WO2021166635A1 - Current sensor and circuit breaker terminal cover - Google Patents

Current sensor and circuit breaker terminal cover Download PDF

Info

Publication number
WO2021166635A1
WO2021166635A1 PCT/JP2021/003771 JP2021003771W WO2021166635A1 WO 2021166635 A1 WO2021166635 A1 WO 2021166635A1 JP 2021003771 W JP2021003771 W JP 2021003771W WO 2021166635 A1 WO2021166635 A1 WO 2021166635A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
current
current path
magnetic sensing
sensing elements
Prior art date
Application number
PCT/JP2021/003771
Other languages
French (fr)
Japanese (ja)
Inventor
皐貴 栗栖
大橋 博章
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180012731.6A priority Critical patent/CN115066621A/en
Priority to JP2022501763A priority patent/JP7224525B2/en
Publication of WO2021166635A1 publication Critical patent/WO2021166635A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices

Definitions

  • the present disclosure relates to a terminal cover of a current sensor and a circuit breaker that measures the current flowing in the current path.
  • Patent Document 1 discloses a current sensor in which a plurality of magnetic sensing elements are arranged on a virtual circle centered on the center of the current path in a plane orthogonal to the extending direction of the current path.
  • a current sensor six or eight magnetic sensing elements are arranged at equal intervals on a virtual circle, and the influence of the disturbance magnetic field is relatively canceled by adding the outputs of these plurality of magnetic sensing elements. ..
  • Patent Document 1 has a problem that it cannot be applied when a plurality of magnetic sensing elements cannot be arranged at equal intervals on the same virtual circle in a region to be arranged by the plurality of magnetic sensing elements. be.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a current sensor capable of suppressing the influence of disturbance while increasing the degree of freedom in arranging a plurality of magnetic sensing elements.
  • the current sensor of the present disclosure is a current sensor that measures a current flowing in a current path, and includes a plurality of magnetic sensing elements and an arithmetic circuit.
  • the plurality of magnetic sensing elements are arranged on the corresponding virtual circles among the plurality of virtual circles having the center of the current path as the center and the radii different from each other in the plane orthogonal to the extending direction of the current path.
  • the arithmetic circuit calculates the value of the current flowing in the current path based on the outputs of the plurality of magnetizing elements.
  • the plurality of magnetic sensitive elements include at least two magnetic sensitive elements whose sensitivity axes are parallel and opposite to each other.
  • the figure which shows the relationship between the 2nd angle and the total value of a disturbance component when the 1st angle concerning Embodiment 2 is 0 degree.
  • the figure which shows the relationship between the 2nd angle and the total value of the disturbance component when the 1st angle which concerns on Embodiment 2 is 10 degrees.
  • the figure which shows the relationship between the 2nd angle and the total value of the disturbance component when the 1st angle which concerns on Embodiment 2 is 14 degrees.
  • the figure which shows the relationship between the 2nd angle and the total value of the disturbance component when the 1st angle which concerns on Embodiment 2 is 20 degrees.
  • FIG. 1 is a diagram showing an example of the configuration of the current sensor according to the first embodiment.
  • the current sensor 1 shown in FIG. 1 is a sensor that measures the current flowing in the current path.
  • the current sensor 1 is based on the outputs of the plurality of magnetic sensing elements 20a, 20b, 20c, 20d for detecting the magnetic fields generated by the currents flowing in the current path, and the outputs of the plurality of magnetic sensing elements 20a, 20b, 20c, 20d. It is provided with an arithmetic circuit 22 that calculates an instantaneous value of a current flowing through the path.
  • the types of the magnetic sensitive elements 20a, 20b, 20c, and 20d are not particularly limited as long as they can detect a magnetic field.
  • the magnetic sensing elements 20a, 20b, 20c, 20d are magnetoresistive elements such as GMR (Giant Magneto Resistance) elements or TMR (Tunnel Magneto Resistance) elements, Hall elements, and the like.
  • FIG. 2 is a diagram showing an example of arrangement of a plurality of magnetic sensing elements in the current sensor according to the first embodiment.
  • the extending direction of the current path 11 is defined as the “Y-axis direction”
  • the plane orthogonal to the extending direction of the current path 11 is defined as the “XZ-axis plane”
  • the center of the current path 11 in the XZ-axis plane is defined as “O”.
  • FIG. 2 shows the positions of the plurality of magnetic sensing elements 20a, 20b, 20c, and 20d projected on the XZ axis plane.
  • the substrate on which the magnetic sensitive elements 20a, 20b, 20c, and 20d are mounted is omitted.
  • the current path 11 is a conductive member having a circular cross section.
  • an induced magnetic field represented by magnetic field lines 100a, 100b, 100c, and 100d is formed by the current flowing through the current path 11.
  • the direction of the current flowing through the current path 11 is the positive direction of the Y-axis, and the induced magnetic field in the clockwise direction in FIG. 2 is formed around the current path 11.
  • the current path 11 may have any form as long as it can guide the current to be measured, and may be, for example, a flat plate-shaped conductive member or a thin-film conductive member.
  • the plurality of magnetic sensing elements 20a, 20b, 20c, 20d are arranged on the corresponding virtual circles among the plurality of virtual circles 30a, 30b, 30c, 30d, respectively.
  • the magnetic sensing element 20a is arranged on the virtual circle 30a
  • the magnetic sensing element 20b is arranged on the virtual circle 30b
  • the magnetic sensing element 20c is arranged on the virtual circle 30c
  • the magnetic sensing element 20d is virtual. It is arranged on the circle 30d.
  • the plurality of virtual circles 30a, 30b, 30c, and 30d are concentric circles, and their radii are different from each other with the center O of the current path 11 as the center in the XZ axis plane.
  • a magnetic sensing element 20 when each of the plurality of magnetic sensing elements 20a, 20b, 20c, and 20d is shown without distinction, it may be referred to as a magnetic sensing element 20.
  • virtual circle 30 when each of the plurality of virtual circles 30a, 30b, 30c, and 30d is shown without distinction, it may be described as virtual circle 30.
  • the magnetic sensing element 20a outputs a voltage signal Va having a magnitude directly proportional to the detected magnetic field to the arithmetic circuit 22.
  • the magnetic sensing element 20b outputs a voltage signal Vb having a magnitude directly proportional to the detected magnetic field to the arithmetic circuit 22.
  • the magnetic sensing element 20c outputs a voltage signal Vc having a magnitude directly proportional to the detected magnetic field to the arithmetic circuit 22.
  • the magnetic sensing element 20d outputs a voltage signal Vd having a magnitude directly proportional to the detected magnetic field to the arithmetic circuit 22.
  • FIG. 2 shows the sensitivity axis 21a of the magnetic sensing element 20a, the sensitivity axis 21b of the magnetic sensing element 20b, the sensitivity axis 21c of the magnetic sensing element 20c, and the sensitivity axis 21d of the magnetic sensing element 20d.
  • the sensitivity axis 21 is an axis indicating the magnetic field detection direction, which is the direction of the magnetic field at which the detection sensitivity of the magnetic field is maximized.
  • the output of the magnetic sensing element 20 is the largest. Become. Further, when the direction of the magnetic field line of the magnetic field is the same as the direction of the sensitivity axis 21, the magnetic sensing element 20 outputs a positive voltage signal V, and when the direction of the magnetic field line of the magnetic field is opposite to the direction of the sensitivity axis 21. The magnetic sensing element 20 outputs a negative voltage signal V.
  • the direction of the sensitivity axis 21 is the positive direction of the sensitivity axis, and in FIG. 2, the direction of the sensitivity axis 21 is indicated by an arrow.
  • the arithmetic circuit 22 is a voltage indicating an instantaneous value of the current flowing in the current path 11 by performing addition processing or the like on the voltage signals Va, Vb, Vc, Vd output from the magnetic sensing elements 20a, 20b, 20c, 20d. Generate a signal Vdet. The arithmetic circuit 22 outputs the generated voltage signal Vdet.
  • the magnetic line L1 connecting the magnetic sensing element 20a and the magnetic sensing element 20c passes through the current path 11, and the sensitivity shaft 21a of the magnetic sensing element 20a and the sensitivity shaft 21c of the magnetic sensing element 20c are parallel to each other and opposite to each other.
  • the magnetic line L2 connecting the magnetic sensitive element 20b and the magnetic sensitive element 20d passes through the current path 11, and the sensitivity shaft 21b of the magnetic sensitive element 20b and the sensitivity shaft 21d of the magnetic sensitive element 20d are parallel and opposite to each other. Is.
  • each of the plurality of sensitivity axes 21a, 21b, 21c, 21d is a direction along the tangential direction of the corresponding virtual circle among the plurality of virtual circles 30a, 30b, 30c, 30d. ..
  • the sensitivity axis 21a of the magnetic sensing element 20a is parallel to the tangential direction of the virtual circle 30a
  • the sensitivity axis 21b of the magnetic sensing element 20b is parallel to the tangential direction of the virtual circle 30b.
  • the sensitivity axis 21c of the magnetic sensing element 20c is parallel to the tangential direction of the virtual circle 30c
  • the sensitivity axis 21d of the magnetic sensing element 20d is parallel to the tangential direction of the virtual circle 30d.
  • the sensitivity axes 21a and 21c of the two magnetic sensing elements 20a and 20c may be parallel to each other and in opposite directions, and may not be parallel to the tangential direction of the virtual circle 30.
  • the sensitivity axes 21b and 21d of the two magnetic sensing elements 20b and 20d may be parallel and opposite to each other, and may not be parallel to the tangential direction of the virtual circle 30.
  • "parallel" does not have to be parallel in a strict sense, and may be parallel to the extent that the influence of the disturbance magnetic field n described later can be ignored.
  • each of the virtual line L1 connecting the two magnetic sensing elements 20a and 20c and the virtual line L2 connecting the two magnetic sensing elements 20b and 20d is a straight line passing through the center O of the current path 11.
  • each of the virtual lines L1 and L2 may be described as the virtual line L.
  • the induced magnetic field detected by the magnetic sensing element 20a is defined as the induced magnetic field A.
  • the voltage signal Va output from the magnetic sensing element 20a is represented by the following formula (1)
  • the voltage signal Vb output from the magnetic sensing element 20b is represented by the following formula (2)
  • the voltage signal Vc output from the magnetic sensing element 20c is represented by the following formula (3)
  • the voltage signal Vd output from the magnetic sensing element 20d is represented by the following formula (4).
  • Va k ⁇ (An1) ⁇ ⁇ ⁇ (1)
  • Vb k ⁇ ( ⁇ A-n2) ⁇ ⁇ ⁇ (2)
  • Vc k ⁇ ( ⁇ A + n1) ⁇ ⁇ ⁇ (3)
  • Vd k ⁇ ( ⁇ A + n2) ⁇ ⁇ ⁇ (4)
  • the arithmetic circuit 22 adds the voltage signals Va, Vb, Vc, Vd output from the magnetic sensitive elements 20a, 20b, 20c, 20d to the current flowing in the current path 11.
  • the instantaneous value of the current calculated by the arithmetic circuit 22 does not include the component of the disturbance magnetic field n. Therefore, in the current sensor 1 according to the first embodiment, the disturbance The influence of can be suppressed. Moreover, the plurality of magnetic sensing elements 20 are arranged on different virtual circles 30 among the plurality of virtual circles 30. Therefore, in the current sensor 1, the plurality of magnetic sensing elements 20 are arranged even when the plurality of magnetic sensing elements 20 cannot be arranged at equal intervals on the same virtual circle in the region where the plurality of magnetic sensing elements are to be arranged. This makes it possible to increase the degree of freedom in arranging the plurality of magnetic sensing elements 20.
  • the virtual lines L1 and L2 are straight lines passing through the center O of the current path 11, but the virtual lines L1 and L2 are straight lines passing through the current paths 11 other than the center O. It may be a straight line that does not pass through the current path 11. Also in this case, if the magnetic sensing elements 20a and 20c have their sensitivity axes 21a and 21c parallel and opposite to each other, and the magnetic sensitive elements 20b and 20d have their sensitivity axes 21b and 21d parallel and opposite to each other. good. As a result, the influence of disturbance can be suppressed.
  • the sensitivity axis 21 of at least one of the two magnetic sensing elements 20 is not parallel to the tangential direction of the virtual circle 30.
  • the arithmetic circuit 22 flows in the current path 11.
  • the current can be calculated accurately.
  • the sensitivity axis 21b of the magnetic sensing element 20b is not parallel to the tangential direction of the virtual circle 30, by adjusting ⁇ in the above equation (2) according to the direction of the sensitivity axis 21b, the arithmetic circuit 22 causes the current.
  • the current flowing through the road 11 can be calculated accurately.
  • the sensitivity axis 21 of the magnetic sensing element 20 is set to a direction parallel to or close to the tangential direction of the virtual circle 30. Can be done. Therefore, the current sensor 1 can suppress a decrease in the detection sensitivity of the magnetic sensing element 20 with respect to the magnetic field generated by the current flowing in the current path 11, and the arithmetic circuit 22 can accurately calculate the current flowing in the current path 11. ..
  • FIG. 3 is a diagram showing an example of the hardware configuration of the arithmetic circuit of the current sensor according to the first embodiment.
  • the arithmetic circuit 22 of the current sensor 1 includes a computer including a processor 101, a memory 102, and an interface circuit 103.
  • the processor 101, the memory 102, and the interface circuit 103 can send and receive information to and from each other by, for example, the bus 104.
  • the processor 101 executes the function of the arithmetic circuit 22 by reading and executing the program stored in the memory 102.
  • the processor 101 is, for example, an example of a processing circuit, and includes one or more of a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a system LSI (Large Scale Integration).
  • the memory 102 is one or more of RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). include.
  • the memory 102 also includes a recording medium on which a computer-readable program is recorded. Such recording media include one or more of non-volatile or volatile semiconductor memories, magnetic disks, flexible memories, optical disks, compact disks, and DVDs (Digital Versatile Discs).
  • the arithmetic circuit 22 may include integrated circuits such as an ASIC (Application Specific Integrated Circuit) and an FPGA (Field Programmable Gate Array).
  • the current sensor 1 includes a plurality of magnetic sensitive elements 20a, 20b, 20c, 20d, and an arithmetic circuit 22.
  • the plurality of magnetic sensing elements 20a, 20b, 20c, 20d are a plurality of virtual circles 30a, 30b, 30c, 30d having different radii around the center O of the current path 11 in a plane orthogonal to the extending direction of the current path 11. Of these, they are placed on the corresponding virtual circles.
  • the arithmetic circuit 22 calculates the value of the current flowing through the current path 11 based on the outputs of the plurality of magnetic sensing elements 20a, 20b, 20c, and 20d.
  • the sensitivity axes 21a and 21c are parallel and opposite to each other, and in the magnetic sensing elements 20b and 20d, the sensitivity axes 21b and 21d are parallel and opposite to each other.
  • the current sensor 1 can arrange the plurality of magnetic sensing elements 20 in the region where the plurality of magnetic sensing elements 20 cannot be arranged at equal intervals on the same virtual circle 30, and the plurality of magnetic sensing elements 20 can be arranged.
  • the influence of disturbance can be suppressed while increasing the degree of freedom in arranging the magnetic element 20.
  • the plurality of magnetic sensing elements 20 include magnetic sensing elements 20a, 20b, 20c, 20d arranged on different virtual circles among the plurality of virtual circles 30a, 30b, 30c, 30d.
  • the magnetic sensitive element 20a is an example of a first magnetic sensitive element
  • the magnetic sensitive element 20b is an example of a second magnetic sensitive element
  • the magnetic sensitive element 20c is an example of a third magnetic sensitive element.
  • the element 20d is an example of the fourth magnetic sensitive element.
  • the sensitivity axes 21a and 21c of the magnetic sensing elements 20a and 20c are parallel and opposite to each other.
  • the sensitivity axes 21b and 21d are parallel and opposite to each other.
  • the current sensor 1 can suppress the influence of disturbance without arranging the plurality of magnetic sensing elements 20 on the same virtual circle 30 at equal intervals. Further, since the current sensor 1 has four magnetic sensing elements 20, the current flowing through the current path 11 can be measured with high accuracy.
  • Embodiment 2 the terminal cover of the circuit breaker including the current sensor according to the first embodiment will be described.
  • components having the same functions as those in the first embodiment will be designated by the same reference numerals, description thereof will be omitted, and the points different from those of the first embodiment will be mainly described.
  • FIG. 4 is an exploded perspective view showing an example of the configuration of the circuit breaker according to the second embodiment.
  • FIG. 5 is a plan view of the circuit breaker according to the second embodiment.
  • FIG. 6 is a cross-sectional view taken along the line VI-VI shown in FIG.
  • FIG. 7 is a perspective view showing the relationship between the circuit breaker main body and the substrate of the terminal cover according to the second embodiment.
  • the circuit breaker 2 shown in FIG. 4 includes a circuit breaker main body 3 and a terminal cover 4.
  • the circuit breaker main body 3 is provided between the power supply device and the load device, and when the current flowing in the current path between the power supply device and the load device satisfies a preset condition, the power supply device and the load device are connected to each other. Cut off the current path between them.
  • the circuit breaker main body 3 changes the current path from the closed state to the open state when an overcurrent or a short-circuit current flows through the current path.
  • the circuit breaker main body 3 changes the current path from the closed state to the open state when an overcurrent, a short-circuit current, or a leakage current flows through the current path.
  • Three-phase current paths 11, 12, and 13 are connected to the circuit breaker main body 3 as current paths between the power supply device and the load device.
  • the three-phase current paths 11, 12, and 13 are connected to a plurality of terminals provided on the circuit breaker main body 3 by screws or the like.
  • a U-phase current flows through the current path 11, a V-phase current flows through the current path 12, and a W-phase current flows through the current path 13.
  • the circuit breaker main body 3 includes an opening / closing mechanism (not shown) for opening / closing the current paths 11, 12, 13 and an operation handle 6 for causing the opening / closing mechanism to open / close the current paths 11, 12, 13.
  • the operation handle 6 is located on the surface 7 side of the circuit breaker main body 3.
  • each of the X-axis direction, the Y-axis direction, and the Z-axis direction is the direction in which the circuit breaker 2 is assembled.
  • the Z-axis positive direction may be described as upward
  • the Z-axis negative direction may be described as downward.
  • the terminal cover 4 has a function of measuring current, voltage, electric energy, etc., in addition to the function of covering the plurality of terminals described above of the circuit breaker main body 3. Such a terminal cover 4 can also be called a terminal cover with a measurement function or a terminal cover type measurement unit.
  • the terminal cover 4 includes a housing 5 and a measuring unit (not shown) arranged in the housing 5.
  • a measuring unit includes two current sensors 1 shown in FIG. 1, and U-phase current and W-phase current are measured by the two current sensors 1. Further, the measuring unit calculates the V-phase current based on the U-phase current and the W-phase current measured by the two current sensors 1.
  • the measuring unit has a plurality of voltage sensors for measuring the voltages of the current paths 11, 12, and 13, and is based on the voltage measured by the plurality of voltage sensors and the current measured by the two current sensors 1. Calculate the amount of power supplied to the load device.
  • the terminal cover 4 has a shape that individually covers the three-phase current paths 11, 12, and 13.
  • the terminal cover 4 is provided between the ends 4a and 4d of the plurality of current paths 11, 12 and 13 in the arrangement direction and the two adjacent current paths of the plurality of current paths 11, 12 and 13. It includes 4b and 4c.
  • the terminal cover 4 includes a substrate 40 on which the magnetic sensing element 20 is arranged.
  • the substrate 40 has a shape that matches the shape of the housing 5 in the terminal cover 4.
  • the substrate 40 includes one end 41 and the other end 44 in the X-axis direction, an interline portion 42 provided between two adjacent current paths 11 and 12 in the X-axis direction, and X. It has an interline portion 43 provided between two current paths 12 and 13 adjacent in the axial direction.
  • the substrate 40 has a connecting portion 45 for connecting the end portions 41 and 44 and the interline portions 42 and 43.
  • the end 41 of the board 40 is provided at the end 4a of the terminal cover 4 shown in FIG. 4, and the end 44 of the board 40 is provided at the end 4d of the terminal cover 4 shown in FIG.
  • the line-to-line portion 42 of the board 40 is provided in the line-to-line portion 4b of the terminal cover 4 shown in FIG. 4
  • the line-to-line portion 43 of the board 40 is provided in the line-to-line portion 4c of the terminal cover 4 shown in FIG. Be done.
  • the end portions 41 and 44 are examples of the first region
  • the interline portions 42 and 43 are examples of the second region.
  • the connecting portion 45 is an example of a connecting region.
  • the substrate 40 may be composed of a plurality of separated substrates without having a connecting portion 45.
  • each of the end portions 41, 44 and the interline portions 42, 43 is composed of, for example, the corresponding substrate among the four substrates separated from each other.
  • FIG. 8 is a diagram showing an example of arrangement of a plurality of magnetic sensitive elements on the substrate of the measuring unit included in the terminal cover according to the second embodiment.
  • the substrate 40 included in the terminal cover 4 is parallel to the XZ axis plane orthogonal to the extending direction of the current paths 11, 12, and 13.
  • each of the plurality of magnetic sensitive elements 20a, 20b, 20c, 20d is arranged for each current sensor 1 on the corresponding virtual circle among the plurality of virtual circles 30a, 30b, 30c, 30d.
  • the two magnetic sensing elements 20a and 20c have their sensitivity axes 21a and 21c parallel to each other and in opposite directions.
  • the two magnetic sensing elements 20b and 20d have their sensitivity axes 21b and 21d parallel to each other and in opposite directions.
  • the measuring unit of the terminal cover 4 can suppress the influence of the disturbance magnetic field n while increasing the degree of freedom in arranging the plurality of magnetic sensitive elements 20a, 20b, 20c, and 20d.
  • One of the two current sensors 1 measures the current flowing through the current path 11, and the other current sensor 1 measures the current flowing through the current path 13.
  • the magnetic sensing elements 20a and 20b are arranged at the end 41 of the substrate 40, and the magnetic sensing elements 20c and 20d are arranged at the interline portion 42 of the substrate 40.
  • the magnetic sensing elements 20a and 20b are arranged at the end 44 of the substrate 40, and the magnetic sensing elements 20c and 20d are arranged at the interline portion 43 of the substrate 40.
  • the magnetic sensing elements 20a and 20b of one of the current sensors 1 are connected portions 45 out of two regions separated by a horizontal line Lh, which is a region of the end portion 41 and is a line passing through the center O of the current path 11 in the X-axis direction. Is placed in one of the areas where That is, the magnetic sensing elements 20a and 20b of one of the current sensors 1 are arranged in a region of the end 41 above the horizontal line Lh passing through the center O of the current path 11 in FIG.
  • the upper region is the region on the operation handle 6 side of the circuit breaker 2 shown in FIG.
  • the magnetic sensing elements 20c and 20d of one of the current sensors 1 are arranged in the other region of the two regions separated by the horizontal line Lh, which is the region of the interline portion 42. That is, the magnetic sensing elements 20c and 20d of one of the current sensors 1 are arranged in the region below the horizontal line Lh passing through the center O of the current path 11 in the interline portion 42.
  • the lower region is a region on the bottom surface 8 side of the circuit breaker 2 shown in FIG.
  • the magnetic sensing elements 20a and 20b of the other current sensor 1 are arranged in the region of the end 44 above the horizontal line Lh in FIG. 8, and the magnetic sensing elements 20c and 20d of the other current sensor 1 are arranged. , Is arranged in the region below the horizontal line Lh in FIG. 8 in the line-to-line portion 43.
  • the magnetic sensing elements 20a and 20b of each current sensor 1 are arranged at positions facing each other in the Z-axis direction, and the magnetic sensing elements 20c and 20d of each current sensor 1 are arranged in the Z-axis direction. It is located at the opposite position.
  • the magnetic sensing element 20a and the magnetic sensing element 20b are in the same quadrant and are magnetically sensitive.
  • the element 20c and the magnetic sensing element 20d are in the same quadrant.
  • the quadrant in which the magnetic sensing elements 20a and 20b are present is the quadrant in which the magnetic sensing elements 20c and 20d are present and the quadrants facing each other via the center O of the current path 11.
  • the terminal cover is designed so as not to be larger than the width of the circuit breaker main body. Therefore, the area where the magnetic sensitive element can be arranged in the terminal cover is limited.
  • the magnetic sensing elements 20a and 20b are arranged in one of the two regions of the ends 41 and 44 separated by the horizontal line Lh, and the magnetic sensing elements 20c and 20d are arranged. Is arranged in the other region of the two regions of the interline portions 42 and 43 separated by the horizontal line Lh. Therefore, in the terminal cover 4, the plurality of magnetic sensitive elements 20 can be arranged in a limited region while suppressing the influence of the disturbance magnetic field n.
  • the disturbance magnetic field n affects the plurality of magnetizing elements 20a, 20b, 20c, 20d used for measuring the current flowing through the current path 11.
  • a plurality of magnetic sensitive elements 20a, 20b, 20c, and 20d are arranged at specific locations. As a result, in the current sensor 1, the influence of the induced magnetic field from the current paths 12 and 13 can be significantly reduced.
  • the angle between the virtual line L2 and the horizontal line Lh connecting the magnetic sensing element 20b and the magnetic sensing element 20d is set to the first angle ⁇ 1
  • the magnetic sensing element 20a and the magnetic sensing element 20c The angle between the virtual line L1 and the horizontal line Lh connecting between them is defined as the second angle ⁇ 2.
  • the radii of the virtual circles 30a, 30b, 30c, and 30d are R1, R2, R3, and R4.
  • the radii R1, R2, R3, and R4 are selected so that a plurality of magnetic sensing elements 20a, 20b, 20c, and 20d can be arranged on the substrate 40 according to the shape of the substrate 40. Further, as the first angle ⁇ 1 and the second angle ⁇ 2, angles that can reduce the influence of the induced magnetic field by the current paths 12 and 13 are selected.
  • FIG. 9 is a diagram showing the relationship between the second angle when the first angle according to the second embodiment is a specific angle and the total value of the induced magnetic fields due to the non-target current paths detected by the plurality of magnetizing elements.
  • the horizontal axis represents the second angle ⁇ 2
  • the vertical axis represents the total value of the induced magnetic fields due to the non-target current paths detected by the plurality of magnetizing elements 20a, 20b, 20c, 20d.
  • the non-target current path is a current path other than the current path to be measured by the current sensor 1, and is the current paths 12 and 13 in the current sensor 1 that detects the current in the current path 11.
  • the total value of the induced magnetic fields due to the non-target current paths detected by the plurality of magnetic sensitive elements 20a, 20b, 20c, 20d becomes zero.
  • the influence of the disturbance magnetic field component due to the non-target current path can be significantly reduced.
  • the total value of the induced magnetic fields due to the non-target current paths detected by the plurality of magnetizing elements 20a, 20b, 20c, and 20d may be described as the total value of the disturbance components for convenience.
  • the arrangement conditions of the plurality of magnetic sensing elements 20 with respect to the terminal cover 4 of the circuit breaker 2 will be described more specifically.
  • a notch is generally formed from the lower side to the upper side in order to cover the current path from above, and the member cannot be arranged directly under the current path. Can not.
  • the pitch between the terminals of the circuit breaker to which the terminal cover that can be retrofitted is attached is generally 18 mm to 30 mm.
  • the distance between the terminal of the circuit breaker to which the current path to be measured is connected and the bottom surface of the circuit breaker is generally about 24 mm.
  • the metal panel of the distribution board or distribution board to which the bottom surface of the circuit breaker is attached serves as the ground plane, so if the insulation distance is secured, the lower limit is about 24 mm for a low-voltage circuit breaker. ..
  • the maximum values of the first angle ⁇ 1 and the second angle ⁇ 2 differ depending on the pitch between the terminals and are about 58 to 70 degrees.
  • the measurement error of the current sensor 1 given by the magnetic field due to the non-target current path when the first angle ⁇ 1 is fixed and the second angle ⁇ 2 is changed is calculated.
  • ⁇ 1 ⁇ 2 the pitch between the terminals of the circuit breaker 2 is 18 mm, and the maximum values of the first angle ⁇ 1 and the second angle ⁇ 2 are 58 degrees.
  • FIG. 10 is a diagram showing the relationship between the second angle and the total value of disturbance components when the first angle according to the second embodiment is 0 degrees.
  • FIG. 11 is a diagram showing the relationship between the second angle and the total value of disturbance components when the first angle according to the second embodiment is 10 degrees.
  • FIG. 12 is a diagram showing the relationship between the second angle and the total value of disturbance components when the first angle according to the second embodiment is 14 degrees.
  • FIG. 13 is a diagram showing the relationship between the second angle and the total value of the disturbance components when the first angle according to the second embodiment is 20 degrees.
  • the influence of the non-target current path is the target current path that is the current path to be measured.
  • radii R1, R2, R3, and R4 are set so that a plurality of magnetic sensing elements 20 can be arranged on the substrate 40 according to the shape of the substrate 40.
  • the first angle ⁇ 1 and the second angle ⁇ 2 are set to angles that reduce the influence of the induced magnetic field by the current paths 12 and 13. Therefore, in the current sensor 1 that measures the current in the current path 11, the plurality of magnetic sensing elements 20 can be arranged in a limited region while suppressing the influence of the non-target current path.
  • the influence of the induced magnetic field by the current paths 12 and 13 can be reduced by the same method, respectively, of the first angle ⁇ 1 and the second angle ⁇ 2.
  • the value of can be specified.
  • the influence of the induced magnetic field by the current paths 11 and 12, which are the non-target current paths can be reduced by the same method, and the first angles ⁇ 1 and the second angle ⁇ 1 and the second.
  • Each value of the angle ⁇ 2 can be specified.
  • FIG. 14 is a diagram showing another example of arrangement of a plurality of magnetic sensitive elements on the substrate of the measuring unit included in the terminal cover according to the second embodiment.
  • FIG. 14 shows a plurality of magnetic sensitive elements 20a, 20b, 20c, and 20d with respect to the substrate 40 when the current sensor 1 is applied to the two-pole circuit breaker.
  • a plurality of magnetic sensing elements 20a, 20b, 20c, 20d in one current sensor 1 are arranged.
  • the arrangement of the plurality of magnetic sensing elements 20a, 20b, 20c, and 20d is the same as that of the substrate 40 shown in FIG. In this case, since the non-target current path is only the current path 12, the total value of the disturbance component is the total value of the induced magnetic fields by the current path 12 detected by the plurality of magnetizing elements 20a, 20b, 20c, and 20d.
  • a plurality of current paths 11, 12, and 13 are connected to the circuit breaker 2 according to the second embodiment, and the current paths 11, 12, and 13 are orthogonal to the extending direction of the current path 11. It is arranged with the X-axis direction, which is the direction, as the arrangement direction.
  • the current sensor 1 is a current sensor that measures the current flowing through the current path 11
  • the current path 11 is an example of the target current path
  • the current sensor 1 is a current sensor that measures the current flowing through the current path 13.
  • the current path 13 is an example of the target current path.
  • the terminal cover 4 of the circuit breaker 2 includes a substrate 40.
  • Such a substrate 40 has end portions 4a, 4d in the X-axis direction, and interline portions 4b, 4c provided between two adjacent current paths among the plurality of current paths 11, 12, 13.
  • the magnetic sensing elements 20a and 20b are one of two regions that are regions of the end portion 4a or the end portion 4d and are separated by a horizontal line Lh that extends in the X-axis direction and passes through the center O of the current paths 11 and 13. It is placed in the area of.
  • the magnetic sensing elements 20c and 20d are arranged in the other region of the two regions of the interline portion 4b or the interline portion 4c separated by the horizontal line Lh.
  • the ends 41 and 44 are arranged in the area on the operation handle 6 side of the circuit breaker 2 out of the two areas separated by the horizontal line Lh. Further, the interline portions 42 and 43 are arranged in the region on the bottom surface 8 side of the circuit breaker 2 out of the two regions separated by the horizontal line Lh. As a result, the magnetic sensing elements 20a and 20b are appropriately arranged even when the ends 41 and 44 of the substrate 40 do not exist on the bottom surface 8 side of the circuit breaker 2 in the two regions separated by the horizontal line Lh. be able to.
  • the substrate 40 includes end portions 41, 44 provided at the end portions 4a, 4d, interline portions 42, 43 provided at the interline portions 4b, 4c, and end portions 41, 44 and the interline portion 42. , 43 is provided with a connecting portion 45 for connecting the and 43.
