WO2021166037A1 - Laser processing machine - Google Patents

Laser processing machine Download PDF

Info

Publication number
WO2021166037A1
WO2021166037A1 PCT/JP2020/006088 JP2020006088W WO2021166037A1 WO 2021166037 A1 WO2021166037 A1 WO 2021166037A1 JP 2020006088 W JP2020006088 W JP 2020006088W WO 2021166037 A1 WO2021166037 A1 WO 2021166037A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
optical
processing machine
laser beam
laser processing
Prior art date
Application number
PCT/JP2020/006088
Other languages
French (fr)
Japanese (ja)
Inventor
京藤 友博
恭平 石川
瀬口 正記
智毅 桂
古田 啓介
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020530406A priority Critical patent/JP6833117B1/en
Priority to PCT/JP2020/006088 priority patent/WO2021166037A1/en
Publication of WO2021166037A1 publication Critical patent/WO2021166037A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/073Shaping the laser spot

Definitions

  • the present disclosure relates to a laser processing machine that processes a work piece by irradiating a laser beam.
  • Patent Document 1 includes two conical lenses and a moving mechanism for moving each conical lens in the optical axis direction, and a laser processing machine that switches the beam mode by changing the distance between the conical lenses. Is disclosed.
  • the conventional laser machine disclosed in Patent Document 1 requires a moving mechanism having a long length in the optical axis direction in order to secure a moving distance of each conical lens in the optical axis direction in the moving mechanism. .. Further, the larger the beam diameter is changed, the longer the moving distance of each conical lens becomes, and the larger the moving mechanism becomes. Therefore, according to the conventional technique, the laser processing machine has a problem that it is difficult to switch the beam mode due to a small configuration.
  • the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a laser processing machine capable of switching the intensity distribution in the cross section of the laser beam by a compact configuration.
  • the laser processing machine processes a work piece by irradiating a laser beam.
  • the laser processing machine includes a light source that emits a laser beam and a switching unit that switches the intensity distribution in the cross section of the laser beam.
  • the switching unit includes a plurality of optical elements and a moving mechanism for individually moving each of the plurality of optical elements to a position on the optical axis of the laser beam and a position off the optical axis.
  • the laser processing machine has an effect that the intensity distribution in the cross section of the laser beam can be switched by a compact configuration.
  • the figure for demonstrating the optical characteristic of the 1st optical element which the switching unit of the laser processing machine which concerns on Embodiment 1 has.
  • FIG. 1 is a diagram showing a schematic configuration of a laser processing machine according to a first embodiment.
  • the laser processing machine 1 processes the workpiece 2 by irradiating the laser beam.
  • the laser machining machine 1 includes a laser oscillator 3 which is a light source that emits a laser beam, a processing head 4 that emits a laser beam toward a workpiece 2, and a transmission path of the laser beam from the laser oscillator 3 to the processing head 4.
  • the transmission cable 5 is provided, a processing table 10 on which the workpiece 2 is placed, and a control device 11 for controlling the laser processing machine 1 are provided.
  • an optical system including a collimating optical system 6, a zoom optical system 7, and a condensing optical system 8 is housed.
  • the collimating optical system 6 parallelizes the laser beam emitted from the transmission cable 5.
  • the zoom optical system 7 has a plurality of lenses 9.
  • the zoom optical system 7 adjusts the beam diameter by adjusting the distance between the lenses 9 by the lens driving unit that moves each lens 9.
  • the illustration of the lens drive unit is omitted.
  • the condensing optical system 8 converges the laser beam.
  • the machining table 10 moves in the two-dimensional direction.
  • the laser processing machine 1 changes the irradiation position of the laser beam on the workpiece 2 by moving the processing table 10.
  • the laser processing machine 1 includes a beam mode, that is, a switching unit 12 for switching the intensity distribution in the cross section of the laser beam.
  • the switching unit 12 is arranged inside the processing head 4.
  • the switching unit 12 has a first optical element 13 and a second optical element 14, which are a plurality of optical elements.
  • Each of the first optical element 13 and the second optical element 14 has a position on the optical axis AX of the laser beam and a position deviated from the optical axis AX between the collimating optical system 6 and the zoom optical system 7. It is possible to move individually in.
  • FIG. 1 shows how the first optical element 13 and the second optical element 14 are arranged on the optical axis AX.
  • the laser beam emitted from the collimating optical system 6 is incident on the first optical element 13.
  • the laser beam emitted from the first optical element 13 is incident on the second optical element 14.
  • the laser beam emitted from the second optical element 14 is incident on the zoom optical system 7.
  • the first optical element 13 and the second optical element 14 are arranged at positions deviated from the optical axis AX, the laser beam emitted from the collimating optical system 6 is incident on the zoom optical system 7.
  • the laser beam emitted from the collimating optical system 6 is the first. It is incident on the optical element 13 of the above. The laser beam emitted from the first optical element 13 is incident on the zoom optical system 7.
  • the laser beam emitted from the collimating optical system 6 is the second. It is incident on the optical element 14 of the above. The laser beam emitted from the second optical element 14 is incident on the zoom optical system 7.
  • the control device 11 outputs an oscillation control signal corresponding to each command value such as peak output, pulse width, number of pulses, and pulse frequency to the laser oscillator 3.
  • the laser oscillator 3 emits a laser beam according to an oscillation control signal.
  • the control device 11 outputs a zoom control signal corresponding to the command value of the beam diameter to the lens driving unit.
  • the lens driving unit moves each lens 9 according to the zoom control signal.
  • the control device 11 outputs a position control signal corresponding to the position command value to the processing table 10.
  • the machining table 10 moves according to the position control signal.
  • the control device 11 outputs a switching command to the switching unit 12.
  • the switching command is a command for switching the beam mode.
  • the switching unit 12 switches the beam mode by moving the first optical element 13 and the second optical element 14 according to the switching command.
  • the first optical element 13 and the second optical element 14 are conical lenses having a conical convex surface.
  • Each of the first optical element 13 and the second optical element 14 has a conical surface which is a conical convex surface and a plane opposite to the conical surface.
  • the vertices of the cone may be simply referred to as vertices.
  • the plane of the first optical element 13 is directed to the incident side of the laser beam.
  • the plane of the second optical element 14 is directed toward the emission side of the laser beam.
  • the conical surface of the first optical element 13 and the conical surface of the second optical element 14 face each other.
  • the first optical element 13 and the second optical element 14 are separated from each other in the optical axis direction so as not to collide with each other.
  • the central axis of the first optical element 13 and the central axis of the second optical element 14 are the optical axes. Matches AX. Even if at least one of the first optical element 13 and the second optical element 14 is moved onto the optical axis AX from a position deviated from the optical axis AX, the collimating optical system 6, the zoom optical system 7, and the condensing optical system No deviation of the central axis of the laser beam from each center of 8 occurs.
  • the optical system included in the laser processing machine 1 is not limited to that described in the first embodiment.
  • the positions of the first optical element 13 and the second optical element 14 on the optical axis AX are not limited to the positions on the incident side of the zoom optical system 7, but may be the positions on the exit side of the zoom optical system 7.
  • the optical system may include optical components other than the collimating optical system 6, the zoom optical system 7, and the condensing optical system 8.
  • FIG. 2 is a diagram for explaining the optical characteristics of the first optical element included in the switching unit of the laser processing machine according to the first embodiment.
  • the first optical element 13 When the Gaussian beam is incident on the plane 16 of the first optical element 13, the first optical element 13 forms a ring-shaped beam.
  • the optical distance from the apex of the first optical element 13 to the image plane S is L
  • the diameter of the ring that is the spot of the beam on the image plane S is R 1
  • the plane perpendicular to the central axis of the cone and the cone plane 15 are The following equation (1) holds, where ⁇ is the angle formed and n is the refractive index of the first optical element 13.
  • the unit of L and R 1 is mm
  • the unit of ⁇ is degree.
  • R 1 2L x tan ⁇ (n-1) x ⁇ ... (1)
  • be the angle formed by the beam emitted from the first optical element 13 and the optical axis AX, and ⁇ is expressed by the following equation (2). Further, the following equation (3) holds, where d is the width of the ring-shaped beam and R0 is the diameter of the beam incident on the first optical element 13. The units of d and R 0 are mm, and the units of ⁇ and ⁇ are degrees.
  • sin -1 (n ⁇ sin ⁇ ) - ⁇ ⁇ ⁇ ⁇ (2)
  • d R 0/2 ⁇ ⁇ ⁇ (3)
  • the second optical element 14 When the Gaussian beam is incident on the conical surface 15 of the second optical element 14, the second optical element 14 forms a ring-shaped beam.
  • the diameter of the ring formed by the second optical element 14 is different from the diameter of the ring formed by the first optical element 13.
  • the first optical element 13 and the second optical element 14 have optical characteristics for obtaining different intensity distributions in the workpiece 2.
  • the Gaussian beam when the Gaussian beam is incident on the plane 16 of the first optical element 13 in a state where the first optical element 13 and the second optical element 14 are arranged on the optical axis AX,
  • the first optical element 13 and the second optical element 14 form a ring-shaped beam.
  • the diameter of the ring formed by the combination of the first optical element 13 and the second optical element 14 is different from the diameter of the ring formed when the first optical element 13 is alone.
  • the diameter of the ring formed by the combination of the first optical element 13 and the second optical element 14 is also different from the diameter of the ring formed when the second optical element 14 is alone.
  • the first optical element 13 and the second optical element 14 are used in combination with each other, so that each of the first optical element 13 and the second optical element 14 is used. Irradiates a laser beam with an intensity distribution different from each intensity distribution when is used alone.
  • FIG. 3 is a diagram showing a configuration of a switching unit among the laser processing machines according to the first embodiment.
  • the first optical element 13 is attached to the lens holder 17.
  • the second optical element 14 is attached to the lens holder 18.
  • the switching unit 12 has a slide portion 19 that moves the first optical element 13 together with the lens holder 17, and a slide portion 20 that moves the second optical element 14 together with the lens holder 18.
  • FIG. 3 shows the cross sections of the first optical element 13, the second optical element 14, and the lens holders 17 and 18, and the side surfaces of the slide portions 19 and 20.
  • the slide portion 19 and the slide portion 20 have a moving mechanism for individually moving each of the first optical element 13 and the second optical element 14 to a position on the optical axis AX and a position deviated from the optical axis AX. Constitute.
  • the slide portion 19 moves the first optical element 13 in the linear direction between the first position on the optical axis AX and the second position deviated from the optical axis AX.
  • the slide portion 20 moves the second optical element 14 in the linear direction between the third position on the optical axis AX and the fourth position deviated from the optical axis AX.
  • the linear direction is a direction included in the two-dimensional direction perpendicular to the optical axis AX.
  • FIG 3 shows a state when the first optical element 13 is arranged at the first position and the second optical element 14 is arranged at the third position, and the first optical element 13 is the first. It shows a state when the second optical element 14 is arranged at the second position and the second optical element 14 is arranged at the fourth position.
  • the slide unit 19 moves the first optical element 13 to the first position and the second position by reciprocating the first optical element 13 in the linear direction.
  • the slide unit 20 moves the second optical element 14 to the third position and the fourth position by reciprocating the second optical element 14 in the linear direction.
  • the slide portions 19 and 20 are, for example, linear slide cylinders.
  • the slide portions 19 and 20 may be any mechanism as long as they can move in the linear direction, and may be a mechanism other than the linear slide cylinder.
  • the switching unit 12 sets the beam mode at the imaging position, which is the optical design position, in the four beam modes. Switch.
  • the laser processing machine 1 irradiates a laser beam in a beam mode selected from the four beam modes.
  • the first beam mode among the four beam modes is a beam mode in which the first optical element 13 and the second optical element 14 are arranged on the optical axis AX.
  • the second beam mode out of the four beam modes is a beam when the first optical element 13 is arranged at a position deviated from the optical axis AX and the second optical element 14 is arranged on the optical axis AX.
  • the third beam mode among the four beam modes is a beam when the first optical element 13 is arranged on the optical axis AX and the second optical element 14 is arranged at a position deviated from the optical axis AX. The mode.
  • the fourth beam mode out of the four beam modes is a beam mode in which the first optical element 13 and the second optical element 14 are arranged at positions deviated from the optical axis AX.
  • the laser machining machine 1 selects a beam mode from four beam modes according to a designated machining condition.
  • FIG. 4 is a diagram for explaining the first beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the first embodiment.
  • the distance between the first optical element 13 and the second optical element 14 is a length ⁇ L.
  • the length ⁇ L is predetermined in the design of the switching unit 12.
  • the laser beam that has passed through the transmission cable 5 diffuses from the exit end of the transmission cable 5 and enters the collimating optical system 6.
  • the laser beam emitted from the collimating optical system 6 is incident on the first optical element 13.
  • the laser beam emitted from the first optical element 13 is incident on the second optical element 14.
  • the laser beam incident on the first optical element 13 is a Gaussian beam having a beam diameter of D0 and a peak intensity of P0.
  • FIG. 4 shows a graph showing the intensity distribution M0 of the laser beam incident on the first optical element 13. In the graph, the vertical axis represents the intensity and the horizontal axis represents the position in the direction of the beam diameter.
  • the second optical element 14 When the laser beam having the intensity distribution M0 propagates between the first optical element 13 and the second optical element 14, the second optical element 14 emits a laser beam having a divergence angle of ⁇ 1.
  • the divergence angle is the angle formed by the laser beam and the optical axis AX.
  • L2 is an optical design distance from the second optical element 14 to the image plane S, and is an optical distance between the apex of the second optical element 14 and the image plane S.
  • the intensity distribution of the laser beam on the image plane S is the intensity distribution M1 in which the beam diameter is D1 and the peak intensity is P1.
  • FIG. 4 shows a graph showing the intensity distribution M1.
  • FIG. 5 is a diagram for explaining a second beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the first embodiment.
  • the laser beam emitted from the collimating optical system 6 is the first. Propagates outside the optical element 13 of the above and enters the second optical element 14.
  • FIG. 5 shows a graph showing the intensity distribution M0 of the laser beam incident on the second optical element 14.
