triethoxysilylmethyl) amine, bis (trimethoxysilylmethyl) amine, bis (triethoxysilylpropyl) amine, bis (trimethoxysilylpropyl) amine, bis (3-trimethoxysilylpropyl) carbonate, bis (3-tri) Ethoxysilylpropyl) carbonate, bis [(3-trimethoxysilyl) propyl] disulfide, bis [(3-triethoxysilyl) propyl] disulfide, bis [(3-trimethoxysilyl) propyl] thiourea, bis [(3-trimethoxysilyl) propyl] Triethoxysilyl) propyl] thiourea, bis [(3-trimethoxysilyl) propyl] urea, bis [(3-triethoxysilyl) propyl] urea, 1,4-bis (trimethoxysilylmethyl) benzene, 1,4 -Bis (triethoxysilylmethyl) benzene, tris (trimethoxysilylpropyl) amine, tris (triethoxysilylpropyl) amine, 1,1,2-tris (trimethoxysilyl) ethane, 1,1,2-tris ( Examples thereof include compounds such as triethoxysilyl) ethane, tris (3-trimethoxysilylpropyl) isocyanurate, and tris (3-triethoxysilylpropyl) isocyanurate.
 アミノ基を有するアルコキシシラン化合物の具体例としては、例えば、N,N’‐ビス[3-(トリメトキシシリル)プロピル]-1,2-エタンジアミン、N,N’‐ビス[3-(トリエトキシシリル)プロピル]-1,2-エタンジアミン、N-[3-(トリメトキシシリル)プロピル]-1,2-エタンジアミン、N-[3-(トリエトキシシリル)プロピル]-1,2-エタンジアミン、ビス-{3-(トリメトキシシリル)プロピル}アミン、ビス-{3-(トリエトキシシリル)プロピル}アミン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、トリメトキシ{3-(メチルアミノ)プロピルシラン、3-(N-アリルアミノ)プロピルトリメトキシシラン、3-(N-アリルアミノ)プロピルトリエトキシシラン、3-(ジエチルアミノ)プロピルトリメトキシシラン、3-(ジエチルアミノ)プロピルトリエトキシシラン、3-(フェニルアミノ)プロピルトリメトキシシラン、及び3-(フェニルアミノ)プロピルトリエトキシシラン等の化合物が挙げられる。 Specific examples of the alkoxysilane compound having an amino group include, for example, N, N'-bis [3- (trimethoxysilyl) propyl] -1,2-ethanediamine, N, N'-bis [3- (tri). Ethoxysilyl) propyl] -1,2-ethanediamine, N- [3- (trimethoxysilyl) propyl] -1,2-ethanediamine, N- [3- (triethoxysilyl) propyl] -1,2- Ethandiamine, bis- {3- (trimethoxysilyl) propyl} amine, bis- {3- (triethoxysilyl) propyl} amine, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, trimethoxy {3 -(Methylamino) propylsilane, 3- (N-allylamino) propyltrimethoxysilane, 3- (N-allylamino) propyltriethoxysilane, 3- (diethylamino) propyltrimethoxysilane, 3- (diethylamino) propyltriethoxysilane Examples thereof include compounds such as silane, 3- (phenylamino) propyltrimethoxysilane, and 3- (phenylamino) propyltriethoxysilane.
 アルコキシ基及び/又はキレート配位子を有する有機金属化合物の具体例としては、例えば、ジイソプロポキシエチルアセトアセテートアルミニウム、ジイソプロポキシアセチルアセトネートアルミニウム、トリアセチルアセトネートアルミニウム、テトラキスイソプロポキシチタニウム、テトラキスノルマルブトキシチタニウム、テトラオクチルチタネート、ジイソプロポキシビス(アセチルアセトネート)チタニウム、チタンテトラアセチルアセトネート、テトラキス(ノルマルプロポキシ)ジルコニウム、テトラキス(ノルマルブトキシ)ジルコニウム、テトラキス(アセチルアセトネート)ジルコニウム等の化合物が挙げられる。 Specific examples of the organic metal compound having an alkoxy group and / or a chelating ligand include, for example, diisopropoxyethylacetoneacetate aluminum, diisopropoxyacetylacetonealuminum, triacetylacetonealuminum, tetrakisisopropoxytitanium, and tetrakis. Compounds such as normal butoxytitanium, tetraoctyl titanate, diisopropoxybis (acetylacetoneate) titanium, titanium tetraacetylacetone, tetrakis (normalpropoxy) zirconium, tetrakis (normalbutoxy) zirconium, tetrakis (acetylacetoneate) zirconium Can be mentioned.
 さらに、上述したN-アルコキシメチルアクリルアミドの重合体としては、例えば、N-ヒドロキシメチル(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド等のヒドロキシメチル基又はアルコキシメチル基で置換されたアクリルアミド化合物又はメタクリルアミド化合物を使用して製造されるポリマーが挙げられる。 Further, examples of the above-mentioned N-alkoxymethylacrylamide polymer include N-hydroxymethyl (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, and N-butoxymethyl (meth). ) Examples thereof include polymers produced by using an acrylamide compound or a methacrylicamide compound substituted with a hydroxymethyl group such as acrylamide or an alkoxymethyl group.
 そのようなポリマーの具体例としては、例えば、ポリ(N-ブトキシメチルアクリルアミド)、N-ブトキシメチルアクリルアミドとスチレンとの共重合体、N-ヒドロキシメチルメタクリルアミドとメチルメタクリレートとの共重合体、N-エトキシメチルメタクリルアミドとベンジルメタクリレートとの共重合体、及びN-ブトキシメチルアクリルアミドとベンジルメタクリレートと2-ヒドロキシプロピルメタクリレートとの共重合体等が挙げられる。このようなポリマーの重量平均分子量は、1,000乃至200,000であり、より好ましくは3,000乃至150,000であり、さらに好ましくは3,000乃至50,000である。 Specific examples of such polymers include poly (N-butoxymethylacrylamide), a copolymer of N-butoxymethylacrylamide and styrene, a copolymer of N-hydroxymethylmethacrylamide and methylmethacrylate, and N. Examples thereof include a copolymer of -ethoxymethylmethacrylamide and benzylmethacrylate, and a copolymer of N-butoxymethylacrylamide, benzylmethacrylate and 2-hydroxypropylmethacrylate. The weight average molecular weight of such a polymer is 1,000 to 200,000, more preferably 3,000 to 150,000, and even more preferably 3,000 to 50,000.
 エポキシ基を有する化合物の重合体としては、例えば、グリシジルメタクリレート、3,4-エポキシシクロヘキシルメチルメタクリレート、3,4-エポキシシクロヘキシルメチルメタクリレート等のエポキシ基を有する化合物を使用して製造されるポリマーが挙げられる。 Examples of the polymer of the compound having an epoxy group include a polymer produced by using a compound having an epoxy group such as glycidyl methacrylate, 3,4-epoxycyclohexylmethylmethacrylate, and 3,4-epoxycyclohexylmethylmethacrylate. Be done.
 そのようなポリマーの具体例としては、例えば、ポリ(3,4-エポキシシクロヘキシルメチルメタクリレート)、ポリ(グリシジルメタクリレート)、グリシジルメタクリレートとメチルメタクリレートとの共重合体、3,4-エポキシシクロヘキシルメチルメタクリレートとメチルメタクリレートとの共重合体、グリシジルメタクリレートとスチレンとの共重合体等が挙げられる。このようなポリマーの重量平均分子量は、1,000乃至200,000であり、より好ましくは3,000乃至150,000であり、さらに好ましくは3,000乃至50,000である。 Specific examples of such polymers include poly (3,4-epoxycyclohexylmethylmethacrylate), poly (glycidylmethacrylate), copolymers of glycidylmethacrylate and methylmethacrylate, and 3,4-epoxycyclohexylmethylmethacrylate. Examples thereof include a copolymer with methyl methacrylate and a copolymer with glycidyl methacrylate and styrene. The weight average molecular weight of such a polymer is 1,000 to 200,000, more preferably 3,000 to 150,000, and even more preferably 3,000 to 50,000.
 上述したアルコキシシリル基を有する化合物の重合体としては、例えば、3-メタクリロキシプロピルトリメトキシシラン等のアルコキシシリル基を有する化合物を使用して製造されるポリマーが挙げられる。 Examples of the polymer of the compound having an alkoxysilyl group described above include a polymer produced by using a compound having an alkoxysilyl group such as 3-methacryloxypropyltrimethoxysilane.
 そのようなポリマーの具体例としては、例えば、ポリ(3-メタクリロキシプロピルトリメトキシシラン)、3-メタクリロキシプロピルトリメトキシシランとスチレンとの共重合体、3-メタクリロキシプロピルトリメトキシシランとメチルメタクリレートとの共重合体等が挙げられる。このようなポリマーの重量平均分子量は、1,000乃至200,000であり、より好ましくは3,000乃至150,000であり、さらに好ましくは3,000乃至50,000である。なお本明細書において、上記「ポリ((メタ)アクリロキシプロピルトリメトキシシラン)」は、アルコキシシリル基を有するポリ(メタ)アクリレートを意味する。 Specific examples of such polymers include poly (3-methacryloxypropyltrimethoxysilane), a copolymer of 3-methacryloxypropyltrimethoxysilane and styrene, and 3-methacryloxypropyltrimethoxysilane and methyl. Examples thereof include a copolymer with methacrylate. The weight average molecular weight of such a polymer is 1,000 to 200,000, more preferably 3,000 to 150,000, and even more preferably 3,000 to 50,000. In the present specification, the above-mentioned "poly ((meth) acryloxypropyltrimethoxysilane)" means a poly (meth) acrylate having an alkoxysilyl group.
 これらの架橋剤は、単独で又は2種以上を組み合わせて使用することができる。 These cross-linking agents can be used alone or in combination of two or more.
 本発明のめっき下地剤に(E)成分を含有させる場合の含有量は、(A)成分の共重合体と、(B)成分の金属微粒子との合計100質量部に基づいて、0質量部乃至100質量部であることが好ましく、より好ましくは0質量部乃至50質量部である。 When the plating base material of the present invention contains the component (E), the content is 0 parts by mass based on a total of 100 parts by mass of the copolymer of the component (A) and the metal fine particles of the component (B). It is preferably from 0 parts by mass to 100 parts by mass, and more preferably from 0 parts by mass to 50 parts by mass.
<その他添加剤>
 本発明の下地剤は、本発明の効果を損なわない限りにおいて、さらに界面活性剤、各種表面調整剤、増粘剤等の添加剤などを適宜添加してもよい。
<Other additives>
As the base material of the present invention, additives such as a surfactant, various surface conditioners, and thickeners may be appropriately added as long as the effects of the present invention are not impaired.
 上記界面活性剤としては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のポリオキシエチレンアルキルエーテル類;ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル等のポリオキシエチレンアルキルアリールエーテル類;ポリオキシエチレン・ポリオキシプロピレンブロックコポリマー類;ソルビタンモノラウレート、ソルビタンモノパルミテート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタントリステアレート、ソルビタントリオレエート等のソルビタン脂肪酸エステル類;ポリオキシエチレンソルビタンモノラウレート、ポリオキシエチレンソルビタンモノパルミテート、ポリオキシエチレンソルビタンモノステアレート、ポリオキシエチレンソルビタントリオレエート等のポリオキシエチレンノニオン系界面活性剤;エフトップ(登録商標)EF-301、同EF-303、同EF-352[以上、三菱マテリアル電子化成(株)製]、メガファック(登録商標)F-171、同F-173、同R-08、同R-30[以上、DIC(株)製]、Novec(登録商標)FC-430、同FC-431[以上、住友スリーエム(株)製]、アサヒガード(登録商標)AG-710[旭硝子(株)製]、サーフロン(登録商標)S-382[AGCセイミケミカル(株)製]等のフッ素系界面活性剤などが挙げられる。 Examples of the surfactant include polyoxyethylene alkyl ethers such as polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, polyoxyethylene cetyl ether, and polyoxyethylene oleyl ether; polyoxyethylene octylphenyl ether and polyoxy. Polyoxyethylene alkylaryl ethers such as ethylene nonylphenyl ether; polyoxyethylene / polyoxypropylene block copolymers; sorbitan monolaurate, sorbitan monopalmitate, sorbitan monostearate, sorbitan monooleate, sorbitan tristearate, Solbitan fatty acid esters such as sorbitan trioleate; polyoxyethylene nonionic surfactants such as polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, and polyoxyethylene sorbitan trioleate. EF Top (registered trademark) EF-301, EF-303, EF-352 [above, manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd.], Megafuck (registered trademark) F-171, F-173, R -08, R-30 [above, manufactured by DIC Co., Ltd.], Novec (registered trademark) FC-430, FC-431 [above, manufactured by Sumitomo 3M Co., Ltd.], Asahi Guard (registered trademark) AG-710 Fluorine-based surfactants such as [manufactured by Asahi Glass Co., Ltd.] and Surflon (registered trademark) S-382 [manufactured by AGC Seimi Chemical Co., Ltd.] can be mentioned.