  • the end portions 41 and 44 are examples of the first region
  • the interline portions 42 and 43 are examples of the second region
  • the connecting portion 45 is an example of the connecting region.
  • the current sensor 1 described above has a configuration having four magnetic sensing elements 20a, 20b, 20c, and 20d, but the number of magnetic sensing elements 20 included in the current sensor 1 may be an even number and is not limited to four. ..
  • the number of magnetic sensitive elements 20 may be two or six or more. That is, the current sensor 1 has at least one magnetic element pair, and the two magnetic element 20s constituting the magnetic element pair are arranged on virtual circles 30 different from each other, and the sensitivity axes 21 of each other are arranged. It may be parallel and opposite.
  • the current sensor 1 may be configured not to have a pair of magnetic sensing elements 20a and 20c or a pair of magnetic sensing elements 20b and 20d. If the number of magnetic sensing elements 20 is an even number, the influence of the disturbance magnetic field n can be suppressed.
  • Embodiment 3 The current sensor of the circuit breaker according to the third embodiment can perform correction according to the positional relationship between the magnetic sensitive element and the current path when the positional relationship between the magnetic sensitive element and the current path deviates.
  • the current sensor according to the first embodiment and the current sensor of the circuit breaker according to the second embodiment are designated by the same reference numerals and the description thereof will be omitted, and the differences from the first and second embodiments will be mainly described.
  • the arrangement condition of the plurality of magnetic sensing elements 20 with respect to the current paths 11 and 13 is determined. Since the value deviates from the design value, the error of the current value calculated by the arithmetic circuit 22 becomes large. Therefore, in the current sensor 10 according to the third embodiment, when the arrangement conditions for the current paths 11 and 13 of the plurality of magnetic sensing elements 20 deviate from the design values, the current value calculated by the arithmetic circuit 22 is corrected. It has a configuration.
  • FIG. 15 is a diagram showing an example of the configuration of the current sensor according to the third embodiment.
  • the current sensor 10 according to the third embodiment includes a current sensor 1a, a current sensor 1b, magnetic sensing elements 23a, 23b, 23c, 23d, 24a, 24b, 24c, 24d, and position detection.
  • a unit 25 and a correction unit 26 are provided.
  • the current sensor 1a is a current sensor 1 that detects a current flowing through the current path 11, and includes magnetic sensing elements 20a, 20b, 20c, 20d and an arithmetic circuit 22 shown in FIG.
  • the current sensor 1a outputs a voltage signal Vdet1 indicating an instantaneous value of the current flowing through the current path 11.
  • the current sensor 1b is a current sensor 1 that detects the current flowing in the current path 13, and includes the magnetic sensing elements 20a, 20b, 20c, 20d and the arithmetic circuit 22 shown in FIG. 1 in the same manner as the current sensor 1a.
  • the current sensor 1b outputs a voltage signal Vdet2 indicating an instantaneous value of the current flowing through the current path 13.
  • the magnetic sensitive elements 23a, 23b, 23c, 23d are in directions orthogonal to the Y-axis direction, which is the extending direction of the current paths 11, 12, 13 and the X-axis direction, which is the arrangement direction of the current paths 11, 12, 13. It is provided to detect the positions of the current paths 11 and 13 in the Z-axis direction.
  • the magnetic sensing elements 23a, 23b, 23c, 23d output voltage signals V1a, V1b, V1c, V1d having a magnitude directly proportional to the detected magnetic field.
  • These magnetic sensing elements 23a, 23b, 23c, 23d are examples of the first position detecting magnetic sensing elements.
  • the Z-axis direction may be described as the vertical direction, and the deviation of the current paths 11 and 13 in the vertical direction from the reference position may be described as the vertical deviation.
  • the reference position in the vertical direction is, for example, an intermediate position between the position of the magnetic sensing element 23a and the position of the magnetic sensing element 23b in the vertical direction.
  • the magnetic sensitive elements 24a, 24b, 24c, 24d are provided to detect the positions of the current paths 11, 13 in the X-axis direction, which is the arrangement direction of the current paths 11, 12, 13.
  • the magnetic sensing elements 24a, 24b, 24c, 24d output voltage signals V2a, V2b, V2c, V2d having a magnitude directly proportional to the detected magnetic field.
  • These magnetic sensing elements 24a, 24b, 24c, 24d are examples of the second position detecting magnetic sensing elements.
  • the X-axis direction may be described as the lateral direction
  • the deviation of the current paths 11 and 13 in the lateral direction from the reference position may be described as the lateral displacement.
  • the reference position in the lateral direction is, for example, an intermediate position between the position of the magnetic sensing element 24a and the position of the magnetic sensing element 24b in the lateral direction.
  • the position detection unit 25 includes voltage signals V1a, V1b, V1c, V1d output from the magnetic sensing elements 23a, 23b, 23c, 23d and voltage signals V2a, V2b, output from the magnetic sensing elements 24a, 24b, 24c, 24d.
  • the positions of the current paths 11 and 13 are detected based on V2c and V2d.
  • the position detection unit 25 includes a first position detection unit 25a and a second position detection unit 25b.
  • the first position detection unit 25a determines the amount of vertical deviation of the current paths 11 and 13 based on the voltage signals V1a, V1b, V1c, and V1d output from the magnetic sensing elements 23a, 23b, 23c, and 23d. Detected as positions 11 and 13. The first position detection unit 25a outputs a position signal Sp1 indicating the amount of vertical deviation of the detected current paths 11 and 13.
  • the second position detection unit 25b determines the amount of lateral displacement of the current paths 11 and 13 based on the voltage signals V2a, V2b, V2c, and V2d output from the magnetic sensing elements 24a, 24b, 24c, and 24d. , 13 positions are detected.
  • the second position detection unit 25b outputs a position signal Sp2 indicating the amount of lateral displacement of the detected current paths 11 and 13.
  • the correction unit 26 corrects the voltage signals Vdet1 and Vdet2 based on the voltage signals Vdet1 and Vdet2 output from the current sensors 1a and 1b and the position signals Sp1 and Sp2 output from the position detection unit 25. Outputs Vdet1c and Vdet2c.
  • the correction voltage signal Vdet1c is a signal indicating an instantaneous value of the current flowing through the current path 11
  • the correction voltage signal Vdate2c is a signal indicating an instantaneous value of the current flowing through the current path 13.
  • FIG. 16 is a diagram showing an example of arrangement of a plurality of magnetic sensitive elements on the substrate of the measuring unit included in the terminal cover according to the third embodiment.
  • the arrangement of the magnetic sensing elements 20a, 20b, 20c, 20d of the two current sensors 1a, 1b shown in FIG. 16 on the substrate 40 is such that the magnetic sensing elements 20a, 20b, 20c, 20d of the two current sensors 1 shown in FIG. 8 are arranged. Is the same as the arrangement on the substrate 40.
  • the shapes of the current paths 11, 12, and 13 differ depending on the crimp terminals to be connected. Further, since the crimp terminal to be selected is selected according to the magnitude of the current flowing on the load side, for example, when the current flowing on the load side is large, a crimp terminal having a large wire diameter is selected instead of a fixed shape. If the current flowing on the load side is small, the one with a small wire diameter is selected.
  • the magnetic sensitive elements 20a, 20b, 20c, and 20d for detecting the current are designed on the assumption that the center O of each of the current paths 11 and 13 is arranged at a reference position, but the crimping terminals to be selected are selected. As a result, the center O of the current paths 11 and 13 may fluctuate, and the vertical positional relationship between the current paths 11 and 13 and the magnetic sensing elements 20a, 20b, 20c, and 20d may shift. In this case, it may be difficult to accurately calculate the current value flowing through the current paths 11 and 13 by the current sensors 1a and 1b.
  • the amount of vertical deviation is detected by using the magnetic sensing elements 23a, 23b, 23c, 23d and the first position detecting unit 25a.
  • the magnetic sensing elements 23a and 23b are arranged on the line-to-line portion 42 of the substrate 40 so that the sensitivity shafts 31a and 31b are parallel to each other and face in the negative direction of the X-axis.
  • the 23d is arranged in the interline portion 43 of the substrate 40 so that the sensitivity axes 31c and 31d are parallel to each other and face in the positive direction of the X axis.
  • FIG. 17 is a diagram for explaining the positional relationship with a plurality of magnetic sensitive elements for detecting the vertical position of the current path according to the third embodiment.
  • the magnetic sensing elements 23a and 23d are arranged at the position P1 in the vertical direction
  • the magnetic sensing elements 23b and 23c are arranged at the position P2 in the vertical direction.
  • the maximum range PR1 of the vertical deviation of the current paths 11, 12, 13 is the position P1 of the magnetic sensing elements 23a, 23d and the magnetic sensing elements 23b, 23c. It is arranged on the substrate 40 so as to be within the inter-element range DL1 which is the range between the position P2 and the position P2.
  • the magnetic sensing element 23 when each of the magnetic sensing elements 23a, 23b, 23c, and 23d is shown without distinction, it may be referred to as the magnetic sensing element 23, and each of the sensitivity shafts 31a, 31b, 31c, and 31d may be referred to.
  • the sensitivity axis 31 When it is shown without distinction individually, it may be described as the sensitivity axis 31.
  • the direction of the sensitivity axis 31 is indicated by an arrow.
  • the current paths 11', 12', 13'shown by virtual lines indicate the current paths 11, 12, 13 when they are at the lower limit positions in the Z-axis direction, and the current paths 11', 12'shown by virtual lines. “, 13” indicates the current paths 11, 12, 13 when they are in the upper limit position in the Z-axis direction. In the example shown in FIG. 17, the current paths 11, 12, 13 are the positions P12 in the Z-axis direction. Is located in.
  • the magnetic sensing element 23 is arranged so that the sensitivity axis 31 faces the X-axis direction, which is the horizontal direction. Therefore, when the magnetic sensing element 23 is arranged at the same position as the current path in the Z-axis direction, which is the vertical direction. , The direction of the sensitivity shaft 31 and the direction of the induced magnetic field generated by the current paths 11 and 13 are perpendicular to each other. The magnetic field component detected by the magnetic sensing element 23 whose sensitivity axis 31 is perpendicular to the direction of the induced magnetic field generated by the current paths 11 and 13 is theoretically zero.
  • the magnetic field element 23 arranged so that the sensitivity shaft 31 is oriented horizontally is reciprocated in the vertical direction
  • the magnetic field component detected by the magnetic field element 23 changes, but the vertical direction of the magnetic field element 23 It can be said that the position where the magnetic field component detected by the magnetic sensing element 23 becomes zero due to the movement in the direction is the position in the vertical direction of the current paths 11 and 13.
  • the current path is used by using the vector composite value of the magnetic field component detected by the two magnetic sensitive elements 23a and 23b and the vector composite value of the magnetic field component detected by the two magnetic sensitive elements 23c and 23d. The positions 11 and 13 are detected.
  • the magnetic field components detected by the magnetic sensitive elements 23a, 23b, 23c, 23d are ⁇ a, ⁇ b, ⁇ c, ⁇ d
  • the vector composite value of the magnetic field component ⁇ a and the magnetic field component ⁇ b is ⁇ ab
  • the magnetic field component ⁇ c and the magnetic field component are defined as ⁇ ab.
  • the vector composite values ⁇ ab and ⁇ cd can be expressed by the following equations (6) and (7) from the internal components of the vector.
  • "t1" is represented by 0 ⁇ t1 ⁇ 1, "t1" may be a range other than the range from 0 to 1 as long as the linearity is maintained.
  • ⁇ ab t1 ⁇ ⁇ a + (1-t1) ⁇ ⁇ b ⁇ ⁇ ⁇ (6)
  • ⁇ cd t1 ⁇ ⁇ d + (1-t1) ⁇ ⁇ c ⁇ ⁇ ⁇ (7)
  • the first position detection unit 25a shown in FIG. 15 sweeps "t1" in the above equations (6) and (7) from 0 to 1, and the value of "t1" that minimizes the calculation result of " ⁇ ab + ⁇ cd”. Is searched, and the vertical positions of the current paths 11 and 13 are detected based on the value of “t1” that minimizes the calculation result of “ ⁇ ab + ⁇ cd”.
  • FIG. 18 is a diagram showing an example of the relationship between the vertical position of the current path according to the third embodiment and the calculation result using the magnetic field component detected by the magnetic sensing element.
  • the vertical axis represents the magnetic flux density calculated by the calculation of “ ⁇ ab + ⁇ cd”, and the horizontal axis represents the position of the current path in the vertical direction.
  • the inter-element range DL1 shown in FIG. 17 is 4 mm, and the vertical position of the current path is 2 mm.
  • the first position detection unit 25a uses the above equations (6) and (7) as the voltage signals V1a, V1b, V1c, and V1d output from the magnetic sensing elements 23a, 23b, 23c, and 23d as ⁇ a, ⁇ b, ⁇ c, and ⁇ d. Is assigned to, and "t1" is swept from 0 to 1, and the value of "t1" that minimizes the calculation result of " ⁇ ab + ⁇ cd" is searched.
  • the first position detection unit 25a detects the vertical positions of the current paths 11 and 13 by performing the calculation of "t1 ⁇ DL1" using "t1" which minimizes the calculation result of " ⁇ ab + ⁇ cd”. ..
  • the first position detection unit 25a calculates the amount of vertical deviation, which is the amount of deviation of the detected current paths 11 and 13 from the vertical reference position.
  • the first position detection unit 25a outputs a position signal Sp1 indicating the calculated amount of vertical deviation.
  • the disturbance magnetic field n detected by the magnetic sensing element 23a is the disturbance magnetic field detected by the magnetic sensing element 23d.
  • the positive and negative of the component of n are reversed.
  • the sensitivity axes 31b and 31c of the magnetic sensing elements 23b and 23c are arranged in opposite directions, the disturbance magnetic field n detected by the magnetic sensing element 23b is the disturbance detected by the magnetic sensing element 23c.
  • the positive and negative directions are opposite to those of the magnetic field n. Therefore, the calculation result of " ⁇ ab + ⁇ cd" is a value in which the influence of the disturbance magnetic field n is cancelled.
  • the first position detecting unit 25a searches for the minimum value of the calculated sum, and detects the positions of the current paths 11 and 13 in the vertical direction based on the calculated minimum value of the sum. As a result, the first position detection unit 25a can accurately detect the vertical positions of the current paths 11 and 13.
  • the first position detecting unit 25a can generate a current even when there is a disturbance magnetic field n.
  • the vertical position of the road can be detected accurately.
  • the first position detection unit 25a sweeps "t1" in the above equation (6) from 0 to 1, searches for the value of “t1” that minimizes the calculation result of " ⁇ ab”, and searches for the value of "t1", and " ⁇ ab”. It is also possible to detect the vertical position of the current path 11 based on the value of “t1” that minimizes the calculation result of “”. Similarly, the first position detection unit 25a sweeps "t1” in the above equation (7) from 0 to 1, searches for the value of "t1” that minimizes the calculation result of " ⁇ cd”, and " It is also possible to detect the vertical position of the current path 13 based on the value of “t1” that minimizes the calculation result of “ ⁇ cd”.
  • FIG. 19 is a diagram for explaining the positional relationship between the current path according to the third embodiment and the plurality of magnetic sensitive elements for detecting the position in the lateral direction.
  • the maximum range of lateral displacement of the current path 11 is the range between the position P3 of the magnetic sensitive element 24a and the position P4 of the magnetic sensitive element 24b. It is arranged on the substrate 40 so as to fit inside. Similarly, the magnetic sensing elements 24c and 24d are set so that the maximum range of the lateral displacement of the current path 13 is within the inter-element range DL3 which is the range between the position P5 of the magnetic sensing element 24c and the position P6 of the magnetic sensing element 24d. Is arranged on the substrate 40.
  • the magnetic sensing elements 24a and 24b are arranged on the connecting portion 45 of the substrate 40 so that the sensitivity shafts 32a and 32b are in the same vertical position and face in the positive direction of the X axis.
  • the magnetic sensing elements 24c and 24d are arranged on the connecting portion 45 of the substrate 40 so that the sensitivity shafts 32c and 32d are in the same vertical position and face in the negative direction of the X axis.
  • each of the magnetic sensing elements 24a, 24b, 24c, and 24d is shown without distinction, it may be described as the magnetic sensing element 24, and each of the sensitivity shafts 32a, 32b, 32c, and 32d is individually shown.
  • the direction of the sensitivity shaft 32 is indicated by an arrow.
  • the current path 11 is arranged at the center of the two magnetic sensing elements 24a and 24b in the lateral direction with respect to the two magnetic sensing elements 24a and 24b arranged so that the sensitivity shafts 32a and 32b are oriented in the lateral direction.
  • the magnetic field components detected by the two magnetic sensing elements 24a and 24b have the same value.
  • the magnetic field component detected by the magnetic sensing element 24b is larger than the magnetic field component detected by the magnetic sensing element 24a.
  • the magnetic field component detected by the magnetic sensitive element 24a is larger than the magnetic field component detected by the magnetic sensitive element 24b. Will also grow.
  • the ratio of the magnetic field component detected by the magnetic sensing element 24a and the magnetic field component detected by the magnetic sensing element 24b there is a correlation between the ratio of the magnetic field component detected by the magnetic sensing element 24a and the magnetic field component detected by the magnetic sensing element 24b and the lateral position of the current path 11. Further, as described above, the vertical position of the current path 11 may deviate, and the magnetic field component detected by the magnetic sensing element 24a and the magnetic field component detected by the magnetic sensing element 24b may be displaced depending on the vertical position of the current path 11.
  • FIG. 20 is a diagram showing an example of the relationship between the lateral position of the current path according to the third embodiment and the calculation result using the magnetic field component detected by the magnetic sensing element.
  • the vertical axis represents the detected magnetic field ratio, which is the ratio of the magnetic field component detected by the other magnetic field component 24 to the magnetic field component detected by one of the two magnetic field elements 24, and is horizontal.
  • the axis indicates the amount of lateral displacement of the current path 11 or the current path 13.
  • the detected magnetic field ratio is, for example, the ratio of the magnetic field component detected by the magnetic sensing element 24a to the magnetic field component detected by the magnetic sensing element 24b, or the magnetic field component detected by the magnetic sensing element 24c and the magnetic field detected by the magnetic sensing element 24d. The ratio with the ingredients.
  • the detected magnetic field ratio shown in FIG. 20 is the ratio of the magnetic field component detected by the magnetic sensing element 24a to the magnetic field component detected by the magnetic sensing element 24b.
  • the region on the right side in FIG. 19 from the intermediate position in the lateral direction between the positions P3 and P4 shown in FIG. 19 is the amount of positive deviation in the lateral direction
  • the region on the left side in FIG. 19 from the intermediate position is negative in the lateral direction. Is the amount of deviation.
  • the second position detection unit 25b shown in FIG. 15 determines the horizontal position of the current path 11 based on the ratio of the magnetic field components detected by the two magnetic sensing elements 24a and 24b and the vertical position of the current path 11.
  • the position in the horizontal direction of the current path 13 is detected based on the ratio of the magnetic field components detected by the two magnetic sensing elements 24c and 24d and the position in the vertical direction of the current path 13.
  • the second position detection unit 25b shows the relationship between the ratio of the magnetic field component detected by the magnetic sensing element 24a and the magnetic field component detected by the magnetic sensing element 24b and the lateral position of the current path 11.
  • the information of the first function is stored for each position in the vertical direction of the current path 11.
  • the second position detection unit 25b has the voltage signals V2a and V2b output from the magnetic sensing elements 24a and 24b, the position signal Sp1 output from the first position detection unit 25a, and the information of the first function. Based on the above, the lateral position of the current path 11 is detected.
  • the second position detecting unit 25b shows the relationship between the ratio of the magnetic field component detected by the magnetic sensing element 24c and the magnetic field component detected by the magnetic sensing element 24d and the lateral position of the current path 13.
  • the function information is stored for each position in the vertical direction of the current path 13.
  • the second position detection unit 25b has the voltage signals V2c and V2d output from the magnetic sensing elements 24c and 24d, the position signal Sp2 output from the first position detection unit 25a, and the information of the second function. Based on the above, the lateral position of the current path 13 is detected.
  • the first function and the second function are the same, but when the positional relationship between the magnetic sensing element 24c and the magnetic sensing element 24d is different from the positional relationship between the magnetic sensing element 24a and the magnetic sensing element 24b, The second function and the first function are different.
  • the second position detection unit 25b calculates, for example, the added value of the voltage signal V2a and the voltage signal V2c as new voltage signals V2a and V2c, and newly adds the added value of the voltage signal V2b and the voltage signal V2d. Calculated as voltage signals V2b and V2d.
  • the second position detection unit 25b uses the calculated new voltage signals V2a, V2b, V2c, and V2d to perform an calculation using the above-mentioned function, so that even if there is a disturbance magnetic field n, the current path
  • the lateral positions of 11 and 13 can be detected with high accuracy.
  • the current sensor 10 includes two magnetic sensing elements 24e and 24f in the directions opposite to the directions of the sensitivity shafts 32a and 32b of the magnetic sensing elements 24a and 24b at positions deviated from the magnetic sensing elements 24a and 24b in the vertical direction. It may be.
  • the two magnetic sensing elements 24e and 24f are not shown.
  • the second position detection unit 25b sets the sum of the output of the magnetic sensing element 24a and the output of the magnetic sensing element 24e as a new voltage signal V2a, and sets the output of the magnetic sensing element 24b and the output of the magnetic sensing element 24f. The added value of and is calculated as a new voltage signal V2b.
  • the second position detection unit 25b uses the calculated new voltage signals V2a and V2b to perform an operation using the above-mentioned function, so that even when there is a disturbance magnetic field n, the second position detection unit 25b performs a calculation in the lateral direction of the current path 11. The position of can be detected accurately.
  • the current sensor 10 includes two magnetic sensing elements 24g and 24h in the directions opposite to the directions of the sensitivity shafts 32c and 32d of the magnetic sensing elements 24c and 24d at positions deviated from the magnetic sensing elements 24c and 24d in the vertical direction. It may be a configuration. The two magnetic sensing elements 24g and 24h are not shown.
  • the second position detection unit 25b sets the added value of the output of the magnetic sensing element 24c and the output of the magnetic sensing element 24g as a new voltage signal V2c, and sets the output of the magnetic sensing element 24d and the output of the magnetic sensing element 24h. The added value of and is calculated as a new voltage signal V2d.
  • the second position detection unit 25b uses the calculated new voltage signals V2c and V2d to perform an operation using the above-mentioned function, so that even when there is a disturbance magnetic field n, the second position detection unit 25b performs a calculation in the lateral direction of the current path 13. The position of can be detected accurately.
  • the correction unit 26 shown in FIG. 15 includes the voltage signals Vdet1 and Vdet2 of the current sensors 1a and 1b, the position signal Sp1 of the first position detection unit 25a, and the position signal of the second position detection unit 25b. Based on Sp2, the corrected voltage signals Vdet1c and Vdet2c obtained by correcting the voltage signals Vdet1 and Vdet2 are output.
  • the correction unit 26 stores the information of the correction function for calculating the correction coefficient of the voltage signals Vdet1 and Vdet2 from the amount of the vertical deviation and the amount of the lateral deviation, and uses the information of the correction function to obtain the voltage.
  • the correction coefficient of the signals Vdet1 and Vdet2 is calculated.
  • Such a correction function is a function that defines the relationship between the amount of lateral deviation and the value of the correction coefficient, and is a function provided for each amount of vertical deviation.
  • the correction function is represented by, for example, the following equation (8).
  • "K” is a correction coefficient
  • "x” is a lateral displacement amount
  • "k1", "k2”, and "k3” are coefficients of the correction function.
  • K k1 ⁇ x 2 + k2 ⁇ x + k3 ⁇ ⁇ ⁇ (8)
  • the correction unit 26 calculates the correction coefficient of the voltage signal Vdet1 using the above equation (8), and multiplies the calculated correction coefficient of the voltage signal Vdet1 by the voltage signal Vdet1 to calculate the correction voltage signal Vdet1c. Further, the correction unit 26 calculates the correction coefficient of the voltage signal Vdet2 using the above equation (8), and multiplies the calculated correction coefficient of the voltage signal Vdet2 by the voltage signal Vdet2 to calculate the correction voltage signal Vdet2c. do.
  • the correction function described above can be obtained from, for example, a theoretical value or a simulation.
  • FIG. 21 is a diagram showing an example of the relationship between the amount of lateral displacement of the current path and the correction coefficient according to the third embodiment.
  • the example shown in FIG. 21 shows the characteristics of the correction function when the amount of vertical deviation is 1 mm.
  • the vertical axis indicates the value of the correction coefficient
  • the horizontal axis indicates the lateral deviation of the current path. Is shown.
  • the information of the correction function that the correction unit 26 has for each amount of vertical deviation may be the information of the calculation formula as shown in the above equation (8), and the table in which the amount of lateral deviation and the correction coefficient are associated with each other. It may be the information of.
  • the correction function may be a function that defines the relationship between the amount of vertical deviation, the amount of lateral deviation, and the value of the correction coefficient.
  • the information of the correction function may be the information of the arithmetic expression. Often, it may be table information.
  • the above-mentioned current sensor 10 is configured to detect the current flowing through the current paths 11 and 13, it may be configured to detect the current flowing through one of the current paths 11 and 13.
  • the magnetic sensing elements 23a and 23b and the magnetic sensing elements 23c and 23d are arranged at positions facing each other in the vertical direction, and the magnetic sensing elements 24a and 24b and the magnetic sensing elements 24c and 24d are arranged in the horizontal direction. It is placed at a position facing the.
  • the current sensor 10 may have a configuration that does not have the magnetic sensing elements 23c and 23d and the magnetic sensing elements 24c and 24d. In this case, the current sensor 10 detects the current in the current path 11. Further, the current sensor 10 may have a configuration that does not have the magnetic sensing elements 23a and 23b and the magnetic sensing elements 24a and 24b. In this case, the current sensor 10 detects the current in the current path 13.
  • the current sensor 10 detects the current flowing in the 3-phase 3-wire current path, but the current sensor 10 detects, for example, the current flowing in the single-phase 2-wire current path, or simply. It is possible to detect the current flowing in the phase 3-wire type current path.
  • the correction unit 26 has information on the correction function described above for each of the three-phase three-wire system, the single-phase two-wire system, and the single-phase three-wire system.
  • the correction unit 26 corrects a method corresponding to a switching position of a switch (not shown) provided on the current sensor 10 or the terminal cover 4 among the three-phase three-wire system, the single-phase two-wire system, and the single-phase three-wire system.
  • the voltage signals Vdet1 and Vdet2 are corrected based on the information of the function.
  • FIG. 22 is a diagram showing an example of the hardware configuration of the current sensor according to the third embodiment.
  • the current sensor 10 includes a computer including a plurality of magnetic sensing elements 20, 23, 24, a processor 201, a memory 202, and an interface circuit 203.
  • the processor 201, the memory 202, and the interface circuit 203 can send and receive information to and from each other by, for example, the bus 204.
  • the memory 202 provides information for detecting the amount of vertical deviation and information for detecting the amount of lateral deviation in the position detecting unit 25, such as the information in the above equations (6) and (7). It is also stored, and information for correcting the voltage signals Vdet1 and Vdet2 is stored in the correction unit 26, such as the information of the correction function.
  • the plurality of magnetic sensing elements 20, 23, 24 are connected to the interface circuit 203.
  • the processor 201 executes functions such as the arithmetic circuit 22, the position detection unit 25, and the correction unit 26 by reading and executing the program stored in the memory 202.
  • the processor 201 is, for example, an example of a processing circuit, and includes one or more of a CPU, a DSP, and a system LSI.
  • the memory 202 includes one or more of RAM, ROM, flash memory, EPROM, and EEPROM.
  • the current sensor 10 may be configured only by hardware.
  • the current sensor 10 may be configured by a logic circuit or an integrated circuit such as an ASIC or FPGA.
  • the current sensor 10 includes a plurality of magnetic sensing elements 23 and 24, a position detection unit 25, and a correction unit 26.
  • the plurality of magnetic sensing elements 23 and 24 are examples of a plurality of position detecting magnetic sensing elements for detecting the positions of the current paths 11 and 13.
  • the position detection unit 25 detects the position of the current path 11 based on the outputs of the plurality of magnetic sensing elements 23 and 24.
  • the correction unit 26 corrects the value of the current calculated by the arithmetic circuit 22 based on the position of the current path 11 detected by the position detection unit 25.
  • the current sensor 10 when the positional relationship between the plurality of magnetic sensing elements 20 and the current paths 11 and 13 changes, the arrangement conditions of the plurality of magnetic sensing elements 20 with respect to the current paths 11 deviate from the design values, so that the calculation circuit There is a possibility that the error of the value of the current calculated by 22 becomes large.
  • the current sensor 10 includes a plurality of magnetic sensing elements 23 and 24, a position detection unit 25, and a correction unit 26, and can accurately calculate the value of the current flowing through the current path 11. can.
  • the plurality of magnetic sensing elements 23 and 24 have sensitivity axes 31a and 31b along the X-axis direction on the XZ-axis plane orthogonal to the extending direction of the current path 11, and the X-axis direction on the XZ-axis plane. It has a plurality of magnetic sensing elements 23a and 23b arranged at intervals in the Z-axis direction orthogonal to the X-axis direction, and sensitivity axes 32a and 32b along the X-axis direction, and is arranged at intervals in the X-axis direction. Includes a plurality of magnetic sensitive elements 24a and 24b.
  • the magnetic sensing elements 23a and 23b are examples of the first position detecting magnetic sensing element, and the magnetic sensing elements 24a and 24b are examples of the second position detecting magnetic sensing element.
  • the X-axis direction is an example of the first direction
  • the Z-axis direction is an example of the second direction.
  • the position detection unit 25 includes a first position detection unit 25a and a second position detection unit 25b.
  • the first position detection unit 25a detects the position of the current path 11 in the Z-axis direction based on the outputs of the plurality of magnetic sensing elements 23a and 23b.
  • the second position detection unit 25b detects the position of the current path 11 in the X-axis direction based on the outputs of the plurality of magnetic sensing elements 24a and 24b.
  • the current sensor 10 can accurately detect the position of the current path 11.
  • the current sensor 10 has sensitivity axes 31c and 31d along the X-axis direction, and includes a plurality of magnetic sensing elements 23c and 23d arranged at intervals in the Z-axis direction.
  • the plurality of magnetic sensing elements 23c and 23d are examples of the plurality of third position detecting magnetic sensing elements.
  • the sensitivity axes of the plurality of magnetic sensing elements 23a and 23b and the plurality of magnetic sensing elements 23c and 23d are parallel and opposite to each other.
  • the first position detection unit 25a detects the positions of the current paths 11 and 13 in the Z-axis direction based on the outputs of the magnetic sensing elements 23a and 23b and the outputs of the plurality of magnetic sensing elements 23c and 23d. As a result, the first position detection unit 25a of the current sensor 10 can accurately detect the positions of the current paths 11 and 13 in the Z-axis direction even when there is a disturbance magnetic field n.
  • the second position detection unit 25b is a first position detection unit and a ratio of the output of one of the plurality of magnetic sensing elements 24a and 24b to the output of the other magnetic sensing element 24b.
  • the position of the current path 11 in the X-axis direction is detected based on the position of the current path 11 in the vertical direction detected by 25a.
  • the second position detection unit 25b of the current sensor 10 accurately detects the position of the current path 11 in the X-axis direction even when the current path 11 is displaced in the X-axis direction. Can be done.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.