  • the intensity distribution of the laser beam on the image plane S is an intensity distribution M2 in which the beam diameter is D2 and the peak intensity is P2. D1> D2 and P1 ⁇ P2 hold.
  • FIG. 5 shows a graph showing the intensity distribution M2.
  • FIG. 6 is a diagram for explaining a third beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the first embodiment.
  • the laser beam emitted from the collimating optical system 6 is the first. It is incident on the optical element 13 of the above.
  • FIG. 6 shows a graph showing the intensity distribution M0 of the laser beam incident on the first optical element 13. The laser beam emitted from the first optical element 13 propagates outside the second optical element 14.
  • L1 is an optical design distance from the first optical element 13 to the image plane S, and is an optical distance between the apex of the first optical element 13 and the image plane S.
  • the intensity distribution of the laser beam on the image plane S is an intensity distribution M3 in which the beam diameter is D3 and the peak intensity is P3.
  • FIG. 6 shows a graph showing the intensity distribution M3 of the laser beam at such a position.
  • FIG. 7 is a diagram for explaining a fourth beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the first embodiment.
  • the laser beam emitted from the collimating optical system 6 is sent to the first optical element 13 in the switching unit 12. And propagate outside the second optical element 14.
  • the laser beam emitted from the switching unit 12 is a Gaussian beam having a beam diameter of D4 and a peak intensity of P4. D4 ⁇ D0 and P4 ⁇ P0 hold.
  • FIG. 7 shows a graph showing the intensity distribution M4 of the laser beam emitted from the switching unit 12.
  • the laser processing machine 1 adjusts the beam diameter of the laser beam propagating through the switching unit 12 by the zoom optical system 7. Further, the laser processing machine 1 appropriately converges the laser beam after adjusting the beam diameter in the zoom optical system 7 by the condensing optical system 8 and irradiates the workpiece 2.
  • the laser processing machine 1 irradiates the laser beam in the first beam mode with the first optical element 13 and the second optical element 14 arranged on the optical axis AX.
  • the first beam mode is a first intensity distribution according to the optical characteristics provided in the combination of the first optical element 13 and the second optical element 14.
  • the laser processing machine 1 is in a second beam mode in a state where the first optical element 13 is arranged at a position deviated from the optical axis AX and the second optical element 14 is arranged on the optical axis AX. Irradiate the laser beam.
  • the second beam mode is a second intensity distribution according to the optical characteristics provided in the second optical element 14.
  • the laser processing machine 1 has a third beam mode in a state where the first optical element 13 is arranged on the optical axis AX and the second optical element 14 is arranged at a position deviated from the optical axis AX. Irradiate the laser beam of.
  • the third beam mode is a third intensity distribution according to the optical characteristics provided in the first optical element 13.
  • the laser machine 1 When the laser machine 1 irradiates the laser beam of the first beam mode, the second beam mode, or the third beam mode, a ring-shaped spot is formed on the workpiece 2.
  • the laser beams of the first beam mode, the second beam mode, and the third beam mode are suitable for cutting thick sheet metal.
  • the beam diameter, peak intensity or divergence angle in each of the first beam mode, the second beam mode and the third beam mode is the beam of the laser beam incident on the first optical element 13 or the second optical element 14.
  • Diameter, cone apex angle in first optical element 13, conical apex angle in second optical element 14, optical distance between first optical element 13 and image plane S, second optical element It can be arbitrarily designed according to the optical distance between the 14 and the image plane S, the refractive index of the first optical element 13, the refractive index of the second optical element 14, and the like.
  • the beam diameter, peak intensity or divergence angle in each of the first beam mode, the second beam mode and the third beam mode is the material of the workpiece 2, the thickness of the workpiece 2, and the laser oscillator 3. It can be arbitrarily changed by combining various conditions such as output conditions, processing speed, assist gas, focal position, and required processing quality.
  • the conditions of the assist gas include conditions such as the type of gas or the gas pressure.
  • the number of optical elements included in the switching unit 12 is not limited to two.
  • the switching unit 12 may have a plurality of optical elements that can be individually moved, and the number of optical elements is arbitrary.
  • Each of the plurality of optical elements has optical characteristics for obtaining different intensity distributions in the workpiece 2. Further, in the laser processing machine 1, since each of the plurality of optical elements is used in combination with each other, the laser beam having an intensity distribution different from each intensity distribution when each of the plurality of optical elements is used alone. Irradiate.
  • Each of the plurality of optical elements is not limited to the conical lens.
  • Each of the plurality of optical elements may be an aspherical lens having the same optical characteristics as the conical lens.
  • the switching unit 12 moves each of the plurality of optical elements individually in the linear direction to move the plurality of optical elements to a position on the optical axis AX and a position deviated from the optical axis AX. Move each individually.
  • the switching unit 12 switches the beam mode of the laser beam by individually moving each of the plurality of optical elements to a position on the optical axis AX and a position deviating from the optical axis AX.
  • the length of the switching unit 12 in the optical axis direction can be shorter than that in the case of moving each optical element in the optical axis direction. In the laser processing machine 1, even if the switching unit 12 is small, the beam diameter can be greatly changed by moving each of the plurality of optical elements.
  • the laser processing machine 1 can reduce the size of the system including the switching unit 12 and the optical system.
  • the cleanliness of the optical components mounted on the system can be maintained by a simple structure. Further, the laser processing machine 1 can extend the life of the optical component by maintaining the cleanliness of the optical component.
  • the laser machine 1 can perform highly accurate positioning of optical components with simple control as compared with the case where the system is large. Further, the laser processing machine 1 can reduce the manufacturing cost as compared with the case where the system is large.
  • the laser processing machine 1 has an effect that the intensity distribution in the cross section of the laser beam can be switched by a compact configuration.
  • FIG. 8 is a diagram showing a configuration of a switching unit among the laser processing machines according to the second embodiment.
  • the switching unit 30 included in the laser processing machine 1 according to the second embodiment has a moving mechanism for rotating each of the plurality of optical elements.
  • the same components as those in the first embodiment are designated by the same reference numerals, and the configurations different from those in the first embodiment will be mainly described.
  • the switching unit 30 has a rotating unit 31 that rotates the first optical element 13 together with the lens holder 17, and a rotating unit 32 that rotates the second optical element 14 together with the lens holder 18.
  • the rotating unit 31 and the rotating unit 32 have a moving mechanism for individually moving each of the first optical element 13 and the second optical element 14 to a position on the optical axis AX and a position deviated from the optical axis AX.
  • the rotating portion 31 is attached to the end of the lens holder 17. In a state where the first optical element 13 is arranged at the first position on the optical axis AX, the rotating portion 31 rotates 90 degrees around the rotating shaft 33, so that the first optical element 13 becomes a first. It moves from the position of 1 to the second position off the optical axis AX. In the state where the first optical element 13 is arranged at the second position, the rotating portion 31 rotates 90 degrees in the direction opposite to the movement from the first position to the second position, whereby The first optical element 13 moves from the second position to the first position. The rotating unit 31 rotates the first optical element 13 between the first position and the second position.
  • the rotating portion 32 is attached to the end of the lens holder 18. In a state where the second optical element 14 is arranged at the third position on the optical axis AX, the rotating portion 32 rotates 90 degrees around the rotating shaft 34, so that the second optical element 14 is seconded. It moves from the third position to the fourth position off the optical axis AX. In the state where the second optical element 14 is arranged at the fourth position, the rotating portion 32 rotates 90 degrees in the direction opposite to the movement from the third position to the fourth position, whereby The second optical element 14 moves from the fourth position to the third position. The rotating unit 32 rotates the second optical element 14 between the third position and the fourth position. FIG.
  • FIG 8 shows a state in which the first optical element 13 is arranged at the first position and the second optical element 14 is arranged at the third position, and the first optical element 13 is the first. It shows a state when the second optical element 14 is arranged at the second position and the second optical element 14 is arranged at the fourth position.
  • Each of the rotating parts 31 and 32 is, for example, a motor.
  • Each of the rotating portions 31 and 32 may be a mechanism other than the motor as long as it is a rotatable mechanism.
  • the switching unit 30 switches the beam mode at the imaging position between the four beam modes by individually moving the first optical element 13 and the second optical element 14 according to the switching command. Similar to the first embodiment, the laser processing machine 1 irradiates the laser beam of the beam mode selected from the four beam modes.
  • the first optical element 13 and the second optical element 14 are arranged on the optical axis AX as in the case shown in FIG. NS.
  • the intensity distribution of the laser beam on the image plane S is the intensity distribution M1 in which the beam diameter is D1 and the peak intensity is P1.
  • FIG. 9 is a diagram for explaining a second beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the second embodiment.
  • the first optical element 13 is arranged at a position deviated from the optical axis AX
  • the second optical element 14 is arranged on the optical axis AX.
  • the intensity distribution of the laser beam on the image plane S is the intensity distribution M2 in which the beam diameter is D2 and the peak intensity is P2.
  • FIG. 10 is a diagram for explaining a third beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the second embodiment.
  • the first optical element 13 is arranged on the optical axis AX
  • the second optical element 14 is arranged at a position deviated from the optical axis AX.
  • the intensity distribution of the laser beam on the image plane S is the intensity distribution M3 in which the beam diameter is D3 and the peak intensity is P3.
  • FIG. 11 is a diagram for explaining a fourth beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the second embodiment.
  • the first optical element 13 and the second optical element 14 are arranged at positions deviated from the optical axis AX.
  • the laser beam emitted from the switching unit 30 is a Gaussian beam having a beam diameter of D4 and a peak intensity of P4, as in the case shown in FIG. 7.
  • the number of optical elements included in the switching unit 30 is not limited to two. Similar to the switching unit 12 of the first embodiment, the switching unit 30 may have a plurality of optical elements that can be individually moved, and the number of optical elements is arbitrary.
  • the switching unit 30 individually rotates each of the plurality of optical elements so that each of the plurality of optical elements is individually moved to a position on the optical axis AX and a position deviated from the optical axis AX. Move to.
  • the switching unit 30 switches the beam mode of the laser beam by individually moving each of the plurality of optical elements to a position on the optical axis AX and a position deviated from the optical axis AX.
  • the laser processing machine 1 can reduce the size of the system including the switching unit 30 and the optical system. As described above, the laser processing machine 1 according to the second embodiment has an effect that the intensity distribution in the cross section of the laser beam can be switched by a compact configuration.
  • FIG. 12 is a diagram showing a configuration of a switching unit among the laser processing machines according to the third embodiment.
  • the shape of each of the plurality of optical elements is different from the shape of each of the plurality of optical elements in the first or second embodiment.
  • the same components as those in the first or second embodiment are designated by the same reference numerals, and the configurations different from those in the first or second embodiment will be mainly described.
  • the switching unit 40 of the laser processing machine 1 has a first optical element 41 and a second optical element 42, which are a plurality of optical elements.
  • Each of the first optical element 41 and the second optical element 42 is an aspherical lens having a convex surface having a conical shape with a rounded top. The top is the part of the cone that contains the vertices.
  • the first optical element 41 has a tip portion 43 having a conical shape with a rounded top.
  • the second optical element 42 has a tip portion 44 shaped like a conical top with a rounded top.
  • the tip 43 of the first optical element 41 and the tip 44 of the second optical element 42 face each other.
  • the first optical element 41 is attached to the lens holder 17 in the same manner as the first optical element 13 shown in FIG. 3 or FIG.
  • the second optical element 42 is attached to the lens holder 18 in the same manner as the second optical element 14 shown in FIG. 3 or FIG.
  • the switching unit 40 has a moving mechanism for individually moving each of the first optical element 41 and the second optical element 42 to a position on the optical axis AX and a position deviated from the optical axis AX.
  • the moving mechanism is the slide portions 19 and 20 shown in FIG. 3 or the rotating portions 31 and 32 shown in FIG. In FIG. 12, the lens holders 17 and 18 and the moving mechanism are not shown.
  • the first optical element 41 and the second optical element 42 have optical characteristics for obtaining different intensity distributions in the workpiece 2.
  • the first optical element 41 and the second optical element 42 are used in combination with each other, so that each of the first optical element 41 and the second optical element 42 can be used independently. It irradiates a laser beam with an intensity distribution different from each intensity distribution when used.
  • the number of optical elements included in the switching unit 40 is not limited to two. Similar to the switching units 12 and 30 of the first or second embodiment, the switching unit 40 may have a plurality of optical elements that can be individually moved, and the number of optical elements is arbitrary. Each of the plurality of optics has a convex surface having a conical shape with a rounded top.
  • each of the plurality of optical elements has a convex surface having a conical shape with a rounded top.
  • the switching unit 40 can relax the position accuracy of each of the plurality of optical elements.
  • the laser processing machine 1 can stably irradiate the laser beam without improving the position accuracy of each of the plurality of optical elements.
  • the configuration shown in the above embodiments is an example of the contents of the present disclosure.
  • the configurations of each embodiment can be combined with other known techniques.
  • the configurations of the respective embodiments may be combined as appropriate. It is possible to omit or change a part of the configuration of each embodiment without departing from the gist of the present disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A laser processing machine (1) is provided with: a laser oscillator (3) as a light source which emits a laser beam; and a switching unit (12) for switching an intensity distribution in a cross-sectional plane of the laser beam. The switching unit (12) has: a first optical element (13) and a second optical element (14) as a plurality of optical elements; and a moving mechanism for moving the first optical element (13) and the second optical element (14) individually to a position on an optical axis of the laser beam and a position deviated from the optical axis, respectively.