 また、上記表面調整剤としては、信越シリコーン(登録商標)KP-341[信越化学工業(株)製]等のシリコーン系レベリング剤;BYK(登録商標)-302、同307、同322、同323、同330、同333、同370、同375、同378[以上、ビックケミー・ジャパン(株)製]等のシリコーン系表面調整剤などが挙げられる。 Further, as the surface conditioner, a silicone-based leveling agent such as Shin-Etsu Silicone (registered trademark) KP-341 [manufactured by Shin-Etsu Chemical Co., Ltd.]; BYK (registered trademark) -302, 307, 322, 323. , 330, 333, 370, 375, 378 [above, manufactured by Big Chemie Japan Co., Ltd.] and the like.
 上記増粘剤としては、例えば、カルボキシビニルポリマー(カルボマー)等のポリアクリル酸類(架橋したものも含む);ポリビニルピロリドン(PVP)、ポリビニルアルコール(PVA)、ポリ酢酸ビニル(PVAc)、ポリスチレン(PS)等のビニルポリマー;ポリエチレンオキシド類;ポリエステル;ポリカーボネート;ポリアミド;ポリウレタン;デキストリン、寒天、カラギナン、アルギン酸、アラビアガム、グアーガム、トラガントガム、ローカストビーンガム、デンプン、ペクチン、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等の多糖類;ゼラチン、カゼイン等のタンパク質などが挙げられる。また、上記各ポリマーには、ホモポリマーだけでなくコポリマーも含まれる。これら増粘剤は一種を単独で使用してもよく、また二種以上を併用してもよい。
 本発明の下地剤は、必要に応じて増粘剤を配合することにより、下地剤の粘度やレオロジー特性を調整することができ、下地剤の適用方法や適用箇所など、その用途に応じて適宜採用・選択し得る。
Examples of the thickener include polyacrylic acids (including crosslinked ones) such as carboxyvinyl polymer (carbomer); polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), polyvinyl acetate (PVAc), and polystyrene (PS). ) And other vinyl polymers; polyethylene oxides; polyester; polycarbonate; polyamide; polyurethane; dextrin, agar, caraginan, alginic acid, Arabic gum, guar gum, tragant gum, locust bean gum, starch, pectin, carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose Polysaccharides such as, and proteins such as gelatin and casein. In addition, each of the above polymers includes not only homopolymers but also copolymers. These thickeners may be used alone or in combination of two or more.
In the base material of the present invention, the viscosity and rheological characteristics of the base material can be adjusted by adding a thickener as necessary, and the base material can be appropriately applied according to the application method, application location, and the like. Can be adopted / selected.
 これら添加剤は一種を単独で使用してもよく、また二種以上を併用してもよい。添加剤の使用量は、前記(A)成分であるポリマーと(B)成分である金属微粒子より形成された複合体100質量部に対して、0.001~50質量部が好ましく、0.005~10質量部がより好ましく、0.01~5質量部がより一層好ましい。 These additives may be used alone or in combination of two or more. The amount of the additive used is preferably 0.001 to 50 parts by mass, preferably 0.005 parts by mass, based on 100 parts by mass of the complex formed of the polymer as the component (A) and the metal fine particles as the component (B). To 10 parts by mass is more preferable, and 0.01 to 5 parts by mass is even more preferable.
[無電解金属めっきの下地層]
 上述の本発明の無電解めっき下地剤は、基材上に塗布することにより、無電解金属めっきの下地層を形成することができる。この無電解金属めっきの下地層も本発明の対象である。
[Base layer of electroless metal plating]
The electroless plating base material of the present invention described above can be applied onto a base material to form an electroless metal plating base layer. The base layer of this electroless metal plating is also an object of the present invention.
 前記基材としては特に限定されないが、非導電性基材又は導電性基材を好ましく使用できる。
 非導電性基材としては、例えばガラス、セラミック等;ポリエチレン樹脂、ポリプロピレン樹脂、塩化ビニル樹脂、ナイロン(ポリアミド樹脂)、ポリイミド樹脂、ポリカーボネート樹脂、アクリル樹脂、PEN(ポリエチレンナフタラート)樹脂、PET(ポリエチレンテレフタラート)樹脂、PEEK(ポリエーテルエーテルケトン)樹脂、ABS(アクリロニトリル-ブタジエン-スチレン共重合体)樹脂、エポキシ樹脂、ポリアセタール樹脂、LCP(液晶ポリマー)樹脂等;紙などが挙げられる。これらはシートあるいはフィルム等の形態にて好適に使用され、この場合の厚さについては特に限定されない。
 また導電性基材としては、例えばITO(スズドープ酸化インジウム)や、ATO(アンチモンドープ酸化スズ)、FTO(フッ素ドープ酸化スズ)、AZO(アルミニウムドープ酸化亜鉛)、GZO(ガリウムドープ酸化亜鉛)、また各種ステンレス鋼、アルミニウム並びにジュラルミン等のアルミニウム合金、鉄並びに鉄合金、銅並びに真鍮、燐青銅、白銅及びベリリウム銅等の銅合金、ニッケル並びにニッケル合金、そして、銀並びに洋銀等の銀合金などの金属等が挙げられる。
 さらに上記非導電性基材上にこれらの導電性基材で薄膜が形成された基材も使用可能である。
 また、上記基材は、三次元成形体であってもよい。
The base material is not particularly limited, but a non-conductive base material or a conductive base material can be preferably used.
Examples of the non-conductive base material include glass, ceramic, etc .; polyethylene resin, polypropylene resin, vinyl chloride resin, nylon (polyamide resin), polyimide resin, polycarbonate resin, acrylic resin, PEN (polyethylene naphthalate) resin, PET (polyethylene). Examples thereof include terephthalate) resin, PEEK (polyether ether ketone) resin, ABS (acrylonitrile-butadiene-styrene copolymer) resin, epoxy resin, polyacetal resin, LCP (liquid crystal polymer) resin, and the like. These are preferably used in the form of a sheet, a film, or the like, and the thickness in this case is not particularly limited.
Examples of the conductive substrate include ITO (tin-doped indium oxide), ATO (antimon-doped tin oxide), FTO (fluorine-doped tin oxide), AZO (aluminum-doped zinc oxide), GZO (gallium-doped zinc oxide), and the like. Various stainless steels, aluminum alloys such as aluminum and duralmin, iron and iron alloys, copper and brass, copper alloys such as phosphor bronze, white copper and beryllium copper, nickel and nickel alloys, and metals such as silver alloys such as silver and western silver. And so on.
Further, a base material in which a thin film is formed of these conductive base materials on the non-conductive base material can also be used.
Further, the base material may be a three-dimensional molded product.
 上記(A)成分である共重合体、(B)金属微粒子(好ましくはこれらよりなる複合体)、及び(C)溶剤を含み、さらに、必要に応じて(D)ベース樹脂、(E)架橋剤及びその他成分を含む無電解めっき下地剤より無電解金属めっきの下地層を形成する具体的な方法としては、まず前記(A)成分ポリマーと(B)金属微粒子(好ましくはこれらよりなる複合体)(と必要に応じて(D)ベース樹脂、(E)架橋剤及びその他成分)とを(C)溶剤に溶解又は分散してワニスの形態とし、該ワニスを、金属めっき被膜を形成する基材上にスピンコート法;ブレードコート法;ディップコート法;ロールコート法;バーコート法;ダイコート法;スプレーコート法;インクジェット法;ファウンテンペンナノリソグラフィー(FPN)、ディップペンナノリソグラフィー(DPN)などのペンリソグラフィー;活版印刷、フレキソ印刷、樹脂凸版印刷、コンタクトプリンティング、マイクロコンタクトプリンティング(μCP)、ナノインプリンティングリソグラフィー(NIL)、ナノトランスファープリンティング(nTP)などの凸版印刷法;グラビア印刷、エングレービングなどの凹版印刷法;平版印刷法;スクリーン印刷、謄写版などの孔版印刷法;オフセット印刷法等によって塗布し、その後、溶媒を蒸発・乾燥させることにより、薄層を形成する。
 これらの塗布方法の中でもバーコート法、フレキソ印刷、グラビア印刷、スピンコート法、スプレーコート法、インクジェット法、ペンリソグラフィー、コンタクトプリンティング、μCP、NIL及びnTPが好ましい。スピンコート法を用いる場合には、単時間で塗布することができるために、揮発性の高い溶液であっても利用でき、また、均一性の高い塗布を行うことができるという利点がある。スプレーコート法を用いる場合には、極少量のワニスで均一性の高い塗布を行うことができ、工業的に非常に有利となる。インクジェット法、ペンリソグラフィー、コンタクトプリンティング、μCP、NIL、nTPを用いる場合には、例えば配線などの微細パターンを効率的に形成(描画)することができ、工業的に非常に有利となる。
It contains the copolymer (A) component, (B) metal fine particles (preferably a composite composed of these), and (C) solvent, and further contains (D) base resin and (E) cross-linking as required. As a specific method for forming a base layer for electroless metal plating from an electroless plating base material containing an agent and other components, first, the component polymer (A) and fine metal particles (B) (preferably a composite composed of these) are used. ) (And, if necessary, (D) base resin, (E) cross-linking agent and other components) are dissolved or dispersed in (C) solvent to form a varnish, and the varnish is used as a group to form a metal plating film. Spin coating method; blade coating method; dip coating method; roll coating method; bar coating method; die coating method; spray coating method; inkjet method; fountain pen nanolithography (FPN), dip pen nanolithography (DPN), etc. Pen lithography; typographic printing, flexo printing, resin letterpress printing, contact printing, microcontact printing (μCP), nanoimprinting lithography (NIL), nanotransfer printing (nTP) and other letterpress printing methods; gravure printing, engraving, etc. The concave printing method; the flat printing method; the stencil printing method such as screen printing and copying plate; the offset printing method and the like are applied, and then the solvent is evaporated and dried to form a thin layer.
Among these coating methods, bar coating method, flexographic printing, gravure printing, spin coating method, spray coating method, inkjet method, pen lithography, contact printing, μCP, NIL and nTP are preferable. When the spin coating method is used, since it can be applied in a single time, there is an advantage that even a highly volatile solution can be used and a highly uniform application can be performed. When the spray coating method is used, a highly uniform coating can be performed with a very small amount of varnish, which is industrially very advantageous. When the inkjet method, pen lithography, contact printing, μCP, NIL, or nTP is used, fine patterns such as wiring can be efficiently formed (drawn), which is industrially very advantageous.
<(C)溶剤>