Abstract

This current sensor for measuring the current flowing through a current path (11) comprises a plurality of magnetosensitive elements (20a, 20b, 20c, 20d) and a computation circuit. The plurality of magnetosensitive elements (20a, 20b, 20c, 20d) are respectively disposed on corresponding imaginary circles (30a, 30b, 30c, 30d) that are centered around the center (O) of the current path (11) in a plane orthogonal to the direction in which the current path (11) extends and have different radiuses. The computation circuit calculates a value for the current flowing through the current path (11) on the basis of the output of the plurality of magnetosensitive elements (20a, 20b, 20c, 20d). The plurality of magnetosensitive elements (20a, 20b, 20c, 20d) include at least two magnetosensitive elements (20a, 20c) that have parallel sensitivity axes (21) facing in different directions.

Description

電流センサおよび回路遮断器の端子カバーTerminal covers for current sensors and circuit breakers
 本開示は、電流路に流れる電流を測定する電流センサおよび回路遮断器の端子カバーに関する。 The present disclosure relates to a terminal cover of a current sensor and a circuit breaker that measures the current flowing in the current path.
 従来、電流路を流れる電流によって生じる磁界の変化を感磁素子によって検出する電流センサが知られている。例えば、特許文献1には、電流路の延在方向と直交する平面において電流路の中心を中心とした仮想円上に複数の感磁素子を配置した電流センサが開示されている。かかる電流センサは、仮想円上に6つまたは8つの感磁素子が等間隔で配置されており、これら複数の感磁素子の出力を加算することにより外乱磁界の影響を相対的に打ち消している。 Conventionally, a current sensor that detects a change in a magnetic field caused by a current flowing in a current path by a magnetic sensing element is known. For example, Patent Document 1 discloses a current sensor in which a plurality of magnetic sensing elements are arranged on a virtual circle centered on the center of the current path in a plane orthogonal to the extending direction of the current path. In such a current sensor, six or eight magnetic sensing elements are arranged at equal intervals on a virtual circle, and the influence of the disturbance magnetic field is relatively canceled by adding the outputs of these plurality of magnetic sensing elements. ..
国際公開第2015/029736号International Publication No. 2015/029736
 しかしながら、上記特許文献1に記載の上述した技術は、複数の感磁素子の配置対象となる領域に同一仮想円上に複数の感磁素子を等間隔に配置できない場合には適用できないという課題がある。 However, the above-mentioned technique described in Patent Document 1 has a problem that it cannot be applied when a plurality of magnetic sensing elements cannot be arranged at equal intervals on the same virtual circle in a region to be arranged by the plurality of magnetic sensing elements. be.
 本開示は、上記に鑑みてなされたものであって、複数の感磁素子の配置の自由度を高めつつ、外乱の影響を抑えることができる電流センサを得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a current sensor capable of suppressing the influence of disturbance while increasing the degree of freedom in arranging a plurality of magnetic sensing elements.
 上述した課題を解決し、目的を達成するために、本開示の電流センサは、電流路に流れる電流を測定する電流センサであって、複数の感磁素子と、演算回路とを備える。複数の感磁素子は、電流路の延在方向と直交する平面において電流路の中心を中心とし半径が互いに異なる複数の仮想円のうち対応する仮想円上に各々配置される。演算回路は、複数の感磁素子の出力に基づいて電流路に流れる電流の値を算出する。複数の感磁素子は、互いの感度軸が平行且つ逆向きである少なくとも2つの感磁素子を含む。 In order to solve the above-mentioned problems and achieve the object, the current sensor of the present disclosure is a current sensor that measures a current flowing in a current path, and includes a plurality of magnetic sensing elements and an arithmetic circuit. The plurality of magnetic sensing elements are arranged on the corresponding virtual circles among the plurality of virtual circles having the center of the current path as the center and the radii different from each other in the plane orthogonal to the extending direction of the current path. The arithmetic circuit calculates the value of the current flowing in the current path based on the outputs of the plurality of magnetizing elements. The plurality of magnetic sensitive elements include at least two magnetic sensitive elements whose sensitivity axes are parallel and opposite to each other.
 本開示によれば、複数の感磁素子の配置の自由度を高めつつ、外乱の影響を抑えることができる、という効果を奏する。 According to the present disclosure, it is possible to suppress the influence of disturbance while increasing the degree of freedom in arranging a plurality of magnetic sensing elements.
実施の形態1にかかる電流センサの構成の一例を示す図The figure which shows an example of the structure of the current sensor which concerns on Embodiment 1. 実施の形態1にかかる電流センサにおける複数の感磁素子の配置の一例を示す図The figure which shows an example of the arrangement of a plurality of magnetic sensitive elements in the current sensor which concerns on Embodiment 1. 実施の形態1にかかる電流センサの演算回路のハードウェア構成の一例を示す図The figure which shows an example of the hardware composition of the arithmetic circuit of the current sensor which concerns on Embodiment 1. 実施の形態2にかかる回路遮断器の構成の一例を示す分解斜視図An exploded perspective view showing an example of the configuration of the circuit breaker according to the second embodiment. 実施の形態2にかかる回路遮断器の平面図Top view of the circuit breaker according to the second embodiment 図5に示すVI-VI線に沿った断面図Sectional view taken along the line VI-VI shown in FIG. 実施の形態2にかかる遮断器本体と端子カバーの基板との関係を示す斜視図The perspective view which shows the relationship between the circuit breaker main body and the substrate of the terminal cover which concerns on Embodiment 2. 実施の形態2にかかる端子カバーに含まれる計測部の基板における複数の感磁素子の配置の一例を示す図The figure which shows an example of the arrangement of a plurality of magnetic sensitive elements on the substrate of the measuring part included in the terminal cover which concerns on Embodiment 2. 実施の形態2にかかる第1角度が特定の角度である場合における第2角度と複数の感磁素子が検出する対象外電流路による誘導磁界の合計値との関係を示す図The figure which shows the relationship between the 2nd angle and the total value of the induced magnetic field by the non-target current path detected by a plurality of magnetizing elements when the 1st angle which concerns on Embodiment 2 is a specific angle. 実施の形態2にかかる第1角度が0度である場合における第2角度と外乱成分合計値との関係を示す図The figure which shows the relationship between the 2nd angle and the total value of a disturbance component when the 1st angle concerning Embodiment 2 is 0 degree. 実施の形態2にかかる第1角度が10度である場合における第2角度と外乱成分合計値との関係を示す図The figure which shows the relationship between the 2nd angle and the total value of the disturbance component when the 1st angle which concerns on Embodiment 2 is 10 degrees. 実施の形態2にかかる第1角度が14度である場合における第2角度と外乱成分合計値との関係を示す図The figure which shows the relationship between the 2nd angle and the total value of the disturbance component when the 1st angle which concerns on Embodiment 2 is 14 degrees. 実施の形態2にかかる第1角度が20度である場合における第2角度と外乱成分合計値との関係を示す図The figure which shows the relationship between the 2nd angle and the total value of the disturbance component when the 1st angle which concerns on Embodiment 2 is 20 degrees. 実施の形態2にかかる端子カバーに含まれる計測部の基板における複数の感磁素子の配置の他の例を示す図The figure which shows another example of arrangement of a plurality of magnetic sensitive elements on the substrate of the measuring part included in the terminal cover which concerns on Embodiment 2. 実施の形態3にかかる電流センサの構成の一例を示す図The figure which shows an example of the structure of the current sensor which concerns on Embodiment 3. 実施の形態3にかかる端子カバーに含まれる計測部の基板における複数の感磁素子の配置の一例を示す図The figure which shows an example of the arrangement of a plurality of magnetic sensitive elements on the substrate of the measuring part included in the terminal cover which concerns on Embodiment 3. 実施の形態3にかかる電流路の縦方向の位置を検出するための複数の感磁素子との位置関係を説明するための図The figure for demonstrating the positional relationship with a plurality of magnetic sensitive elements for detecting the vertical position of the electric current path which concerns on Embodiment 3. 実施の形態3にかかる電流路の縦方向の位置と感磁素子によって検出される磁界成分を用いた演算結果との関係の一例を示す図The figure which shows an example of the relationship between the vertical position of the electric current path which concerns on Embodiment 3 and the calculation result using the magnetic field component detected by a magnetic sensitive element. 実施の形態3にかかる電流路と横方向の位置を検出するための複数の感磁素子との位置関係を説明するための図The figure for demonstrating the positional relationship between the electric current path which concerns on Embodiment 3 and a plurality of magnetic sensitive elements for detecting a position in a lateral direction. 実施の形態3にかかる電流路の横方向の位置と感磁素子の検出される磁界成分を用いた演算結果との関係の一例を示す図The figure which shows an example of the relationship between the lateral position of the electric current path which concerns on Embodiment 3 and the calculation result using the magnetic field component detected by a magnetic sensitive element. 実施の形態3にかかる電流路の横ずれのずれ量と補正係数との関係の一例を示す図The figure which shows an example of the relationship between the deviation amount of the lateral displacement of the current path which concerns on Embodiment 3 and a correction coefficient. 実施の形態3にかかる電流センサのハードウェア構成の一例を示す図The figure which shows an example of the hardware composition of the current sensor which concerns on Embodiment 3.
 以下に、実施の形態にかかる電流センサおよび回路遮断器の端子カバーを図面に基づいて詳細に説明する。 The terminal covers of the current sensor and the circuit breaker according to the embodiment will be described in detail below with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかる電流センサの構成の一例を示す図である。図1に示す電流センサ1は、電流路に流れる電流を測定するセンサである。電流センサ1は、電流路に流れる電流によって生じる磁界を各々検出する複数の感磁素子20a,20b,20c,20dと、複数の感磁素子20a,20b,20c,20dの出力に基づいて、電流路に流れる電流の瞬時値を算出する演算回路22とを備える。
Embodiment 1.
FIG. 1 is a diagram showing an example of the configuration of the current sensor according to the first embodiment. The current sensor 1 shown in FIG. 1 is a sensor that measures the current flowing in the current path. The current sensor 1 is based on the outputs of the plurality of magnetic sensing elements 20a, 20b, 20c, 20d for detecting the magnetic fields generated by the currents flowing in the current path, and the outputs of the plurality of magnetic sensing elements 20a, 20b, 20c, 20d. It is provided with an arithmetic circuit 22 that calculates an instantaneous value of a current flowing through the path.
 感磁素子20a,20b,20c,20dは、磁界を検出することができればよく、特に種類は限定されない。例えば、感磁素子20a,20b,20c,20dは、GMR(Giant Magneto Resistance)素子またはTMR(Tunnel Magneto Resistance)素子などの磁気抵抗効果素子、またはホール素子などである。 The types of the magnetic sensitive elements 20a, 20b, 20c, and 20d are not particularly limited as long as they can detect a magnetic field. For example, the magnetic sensing elements 20a, 20b, 20c, 20d are magnetoresistive elements such as GMR (Giant Magneto Resistance) elements or TMR (Tunnel Magneto Resistance) elements, Hall elements, and the like.
 図2は、実施の形態1にかかる電流センサにおける複数の感磁素子の配置の一例を示す図である。図2において、電流路11の延在方向を「Y軸方向」とし、電流路11の延在方向と直交する平面を「XZ軸平面」とし、XZ軸平面における電流路11の中心を「O」としている。そして、図2では、XZ軸平面に投影した複数の感磁素子20a,20b,20c,20dの位置を示している。なお、説明を簡単にするために、図2では、感磁素子20a,20b,20c,20dを実装した基板などを省略している。 FIG. 2 is a diagram showing an example of arrangement of a plurality of magnetic sensing elements in the current sensor according to the first embodiment. In FIG. 2, the extending direction of the current path 11 is defined as the “Y-axis direction”, the plane orthogonal to the extending direction of the current path 11 is defined as the “XZ-axis plane”, and the center of the current path 11 in the XZ-axis plane is defined as “O”. ". Then, FIG. 2 shows the positions of the plurality of magnetic sensing elements 20a, 20b, 20c, and 20d projected on the XZ axis plane. For the sake of simplicity, in FIG. 2, the substrate on which the magnetic sensitive elements 20a, 20b, 20c, and 20d are mounted is omitted.
 図2に示すように、電流路11は、断面円形の導電部材である。電流路11の周りには、電流路11に流れる電流により磁力線100a,100b,100c,100dで示される誘導磁界が形成される。図2に示す例では、電流路11に流れる電流の向きはY軸正方向であり、図2における時計回りの向きの誘導磁界が電流路11の周りに形成される。なお、電流路11は、被測定電流を導くことが可能な構成であればどのような形態であってもよく、例えば、平板形状の導電部材または薄膜状の導電部材などであってもよい。 As shown in FIG. 2, the current path 11 is a conductive member having a circular cross section. Around the current path 11, an induced magnetic field represented by magnetic field lines 100a, 100b, 100c, and 100d is formed by the current flowing through the current path 11. In the example shown in FIG. 2, the direction of the current flowing through the current path 11 is the positive direction of the Y-axis, and the induced magnetic field in the clockwise direction in FIG. 2 is formed around the current path 11. The current path 11 may have any form as long as it can guide the current to be measured, and may be, for example, a flat plate-shaped conductive member or a thin-film conductive member.
 図2に示すように、複数の感磁素子20a,20b,20c,20dは、複数の仮想円30a,30b,30c,30dのうち対応する仮想円上に各々配置される。具体的には、感磁素子20aは仮想円30a上に配置され、感磁素子20bは仮想円30b上に配置され、感磁素子20cは仮想円30c上に配置され、感磁素子20dは仮想円30d上に配置される。 As shown in FIG. 2, the plurality of magnetic sensing elements 20a, 20b, 20c, 20d are arranged on the corresponding virtual circles among the plurality of virtual circles 30a, 30b, 30c, 30d, respectively. Specifically, the magnetic sensing element 20a is arranged on the virtual circle 30a, the magnetic sensing element 20b is arranged on the virtual circle 30b, the magnetic sensing element 20c is arranged on the virtual circle 30c, and the magnetic sensing element 20d is virtual. It is arranged on the circle 30d.
 複数の仮想円30a,30b,30c,30dは、同心円であり、XZ軸平面において電流路11の中心Oを中心とし半径が互いに異なる。以下、複数の感磁素子20a,20b,20c,20dの各々を個別に区別せずに示す場合、感磁素子20と記載する場合がある。また、複数の仮想円30a,30b,30c,30dの各々を個別に区別せずに示す場合、仮想円30と記載する場合がある。 The plurality of virtual circles 30a, 30b, 30c, and 30d are concentric circles, and their radii are different from each other with the center O of the current path 11 as the center in the XZ axis plane. Hereinafter, when each of the plurality of magnetic sensing elements 20a, 20b, 20c, and 20d is shown without distinction, it may be referred to as a magnetic sensing element 20. Further, when each of the plurality of virtual circles 30a, 30b, 30c, and 30d is shown without distinction, it may be described as virtual circle 30.
 感磁素子20aは、検出した磁界に正比例した大きさとなる電圧信号Vaを演算回路22に出力する。感磁素子20bは、検出した磁界に正比例した大きさとなる電圧信号Vbを演算回路22に出力する。感磁素子20cは、検出した磁界に正比例した大きさとなる電圧信号Vcを演算回路22に出力する。感磁素子20dは、検出した磁界に正比例した大きさとなる電圧信号Vdを演算回路22に出力する。以下、電圧信号Va,Vb,Vc,Vdの各々を個別に区別せずに示す場合、電圧信号Vと記載する場合がある。 The magnetic sensing element 20a outputs a voltage signal Va having a magnitude directly proportional to the detected magnetic field to the arithmetic circuit 22. The magnetic sensing element 20b outputs a voltage signal Vb having a magnitude directly proportional to the detected magnetic field to the arithmetic circuit 22. The magnetic sensing element 20c outputs a voltage signal Vc having a magnitude directly proportional to the detected magnetic field to the arithmetic circuit 22. The magnetic sensing element 20d outputs a voltage signal Vd having a magnitude directly proportional to the detected magnetic field to the arithmetic circuit 22. Hereinafter, when each of the voltage signals Va, Vb, Vc, and Vd is shown without distinction, it may be described as a voltage signal V.
 図2には、感磁素子20aの感度軸21aと、感磁素子20bの感度軸21bと、感磁素子20cの感度軸21cと、感磁素子20dの感度軸21dとが示されている。以下、複数の感度軸21a,21b,21c,21dの各々を個別に区別せずに示す場合、感度軸21と記載する場合がある。感度軸21は、磁界の検出感度が最大になる磁界の方向である磁界検出方向を示す軸であり、磁界の磁力線が感度軸21と平行である場合に、感磁素子20の出力が最も大きくなる。また、磁界の磁力線の向きが感度軸21の向きと同じである場合、感磁素子20はプラスの電圧信号Vを出力し、磁界の磁力線の向きが感度軸21の向きと逆である場合、感磁素子20はマイナスの電圧信号Vを出力する。感度軸21の向きは感度軸の正方向であり、図2では、感度軸21の向きを矢印で示している。 FIG. 2 shows the sensitivity axis 21a of the magnetic sensing element 20a, the sensitivity axis 21b of the magnetic sensing element 20b, the sensitivity axis 21c of the magnetic sensing element 20c, and the sensitivity axis 21d of the magnetic sensing element 20d. Hereinafter, when each of the plurality of sensitivity axes 21a, 21b, 21c, and 21d is shown without distinction, it may be described as the sensitivity axis 21. The sensitivity axis 21 is an axis indicating the magnetic field detection direction, which is the direction of the magnetic field at which the detection sensitivity of the magnetic field is maximized. When the magnetic field line of the magnetic field is parallel to the sensitivity axis 21, the output of the magnetic sensing element 20 is the largest. Become. Further, when the direction of the magnetic field line of the magnetic field is the same as the direction of the sensitivity axis 21, the magnetic sensing element 20 outputs a positive voltage signal V, and when the direction of the magnetic field line of the magnetic field is opposite to the direction of the sensitivity axis 21. The magnetic sensing element 20 outputs a negative voltage signal V. The direction of the sensitivity axis 21 is the positive direction of the sensitivity axis, and in FIG. 2, the direction of the sensitivity axis 21 is indicated by an arrow.
 演算回路22は、感磁素子20a,20b,20c,20dから出力された電圧信号Va,Vb,Vc,Vdに対して加算処理などを行うことによって電流路11に流れる電流の瞬時値を示す電圧信号Vdetを生成する。演算回路22は、生成した電圧信号Vdetを出力する。 The arithmetic circuit 22 is a voltage indicating an instantaneous value of the current flowing in the current path 11 by performing addition processing or the like on the voltage signals Va, Vb, Vc, Vd output from the magnetic sensing elements 20a, 20b, 20c, 20d. Generate a signal Vdet. The arithmetic circuit 22 outputs the generated voltage signal Vdet.
 感磁素子20aと感磁素子20cとは、互いを結ぶ仮想線L1が電流路11を通り、感磁素子20aの感度軸21aと感磁素子20cの感度軸21cとは、互いに平行且つ逆向きである。感磁素子20bと感磁素子20dとは、互いを結ぶ仮想線L2が電流路11を通り、感磁素子20bの感度軸21bと感磁素子20dの感度軸21dとは、互いに平行且つ逆向きである。 The magnetic line L1 connecting the magnetic sensing element 20a and the magnetic sensing element 20c passes through the current path 11, and the sensitivity shaft 21a of the magnetic sensing element 20a and the sensitivity shaft 21c of the magnetic sensing element 20c are parallel to each other and opposite to each other. Is. The magnetic line L2 connecting the magnetic sensitive element 20b and the magnetic sensitive element 20d passes through the current path 11, and the sensitivity shaft 21b of the magnetic sensitive element 20b and the sensitivity shaft 21d of the magnetic sensitive element 20d are parallel and opposite to each other. Is.
 また、図2に示す例では、複数の感度軸21a,21b,21c,21dの各々は、複数の仮想円30a,30b,30c,30dのうち対応する仮想円の接線方向に沿った方向である。例えば、感磁素子20aの感度軸21aは、仮想円30aの接線方向に平行であり、感磁素子20bの感度軸21bは、仮想円30bの接線方向に平行である。また、感磁素子20cの感度軸21cは、仮想円30cの接線方向に平行であり、感磁素子20dの感度軸21dは、仮想円30dの接線方向に平行である。 Further, in the example shown in FIG. 2, each of the plurality of sensitivity axes 21a, 21b, 21c, 21d is a direction along the tangential direction of the corresponding virtual circle among the plurality of virtual circles 30a, 30b, 30c, 30d. .. For example, the sensitivity axis 21a of the magnetic sensing element 20a is parallel to the tangential direction of the virtual circle 30a, and the sensitivity axis 21b of the magnetic sensing element 20b is parallel to the tangential direction of the virtual circle 30b. Further, the sensitivity axis 21c of the magnetic sensing element 20c is parallel to the tangential direction of the virtual circle 30c, and the sensitivity axis 21d of the magnetic sensing element 20d is parallel to the tangential direction of the virtual circle 30d.
 2つの感磁素子20a,20cの感度軸21a,21cは、互いに平行且つ逆向きであればよく、仮想円30の接線方向に平行な方向でなくてもよい。同様に、2つの感磁素子20b,20dの感度軸21b,21dも、互いに平行且つ逆向きあればよく、仮想円30の接線方向に平行な方向でなくてもよい。なお、「平行」とは、厳密な意味での平行でなくてもよく、後述する外乱磁界nの影響を無視できる程度に平行であればよい。 The sensitivity axes 21a and 21c of the two magnetic sensing elements 20a and 20c may be parallel to each other and in opposite directions, and may not be parallel to the tangential direction of the virtual circle 30. Similarly, the sensitivity axes 21b and 21d of the two magnetic sensing elements 20b and 20d may be parallel and opposite to each other, and may not be parallel to the tangential direction of the virtual circle 30. In addition, "parallel" does not have to be parallel in a strict sense, and may be parallel to the extent that the influence of the disturbance magnetic field n described later can be ignored.
 図2に示す例では、2つの感磁素子20a,20cを結ぶ仮想線L1および2つの感磁素子20b,20dを結ぶ仮想線L2の各々は、電流路11の中心Oを通る直線である。以下、仮想線L1,L2の各々を個別に区別せずに示す場合、仮想線Lと記載する場合がある。 In the example shown in FIG. 2, each of the virtual line L1 connecting the two magnetic sensing elements 20a and 20c and the virtual line L2 connecting the two magnetic sensing elements 20b and 20d is a straight line passing through the center O of the current path 11. Hereinafter, when each of the virtual lines L1 and L2 is shown without distinction, it may be described as the virtual line L.
 ここで、電流路11に電流が流れて誘導磁界が発生し、かつ地磁気などの外乱磁界nが図2における下方に向かって発生しているとする。また、感磁素子20aによって検出される誘導磁界を誘導磁界Aとする。この場合、感磁素子20aから出力される電圧信号Vaは下記式(1)で表され、感磁素子20bから出力される電圧信号Vbは下記式(2)で表される。また、感磁素子20cから出力される電圧信号Vcは下記式(3)で表され、感磁素子20dから出力される電圧信号Vdは下記式(4)で表される。
 Va=k×(A-n1) ・・・(1)
 Vb=k×(αA-n2) ・・・(2)
 Vc=k×(βA+n1) ・・・(3)
 Vd=k×(γA+n2) ・・・(4)
Here, it is assumed that a current flows through the current path 11 to generate an induced magnetic field, and a disturbance magnetic field n such as geomagnetism is generated downward in FIG. Further, the induced magnetic field detected by the magnetic sensing element 20a is defined as the induced magnetic field A. In this case, the voltage signal Va output from the magnetic sensing element 20a is represented by the following formula (1), and the voltage signal Vb output from the magnetic sensing element 20b is represented by the following formula (2). The voltage signal Vc output from the magnetic sensing element 20c is represented by the following formula (3), and the voltage signal Vd output from the magnetic sensing element 20d is represented by the following formula (4).
Va = k × (An1) ・ ・ ・ (1)
Vb = k × (αA-n2) ・ ・ ・ (2)
Vc = k × (βA + n1) ・ ・ ・ (3)
Vd = k × (γA + n2) ・ ・ ・ (4)
 上記式(1)~(4)において、「k」は比例定数であり、「α」,「β」,「γ」は、電流路11からの距離に依存する係数であり、感度軸21と同じ向きの磁界はプラス、感度軸21と逆向きの磁界はマイナスとしている。また、「n1」は、外乱磁界nのうち感度軸21a,21cと平行な成分であり、「n2」は、外乱磁界nのうち感度軸21b,21dと平行な成分である。 In the above equations (1) to (4), "k" is a proportionality constant, and "α", "β", and "γ" are coefficients depending on the distance from the current path 11, and the sensitivity axis 21 and The magnetic field in the same direction is positive, and the magnetic field in the opposite direction to the sensitivity axis 21 is negative. Further, "n1" is a component of the disturbance magnetic field n parallel to the sensitivity axes 21a and 21c, and "n2" is a component of the disturbance magnetic field n parallel to the sensitivity axes 21b and 21d.
 演算回路22は、下記式(5)に示すように、感磁素子20a,20b,20c,20dから出力された電圧信号Va,Vb,Vc,Vdを加算することによって、電流路11に流れる電流の瞬時値を算出する。
 Va+Vb+Vc+Vd
 =k×(A-n1)+k×(αA-n2)
  +k×(βA+n1)+k×(γA+n2)
 =k×(1+α+β+γ)×A    ・・・(5)
As shown in the following equation (5), the arithmetic circuit 22 adds the voltage signals Va, Vb, Vc, Vd output from the magnetic sensitive elements 20a, 20b, 20c, 20d to the current flowing in the current path 11. Calculate the instantaneous value of.
Va + Vb + Vc + Vd
= K × (An1) + k × (αA-n2)
+ K × (βA + n1) + k × (γA + n2)
= K × (1 + α + β + γ) × A ・ ・ ・ (5)
 演算回路22によって算出される電流の瞬時値には、上記式(5)に示すように、外乱磁界nの成分が含まれておらず、したがって、実施の形態1にかかる電流センサ1では、外乱の影響を抑えることができる。しかも、複数の感磁素子20は、複数の仮想円30のうち互いに異なる仮想円30上に各々配置される。そのため、電流センサ1では、複数の感磁素子の配置対象となる領域に同一仮想円上に複数の感磁素子20を等間隔に配置できない場合においても、複数の感磁素子20を配置することができ、複数の感磁素子20の配置の自由度を高めることができる。 As shown in the above equation (5), the instantaneous value of the current calculated by the arithmetic circuit 22 does not include the component of the disturbance magnetic field n. Therefore, in the current sensor 1 according to the first embodiment, the disturbance The influence of can be suppressed. Moreover, the plurality of magnetic sensing elements 20 are arranged on different virtual circles 30 among the plurality of virtual circles 30. Therefore, in the current sensor 1, the plurality of magnetic sensing elements 20 are arranged even when the plurality of magnetic sensing elements 20 cannot be arranged at equal intervals on the same virtual circle in the region where the plurality of magnetic sensing elements are to be arranged. This makes it possible to increase the degree of freedom in arranging the plurality of magnetic sensing elements 20.
 なお、図2に示す例では、仮想線L1,L2は、電流路11の中心Oを通る直線であるが、仮想線L1,L2は、電流路11のうち中心O以外を通る直線であってもよく、電流路11を通らない直線であってもよい。この場合においても、感磁素子20a,20cは互いの感度軸21a,21cが平行且つ逆向きで、且つ感磁素子20b,20dは、互いの感度軸21b,21dが平行且つ逆向きであればよい。これにより、外乱の影響を抑えることができる。 In the example shown in FIG. 2, the virtual lines L1 and L2 are straight lines passing through the center O of the current path 11, but the virtual lines L1 and L2 are straight lines passing through the current paths 11 other than the center O. It may be a straight line that does not pass through the current path 11. Also in this case, if the magnetic sensing elements 20a and 20c have their sensitivity axes 21a and 21c parallel and opposite to each other, and the magnetic sensitive elements 20b and 20d have their sensitivity axes 21b and 21d parallel and opposite to each other. good. As a result, the influence of disturbance can be suppressed.
 仮想線Lが電流路11の中心Oを通らない場合、2つの感磁素子20のうち少なくとも1つの感磁素子20の感度軸21は、仮想円30の接線方向と平行にはならない。この場合、例えば、上記式(1)~(4)の係数を仮想円30の接線方向と平行にはならない感度軸21の向きに応じて調整することで、演算回路22は電流路11に流れる電流を精度よく算出することができる。例えば、感磁素子20bの感度軸21bが仮想円30の接線方向と平行にはならない場合、上記式(2)のαを感度軸21bの向きに応じて調整することで、演算回路22は電流路11に流れる電流を精度よく算出することができる。 When the virtual line L does not pass through the center O of the current path 11, the sensitivity axis 21 of at least one of the two magnetic sensing elements 20 is not parallel to the tangential direction of the virtual circle 30. In this case, for example, by adjusting the coefficients of the above equations (1) to (4) according to the direction of the sensitivity axis 21 which is not parallel to the tangential direction of the virtual circle 30, the arithmetic circuit 22 flows in the current path 11. The current can be calculated accurately. For example, when the sensitivity axis 21b of the magnetic sensing element 20b is not parallel to the tangential direction of the virtual circle 30, by adjusting α in the above equation (2) according to the direction of the sensitivity axis 21b, the arithmetic circuit 22 causes the current. The current flowing through the road 11 can be calculated accurately.
 また、仮想線Lが電流路11を通るように感磁素子20を配置することで、感磁素子20の感度軸21を仮想円30の接線方向と平行な方向または平行に近い方向とすることができる。そのため、電流センサ1では、電流路11に流れる電流によって生じる磁界に対する感磁素子20の検出感度が低下することを抑制でき、演算回路22は電流路11に流れる電流を精度よく算出することができる。 Further, by arranging the magnetic sensing element 20 so that the virtual line L passes through the current path 11, the sensitivity axis 21 of the magnetic sensing element 20 is set to a direction parallel to or close to the tangential direction of the virtual circle 30. Can be done. Therefore, the current sensor 1 can suppress a decrease in the detection sensitivity of the magnetic sensing element 20 with respect to the magnetic field generated by the current flowing in the current path 11, and the arithmetic circuit 22 can accurately calculate the current flowing in the current path 11. ..
 図3は、実施の形態1にかかる電流センサの演算回路のハードウェア構成の一例を示す図である。図3に示すように、電流センサ1の演算回路22は、プロセッサ101と、メモリ102と、インタフェース回路103とを備えるコンピュータを含む。 FIG. 3 is a diagram showing an example of the hardware configuration of the arithmetic circuit of the current sensor according to the first embodiment. As shown in FIG. 3, the arithmetic circuit 22 of the current sensor 1 includes a computer including a processor 101, a memory 102, and an interface circuit 103.
 プロセッサ101、メモリ102、およびインタフェース回路103は、例えば、バス104によって互いに情報の送受信が可能である。プロセッサ101は、メモリ102に記憶されたプログラムを読み出して実行することによって、演算回路22の機能を実行する。プロセッサ101は、例えば、処理回路の一例であり、CPU(Central Processing Unit)、DSP(Digital Signal Processor)、およびシステムLSI(Large Scale Integration)のうち一つ以上を含む。 The processor 101, the memory 102, and the interface circuit 103 can send and receive information to and from each other by, for example, the bus 104. The processor 101 executes the function of the arithmetic circuit 22 by reading and executing the program stored in the memory 102. The processor 101 is, for example, an example of a processing circuit, and includes one or more of a CPU (Central Processing Unit), a DSP (Digital Signal Processor), and a system LSI (Large Scale Integration).
 メモリ102は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、およびEEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)のうち一つ以上を含む。また、メモリ102は、コンピュータが読み取り可能なプログラムが記録された記録媒体を含む。かかる記録媒体は、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルメモリ、光ディスク、コンパクトディスク、およびDVD(Digital Versatile Disc)のうち一つ以上を含む。なお、演算回路22は、ASIC(Application Specific Integrated Circuit)およびFPGA(Field Programmable Gate Array)などの集積回路を含んでいてもよい。 The memory 102 is one or more of RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), and EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory). include. The memory 102 also includes a recording medium on which a computer-readable program is recorded. Such recording media include one or more of non-volatile or volatile semiconductor memories, magnetic disks, flexible memories, optical disks, compact disks, and DVDs (Digital Versatile Discs). The arithmetic circuit 22 may include integrated circuits such as an ASIC (Application Specific Integrated Circuit) and an FPGA (Field Programmable Gate Array).
 以上のように、実施の形態1にかかる電流センサ1は、複数の感磁素子20a,20b,20c,20dと、演算回路22と、を備える。複数の感磁素子20a,20b,20c,20dは、電流路11の延在方向と直交する平面において電流路11の中心Oを中心とし半径が互いに異なる複数の仮想円30a,30b,30c,30dのうち対応する仮想円上に各々配置される。演算回路22は、複数の感磁素子20a,20b,20c,20dの出力に基づいて電流路11に流れる電流の値を算出する。感磁素子20a,20cは、互いの感度軸21a,21cが平行且つ逆向きであり、感磁素子20b,20dは、互いの感度軸21b,21dが平行且つ逆向きである。これにより、電流センサ1は、例えば、複数の感磁素子20を同一の仮想円30上に等間隔に配置できない領域に対して複数の感磁素子20の配置を行うことができ、複数の感磁素子20の配置の自由度を高めつつ、外乱の影響を抑えることができる。 As described above, the current sensor 1 according to the first embodiment includes a plurality of magnetic sensitive elements 20a, 20b, 20c, 20d, and an arithmetic circuit 22. The plurality of magnetic sensing elements 20a, 20b, 20c, 20d are a plurality of virtual circles 30a, 30b, 30c, 30d having different radii around the center O of the current path 11 in a plane orthogonal to the extending direction of the current path 11. Of these, they are placed on the corresponding virtual circles. The arithmetic circuit 22 calculates the value of the current flowing through the current path 11 based on the outputs of the plurality of magnetic sensing elements 20a, 20b, 20c, and 20d. In the magnetic sensing elements 20a and 20c, the sensitivity axes 21a and 21c are parallel and opposite to each other, and in the magnetic sensing elements 20b and 20d, the sensitivity axes 21b and 21d are parallel and opposite to each other. Thereby, for example, the current sensor 1 can arrange the plurality of magnetic sensing elements 20 in the region where the plurality of magnetic sensing elements 20 cannot be arranged at equal intervals on the same virtual circle 30, and the plurality of magnetic sensing elements 20 can be arranged. The influence of disturbance can be suppressed while increasing the degree of freedom in arranging the magnetic element 20.
