WO2021164734A1 - 光场显示系统 - Google Patents

光场显示系统 Download PDF

Info

Publication number
WO2021164734A1
WO2021164734A1 PCT/CN2021/076865 CN2021076865W WO2021164734A1 WO 2021164734 A1 WO2021164734 A1 WO 2021164734A1 CN 2021076865 W CN2021076865 W CN 2021076865W WO 2021164734 A1 WO2021164734 A1 WO 2021164734A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light field
sub
imaging surface
imaging
Prior art date
Application number
PCT/CN2021/076865
Other languages
English (en)
French (fr)
Inventor
高健
洪涛
朱文吉
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/435,367 priority Critical patent/US20220146853A1/en
Publication of WO2021164734A1 publication Critical patent/WO2021164734A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/10Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images using integral imaging methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B2003/0093Simple or compound lenses characterised by the shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0127Head-up displays characterised by optical features comprising devices increasing the depth of field
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0129Head-up displays characterised by optical features comprising devices for correcting parallax
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type

Definitions

  • the present disclosure relates to the field of light field display technology, and in particular to a light field display system.
  • VR display technology has received widespread attention, but its disadvantage is that there is a problem of convergence conflict (the binocular stereo vision position does not match the monocular focus position), and long-term viewing will produce a sense of vertigo.
  • a display solution that can solve the problem of human eye convergence, light field display has been studied in academia for a long time, but it has not been able to achieve satisfactory results in terms of imaging field of view and long-range imaging clarity.
  • an optical device that uses a microlens to realize a light field display, due to the aperture limit of the single lens and the limitation of the imaging field angle, the light field imaging field of view is limited to within ⁇ 10°, and as the imaging depth increases ( The distance between the image plane of the light field and the display screen), the imaging clarity gradually decreases.
  • the splicing will form a seam at the splicing of two adjacent display screens, thereby forming a certain size of display black area on the imaging surface .
  • the present disclosure provides a light field display system to solve the seam problem when a large field of view light field display is realized by a method of splicing display screens.
  • a light field display system including:
  • each light field display module includes a display screen and a micro lens array located on the light exit side of the display screen;
  • the lens group includes a plurality of spliced lenses corresponding to the plurality of light field display modules one-to-one, and the lens group is located on the side of the microlens array away from the display screen, and is used to move away from the display screen.
  • One side of the microlens array forms a plurality of first imaging planes corresponding to the plurality of light field display modules, and the plurality of first imaging planes are seamlessly spliced so as to be in the plurality of
  • the first imaging surface is far away from the light field display module to form a plurality of seamlessly spliced second imaging surfaces, wherein the first imaging surface displays the corresponding front surface of the light field display module. Erected virtual image.
  • the first imaging surface is located at the photopic distance of human eyes.
  • the spliced lens is a biconvex spherical lens or a plano-convex spherical lens.
  • each of the first imaging surfaces includes a first sub-imaging surface and a second sub-imaging surface
  • the first sub-imaging surface displays a corresponding upright virtual image of the display screen
  • the second sub-imaging surface The imaging surface displays the corresponding upright virtual image of the microlens array
  • the first sub-imaging surface is located on the focal plane of the virtual image of the microlens array displayed on the second sub-imaging surface, so that the first The light beam emitted by the virtual image of the display screen displayed on the imaging surface forms a collimated light beam that enters the human eye.
  • a plurality of light field display modules are spliced to form a curved surface, and the inner concave surface of the curved surface faces the human eye.
  • the relationship between the actual distance nf 2 ′ between the first sub-imaging surface and the second sub-imaging surface and the distance t between the display screen and the microlens array satisfies the relationship:
  • f 2 ′ is the distance between the first sub-imaging surface and the second sub-imaging surface after the equivalent air layer
  • L 1 is the distance between the human eye and the second sub-imaging surface
  • L 2 is the stitching
  • L 3 is the distance between the human eye and the splicing lens
  • n is the refractive index of the micro lens
  • t is the actual placement height of the micro lens relative to the display screen.