 またここで用いられる溶媒としては、上記(A)成分であるポリマーと(B)金属微粒子(好ましくはこれらよりなる複合体)、及び所望により(D)成分、(E)成分及びその他成分を溶解又は分散するものであれば特に限定されないが、たとえば、水;ベンゼン、トルエン、キシレン、エチルベンゼン、クロロベンゼン、ジクロロベンゼン等の芳香族炭化水素類;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、n-ヘキサノール、n-オクタノール、2-オクタノール、2-エチルヘキサノール等のアルコール類;メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、フェニルセロソルブ等のセロソルブ類;プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、ジエチレングリコールエチルメチルエーテル、ジエチレングリコールブチルメチルエーテル、ジエチレングリコールイソプロピルメチルエーテル、ジプロピレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル等のグリコールエーテル類;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート(PGMEA)等のグリコールエステル類;テトラヒドロフラン(THF)、メチルテトラヒドロフラン、1,4-ジオキサン、ジエチルエーテル等のエーテル類;酢酸エチル、酢酸ブチル等のエステル類;アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロペンタノン、シクロヘキサノン等のケトン類;n-ヘプタン、n-ヘキサン、シクロヘキサン等の脂肪族炭化水素類;1,2-ジクロロエタン、クロロホルム等のハロゲン化脂肪族炭化水素類;N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド等のアミド類;ジメチルスルホキシドなどが使用できる。これら溶媒は単独で使用してもよく、2種類以上の溶媒を混合してもよい。さらに、ワニスの粘度を調整する目的で、エチレングリコール、プロピレングリコール、ブチレングリコール等のグリコール類を添加してもよい。
 また上記溶媒に溶解又は分散させる濃度は任意であるが、ワニス中の非溶媒成分の濃度[下地剤に含まれる溶媒を除く全成分((A)成分であるポリマーと(B)金属微粒子(好ましくはこれらよりなる複合体)、所望により(D)ベースポリマー、(E)架橋剤及びその他成分等)の濃度]は0.05~90質量%であり、好ましくは0.1~80質量%である。
<(C) Solvent>
Further, as the solvent used here, the polymer which is the component (A), (B) fine metal particles (preferably a composite composed of these), and optionally the component (D), the component (E) and other components are dissolved. Alternatively, it is not particularly limited as long as it disperses, but for example, water; aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, chlorobenzene and dichlorobenzene; methanol, ethanol, n-propanol, isopropanol, n-butanol, and the like. Alcohols such as 2-butanol, n-hexanol, n-octanol, 2-octanol, 2-ethylhexanol; cellosolves such as methyl cellosolve, ethyl cellosolve, butyl cellosolve, phenyl cellosolve; propylene glycol monomethyl ether (PGME), propylene glycol Monoethyl ether, propylene glycol monobutyl ether, diethylene glycol monomethyl ether, diethylene glycol monobutyl ether, dipropylene glycol monomethyl ether, triethylene glycol monomethyl ether, tripropylene glycol monomethyl ether, ethylene glycol dimethyl ether, propylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, Glycol ethers such as diethylene glycol dibutyl ether, diethylene glycol ethyl methyl ether, diethylene glycol butyl methyl ether, diethylene glycol isopropyl methyl ether, dipropylene glycol dimethyl ether, triethylene glycol dimethyl ether, tripropylene glycol dimethyl ether; ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate Glycol esters such as (PGMEA); ethers such as tetrahydrofuran (THF), methyl tetrahydrofuran, 1,4-dioxane, diethyl ether; esters such as ethyl acetate and butyl acetate; acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone Ketones such as (MIBK), cyclopentanone, cyclohexanone; aliphatic hydrocarbons such as n-heptane, n-hexane, cyclohexane; halogenated aliphatic hydrocarbons such as 1,2-dichloroethane, chloroform; N- Methyl-2-pyrrolidone (NMP), N, N-dime Amides such as tylformamide (DMF), N, N-dimethylacetamide; dimethyl sulfoxide and the like can be used. These solvents may be used alone or may be a mixture of two or more kinds of solvents. Further, glycols such as ethylene glycol, propylene glycol and butylene glycol may be added for the purpose of adjusting the viscosity of the varnish.
The concentration to be dissolved or dispersed in the solvent is arbitrary, but the concentration of the non-solvent component in the varnish [the polymer which is the component ((A)) and the metal fine particles (B) (preferably) of all the components except the solvent contained in the base material. Concentration of (complex composed of these), optionally (D) base polymer, (E) cross-linking agent, other components, etc.)] is 0.05 to 90% by mass, preferably 0.1 to 80% by mass. be.
 溶媒の乾燥法としては、特に限定されるものではなく、例えば、ホットプレートやオーブンを用いて、適切な雰囲気下、すなわち大気、窒素等の不活性ガス、真空中等で蒸発させればよい。これにより、均一な成膜面を有する下地層を得ることが可能である。焼成温度は、溶媒を蒸発させることができれば特に限定されないが、40~250℃で行うことが好ましい。 The method for drying the solvent is not particularly limited, and for example, it may be evaporated in an appropriate atmosphere, that is, in an atmosphere, an inert gas such as nitrogen, or in a vacuum, using a hot plate or an oven. This makes it possible to obtain a base layer having a uniform film-forming surface. The firing temperature is not particularly limited as long as the solvent can be evaporated, but it is preferably performed at 40 to 250 ° C.
[無電解めっき処理、金属めっき膜、金属被膜基材]
 上記のようにして得られた基材上に形成された無電解金属めっきの下地層を無電解めっきすることにより、該下地層の上に金属めっき膜が形成される。こうして得られる金属めっき膜、並びに、基材上に無電解金属めっきの下地層、金属めっき膜の順にて具備する金属被膜基材も本発明の対象である。
 無電解めっき処理(工程)は特に限定されず、一般的に知られている何れの無電解めっき処理にて行うことができ、例えば、従来一般に知られている無電解めっき液を用い、該めっき液(浴)に基材上に形成された無電解金属めっきの下地層を浸漬する方法が一般的である。
[Electroless plating, metal plating film, metal film base material]
By electroless plating the base layer of the electroless metal plating formed on the base material obtained as described above, a metal plating film is formed on the base layer. The metal plating film thus obtained, and the metal coating base material provided on the base material in the order of the electroless metal plating base layer and the metal plating film are also the objects of the present invention.
The electroless plating treatment (process) is not particularly limited and can be performed by any generally known electroless plating treatment. For example, the plating is performed using a conventionally known electroless plating solution. A general method is to immerse the base layer of electroless metal plating formed on the base material in a liquid (bath).
 前記無電解めっき液は、主として金属イオン(金属塩)、錯化剤、還元剤を主に含有し、その他用途に合わせてpH調整剤、pH緩衝剤、反応促進剤(第二錯化剤)、安定剤、界面活性剤(めっき膜への光沢付与用途、被処理面の濡れ性改善用途など)などが適宜含まれてなる。
 ここで無電解めっきにより形成される金属めっき膜に用いられる金属としては、鉄、コバルト、ニッケル、銅、パラジウム、銀、スズ、白金、金及びそれらの合金が挙げられ、目的に応じて適宜選択される。
 また上記錯化剤、還元剤についても金属イオンに応じて適宜選択すればよい。
The electroless plating solution mainly contains a metal ion (metal salt), a complexing agent, and a reducing agent, and is a pH adjuster, a pH buffer, and a reaction accelerator (second complexing agent) according to other uses. , Stabilizers, surfactants (for imparting gloss to the plating film, for improving the wettability of the surface to be treated, etc.) and the like are appropriately included.
Examples of the metal used for the metal plating film formed by electroless plating include iron, cobalt, nickel, copper, palladium, silver, tin, platinum, gold and alloys thereof, which are appropriately selected according to the purpose. Will be done.
Further, the complexing agent and the reducing agent may be appropriately selected according to the metal ions.
 また無電解めっき液は市販のめっき液を使用してもよく、例えばメルテックス(株)製の無電解ニッケルめっき薬品(メルプレート(登録商標)NIシリーズ)、無電解銅めっき薬品(メルプレート(登録商標)CUシリーズ);奥野製薬工業(株)製の無電解ニッケルめっき液(ICPニコロン(登録商標)シリーズ、トップピエナ650)、無電解銅めっき液(OPC-700無電解銅M-K、ATSアドカッパーIW、同CT、OPCカッパー(登録商標)AFシリーズ、同HFS、同NCA)、無電解スズめっき液(サブスターSN-5)、無電解金めっき液(フラッシュゴールド330、セルフゴールドOTK-IT)、無電解銀めっき液(ムデンシルバー);小島化学薬品(株)製の無電解パラジウムめっき液(パレットII)、無電解金めっき液(ディップGシリーズ、NCゴールドシリーズ);佐々木化学薬品(株)製の無電解銀めっき液(エスダイヤAG-40);日本カニゼン(株)製の無電解ニッケルめっき液(カニゼン(登録商標)シリーズ、シューマー(登録商標)シリーズ、シューマー(登録商標)カニブラック(登録商標)シリーズ)、無電解パラジウムめっき液(S-KPD);ダウケミカル社製の無電解銅めっき液(キューポジット(登録商標)カッパーミックスシリーズ、サーキュポジット(登録商標)シリーズ)、無電解パラジウムめっき液(パラマース(登録商標)シリーズ)、無電解ニッケルめっき液(デュラポジット(登録商標)シリーズ)、無電解金めっき液(オーロレクトロレス(登録商標)シリーズ)、無電解スズめっき液(ティンポジット(登録商標)シリーズ);上村工業(株)製の無電解銅めっき液(スルカップ(登録商標)ELC-SP、同PSY、同PCY、同PGT、同PSR、同PEA、同PMK)、アトテックジャパン(株)製の無電解銅めっき液(プリントガント(登録商標)PV、同PVE)等を好適に用いることができる。 A commercially available electroless plating solution may be used as the electroless plating solution. For example, an electroless nickel plating chemical (Melplate (registered trademark) NI series) manufactured by Meltex Co., Ltd. and an electroless copper plating chemical (Melplate (Melplate)) may be used. (Registered trademark) CU series); Electroless nickel plating solution (ICP Nicolon (registered trademark) series, Top Piena 650) manufactured by Okuno Pharmaceutical Co., Ltd., electroless copper plating solution (OPC-700 electroless copper MK, ATS Ad Copper IW, CT, OPC Copper (registered trademark) AF series, HFS, NCA), electroless tin plating solution (Substar SN-5), electroless gold plating solution (flash gold 330, self gold OTK) -IT), electroless silver plating solution (Muden Silver); electroless palladium plating solution (pallet II) manufactured by Kojima Chemical Co., Ltd., electroless gold plating solution (Dip G series, NC gold series); Sasaki Chemical Electroless silver plating solution manufactured by Yakuhin Co., Ltd. (Sdia AG-40); Electroless nickel plating solution manufactured by Nippon Kanizen Co., Ltd. Kani Black (registered trademark) series), electroless palladium plating solution (S-KPD); electroless copper plating solution manufactured by Dow Chemical Co., Ltd. Electroless palladium plating solution (Palamers (registered trademark) series), electroless nickel plating solution (Duraposit (registered trademark) series), electroless gold plating solution (Aurorectores (registered trademark) series), electroless tin plating solution (Tinposit (registered trademark) series); Electroless copper plating solution manufactured by Uemura Kogyo Co., Ltd. (Sulcup (registered trademark) ELC-SP, PSY, PCY, PGT, PSR, PEA, PMK) , Electroless copper plating solution (Print Gant (registered trademark) PV, PVE) manufactured by Atotech Japan Co., Ltd. can be preferably used.