Description

レーザ加工機Laser processing machine
 本開示は、レーザビームを照射することによって被加工物を加工するレーザ加工機に関する。 The present disclosure relates to a laser processing machine that processes a work piece by irradiating a laser beam.
 レーザビームの横断面における強度分布であるビームモードを切り替え可能なレーザ加工機が知られている。レーザ加工機は、被加工物の材質、被加工物の厚さ、または加工の種別などに適したビームモードを選択することによって、加工速度を向上し得る。特許文献1には、2つの円錐形レンズと、各円錐形レンズを光軸方向へ移動させる移動機構とを備え、各円錐形レンズの間の距離を変化させることによってビームモードを切り替えるレーザ加工機が開示されている。 A laser machine that can switch the beam mode, which is the intensity distribution in the cross section of the laser beam, is known. The laser machining machine can improve the machining speed by selecting a beam mode suitable for the material of the workpiece, the thickness of the workpiece, the type of machining, and the like. Patent Document 1 includes two conical lenses and a moving mechanism for moving each conical lens in the optical axis direction, and a laser processing machine that switches the beam mode by changing the distance between the conical lenses. Is disclosed.
特開2019-42793号公報JP-A-2019-42793
 特許文献1に開示される従来のレーザ加工機は、移動機構において各円錐形レンズの光軸方向への移動距離を確保するために、光軸方向における長さが長い移動機構が必要であった。さらに、ビーム径を大きく変化させる場合ほど、各円錐形レンズの移動距離が長くなることによって移動機構は大型になる。そのため、従来の技術によると、レーザ加工機は、小型な構成によってビームモードの切り替えを実現することが難しいという問題があった。 The conventional laser machine disclosed in Patent Document 1 requires a moving mechanism having a long length in the optical axis direction in order to secure a moving distance of each conical lens in the optical axis direction in the moving mechanism. .. Further, the larger the beam diameter is changed, the longer the moving distance of each conical lens becomes, and the larger the moving mechanism becomes. Therefore, according to the conventional technique, the laser processing machine has a problem that it is difficult to switch the beam mode due to a small configuration.
 本開示は、上記に鑑みてなされたものであって、小型な構成によってレーザビームの横断面における強度分布を切り替え可能とするレーザ加工機を得ることを目的とする。 The present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a laser processing machine capable of switching the intensity distribution in the cross section of the laser beam by a compact configuration.
 上述した課題を解決し、目的を達成するために、本開示にかかるレーザ加工機は、レーザビームを照射することによって被加工物を加工する。本開示にかかるレーザ加工機は、レーザビームを出射する光源と、レーザビームの横断面における強度分布を切り替える切替えユニットと、を備える。切替えユニットは、複数の光学素子と、レーザビームの光軸上の位置と光軸から外れた位置とへ複数の光学素子の各々を個別に移動させる移動機構と、を有する。 In order to solve the above-mentioned problems and achieve the object, the laser processing machine according to the present disclosure processes a work piece by irradiating a laser beam. The laser processing machine according to the present disclosure includes a light source that emits a laser beam and a switching unit that switches the intensity distribution in the cross section of the laser beam. The switching unit includes a plurality of optical elements and a moving mechanism for individually moving each of the plurality of optical elements to a position on the optical axis of the laser beam and a position off the optical axis.
 本開示にかかるレーザ加工機は、小型な構成によってレーザビームの横断面における強度分布を切り替えることができるという効果を奏する。 The laser processing machine according to the present disclosure has an effect that the intensity distribution in the cross section of the laser beam can be switched by a compact configuration.
実施の形態1にかかるレーザ加工機の概略構成を示す図The figure which shows the schematic structure of the laser processing machine which concerns on Embodiment 1. 実施の形態1にかかるレーザ加工機の切替えユニットが有する第1の光学素子の光学特性について説明するための図The figure for demonstrating the optical characteristic of the 1st optical element which the switching unit of the laser processing machine which concerns on Embodiment 1 has. 実施の形態1にかかるレーザ加工機のうち切替えユニットの構成を示す図The figure which shows the structure of the switching unit among the laser processing machines which concerns on Embodiment 1. 実施の形態1にかかるレーザ加工機が照射するレーザビームのビームモードのうち第1のビームモードについて説明するための図The figure for demonstrating the 1st beam mode among the beam modes of the laser beam irradiated by the laser processing machine which concerns on Embodiment 1. 実施の形態1にかかるレーザ加工機が照射するレーザビームのビームモードのうち第2のビームモードについて説明するための図The figure for demonstrating the 2nd beam mode among the beam modes of the laser beam irradiated by the laser processing machine which concerns on Embodiment 1. 実施の形態1にかかるレーザ加工機が照射するレーザビームのビームモードのうち第3のビームモードについて説明するための図The figure for demonstrating the 3rd beam mode among the beam modes of the laser beam irradiated by the laser processing machine which concerns on Embodiment 1. 実施の形態1にかかるレーザ加工機が照射するレーザビームのビームモードのうち第4のビームモードについて説明するための図The figure for demonstrating the 4th beam mode among the beam modes of the laser beam irradiated by the laser processing machine which concerns on Embodiment 1. 実施の形態2にかかるレーザ加工機のうち切替えユニットの構成を示す図The figure which shows the structure of the switching unit among the laser processing machines which concerns on Embodiment 2. 実施の形態2にかかるレーザ加工機が照射するレーザビームのビームモードのうち第2のビームモードについて説明するための図The figure for demonstrating the 2nd beam mode among the beam modes of the laser beam irradiated by the laser processing machine which concerns on Embodiment 2. 実施の形態2にかかるレーザ加工機が照射するレーザビームのビームモードのうち第3のビームモードについて説明するための図The figure for demonstrating the 3rd beam mode among the beam modes of the laser beam irradiated by the laser processing machine which concerns on Embodiment 2. 実施の形態2にかかるレーザ加工機が照射するレーザビームのビームモードのうち第4のビームモードについて説明するための図The figure for demonstrating the 4th beam mode among the beam modes of the laser beam irradiated by the laser processing machine which concerns on Embodiment 2. 実施の形態3にかかるレーザ加工機のうち切替えユニットの構成を示す図The figure which shows the structure of the switching unit among the laser processing machines which concerns on Embodiment 3.
 以下に、実施の形態にかかるレーザ加工機を図面に基づいて詳細に説明する。なお、この実施の形態により本開示が限定されるものではない。 The laser processing machine according to the embodiment will be described in detail below based on the drawings. The present disclosure is not limited to this embodiment.
実施の形態1.
 図1は、実施の形態1にかかるレーザ加工機の概略構成を示す図である。実施の形態1にかかるレーザ加工機1は、レーザビームを照射することによって被加工物2を加工する。レーザ加工機1は、レーザビームを出射する光源であるレーザ発振器3と、被加工物2へ向けてレーザビームを出射する加工ヘッド4と、レーザ発振器3から加工ヘッド4へのレーザビームの伝送路である伝送ケーブル5と、被加工物2が載せられる加工テーブル10と、レーザ加工機1を制御する制御装置11とを備える。
Embodiment 1.
FIG. 1 is a diagram showing a schematic configuration of a laser processing machine according to a first embodiment. The laser processing machine 1 according to the first embodiment processes the workpiece 2 by irradiating the laser beam. The laser machining machine 1 includes a laser oscillator 3 which is a light source that emits a laser beam, a processing head 4 that emits a laser beam toward a workpiece 2, and a transmission path of the laser beam from the laser oscillator 3 to the processing head 4. The transmission cable 5 is provided, a processing table 10 on which the workpiece 2 is placed, and a control device 11 for controlling the laser processing machine 1 are provided.
 加工ヘッド4の内部には、コリメート光学系6、ズーム光学系7および集光光学系8を含む光学系が収納されている。コリメート光学系6は、伝送ケーブル5から出射したレーザビームを平行化させる。ズーム光学系7は、複数のレンズ9を有する。各レンズ9を移動させるレンズ駆動部により各レンズ9の間隔が調整されることによって、ズーム光学系7は、ビーム径を調整する。レンズ駆動部の図示は省略する。集光光学系8は、レーザビームを収束させる。加工テーブル10は、2次元方向において移動する。レーザ加工機1は、加工テーブル10を移動させることによって、被加工物2におけるレーザビームの照射位置を変化させる。 Inside the processing head 4, an optical system including a collimating optical system 6, a zoom optical system 7, and a condensing optical system 8 is housed. The collimating optical system 6 parallelizes the laser beam emitted from the transmission cable 5. The zoom optical system 7 has a plurality of lenses 9. The zoom optical system 7 adjusts the beam diameter by adjusting the distance between the lenses 9 by the lens driving unit that moves each lens 9. The illustration of the lens drive unit is omitted. The condensing optical system 8 converges the laser beam. The machining table 10 moves in the two-dimensional direction. The laser processing machine 1 changes the irradiation position of the laser beam on the workpiece 2 by moving the processing table 10.
 レーザ加工機1は、ビームモード、すなわちレーザビームの横断面における強度分布を切り替える切替えユニット12を備える。切替えユニット12は、加工ヘッド4の内部に配置されている。切替えユニット12は、複数の光学素子である第1の光学素子13と第2の光学素子14とを有する。 The laser processing machine 1 includes a beam mode, that is, a switching unit 12 for switching the intensity distribution in the cross section of the laser beam. The switching unit 12 is arranged inside the processing head 4. The switching unit 12 has a first optical element 13 and a second optical element 14, which are a plurality of optical elements.
 第1の光学素子13と第2の光学素子14との各々は、コリメート光学系6とズーム光学系7との間において、レーザビームの光軸AX上の位置と光軸AXから外れた位置とにおいて個別に移動が可能とされている。図1には、第1の光学素子13と第2の光学素子14とが光軸AX上に配置されている様子を示している。 Each of the first optical element 13 and the second optical element 14 has a position on the optical axis AX of the laser beam and a position deviated from the optical axis AX between the collimating optical system 6 and the zoom optical system 7. It is possible to move individually in. FIG. 1 shows how the first optical element 13 and the second optical element 14 are arranged on the optical axis AX.
 第1の光学素子13と第2の光学素子14とが光軸AX上に配置されているとき、コリメート光学系6から出射したレーザビームは、第1の光学素子13へ入射する。第1の光学素子13から出射したレーザビームは、第2の光学素子14へ入射する。第2の光学素子14から出射したレーザビームは、ズーム光学系7へ入射する。第1の光学素子13と第2の光学素子14とが光軸AXから外れた位置に配置されているとき、コリメート光学系6から出射したレーザビームは、ズーム光学系7へ入射する。第1の光学素子13が光軸AX上に配置され、かつ第2の光学素子14が光軸AXから外れた位置に配置されているとき、コリメート光学系6から出射したレーザビームは、第1の光学素子13へ入射する。第1の光学素子13から出射したレーザビームは、ズーム光学系7へ入射する。第1の光学素子13が光軸AXから外れた位置に配置され、かつ第2の光学素子14が光軸AX上に配置されているとき、コリメート光学系6から出射したレーザビームは、第2の光学素子14へ入射する。第2の光学素子14から出射したレーザビームは、ズーム光学系7へ入射する。 When the first optical element 13 and the second optical element 14 are arranged on the optical axis AX, the laser beam emitted from the collimating optical system 6 is incident on the first optical element 13. The laser beam emitted from the first optical element 13 is incident on the second optical element 14. The laser beam emitted from the second optical element 14 is incident on the zoom optical system 7. When the first optical element 13 and the second optical element 14 are arranged at positions deviated from the optical axis AX, the laser beam emitted from the collimating optical system 6 is incident on the zoom optical system 7. When the first optical element 13 is arranged on the optical axis AX and the second optical element 14 is arranged at a position deviated from the optical axis AX, the laser beam emitted from the collimating optical system 6 is the first. It is incident on the optical element 13 of the above. The laser beam emitted from the first optical element 13 is incident on the zoom optical system 7. When the first optical element 13 is arranged at a position deviated from the optical axis AX and the second optical element 14 is arranged on the optical axis AX, the laser beam emitted from the collimating optical system 6 is the second. It is incident on the optical element 14 of the above. The laser beam emitted from the second optical element 14 is incident on the zoom optical system 7.
 制御装置11は、ピーク出力、パルス幅、パルス数およびパルス周波数などの各指令値に応じた発振制御信号をレーザ発振器3へ出力する。レーザ発振器3は、発振制御信号に従ってレーザビームを出射する。制御装置11は、ビーム径の指令値に応じたズーム制御信号をレンズ駆動部へ出力する。レンズ駆動部は、ズーム制御信号に従って各レンズ9を移動させる。制御装置11は、位置指令値に応じた位置制御信号を加工テーブル10へ出力する。加工テーブル10は、位置制御信号に従って移動する。制御装置11は、切替え指令を切替えユニット12へ出力する。切替え指令は、ビームモードを切り替えるための指令である。切替えユニット12は、切替え指令に従って第1の光学素子13と第2の光学素子14とを移動させることによってビームモードを切り替える。 The control device 11 outputs an oscillation control signal corresponding to each command value such as peak output, pulse width, number of pulses, and pulse frequency to the laser oscillator 3. The laser oscillator 3 emits a laser beam according to an oscillation control signal. The control device 11 outputs a zoom control signal corresponding to the command value of the beam diameter to the lens driving unit. The lens driving unit moves each lens 9 according to the zoom control signal. The control device 11 outputs a position control signal corresponding to the position command value to the processing table 10. The machining table 10 moves according to the position control signal. The control device 11 outputs a switching command to the switching unit 12. The switching command is a command for switching the beam mode. The switching unit 12 switches the beam mode by moving the first optical element 13 and the second optical element 14 according to the switching command.
 次に、第1の光学素子13と第2の光学素子14とについて説明する。第1の光学素子13と第2の光学素子14とは、円錐形の凸面を有する円錐形レンズである。第1の光学素子13と第2の光学素子14との各々は、円錐形の凸面である円錐面と、円錐面とは逆側の平面とを有する。なお、以下の説明にて、円錐形の頂点を、単に頂点と称することがある。 Next, the first optical element 13 and the second optical element 14 will be described. The first optical element 13 and the second optical element 14 are conical lenses having a conical convex surface. Each of the first optical element 13 and the second optical element 14 has a conical surface which is a conical convex surface and a plane opposite to the conical surface. In the following description, the vertices of the cone may be simply referred to as vertices.
 第1の光学素子13と第2の光学素子14とが光軸AX上に配置されているとき、第1の光学素子13の平面は、レーザビームの入射側に向けられる。第2の光学素子14の平面は、レーザビームの出射側に向けられる。第1の光学素子13の円錐面と第2の光学素子14の円錐面とは、互いに向かい合わせられる。なお、第1の光学素子13と第2の光学素子14とは、互いにぶつかることが無いように、光軸方向において互いに離されている。 When the first optical element 13 and the second optical element 14 are arranged on the optical axis AX, the plane of the first optical element 13 is directed to the incident side of the laser beam. The plane of the second optical element 14 is directed toward the emission side of the laser beam. The conical surface of the first optical element 13 and the conical surface of the second optical element 14 face each other. The first optical element 13 and the second optical element 14 are separated from each other in the optical axis direction so as not to collide with each other.