 また、複数の感磁素子20は、複数の仮想円30a,30b,30c,30dのうち互いに異なる仮想円上に各々配置される感磁素子20a,20b,20c,20dを含む。感磁素子20aは第1の感磁素子の一例であり、感磁素子20bは第2の感磁素子の一例であり、感磁素子20cは第3の感磁素子の一例であり、感磁素子20dは第4の感磁素子の一例である。感磁素子20a,20cは、互いの感度軸21a,21cが平行且つ逆向きである。感磁素子20b,20dは、互いの感度軸21b,21dが平行且つ逆向きである。これにより、電流センサ1は、複数の感磁素子20を同一の仮想円30上に等間隔に配置することなく、外乱の影響を抑えることができる。また、電流センサ1は、4つの感磁素子20を有することから、電流路11に流れる電流を精度よく測定することができる。 Further, the plurality of magnetic sensing elements 20 include magnetic sensing elements 20a, 20b, 20c, 20d arranged on different virtual circles among the plurality of virtual circles 30a, 30b, 30c, 30d. The magnetic sensitive element 20a is an example of a first magnetic sensitive element, the magnetic sensitive element 20b is an example of a second magnetic sensitive element, and the magnetic sensitive element 20c is an example of a third magnetic sensitive element. The element 20d is an example of the fourth magnetic sensitive element. In the magnetic sensing elements 20a and 20c, the sensitivity axes 21a and 21c of the magnetic sensing elements 20a and 20c are parallel and opposite to each other. In the magnetic sensing elements 20b and 20d, the sensitivity axes 21b and 21d are parallel and opposite to each other. As a result, the current sensor 1 can suppress the influence of disturbance without arranging the plurality of magnetic sensing elements 20 on the same virtual circle 30 at equal intervals. Further, since the current sensor 1 has four magnetic sensing elements 20, the current flowing through the current path 11 can be measured with high accuracy.
実施の形態2.
 実施の形態2では、実施の形態1にかかる電流センサを含む回路遮断器の端子カバーについて説明する。以下においては、実施の形態1と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1と異なる点を中心に説明する。
Embodiment 2.
In the second embodiment, the terminal cover of the circuit breaker including the current sensor according to the first embodiment will be described. In the following, components having the same functions as those in the first embodiment will be designated by the same reference numerals, description thereof will be omitted, and the points different from those of the first embodiment will be mainly described.
 図4は、実施の形態2にかかる回路遮断器の構成の一例を示す分解斜視図である。図5は、実施の形態2にかかる回路遮断器の平面図である。図6は、図5に示すVI-VI線に沿った断面図である。図7は、実施の形態2にかかる遮断器本体と端子カバーの基板との関係を示す斜視図である。 FIG. 4 is an exploded perspective view showing an example of the configuration of the circuit breaker according to the second embodiment. FIG. 5 is a plan view of the circuit breaker according to the second embodiment. FIG. 6 is a cross-sectional view taken along the line VI-VI shown in FIG. FIG. 7 is a perspective view showing the relationship between the circuit breaker main body and the substrate of the terminal cover according to the second embodiment.
 図4に示す回路遮断器2は、遮断器本体3と、端子カバー4とを備える。遮断器本体3は、電源装置と負荷装置との間に設けられ、電源装置と負荷装置との間の電流路に流れる電流が予め設定された条件を満たす場合に、電源装置と負荷装置との間の電流路を遮断する。例えば、遮断器本体3は、回路遮断器2が配線用遮断器である場合、電流路に過電流または短絡電流が流れたときに電流路を閉状態から開状態にする。また、遮断器本体3は、回路遮断器2が漏電遮断器である場合、電流路に過電流、短絡電流、または漏洩電流が流れたときに電流路を閉状態から開状態にする。 The circuit breaker 2 shown in FIG. 4 includes a circuit breaker main body 3 and a terminal cover 4. The circuit breaker main body 3 is provided between the power supply device and the load device, and when the current flowing in the current path between the power supply device and the load device satisfies a preset condition, the power supply device and the load device are connected to each other. Cut off the current path between them. For example, when the circuit breaker 2 is a wiring breaker, the circuit breaker main body 3 changes the current path from the closed state to the open state when an overcurrent or a short-circuit current flows through the current path. Further, when the circuit breaker 2 is an earth-leakage circuit breaker, the circuit breaker main body 3 changes the current path from the closed state to the open state when an overcurrent, a short-circuit current, or a leakage current flows through the current path.
 遮断器本体3には、電源装置と負荷装置との間の電流路として、3相の電流路11,12,13が接続される。3相の電流路11,12,13は、遮断器本体3に設けられた複数の端子にねじなどによって接続される。電流路11には、U相の電流が流れ、電流路12には、V相の電流が流れ、電流路13には、W相の電流が流れる。遮断器本体3は、電流路11,12,13を開閉する不図示の開閉機構部と、かかる開閉機構部に電流路11,12,13の開閉を行わせる操作ハンドル6とを備える。かかる操作ハンドル6は、遮断器本体3の表面7側に位置する。 Three-phase current paths 11, 12, and 13 are connected to the circuit breaker main body 3 as current paths between the power supply device and the load device. The three-phase current paths 11, 12, and 13 are connected to a plurality of terminals provided on the circuit breaker main body 3 by screws or the like. A U-phase current flows through the current path 11, a V-phase current flows through the current path 12, and a W-phase current flows through the current path 13. The circuit breaker main body 3 includes an opening / closing mechanism (not shown) for opening / closing the current paths 11, 12, 13 and an operation handle 6 for causing the opening / closing mechanism to open / close the current paths 11, 12, 13. The operation handle 6 is located on the surface 7 side of the circuit breaker main body 3.
 図4から図7を含む複数の図面では、図2と同様に、説明の便宜上、XYZ軸の座標を付している。かかるXYZ軸の座標では、電流路11,12,13の延在方向をY軸方向とし、電流路11,12,13の配列方向をX軸方向とし、X軸方向およびY軸方向の各々と直交する方向をZ軸方向としている。また、回路遮断器2の構成の一部のみを図示する場合において、X軸方向、Y軸方向、およびZ軸方向の各々は、回路遮断器2を組み立てた状態での方向である。以下において、Z軸正方向を上方と記載し、Z軸負方向を下方と記載する場合がある。 In the plurality of drawings including FIGS. 4 to 7, the coordinates of the XYZ axes are attached for convenience of explanation as in FIG. 2. In such XYZ-axis coordinates, the extending direction of the current paths 11, 12, and 13 is the Y-axis direction, the arrangement direction of the current paths 11, 12, and 13 is the X-axis direction, and each of the X-axis direction and the Y-axis direction. The direction orthogonal to each other is the Z-axis direction. Further, when only a part of the configuration of the circuit breaker 2 is shown, each of the X-axis direction, the Y-axis direction, and the Z-axis direction is the direction in which the circuit breaker 2 is assembled. In the following, the Z-axis positive direction may be described as upward, and the Z-axis negative direction may be described as downward.
 端子カバー4は、遮断器本体3の上述した複数の端子を覆う機能に加えて、電流、電圧、および電力量などを測定する機能を有する。かかる端子カバー4は、計測機能付き端子カバーまたは端子カバー型計測ユニットと呼ぶこともできる。端子カバー4は、筐体5と、筐体5内に配置される不図示の計測部とを備える。かかる計測部は、図1に示す電流センサ1を2つ含み、2つの電流センサ1によってU相電流とW相電流が測定される。また、計測部は、2つの電流センサ1によって測定されたU相電流とW相電流に基づいて、V相電流を算出する。計測部は、電流路11,12,13の電圧を測定する複数の電圧センサを有しており、複数の電圧センサによって測定される電圧と2つの電流センサ1によって測定される電流に基づいて、負荷装置へ供給される電力量などを算出する。 The terminal cover 4 has a function of measuring current, voltage, electric energy, etc., in addition to the function of covering the plurality of terminals described above of the circuit breaker main body 3. Such a terminal cover 4 can also be called a terminal cover with a measurement function or a terminal cover type measurement unit. The terminal cover 4 includes a housing 5 and a measuring unit (not shown) arranged in the housing 5. Such a measuring unit includes two current sensors 1 shown in FIG. 1, and U-phase current and W-phase current are measured by the two current sensors 1. Further, the measuring unit calculates the V-phase current based on the U-phase current and the W-phase current measured by the two current sensors 1. The measuring unit has a plurality of voltage sensors for measuring the voltages of the current paths 11, 12, and 13, and is based on the voltage measured by the plurality of voltage sensors and the current measured by the two current sensors 1. Calculate the amount of power supplied to the load device.
 端子カバー4は、3相の電流路11,12,13を個別に覆う形状を有している。かかる端子カバー4は、複数の電流路11,12,13の配列方向における端部4a,4dと、複数の電流路11,12,13のうち隣接する2つの電流路間に設けられる線間部4b,4cとを備える。 The terminal cover 4 has a shape that individually covers the three-phase current paths 11, 12, and 13. The terminal cover 4 is provided between the ends 4a and 4d of the plurality of current paths 11, 12 and 13 in the arrangement direction and the two adjacent current paths of the plurality of current paths 11, 12 and 13. It includes 4b and 4c.
 また、端子カバー4は、図6および図7に示すように、感磁素子20が配置される基板40を備える。基板40は、端子カバー4における筐体5の形状に合わせた形状を有している。具体的には、基板40は、X軸方向における一方の端部41および他方の端部44と、X軸方向で隣接する2つの電流路11,12間に設けられる線間部42と、X軸方向で隣接する2つの電流路12,13間に設けられる線間部43とを有する。また、基板40は、端部41,44および線間部42,43を連結する連結部45を有する。 Further, as shown in FIGS. 6 and 7, the terminal cover 4 includes a substrate 40 on which the magnetic sensing element 20 is arranged. The substrate 40 has a shape that matches the shape of the housing 5 in the terminal cover 4. Specifically, the substrate 40 includes one end 41 and the other end 44 in the X-axis direction, an interline portion 42 provided between two adjacent current paths 11 and 12 in the X-axis direction, and X. It has an interline portion 43 provided between two current paths 12 and 13 adjacent in the axial direction. Further, the substrate 40 has a connecting portion 45 for connecting the end portions 41 and 44 and the interline portions 42 and 43.
 基板40の端部41は、図4に示す端子カバー4の端部4aに設けられ、基板40の端部44は、図4に示す端子カバー4の端部4dに設けられる。また、基板40の線間部42は、図4に示す端子カバー4の線間部4bに設けられ、基板40の線間部43は、図4に示す端子カバー4の線間部4cに設けられる。端部41,44は、第1の領域の一例であり、線間部42,43は、第2の領域の一例である。また、連結部45は、連結領域の一例である。 The end 41 of the board 40 is provided at the end 4a of the terminal cover 4 shown in FIG. 4, and the end 44 of the board 40 is provided at the end 4d of the terminal cover 4 shown in FIG. Further, the line-to-line portion 42 of the board 40 is provided in the line-to-line portion 4b of the terminal cover 4 shown in FIG. 4, and the line-to-line portion 43 of the board 40 is provided in the line-to-line portion 4c of the terminal cover 4 shown in FIG. Be done. The end portions 41 and 44 are examples of the first region, and the interline portions 42 and 43 are examples of the second region. Further, the connecting portion 45 is an example of a connecting region.
 なお、基板40は、連結部45を有せずに、分離された複数の基板から構成されてもよい。この場合、端部41,44および線間部42,43の各々は、例えば、互いに分離された4つの基板のうち対応する基板で構成される。 The substrate 40 may be composed of a plurality of separated substrates without having a connecting portion 45. In this case, each of the end portions 41, 44 and the interline portions 42, 43 is composed of, for example, the corresponding substrate among the four substrates separated from each other.
 図8は、実施の形態2にかかる端子カバーに含まれる計測部の基板における複数の感磁素子の配置の一例を示す図である。図8に示す例では、端子カバー4に含まれる基板40は、電流路11,12,13の延在方向に直交するXZ軸平面に対して平行である。 FIG. 8 is a diagram showing an example of arrangement of a plurality of magnetic sensitive elements on the substrate of the measuring unit included in the terminal cover according to the second embodiment. In the example shown in FIG. 8, the substrate 40 included in the terminal cover 4 is parallel to the XZ axis plane orthogonal to the extending direction of the current paths 11, 12, and 13.
 基板40には、複数の仮想円30a,30b,30c,30dのうち対応する仮想円上に複数の感磁素子20a,20b,20c,20dの各々が電流センサ1毎に配置される。そして、2つの感磁素子20a,20cは、互いの感度軸21a,21cが平行且つ逆向きである。また、2つの感磁素子20b,20dは、互いの感度軸21b,21dが平行且つ逆向きである。これにより、端子カバー4の計測部は、複数の感磁素子20a,20b,20c,20dの配置の自由度を高めつつ、外乱磁界nの影響を抑制することができる。 On the substrate 40, each of the plurality of magnetic sensitive elements 20a, 20b, 20c, 20d is arranged for each current sensor 1 on the corresponding virtual circle among the plurality of virtual circles 30a, 30b, 30c, 30d. The two magnetic sensing elements 20a and 20c have their sensitivity axes 21a and 21c parallel to each other and in opposite directions. Further, the two magnetic sensing elements 20b and 20d have their sensitivity axes 21b and 21d parallel to each other and in opposite directions. As a result, the measuring unit of the terminal cover 4 can suppress the influence of the disturbance magnetic field n while increasing the degree of freedom in arranging the plurality of magnetic sensitive elements 20a, 20b, 20c, and 20d.
 2つの電流センサ1のうち一方の電流センサ1は、電流路11に流れる電流を測定し、他方の電流センサ1は、電流路13に流れる電流を測定する。一方の電流センサ1において、感磁素子20a,20bが基板40の端部41に配置され、感磁素子20c,20dは、基板40の線間部42に配置される。他方の電流センサ1において、感磁素子20a,20bが基板40の端部44に配置され、感磁素子20c,20dは、基板40の線間部43に配置される。 One of the two current sensors 1 measures the current flowing through the current path 11, and the other current sensor 1 measures the current flowing through the current path 13. In one of the current sensors 1, the magnetic sensing elements 20a and 20b are arranged at the end 41 of the substrate 40, and the magnetic sensing elements 20c and 20d are arranged at the interline portion 42 of the substrate 40. In the other current sensor 1, the magnetic sensing elements 20a and 20b are arranged at the end 44 of the substrate 40, and the magnetic sensing elements 20c and 20d are arranged at the interline portion 43 of the substrate 40.
 一方の電流センサ1の感磁素子20a,20bは、端部41の領域であってX軸方向において電流路11の中心Oを通る線である水平線Lhで区切られる2つの領域のうち連結部45が存在する一方の領域に配置される。すなわち、一方の電流センサ1の感磁素子20a,20bは、端部41のうち電流路11の中心Oを通る水平線Lhよりも図8における上方の領域に配設される。かかる上方の領域は、図4に示す回路遮断器2の操作ハンドル6側の領域である。 The magnetic sensing elements 20a and 20b of one of the current sensors 1 are connected portions 45 out of two regions separated by a horizontal line Lh, which is a region of the end portion 41 and is a line passing through the center O of the current path 11 in the X-axis direction. Is placed in one of the areas where That is, the magnetic sensing elements 20a and 20b of one of the current sensors 1 are arranged in a region of the end 41 above the horizontal line Lh passing through the center O of the current path 11 in FIG. The upper region is the region on the operation handle 6 side of the circuit breaker 2 shown in FIG.
 また、一方の電流センサ1の感磁素子20c,20dは、線間部42の領域であって水平線Lhで区切られる2つの領域のうち他方の領域に配置される。すなわち、一方の電流センサ1の感磁素子20c,20dは、線間部42のうち電流路11の中心Oを通る水平線Lhよりも図8における下方の領域に配設される。かかる下方の領域は、図4に示す回路遮断器2の底面8側の領域である。 Further, the magnetic sensing elements 20c and 20d of one of the current sensors 1 are arranged in the other region of the two regions separated by the horizontal line Lh, which is the region of the interline portion 42. That is, the magnetic sensing elements 20c and 20d of one of the current sensors 1 are arranged in the region below the horizontal line Lh passing through the center O of the current path 11 in the interline portion 42. The lower region is a region on the bottom surface 8 side of the circuit breaker 2 shown in FIG.
 同様に、他方の電流センサ1の感磁素子20a,20bは、端部44のうち水平線Lhよりも図8における上方の領域に配設され、他方の電流センサ1の感磁素子20c,20dは、線間部43のうち水平線Lhよりも図8における下方の領域に配設される。なお、図8に示す例では、各電流センサ1の感磁素子20a,20bは、Z軸方向で対向する位置に配置され、各電流センサ1の感磁素子20c,20dは、Z軸方向で対向する位置に配置されている。また、水平線Lhと、水平線Lhと直交し電流路11の中心Oを通る垂直線とによって規定される4つの象限のうち、感磁素子20aと感磁素子20bとは同じ象限にあり、感磁素子20cと感磁素子20dとは同じ象限にある。感磁素子20a,20bが存在する象限は、感磁素子20c,20dが存在する象限と電流路11の中心Oを介して対向する象限である。 Similarly, the magnetic sensing elements 20a and 20b of the other current sensor 1 are arranged in the region of the end 44 above the horizontal line Lh in FIG. 8, and the magnetic sensing elements 20c and 20d of the other current sensor 1 are arranged. , Is arranged in the region below the horizontal line Lh in FIG. 8 in the line-to-line portion 43. In the example shown in FIG. 8, the magnetic sensing elements 20a and 20b of each current sensor 1 are arranged at positions facing each other in the Z-axis direction, and the magnetic sensing elements 20c and 20d of each current sensor 1 are arranged in the Z-axis direction. It is located at the opposite position. Further, of the four quadrants defined by the horizontal line Lh and the vertical line orthogonal to the horizontal line Lh and passing through the center O of the current path 11, the magnetic sensing element 20a and the magnetic sensing element 20b are in the same quadrant and are magnetically sensitive. The element 20c and the magnetic sensing element 20d are in the same quadrant. The quadrant in which the magnetic sensing elements 20a and 20b are present is the quadrant in which the magnetic sensing elements 20c and 20d are present and the quadrants facing each other via the center O of the current path 11.
 一般に、回路遮断器は、複数個並べて設置されることが多いことから、端子カバーが回路遮断器本体の幅より大きくならないように設計される。そのため、端子カバーにおいて感磁素子が配置可能な領域が限定される。実施の形態2にかかる端子カバー4では、感磁素子20a,20bは、端部41,44のうち水平線Lhで区切られる2つの領域のうち一方の領域に配設され、感磁素子20c,20dは、線間部42,43のうち水平線Lhで区切られる2つの領域のうち他方の領域に配設される。そのため、端子カバー4では、外乱磁界nの影響を抑制しつつも、複数の感磁素子20を限られた領域に配置することができる。 In general, since a plurality of circuit breakers are often installed side by side, the terminal cover is designed so as not to be larger than the width of the circuit breaker main body. Therefore, the area where the magnetic sensitive element can be arranged in the terminal cover is limited. In the terminal cover 4 according to the second embodiment, the magnetic sensing elements 20a and 20b are arranged in one of the two regions of the ends 41 and 44 separated by the horizontal line Lh, and the magnetic sensing elements 20c and 20d are arranged. Is arranged in the other region of the two regions of the interline portions 42 and 43 separated by the horizontal line Lh. Therefore, in the terminal cover 4, the plurality of magnetic sensitive elements 20 can be arranged in a limited region while suppressing the influence of the disturbance magnetic field n.
 また、電流路11に流れる電流を測定するために用いられる複数の感磁素子20a,20b,20c,20dには、外乱磁界nのみならず、電流路12,13からの誘導磁界も影響を及ぼす場合がある。そこで、端子カバー4では、複数の感磁素子20a,20b,20c,20dが特定の場所に配置されている。これにより、電流センサ1では電流路12,13からの誘導磁界の影響を大幅に低減することができる。 Further, not only the disturbance magnetic field n but also the induced magnetic fields from the current paths 12 and 13 affect the plurality of magnetizing elements 20a, 20b, 20c, 20d used for measuring the current flowing through the current path 11. In some cases. Therefore, in the terminal cover 4, a plurality of magnetic sensitive elements 20a, 20b, 20c, and 20d are arranged at specific locations. As a result, in the current sensor 1, the influence of the induced magnetic field from the current paths 12 and 13 can be significantly reduced.
 ここで、図8に示すように、感磁素子20bと感磁素子20dとの間を結ぶ仮想線L2と水平線Lhとの角度を第1角度θ1とし、感磁素子20aと感磁素子20cとの間を結ぶ仮想線L1と水平線Lhとの角度を第2角度θ2とする。また、仮想円30a,30b,30c,30dの半径をR1,R2,R3,R4とする。 Here, as shown in FIG. 8, the angle between the virtual line L2 and the horizontal line Lh connecting the magnetic sensing element 20b and the magnetic sensing element 20d is set to the first angle θ1, and the magnetic sensing element 20a and the magnetic sensing element 20c The angle between the virtual line L1 and the horizontal line Lh connecting between them is defined as the second angle θ2. Further, the radii of the virtual circles 30a, 30b, 30c, and 30d are R1, R2, R3, and R4.
 半径R1,R2,R3,R4は、基板40の形状に合わせて、複数の感磁素子20a,20b,20c,20dが基板40に配置できるように選定される。また、第1角度θ1および第2角度θ2として、電流路12,13による誘導磁界の影響を低減することができる角度が選択される。 The radii R1, R2, R3, and R4 are selected so that a plurality of magnetic sensing elements 20a, 20b, 20c, and 20d can be arranged on the substrate 40 according to the shape of the substrate 40. Further, as the first angle θ1 and the second angle θ2, angles that can reduce the influence of the induced magnetic field by the current paths 12 and 13 are selected.
 図9は、実施の形態2にかかる第1角度が特定の角度である場合における第2角度と複数の感磁素子が検出する対象外電流路による誘導磁界の合計値との関係を示す図である。図9において、横軸は、第2角度θ2を示し、縦軸は、複数の感磁素子20a,20b,20c,20dが検出する対象外電流路による誘導磁界の合計値を示す。対象外電流路は、電流センサ1の測定対象となる電流路以外の電流路であり、電流路11の電流を検出する電流センサ1では、電流路12,13である。 FIG. 9 is a diagram showing the relationship between the second angle when the first angle according to the second embodiment is a specific angle and the total value of the induced magnetic fields due to the non-target current paths detected by the plurality of magnetizing elements. be. In FIG. 9, the horizontal axis represents the second angle θ2, and the vertical axis represents the total value of the induced magnetic fields due to the non-target current paths detected by the plurality of magnetizing elements 20a, 20b, 20c, 20d. The non-target current path is a current path other than the current path to be measured by the current sensor 1, and is the current paths 12 and 13 in the current sensor 1 that detects the current in the current path 11.
 図9に示すように、第1角度θ1および第2角度θ2が特定の角度である場合に、複数の感磁素子20a,20b,20c,20dが検出する対象外電流路による誘導磁界の合計値がゼロになることがわかる。第1角度θ1および第2角度θ2を特定の角度にすることによって、対象外電流路による外乱磁界成分の影響を大幅に低減することができる。以下、複数の感磁素子20a,20b,20c,20dが検出する対象外電流路による誘導磁界の合計値を便宜上、外乱成分合計値と記載する場合がある。 As shown in FIG. 9, when the first angle θ1 and the second angle θ2 are specific angles, the total value of the induced magnetic fields due to the non-target current paths detected by the plurality of magnetic sensitive elements 20a, 20b, 20c, 20d. It turns out that becomes zero. By setting the first angle θ1 and the second angle θ2 to specific angles, the influence of the disturbance magnetic field component due to the non-target current path can be significantly reduced. Hereinafter, the total value of the induced magnetic fields due to the non-target current paths detected by the plurality of magnetizing elements 20a, 20b, 20c, and 20d may be described as the total value of the disturbance components for convenience.
 ここで、回路遮断器2の端子カバー4に対する複数の感磁素子20の配置条件についてさらに具体的に説明する。第1の配置条件として、回路遮断器の端子カバーでは、一般に、上方から電流路を覆うために下方から上方に向けて切欠部が形成されており、電流路の真下に部材を配置することはできない。第2の配置条件として、後付けが可能な端子カバーが取り付けられる回路遮断器の端子間のピッチは、18mm~30mmが一般的である。第3の配置条件として、測定対象となる電流路が接続される回路遮断器の端子と回路遮断器の底面との間の距離は、24mm程度が一般的である。これは、回路遮断器の底面が取り付けられる分電盤または配電盤の金属パネルは接地面となることから、絶縁距離を確保すると低圧の回路遮断器の場合、24mm程度が下限値となるためである。上述した第1~第3の配置条件を満たす必要がある場合、第1角度θ1および第2角度θ2の最大値は、端子間のピッチに応じて異なり、58~70度程度である。 Here, the arrangement conditions of the plurality of magnetic sensing elements 20 with respect to the terminal cover 4 of the circuit breaker 2 will be described more specifically. As the first arrangement condition, in the terminal cover of the circuit breaker, a notch is generally formed from the lower side to the upper side in order to cover the current path from above, and the member cannot be arranged directly under the current path. Can not. As the second arrangement condition, the pitch between the terminals of the circuit breaker to which the terminal cover that can be retrofitted is attached is generally 18 mm to 30 mm. As a third arrangement condition, the distance between the terminal of the circuit breaker to which the current path to be measured is connected and the bottom surface of the circuit breaker is generally about 24 mm. This is because the metal panel of the distribution board or distribution board to which the bottom surface of the circuit breaker is attached serves as the ground plane, so if the insulation distance is secured, the lower limit is about 24 mm for a low-voltage circuit breaker. .. When it is necessary to satisfy the above-mentioned first to third arrangement conditions, the maximum values of the first angle θ1 and the second angle θ2 differ depending on the pitch between the terminals and are about 58 to 70 degrees.
 次に、対象外電流路による外乱磁界成分の影響を低減することができる第1角度θ1および第2角度θ2についての計算結果の一例について具体的に説明する。第1角度θ1を固定して第2角度θ2を変化させた場合の対象外電流路による磁界が与える電流センサ1の測定誤差を算出する。これにより、電流路12,13による誘導磁界の影響を低減することができる第1角度θ1および第2角度θ2の各々の値を特定することができる。なお、以下においては、θ1<θ2であり、回路遮断器2の端子間のピッチが18mmであり、第1角度θ1および第2角度θ2の最大値が58度であるものとして説明する。 Next, an example of the calculation results for the first angle θ1 and the second angle θ2, which can reduce the influence of the disturbance magnetic field component due to the non-target current path, will be specifically described. The measurement error of the current sensor 1 given by the magnetic field due to the non-target current path when the first angle θ1 is fixed and the second angle θ2 is changed is calculated. Thereby, it is possible to specify the respective values of the first angle θ1 and the second angle θ2 that can reduce the influence of the induced magnetic field by the current paths 12 and 13. In the following, it is assumed that θ1 <θ2, the pitch between the terminals of the circuit breaker 2 is 18 mm, and the maximum values of the first angle θ1 and the second angle θ2 are 58 degrees.
 図10は、実施の形態2にかかる第1角度が0度である場合における第2角度と外乱成分合計値との関係を示す図である。図11は、実施の形態2にかかる第1角度が10度である場合における第2角度と外乱成分合計値との関係を示す図である。図12は、実施の形態2にかかる第1角度が14度である場合における第2角度と外乱成分合計値との関係を示す図である。図13は、実施の形態2にかかる第1角度が20度である場合における第2角度と外乱成分合計値との関係を示す図である。 FIG. 10 is a diagram showing the relationship between the second angle and the total value of disturbance components when the first angle according to the second embodiment is 0 degrees. FIG. 11 is a diagram showing the relationship between the second angle and the total value of disturbance components when the first angle according to the second embodiment is 10 degrees. FIG. 12 is a diagram showing the relationship between the second angle and the total value of disturbance components when the first angle according to the second embodiment is 14 degrees. FIG. 13 is a diagram showing the relationship between the second angle and the total value of the disturbance components when the first angle according to the second embodiment is 20 degrees.
 図10および図11に示すように、θ1=0度およびθ1=10度の場合、第2角度θ2を変化させても外乱成分合計値は、θ2≦58度の範囲でゼロにならない。一方で、図12および図13に示すように、θ1=14度およびθ1=20度の場合では、外乱成分合計値は、θ2≦58度の範囲でゼロになる場合がある。図10~図13から、θ1が10度よりも大きい領域では外乱成分合計値が、θ2≦58度の範囲でマイナスからプラスに変化し、測定誤差がゼロとなるポイントがあることがわかる。図12に示す例では、θ1=14度であり、θ2=57度とすることで、外乱成分合計値をゼロにすることができる。 As shown in FIGS. 10 and 11, when θ1 = 0 degrees and θ1 = 10 degrees, the total value of the disturbance component does not become zero in the range of θ2 ≦ 58 degrees even if the second angle θ2 is changed. On the other hand, as shown in FIGS. 12 and 13, in the cases of θ1 = 14 degrees and θ1 = 20 degrees, the total value of the disturbance components may become zero in the range of θ2 ≦ 58 degrees. From FIGS. 10 to 13, it can be seen that in the region where θ1 is larger than 10 degrees, the total value of the disturbance component changes from minus to plus in the range of θ2 ≦ 58 degrees, and there is a point where the measurement error becomes zero. In the example shown in FIG. 12, θ1 = 14 degrees and θ2 = 57 degrees, the total value of the disturbance components can be set to zero.
 このように、互いに異なる複数の仮想円30のうち対応する仮想円上に複数の感磁素子20の各々を配置した場合において、対象外電流路の影響が測定対象の電流路である対象電流路の測定に影響を与えない第1角度θ1および第2角度θ2が存在する。回路遮断器2の端子カバー4において、基板40の形状に合わせて複数の感磁素子20が基板40に配置できるように半径R1,R2,R3,R4が設定される。また、電流路11の電流を測定する電流センサ1において、第1角度θ1および第2角度θ2は、電流路12,13による誘導磁界の影響を低減する角度に設定される。したがって、電流路11の電流を測定する電流センサ1では、対象外電流路の影響を抑制しつつも、複数の感磁素子20を限られた領域に配置することができる。 In this way, when each of the plurality of magnetic sensing elements 20 is arranged on the corresponding virtual circles among the plurality of virtual circles 30 that are different from each other, the influence of the non-target current path is the target current path that is the current path to be measured. There is a first angle θ1 and a second angle θ2 that do not affect the measurement of. In the terminal cover 4 of the circuit breaker 2, radii R1, R2, R3, and R4 are set so that a plurality of magnetic sensing elements 20 can be arranged on the substrate 40 according to the shape of the substrate 40. Further, in the current sensor 1 that measures the current in the current path 11, the first angle θ1 and the second angle θ2 are set to angles that reduce the influence of the induced magnetic field by the current paths 12 and 13. Therefore, in the current sensor 1 that measures the current in the current path 11, the plurality of magnetic sensing elements 20 can be arranged in a limited region while suppressing the influence of the non-target current path.
 なお、回路遮断器2の端子間のピッチが25mmまたは30mmの場合も同様の方法で、電流路12,13による誘導磁界の影響を低減することができる第1角度θ1および第2角度θ2の各々の値を特定することができる。また、電流路13の電流を測定する電流センサ1の場合も同様の方法で、対象外電流路である電流路11,12による誘導磁界の影響を低減することができる第1角度θ1および第2角度θ2の各々の値を特定することができる。 When the pitch between the terminals of the circuit breaker 2 is 25 mm or 30 mm, the influence of the induced magnetic field by the current paths 12 and 13 can be reduced by the same method, respectively, of the first angle θ1 and the second angle θ2. The value of can be specified. Further, in the case of the current sensor 1 that measures the current in the current path 13, the influence of the induced magnetic field by the current paths 11 and 12, which are the non-target current paths, can be reduced by the same method, and the first angles θ1 and the second angle θ1 and the second. Each value of the angle θ2 can be specified.
 上述では、電流センサ1を3極の遮断器に適用した例を説明したが、3極以外の極数の遮断器に電流センサ1を適用した場合も同様の効果を得ることができる。例えば、2極の回路遮断器または4極以上の回路遮断器に電流センサ1を適用することができる。図14は、実施の形態2にかかる端子カバーに含まれる計測部の基板における複数の感磁素子の配置の他の例を示す図である。図14では、2極の回路遮断器に電流センサ1を適用した場合の基板40に対する複数の感磁素子20a,20b,20c,20dが示されている。 In the above description, an example in which the current sensor 1 is applied to a three-pole circuit breaker has been described, but the same effect can be obtained when the current sensor 1 is applied to a circuit breaker having a number of poles other than the three poles. For example, the current sensor 1 can be applied to a 2-pole circuit breaker or a 4-pole or higher-pole circuit breaker. FIG. 14 is a diagram showing another example of arrangement of a plurality of magnetic sensitive elements on the substrate of the measuring unit included in the terminal cover according to the second embodiment. FIG. 14 shows a plurality of magnetic sensitive elements 20a, 20b, 20c, and 20d with respect to the substrate 40 when the current sensor 1 is applied to the two-pole circuit breaker.
 図14に示す基板40には、1つの電流センサ1における複数の感磁素子20a,20b,20c,20dが配置されている。これら複数の感磁素子20a,20b,20c,20dの配置は、図8に示す基板40と同様である。この場合、対象外電流路は、電流路12のみになるため、外乱成分合計値は、複数の感磁素子20a,20b,20c,20dが検出する電流路12による誘導磁界の合計値である。 On the substrate 40 shown in FIG. 14, a plurality of magnetic sensing elements 20a, 20b, 20c, 20d in one current sensor 1 are arranged. The arrangement of the plurality of magnetic sensing elements 20a, 20b, 20c, and 20d is the same as that of the substrate 40 shown in FIG. In this case, since the non-target current path is only the current path 12, the total value of the disturbance component is the total value of the induced magnetic fields by the current path 12 detected by the plurality of magnetizing elements 20a, 20b, 20c, and 20d.