 上記無電解めっき工程は、めっき浴の温度、pH、浸漬時間、金属イオン濃度、撹拌の有無や撹拌速度、空気・酸素の供給の有無や供給速度等を調節することにより、金属被膜の形成速度や膜厚を制御することができる。 In the electroless plating step, the formation speed of the metal film is adjusted by adjusting the temperature, pH, immersion time, metal ion concentration, presence / absence of stirring and stirring speed, presence / absence of supply of air / oxygen, supply speed, and the like. And the film thickness can be controlled.
 以下、実施例を挙げて本発明をさらに詳しく説明するが、本発明は、これら実施例に限定されるものではない。なお、数平均分子量及び重量平均分子量の測定は以下の通りである。
[数平均分子量及び重量平均分子量の測定]
 以下の合成例に従い得られた共重合体の数平均分子量及び重量平均分子量を、東ソー(株)製GPC装置(ShodexカラムKD800およびTOSOHカラムTSK-GEL)を用い、溶出溶媒N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)を10mmol/L(リットル)混合)を流量1mL/分でカラム中に(カラム温度40℃)流して溶離させるという条件で測定した。なお、下記の数平均分子量(以下、Mnと称す。)及び重量平均分子量(以下、Mwと称す。)は、ポリスチレン換算値にて表される。
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. The measurement of the number average molecular weight and the weight average molecular weight is as follows.
[Measurement of number average molecular weight and weight average molecular weight]
The number average molecular weight and weight average molecular weight of the copolymers obtained according to the following synthesis examples were determined by using a GPC apparatus (Shodex column KD800 and TOSOH column TSK-GEL) manufactured by Toso Co., Ltd., and the elution solvent N, N-dimethylformamide was used. (as an additive, lithium bromide - hydrate (LiBr · H 2 O) 10mmol / L ( liter) mixing) on the condition that is eluted by flowing through the column at a flow rate of 1 mL / min (column temperature 40 ° C.) It was measured. The following number average molecular weight (hereinafter referred to as Mn) and weight average molecular weight (hereinafter referred to as Mw) are represented by polystyrene-equivalent values.
 以下の実施例で用いる略記号の意味は、次の通りである。
HEA:2-ヒドロキシエチルアクリレート
NVA:N-ビニルアセトアミド
GMA:グリシジルメタクリレート
サイクロマーM100:3,4-エポキシシクロヘキシルメチルメタアクリレート(ダイセル製)
ビスコート3F:2,2,2-トリフルオロエチルアクリレート(大阪有機化学工業製)
HFIP-M:ヘキサフルオロ-2-プロピルメタクリレート(セントラル硝子製)
FAMAC-6:2-(パーフルオロヘキシル)エチルメタクリレート(ユニマテック製)
AMBN:2,2’-アゾビス-2-メチルブチロニトリル
PGME:プロピレングリコールモノメチルエーテル
IPE:ジイソプロピルエーテル
BL-10:ポリビニルアセタール樹脂(積水化学工業社製)
8KX-127:アクリル樹脂(大成ファインケミカル社製)
[ポリマーの合成]
The meanings of the abbreviations used in the following examples are as follows.
HEA: 2-Hydroxyethyl acrylate NVA: N-Vinylacetamide GMA: Glycidyl methacrylate cyclomer M100: 3,4-Epoxycyclohexylmethylmethacrylate (manufactured by Daicel)
Viscoat 3F: 2,2,2-trifluoroethyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
HFIP-M: Hexafluoro-2-propyl methacrylate (manufactured by Central Glass)
FAMAC-6: 2- (Perfluorohexyl) Ethyl Methacrylate (manufactured by Unimatec)
AMBN: 2,2'-azobis-2-methylbutyronitrile PGME: propylene glycol monomethyl ether IPE: diisopropyl ether BL-10: polyvinyl acetal resin (manufactured by Sekisui Chemical Co., Ltd.)
8KX-127: Acrylic resin (manufactured by Taisei Fine Chemicals Co., Ltd.)
[Polymer synthesis]
<合成例1>
 スチレン 2.00g、NVA 1.63g、HEA 2.23g、AMBN 0.29gをPGME 14.37gに溶解し、80℃にて20時間反応させることにより得られた重合体溶液(固形分濃度30質量%)をジエチルエーテル500mLに撹拌しながら投入し、ポリマーを析出させた。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、共重合体粉末を得た(P1)。得られた重合体のMnは6,806、Mwは11,797であった。
<Synthesis example 1>
A polymer solution (solid content concentration: 30 mass) obtained by dissolving 2.03 g of styrene, 1.63 g of NVA, 2.23 g of HEA, and 0.29 g of AMBN in 14.37 g of PGME and reacting at 80 ° C. for 20 hours. %) Was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P1). The obtained polymer had Mn of 6,806 and Mw of 11,797.
<合成例2>
 スチレン 2.00g、NVA 1.63g、GMA 2.73g、AMBN 0.32gをPGME 15.59gに溶解し、80℃にて20時間反応させることにより得られた共重合体溶液(固形分濃度30質量%)をジエチルエーテル500mLに撹拌しながら投入し、ポリマーを析出させた。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、共重合体粉末を得た(P2)。得られた共重合体のMnは6,057、Mwは8,884であった。
<Synthesis example 2>
A copolymer solution (solid content concentration 30) obtained by dissolving 2.03 g of styrene, 1.63 g of NVA, 2.73 g of GMA, and 0.32 g of AMBN in 15.59 g of PGME and reacting at 80 ° C. for 20 hours. Mass%) was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P2). The obtained copolymer had Mn of 6,057 and Mw of 8,884.
<合成例3>
 スチレン 2.00g、NVA 1.63g、サイクロマーM100 3.76g、AMBN 0.37gをPGME 18.14gに溶解し、80℃にて20時間反応させることにより得られた共重合体溶液(固形分濃度30質量%)をジエチルエーテル500mLに撹拌しながら投入し、ポリマーを析出させた。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、共重合体粉末を得た(P3)。得られた共重合体のMnは5,336、Mwは8,669であった。
<Synthesis example 3>
Copolymer solution (solid content) obtained by dissolving 2.03 g of styrene, 1.63 g of NVA, 3.76 g of cyclomer M100, and 0.37 g of AMBN in 18.14 g of PGME and reacting at 80 ° C. for 20 hours. A concentration of 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P3). The obtained copolymer had Mn of 5,336 and Mw of 8,669.
<合成例4>
 スチレン 2.00g、NVA 1.63g、HEA 1.56g、ビスコート3F 0.89g、AMBN 0.30gをPGME 14.90gに溶解し、80℃にて20時間反応させることにより得られた共重合体溶液(固形分濃度30質量%)をジエチルエーテル500mLに撹拌しながら投入し、ポリマーを析出させた。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、共重合体粉末を得た(P4)。得られた共重合体のMnは7,669、Mwは16,610であった。
<Synthesis example 4>
Copolymer obtained by dissolving 2.00 g of styrene, 1.63 g of NVA, 1.56 g of HEA, 0.89 g of viscoat 3F, and 0.30 g of AMBN in 14.90 g of PGME and reacting at 80 ° C. for 20 hours. The solution (solid content concentration: 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P4). The obtained copolymer had Mn of 7,669 and Mw of 16,610.
<合成例5>
 スチレン 2.00g、NVA 1.63g、HEA 1.56g、FAMAC-6 2.49g、AMBN 0.38gをPGME 18.83gに溶解し、80℃にて20時間反応させることにより得られた共重合体溶液(固形分濃度30質量%)をジエチルエーテル500mLに撹拌しながら投入し、ポリマーを析出させた。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、共重合体粉末を得た(P5)。得られた共重合体のMnは6,146、Mwは13,143であった。
<Synthesis example 5>
Coweight obtained by dissolving 2.00 g of styrene, 1.63 g of NVA, 1.56 g of HEA, 2.49 g of FAMAC-6, and 0.38 g of AMBN in 18.83 g of PGME and reacting at 80 ° C. for 20 hours. The coalesced solution (solid content concentration: 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P5). The obtained copolymer had Mn of 6,146 and Mw of 13,143.
<合成例6>
 スチレン 2.00g、NVA 1.63g、GMA 1.91g、ビスコート3F 0.89g、AMBN 0.32gをPGME 15.76gに溶解し、80℃にて20時間反応させることにより得られた共重合体溶液(固形分濃度30質量%)をジエチルエーテル500mLに撹拌しながら投入し、ポリマーを析出させた。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、共重合体粉末を得た(P6)。得られた共重合体のMnは6,170、Mwは10,023であった。
<Synthesis example 6>
Copolymer obtained by dissolving 2.00 g of styrene, 1.63 g of NVA, 1.91 g of GMA, 0.89 g of Viscort 3F, and 0.32 g of AMBN in 15.76 g of PGME and reacting at 80 ° C. for 20 hours. The solution (solid content concentration: 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P6). The obtained copolymer had Mn of 6,170 and Mw of 10,023.
<合成例7>
 スチレン 2.00g、NVA 1.63g、GMA 1.91g、HFIP-M 1.36g、AMBN 0.34gをPGME 16.92gに溶解し、80℃にて20時間反応させることにより得られた共重合体溶液(固形分濃度30質量%)をジエチルエーテル500mLに撹拌しながら投入し、ポリマーを析出させた。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、共重合体粉末を得た(P7)。得られた共重合体のMnは5,257、Mwは9,324であった。
<Synthesis example 7>
Coweight obtained by dissolving 2.00 g of styrene, 1.63 g of NVA, 1.91 g of GMA, 1.36 g of HFIP-M, and 0.34 g of AMBN in 16.92 g of PGME and reacting at 80 ° C. for 20 hours. The coalesced solution (solid content concentration: 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P7). The obtained copolymer had Mn of 5,257 and Mw of 9,324.
<合成例8>
 スチレン 2.00g、NVA 1.63g、GMA 1.91g、FAMAC-6 2.49g、AMBN 0.40gをPGME 19.69gに溶解し、80℃にて20時間反応させることにより得られた共重合体溶液(固形分濃度30質量%)をジエチルエーテル500mLに撹拌しながら投入し、ポリマーを析出させた。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、共重合体粉末を得た(P8)。得られた共重合体のMnは4,718、Mwは8,940であった。
<Synthesis Example 8>
Coweight obtained by dissolving 2.00 g of styrene, 1.63 g of NVA, 1.91 g of GMA, 2.49 g of FAMAC-6, and 0.40 g of AMBN in 19.69 g of PGME and reacting at 80 ° C. for 20 hours. The coalesced solution (solid content concentration: 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P8). The obtained copolymer had Mn of 4,718 and Mw of 8,940.
<合成例9>
 スチレン 2.00g、NVA 1.63g、サイクロマーM100 2.64g、ビスコート3F 0.89g、AMBN 0.36gをPGME 17.54gに溶解し、80℃にて20時間反応させることにより得られた共重合体溶液(固形分濃度30質量%)をジエチルエーテル500mLに撹拌しながら投入し、ポリマーを析出させた。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、共重合体粉末を得た(P9)。得られた共重合体のMnは6,558、Mwは10,706であった。
<Synthesis example 9>
The copolymer obtained by dissolving 2.00 g of styrene, 1.63 g of NVA, 2.64 g of Cyclomer M100, 0.89 g of Viscoat 3F, and 0.36 g of AMBN in 17.54 g of PGME and reacting at 80 ° C. for 20 hours. A polymer solution (solid content concentration: 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P9). The obtained copolymer had Mn of 6,558 and Mw of 10,706.
<合成例10>
 スチレン 2.00g、NVA 1.63g、サイクロマーM100 2.64g、HFIP-M 1.36g、AMBN 0.38gをPGME 18.70gに溶解し、80℃にて20時間反応させることにより得られた共重合体溶液(固形分濃度30質量%)をジエチルエーテル500mLに撹拌しながら投入し、ポリマーを析出させた。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、共重合体粉末を得た(P10)。得られた共重合体のMnは5,021、Mwは8,277であった。