  • the microlens with respect to the display screen the actual placement height t, the focal length of the lens splicing f 1, f 2 the focal length of the microlenses is obtained by the following equation:
  • f 1 is the focal length of the stitching lens
  • f 2 is the focal length of the micro lens
  • f 2 ′ is the distance between the first sub-imaging surface and the second sub-imaging surface after the equivalent air layer
  • L 1 is the human The distance between the eye and the second sub-imaging surface
  • L 2 is the distance between the splicing lens and the micro lens
  • L 3 is the distance between the human eye and the splicing lens
  • n is the refractive index of the micro lens
  • t is the micro lens relative The actual placement height of the display;
  • is the pupil diameter of the human eye
  • N is the number of viewpoints
  • p is the pixel pitch on the display screen
  • p′ is the pixel pitch in the virtual image of the display screen displayed on the first sub-imaging plane
  • the aperture D 2 of the microlens satisfies the following formula: Among them, ⁇ is the limit resolution angle of the human eye.
  • the aperture D 1 of the spliced lens satisfies the following formula: Wherein, ⁇ is the angle of view corresponding to a single splicing lens.
  • the width w of the display screen satisfies the following formula:
  • the plane side of the plano-convex spherical lens faces the direction of human eyes.
  • the plurality of light field display modules are spliced to form a curved surface, and the inner concave surface of the curved surface faces the human eye, so that the plurality of first imaging surfaces form a curved surface, and the plurality of second imaging surfaces form a curved surface. Surface.
  • Figure 1 shows a schematic diagram of the imaging state of the spliced display screen in the related art
  • FIG. 2 shows a schematic diagram of an imaging state of a light field display module in an embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of the positional relationship between the first imaging surface and the second imaging surface in an embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of the spliced lens structure in an embodiment of the present disclosure
  • FIG. 5 shows a schematic diagram of the principle of the optical path in an embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram 1 of a state in which light from a pixel on a display screen received by a single eye enters a human eye in an embodiment of the present disclosure
  • FIG. 7 shows a second schematic diagram of a state in which light from a pixel on a display screen received by a single eye enters the human eye in an embodiment of the present disclosure.
  • a method of splicing displays is generally used. As shown in Figure 1, a microlens array 2 is set on the light-emitting side of the splicing display 1 to form an imaging surface 3. However, due to the limitation of the frame of the display 1, after splicing A seam is formed at the joint of two adjacent display screens, thereby forming a display black area 31 of a certain size on the imaging surface 3.
  • this embodiment provides a light field display system, including:
  • each light field display module 20 includes a display screen 21 and a microlens array 22 located on the light emitting side of the display screen 21;
  • the lens group 1' includes a plurality of splicing lenses 1 corresponding to the plurality of light field display modules 20 one-to-one.
  • a plurality of first imaging surfaces 3 corresponding to the plurality of light field display modules 20 are formed on the side far away from the microlens array 22, and the plurality of first imaging surfaces 3 are seamlessly spliced between the plurality of The side of the first imaging surface 3 away from the plurality of light field display modules 20 forms a plurality of seamlessly spliced second imaging surfaces 4, wherein the first imaging surface 3 displays the corresponding light fields For an upright virtual image of the display module 20, referring to FIGS.
  • the second imaging surface 4 is located on the side of the first imaging surface 3 away from the light field display module 20, that is, along the distance away from people
  • the lens group 1', the light field display module 20, the first imaging surface 3 and the second imaging surface 4 are sequentially arranged in the direction of the eye, and each of the light field display modules 20 includes a lens set along a direction away from the human eye.
  • the multiple spliced light field display modules 20 are imaged by the splicing lens 1, and the upright virtual images formed are seamlessly spliced.
  • the virtual image of the light field display module 20 can be equivalent to a light field system, which is displayed far away from the light field.
  • One side of the module 20 is imaged again, and the resulting light field image surface is a seamless light field imaging surface with a large field of view that can be focused by a single eye. Can solve the problem of imaging patchwork.
  • the first imaging surface 3 is located at the photopic distance of the human eye.
  • the photopic distance is the most convenient and accustomed working distance for the eyes under suitable lighting conditions.
  • the most suitable distance for normal human eyes to observe small objects nearby is about 25 cm.
  • the adjustment function of the human eye is not too tight, and it can be observed for a long time without fatigue.
  • the first imaging surface 3 is located at the photopic distance of the human eye, so that a clear image can be obtained and the human eye can watch more comfortably.