 以上のように、実施の形態2にかかる回路遮断器2には、複数の電流路11,12,13が接続され、電流路11,12,13は、電流路11の延在方向に直交する方向であるX軸方向を配列方向として配列される。電流センサ1が電流路11に流れる電流を測定する電流センサである場合、電流路11は、対象電流路の一例であり、電流センサ1が電流路13に流れる電流を測定する電流センサである場合、電流路13は、対象電流路の一例である。回路遮断器2の端子カバー4は、基板40を備える。かかる基板40は、X軸方向における端部4a,4dと、複数の電流路11,12,13のうち隣接する2つの電流路間に設けられる線間部4b,4cとを有する。感磁素子20a,20bは、端部4aまたは端部4dの領域であってX軸方向に延伸し電流路11,13の中心Oを通る線である水平線Lhで区切られる2つの領域のうち一方の領域に配置される。感磁素子20c,20dは、線間部4bまたは線間部4cの領域であって水平線Lhで区切られる2つの領域のうち他方の領域に配置される。これにより、端子カバー4では、外部磁界などの影響を抑制しつつも、複数の感磁素子20を限られた領域に配置することができる。 As described above, a plurality of current paths 11, 12, and 13 are connected to the circuit breaker 2 according to the second embodiment, and the current paths 11, 12, and 13 are orthogonal to the extending direction of the current path 11. It is arranged with the X-axis direction, which is the direction, as the arrangement direction. When the current sensor 1 is a current sensor that measures the current flowing through the current path 11, the current path 11 is an example of the target current path, and the current sensor 1 is a current sensor that measures the current flowing through the current path 13. , The current path 13 is an example of the target current path. The terminal cover 4 of the circuit breaker 2 includes a substrate 40. Such a substrate 40 has end portions 4a, 4d in the X-axis direction, and interline portions 4b, 4c provided between two adjacent current paths among the plurality of current paths 11, 12, 13. The magnetic sensing elements 20a and 20b are one of two regions that are regions of the end portion 4a or the end portion 4d and are separated by a horizontal line Lh that extends in the X-axis direction and passes through the center O of the current paths 11 and 13. It is placed in the area of. The magnetic sensing elements 20c and 20d are arranged in the other region of the two regions of the interline portion 4b or the interline portion 4c separated by the horizontal line Lh. As a result, in the terminal cover 4, a plurality of magnetic sensing elements 20 can be arranged in a limited area while suppressing the influence of an external magnetic field or the like.
 また、端部41,44は、水平線Lhで区切られる2つの領域のうち回路遮断器2の操作ハンドル6側の領域に配置される。また、線間部42,43は、水平線Lhで区切られる2つの領域のうち回路遮断器2の底面8側の領域に配置される。これにより、水平線Lhで区切られる2つの領域のうち回路遮断器2の底面8側に基板40の端部41,44が存在しない場合であっても、感磁素子20a,20bを適切に配置することができる。 Further, the ends 41 and 44 are arranged in the area on the operation handle 6 side of the circuit breaker 2 out of the two areas separated by the horizontal line Lh. Further, the interline portions 42 and 43 are arranged in the region on the bottom surface 8 side of the circuit breaker 2 out of the two regions separated by the horizontal line Lh. As a result, the magnetic sensing elements 20a and 20b are appropriately arranged even when the ends 41 and 44 of the substrate 40 do not exist on the bottom surface 8 side of the circuit breaker 2 in the two regions separated by the horizontal line Lh. be able to.
 また、基板40は、端部4a,4dに設けられた端部41,44と、線間部4b,4cに設けられた線間部42,43と、端部41,44と線間部42,43とを連結する連結部45とを備える。これにより、基板40を1つの基板にすることができるため、回路遮断器2を構成する部材の数を低減することができる。端部41,44は、第1の領域の一例であり、線間部42,43は、第2の領域の一例であり、連結部45は、連結領域の一例である。 Further, the substrate 40 includes end portions 41, 44 provided at the end portions 4a, 4d, interline portions 42, 43 provided at the interline portions 4b, 4c, and end portions 41, 44 and the interline portion 42. , 43 is provided with a connecting portion 45 for connecting the and 43. As a result, the substrate 40 can be made into one substrate, so that the number of members constituting the circuit breaker 2 can be reduced. The end portions 41 and 44 are examples of the first region, the interline portions 42 and 43 are examples of the second region, and the connecting portion 45 is an example of the connecting region.
 上述した電流センサ1は、4つの感磁素子20a,20b,20c,20dを有する構成であるが、電流センサ1が有する感磁素子20の数は、偶数であればよく、4つに限定されない。感磁素子20の数は、2つであってもよく、6つ以上であってもよい。すなわち、電流センサ1は、少なくとも一つの感磁素子対を有し、かかる感磁素子対を構成する2つの感磁素子20が、互いに異なる仮想円30上に配置され、互いの感度軸21が平行且つ逆向きであればよい。例えば、電流センサ1は、一対の感磁素子20a,20cまたは一対の感磁素子20b,20dを有しない構成であってもよい。感磁素子20の数が偶数個であれば、外乱磁界nの影響を抑制することができる。 The current sensor 1 described above has a configuration having four magnetic sensing elements 20a, 20b, 20c, and 20d, but the number of magnetic sensing elements 20 included in the current sensor 1 may be an even number and is not limited to four. .. The number of magnetic sensitive elements 20 may be two or six or more. That is, the current sensor 1 has at least one magnetic element pair, and the two magnetic element 20s constituting the magnetic element pair are arranged on virtual circles 30 different from each other, and the sensitivity axes 21 of each other are arranged. It may be parallel and opposite. For example, the current sensor 1 may be configured not to have a pair of magnetic sensing elements 20a and 20c or a pair of magnetic sensing elements 20b and 20d. If the number of magnetic sensing elements 20 is an even number, the influence of the disturbance magnetic field n can be suppressed.
実施の形態3.
 実施の形態3にかかる回路遮断器の電流センサは、感磁素子と電流路との位置関係がずれた場合に感磁素子と電流路との位置関係に応じた補正を行うことができる点で、実施の形態1にかかる電流センサおよび実施の形態2にかかる回路遮断器の電流センサと異なる。以下においては、実施の形態1,2と同様の機能を有する構成要素については同一符号を付して説明を省略し、実施の形態1,2と異なる点を中心に説明する。
Embodiment 3.
The current sensor of the circuit breaker according to the third embodiment can perform correction according to the positional relationship between the magnetic sensitive element and the current path when the positional relationship between the magnetic sensitive element and the current path deviates. , The current sensor according to the first embodiment and the current sensor of the circuit breaker according to the second embodiment. In the following, the components having the same functions as those of the first and second embodiments are designated by the same reference numerals and the description thereof will be omitted, and the differences from the first and second embodiments will be mainly described.
 実施の形態1,2にかかる電流センサ1では、複数の感磁素子20と電流路11,13との位置関係が変化した場合、複数の感磁素子20の電流路11,13に対する配置条件が設計値からずれてしまうため、演算回路22によって算出される電流の値の誤差が大きくなる。そこで、実施の形態3にかかる電流センサ10では、複数の感磁素子20の電流路11,13に対する配置条件が設計値からずれた場合に、演算回路22によって算出される電流の値を補正する構成を有している。 In the current sensor 1 according to the first and second embodiments, when the positional relationship between the plurality of magnetic sensing elements 20 and the current paths 11 and 13 changes, the arrangement condition of the plurality of magnetic sensing elements 20 with respect to the current paths 11 and 13 is determined. Since the value deviates from the design value, the error of the current value calculated by the arithmetic circuit 22 becomes large. Therefore, in the current sensor 10 according to the third embodiment, when the arrangement conditions for the current paths 11 and 13 of the plurality of magnetic sensing elements 20 deviate from the design values, the current value calculated by the arithmetic circuit 22 is corrected. It has a configuration.
 図15は、実施の形態3にかかる電流センサの構成の一例を示す図である。図15に示すように、実施の形態3にかかる電流センサ10は、電流センサ1aと、電流センサ1bと、感磁素子23a,23b,23c,23d,24a,24b,24c,24dと、位置検出部25と、補正部26とを備える。 FIG. 15 is a diagram showing an example of the configuration of the current sensor according to the third embodiment. As shown in FIG. 15, the current sensor 10 according to the third embodiment includes a current sensor 1a, a current sensor 1b, magnetic sensing elements 23a, 23b, 23c, 23d, 24a, 24b, 24c, 24d, and position detection. A unit 25 and a correction unit 26 are provided.
 電流センサ1aは、電流路11に流れる電流を検出する電流センサ1であり、図1に示す感磁素子20a,20b,20c,20dおよび演算回路22を備える。かかる電流センサ1aは、電流路11に流れる電流の瞬時値を示す電圧信号Vdet1を出力する。 The current sensor 1a is a current sensor 1 that detects a current flowing through the current path 11, and includes magnetic sensing elements 20a, 20b, 20c, 20d and an arithmetic circuit 22 shown in FIG. The current sensor 1a outputs a voltage signal Vdet1 indicating an instantaneous value of the current flowing through the current path 11.
 電流センサ1bは、電流路13に流れる電流を検出する電流センサ1であり、電流センサ1aと同様に、図1に示す感磁素子20a,20b,20c,20dおよび演算回路22を備える。かかる電流センサ1bは、電流路13に流れる電流の瞬時値を示す電圧信号Vdet2を出力する。 The current sensor 1b is a current sensor 1 that detects the current flowing in the current path 13, and includes the magnetic sensing elements 20a, 20b, 20c, 20d and the arithmetic circuit 22 shown in FIG. 1 in the same manner as the current sensor 1a. The current sensor 1b outputs a voltage signal Vdet2 indicating an instantaneous value of the current flowing through the current path 13.
 感磁素子23a,23b,23c,23dは、電流路11,12,13の延在方向であるY軸方向と電流路11,12,13の配列方向であるX軸方向と直交する方向であるZ軸方向における電流路11,13の位置を検出するために設けられる。 The magnetic sensitive elements 23a, 23b, 23c, 23d are in directions orthogonal to the Y-axis direction, which is the extending direction of the current paths 11, 12, 13 and the X-axis direction, which is the arrangement direction of the current paths 11, 12, 13. It is provided to detect the positions of the current paths 11 and 13 in the Z-axis direction.
 感磁素子23a,23b,23c,23dは、検出した磁界に正比例する大きさの電圧信号V1a,V1b,V1c,V1dを出力する。これら感磁素子23a,23b,23c,23dは、第1の位置検出用感磁素子の一例である。以下において、Z軸方向を縦方向と記載し、縦方向における電流路11,13の基準位置からのずれを縦ずれと記載する場合がある。縦方向の基準位置は、例えば、縦方向における感磁素子23aの位置と感磁素子23bの位置との中間位置である。 The magnetic sensing elements 23a, 23b, 23c, 23d output voltage signals V1a, V1b, V1c, V1d having a magnitude directly proportional to the detected magnetic field. These magnetic sensing elements 23a, 23b, 23c, 23d are examples of the first position detecting magnetic sensing elements. In the following, the Z-axis direction may be described as the vertical direction, and the deviation of the current paths 11 and 13 in the vertical direction from the reference position may be described as the vertical deviation. The reference position in the vertical direction is, for example, an intermediate position between the position of the magnetic sensing element 23a and the position of the magnetic sensing element 23b in the vertical direction.
 感磁素子24a,24b,24c,24dは、電流路11,12,13の配列方向であるX軸方向における電流路11,13の位置を検出するために設けられる。 The magnetic sensitive elements 24a, 24b, 24c, 24d are provided to detect the positions of the current paths 11, 13 in the X-axis direction, which is the arrangement direction of the current paths 11, 12, 13.
 感磁素子24a,24b,24c,24dは、検出した磁界に正比例する大きさの電圧信号V2a,V2b,V2c,V2dを出力する。これら感磁素子24a,24b,24c,24dは、第2の位置検出用感磁素子の一例である。以下において、X軸方向を横方向と記載し、横方向における電流路11,13の基準位置からのずれを横ずれと記載する場合がある。横方向の基準位置は、例えば、横方向における感磁素子24aの位置と感磁素子24bの位置との中間位置である。 The magnetic sensing elements 24a, 24b, 24c, 24d output voltage signals V2a, V2b, V2c, V2d having a magnitude directly proportional to the detected magnetic field. These magnetic sensing elements 24a, 24b, 24c, 24d are examples of the second position detecting magnetic sensing elements. In the following, the X-axis direction may be described as the lateral direction, and the deviation of the current paths 11 and 13 in the lateral direction from the reference position may be described as the lateral displacement. The reference position in the lateral direction is, for example, an intermediate position between the position of the magnetic sensing element 24a and the position of the magnetic sensing element 24b in the lateral direction.
 位置検出部25は、感磁素子23a,23b,23c,23dから出力される電圧信号V1a,V1b,V1c,V1dと感磁素子24a,24b,24c,24dから出力される電圧信号V2a,V2b,V2c,V2dとに基づいて、電流路11,13の位置を検出する。かかる位置検出部25は、第1の位置検出部25aと、第2の位置検出部25bとを備える。 The position detection unit 25 includes voltage signals V1a, V1b, V1c, V1d output from the magnetic sensing elements 23a, 23b, 23c, 23d and voltage signals V2a, V2b, output from the magnetic sensing elements 24a, 24b, 24c, 24d. The positions of the current paths 11 and 13 are detected based on V2c and V2d. The position detection unit 25 includes a first position detection unit 25a and a second position detection unit 25b.
 第1の位置検出部25aは、感磁素子23a,23b,23c,23dから出力される電圧信号V1a,V1b,V1c,V1dに基づいて、電流路11,13の縦ずれのずれ量を電流路11,13の位置として検出する。第1の位置検出部25aは、検出した電流路11,13の縦ずれのずれ量を示す位置信号Sp1を出力する。 The first position detection unit 25a determines the amount of vertical deviation of the current paths 11 and 13 based on the voltage signals V1a, V1b, V1c, and V1d output from the magnetic sensing elements 23a, 23b, 23c, and 23d. Detected as positions 11 and 13. The first position detection unit 25a outputs a position signal Sp1 indicating the amount of vertical deviation of the detected current paths 11 and 13.
 第2の位置検出部25bは、感磁素子24a,24b,24c,24dから出力される電圧信号V2a,V2b,V2c,V2dに基づいて、電流路11,13の横ずれのずれ量を電流路11,13の位置として検出する。第2の位置検出部25bは、検出した電流路11,13の横ずれのずれ量を示す位置信号Sp2を出力する。 The second position detection unit 25b determines the amount of lateral displacement of the current paths 11 and 13 based on the voltage signals V2a, V2b, V2c, and V2d output from the magnetic sensing elements 24a, 24b, 24c, and 24d. , 13 positions are detected. The second position detection unit 25b outputs a position signal Sp2 indicating the amount of lateral displacement of the detected current paths 11 and 13.
 補正部26は、電流センサ1a,1bから出力される電圧信号Vdet1,Vdet2と、位置検出部25から出力される位置信号Sp1,Sp2とに基づいて、電圧信号Vdet1,Vdet2を補正した補正電圧信号Vdet1c,Vdet2cを出力する。補正電圧信号Vdet1cは、電流路11に流れる電流の瞬時値を示す信号であり、補正電圧信号Vdet2cは、電流路13に流れる電流の瞬時値を示す信号である。 The correction unit 26 corrects the voltage signals Vdet1 and Vdet2 based on the voltage signals Vdet1 and Vdet2 output from the current sensors 1a and 1b and the position signals Sp1 and Sp2 output from the position detection unit 25. Outputs Vdet1c and Vdet2c. The correction voltage signal Vdet1c is a signal indicating an instantaneous value of the current flowing through the current path 11, and the correction voltage signal Vdate2c is a signal indicating an instantaneous value of the current flowing through the current path 13.
 図16は、実施の形態3にかかる端子カバーに含まれる計測部の基板における複数の感磁素子の配置の一例を示す図である。図16に示す2つの電流センサ1a,1bの感磁素子20a,20b,20c,20dの基板40への配置は、図8に示す2つの電流センサ1の感磁素子20a,20b,20c,20dの基板40への配置と同じである。 FIG. 16 is a diagram showing an example of arrangement of a plurality of magnetic sensitive elements on the substrate of the measuring unit included in the terminal cover according to the third embodiment. The arrangement of the magnetic sensing elements 20a, 20b, 20c, 20d of the two current sensors 1a, 1b shown in FIG. 16 on the substrate 40 is such that the magnetic sensing elements 20a, 20b, 20c, 20d of the two current sensors 1 shown in FIG. 8 are arranged. Is the same as the arrangement on the substrate 40.
 電流路11,12,13が圧着端子によって遮断器本体3の負荷側に接続される構成である場合、電流路11,12,13の形状は接続される圧着端子により異なる。また、選定される圧着端子は、負荷側に流れる電流の大きさによって選定されるため、固定された形状ではなく、例えば、負荷側に流れる電流が大きい場合は線径の大きいものが選択され、負荷側に流れる電流が小さい場合は線径の小さいものが選択される。 When the current paths 11, 12, and 13 are connected to the load side of the circuit breaker main body 3 by the crimp terminals, the shapes of the current paths 11, 12, and 13 differ depending on the crimp terminals to be connected. Further, since the crimp terminal to be selected is selected according to the magnitude of the current flowing on the load side, for example, when the current flowing on the load side is large, a crimp terminal having a large wire diameter is selected instead of a fixed shape. If the current flowing on the load side is small, the one with a small wire diameter is selected.
 電流を検出するための感磁素子20a,20b,20c,20dは、各電流路11,13の中心Oが基準となる位置に配置されることを前提として設計されるが、選定される圧着端子により電流路11,13の中心Oが変動して、電流路11,13と感磁素子20a,20b,20c,20dとの縦方向の位置関係がずれる場合がある。この場合、電流センサ1a,1bによって電流路11,13に流れる電流値を精度よく算出することが難しい場合がある。 The magnetic sensitive elements 20a, 20b, 20c, and 20d for detecting the current are designed on the assumption that the center O of each of the current paths 11 and 13 is arranged at a reference position, but the crimping terminals to be selected are selected. As a result, the center O of the current paths 11 and 13 may fluctuate, and the vertical positional relationship between the current paths 11 and 13 and the magnetic sensing elements 20a, 20b, 20c, and 20d may shift. In this case, it may be difficult to accurately calculate the current value flowing through the current paths 11 and 13 by the current sensors 1a and 1b.
 そこで、実施の形態3にかかる電流センサ10では、上述したように、縦ずれのずれ量を感磁素子23a,23b,23c,23dと第1の位置検出部25aとを用いて検出する。図16に示す例では、感磁素子23a,23bは、感度軸31a,31bが互いに平行になり且つX軸負方向に向くように基板40の線間部42に配置され、感磁素子23c,23dは、感度軸31c,31dが互いに平行になり且つX軸正方向に向くように基板40の線間部43に配置される。 Therefore, in the current sensor 10 according to the third embodiment, as described above, the amount of vertical deviation is detected by using the magnetic sensing elements 23a, 23b, 23c, 23d and the first position detecting unit 25a. In the example shown in FIG. 16, the magnetic sensing elements 23a and 23b are arranged on the line-to-line portion 42 of the substrate 40 so that the sensitivity shafts 31a and 31b are parallel to each other and face in the negative direction of the X-axis. The 23d is arranged in the interline portion 43 of the substrate 40 so that the sensitivity axes 31c and 31d are parallel to each other and face in the positive direction of the X axis.
 ここで、電流路11,12,13と感磁素子23a,23b,23c,23dとの位置関係について説明する。図17は、実施の形態3にかかる電流路の縦方向の位置を検出するための複数の感磁素子との位置関係を説明するための図である。図17に示す例では、感磁素子23a,23dは、縦方向における位置P1に配置され、感磁素子23b,23cは、縦方向における位置P2に配置される。 Here, the positional relationship between the current paths 11, 12, and 13 and the magnetic sensing elements 23a, 23b, 23c, and 23d will be described. FIG. 17 is a diagram for explaining the positional relationship with a plurality of magnetic sensitive elements for detecting the vertical position of the current path according to the third embodiment. In the example shown in FIG. 17, the magnetic sensing elements 23a and 23d are arranged at the position P1 in the vertical direction, and the magnetic sensing elements 23b and 23c are arranged at the position P2 in the vertical direction.
 図17に示すように、感磁素子23a,23b,23c,23dは、電流路11,12,13の縦ずれの最大範囲PR1が感磁素子23a,23dの位置P1と感磁素子23b,23cの位置P2との間の範囲である素子間範囲DL1内に収まるように基板40上に配置される。以下において、感磁素子23a,23b,23c,23dの各々を個別に区別せずに示す場合、感磁素子23と記載する場合があり、また、感度軸31a,31b,31c,31dの各々を個別に区別せずに示す場合、感度軸31と記載する場合がある。なお、図16および図17において、感度軸31の向きは矢印で示されている。 As shown in FIG. 17, in the magnetic sensing elements 23a, 23b, 23c, 23d, the maximum range PR1 of the vertical deviation of the current paths 11, 12, 13 is the position P1 of the magnetic sensing elements 23a, 23d and the magnetic sensing elements 23b, 23c. It is arranged on the substrate 40 so as to be within the inter-element range DL1 which is the range between the position P2 and the position P2. In the following, when each of the magnetic sensing elements 23a, 23b, 23c, and 23d is shown without distinction, it may be referred to as the magnetic sensing element 23, and each of the sensitivity shafts 31a, 31b, 31c, and 31d may be referred to. When it is shown without distinction individually, it may be described as the sensitivity axis 31. In addition, in FIG. 16 and FIG. 17, the direction of the sensitivity axis 31 is indicated by an arrow.
 図17において、仮想線で示す電流路11’,12’,13’は、Z軸方向における下限位置にある場合の電流路11,12,13を示し、仮想線で示す電流路11”,12”,13”は、Z軸方向における上限位置にある場合の電流路11,12,13を示している。図17に示す例では、電流路11,12,13は、Z軸方向における位置P12に配置されている。 In FIG. 17, the current paths 11', 12', 13'shown by virtual lines indicate the current paths 11, 12, 13 when they are at the lower limit positions in the Z-axis direction, and the current paths 11', 12'shown by virtual lines. “, 13” indicates the current paths 11, 12, 13 when they are in the upper limit position in the Z-axis direction. In the example shown in FIG. 17, the current paths 11, 12, 13 are the positions P12 in the Z-axis direction. Is located in.
 感磁素子23は、上述したように、感度軸31が横方向であるX軸方向を向くように配置されているため、縦方向であるZ軸方向において電流路と同じ位置に配置された場合、感度軸31の向きと電流路11,13によって生じる誘導磁界の向きとが垂直になる。電流路11,13によって生じる誘導磁界の向きに対して感度軸31の向きが垂直である感磁素子23によって検出される磁界成分は、理論的にゼロになる。 As described above, the magnetic sensing element 23 is arranged so that the sensitivity axis 31 faces the X-axis direction, which is the horizontal direction. Therefore, when the magnetic sensing element 23 is arranged at the same position as the current path in the Z-axis direction, which is the vertical direction. , The direction of the sensitivity shaft 31 and the direction of the induced magnetic field generated by the current paths 11 and 13 are perpendicular to each other. The magnetic field component detected by the magnetic sensing element 23 whose sensitivity axis 31 is perpendicular to the direction of the induced magnetic field generated by the current paths 11 and 13 is theoretically zero.
 したがって、例えば、感度軸31の向きを横向きにして配置した感磁素子23を縦方向に往復移動させていくと感磁素子23によって検出される磁界成分が変化するが、感磁素子23の縦方向の移動によって感磁素子23によって検出される磁界成分がゼロとなった位置が電流路11,13の縦方向の位置であるということができる。 Therefore, for example, when the magnetic field element 23 arranged so that the sensitivity shaft 31 is oriented horizontally is reciprocated in the vertical direction, the magnetic field component detected by the magnetic field element 23 changes, but the vertical direction of the magnetic field element 23 It can be said that the position where the magnetic field component detected by the magnetic sensing element 23 becomes zero due to the movement in the direction is the position in the vertical direction of the current paths 11 and 13.
 感度軸31の向きが横向きである感磁素子23は基板40に実装されているため、感磁素子23を物理的に図16における上方から下方または下方から上方に移動させることは難しい。そこで、電流センサ10では、2つの感磁素子23a,23bによって検出された磁界成分のベクトル合成値と2つの感磁素子23c,23dによって検出された磁界成分のベクトル合成値とを用いて電流路11,13の位置を検出する。 Since the magnetic sensing element 23 in which the sensitivity shaft 31 is oriented sideways is mounted on the substrate 40, it is difficult to physically move the magnetic sensing element 23 from above to below or from below to above in FIG. Therefore, in the current sensor 10, the current path is used by using the vector composite value of the magnetic field component detected by the two magnetic sensitive elements 23a and 23b and the vector composite value of the magnetic field component detected by the two magnetic sensitive elements 23c and 23d. The positions 11 and 13 are detected.
 例えば、感磁素子23a,23b,23c,23dによって検出される磁界成分をφa,φb,φc,φdとし、磁界成分φaと磁界成分φbとのベクトル合成値をφabとし、磁界成分φcと磁界成分φdとのベクトル合成値をφcdとした場合、ベクトル合成値φab,φcdは、ベクトルの内分から下記式(6),(7)で表すことができる。なお、「t1」は、0≦t1≦1で表されるが、線形性が保たれる範囲であれば、「t1」は、0から1までの範囲以外の範囲であってもよい。
 φab=t1×φa+(1-t1)×φb   ・・・(6)
 φcd=t1×φd+(1-t1)×φc   ・・・(7)
For example, the magnetic field components detected by the magnetic sensitive elements 23a, 23b, 23c, 23d are φa, φb, φc, φd, the vector composite value of the magnetic field component φa and the magnetic field component φb is φab, and the magnetic field component φc and the magnetic field component are defined as φab. When the vector composite value with φd is φcd, the vector composite values φab and φcd can be expressed by the following equations (6) and (7) from the internal components of the vector. Although "t1" is represented by 0≤t1≤1, "t1" may be a range other than the range from 0 to 1 as long as the linearity is maintained.
φab = t1 × φa + (1-t1) × φb ・ ・ ・ (6)
φcd = t1 × φd + (1-t1) × φc ・ ・ ・ (7)
 図15に示す第1の位置検出部25aは、上記式(6),(7)における「t1」を0から1までスイープさせて、「φab+φcd」の演算結果が最小となる「t1」の値を探索し、「φab+φcd」の演算結果が最小となる「t1」の値に基づいて、電流路11,13の縦位置を検出する。 The first position detection unit 25a shown in FIG. 15 sweeps "t1" in the above equations (6) and (7) from 0 to 1, and the value of "t1" that minimizes the calculation result of "φab + φcd". Is searched, and the vertical positions of the current paths 11 and 13 are detected based on the value of “t1” that minimizes the calculation result of “φab + φcd”.
 図18は、実施の形態3にかかる電流路の縦方向の位置と感磁素子によって検出される磁界成分を用いた演算結果との関係の一例を示す図である。図18において、縦軸は、「φab+φcd」の演算によって算出される磁束密度を示し、横軸は、縦方向における電流路の位置を示す。図18に示す例では、図17に示す素子間範囲DL1が4mmであり、電流路の縦方向の位置が2mmである場合の例を示している。 FIG. 18 is a diagram showing an example of the relationship between the vertical position of the current path according to the third embodiment and the calculation result using the magnetic field component detected by the magnetic sensing element. In FIG. 18, the vertical axis represents the magnetic flux density calculated by the calculation of “φab + φcd”, and the horizontal axis represents the position of the current path in the vertical direction. In the example shown in FIG. 18, the inter-element range DL1 shown in FIG. 17 is 4 mm, and the vertical position of the current path is 2 mm.
 図18に示す例では、「φab+φcd」の演算結果が最小となる「t1」が0.5であり、「t1×DL1」が2であることから、電流路11,13の位置P12は、図17に示す位置P1と位置P2との間の中間位置である。 In the example shown in FIG. 18, since “t1” that minimizes the calculation result of “φab + φcd” is 0.5 and “t1 × DL1” is 2, the positions P12 of the current paths 11 and 13 are shown in FIG. It is an intermediate position between the position P1 and the position P2 shown in 17.
 第1の位置検出部25aは、感磁素子23a,23b,23c,23dから出力される電圧信号V1a,V1b,V1c,V1dをφa,φb,φc,φdとして上記式(6),(7)に代入し、「t1」を0から1までスイープさせて、「φab+φcd」の演算結果が最小となる「t1」の値を探索する。 The first position detection unit 25a uses the above equations (6) and (7) as the voltage signals V1a, V1b, V1c, and V1d output from the magnetic sensing elements 23a, 23b, 23c, and 23d as φa, φb, φc, and φd. Is assigned to, and "t1" is swept from 0 to 1, and the value of "t1" that minimizes the calculation result of "φab + φcd" is searched.
 第1の位置検出部25aは、「φab+φcd」の演算結果が最小となる「t1」を用いて「t1×DL1」の演算を行うことで、電流路11,13の縦方向の位置を検出する。第1の位置検出部25aは、検出した電流路11,13の縦方向の位置の縦方向の基準位置からのずれ量である縦ずれのずれ量を算出する。第1の位置検出部25aは、算出した縦ずれのずれ量を示す位置信号Sp1を出力する。縦方向の基準位置は、縦方向における位置P1と位置P2との中間位置であり、DL1=4である場合、「2」である。 The first position detection unit 25a detects the vertical positions of the current paths 11 and 13 by performing the calculation of "t1 × DL1" using "t1" which minimizes the calculation result of "φab + φcd". .. The first position detection unit 25a calculates the amount of vertical deviation, which is the amount of deviation of the detected current paths 11 and 13 from the vertical reference position. The first position detection unit 25a outputs a position signal Sp1 indicating the calculated amount of vertical deviation. The reference position in the vertical direction is an intermediate position between the position P1 and the position P2 in the vertical direction, and is "2" when DL1 = 4.
 また、感磁素子23a,23dは、互いの感度軸31a,31dが逆向きに配置されることから、感磁素子23aで検出される外乱磁界nは、感磁素子23dで検出される外乱磁界nの成分と正負が逆になる。同様に、感磁素子23b,23cも、互いの感度軸31b,31cが逆向きに配置されることから、感磁素子23bで検出される外乱磁界nは、感磁素子23cで検出される外乱磁界nの成分と正負が逆になる。そのため、「φab+φcd」の演算結果は、外乱磁界nの影響がキャンセルされた値になる。 Further, since the sensitivity axes 31a and 31d of the magnetic sensing elements 23a and 23d are arranged in opposite directions, the disturbance magnetic field n detected by the magnetic sensing element 23a is the disturbance magnetic field detected by the magnetic sensing element 23d. The positive and negative of the component of n are reversed. Similarly, since the sensitivity axes 31b and 31c of the magnetic sensing elements 23b and 23c are arranged in opposite directions, the disturbance magnetic field n detected by the magnetic sensing element 23b is the disturbance detected by the magnetic sensing element 23c. The positive and negative directions are opposite to those of the magnetic field n. Therefore, the calculation result of "φab + φcd" is a value in which the influence of the disturbance magnetic field n is cancelled.
 このように、第1の位置検出部25aは、感磁素子23aによって検出される磁界成分と感磁素子23bによって検出される磁界成分との内分積と、感磁素子23cによって検出される磁界成分と感磁素子23dによって検出される磁界成分との内分積との和を算出する。そして、第1の位置検出部25aは、算出した和の最小値を探索して、算出した和の最小値に基づいて、電流路11,13の縦方向の位置を検出する。これにより、第1の位置検出部25aは、電流路11,13の縦方向の位置を精度よく検出することができる。 As described above, in the first position detecting unit 25a, the internal product of the magnetic field component detected by the magnetic sensing element 23a and the magnetic field component detected by the magnetic sensing element 23b, and the magnetic field detected by the magnetic sensing element 23c. The sum of the component and the internal product of the magnetic field component detected by the magnetic sensing element 23d is calculated. Then, the first position detection unit 25a searches for the minimum value of the calculated sum, and detects the positions of the current paths 11 and 13 in the vertical direction based on the calculated minimum value of the sum. As a result, the first position detection unit 25a can accurately detect the vertical positions of the current paths 11 and 13.
 また、感磁素子23a,23bと感磁素子23c,23dとは感度軸が逆方向に配置されることから、第1の位置検出部25aは、外乱磁界nがある場合であっても、電流路の縦方向の位置を精度よく検出することができる。 Further, since the sensitivity axes of the magnetic sensing elements 23a and 23b and the magnetic sensing elements 23c and 23d are arranged in opposite directions, the first position detecting unit 25a can generate a current even when there is a disturbance magnetic field n. The vertical position of the road can be detected accurately.
 なお、第1の位置検出部25aは、上記式(6)における「t1」を0から1までスイープさせて、「φab」の演算結果が最小となる「t1」の値を探索し、「φab」の演算結果が最小となる「t1」の値に基づいて、電流路11の縦位置を検出することもできる。同様に、第1の位置検出部25aは、上記式(7)における「t1」を0から1までスイープさせて、「φcd」の演算結果が最小となる「t1」の値を探索し、「φcd」の演算結果が最小となる「t1」の値に基づいて、電流路13の縦位置を検出することもできる。 The first position detection unit 25a sweeps "t1" in the above equation (6) from 0 to 1, searches for the value of "t1" that minimizes the calculation result of "φab", and searches for the value of "t1", and "φab". It is also possible to detect the vertical position of the current path 11 based on the value of “t1” that minimizes the calculation result of “”. Similarly, the first position detection unit 25a sweeps "t1" in the above equation (7) from 0 to 1, searches for the value of "t1" that minimizes the calculation result of "φcd", and " It is also possible to detect the vertical position of the current path 13 based on the value of “t1” that minimizes the calculation result of “φcd”.
 次に、電流路11と感磁素子24a,24bとの位置関係および電流路13と感磁素子24c,24dとの位置関係について説明する。図19は、実施の形態3にかかる電流路と横方向の位置を検出するための複数の感磁素子との位置関係を説明するための図である。 Next, the positional relationship between the current path 11 and the magnetic sensing elements 24a and 24b and the positional relationship between the current path 13 and the magnetic sensing elements 24c and 24d will be described. FIG. 19 is a diagram for explaining the positional relationship between the current path according to the third embodiment and the plurality of magnetic sensitive elements for detecting the position in the lateral direction.