<Synthesis Example 10>
It was obtained by dissolving 2.00 g of styrene, 1.63 g of NVA, 2.64 g of polymer M100, 1.36 g of HFIP-M, and 0.38 g of AMBN in 18.70 g of PGME and reacting at 80 ° C. for 20 hours. A copolymer solution (solid content concentration: 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P10). The obtained copolymer had Mn of 5,021 and Mw of 8,277.
<合成例11>
 スチレン 2.00g、NVA 1.63g、サイクロマーM100 2.64g、FAMAC-6 2.49g、AMBN 0.44gをPGME 21.47gに溶解し、80℃にて20時間反応させることにより得られた共重合体溶液(固形分濃度30質量%)をジエチルエーテル500mLに撹拌しながら投入し、ポリマーを析出させた。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、共重合体粉末を得た(P11)。得られた共重合体のMnは4,842、Mwは7,853であった。
<Synthesis Example 11>
It was obtained by dissolving 2.00 g of styrene, 1.63 g of NVA, 2.64 g of polymer M100, 2.49 g of FAMAC-6, and 0.44 g of AMBN in 21.47 g of PGME and reacting at 80 ° C. for 20 hours. A copolymer solution (solid content concentration: 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P11). The obtained copolymer had Mn of 4,842 and Mw of 7,853.
<合成例12>
 スチレン 2.00g、NVA 1.63g、サイクロマーM100 1.88g、ビスコート3F 1.48g、AMBN 0.35gをPGME 17.14gに溶解し、80℃にて20時間反応させることにより得られた共重合体溶液(固形分濃度30質量%)をジエチルエーテル500mLに撹拌しながら投入し、ポリマーを析出させた。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、共重合体粉末を得た(P12)。得られた共重合体のMnは6,592、Mwは10,717であった。
<Synthesis Example 12>
Copolymer obtained by dissolving 2.00 g of styrene, 1.63 g of NVA, 1.88 g of polymer M100, 1.48 g of Viscort 3F, and 0.35 g of AMBN in 17.14 g of PGME and reacting at 80 ° C. for 20 hours. A polymer solution (solid content concentration: 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P12). The obtained copolymer had Mn of 6,592 and Mw of 10,717.
<合成例13>
 スチレン 2.00g、NVA 1.63g、サイクロマーM100 1.88g、FAMAC-6 4.15g、AMBN 0.48gをPGME 23.69gに溶解し、80℃にて20時間反応させることにより得られた共重合体溶液(固形分濃度30質量%)をジエチルエーテル500mLに撹拌しながら投入し、ポリマーを析出させた。析出したポリマーを減圧ろ過し、50℃で真空乾燥して、共重合体粉末を得た(P13)。得られた共重合体のMnは5,814、Mwは8,518であった。
<Synthesis Example 13>
It was obtained by dissolving 2.00 g of styrene, 1.63 g of NVA, 1.88 g of polymer M100, 4.15 g of FAMAC-6, and 0.48 g of AMBN in 23.69 g of PGME and reacting at 80 ° C. for 20 hours. A copolymer solution (solid content concentration: 30% by mass) was added to 500 mL of diethyl ether with stirring to precipitate a polymer. The precipitated polymer was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain a copolymer powder (P13). The obtained copolymer had Mn of 5,814 and Mw of 8,518.
[Pd粒子複合体の合成]
<合成例14>
 冷却器を設置した100mLの反応フラスコに、酢酸パラジウム[和光純薬(株)製] 0.90g及びクロロホルム 9.10gを仕込み、均一になるまで撹拌した。この溶液へ、合成例1で重合したP1 l.0gをクロロホルム 16.40g、エタノール 6.40gに溶解させた溶液を、滴下ロートを使用して加えた。この混合物を、窒素雰囲気下60℃で8時間撹拌した。
 液温30℃まで冷却後、この溶液をIPE/ヘキサン溶液(質量比10:1) 341gに撹拌しながら投入し、ポリマー/Pd粒子複合体を析出させた。析出したポリマー/Pd粒子複合体を減圧ろ過し、50℃で真空乾燥して、Pd粒子の複合体(M1) 0.9gを黒色粉末として得た。
[Synthesis of Pd particle complex]
<Synthesis Example 14>
0.90 g of palladium acetate [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.10 g of chloroform were placed in a 100 mL reaction flask equipped with a cooler, and the mixture was stirred until uniform. P1 l. Polymerized in this solution in Synthesis Example 1. A solution prepared by dissolving 0 g in 16.40 g of chloroform and 6.40 g of ethanol was added using a dropping funnel. The mixture was stirred at 60 ° C. for 8 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite. The precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M1) as a black powder.
<合成例15>
 冷却器を設置した100mLの反応フラスコに、酢酸パラジウム[和光純薬(株)製] 0.90g及びクロロホルム 9.10gを仕込み、均一になるまで撹拌した。この溶液へ、合成例2で重合したP2 l.0gをクロロホルム 16.40g、エタノール 6.40gに溶解させた溶液を、滴下ロートを使用して加えた。この混合物を、窒素雰囲気下60℃で8時間撹拌した。
 液温30℃まで冷却後、この溶液をIPE/ヘキサン溶液(質量比10:1) 341gに撹拌しながら投入し、ポリマー/Pd粒子複合体を析出させた。析出したポリマー/Pd粒子複合体を減圧ろ過し、50℃で真空乾燥して、Pd粒子の複合体(M2) 0.9gを黒色粉末として得た。
<Synthesis Example 15>
0.90 g of palladium acetate [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.10 g of chloroform were placed in a 100 mL reaction flask equipped with a cooler, and the mixture was stirred until uniform. P2 l. Polymerized in this solution in Synthesis Example 2. A solution prepared by dissolving 0 g in 16.40 g of chloroform and 6.40 g of ethanol was added using a dropping funnel. The mixture was stirred at 60 ° C. for 8 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite. The precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M2) as a black powder.
<合成例16>
 冷却器を設置した100mLの反応フラスコに、酢酸パラジウム[和光純薬(株)製] 0.90g及びクロロホルム 9.10gを仕込み、均一になるまで撹拌した。この溶液へ、合成例3で重合したP3 l.0gをクロロホルム 16.40g、エタノール 6.40gに溶解させた溶液を、滴下ロートを使用して加えた。この混合物を、窒素雰囲気下60℃で8時間撹拌した。
 液温30℃まで冷却後、この溶液をIPE/ヘキサン溶液(質量比10:1) 341gに撹拌しながら投入し、ポリマー/Pd粒子複合体を析出させた。析出したポリマー/Pd粒子複合体を減圧ろ過し、50℃で真空乾燥して、Pd粒子の複合体(M3) 0.9gを黒色粉末として得た。
<Synthesis Example 16>
0.90 g of palladium acetate [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.10 g of chloroform were placed in a 100 mL reaction flask equipped with a cooler, and the mixture was stirred until uniform. P3 l. Polymerized in this solution in Synthesis Example 3. A solution prepared by dissolving 0 g in 16.40 g of chloroform and 6.40 g of ethanol was added using a dropping funnel. The mixture was stirred at 60 ° C. for 8 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite. The precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M3) as a black powder.
<合成例17>
 冷却器を設置した100mLの反応フラスコに、酢酸パラジウム[和光純薬(株)製] 0.90g及びクロロホルム 9.10gを仕込み、均一になるまで撹拌した。この溶液へ、合成例4で重合したP4 l.0gをクロロホルム 16.40g、エタノール 6.40gに溶解させた溶液を、滴下ロートを使用して加えた。この混合物を、窒素雰囲気下60℃で8時間撹拌した。
 液温30℃まで冷却後、この溶液をIPE/ヘキサン溶液(質量比10:1) 341gに撹拌しながら投入し、ポリマー/Pd粒子複合体を析出させた。析出したポリマー/Pd粒子複合体を減圧ろ過し、50℃で真空乾燥して、Pd粒子の複合体(M4) 0.9gを黒色粉末として得た。
<Synthesis example 17>
0.90 g of palladium acetate [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.10 g of chloroform were placed in a 100 mL reaction flask equipped with a cooler, and the mixture was stirred until uniform. P4 l. Polymerized in this solution in Synthesis Example 4. A solution prepared by dissolving 0 g in 16.40 g of chloroform and 6.40 g of ethanol was added using a dropping funnel. The mixture was stirred at 60 ° C. for 8 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite. The precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M4) as a black powder.
<合成例18>
 冷却器を設置した100mLの反応フラスコに、酢酸パラジウム[和光純薬(株)製] 0.90g及びクロロホルム 9.10gを仕込み、均一になるまで撹拌した。この溶液へ、合成例5で重合したP5 l.0gをクロロホルム 16.40g、エタノール 6.40gに溶解させた溶液を、滴下ロートを使用して加えた。この混合物を、窒素雰囲気下60℃で8時間撹拌した。
 液温30℃まで冷却後、この溶液をIPE/ヘキサン溶液(質量比10:1) 341gに撹拌しながら投入し、ポリマー/Pd粒子複合体を析出させた。析出したポリマー/Pd粒子複合体を減圧ろ過し、50℃で真空乾燥して、Pd粒子の複合体(M5) 0.9gを黒色粉末として得た。
<Synthesis Example 18>
0.90 g of palladium acetate [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.10 g of chloroform were placed in a 100 mL reaction flask equipped with a cooler, and the mixture was stirred until uniform. P5 l. Polymerized in this solution in Synthesis Example 5. A solution prepared by dissolving 0 g in 16.40 g of chloroform and 6.40 g of ethanol was added using a dropping funnel. The mixture was stirred at 60 ° C. for 8 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite. The precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M5) as a black powder.
<合成例19>
 冷却器を設置した100mLの反応フラスコに、酢酸パラジウム[和光純薬(株)製] 0.90g及びクロロホルム 9.10gを仕込み、均一になるまで撹拌した。この溶液へ、合成例6で重合したP6 l.0gをクロロホルム 16.40g、エタノール 6.40gに溶解させた溶液を、滴下ロートを使用して加えた。この混合物を、窒素雰囲気下60℃で8時間撹拌した。
 液温30℃まで冷却後、この溶液をIPE/ヘキサン溶液(質量比10:1) 341gに撹拌しながら投入し、ポリマー/Pd粒子複合体を析出させた。析出したポリマー/Pd粒子複合体を減圧ろ過し、50℃で真空乾燥して、Pd粒子の複合体(M6) 0.9gを黒色粉末として得た。
<Synthesis Example 19>
0.90 g of palladium acetate [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.10 g of chloroform were placed in a 100 mL reaction flask equipped with a cooler, and the mixture was stirred until uniform. P6 l. Polymerized in this solution in Synthesis Example 6. A solution prepared by dissolving 0 g in 16.40 g of chloroform and 6.40 g of ethanol was added using a dropping funnel. The mixture was stirred at 60 ° C. for 8 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite. The precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M6) as a black powder.
<合成例20>
 冷却器を設置した100mLの反応フラスコに、酢酸パラジウム[和光純薬(株)製] 0.90g及びクロロホルム 9.10gを仕込み、均一になるまで撹拌した。この溶液へ、合成例7で重合したP7 l.0gをクロロホルム 16.40g、エタノール 6.40gに溶解させた溶液を、滴下ロートを使用して加えた。この混合物を、窒素雰囲気下60℃で8時間撹拌した。
 液温30℃まで冷却後、この溶液をIPE/ヘキサン溶液(質量比10:1) 341gに撹拌しながら投入し、ポリマー/Pd粒子複合体を析出させた。析出したポリマー/Pd粒子複合体を減圧ろ過し、50℃で真空乾燥して、Pd粒子の複合体(M7) 0.9gを黒色粉末として得た。
<Synthesis Example 20>
0.90 g of palladium acetate [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.10 g of chloroform were placed in a 100 mL reaction flask equipped with a cooler, and the mixture was stirred until uniform. P7 l. Polymerized in this solution in Synthesis Example 7. A solution prepared by dissolving 0 g in 16.40 g of chloroform and 6.40 g of ethanol was added using a dropping funnel. The mixture was stirred at 60 ° C. for 8 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite. The precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M7) as a black powder.