 第1の光学素子13と第2の光学素子14とが光軸AX上に配置されているとき、第1の光学素子13の中心軸と第2の光学素子14の中心軸とは、光軸AXと一致する。第1の光学素子13と第2の光学素子14との少なくとも一方を光軸AXから外れた位置から光軸AX上へ移動させても、コリメート光学系6、ズーム光学系7および集光光学系8の各中心からのレーザビームの中心軸のずれは生じない。なお、レーザ加工機1が有する光学系は、実施の形態1にて説明するものに限られない。光軸AX上における第1の光学素子13および第2の光学素子14の位置は、ズーム光学系7の入射側の位置に限られず、ズーム光学系7の出射側の位置でも良い。光学系には、コリメート光学系6、ズーム光学系7および集光光学系8以外の光学部品が含まれても良い。 When the first optical element 13 and the second optical element 14 are arranged on the optical axis AX, the central axis of the first optical element 13 and the central axis of the second optical element 14 are the optical axes. Matches AX. Even if at least one of the first optical element 13 and the second optical element 14 is moved onto the optical axis AX from a position deviated from the optical axis AX, the collimating optical system 6, the zoom optical system 7, and the condensing optical system No deviation of the central axis of the laser beam from each center of 8 occurs. The optical system included in the laser processing machine 1 is not limited to that described in the first embodiment. The positions of the first optical element 13 and the second optical element 14 on the optical axis AX are not limited to the positions on the incident side of the zoom optical system 7, but may be the positions on the exit side of the zoom optical system 7. The optical system may include optical components other than the collimating optical system 6, the zoom optical system 7, and the condensing optical system 8.
 次に、第1の光学素子13および第2の光学素子14の光学特性について説明する。図2は、実施の形態1にかかるレーザ加工機の切替えユニットが有する第1の光学素子の光学特性について説明するための図である。 Next, the optical characteristics of the first optical element 13 and the second optical element 14 will be described. FIG. 2 is a diagram for explaining the optical characteristics of the first optical element included in the switching unit of the laser processing machine according to the first embodiment.
 第1の光学素子13の平面16へガウシアンビームが入射した場合に、第1の光学素子13は、リング状のビームを形成する。第1の光学素子13の頂点から像面Sまでの光学距離をL、像面Sにおけるビームのスポットであるリングの直径をR、円錐形の中心軸に垂直な面と円錐面15とがなす角度をα、第1の光学素子13の屈折率をnとして、次の式(1)が成り立つ。なお、LおよびRの単位はmm、αの単位は度である。
=2L×tan{(n-1)×α}  ・・・(1)
When the Gaussian beam is incident on the plane 16 of the first optical element 13, the first optical element 13 forms a ring-shaped beam. The optical distance from the apex of the first optical element 13 to the image plane S is L, the diameter of the ring that is the spot of the beam on the image plane S is R 1 , and the plane perpendicular to the central axis of the cone and the cone plane 15 are The following equation (1) holds, where α is the angle formed and n is the refractive index of the first optical element 13. The unit of L and R 1 is mm, and the unit of α is degree.
R 1 = 2L x tan {(n-1) x α} ... (1)
 第1の光学素子13から出射するビームと光軸AXとがなす角度をθとして、θは、次の式(2)により表される。また、リング状のビームの幅をd、第1の光学素子13へ入射するビームの直径をRとして、次の式(3)が成り立つ。なお、dおよびRの単位はmm、θおよびαの単位は度である。
θ=sin-1(n×sinα)-α  ・・・(2)
d=R/2  ・・・(3)
Let θ be the angle formed by the beam emitted from the first optical element 13 and the optical axis AX, and θ is expressed by the following equation (2). Further, the following equation (3) holds, where d is the width of the ring-shaped beam and R0 is the diameter of the beam incident on the first optical element 13. The units of d and R 0 are mm, and the units of θ and α are degrees.
θ = sin -1 (n × sin α) -α ・ ・ ・ (2)
d = R 0/2・ ・ ・ (3)
 第2の光学素子14の円錐面15へガウシアンビームが入射した場合に、第2の光学素子14は、リング状のビームを形成する。第2の光学素子14によって形成されるリングの直径は、第1の光学素子13によって形成されるリングの直径とは異なる。第1の光学素子13と第2の光学素子14とは、被加工物2において互いに異なる強度分布を得るための光学特性を備える。 When the Gaussian beam is incident on the conical surface 15 of the second optical element 14, the second optical element 14 forms a ring-shaped beam. The diameter of the ring formed by the second optical element 14 is different from the diameter of the ring formed by the first optical element 13. The first optical element 13 and the second optical element 14 have optical characteristics for obtaining different intensity distributions in the workpiece 2.
 図1に示すように第1の光学素子13と第2の光学素子14とが光軸AX上に配置されている状態において第1の光学素子13の平面16へガウシアンビームが入射した場合に、第1の光学素子13および第2の光学素子14は、リング状のビームを形成する。第1の光学素子13と第2の光学素子14との組み合わせによって形成されるリングの直径は、第1の光学素子13が単独である場合に形成されるリングの直径とは異なる。第1の光学素子13と第2の光学素子14との組み合わせによって形成されるリングの直径は、第2の光学素子14が単独である場合に形成されるリングの直径とも異なる。これにより、レーザ加工機1は、第1の光学素子13と第2の光学素子14とが互いに組み合わせられて使用されることによって、第1の光学素子13と第2の光学素子14との各々が単独で使用される場合における各強度分布とは異なる強度分布のレーザビームを照射する。 As shown in FIG. 1, when the Gaussian beam is incident on the plane 16 of the first optical element 13 in a state where the first optical element 13 and the second optical element 14 are arranged on the optical axis AX, The first optical element 13 and the second optical element 14 form a ring-shaped beam. The diameter of the ring formed by the combination of the first optical element 13 and the second optical element 14 is different from the diameter of the ring formed when the first optical element 13 is alone. The diameter of the ring formed by the combination of the first optical element 13 and the second optical element 14 is also different from the diameter of the ring formed when the second optical element 14 is alone. As a result, in the laser processing machine 1, the first optical element 13 and the second optical element 14 are used in combination with each other, so that each of the first optical element 13 and the second optical element 14 is used. Irradiates a laser beam with an intensity distribution different from each intensity distribution when is used alone.
 次に、第1の光学素子13と第2の光学素子14とを移動させる移動機構について説明する。図3は、実施の形態1にかかるレーザ加工機のうち切替えユニットの構成を示す図である。第1の光学素子13は、レンズホルダ17に取り付けられている。第2の光学素子14は、レンズホルダ18に取り付けられている。切替えユニット12は、レンズホルダ17とともに第1の光学素子13を移動させるスライド部19と、レンズホルダ18とともに第2の光学素子14を移動させるスライド部20とを有する。図3には、第1の光学素子13、第2の光学素子14およびレンズホルダ17,18の各断面と、スライド部19,20の各側面とを示している。 Next, a moving mechanism for moving the first optical element 13 and the second optical element 14 will be described. FIG. 3 is a diagram showing a configuration of a switching unit among the laser processing machines according to the first embodiment. The first optical element 13 is attached to the lens holder 17. The second optical element 14 is attached to the lens holder 18. The switching unit 12 has a slide portion 19 that moves the first optical element 13 together with the lens holder 17, and a slide portion 20 that moves the second optical element 14 together with the lens holder 18. FIG. 3 shows the cross sections of the first optical element 13, the second optical element 14, and the lens holders 17 and 18, and the side surfaces of the slide portions 19 and 20.
 スライド部19とスライド部20とは、光軸AX上の位置と光軸AXから外れた位置とへ第1の光学素子13と第2の光学素子14との各々を個別に移動させる移動機構を構成する。スライド部19は、光軸AX上の第1の位置と光軸AXから外れた第2の位置との間において第1の光学素子13を直線方向へ移動させる。スライド部20は、光軸AX上の第3の位置と光軸AXから外れた第4の位置との間において第2の光学素子14を直線方向へ移動させる。直線方向は、光軸AXに垂直な2次元方向に含まれる方向である。図3には、第1の光学素子13が第1の位置に配置され、かつ第2の光学素子14が第3の位置に配置されているときの様子と、第1の光学素子13が第2の位置に配置され、かつ第2の光学素子14が第4の位置に配置されているときの様子とを示している。 The slide portion 19 and the slide portion 20 have a moving mechanism for individually moving each of the first optical element 13 and the second optical element 14 to a position on the optical axis AX and a position deviated from the optical axis AX. Constitute. The slide portion 19 moves the first optical element 13 in the linear direction between the first position on the optical axis AX and the second position deviated from the optical axis AX. The slide portion 20 moves the second optical element 14 in the linear direction between the third position on the optical axis AX and the fourth position deviated from the optical axis AX. The linear direction is a direction included in the two-dimensional direction perpendicular to the optical axis AX. FIG. 3 shows a state when the first optical element 13 is arranged at the first position and the second optical element 14 is arranged at the third position, and the first optical element 13 is the first. It shows a state when the second optical element 14 is arranged at the second position and the second optical element 14 is arranged at the fourth position.
 スライド部19は、直線方向において第1の光学素子13を往復移動させることによって、第1の位置と第2の位置とへ第1の光学素子13を移動させる。スライド部20は、直線方向において第2の光学素子14を往復移動させることによって、第3の位置と第4の位置とへ第2の光学素子14を移動させる。各スライド部19,20は、例えばリニアスライドシリンダである。各スライド部19,20は、直線方向への移動が可能な機構であれば良く、リニアスライドシリンダ以外の機構であっても良い。 The slide unit 19 moves the first optical element 13 to the first position and the second position by reciprocating the first optical element 13 in the linear direction. The slide unit 20 moves the second optical element 14 to the third position and the fourth position by reciprocating the second optical element 14 in the linear direction. The slide portions 19 and 20 are, for example, linear slide cylinders. The slide portions 19 and 20 may be any mechanism as long as they can move in the linear direction, and may be a mechanism other than the linear slide cylinder.
 次に、レーザ加工機1によるビームモードの切り替えについて説明する。切替えユニット12は、切替え指令にしたがって第1の光学素子13と第2の光学素子14とを個別に移動させることによって、光学的な設計位置である結像位置におけるビームモードを4つのビームモードにおいて切り替える。レーザ加工機1は、4つのビームモードの中から選択されたビームモードのレーザビームを照射する。 Next, switching of the beam mode by the laser processing machine 1 will be described. By individually moving the first optical element 13 and the second optical element 14 according to the switching command, the switching unit 12 sets the beam mode at the imaging position, which is the optical design position, in the four beam modes. Switch. The laser processing machine 1 irradiates a laser beam in a beam mode selected from the four beam modes.
 4つのビームモードのうち第1のビームモードは、第1の光学素子13と第2の光学素子14とが光軸AX上に配置される場合のビームモードである。4つのビームモードのうち第2のビームモードは、第1の光学素子13が光軸AXから外れた位置に配置され、かつ第2の光学素子14が光軸AX上に配置される場合のビームモードである。4つのビームモードのうち第3のビームモードは、第1の光学素子13が光軸AX上に配置され、かつ第2の光学素子14が光軸AXから外れた位置に配置される場合のビームモードである。4つのビームモードのうち第4のビームモードは、第1の光学素子13と第2の光学素子14とが光軸AXから外れた位置に配置される場合のビームモードである。レーザ加工機1は、指定された加工条件に従って4つのビームモードの中からビームモードを選択する。 The first beam mode among the four beam modes is a beam mode in which the first optical element 13 and the second optical element 14 are arranged on the optical axis AX. The second beam mode out of the four beam modes is a beam when the first optical element 13 is arranged at a position deviated from the optical axis AX and the second optical element 14 is arranged on the optical axis AX. The mode. The third beam mode among the four beam modes is a beam when the first optical element 13 is arranged on the optical axis AX and the second optical element 14 is arranged at a position deviated from the optical axis AX. The mode. The fourth beam mode out of the four beam modes is a beam mode in which the first optical element 13 and the second optical element 14 are arranged at positions deviated from the optical axis AX. The laser machining machine 1 selects a beam mode from four beam modes according to a designated machining condition.
 図4は、実施の形態1にかかるレーザ加工機が照射するレーザビームのビームモードのうち第1のビームモードについて説明するための図である。第1の光学素子13と第2の光学素子14とが光軸AX上に配置されているとき、第1の光学素子13と第2の光学素子14との間隔は、長さΔLである。長さΔLは、切替えユニット12の設計においてあらかじめ決定されている。 FIG. 4 is a diagram for explaining the first beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the first embodiment. When the first optical element 13 and the second optical element 14 are arranged on the optical axis AX, the distance between the first optical element 13 and the second optical element 14 is a length ΔL. The length ΔL is predetermined in the design of the switching unit 12.
 伝送ケーブル5を通過したレーザビームは、伝送ケーブル5の出射端から拡散して、コリメート光学系6へ入射する。コリメート光学系6から出射したレーザビームは、第1の光学素子13へ入射する。第1の光学素子13から出射したレーザビームは、第2の光学素子14へ入射する。 The laser beam that has passed through the transmission cable 5 diffuses from the exit end of the transmission cable 5 and enters the collimating optical system 6. The laser beam emitted from the collimating optical system 6 is incident on the first optical element 13. The laser beam emitted from the first optical element 13 is incident on the second optical element 14.
 第1の光学素子13へ入射するレーザビームは、ビーム径がD0、かつピーク強度がP0であるガウシアンビームである。図4には、第1の光学素子13へ入射するレーザビームの強度分布M0を表すグラフを示している。グラフにおいて、縦軸は強度、横軸はビーム径の方向における位置を表す。 The laser beam incident on the first optical element 13 is a Gaussian beam having a beam diameter of D0 and a peak intensity of P0. FIG. 4 shows a graph showing the intensity distribution M0 of the laser beam incident on the first optical element 13. In the graph, the vertical axis represents the intensity and the horizontal axis represents the position in the direction of the beam diameter.
 強度分布M0のレーザビームが第1の光学素子13と第2の光学素子14とを伝播すると、第2の光学素子14からは、発散角がθ1であるレーザビームが出射する。発散角は、レーザビームと光軸AXとがなす角である。L2は、第2の光学素子14から像面Sまでの光学的な設計距離であって、第2の光学素子14の頂点と像面Sとの間の光学距離である。像面Sにおけるレーザビームの強度分布は、ビーム径がD1、かつピーク強度がP1である強度分布M1となる。図4には、強度分布M1を表すグラフを示している。 When the laser beam having the intensity distribution M0 propagates between the first optical element 13 and the second optical element 14, the second optical element 14 emits a laser beam having a divergence angle of θ1. The divergence angle is the angle formed by the laser beam and the optical axis AX. L2 is an optical design distance from the second optical element 14 to the image plane S, and is an optical distance between the apex of the second optical element 14 and the image plane S. The intensity distribution of the laser beam on the image plane S is the intensity distribution M1 in which the beam diameter is D1 and the peak intensity is P1. FIG. 4 shows a graph showing the intensity distribution M1.