 図19に示すように、感磁素子24a,24bは、電流路11の横ずれの最大範囲が感磁素子24aの位置P3と感磁素子24bの位置P4との間の範囲である素子間範囲DL2内に収まるように基板40上に配置される。同様に、感磁素子24c,24dは、電流路13の横ずれの最大範囲が感磁素子24cの位置P5と感磁素子24dの位置P6との間の範囲である素子間範囲DL3内に収まるように基板40上に配置される。 As shown in FIG. 19, in the magnetic sensitive elements 24a and 24b, the maximum range of lateral displacement of the current path 11 is the range between the position P3 of the magnetic sensitive element 24a and the position P4 of the magnetic sensitive element 24b. It is arranged on the substrate 40 so as to fit inside. Similarly, the magnetic sensing elements 24c and 24d are set so that the maximum range of the lateral displacement of the current path 13 is within the inter-element range DL3 which is the range between the position P5 of the magnetic sensing element 24c and the position P6 of the magnetic sensing element 24d. Is arranged on the substrate 40.
 また、図16に示すように、感磁素子24a,24bは、感度軸32a,32bが互いに縦方向の位置が同じであり且つX軸正方向に向くように基板40の連結部45に配置される。また、感磁素子24c,24dは、感度軸32c,32dが互いに縦方向の位置が同じであり且つX軸負方向に向くように基板40の連結部45に配置される。以下において、感磁素子24a,24b,24c,24dの各々を個別に区別せずに示す場合、感磁素子24と記載する場合があり、感度軸32a,32b,32c,32dの各々を個別に区別せずに示す場合、感度軸32と記載する場合がある。なお、図16および図19において、感度軸32の向きは矢印で示されている。 Further, as shown in FIG. 16, the magnetic sensing elements 24a and 24b are arranged on the connecting portion 45 of the substrate 40 so that the sensitivity shafts 32a and 32b are in the same vertical position and face in the positive direction of the X axis. NS. Further, the magnetic sensing elements 24c and 24d are arranged on the connecting portion 45 of the substrate 40 so that the sensitivity shafts 32c and 32d are in the same vertical position and face in the negative direction of the X axis. In the following, when each of the magnetic sensing elements 24a, 24b, 24c, and 24d is shown without distinction, it may be described as the magnetic sensing element 24, and each of the sensitivity shafts 32a, 32b, 32c, and 32d is individually shown. When shown without distinction, it may be described as the sensitivity axis 32. In addition, in FIG. 16 and FIG. 19, the direction of the sensitivity shaft 32 is indicated by an arrow.
 感度軸32a,32bの向きが共に横方向になるように配置した2つの感磁素子24a,24bに対し、横方向において電流路11が2つの感磁素子24a,24bの中心に配置されている場合、2つの感磁素子24a,24bが検出する磁界成分は同じ値となる。 The current path 11 is arranged at the center of the two magnetic sensing elements 24a and 24b in the lateral direction with respect to the two magnetic sensing elements 24a and 24b arranged so that the sensitivity shafts 32a and 32b are oriented in the lateral direction. In this case, the magnetic field components detected by the two magnetic sensing elements 24a and 24b have the same value.
 電流路11が2つの感磁素子24a,24bの横方向における中心から図19における右にずれた場合、感磁素子24bが検出する磁界成分は、感磁素子24aが検出する磁界成分よりも大きくなる。また、電流路11が2つの感磁素子24a,24bの横方向における中心から図19における左にずれた場合、感磁素子24aが検出する磁界成分は、感磁素子24bが検出する磁界成分よりも大きくなる。 When the current path 11 is deviated to the right in FIG. 19 from the lateral center of the two magnetic sensing elements 24a and 24b, the magnetic field component detected by the magnetic sensing element 24b is larger than the magnetic field component detected by the magnetic sensing element 24a. Become. Further, when the current path 11 is deviated to the left in FIG. 19 from the lateral center of the two magnetic sensitive elements 24a and 24b, the magnetic field component detected by the magnetic sensitive element 24a is larger than the magnetic field component detected by the magnetic sensitive element 24b. Will also grow.
 このように、感磁素子24aが検出する磁界成分と感磁素子24bが検出する磁界成分との比率と電流路11の横方向の位置とは相関関係にある。また、上述したように、電流路11の縦方向の位置はずれることがあり、電流路11の縦方向の位置によって、感磁素子24aが検出する磁界成分と感磁素子24bが検出する磁界成分との比率が変化する。 As described above, there is a correlation between the ratio of the magnetic field component detected by the magnetic sensing element 24a and the magnetic field component detected by the magnetic sensing element 24b and the lateral position of the current path 11. Further, as described above, the vertical position of the current path 11 may deviate, and the magnetic field component detected by the magnetic sensing element 24a and the magnetic field component detected by the magnetic sensing element 24b may be displaced depending on the vertical position of the current path 11. The ratio of
 同様に、感磁素子24cが検出する磁界成分と感磁素子24dが検出する磁界成分との比率と電流路13の横方向の位置とは相関関係にある。また、電流路13の縦方向の位置はずれることがあり、電流路13の縦方向の位置によって、感磁素子24cが検出する磁界成分と感磁素子24dが検出する磁界成分との比率が変化する。 Similarly, there is a correlation between the ratio of the magnetic field component detected by the magnetic sensing element 24c and the magnetic field component detected by the magnetic sensing element 24d and the lateral position of the current path 13. Further, the vertical position of the current path 13 may deviate, and the ratio of the magnetic field component detected by the magnetic sensing element 24c to the magnetic field component detected by the magnetic sensing element 24d changes depending on the vertical position of the current path 13. ..
 図20は、実施の形態3にかかる電流路の横方向の位置と感磁素子の検出される磁界成分を用いた演算結果との関係の一例を示す図である。図20において、縦軸は、2つの感磁素子24のうち一方の感磁素子24が検出する磁界成分に対する他方の感磁素子24が検出する磁界成分の比率である検出磁界比率を示し、横軸は、電流路11または電流路13の横方向のずれ量を示す。検出磁界比率は、例えば、感磁素子24aが検出する磁界成分と感磁素子24bが検出する磁界成分との比率、または、感磁素子24cが検出する磁界成分と感磁素子24dが検出する磁界成分との比率である。 FIG. 20 is a diagram showing an example of the relationship between the lateral position of the current path according to the third embodiment and the calculation result using the magnetic field component detected by the magnetic sensing element. In FIG. 20, the vertical axis represents the detected magnetic field ratio, which is the ratio of the magnetic field component detected by the other magnetic field component 24 to the magnetic field component detected by one of the two magnetic field elements 24, and is horizontal. The axis indicates the amount of lateral displacement of the current path 11 or the current path 13. The detected magnetic field ratio is, for example, the ratio of the magnetic field component detected by the magnetic sensing element 24a to the magnetic field component detected by the magnetic sensing element 24b, or the magnetic field component detected by the magnetic sensing element 24c and the magnetic field detected by the magnetic sensing element 24d. The ratio with the ingredients.
 ここで、図20に示す検出磁界比率が、感磁素子24bが検出する磁界成分に対する感磁素子24aが検出する磁界成分の比率とする。この場合、図19に示す位置P3と位置P4の横方向における中間位置から図19における右側の領域が横方向におけるプラスのずれ量であり、中間位置から図19における左側の領域が横方向におけるマイナスのずれ量である。 Here, the detected magnetic field ratio shown in FIG. 20 is the ratio of the magnetic field component detected by the magnetic sensing element 24a to the magnetic field component detected by the magnetic sensing element 24b. In this case, the region on the right side in FIG. 19 from the intermediate position in the lateral direction between the positions P3 and P4 shown in FIG. 19 is the amount of positive deviation in the lateral direction, and the region on the left side in FIG. 19 from the intermediate position is negative in the lateral direction. Is the amount of deviation.
 図15に示す第2の位置検出部25bは、2つの感磁素子24a,24bが検出する磁界成分の比率と電流路11の縦方向の位置に基づいて、電流路11の横方向の位置を検出し、2つの感磁素子24c,24dが検出する磁界成分の比率と電流路13の縦方向の位置に基づいて、電流路13の横方向の位置を検出する。 The second position detection unit 25b shown in FIG. 15 determines the horizontal position of the current path 11 based on the ratio of the magnetic field components detected by the two magnetic sensing elements 24a and 24b and the vertical position of the current path 11. The position in the horizontal direction of the current path 13 is detected based on the ratio of the magnetic field components detected by the two magnetic sensing elements 24c and 24d and the position in the vertical direction of the current path 13.
 具体的には、第2の位置検出部25bは、感磁素子24aが検出する磁界成分と感磁素子24bが検出する磁界成分との比率と電流路11の横方向の位置との関係を示す第1の関数の情報を電流路11の縦方向の位置毎に記憶している。そして、第2の位置検出部25bは、感磁素子24a,24bから出力される電圧信号V2a,V2bと、第1の位置検出部25aから出力される位置信号Sp1と、第1の関数の情報とに基づいて、電流路11の横方向の位置を検出する。 Specifically, the second position detection unit 25b shows the relationship between the ratio of the magnetic field component detected by the magnetic sensing element 24a and the magnetic field component detected by the magnetic sensing element 24b and the lateral position of the current path 11. The information of the first function is stored for each position in the vertical direction of the current path 11. Then, the second position detection unit 25b has the voltage signals V2a and V2b output from the magnetic sensing elements 24a and 24b, the position signal Sp1 output from the first position detection unit 25a, and the information of the first function. Based on the above, the lateral position of the current path 11 is detected.
 また、第2の位置検出部25bは、感磁素子24cが検出する磁界成分と感磁素子24dが検出する磁界成分との比率と電流路13の横方向の位置との関係を示す第2の関数の情報を電流路13の縦方向の位置毎に記憶している。そして、第2の位置検出部25bは、感磁素子24c,24dから出力される電圧信号V2c,V2dと、第1の位置検出部25aから出力される位置信号Sp2と、第2の関数の情報とに基づいて、電流路13の横方向の位置を検出する。 Further, the second position detecting unit 25b shows the relationship between the ratio of the magnetic field component detected by the magnetic sensing element 24c and the magnetic field component detected by the magnetic sensing element 24d and the lateral position of the current path 13. The function information is stored for each position in the vertical direction of the current path 13. Then, the second position detection unit 25b has the voltage signals V2c and V2d output from the magnetic sensing elements 24c and 24d, the position signal Sp2 output from the first position detection unit 25a, and the information of the second function. Based on the above, the lateral position of the current path 13 is detected.
 なお、第1の関数と第2の関数とは同一であるが、感磁素子24cと感磁素子24dとの位置関係が、感磁素子24aと感磁素子24bとの位置関係と異なる場合、第2の関数と第1の関数とは異なる。 The first function and the second function are the same, but when the positional relationship between the magnetic sensing element 24c and the magnetic sensing element 24d is different from the positional relationship between the magnetic sensing element 24a and the magnetic sensing element 24b, The second function and the first function are different.
 ここで、電流路11の基準位置に対する感磁素子24a,24bの位置関係と電流路13の基準位置に対する感磁素子24c,24dの位置関係とが同じであり、電流路11と電流路13とに互いに同じずれ量の横ずれが生じるものとする。この場合、第2の位置検出部25bは、例えば、電圧信号V2aと電圧信号V2cとの加算値を新たな電圧信号V2a,V2cとして算出し、電圧信号V2bと電圧信号V2dとの加算値を新たな電圧信号V2b,V2dとして算出する。第2の位置検出部25bは、算出した新たな電圧信号V2a,V2b,V2c,V2dを用いて上述した関数を用いた演算を行うことで、外乱磁界nがある場合であっても、電流路11,13の横方向の位置を精度よく検出することができる。 Here, the positional relationship of the magnetic sensitive elements 24a and 24b with respect to the reference position of the current path 11 and the positional relationship of the magnetic sensitive elements 24c and 24d with respect to the reference position of the current path 13 are the same, and the current path 11 and the current path 13 It is assumed that the same amount of lateral displacement occurs between the two. In this case, the second position detection unit 25b calculates, for example, the added value of the voltage signal V2a and the voltage signal V2c as new voltage signals V2a and V2c, and newly adds the added value of the voltage signal V2b and the voltage signal V2d. Calculated as voltage signals V2b and V2d. The second position detection unit 25b uses the calculated new voltage signals V2a, V2b, V2c, and V2d to perform an calculation using the above-mentioned function, so that even if there is a disturbance magnetic field n, the current path The lateral positions of 11 and 13 can be detected with high accuracy.
 また、電流センサ10は、縦方向において感磁素子24a,24bからずれた位置に感磁素子24a,24bの感度軸32a,32bの向きと逆向きの2つの感磁素子24e,24fを含む構成であってもよい。なお、2つの感磁素子24e,24fは図示していない。この場合、第2の位置検出部25bは、感磁素子24aの出力と感磁素子24eの出力との加算値を新たな電圧信号V2aとし、感磁素子24bの出力と感磁素子24fの出力との加算値を新たな電圧信号V2bとして算出する。第2の位置検出部25bは、算出した新たな電圧信号V2a,V2bを用いて上述した関数を用いた演算を行うことで、外乱磁界nがある場合であっても、電流路11の横方向の位置を精度よく検出することができる。 Further, the current sensor 10 includes two magnetic sensing elements 24e and 24f in the directions opposite to the directions of the sensitivity shafts 32a and 32b of the magnetic sensing elements 24a and 24b at positions deviated from the magnetic sensing elements 24a and 24b in the vertical direction. It may be. The two magnetic sensing elements 24e and 24f are not shown. In this case, the second position detection unit 25b sets the sum of the output of the magnetic sensing element 24a and the output of the magnetic sensing element 24e as a new voltage signal V2a, and sets the output of the magnetic sensing element 24b and the output of the magnetic sensing element 24f. The added value of and is calculated as a new voltage signal V2b. The second position detection unit 25b uses the calculated new voltage signals V2a and V2b to perform an operation using the above-mentioned function, so that even when there is a disturbance magnetic field n, the second position detection unit 25b performs a calculation in the lateral direction of the current path 11. The position of can be detected accurately.
 同様に、電流センサ10は、縦方向において感磁素子24c,24dからずれた位置に感磁素子24c,24dの感度軸32c,32dの向きと逆向きの2つの感磁素子24g,24hを含む構成であってもよい。なお、2つの感磁素子24g,24hは図示していない。この場合、第2の位置検出部25bは、感磁素子24cの出力と感磁素子24gの出力との加算値を新たな電圧信号V2cとし、感磁素子24dの出力と感磁素子24hの出力との加算値を新たな電圧信号V2dとして算出する。第2の位置検出部25bは、算出した新たな電圧信号V2c,V2dを用いて上述した関数を用いた演算を行うことで、外乱磁界nがある場合であっても、電流路13の横方向の位置を精度よく検出することができる。 Similarly, the current sensor 10 includes two magnetic sensing elements 24g and 24h in the directions opposite to the directions of the sensitivity shafts 32c and 32d of the magnetic sensing elements 24c and 24d at positions deviated from the magnetic sensing elements 24c and 24d in the vertical direction. It may be a configuration. The two magnetic sensing elements 24g and 24h are not shown. In this case, the second position detection unit 25b sets the added value of the output of the magnetic sensing element 24c and the output of the magnetic sensing element 24g as a new voltage signal V2c, and sets the output of the magnetic sensing element 24d and the output of the magnetic sensing element 24h. The added value of and is calculated as a new voltage signal V2d. The second position detection unit 25b uses the calculated new voltage signals V2c and V2d to perform an operation using the above-mentioned function, so that even when there is a disturbance magnetic field n, the second position detection unit 25b performs a calculation in the lateral direction of the current path 13. The position of can be detected accurately.
 図15に示す補正部26は、上述したように、電流センサ1a,1bの電圧信号Vdet1,Vdet2と、第1の位置検出部25aの位置信号Sp1と、第2の位置検出部25bの位置信号Sp2とに基づいて、電圧信号Vdet1,Vdet2を補正した補正電圧信号Vdet1c,Vdet2cを出力する。 As described above, the correction unit 26 shown in FIG. 15 includes the voltage signals Vdet1 and Vdet2 of the current sensors 1a and 1b, the position signal Sp1 of the first position detection unit 25a, and the position signal of the second position detection unit 25b. Based on Sp2, the corrected voltage signals Vdet1c and Vdet2c obtained by correcting the voltage signals Vdet1 and Vdet2 are output.
 補正部26は、縦ずれのずれ量と横ずれのずれ量とから電圧信号Vdet1,Vdet2の補正係数を算出するための補正関数の情報を記憶しており、かかる補正関数の情報を用いて、電圧信号Vdet1,Vdet2の補正係数を算出する。かかる補正関数は、横ずれのずれ量と補正係数の値との関係を規定する関数であり、縦ずれのずれ量毎に設けられる関数である。 The correction unit 26 stores the information of the correction function for calculating the correction coefficient of the voltage signals Vdet1 and Vdet2 from the amount of the vertical deviation and the amount of the lateral deviation, and uses the information of the correction function to obtain the voltage. The correction coefficient of the signals Vdet1 and Vdet2 is calculated. Such a correction function is a function that defines the relationship between the amount of lateral deviation and the value of the correction coefficient, and is a function provided for each amount of vertical deviation.
 補正関数は、例えば、下記式(8)で表される。下記式(8)において、「K」は、補正係数であり、「x」は、横ずれのずれ量であり、「k1」、「k2」、「k3」は、補正関数の係数である。
 K=k1×x+k2×x+k3   ・・・(8)
The correction function is represented by, for example, the following equation (8). In the following equation (8), "K" is a correction coefficient, "x" is a lateral displacement amount, and "k1", "k2", and "k3" are coefficients of the correction function.
K = k1 × x 2 + k2 × x + k3 ・ ・ ・ (8)
 補正部26は、上記式(8)を用いて、電圧信号Vdet1の補正係数を算出し、算出した電圧信号Vdet1の補正係数を電圧信号Vdet1に乗算することで、補正電圧信号Vdet1cを算出する。また、補正部26は、上記式(8)を用いて、電圧信号Vdet2の補正係数を算出し、算出した電圧信号Vdet2の補正係数を電圧信号Vdet2に乗算することで、補正電圧信号Vdet2cを算出する。上述した補正関数は、例えば、理論値もしくはシミュレーションなどから求められる。 The correction unit 26 calculates the correction coefficient of the voltage signal Vdet1 using the above equation (8), and multiplies the calculated correction coefficient of the voltage signal Vdet1 by the voltage signal Vdet1 to calculate the correction voltage signal Vdet1c. Further, the correction unit 26 calculates the correction coefficient of the voltage signal Vdet2 using the above equation (8), and multiplies the calculated correction coefficient of the voltage signal Vdet2 by the voltage signal Vdet2 to calculate the correction voltage signal Vdet2c. do. The correction function described above can be obtained from, for example, a theoretical value or a simulation.
 図21は、実施の形態3にかかる電流路の横ずれのずれ量と補正係数との関係の一例を示す図である。図21に示す例は、縦ずれのずれ量が1mmである場合の補正関数の特性を示しており、図21において、縦軸は、補正係数の値を示し、横軸は、電流路の横ずれを示す。図21で示される補正関数は、例えば、上記式(8)において、k1=1.002、k2=0.0063、およびk3=0.0146とする補正関数である。 FIG. 21 is a diagram showing an example of the relationship between the amount of lateral displacement of the current path and the correction coefficient according to the third embodiment. The example shown in FIG. 21 shows the characteristics of the correction function when the amount of vertical deviation is 1 mm. In FIG. 21, the vertical axis indicates the value of the correction coefficient, and the horizontal axis indicates the lateral deviation of the current path. Is shown. The correction function shown in FIG. 21 is, for example, a correction function in which k1 = 1.002, k2 = 0.0063, and k3 = 0.0146 in the above equation (8).
 補正部26が縦ずれのずれ量毎に有する補正関数の情報は、上記式(8)に示すような演算式の情報であってもよく、横ずれのずれ量と補正係数とが関連付けられたテーブルの情報であってもよい。また、補正関数は、縦ずれのずれ量と横ずれのずれ量と補正係数の値との関係を規定する関数であってもよく、この場合、補正関数の情報は演算式の情報であってもよく、テーブルの情報であってもよい。 The information of the correction function that the correction unit 26 has for each amount of vertical deviation may be the information of the calculation formula as shown in the above equation (8), and the table in which the amount of lateral deviation and the correction coefficient are associated with each other. It may be the information of. Further, the correction function may be a function that defines the relationship between the amount of vertical deviation, the amount of lateral deviation, and the value of the correction coefficient. In this case, the information of the correction function may be the information of the arithmetic expression. Often, it may be table information.
 なお、上述した電流センサ10は、電流路11,13に流れる電流を検出する構成であるが、電流路11,13のうちの一方に流れる電流を検出する構成であってもよい。この場合、電流センサ10において、感磁素子23a,23bと感磁素子23c,23dとは縦方向に対向する位置に配置され、感磁素子24a,24bと感磁素子24c,24dとは横方向に対向する位置に配置される。 Although the above-mentioned current sensor 10 is configured to detect the current flowing through the current paths 11 and 13, it may be configured to detect the current flowing through one of the current paths 11 and 13. In this case, in the current sensor 10, the magnetic sensing elements 23a and 23b and the magnetic sensing elements 23c and 23d are arranged at positions facing each other in the vertical direction, and the magnetic sensing elements 24a and 24b and the magnetic sensing elements 24c and 24d are arranged in the horizontal direction. It is placed at a position facing the.
 また、電流センサ10は、感磁素子23c,23dおよび感磁素子24c,24dを有しない構成であってもよく、この場合、電流センサ10は、電流路11の電流を検出する。また、電流センサ10は、感磁素子23a,23bおよび感磁素子24a,24bを有しない構成であってもよく、この場合、電流センサ10は、電流路13の電流を検出する。 Further, the current sensor 10 may have a configuration that does not have the magnetic sensing elements 23c and 23d and the magnetic sensing elements 24c and 24d. In this case, the current sensor 10 detects the current in the current path 11. Further, the current sensor 10 may have a configuration that does not have the magnetic sensing elements 23a and 23b and the magnetic sensing elements 24a and 24b. In this case, the current sensor 10 detects the current in the current path 13.
 上述した例では、電流センサ10は、3相3線式の電流路に流れる電流を検出するが、電流センサ10は、例えば、単相2線式の電流路に流れる電流を検出したり、単相3線式の電流路に流れる電流を検出したりすることができる。補正部26は、3相3線式、単相2線式、および単相3線式の各々について、上述した補正関数の情報を有する。補正部26は、3相3線式、単相2線式、および単相3線式のうち電流センサ10または端子カバー4などに設けられた不図示のスイッチの切り替え位置に対応する方式の補正関数の情報に基づいて、電圧信号Vdet1,Vdet2を補正する。 In the above example, the current sensor 10 detects the current flowing in the 3-phase 3-wire current path, but the current sensor 10 detects, for example, the current flowing in the single-phase 2-wire current path, or simply. It is possible to detect the current flowing in the phase 3-wire type current path. The correction unit 26 has information on the correction function described above for each of the three-phase three-wire system, the single-phase two-wire system, and the single-phase three-wire system. The correction unit 26 corrects a method corresponding to a switching position of a switch (not shown) provided on the current sensor 10 or the terminal cover 4 among the three-phase three-wire system, the single-phase two-wire system, and the single-phase three-wire system. The voltage signals Vdet1 and Vdet2 are corrected based on the information of the function.
 図22は、実施の形態3にかかる電流センサのハードウェア構成の一例を示す図である。図22に示すように、電流センサ10は、複数の感磁素子20,23,24と、プロセッサ201と、メモリ202と、インタフェース回路203とを備えるコンピュータを含む。プロセッサ201、メモリ202、およびインタフェース回路203は、例えば、バス204によって互いに情報の送受信が可能である。 FIG. 22 is a diagram showing an example of the hardware configuration of the current sensor according to the third embodiment. As shown in FIG. 22, the current sensor 10 includes a computer including a plurality of magnetic sensing elements 20, 23, 24, a processor 201, a memory 202, and an interface circuit 203. The processor 201, the memory 202, and the interface circuit 203 can send and receive information to and from each other by, for example, the bus 204.
 メモリ202は、例えば、上記式(6),(7)の情報などのように位置検出部25において縦ずれのずれ量を検出するための情報および横ずれのずれ量を検出するための情報などを記憶し、また、上記補正関数の情報などのように補正部26において電圧信号Vdet1,Vdet2を補正するための情報を記憶する。複数の感磁素子20,23,24は、インタフェース回路203に接続される。プロセッサ201は、メモリ202に記憶されたプログラムを読み出して実行することによって、演算回路22、位置検出部25、および補正部26などの機能を実行する。プロセッサ201は、例えば、処理回路の一例であり、CPU、DSP、およびシステムLSIのうち一つ以上を含む。 The memory 202 provides information for detecting the amount of vertical deviation and information for detecting the amount of lateral deviation in the position detecting unit 25, such as the information in the above equations (6) and (7). It is also stored, and information for correcting the voltage signals Vdet1 and Vdet2 is stored in the correction unit 26, such as the information of the correction function. The plurality of magnetic sensing elements 20, 23, 24 are connected to the interface circuit 203. The processor 201 executes functions such as the arithmetic circuit 22, the position detection unit 25, and the correction unit 26 by reading and executing the program stored in the memory 202. The processor 201 is, for example, an example of a processing circuit, and includes one or more of a CPU, a DSP, and a system LSI.
 メモリ202は、RAM、ROM、フラッシュメモリ、EPROM、およびEEPROMのうち一つ以上を含む。なお、電流センサ10は、ハードウェアのみによって構成されてもよい。例えば、電流センサ10は、ロジック回路、ASICまたはFPGAなどの集積回路によって構成されてもよい。 The memory 202 includes one or more of RAM, ROM, flash memory, EPROM, and EEPROM. The current sensor 10 may be configured only by hardware. For example, the current sensor 10 may be configured by a logic circuit or an integrated circuit such as an ASIC or FPGA.
 以上のように、実施の形態3にかかる電流センサ10は、複数の感磁素子23,24と、位置検出部25と、補正部26とを備える。複数の感磁素子23,24は、電流路11,13の位置を検出するための複数の位置検出用感磁素子の一例である。位置検出部25は、複数の感磁素子23,24の出力に基づいて、電流路11の位置を検出する。補正部26は、位置検出部25によって検出された電流路11の位置に基づいて、演算回路22によって算出された電流の値を補正する。電流センサ10は、複数の感磁素子20と電流路11,13との位置関係が変化した場合、複数の感磁素子20の電流路11に対する配置条件が設計値からずれてしまうため、演算回路22によって算出される電流の値の誤差が大きくなる可能性がある。電流センサ10は、上述したように、複数の感磁素子23,24と、位置検出部25と、補正部26とを備えており、電流路11に流れる電流の値を精度よく算出することができる。 As described above, the current sensor 10 according to the third embodiment includes a plurality of magnetic sensing elements 23 and 24, a position detection unit 25, and a correction unit 26. The plurality of magnetic sensing elements 23 and 24 are examples of a plurality of position detecting magnetic sensing elements for detecting the positions of the current paths 11 and 13. The position detection unit 25 detects the position of the current path 11 based on the outputs of the plurality of magnetic sensing elements 23 and 24. The correction unit 26 corrects the value of the current calculated by the arithmetic circuit 22 based on the position of the current path 11 detected by the position detection unit 25. In the current sensor 10, when the positional relationship between the plurality of magnetic sensing elements 20 and the current paths 11 and 13 changes, the arrangement conditions of the plurality of magnetic sensing elements 20 with respect to the current paths 11 deviate from the design values, so that the calculation circuit There is a possibility that the error of the value of the current calculated by 22 becomes large. As described above, the current sensor 10 includes a plurality of magnetic sensing elements 23 and 24, a position detection unit 25, and a correction unit 26, and can accurately calculate the value of the current flowing through the current path 11. can.
 また、複数の感磁素子23,24は、電流路11の延在方向と直交するXZ軸平面上のX軸方向に沿った感度軸31a,31bを有し、XZ軸平面上でX軸方向と直交するZ軸方向で間隔を空けて配置される複数の感磁素子23a,23bと、X軸方向に沿った感度軸32a,32bを有し、X軸方向で間隔を空けて配置される複数の感磁素子24a,24bとを含む。感磁素子23a,23bは、第1の位置検出用感磁素子の一例であり、感磁素子24a,24bは、第2の位置検出用感磁素子の一例である。また、X軸方向は、第1の方向の一例であり、Z軸方向は、第2の方向の一例である。位置検出部25は、第1の位置検出部25aと、第2の位置検出部25bとを備える。第1の位置検出部25aは、複数の感磁素子23a,23bの出力に基づいて、Z軸方向における電流路11の位置を検出する。第2の位置検出部25bは、複数の感磁素子24a,24bの出力に基づいて、X軸方向における電流路11の位置を検出する。これにより、電流センサ10は、電流路11の位置を精度よく検出することができる。 Further, the plurality of magnetic sensing elements 23 and 24 have sensitivity axes 31a and 31b along the X-axis direction on the XZ-axis plane orthogonal to the extending direction of the current path 11, and the X-axis direction on the XZ-axis plane. It has a plurality of magnetic sensing elements 23a and 23b arranged at intervals in the Z-axis direction orthogonal to the X-axis direction, and sensitivity axes 32a and 32b along the X-axis direction, and is arranged at intervals in the X-axis direction. Includes a plurality of magnetic sensitive elements 24a and 24b. The magnetic sensing elements 23a and 23b are examples of the first position detecting magnetic sensing element, and the magnetic sensing elements 24a and 24b are examples of the second position detecting magnetic sensing element. The X-axis direction is an example of the first direction, and the Z-axis direction is an example of the second direction. The position detection unit 25 includes a first position detection unit 25a and a second position detection unit 25b. The first position detection unit 25a detects the position of the current path 11 in the Z-axis direction based on the outputs of the plurality of magnetic sensing elements 23a and 23b. The second position detection unit 25b detects the position of the current path 11 in the X-axis direction based on the outputs of the plurality of magnetic sensing elements 24a and 24b. As a result, the current sensor 10 can accurately detect the position of the current path 11.
 また、電流センサ10は、X軸方向に沿った感度軸31c,31dを有し、Z軸方向で間隔を空けて配置される複数の感磁素子23c,23dを備える。複数の感磁素子23c,23dは、複数の第3の位置検出用感磁素子の一例である。複数の感磁素子23a,23bと複数の感磁素子23c,23dとは、互いの感度軸が平行且つ逆向きである。第1の位置検出部25aは、感磁素子23a,23bの出力と複数の感磁素子23c,23dの出力とに基づいて、Z軸方向における電流路11,13の位置を検出する。これにより、電流センサ10の第1の位置検出部25aは、外乱磁界nがある場合であっても、電流路11,13のZ軸方向の位置を精度よく検出することができる。 Further, the current sensor 10 has sensitivity axes 31c and 31d along the X-axis direction, and includes a plurality of magnetic sensing elements 23c and 23d arranged at intervals in the Z-axis direction. The plurality of magnetic sensing elements 23c and 23d are examples of the plurality of third position detecting magnetic sensing elements. The sensitivity axes of the plurality of magnetic sensing elements 23a and 23b and the plurality of magnetic sensing elements 23c and 23d are parallel and opposite to each other. The first position detection unit 25a detects the positions of the current paths 11 and 13 in the Z-axis direction based on the outputs of the magnetic sensing elements 23a and 23b and the outputs of the plurality of magnetic sensing elements 23c and 23d. As a result, the first position detection unit 25a of the current sensor 10 can accurately detect the positions of the current paths 11 and 13 in the Z-axis direction even when there is a disturbance magnetic field n.
 また、第2の位置検出部25bは、複数の感磁素子24a,24bのうちの一方の感磁素子24aの出力と他方の感磁素子24bの出力との比率と、第1の位置検出部25aによって検出された電流路11の縦方向における位置とに基づいて、X軸方向における電流路11の位置を検出する。これにより、電流センサ10の第2の位置検出部25bは、電流路11のX軸方向の位置ずれがあった場合であっても、電流路11のX軸方向の位置を精度よく検出することができる。 Further, the second position detection unit 25b is a first position detection unit and a ratio of the output of one of the plurality of magnetic sensing elements 24a and 24b to the output of the other magnetic sensing element 24b. The position of the current path 11 in the X-axis direction is detected based on the position of the current path 11 in the vertical direction detected by 25a. As a result, the second position detection unit 25b of the current sensor 10 accurately detects the position of the current path 11 in the X-axis direction even when the current path 11 is displaced in the X-axis direction. Can be done.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
 1,10 電流センサ、2 回路遮断器、3 遮断器本体、4 端子カバー、4a,4d,41,44 端部、4b,4c,42,43 線間部、5 筐体、6 操作ハンドル、7 表面、8 底面、11,12,13 電流路、20,20a,20b,20c,20d,23,23a,23b,23c,23d,24,24a,24b,24c,24d 感磁素子、21,21a,21b,21c,21d,31,31a,31b,31c,31d,32,32a,32b,32c,32d 感度軸、22 演算回路、25 位置検出部、25a 第1の位置検出部、25b 第2の位置検出部、26 補正部、30,30a,30b,30c,30d 仮想円、40 基板、45 連結部、100a,100b,100c,100d 磁力線、L,L1,L2 仮想線、O 中心、θ1 第1角度、θ2 第2角度。 1,10 current sensor, 2 circuit breaker, 3 circuit breaker body, 4 terminal cover, 4a, 4d, 41,44 end, 4b, 4c, 42,43 line-to-line part, 5 housing, 6 operation handle, 7 Front surface, 8 bottom surface, 11, 12, 13 current paths, 20, 20a, 20b, 20c, 20d, 23, 23a, 23b, 23c, 23d, 24, 24a, 24b, 24c, 24d magnetic sensory element, 21,21a, 21b, 21c, 21d, 31, 31a, 31b, 31c, 31d, 32, 32a, 32b, 32c, 32d Sensitivity axis, 22 Arithmetic circuit, 25 Position detection unit, 25a First position detection unit, 25b Second position Detection unit, 26 correction unit, 30, 30a, 30b, 30c, 30d virtual circle, 40 substrate, 45 connection unit, 100a, 100b, 100c, 100d magnetic field line, L, L1, L2 virtual line, O center, θ1 first angle , Θ2 Second angle.