<合成例21>
 冷却器を設置した100mLの反応フラスコに、酢酸パラジウム[和光純薬(株)製] 0.90g及びクロロホルム 9.10gを仕込み、均一になるまで撹拌した。この溶液へ、合成例8で重合したP8 l.0gをクロロホルム 16.40g、エタノール 6.40gに溶解させた溶液を、滴下ロートを使用して加えた。この混合物を、窒素雰囲気下60℃で8時間撹拌した。
 液温30℃まで冷却後、この溶液をIPE/ヘキサン溶液(質量比10:1) 341gに撹拌しながら投入し、ポリマー/Pd粒子複合体を析出させた。析出したポリマー/Pd粒子複合体を減圧ろ過し、50℃で真空乾燥して、Pd粒子の複合体(M8) 0.9gを黒色粉末として得た。
<Synthesis example 21>
0.90 g of palladium acetate [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.10 g of chloroform were placed in a 100 mL reaction flask equipped with a cooler, and the mixture was stirred until uniform. P8 l. Polymerized in this solution in Synthesis Example 8. A solution prepared by dissolving 0 g in 16.40 g of chloroform and 6.40 g of ethanol was added using a dropping funnel. The mixture was stirred at 60 ° C. for 8 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite. The precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M8) as a black powder.
<合成例22>
 冷却器を設置した100mLの反応フラスコに、酢酸パラジウム[和光純薬(株)製] 0.90g及びクロロホルム 9.10gを仕込み、均一になるまで撹拌した。この溶液へ、合成例9で重合したP9 l.0gをクロロホルム 16.40g、エタノール 6.40gに溶解させた溶液を、滴下ロートを使用して加えた。この混合物を、窒素雰囲気下60℃で8時間撹拌した。
 液温30℃まで冷却後、この溶液をIPE/ヘキサン溶液(質量比10:1) 341gに撹拌しながら投入し、ポリマー/Pd粒子複合体を析出させた。析出したポリマー/Pd粒子複合体を減圧ろ過し、50℃で真空乾燥して、Pd粒子の複合体(M9) 0.9gを黒色粉末として得た。
<Synthesis Example 22>
0.90 g of palladium acetate [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.10 g of chloroform were placed in a 100 mL reaction flask equipped with a cooler, and the mixture was stirred until uniform. P9 l. Polymerized in this solution in Synthesis Example 9. A solution prepared by dissolving 0 g in 16.40 g of chloroform and 6.40 g of ethanol was added using a dropping funnel. The mixture was stirred at 60 ° C. for 8 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite. The precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M9) as a black powder.
<合成例23>
 冷却器を設置した100mLの反応フラスコに、酢酸パラジウム[和光純薬(株)製] 0.90g及びクロロホルム 9.10gを仕込み、均一になるまで撹拌した。この溶液へ、合成例10で重合したP10 l.0gをクロロホルム 16.40g、エタノール 6.40gに溶解させた溶液を、滴下ロートを使用して加えた。この混合物を、窒素雰囲気下60℃で8時間撹拌した。
 液温30℃まで冷却後、この溶液をIPE/ヘキサン溶液(質量比10:1) 341gに撹拌しながら投入し、ポリマー/Pd粒子複合体を析出させた。析出したポリマー/Pd粒子複合体を減圧ろ過し、50℃で真空乾燥して、Pd粒子の複合体(M10) 0.9gを黒色粉末として得た。
<Synthesis Example 23>
0.90 g of palladium acetate [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.10 g of chloroform were placed in a 100 mL reaction flask equipped with a cooler, and the mixture was stirred until uniform. P10 l. Polymerized in this solution in Synthesis Example 10. A solution prepared by dissolving 0 g in 16.40 g of chloroform and 6.40 g of ethanol was added using a dropping funnel. The mixture was stirred at 60 ° C. for 8 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite. The precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M10) as a black powder.
<合成例24>
 冷却器を設置した100mLの反応フラスコに、酢酸パラジウム[和光純薬(株)製] 0.90g及びクロロホルム 9.10gを仕込み、均一になるまで撹拌した。この溶液へ、合成例11で重合したP11 l.0gをクロロホルム 16.40g、エタノール 6.40gに溶解させた溶液を、滴下ロートを使用して加えた。この混合物を、窒素雰囲気下60℃で8時間撹拌した。
 液温30℃まで冷却後、この溶液をIPE/ヘキサン溶液(質量比10:1) 341gに撹拌しながら投入し、ポリマー/Pd粒子複合体を析出させた。析出したポリマー/Pd粒子複合体を減圧ろ過し、50℃で真空乾燥して、Pd粒子の複合体(M11) 0.9gを黒色粉末として得た。
<Synthesis Example 24>
0.90 g of palladium acetate [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.10 g of chloroform were placed in a 100 mL reaction flask equipped with a cooler, and the mixture was stirred until uniform. P11 l. Polymerized in this solution in Synthesis Example 11. A solution prepared by dissolving 0 g in 16.40 g of chloroform and 6.40 g of ethanol was added using a dropping funnel. The mixture was stirred at 60 ° C. for 8 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite. The precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M11) as a black powder.
<合成例25>
 冷却器を設置した100mLの反応フラスコに、酢酸パラジウム[和光純薬(株)製] 0.90g及びクロロホルム 9.10gを仕込み、均一になるまで撹拌した。この溶液へ、合成例12で重合したP12 l.0gをクロロホルム 16.40g、エタノール 6.40gに溶解させた溶液を、滴下ロートを使用して加えた。この混合物を、窒素雰囲気下60℃で8時間撹拌した。
 液温30℃まで冷却後、この溶液をIPE/ヘキサン溶液(質量比10:1) 341gに撹拌しながら投入し、ポリマー/Pd粒子複合体を析出させた。析出したポリマー/Pd粒子複合体を減圧ろ過し、50℃で真空乾燥して、Pd粒子の複合体(M12) 0.9gを黒色粉末として得た。
<Synthesis Example 25>
0.90 g of palladium acetate [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.10 g of chloroform were placed in a 100 mL reaction flask equipped with a cooler, and the mixture was stirred until uniform. P12 l. Polymerized in this solution in Synthesis Example 12. A solution prepared by dissolving 0 g in 16.40 g of chloroform and 6.40 g of ethanol was added using a dropping funnel. The mixture was stirred at 60 ° C. for 8 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite. The precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M12) as a black powder.
<合成例26>
 冷却器を設置した100mLの反応フラスコに、酢酸パラジウム[和光純薬(株)製] 0.90g及びクロロホルム 9.10gを仕込み、均一になるまで撹拌した。この溶液へ、合成例13で重合したP13 l.0gをクロロホルム 16.40g、エタノール 6.40gに溶解させた溶液を、滴下ロートを使用して加えた。この混合物を、窒素雰囲気下60℃で8時間撹拌した。
 液温30℃まで冷却後、この溶液をIPE/ヘキサン溶液(質量比10:1) 341gに撹拌しながら投入し、ポリマー/Pd粒子複合体を析出させた。析出したポリマー/Pd粒子複合体を減圧ろ過し、50℃で真空乾燥して、Pd粒子の複合体(M13) 0.9gを黒色粉末として得た。
<Synthesis Example 26>
0.90 g of palladium acetate [manufactured by Wako Pure Chemical Industries, Ltd.] and 9.10 g of chloroform were placed in a 100 mL reaction flask equipped with a cooler, and the mixture was stirred until uniform. P13 l. Polymerized in this solution in Synthesis Example 13. A solution prepared by dissolving 0 g in 16.40 g of chloroform and 6.40 g of ethanol was added using a dropping funnel. The mixture was stirred at 60 ° C. for 8 hours under a nitrogen atmosphere.
After cooling to a liquid temperature of 30 ° C., this solution was added to 341 g of an IPE / hexane solution (mass ratio 10: 1) with stirring to precipitate a polymer / Pd particle composite. The precipitated polymer / Pd particle complex was filtered under reduced pressure and vacuum dried at 50 ° C. to obtain 0.9 g of the Pd particle complex (M13) as a black powder.
 上記Pd粒子の複合体M1~M13に、(C)成分及び(D)成分を下記表1のような比率で添加し、無電解めっき下地剤を作成した。M1~M3をそれぞれ含む無電解めっき下地剤は比較例とする。M4~M13をそれぞれ含む無電解めっき下地剤は実施例とする。 The components (C) and (D) were added to the complexes M1 to M13 of the Pd particles at the ratios shown in Table 1 below to prepare an electroless plating base material. The electroless plating base material containing M1 to M3 is used as a comparative example. Examples include electroless plating base materials containing M4 to M13, respectively.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
[めっき液の調製]
<調製例1>
 200mLビーカーに純水 100mL、ベーシック プリントガントV(Atotech製) 17mL、カッパーソリューション プリントガントV(Atotech製) 9mL、スターター プリントガントPV(Atotech製) 1.6mL、スタビライザー プリントガントPV(Atotech製) 0.24mL、リデューサーCu(Atotech製) 3.2mL、18.5質量%NaOH水溶液 4mLを仕込み、さらに純水を加えて溶液の総量を200mLとした。この溶液を撹拌し、無電解銅めっき液とした。
[Preparation of plating solution]
<Preparation Example 1>
200 mL Beaker with 100 mL of pure water, Basic Print Gantt V (Atotech) 17 mL, Copper Solution Print Gantt V (Atotech) 9 mL, Starter Print Gantt PV (Atotech) 1.6 mL, Stabilizer Print Gantt PV (Atotech) 0. 24 mL, reducer Cu (manufactured by Atotech) 3.2 mL, 18.5 mass% NaOH aqueous solution 4 mL were charged, and pure water was further added to bring the total volume of the solution to 200 mL. This solution was stirred to obtain an electroless copper plating solution.
[めっき析出性の評価]
 ポリイミド(東レ・デュポン株式会社製カプトン100EN(登録商標))基材に対し、実施例1乃至実施例10並びに比較例1乃至比較例6の各無電解めっき下地剤を膜厚6μmでバーコート塗布した後、80℃で5分間加熱することにより塗膜を形成した。この塗膜をさらに250℃で30分間加熱することにより乾燥させた。得られた膜を調製例1で調製した無電解銅めっき液に10分間浸漬した。その後、得られためっき基材を水洗した後、金属めっき膜の状態を目視で評価した。評価結果は、後に表2にまとめて示す。
[Evaluation of plating precipitation]
The electroless plating base materials of Examples 1 to 10 and Comparative Examples 1 to 6 are coated with a bar coat having a film thickness of 6 μm on a polyimide (Kapton 100EN (registered trademark) manufactured by Toray DuPont Co., Ltd.) substrate. Then, a coating film was formed by heating at 80 ° C. for 5 minutes. The coating film was further dried by heating at 250 ° C. for 30 minutes. The obtained film was immersed in the electroless copper plating solution prepared in Preparation Example 1 for 10 minutes. Then, after washing the obtained plating base material with water, the state of the metal plating film was visually evaluated. The evaluation results are summarized in Table 2 later.
<めっき析出性の評価基準>
○:塗膜全面に均一にめっきが析出している。
×:塗膜全面に均一にめっきが析出していない。
<Evaluation criteria for plating precipitation>
◯: Plating is uniformly deposited on the entire surface of the coating film.
X: Plating is not uniformly deposited on the entire surface of the coating film.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表2に示すように、実施例1乃至実施例13の無電解めっき下地剤、比較例1乃至比較例3の無電解めっき下地剤はめっき析出性が良好であった。一方、比較例4乃至比較例7の無電解めっき下地剤はめっきの析出を確認することはできなかった。 As shown in Table 2, the electroless plating base materials of Examples 1 to 13 and the electroless plating base materials of Comparative Examples 1 to 3 had good plating precipitation properties. On the other hand, the deposition of plating could not be confirmed in the electroless plating base materials of Comparative Examples 4 to 7.