 図5は、実施の形態1にかかるレーザ加工機が照射するレーザビームのビームモードのうち第2のビームモードについて説明するための図である。第1の光学素子13が光軸AXから外れた位置に配置され、かつ第2の光学素子14が光軸AX上に配置されているとき、コリメート光学系6から出射したレーザビームは、第1の光学素子13の外を伝播して、第2の光学素子14へ入射する。図5には、第2の光学素子14へ入射するレーザビームの強度分布M0を表すグラフを示している。 FIG. 5 is a diagram for explaining a second beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the first embodiment. When the first optical element 13 is arranged at a position deviated from the optical axis AX and the second optical element 14 is arranged on the optical axis AX, the laser beam emitted from the collimating optical system 6 is the first. Propagates outside the optical element 13 of the above and enters the second optical element 14. FIG. 5 shows a graph showing the intensity distribution M0 of the laser beam incident on the second optical element 14.
 強度分布M0のレーザビームが第2の光学素子14を伝播すると、第2の光学素子14からは、発散角がθ2であるレーザビームが出射する。θ1>θ2が成り立つ。像面Sにおけるレーザビームの強度分布は、ビーム径がD2、かつピーク強度がP2である強度分布M2となる。D1>D2、かつP1<P2が成り立つ。図5には、強度分布M2を表すグラフを示している。 When the laser beam having the intensity distribution M0 propagates through the second optical element 14, the laser beam having a divergence angle of θ2 is emitted from the second optical element 14. θ1> θ2 holds. The intensity distribution of the laser beam on the image plane S is an intensity distribution M2 in which the beam diameter is D2 and the peak intensity is P2. D1> D2 and P1 <P2 hold. FIG. 5 shows a graph showing the intensity distribution M2.
 図6は、実施の形態1にかかるレーザ加工機が照射するレーザビームのビームモードのうち第3のビームモードについて説明するための図である。第1の光学素子13が光軸AX上に配置され、かつ第2の光学素子14が光軸AXから外れた位置に配置されているとき、コリメート光学系6から出射したレーザビームは、第1の光学素子13へ入射する。図6には、第1の光学素子13へ入射するレーザビームの強度分布M0を表すグラフを示している。第1の光学素子13から出射したレーザビームは、第2の光学素子14の外を伝播する。 FIG. 6 is a diagram for explaining a third beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the first embodiment. When the first optical element 13 is arranged on the optical axis AX and the second optical element 14 is arranged at a position deviated from the optical axis AX, the laser beam emitted from the collimating optical system 6 is the first. It is incident on the optical element 13 of the above. FIG. 6 shows a graph showing the intensity distribution M0 of the laser beam incident on the first optical element 13. The laser beam emitted from the first optical element 13 propagates outside the second optical element 14.
 強度分布M0のレーザビームが第1の光学素子13を伝播すると、第1の光学素子13からは、発散角がθ3であるレーザビームが出射する。θ1>θ2>θ3が成り立つ。L1は、第1の光学素子13から像面Sまでの光学的な設計距離であって、第1の光学素子13の頂点と像面Sとの間の光学距離である。像面Sにおけるレーザビームの強度分布は、ビーム径がD3、かつピーク強度がP3である強度分布M3となる。D1>D2>D3、かつP1<P2<P3が成り立つ。図6には、かかる位置におけるレーザビームの強度分布M3を表すグラフを示している。 When the laser beam having the intensity distribution M0 propagates through the first optical element 13, the laser beam having a divergence angle of θ3 is emitted from the first optical element 13. θ1> θ2> θ3 holds. L1 is an optical design distance from the first optical element 13 to the image plane S, and is an optical distance between the apex of the first optical element 13 and the image plane S. The intensity distribution of the laser beam on the image plane S is an intensity distribution M3 in which the beam diameter is D3 and the peak intensity is P3. D1> D2> D3 and P1 <P2 <P3 hold. FIG. 6 shows a graph showing the intensity distribution M3 of the laser beam at such a position.
 図7は、実施の形態1にかかるレーザ加工機が照射するレーザビームのビームモードのうち第4のビームモードについて説明するための図である。第1の光学素子13と第2の光学素子14とが光軸AXから外れた位置に配置されているとき、コリメート光学系6から出射したレーザビームは、切替えユニット12において第1の光学素子13および第2の光学素子14の外を伝播する。切替えユニット12から出射したレーザビームは、ビーム径がD4、かつピーク強度がP4であるガウシアンビームである。D4≒D0、かつP4≒P0が成り立つ。図7には、切替えユニット12から出射したレーザビームの強度分布M4を表すグラフを示している。 FIG. 7 is a diagram for explaining a fourth beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the first embodiment. When the first optical element 13 and the second optical element 14 are arranged at positions deviated from the optical axis AX, the laser beam emitted from the collimating optical system 6 is sent to the first optical element 13 in the switching unit 12. And propagate outside the second optical element 14. The laser beam emitted from the switching unit 12 is a Gaussian beam having a beam diameter of D4 and a peak intensity of P4. D4≈D0 and P4≈P0 hold. FIG. 7 shows a graph showing the intensity distribution M4 of the laser beam emitted from the switching unit 12.
 いずれのビームモードが選択された場合も、レーザ加工機1は、切替えユニット12を伝播したレーザビームのビーム径をズーム光学系7によって調整する。また、レーザ加工機1は、ズーム光学系7でのビーム径の調整を経たレーザビームを集光光学系8によって適切に収束させて、被加工物2へ照射する。 Regardless of which beam mode is selected, the laser processing machine 1 adjusts the beam diameter of the laser beam propagating through the switching unit 12 by the zoom optical system 7. Further, the laser processing machine 1 appropriately converges the laser beam after adjusting the beam diameter in the zoom optical system 7 by the condensing optical system 8 and irradiates the workpiece 2.
 このように、レーザ加工機1は、第1の光学素子13と第2の光学素子14とが光軸AX上に配置された状態にて、第1のビームモードのレーザビームを照射する。第1のビームモードは、第1の光学素子13と第2の光学素子14との組み合わせに備わる光学特性に応じた第1の強度分布である。レーザ加工機1は、第1の光学素子13が光軸AXから外れた位置に配置され、かつ第2の光学素子14が光軸AX上に配置された状態にて、第2のビームモードのレーザビームを照射する。第2のビームモードは、第2の光学素子14に備わる光学特性に応じた第2の強度分布である。レーザ加工機1は、第1の光学素子13が光軸AX上に配置され、かつ第2の光学素子14が光軸AX上から外れた位置に配置された状態にて、第3のビームモードのレーザビームを照射する。第3のビームモードは、第1の光学素子13に備わる光学特性に応じた第3の強度分布である。 In this way, the laser processing machine 1 irradiates the laser beam in the first beam mode with the first optical element 13 and the second optical element 14 arranged on the optical axis AX. The first beam mode is a first intensity distribution according to the optical characteristics provided in the combination of the first optical element 13 and the second optical element 14. The laser processing machine 1 is in a second beam mode in a state where the first optical element 13 is arranged at a position deviated from the optical axis AX and the second optical element 14 is arranged on the optical axis AX. Irradiate the laser beam. The second beam mode is a second intensity distribution according to the optical characteristics provided in the second optical element 14. The laser processing machine 1 has a third beam mode in a state where the first optical element 13 is arranged on the optical axis AX and the second optical element 14 is arranged at a position deviated from the optical axis AX. Irradiate the laser beam of. The third beam mode is a third intensity distribution according to the optical characteristics provided in the first optical element 13.
 レーザ加工機1が第1のビームモード、第2のビームモードまたは第3のビームモードのレーザビームを照射することによって、被加工物2においてリング状のスポットが形成される。第1のビームモード、第2のビームモードおよび第3のビームモードの各レーザビームは、厚い板金を切断する加工に適している。 When the laser machine 1 irradiates the laser beam of the first beam mode, the second beam mode, or the third beam mode, a ring-shaped spot is formed on the workpiece 2. The laser beams of the first beam mode, the second beam mode, and the third beam mode are suitable for cutting thick sheet metal.
 第1のビームモード、第2のビームモードおよび第3のビームモードの各々におけるビーム径、ピーク強度または発散角は、第1の光学素子13または第2の光学素子14へ入射するレーザビームのビーム径、第1の光学素子13における円錐形の頂角、第2の光学素子14における円錐形の頂角、第1の光学素子13と像面Sとの間の光学距離、第2の光学素子14と像面Sとの間の光学距離、第1の光学素子13の屈折率、および第2の光学素子14の屈折率などに対応して任意に設計可能である。また、第1のビームモード、第2のビームモードおよび第3のビームモードの各々におけるビーム径、ピーク強度または発散角は、被加工物2の材質、被加工物2の厚さ、レーザ発振器3の出力条件、加工速度、アシストガス、焦点位置、要求される加工品質といった各種条件の組み合わせによって任意に変更可能である。アシストガスの条件には、ガスの種類、またはガス圧といった条件が含まれる。 The beam diameter, peak intensity or divergence angle in each of the first beam mode, the second beam mode and the third beam mode is the beam of the laser beam incident on the first optical element 13 or the second optical element 14. Diameter, cone apex angle in first optical element 13, conical apex angle in second optical element 14, optical distance between first optical element 13 and image plane S, second optical element It can be arbitrarily designed according to the optical distance between the 14 and the image plane S, the refractive index of the first optical element 13, the refractive index of the second optical element 14, and the like. Further, the beam diameter, peak intensity or divergence angle in each of the first beam mode, the second beam mode and the third beam mode is the material of the workpiece 2, the thickness of the workpiece 2, and the laser oscillator 3. It can be arbitrarily changed by combining various conditions such as output conditions, processing speed, assist gas, focal position, and required processing quality. The conditions of the assist gas include conditions such as the type of gas or the gas pressure.
 切替えユニット12が有する光学素子の数は2つに限られない。切替えユニット12は各々を個別に移動可能な複数の光学素子を有していれば良く、光学素子の数は任意である。複数の光学素子の各々は、被加工物2において互いに異なる強度分布を得るための光学特性を備える。また、レーザ加工機1は、複数の光学素子の各々が互いに組み合わせられて使用されることによって、複数の光学素子の各々が単独で使用される場合における各強度分布とは異なる強度分布のレーザビームを照射する。複数の光学素子の各々は、円錐形レンズに限られない。複数の光学素子の各々は、円錐形レンズと同様の光学特性を備える非球面レンズであっても良い。 The number of optical elements included in the switching unit 12 is not limited to two. The switching unit 12 may have a plurality of optical elements that can be individually moved, and the number of optical elements is arbitrary. Each of the plurality of optical elements has optical characteristics for obtaining different intensity distributions in the workpiece 2. Further, in the laser processing machine 1, since each of the plurality of optical elements is used in combination with each other, the laser beam having an intensity distribution different from each intensity distribution when each of the plurality of optical elements is used alone. Irradiate. Each of the plurality of optical elements is not limited to the conical lens. Each of the plurality of optical elements may be an aspherical lens having the same optical characteristics as the conical lens.
 実施の形態1によると、切替えユニット12は、複数の光学素子の各々を直線方向へ個別に移動させることによって、光軸AX上の位置と光軸AXから外れた位置とへ複数の光学素子の各々を個別に移動させる。切替えユニット12は、光軸AX上の位置と光軸AXから外れた位置とへ複数の光学素子の各々を個別に移動させることによって、レーザビームのビームモードを切り替える。光軸方向における切替えユニット12の長さは、光軸方向へ各光学素子を移動させる場合よりも短くすることができる。レーザ加工機1は、切替えユニット12が小型であっても、複数の光学素子の各々を移動させることによってビーム径を大きく変化させることができる。レーザ加工機1は、切替えユニット12と光学系とを含むシステムを小型にすることができる。 According to the first embodiment, the switching unit 12 moves each of the plurality of optical elements individually in the linear direction to move the plurality of optical elements to a position on the optical axis AX and a position deviated from the optical axis AX. Move each individually. The switching unit 12 switches the beam mode of the laser beam by individually moving each of the plurality of optical elements to a position on the optical axis AX and a position deviating from the optical axis AX. The length of the switching unit 12 in the optical axis direction can be shorter than that in the case of moving each optical element in the optical axis direction. In the laser processing machine 1, even if the switching unit 12 is small, the beam diameter can be greatly changed by moving each of the plurality of optical elements. The laser processing machine 1 can reduce the size of the system including the switching unit 12 and the optical system.
 レーザ加工機1は、切替えユニット12と光学系とを含むシステムを小型にできることにより、かかるシステムに搭載される光学部品の清浄度を簡易な構造によって維持することができる。また、レーザ加工機1は、光学部品の清浄度を維持することによって、光学部品の長寿命化が可能となる。レーザ加工機1は、システムが大型である場合に比べて、光学部品同士の高精度な位置決めを簡易な制御によって行うことができる。また、レーザ加工機1は、システムが大型である場合に比べて、製造コストの低減が可能となる。 Since the system including the switching unit 12 and the optical system can be miniaturized in the laser processing machine 1, the cleanliness of the optical components mounted on the system can be maintained by a simple structure. Further, the laser processing machine 1 can extend the life of the optical component by maintaining the cleanliness of the optical component. The laser machine 1 can perform highly accurate positioning of optical components with simple control as compared with the case where the system is large. Further, the laser processing machine 1 can reduce the manufacturing cost as compared with the case where the system is large.
 以上により、実施の形態1にかかるレーザ加工機1は、小型な構成によってレーザビームの横断面における強度分布を切り替えることができるという効果を奏する。 As described above, the laser processing machine 1 according to the first embodiment has an effect that the intensity distribution in the cross section of the laser beam can be switched by a compact configuration.
実施の形態2.
 図8は、実施の形態2にかかるレーザ加工機のうち切替えユニットの構成を示す図である。実施の形態2にかかるレーザ加工機1が有する切替えユニット30は、複数の光学素子の各々を回転させる移動機構を有する。実施の形態2では、上記の実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。
Embodiment 2.
FIG. 8 is a diagram showing a configuration of a switching unit among the laser processing machines according to the second embodiment. The switching unit 30 included in the laser processing machine 1 according to the second embodiment has a moving mechanism for rotating each of the plurality of optical elements. In the second embodiment, the same components as those in the first embodiment are designated by the same reference numerals, and the configurations different from those in the first embodiment will be mainly described.
 切替えユニット30は、レンズホルダ17とともに第1の光学素子13を回転させる回転部31と、レンズホルダ18とともに第2の光学素子14を回転させる回転部32とを有する。回転部31と回転部32とは、光軸AX上の位置と光軸AXから外れた位置とへ第1の光学素子13と第2の光学素子14との各々を個別に移動させる移動機構を構成する。 The switching unit 30 has a rotating unit 31 that rotates the first optical element 13 together with the lens holder 17, and a rotating unit 32 that rotates the second optical element 14 together with the lens holder 18. The rotating unit 31 and the rotating unit 32 have a moving mechanism for individually moving each of the first optical element 13 and the second optical element 14 to a position on the optical axis AX and a position deviated from the optical axis AX. Constitute.