  • the imaging principle of a convex lens is used, and the splicing lens 1 is a biconvex spherical lens or a plano-convex spherical lens.
  • the number of splicing lenses can be set according to actual needs. The more the number of splicing lenses 1, the larger the field of view to be spliced.
  • the spliced lens 1 shown in FIG. 4 is a biconvex spherical lens, and the splicing combination of three spliced lenses 1 is illustrated, but it is not limited thereto.
  • the multiple spliced lenses in the lens group may be arranged separately, that is, the lens group is formed by splicing and fixedly connecting a plurality of separate spliced lenses; the multiple spliced lenses in the lens group may also be integrally formed. That is, the lens group is a whole.
  • the plane side of the plano-convex spherical lens can be set facing the display screen, or it can be set facing the direction of the human eye, because the plano-convex spherical lens
  • the focal length of the object side and the image side have not changed, so the relationship between the object and the image remains the same, and the imaging is not affected.
  • the splicing lens adopts a plano-convex spherical lens, and the plane side of the plano-convex spherical lens is set facing the direction of the human eye, which is beneficial to clean up stains.
  • the field angle is larger.
  • focal length formula of the lens is: in
  • the spliced lens adopts a double convex spherical lens. Compared with a plano-convex spherical lens, the spherical radius on both sides of the double-convex spherical lens is smaller than that of the convex surface of the plano-convex spherical lens, which can reduce the curvature of the convex surface of the spliced lens. Therefore, in a specific implementation of this embodiment, the stitching lens 1 is preferably a biconvex spherical lens.
  • each of the first imaging surfaces 3 includes a first sub-imaging surface 31 and a second sub-imaging surface 32, and the first sub-imaging surface 31 displays the corresponding upright virtual image of the display screen 21, so
  • the second sub-imaging surface 32 displays an upright virtual image of the corresponding microlens array 22, and the first sub-imaging surface 31 is located on the focal plane of the virtual image of the microlens array 22 displayed on the second sub-imaging surface 32,
  • the light beam emitted by the virtual image of the display screen 21 displayed on the first imaging surface 3 forms a collimated light beam that enters the human eye.
  • the plane passing through the focal point and perpendicular to the main optical axis of the lens is the focal plane.
  • the light emitted from a point on the focal plane passes through the lens and becomes a beam of parallel light with a fixed angle with the main optical axis.
  • the first A sub-imaging surface 31 is located on the focal plane of the virtual image of the microlens array 22 displayed on the second sub-imaging surface 32, that is, the virtual image of the display screen 21 displayed on the first sub-imaging surface 31 is located on the second sub-imaging surface 32.
  • the light beam emitted from the virtual image of the display screen 21 and the virtual image of the microlens array 22 form collimated parallel light that enters the human eye.
  • a plurality of light field display modules 20 are spliced to form a curved surface, and the inner concave surface of the curved surface faces the human eye.
  • a plurality of light field display modules 20 are spliced to form a curved surface, the first imaging surface 3 thus formed is a curved surface, and the virtual light field system formed by the virtual image of the light field display module 20 displayed on the first imaging surface 3 forms a second
  • the imaging surface 4 is a curved surface, which expands the field of view, and compared with the planar imaging surface, it avoids the defect of the edge picture.
  • the curved surface formed by splicing multiple light field display modules 20 is not a curved surface in a strict sense, as shown in FIG. 4.
  • the relationship between the actual distance nf 2 ′ between the first sub-imaging surface 31 and the second sub-imaging surface 32 and the distance t between the display screen 21 and the microlens array 22 satisfies the relationship Mode:
  • the standard of light field display is: a single eye receives the collimated light of N pixels under each microlens. Among them, N is also called the number of viewpoints, and requires N ⁇ 2, optionally, N ⁇ 20. Collimation means that the light beams emitted by the pixels in the display screen 21 are collimated and emitted after passing through the micro lens and the splicing lens 1. For details, refer to Figure 5, which shows the corresponding part under a micro lens. The display screen 21 is imaged on the focal plane of the stitching lens 1 after passing through the microlens. Therefore, the light beam passes through the stitching lens 1 to be collimated and emitted.