Claims (21)

  1. 基材上に無電解めっき処理により金属めっき膜を形成するための無電解めっき下地剤であって、
    (A)分子内に少なくとも1個のトリフルオロメチル基及び1個のラジカル重合性二重結合を有するモノマーaに由来する構成単位と、分子内に金属分散性基及び1個のラジカル重合性二重結合を有するモノマーbに由来する構成単位を含む共重合体、
    (B)金属微粒子、及び
    (C)溶剤
    を含む下地剤。
    An electroless plating base material for forming a metal plating film on a substrate by electroless plating.
    (A) A structural unit derived from a monomer a having at least one trifluoromethyl group and one radically polymerizable double bond in the molecule, and a metal dispersible group and one radically polymerizable double bond in the molecule. A copolymer containing a structural unit derived from a monomer b having a double bond,
    A base material containing (B) fine metal particles and (C) a solvent.
  2. 前記(A)共重合体中の金属分散性基に、前記(B)金属微粒子が付着又は配位した複合体を含む、請求項1に記載の下地剤。 The base material according to claim 1, which comprises a complex in which the (B) metal fine particles are adhered or coordinated to the metal dispersible group in the (A) copolymer.
  3. 前記モノマーaが、ビニル基及び(メタ)アクリロイル基の何れか一方を有する化合物である、請求項1又は請求項2に記載の下地剤。 The base material according to claim 1 or 2, wherein the monomer a is a compound having either a vinyl group or a (meth) acryloyl group.
  4. 前記モノマーaが、下式(1)で表される化合物である請求項3に記載の下地剤。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Mは、単結合、カルボニルオキシ基、アミド基又はフェニレン基を表し、Jは、少なくとも1個のトリフルオロメチル基を有する炭素原子数1乃至は10の直鎖または分岐構造のアルキル基を表し、Rは水素原子又は炭素原子数1ないし4のアルキル基を表す。)
    The base material according to claim 3, wherein the monomer a is a compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), M represents a single bond, a carbonyloxy group, an amide group or a phenylene group, and J is a linear or branched group having 1 to 10 carbon atoms having at least one trifluoromethyl group. Represents an alkyl group of structure, and R 6 represents an alkyl group having a hydrogen atom or 1 to 4 carbon atoms.)
  5. 前記モノマーbが、ビニル基及び(メタ)アクリロイル基の何れか一方を有する化合物である、請求項1又は請求項2に記載の下地剤。 The base material according to claim 1 or 2, wherein the monomer b is a compound having either a vinyl group or a (meth) acryloyl group.
  6. 前記モノマーbが、下式(2)又は(3)で表される化合物である請求項5に記載の下地剤。
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは、水素原子又は炭素原子数1乃至6のアルキル基を表し、Lは、O又はNを表し、Rは、LがNを表す場合にのみ存在し、水素原子を表すか、又は、R及びRは、それらが結合する原子と一緒になって、4乃至6員の環状アミドを形成してもよい。
    式(3)中、Rは水素原子またはメチル基を表し、Rは水素原子又は炭素原子数1乃至10の分岐しても良いアルキル基、炭素原子数1乃至10の分岐しても良いアルコキシル基又は、炭素原子数1乃至10の分岐しても良いアルコキシルアルキル基を表し、Lは、O又はNを表し、Rは、LがNを表す場合にのみ存在し、水素原子を表すか、又は、R及びRは、それらが結合する原子と一緒になって、4乃至6員の環状アミド、又は、4乃至6員の環状イミドを形成してもよい。)
    The base material according to claim 5, wherein the monomer b is a compound represented by the following formula (2) or (3).
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), R 1 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, L represents O or N, and R 2 exists only when L represents N. Representing a hydrogen atom, or R 1 and R 2 may be combined with the atom to which they are attached to form a 4- to 6-membered cyclic amide.
    In the formula (3), R 3 represents a hydrogen atom or a methyl group, and R 4 may be a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, or a branch having 1 to 10 carbon atoms. alkoxyl group or represents an alkoxyl alkyl group branched having 1 to 10 carbon atoms, L represents an O or N, R 5 is present only when L represents N, tables hydrogen atom Alternatively, R 4 and R 5 may be combined with the atoms to which they are attached to form a 4- to 6-membered cyclic amide, or a 4- to 6-membered cyclic imide. )
  7. 前記モノマーbがN-ビニルピロリドン、N-ビニルアセトアミド又はN-ビニルホルムアミドである請求項6に記載の下地剤。 The base material according to claim 6, wherein the monomer b is N-vinylpyrrolidone, N-vinylacetamide or N-vinylformamide.
  8. 前記(A)共重合体を与えるモノマー混合物は、前記モノマーbのモル数に対して5~500%のモル数となる量の前記モノマーaを含む、請求項1乃至請求項7のうちいずれか一項に記載の下地剤。 Any one of claims 1 to 7, wherein the monomer mixture that gives the copolymer (A) contains the monomer a in an amount that is 5 to 500% of the number of moles of the monomer b. The base material described in item 1.
  9. 前記共重合体(A)が、分子内に架橋性基及び1個のラジカル重合性二重結合を有するモノマーcに由来する構成単位を更に含む請求項1乃至請求項8のうちのいずれか一項に記載の下地剤。 Any one of claims 1 to 8, wherein the copolymer (A) further contains a structural unit derived from a monomer c having a crosslinkable group and one radically polymerizable double bond in the molecule. The base material described in the section.
  10. 前記モノマーcが、ビニル基及び(メタ)アクリロイル基の何れか一方を有する化合物である、請求項9に記載の下地剤。 The base material according to claim 9, wherein the monomer c is a compound having either a vinyl group or a (meth) acryloyl group.
  11. 前記モノマーcが、下式(4)で表される化合物である請求項10に記載の下地剤。
    Figure JPOXMLDOC01-appb-C000003
    (式(4)中、Xは、単結合、カルボニルオキシ基、アミド基又はフェニレン基を表し、Yは炭素原子数1ないし6のアルキレン基、炭素原子数1ないし6のオキシアルキレン基、分岐しても良い炭素原子数1ないし6のアルキルエーテル基、炭素原子数1ないし6のチオアルキレン基又は炭素原子数1ないし6のチオアルキルエーテル基を表し、Zは、架橋性基を表し、Rは水素原子又は炭素原子数1ないし4のアルキル基を表す。)
    The base material according to claim 10, wherein the monomer c is a compound represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula (4), X represents a single bond, a carbonyloxy group, an amide group or a phenylene group, and Y is an alkylene group having 1 to 6 carbon atoms and an oxyalkylene group having 1 to 6 carbon atoms, which are branched. May represent an alkyl ether group having 1 to 6 carbon atoms, a thioalkylene group having 1 to 6 carbon atoms or a thioalkyl ether group having 1 to 6 carbon atoms, where Z represents a crosslinkable group and R 7 Represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.)
  12. 前記(A)共重合体を与えるモノマー混合物は、前記モノマーbのモル数に対して5~300%のモル数となる量の前記モノマーcを含む、請求項9乃至請求項11のうちいずれか一項に記載の下地剤。 Any one of claims 9 to 11, wherein the monomer mixture that gives the copolymer (A) contains the monomer c in an amount that is 5 to 300% of the number of moles of the monomer b. The base material described in item 1.
  13. 前記(B)金属微粒子が、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、パラジウム(Pd)、銀(Ag)、スズ(Sn)、白金(Pt)及び金(Au)からなる群より選択される少なくとも一種の金属の微粒子である、請求項1乃至請求項12のうちいずれか一項に記載の下地剤。 The metal fine particles (B) are iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), palladium (Pd), silver (Ag), tin (Sn), platinum (Pt) and gold ( The base material according to any one of claims 1 to 12, which is a fine particle of at least one kind of metal selected from the group consisting of Au).
  14. 前記(B)金属微粒子が、パラジウム微粒子である、請求項13に記載の下地剤。 The base material according to claim 13, wherein the metal fine particles (B) are palladium fine particles.
  15. 前記(B)金属微粒子が、1~100nmの一次粒子平均粒径を有する微粒子である、請求項1乃至請求項14のうちいずれか一項に記載の下地剤。 The base material according to any one of claims 1 to 14, wherein the metal fine particles (B) are fine particles having an average primary particle particle size of 1 to 100 nm.
  16. (D)非ラジカル重合性架橋性基をさらに有するベース樹脂を含有する請求項1乃至請求項15の何れか一項に記載の下地剤。 (D) The base material according to any one of claims 1 to 15, which contains a base resin further having a non-radical polymerizable crosslinkable group.
  17. (E)架橋剤をさらに含有する請求項1乃至請求項16の何れか一項に記載の下地剤。 (E) The base material according to any one of claims 1 to 16, further containing a cross-linking agent.
  18. 請求項1乃至請求項17のうち何れか一項に記載の無電解めっき下地剤を含む膜からなる、無電解金属めっきの下地層。 An electroless metal plating base layer comprising a film containing the electroless plating base agent according to any one of claims 1 to 17.
  19. 請求項18に記載の無電解金属めっきの下地層の上に形成された金属めっき膜。 The metal plating film formed on the base layer of the electroless metal plating according to claim 18.
  20. 基材と、該基材上に形成された請求項18に記載の無電解金属めっきの下地層と、該無電解金属めっきの下地層の上に形成された金属めっき膜とを具備する、金属被膜基材。 A metal comprising a base material, an electroless metal plating base layer formed on the base material, and a metal plating film formed on the electroless metal plating base layer. Coating substrate.
  21. 下記(1)工程及び(2)工程を含む、金属被膜基材の製造方法。
    (1)工程:請求項1乃至請求項17のうち何れか一項に記載の無電解めっき下地剤を基材上に塗布し、無電解金属めっきの下地層を該基材の上に形成する工程、
    (2)工程:該下地層を形成した基材を無電解めっき浴に浸漬し、金属めっき膜を該下地層の上に形成する工程
    A method for producing a metal film base material, which comprises the following steps (1) and (2).
    (1) Step: The electroless plating base material according to any one of claims 1 to 17 is applied onto a base material, and an electroless metal plating base layer is formed on the base material. Process,
    (2) Step: A step of immersing the base material on which the base layer is formed in an electroless plating bath to form a metal plating film on the base layer.
PCT/JP2021/004682 2020-02-19 2021-02-08 Electroless plating primer including polymer and metal fine particles WO2021166726A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180015302.4A CN115135803A (en) 2020-02-19 2021-02-08 Electroless plating base agent comprising polymer and metal fine particles
KR1020227024956A KR20220143007A (en) 2020-02-19 2021-02-08 Electroless plating base agent containing polymer and metal fine particles
JP2022501817A JPWO2021166726A1 (en) 2020-02-19 2021-02-08