 回転部31は、レンズホルダ17の端部に取り付けられている。第1の光学素子13が光軸AX上の第1の位置に配置されている状態において、回転部31が回転軸33を中心に90度回転することによって、第1の光学素子13は、第1の位置から、光軸AXから外れた第2の位置へ移動する。第1の光学素子13が第2の位置に配置されている状態において、第1の位置から第2の位置への移動のときとは逆の方向へ回転部31が90度回転することによって、第1の光学素子13は、第2の位置から第1の位置へ移動する。回転部31は、第1の位置と第2の位置との間において第1の光学素子13を回転させる。 The rotating portion 31 is attached to the end of the lens holder 17. In a state where the first optical element 13 is arranged at the first position on the optical axis AX, the rotating portion 31 rotates 90 degrees around the rotating shaft 33, so that the first optical element 13 becomes a first. It moves from the position of 1 to the second position off the optical axis AX. In the state where the first optical element 13 is arranged at the second position, the rotating portion 31 rotates 90 degrees in the direction opposite to the movement from the first position to the second position, whereby The first optical element 13 moves from the second position to the first position. The rotating unit 31 rotates the first optical element 13 between the first position and the second position.
 回転部32は、レンズホルダ18の端部に取り付けられている。第2の光学素子14が光軸AX上の第3の位置に配置されている状態において、回転部32が回転軸34を中心に90度回転することによって、第2の光学素子14は、第3の位置から、光軸AXから外れた第4の位置へ移動する。第2の光学素子14が第4の位置に配置されている状態において、第3の位置から第4の位置への移動のときとは逆の方向へ回転部32が90度回転することによって、第2の光学素子14は、第4の位置から第3の位置へ移動する。回転部32は、第3の位置と第4の位置との間において第2の光学素子14を回転させる。図8には、第1の光学素子13が第1の位置に配置され、かつ第2の光学素子14が第3の位置に配置されているときの様子と、第1の光学素子13が第2の位置に配置され、かつ第2の光学素子14が第4の位置に配置されているときの様子とを示している。 The rotating portion 32 is attached to the end of the lens holder 18. In a state where the second optical element 14 is arranged at the third position on the optical axis AX, the rotating portion 32 rotates 90 degrees around the rotating shaft 34, so that the second optical element 14 is seconded. It moves from the third position to the fourth position off the optical axis AX. In the state where the second optical element 14 is arranged at the fourth position, the rotating portion 32 rotates 90 degrees in the direction opposite to the movement from the third position to the fourth position, whereby The second optical element 14 moves from the fourth position to the third position. The rotating unit 32 rotates the second optical element 14 between the third position and the fourth position. FIG. 8 shows a state in which the first optical element 13 is arranged at the first position and the second optical element 14 is arranged at the third position, and the first optical element 13 is the first. It shows a state when the second optical element 14 is arranged at the second position and the second optical element 14 is arranged at the fourth position.
 各回転部31,32は、例えばモータである。各回転部31,32は、回転可能な機構であれば良く、モータ以外の機構であっても良い。 Each of the rotating parts 31 and 32 is, for example, a motor. Each of the rotating portions 31 and 32 may be a mechanism other than the motor as long as it is a rotatable mechanism.
 次に、レーザ加工機1によるビームモードの切り替えについて説明する。切替えユニット30は、切替え指令にしたがって第1の光学素子13と第2の光学素子14とを個別に移動させることによって、結像位置におけるビームモードを4つのビームモードにおいて切り替える。実施の形態1と同様に、レーザ加工機1は、4つのビームモードの中から選択されたビームモードのレーザビームを照射する。 Next, switching of the beam mode by the laser processing machine 1 will be described. The switching unit 30 switches the beam mode at the imaging position between the four beam modes by individually moving the first optical element 13 and the second optical element 14 according to the switching command. Similar to the first embodiment, the laser processing machine 1 irradiates the laser beam of the beam mode selected from the four beam modes.
 レーザ加工機1が第1のビームモードのレーザビームを照射する場合、第1の光学素子13と第2の光学素子14とは、図4に示す場合と同様に、光軸AX上に配置される。図4に示すように、像面Sにおけるレーザビームの強度分布は、ビーム径がD1、かつピーク強度がP1である強度分布M1となる。 When the laser processing machine 1 irradiates the laser beam in the first beam mode, the first optical element 13 and the second optical element 14 are arranged on the optical axis AX as in the case shown in FIG. NS. As shown in FIG. 4, the intensity distribution of the laser beam on the image plane S is the intensity distribution M1 in which the beam diameter is D1 and the peak intensity is P1.
 図9は、実施の形態2にかかるレーザ加工機が照射するレーザビームのビームモードのうち第2のビームモードについて説明するための図である。図9に示すように、第1の光学素子13は光軸AXから外れた位置に配置され、かつ第2の光学素子14は光軸AX上に配置される。図5に示す場合と同様に、像面Sにおけるレーザビームの強度分布は、ビーム径がD2、かつピーク強度がP2である強度分布M2となる。 FIG. 9 is a diagram for explaining a second beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the second embodiment. As shown in FIG. 9, the first optical element 13 is arranged at a position deviated from the optical axis AX, and the second optical element 14 is arranged on the optical axis AX. Similar to the case shown in FIG. 5, the intensity distribution of the laser beam on the image plane S is the intensity distribution M2 in which the beam diameter is D2 and the peak intensity is P2.
 図10は、実施の形態2にかかるレーザ加工機が照射するレーザビームのビームモードのうち第3のビームモードについて説明するための図である。図10に示すように、第1の光学素子13は光軸AX上に配置され、かつ第2の光学素子14は光軸AXから外れた位置に配置される。図6に示す場合と同様に、像面Sにおけるレーザビームの強度分布は、ビーム径がD3、かつピーク強度がP3である強度分布M3となる。 FIG. 10 is a diagram for explaining a third beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the second embodiment. As shown in FIG. 10, the first optical element 13 is arranged on the optical axis AX, and the second optical element 14 is arranged at a position deviated from the optical axis AX. Similar to the case shown in FIG. 6, the intensity distribution of the laser beam on the image plane S is the intensity distribution M3 in which the beam diameter is D3 and the peak intensity is P3.
 図11は、実施の形態2にかかるレーザ加工機が照射するレーザビームのビームモードのうち第4のビームモードについて説明するための図である。図11に示すように、第1の光学素子13と第2の光学素子14とは、光軸AXから外れた位置に配置される。切替えユニット30から出射したレーザビームは、図7に示す場合と同様に、ビーム径がD4、かつピーク強度がP4であるガウシアンビームである。 FIG. 11 is a diagram for explaining a fourth beam mode among the beam modes of the laser beam irradiated by the laser processing machine according to the second embodiment. As shown in FIG. 11, the first optical element 13 and the second optical element 14 are arranged at positions deviated from the optical axis AX. The laser beam emitted from the switching unit 30 is a Gaussian beam having a beam diameter of D4 and a peak intensity of P4, as in the case shown in FIG. 7.
 切替えユニット30が有する光学素子の数は2つに限られない。実施の形態1の切替えユニット12と同様に、切替えユニット30は各々を個別に移動可能な複数の光学素子を有していれば良く、光学素子の数は任意である。 The number of optical elements included in the switching unit 30 is not limited to two. Similar to the switching unit 12 of the first embodiment, the switching unit 30 may have a plurality of optical elements that can be individually moved, and the number of optical elements is arbitrary.
 実施の形態2によると、切替えユニット30は、複数の光学素子の各々を個別に回転させることによって、光軸AX上の位置と光軸AXから外れた位置とへ複数の光学素子の各々を個別に移動させる。切替えユニット30は、光軸AX上と光軸AXから外れた位置とへ複数の光学素子の各々を個別に移動させることによって、レーザビームのビームモードを切り替える。実施の形態1と同様に、レーザ加工機1は、切替えユニット30と光学系とを含むシステムを小型にすることができる。以上により、実施の形態2にかかるレーザ加工機1は、小型な構成によってレーザビームの横断面における強度分布を切り替えることができるという効果を奏する。 According to the second embodiment, the switching unit 30 individually rotates each of the plurality of optical elements so that each of the plurality of optical elements is individually moved to a position on the optical axis AX and a position deviated from the optical axis AX. Move to. The switching unit 30 switches the beam mode of the laser beam by individually moving each of the plurality of optical elements to a position on the optical axis AX and a position deviated from the optical axis AX. Similar to the first embodiment, the laser processing machine 1 can reduce the size of the system including the switching unit 30 and the optical system. As described above, the laser processing machine 1 according to the second embodiment has an effect that the intensity distribution in the cross section of the laser beam can be switched by a compact configuration.
実施の形態3.
 図12は、実施の形態3にかかるレーザ加工機のうち切替えユニットの構成を示す図である。実施の形態3では、複数の光学素子の各々の形状が、実施の形態1または2における複数の光学素子の各々の形状とは異なる。実施の形態3では、上記の実施の形態1または2と同一の構成要素には同一の符号を付し、実施の形態1または2とは異なる構成について主に説明する。
Embodiment 3.
FIG. 12 is a diagram showing a configuration of a switching unit among the laser processing machines according to the third embodiment. In the third embodiment, the shape of each of the plurality of optical elements is different from the shape of each of the plurality of optical elements in the first or second embodiment. In the third embodiment, the same components as those in the first or second embodiment are designated by the same reference numerals, and the configurations different from those in the first or second embodiment will be mainly described.
 実施の形態3にかかるレーザ加工機1の切替えユニット40は、複数の光学素子である第1の光学素子41と第2の光学素子42とを有する。第1の光学素子41と第2の光学素子42との各々は、円錐形の頂部が丸められた形状の凸面を有する非球面レンズである。頂部は、円錐形のうち頂点を含む部分である。第1の光学素子41は、円錐形の頂部が丸められたような形状の先端部43を有する。第2の光学素子42は、円錐形の頂部が丸められたような形状の先端部44を有する。第1の光学素子41の先端部43と第2の光学素子42の先端部44とは、互いに向かい合わせられている。 The switching unit 40 of the laser processing machine 1 according to the third embodiment has a first optical element 41 and a second optical element 42, which are a plurality of optical elements. Each of the first optical element 41 and the second optical element 42 is an aspherical lens having a convex surface having a conical shape with a rounded top. The top is the part of the cone that contains the vertices. The first optical element 41 has a tip portion 43 having a conical shape with a rounded top. The second optical element 42 has a tip portion 44 shaped like a conical top with a rounded top. The tip 43 of the first optical element 41 and the tip 44 of the second optical element 42 face each other.
 第1の光学素子41は、図3または図8に示す第1の光学素子13と同様に、レンズホルダ17に取り付けられている。第2の光学素子42は、図3または図8に示す第2の光学素子14と同様に、レンズホルダ18に取り付けられている。切替えユニット40は、光軸AX上の位置と光軸AXから外れた位置とへ第1の光学素子41と第2の光学素子42との各々を個別に移動させる移動機構を有する。移動機構は、図3に示すスライド部19,20、または図8に示す回転部31,32である。図12では、レンズホルダ17,18と移動機構の図示を省略する。 The first optical element 41 is attached to the lens holder 17 in the same manner as the first optical element 13 shown in FIG. 3 or FIG. The second optical element 42 is attached to the lens holder 18 in the same manner as the second optical element 14 shown in FIG. 3 or FIG. The switching unit 40 has a moving mechanism for individually moving each of the first optical element 41 and the second optical element 42 to a position on the optical axis AX and a position deviated from the optical axis AX. The moving mechanism is the slide portions 19 and 20 shown in FIG. 3 or the rotating portions 31 and 32 shown in FIG. In FIG. 12, the lens holders 17 and 18 and the moving mechanism are not shown.
 第1の光学素子41と第2の光学素子42とは、被加工物2において互いに異なる強度分布を得るための光学特性を備える。レーザ加工機1は、第1の光学素子41と第2の光学素子42とが互いに組み合わせられて使用されることによって、第1の光学素子41と第2の光学素子42との各々が単独で使用される場合における各強度分布とは異なる強度分布のレーザビームを照射する。 The first optical element 41 and the second optical element 42 have optical characteristics for obtaining different intensity distributions in the workpiece 2. In the laser processing machine 1, the first optical element 41 and the second optical element 42 are used in combination with each other, so that each of the first optical element 41 and the second optical element 42 can be used independently. It irradiates a laser beam with an intensity distribution different from each intensity distribution when used.
 切替えユニット40が有する光学素子の数は2つに限られない。実施の形態1または2の切替えユニット12,30と同様に、切替えユニット40は各々を個別に移動可能な複数の光学素子を有していれば良く、光学素子の数は任意である。複数の光学素子の各々は、円錐形の頂部が丸められた形状の凸面を有する。 The number of optical elements included in the switching unit 40 is not limited to two. Similar to the switching units 12 and 30 of the first or second embodiment, the switching unit 40 may have a plurality of optical elements that can be individually moved, and the number of optical elements is arbitrary. Each of the plurality of optics has a convex surface having a conical shape with a rounded top.
 実施の形態3によると、切替えユニット40は、複数の光学素子の各々が、円錐形の頂部が丸められた形状の凸面を有する。複数の光学素子の各々が円錐形であって各円錐形の頂点を光軸AX上に合わせる場合に比べて、切替えユニット40は、複数の光学素子の各々の位置精度を緩和できる。これにより、レーザ加工機1は、複数の光学素子の各々の位置精度を高めなくても、レーザビームの安定した照射が可能となる。 According to the third embodiment, in the switching unit 40, each of the plurality of optical elements has a convex surface having a conical shape with a rounded top. Compared with the case where each of the plurality of optical elements is conical and the vertices of each conical shape are aligned on the optical axis AX, the switching unit 40 can relax the position accuracy of each of the plurality of optical elements. As a result, the laser processing machine 1 can stably irradiate the laser beam without improving the position accuracy of each of the plurality of optical elements.
 以上の実施の形態に示した構成は、本開示の内容の一例を示すものである。各実施の形態の構成は、別の公知の技術と組み合わせることが可能である。各実施の形態の構成同士が適宜組み合わせられても良い。本開示の要旨を逸脱しない範囲で、各実施の形態の構成の一部を省略、変更することが可能である。 The configuration shown in the above embodiments is an example of the contents of the present disclosure. The configurations of each embodiment can be combined with other known techniques. The configurations of the respective embodiments may be combined as appropriate. It is possible to omit or change a part of the configuration of each embodiment without departing from the gist of the present disclosure.
 1 レーザ加工機、2 被加工物、3 レーザ発振器、4 加工ヘッド、5 伝送ケーブル、6 コリメート光学系、7 ズーム光学系、8 集光光学系、9 レンズ、10 加工テーブル、11 制御装置、12,30,40 切替えユニット、13,41 第1の光学素子、14,42 第2の光学素子、15 円錐面、16 平面、17,18 レンズホルダ、19,20 スライド部、31,32 回転部、33,34 回転軸、43,44 先端部、AX 光軸。 1 laser processing machine, 2 work piece, 3 laser oscillator, 4 processing head, 5 transmission cable, 6 collimating optical system, 7 zoom optical system, 8 condensing optical system, 9 lens, 10 processing table, 11 control device, 12 , 30, 40 switching unit, 13, 41 first optical element, 14, 42 second optical element, 15 conical surface, 16 flat surface, 17, 18 lens holder, 19, 20 slide part, 31, 32 rotating part, 33,34 rotation axis, 43,44 tip, AX optical axis.