Claims (10)

  1.  電流路に流れる電流を測定する電流センサであって、
     前記電流路の延在方向と直交する平面において前記電流路の中心を中心とし半径が互いに異なる複数の仮想円のうち対応する仮想円上に各々配置される複数の感磁素子と、
     前記複数の感磁素子の出力に基づいて前記電流路に流れる電流の値を算出する演算回路と、を備え、
     前記複数の感磁素子は、
     互いの感度軸が平行且つ逆向きである少なくとも2つの感磁素子を含む
     ことを特徴とする電流センサ。
    A current sensor that measures the current flowing in the current path.
    A plurality of magnetic sensitive elements arranged on the corresponding virtual circles among a plurality of virtual circles having different radii around the center of the current path in a plane orthogonal to the extending direction of the current path.
    It is provided with an arithmetic circuit that calculates the value of the current flowing in the current path based on the outputs of the plurality of magnetic sensing elements.
    The plurality of magnetic sensitive elements are
    A current sensor comprising at least two magnetic sensitive elements whose sensitivity axes are parallel and opposite to each other.
  2.  前記電流路の位置を検出するための複数の位置検出用感磁素子と、
     前記複数の位置検出用感磁素子の出力に基づいて、前記電流路の位置を検出する位置検出部と、
     前記位置検出部によって検出された前記電流路の位置に基づいて、前記演算回路によって算出された電流の値を補正する補正部と、を備える
     ことを特徴とする請求項1に記載の電流センサ。
    A plurality of position-detecting magnetic-sensitive elements for detecting the position of the current path, and
    A position detection unit that detects the position of the current path based on the outputs of the plurality of position detection magnetic sensing elements, and a position detection unit.
    The current sensor according to claim 1, further comprising a correction unit that corrects the value of the current calculated by the arithmetic circuit based on the position of the current path detected by the position detection unit.
  3.  前記複数の位置検出用感磁素子は、
     前記延在方向と直交する平面上の第1の方向に沿った感度軸を有し、前記平面上の方向であって前記第1の方向と直交する第2の方向で間隔を空けて配置される複数の第1の位置検出用感磁素子と、
     前記第1の方向に沿った感度軸を有し、前記第1の方向で間隔を空けて配置される複数の第2の位置検出用感磁素子と、を含み、
     前記位置検出部は、
     前記複数の第1の位置検出用感磁素子の出力に基づいて、前記第2の方向における前記電流路の位置を検出する第1の位置検出部と、
     前記複数の第2の位置検出用感磁素子の出力に基づいて、前記第1の方向における前記電流路の位置を検出する第2の位置検出部と、を備える
     ことを特徴とする請求項2に記載の電流センサ。
    The plurality of magnetic sensing elements for position detection are
    It has a sensitivity axis along a first direction on a plane orthogonal to the extending direction, and is arranged at intervals in a second direction on the plane and orthogonal to the first direction. A plurality of first position-detecting magnetic-sensitive elements,
    A plurality of second position detecting magnetic sensitive elements having a sensitivity axis along the first direction and arranged at intervals in the first direction are included.
    The position detection unit
    A first position detecting unit that detects the position of the current path in the second direction based on the outputs of the plurality of first position detecting magnetic sensing elements.
    2. The current sensor described in.
  4.  前記第1の方向に沿った感度軸を有し、前記第2の方向で間隔を空けて配置される複数の第3の位置検出用感磁素子を備え、
     前記複数の第1の位置検出用感磁素子と前記複数の第3の位置検出用感磁素子とは、互いの感度軸が平行且つ逆向きであり、
     前記第1の位置検出部は、
     前記複数の第1の位置検出用感磁素子の出力と前記複数の第3の位置検出用感磁素子の出力とに基づいて、前記第2の方向における前記電流路の位置を検出する
     ことを特徴とする請求項3に記載の電流センサ。
    It has a sensitivity axis along the first direction, and includes a plurality of third position detecting magnetic sensitive elements arranged at intervals in the second direction.
    The plurality of first position-detecting magnetic-sensing elements and the plurality of third-position-detecting magnetic-sensing elements have their sensitivity axes parallel to each other and in opposite directions.
    The first position detection unit is
    Detecting the position of the current path in the second direction based on the outputs of the plurality of first position-detecting magnetic-sensing elements and the outputs of the plurality of third-position-detecting magnetic-sensing elements. The current sensor according to claim 3.
  5.  前記第2の位置検出部は、
     前記複数の第2の位置検出用感磁素子のうちの一方の第2の位置検出用感磁素子の出力と他方の第2の位置検出用感磁素子の出力との比率と、前記第1の位置検出部によって検出された前記電流路の前記第1の方向における位置とに基づいて、前記第2の方向における前記電流路の位置を検出する
     ことを特徴とする請求項3または4に記載の電流センサ。
    The second position detection unit is
    The ratio of the output of one of the second position-detecting magnetic-sensing elements of the plurality of second position-detecting magnetic-sensing elements to the output of the other second position-detecting magnetic-sensing element, and the first. 3 or 4, wherein the position of the current path in the second direction is detected based on the position of the current path in the first direction detected by the position detection unit of the above. Current sensor.
  6.  前記複数の感磁素子は、
     前記複数の仮想円のうち互いに異なる仮想円上に各々配置される第1の感磁素子、第2の感磁素子、第3の感磁素子、および第4の感磁素子を含み、
     前記第1の感磁素子と前記第3の感磁素子とは、
     互いの感度軸が平行且つ逆向きであり、
     前記第2の感磁素子と前記第4の感磁素子とは、
     互いの感度軸が平行且つ逆向きである
     ことを特徴とする請求項1から5のいずれか1つに記載の電流センサ。
    The plurality of magnetic sensitive elements are
    The plurality of virtual circles include a first magnetic sensitive element, a second magnetic sensitive element, a third magnetic sensitive element, and a fourth magnetic sensitive element, which are arranged on different virtual circles.
    The first magnetic sensing element and the third magnetic sensing element are
    The sensitivity axes are parallel and opposite to each other,
    The second magnetic sensing element and the fourth magnetic sensing element are
    The current sensor according to any one of claims 1 to 5, wherein the sensitivity axes are parallel and opposite to each other.
  7.  請求項6に記載の電流センサを備える
     ことを特徴とする回路遮断器の端子カバー。
    A terminal cover of a circuit breaker comprising the current sensor according to claim 6.
  8.  前記電流路は前記電流センサによる電流の測定対象である対象電流路であり、
     前記回路遮断器は、
     前記対象電流路とは異なる1以上の電流路と前記対象電流路とを含む複数の電流路が接続され、
     前記複数の電流路には、
     前記延在方向に直交する方向を配列方向として配列され、
     前記端子カバーは、
     前記配列方向における端部と、前記複数の電流路のうち隣接する2つの電流路間に設けられる線間部と、を備え、
     前記第1の感磁素子と前記第2の感磁素子とは、
     前記端部の領域であって前記配列方向に沿って前記対象電流路の中心を通る線で区切られる2つの領域のうち一方の領域に配置され、
     前記第3の感磁素子と前記第4の感磁素子とは、
     前記線間部の領域であって前記2つの領域のうち他方の領域に配置される
     ことを特徴とする請求項7に記載の回路遮断器の端子カバー。
    The current path is a target current path for which the current is measured by the current sensor.
    The circuit breaker
    A plurality of current paths including one or more current paths different from the target current path and the target current path are connected.
    In the plurality of current paths,
    Arranged with the direction orthogonal to the extending direction as the arrangement direction,
    The terminal cover is
    An end portion in the arrangement direction and an interline portion provided between two adjacent current paths among the plurality of current paths are provided.
    The first magnetic sensing element and the second magnetic sensing element are
    It is arranged in one of the two regions of the end region, which is separated by a line passing through the center of the target current path along the arrangement direction.
    The third magnetic sensitive element and the fourth magnetic sensitive element are
    The terminal cover of the circuit breaker according to claim 7, wherein the area between the lines is arranged in the other area of the two areas.
  9.  前記端部は、
     前記2つの領域のうち前記回路遮断器の操作ハンドル側の領域に配置され、
     前記線間部は、
     前記2つの領域のうち前記回路遮断器の底面側の領域に配置される
     ことを特徴とする請求項8に記載の回路遮断器の端子カバー。
    The end is
    It is arranged in the area on the operation handle side of the circuit breaker out of the two areas.
    The line-to-line portion
    The terminal cover of the circuit breaker according to claim 8, wherein the terminal cover of the circuit breaker is arranged in a region on the bottom surface side of the circuit breaker among the two regions.
  10.  前記端部に設けられた第1の領域と前記線間部に設けられた第2の領域と、前記第1の領域と前記第2の領域とを連結する連結領域を有する基板を備える
     ことを特徴とする請求項9に記載の回路遮断器の端子カバー。
    A substrate having a first region provided at the end portion, a second region provided at the interline portion, and a connecting region connecting the first region and the second region is provided. The terminal cover of the circuit breaker according to claim 9.
PCT/JP2021/003771 2020-02-19 2021-02-02 Current sensor and circuit breaker terminal cover WO2021166635A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180012731.6A CN115066621A (en) 2020-02-19 2021-02-02 Current sensor and terminal cover of circuit breaker
JP2022501763A JP7224525B2 (en) 2020-02-19 2021-02-02 Terminal covers for current sensors and circuit breakers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/006603 2020-02-19
PCT/JP2020/006603 WO2021166134A1 (en) 2020-02-19 2020-02-19 Current sensor and terminal cover for circuit breaker