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-026301 2020-02-19
JP2020026301 2020-02-19

Publications (1)

Publication Number Publication Date
WO2021166726A1 true WO2021166726A1 (en) 2021-08-26

Family

ID=77391015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004682 WO2021166726A1 (en) 2020-02-19 2021-02-08 Electroless plating primer including polymer and metal fine particles

Country Status (5)

Country Link
JP (1) JPWO2021166726A1 (en)
KR (1) KR20220143007A (en)
CN (1) CN115135803A (en)
TW (1) TW202200840A (en)
WO (1) WO2021166726A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214749A (en) * 2007-02-07 2008-09-18 Kimoto & Co Ltd Electroless plating formation material, coating liquid for catalyst adhesion, electroless plating formation method, and plating method
JP2013155437A (en) * 2011-12-31 2013-08-15 Rohm & Haas Electronic Materials Llc Plating catalyst and method
WO2018151073A1 (en) * 2017-02-14 2018-08-23 日産化学工業株式会社 Wiring forming method
WO2019171985A1 (en) * 2018-03-06 2019-09-12 日産化学株式会社 Electroless plating primer including polymer and metal fine particles

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937857A (en) * 1974-07-22 1976-02-10 Amp Incorporated Catalyst for electroless deposition of metals
PL1988192T3 (en) * 2007-05-03 2013-04-30 Atotech Deutschland Gmbh Process for applying a metal coating to a non-conductive substrate
JP2012141215A (en) 2010-12-28 2012-07-26 Daihatsu Motor Co Ltd Method and apparatus for measuring dimension
KR101866240B1 (en) * 2011-04-12 2018-06-11 닛산 가가쿠 고교 가부시키 가이샤 Electroless plating primer including hyperbranched polymer and metallic microparticles
WO2014042215A1 (en) * 2012-09-13 2014-03-20 日産化学工業株式会社 Electroless plating base agent
JP6178659B2 (en) * 2013-08-08 2017-08-09 出光興産株式会社 Composition for forming electroless plating base film
KR20170040126A (en) * 2014-07-30 2017-04-12 닛산 가가쿠 고교 가부시키 가이샤 Electroless plating undercoat agent containing hyperbranched polymer, fine metal particles, and resin primer
CN107532302B (en) * 2015-03-31 2019-10-08 日产化学工业株式会社 Photonasty electroless plating substrate agent
WO2017142022A1 (en) * 2016-02-19 2017-08-24 日産化学工業株式会社 Electroless plating primer containing multibranched polymer and metal particulate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008214749A (en) * 2007-02-07 2008-09-18 Kimoto & Co Ltd Electroless plating formation material, coating liquid for catalyst adhesion, electroless plating formation method, and plating method
JP2013155437A (en) * 2011-12-31 2013-08-15 Rohm & Haas Electronic Materials Llc Plating catalyst and method
WO2018151073A1 (en) * 2017-02-14 2018-08-23 日産化学工業株式会社 Wiring forming method
WO2019171985A1 (en) * 2018-03-06 2019-09-12 日産化学株式会社 Electroless plating primer including polymer and metal fine particles

Also Published As

Publication number Publication date
CN115135803A (en) 2022-09-30
KR20220143007A (en) 2022-10-24
JPWO2021166726A1 (en) 2021-08-26
TW202200840A (en) 2022-01-01

Similar Documents

Publication Publication Date Title
JP6354950B2 (en) Electroless plating base material
KR101866240B1 (en) Electroless plating primer including hyperbranched polymer and metallic microparticles
JP6108079B2 (en) Catalyst ink for screen printing
JP6631806B2 (en) Electroless plating primer containing hyperbranched polymer, fine metal particles and resin primer
KR102621646B1 (en) Electroless plating agent containing polymer and metal particles
WO2016035897A1 (en) Photosensitive electroless plating undercoat agent
KR102463945B1 (en) How to form wiring
JP6879470B2 (en) Electroless plating base material containing highly branched polymer and metal fine particles
WO2021166726A1 (en) Electroless plating primer including polymer and metal fine particles
JP7401856B2 (en) Electroless plating base agent containing polymer and metal fine particles
TWI834780B (en) Electroless plating base material containing polymer and metal fine particles
TWI709664B (en) Primer for electroless plating containing highly branched polymer and metal fine particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757576

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501817

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757576

Country of ref document: EP

Kind code of ref document: A1