  • the following formula can be obtained according to the principle of convex lens imaging:
  • the above-mentioned optical path collimation process can be equivalent to the first sub-imaging at the focal plane of the virtual image of the microlens displayed on the second sub-imaging surface 32 at the viewing distance L 1 and the second sub-imaging surface 32 in FIG. 5 Surface 31, the first sub-imaging surface 31 displays the upright virtual image of the display screen 21, and the pixels on the virtual image of the display screen 21 displayed on the first sub-imaging surface 31 pass through the microscopic images displayed on the second sub-imaging surface 32.
  • the virtual image of the lens is directly collimated and projected to the human eye 01.
  • the viewing distance L 1 250mm (clear vision distance)
  • the process satisfies the following formula:
  • f 1 is the focal length of the stitching lens 1
  • f 2 is the focal length of the micro lens
  • f 2 ′ is the distance between the first sub-imaging surface 31 and the second sub-imaging surface 32 after an equivalent air layer
  • L 1 is the distance between the human eye 01 and the second sub-imaging surface 32
  • L 2 is the distance between the splicing lens 1 and the micro lens
  • L 3 is the distance between the human eye 01 and the splicing lens 1
  • n is the distance of the micro lens Refractive index
  • t is the actual placement height of the micro lens relative to the display screen 21;
  • f 1 -L 2 is the image distance
  • t/n is the object distance after the equivalent air layer
  • L 1 -L 3 is the image distance
  • L 2 is the object distance .
  • the object distance and image distance are calculated according to the equivalent air layer value.
  • the air equivalent display screen 311 to the second sub-imaging surface in Figure 6 The distance of is f 2 ′, and the actual distance between the first sub-imaging surface 31 and the second sub-imaging surface 32 is nf 2 ′.
  • is the diameter of the human eye pupil
  • N is the number of viewpoints
  • p is the pixel pitch on the display screen 21
  • p′ is the pixel pitch in the virtual image of the display screen 21 displayed on the first sub-imaging surface 31;
  • L 1 -L 3 +nf 2 ′ is the actual distance between the splicing lens 1 and the first sub-imaging surface 31, that is, the image distance
  • t+L 2 is the distance between the splicing lens 1 and the display screen 21. If the actual distance, that is, the object distance, is unified to the value after the equivalent air layer, then the formula (5) is transformed into
  • the distance f 2 ′ between the first sub-imaging surface 31 and the second sub-imaging surface 32 after the equivalent air layer can be obtained from formulas (1)-(5):
  • the focal length f 1 of the stitching lens 1 can be obtained by formulas (1)-(5):
  • the focal length f 2 of the micro lens can be obtained by formulas (1)-(5):
  • the aperture D 2 of the microlens satisfies the following formula: Among them, ⁇ is the limit resolution angle of the human eye.
  • the aperture of the microlens needs to satisfy the single eye view point N which can be recognized by the human eye. Specifically, it needs to satisfy the following relational expression:
  • D 2 ′ is the aperture of the equivalent microlens, and its relationship with the aperture D 2 of the microlens is:
  • L 2 is the distance between the stitching lens 1 and the micro lens
  • L 1 -L 3 is the distance between the stitching lens 1 and the second sub-imaging surface 32.
  • the microlens aperture D 2 is:
  • the aperture D 1 of the stitching lens 1 satisfies the following formula: Wherein, ⁇ is the angle of view corresponding to the single stitching lens 1.
  • the distance between the display screen and the human eye, as well as the distance between the display screen and the splicing lens and microlens are determined.
  • the center of a splicing lens 1 and the two ends of the virtual image of the display screen displayed in the first sub-imaging surface are connected to each other in the direction perpendicular to the main optical axis of the splicing lens, forming two hypotenuses of a triangle.
  • the two ends of the time display screen 21 in the direction perpendicular to the main optical axis of the splicing lens are respectively located on the two hypotenuses of the triangle.
  • the length W of the display screen is the optimal setting, and the display screen is located in the triangle, namely
  • the length of the display screen in the direction perpendicular to the main optical axis of the splicing screen is less than W, so seamless splicing cannot be formed between two adjacent first sub-imaging surfaces, and the display screen is perpendicular to the main light of the splicing screen.
  • the length in the direction of the axis is greater than W, then the part of the display screen located outside the triangle cannot be displayed on the first sub-imaging surface, which is a waste of cost.