Claims (8)

  1.  レーザビームを照射することによって被加工物を加工するレーザ加工機であって、
     前記レーザビームを出射する光源と、
     前記レーザビームの横断面における強度分布を切り替える切替えユニットと、を備え、
     前記切替えユニットは、
     複数の光学素子と、
     前記レーザビームの光軸上の位置と前記光軸から外れた位置とへ前記複数の光学素子の各々を個別に移動させる移動機構と、を有することを特徴とするレーザ加工機。
    A laser processing machine that processes a workpiece by irradiating it with a laser beam.
    A light source that emits the laser beam and
    A switching unit for switching the intensity distribution in the cross section of the laser beam is provided.
    The switching unit is
    With multiple optics
    A laser processing machine comprising: a moving mechanism for individually moving each of the plurality of optical elements to a position on the optical axis of the laser beam and a position deviating from the optical axis.
  2.  前記複数の光学素子の各々は、前記被加工物において互いに異なる強度分布を得るための光学特性を備えることを特徴とする請求項1に記載のレーザ加工機。 The laser processing machine according to claim 1, wherein each of the plurality of optical elements has optical characteristics for obtaining different intensity distributions in the workpiece.
  3.  前記複数の光学素子の各々が互いに組み合わせられて使用されることによって、前記複数の光学素子の各々が単独で使用される場合における各強度分布とは異なる強度分布の前記レーザビームを照射することを特徴とする請求項2に記載のレーザ加工機。 By using each of the plurality of optical elements in combination with each other, it is possible to irradiate the laser beam having an intensity distribution different from that of each intensity distribution when each of the plurality of optical elements is used alone. The laser processing machine according to claim 2, wherein the laser processing machine is characterized.
  4.  前記複数の光学素子である第1の光学素子と第2の光学素子とが前記光軸上に配置された状態にて、前記第1の光学素子と前記第2の光学素子との組み合わせに備わる光学特性に応じた第1の強度分布の前記レーザビームを照射し、
     前記第1の光学素子が前記光軸から外れた位置に配置され、かつ前記第2の光学素子が前記光軸上に配置された状態にて、前記第2の光学素子に備わる光学特性に応じた第2の強度分布の前記レーザビームを照射し、
     前記第1の光学素子が前記光軸上に配置され、かつ前記第2の光学素子が前記光軸から外れた位置に配置された状態にて、前記第1の光学素子に備わる光学特性に応じた第3の強度分布の前記レーザビームを照射することを特徴とする請求項1に記載のレーザ加工機。
    A combination of the first optical element and the second optical element is provided in a state where the first optical element and the second optical element, which are the plurality of optical elements, are arranged on the optical axis. Irradiate the laser beam with the first intensity distribution according to the optical characteristics,
    In a state where the first optical element is arranged at a position deviated from the optical axis and the second optical element is arranged on the optical axis, depending on the optical characteristics provided in the second optical element. Irradiate the laser beam with the second intensity distribution,
    In a state where the first optical element is arranged on the optical axis and the second optical element is arranged at a position deviated from the optical axis, depending on the optical characteristics provided in the first optical element. The laser processing machine according to claim 1, further comprising irradiating the laser beam having a third intensity distribution.
  5.  前記移動機構は、前記光軸上の位置と前記光軸から外れた位置との間において前記複数の光学素子の各々を直線方向へ移動させることを特徴とする請求項1から4のいずれか1つに記載のレーザ加工機。 Any one of claims 1 to 4, wherein the moving mechanism moves each of the plurality of optical elements in a linear direction between a position on the optical axis and a position deviated from the optical axis. The laser processing machine described in 1.
  6.  前記移動機構は、前記光軸上の位置と前記光軸から外れた位置との間において前記複数の光学素子の各々を回転させることを特徴とする請求項1から4のいずれか1つに記載のレーザ加工機。 The moving mechanism according to any one of claims 1 to 4, wherein each of the plurality of optical elements is rotated between a position on the optical axis and a position deviated from the optical axis. Laser processing machine.
  7.  前記複数の光学素子の各々は、円錐形の凸面を有する円錐形レンズであることを特徴とする請求項1から6のいずれか1つに記載のレーザ加工機。 The laser processing machine according to any one of claims 1 to 6, wherein each of the plurality of optical elements is a conical lens having a conical convex surface.
  8.  前記複数の光学素子の各々は、円錐形の頂部が丸められた形状の凸面を有するレンズであることを特徴とする請求項1から6のいずれか1つに記載のレーザ加工機。 The laser processing machine according to any one of claims 1 to 6, wherein each of the plurality of optical elements is a lens having a convex surface having a conical shape with a rounded top.
PCT/JP2020/006088 2020-02-17 2020-02-17 Laser processing machine WO2021166037A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020530406A JP6833117B1 (en) 2020-02-17 2020-02-17 Laser processing machine
PCT/JP2020/006088 WO2021166037A1 (en) 2020-02-17 2020-02-17 Laser processing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/006088 WO2021166037A1 (en) 2020-02-17 2020-02-17 Laser processing machine