Publications (1)

Publication Number Publication Date
WO2021166635A1 true WO2021166635A1 (en) 2021-08-26

Family

ID=77391379

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/006603 WO2021166134A1 (en) 2020-02-19 2020-02-19 Current sensor and terminal cover for circuit breaker
PCT/JP2021/003771 WO2021166635A1 (en) 2020-02-19 2021-02-02 Current sensor and circuit breaker terminal cover

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006603 WO2021166134A1 (en) 2020-02-19 2020-02-19 Current sensor and terminal cover for circuit breaker

Country Status (3)

Country Link
JP (1) JP7224525B2 (en)
CN (1) CN115066621A (en)
WO (2) WO2021166134A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547869U (en) * 1991-10-21 1993-06-25 シーメンス アクチエンゲゼルシヤフト Current sensor with integrated hall circuit
JP2012189506A (en) * 2011-03-11 2012-10-04 Aisin Aw Co Ltd Current detection device
JP2014025707A (en) * 2012-07-24 2014-02-06 Nitto Kogyo Co Ltd Current measuring member
JP2014025706A (en) * 2012-07-24 2014-02-06 Nitto Kogyo Co Ltd Adapter for current measurement
WO2015122064A1 (en) * 2014-02-13 2015-08-20 アルプス・グリーンデバイス株式会社 Current sensor
WO2018116852A1 (en) * 2016-12-22 2018-06-28 アルプス電気株式会社 Current sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6211431B2 (en) 2014-02-12 2017-10-11 株式会社神戸製鋼所 Multi-electrode single-sided submerged arc welding method, welded product manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547869U (en) * 1991-10-21 1993-06-25 シーメンス アクチエンゲゼルシヤフト Current sensor with integrated hall circuit
JP2012189506A (en) * 2011-03-11 2012-10-04 Aisin Aw Co Ltd Current detection device
JP2014025707A (en) * 2012-07-24 2014-02-06 Nitto Kogyo Co Ltd Current measuring member
JP2014025706A (en) * 2012-07-24 2014-02-06 Nitto Kogyo Co Ltd Adapter for current measurement
WO2015122064A1 (en) * 2014-02-13 2015-08-20 アルプス・グリーンデバイス株式会社 Current sensor
WO2018116852A1 (en) * 2016-12-22 2018-06-28 アルプス電気株式会社 Current sensor

Also Published As

Publication number Publication date
WO2021166134A1 (en) 2021-08-26
JPWO2021166635A1 (en) 2021-08-26
JP7224525B2 (en) 2023-02-17
CN115066621A (en) 2022-09-16

Similar Documents

Publication Publication Date Title
US9081041B2 (en) High accuracy differential current sensor for applications like ground fault interrupters
US8896295B2 (en) Magnetic field sensor having multiple sensing elements and a programmable misalignment adjustment device for misalignment detection and correction in current sensing and other applications
US9007054B2 (en) Angle sensor with misalignment detection and correction
JP5915890B2 (en) Stress sensor and stress correction hall sensor for detecting mechanical stress of semiconductor chip
US7859255B2 (en) Matching of GMR sensors in a bridge
EP2284554B1 (en) Magnetic sensor with bridge circuit including magnetoresistance effect elements
JP7003609B2 (en) Current sensor
JP2796391B2 (en) Physical quantity detection method and physical quantity detection device, servo motor using these methods and devices, and power steering device using this servo motor
KR101950710B1 (en) High accuracy differential current sensor for applications like ground fault interrupters
US11519940B2 (en) Current sensor
JP6384677B2 (en) Current sensor
WO2012046547A1 (en) Current sensor
WO2021166635A1 (en) Current sensor and circuit breaker terminal cover
JP6720295B2 (en) Current sensor
JP2013108787A (en) Current sensor
JP5487403B2 (en) Current sensor
US20230026816A1 (en) Position detection device
US11953395B2 (en) Magnetic field differential linear torque sensor
CN113608152B (en) Magnetic sensor
WO2021156982A1 (en) Current sensor and circuit breaker terminal cover
US20230258515A1 (en) Magnetic field differential torque sensor
US6861717B2 (en) Device for defecting a magnetic field, magnetic field measure and current meter
US11899047B1 (en) Magnetic field shaping for magnetic field current sensor
JP2015031647A (en) Current sensor and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757786

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022501763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757786

Country of ref document: EP

Kind code of ref document: A1