  • the structures of the multiple spliced lenses in the lens group are the same, and the structures of the multiple light field display modules are the same.
  • the included angle between two adjacent splicing lenses is limited by parameters such as the imaging distance (position of the first imaging surface), the field angle ⁇ of a single splicing lens, and can be set according to actual needs.
  • the line connecting the human eye to the edge of the corresponding first imaging surface forms an isosceles triangle
  • the line 01 between the midpoint of the imaging part on the first imaging surface 3 corresponding to a single splicing lens and the human eye is perpendicular to the imaging part on the first imaging surface (the line 01 passes through the midpoint of the corresponding display screen) , And perpendicular to the corresponding display).
  • the angle between two adjacent splicing lenses is complementary to the field angle ⁇ of a single splicing lens (but not limited to this)
  • the field angle ⁇ of each splicing lens is the same, which is the maximum field angle of 20 degrees (but not limited to this), that is, the difference between two adjacent splicing lenses The angle is 160 degrees.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Lenses (AREA)

Abstract

本公开涉及一种光场显示系统,包括:呈角度拼接的多个光场显示模组,每个光场显示模组包括显示屏和位于显示屏的出光侧的微透镜阵列;透镜组,包括与所述多个光场显示模组一一对应的多个拼接透镜,所述透镜组位于所述微透镜阵列远离所述显示屏的一侧、用于在所述显示屏远离所述微透镜阵列的一侧形成与所述多个光场显示模组一一对应的多个第一成像面,且所述多个第一成像面之间无缝拼接、以在所述多个第一成像面远离所述光场显示模组的一侧形成无缝拼接的多个第二成像面,其中,所述第一成像面显示的是对应的所述光场显示模组的正立的虚像。

Description

光场显示系统
相关申请的交叉引用
本申请主张在2020年2月19日在中国提交的中国专利申请号No.202010102046.X的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及光场显示技术领域,尤其涉及一种光场显示系统。
背景技术
近年来,随着3D技术的发展,VR显示技术得到了人们的广泛关注,但其缺点是有辐辏冲突问题(双眼立体视觉位置与单眼聚焦位置不匹配),长时间观看会产生眩晕感。光场显示作为能解决人眼辐辏冲突问题的显示方案,在学术界的研究由来已久,但是在成像视场和远景成像清晰度方面,一直未能达到令人满意的效果。例如,利用微透镜实现光场显示的光学装置,由于单透镜的孔径限制和成像视场角的限制,使光场成像视场被限制在了±10°以内,并且随着成像深度的增加(光场像面到显示屏的距离),成像清晰度逐渐降低。
解决成像视场问题,易于想到拼接显示屏的方法,但由于显示屏的边框限制,拼接后会在相邻两个显示屏的拼接处形成拼缝,从而在成像面形成一定大小的显示黑区。
发明内容
为了解决上述技术问题,本公开提供一种光场显示系统,解决通过拼接显示屏的方法实现大视场光场显示时的拼缝问题。
为了达到上述目的,本公开采用的技术方案是:一种光场显示系统,包括:
呈角度拼接的多个光场显示模组,每个光场显示模组包括显示屏和位于显示屏的出光侧的微透镜阵列;