Publications (1)

Publication Number Publication Date
WO2021166037A1 true WO2021166037A1 (en) 2021-08-26

Family

ID=74665131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006088 WO2021166037A1 (en) 2020-02-17 2020-02-17 Laser processing machine

Country Status (2)

Country Link
JP (1) JP6833117B1 (en)
WO (1) WO2021166037A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106187A1 (en) * 2022-11-16 2024-05-23 株式会社アマダ Laser processing machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7224566B1 (en) * 2022-07-15 2023-02-17 三菱電機株式会社 Laser processing head and laser processing machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162583A (en) * 2009-01-16 2010-07-29 Panasonic Corp Method and device for laser soldering
WO2017203613A1 (en) * 2016-05-24 2017-11-30 三菱電機株式会社 Processing head and laser processing machine
WO2019193918A1 (en) * 2018-04-04 2019-10-10 日本板硝子株式会社 Optical device for machining using laser beam, method for machining using laser beam, and method for manufacturing glass article

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5922946Y2 (en) * 1980-04-24 1984-07-09 工業技術院長 Laser processing equipment
JP3067252B2 (en) * 1991-04-25 2000-07-17 株式会社アマダ Laser processing head
JP3469668B2 (en) * 1995-03-30 2003-11-25 オリンパス光学工業株式会社 Microscope with laser repair function

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010162583A (en) * 2009-01-16 2010-07-29 Panasonic Corp Method and device for laser soldering
WO2017203613A1 (en) * 2016-05-24 2017-11-30 三菱電機株式会社 Processing head and laser processing machine
WO2019193918A1 (en) * 2018-04-04 2019-10-10 日本板硝子株式会社 Optical device for machining using laser beam, method for machining using laser beam, and method for manufacturing glass article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024106187A1 (en) * 2022-11-16 2024-05-23 株式会社アマダ Laser processing machine

Also Published As

Publication number Publication date
JPWO2021166037A1 (en) 2021-08-26
JP6833117B1 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP4873191B2 (en) Material drilling and removal equipment using laser beam
US6875951B2 (en) Laser machining device
KR102651276B1 (en) processing equipment
JP4204810B2 (en) Laser beam delivery system
JP4386137B2 (en) Laser processing apparatus and laser processing method
US10444521B2 (en) Device for machining material by means of laser radiation
US11305383B2 (en) Laser machine
WO2021166037A1 (en) Laser processing machine
TW201811480A (en) AA method of laser processing of a metallic material with high dynamic control of the movement axes of the laser beam along a predetermined processing path, as well as a machine and a computer program for the implementation of said method
WO2018235509A1 (en) Laser processing machine
JP2023552942A (en) Laser processing system and method
KR102154285B1 (en) Drilling apparatus using laser beam
JP2019018233A (en) Laser processing machine
ES2705354T3 (en) Optical apparatus, processing apparatus and article manufacturing process
JP7181859B2 (en) LASER BEAM GUIDING DEVICE AND GUIDING METHOD FOR VARIING ECCENTRICITY OF LASER BEAM BY ROTATING AND LINEAR DISPLACEMENT
CN116038104A (en) Laser processing device
KR20210071938A (en) Optical apparatus and method for providing two offset laser beams
JP7011557B2 (en) Laser light scanning device and laser processing device
KR100809361B1 (en) Laser machining apparatus
JP6955934B2 (en) Laser processing machine
WO2020162557A1 (en) Polygon mirror, light guide device, and optical scanning device
JP2002001565A (en) Laser beam machining device
CN112975113B (en) Device and method for processing transparent material by using asymmetric beam splitting laser
JP7197002B2 (en) Groove processing device and groove processing method
US20220072655A1 (en) Laser processing device and laser processing method using same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020530406

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20920747

Country of ref document: EP

Kind code of ref document: A1