透镜组,包括与所述多个光场显示模组一一对应的多个拼接透镜,所述透镜组位于所述微透镜阵列远离所述显示屏的一侧、用于在所述显示屏远离所述微透镜阵列的一侧形成与所述多个光场显示模组一一对应的多个第一成像面,且所述多个第一成像面之间无缝拼接、以在所述多个第一成像面远离所述光场显示模组的一侧形成无缝拼接的多个第二成像面,其中,所述第一成像面显示的是对应的所述光场显示模组的正立的虚像。
可选的,所述第一成像面位于人眼的明视距离处。
可选的,所述拼接透镜为双凸球面透镜,或者平凸球面透镜。
可选的,每个所述第一成像面包括第一子成像面和第二子成像面,所述第一子成像面显示对应的所述显示屏的正立的虚像,所述第二子成像面显示对应的所述微透镜阵列的正立的虚像,所述第一子成像面位于所述第二子成像面显示的所述微透镜阵列的虚像的焦平面上,使得所述第一成像面显示的所述显示屏的虚像发出的光束形成入射人眼的准直光束。
可选的,多个光场显示模组拼接形成一曲面,该曲面的内凹面面向人眼。
可选的,所述第一子成像面与所述第二子成像面之间的实际距离nf 2′和显示屏与微透镜阵列之间的距离t之间的关系满足关系式:
Figure PCTCN2021076865-appb-000001
Figure PCTCN2021076865-appb-000002
其中,f 2′为等效空气层后所述第一子成像面到所述第二子成像面之间的距离,L 1为人眼到第二子成像面之间的距离,L 2为拼接透镜与微透镜之间的距离,L 3为人眼到拼接透镜之间的距离,n为微透镜的折射率,t为微透镜相对于显示屏的实际放置高度。
可选的,微透镜相对于显示屏的实际放置高度t、拼接透镜的焦距f 1、微透镜的焦距f 2可由以下公式获得:
根据凸透镜成像原理可获得以下公式:
Figure PCTCN2021076865-appb-000003
Figure PCTCN2021076865-appb-000004
其中,f 1为拼接透镜的焦距,f 2为微透镜的焦距,f 2′为等效空气层后所 述第一子成像面到所述第二子成像面之间的距离,L 1为人眼到第二子成像面之间的距离,L 2为拼接透镜与微透镜之间的距离,L 3为人眼到拼接透镜之间的距离,n为微透镜的折射率,t为微透镜相对于显示屏的实际放置高度;
由几何关系可获得以下公式:
Figure PCTCN2021076865-appb-000005
Figure PCTCN2021076865-appb-000006
其中,Φ为人眼瞳孔直径,N为视点数量,p为显示屏上的像素间距,p′为第一子成像面显示的显示屏的虚像中的像素间距;
由公式(1)-(5)可获得:
Figure PCTCN2021076865-appb-000007
其中,
Figure PCTCN2021076865-appb-000008
b=ΦL 2-npNL 1,c=-(L 1-L 3)pNL 1
且由公式(1)-(5)可获得:
Figure PCTCN2021076865-appb-000009
Figure PCTCN2021076865-appb-000010
Figure PCTCN2021076865-appb-000011
可选的,所述微透镜的孔径D 2满足以下公式:
Figure PCTCN2021076865-appb-000012
其中,ε为人眼的极限分辨角。
可选的,所述拼接透镜的孔径D 1满足以下公式:
Figure PCTCN2021076865-appb-000013
其中,θ为单个所述拼接透镜所对应的视场角。
可选的,显示屏的宽度w满足以下公式:
Figure PCTCN2021076865-appb-000014
可选的,所述平凸球面透镜的平面一侧面向人眼方向设置。
可选的,所述多个光场显示模组拼接形成一曲面,所述曲面的内凹面面向人眼,以使所述多个第一成像面形成曲面,所述多个第二成像面形成曲面。
附图说明
图1表示相关技术中拼接显示屏成像状态示意图;
图2表示本公开实施例中光场显示模组成像状态示意图;
图3表示本公开实施例中第一成像面和第二成像面位置关系示意图;
图4表示本公开实施例中拼接透镜结构示意图;
图5表示本公开实施例中光路原理示意图;
图6表示本公开实施例中单眼接收显示屏上的像素的光线进入人眼的状态示意图一;
图7表示本公开实施例中单眼接收显示屏上的像素的光线进入人眼的状态示意图二。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
在本公开的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
为了实现大视场一般会采用拼接显示屏的方法,如图1所示,在拼接显示屏1的出光侧设置微透镜阵列2,形成成像面3,但由于显示屏1的边框限制,拼接后会在相邻两个显示屏的拼接处形成拼缝,从而在成像面3形成一定大小的显示黑区31。
针对上述技术问题,参考图2-图5,本实施例提供一种光场显示系统,包括:
呈角度拼接的多个光场显示模组20,每个光场显示模组20包括显示屏21和位于显示屏21的出光侧的微透镜阵列22;
透镜组1′,包括与所述多个光场显示模组20一一对应的多个拼接透镜1,透镜组1′位于微透镜阵列22远离显示屏21的一侧、用于在显示屏21远离微透镜阵列22的一侧形成与多个光场显示模组20一一对应的多个第一成像面3,且所述多个第一成像面3之间无缝拼接、以在多个第一成像面3远离所述多个光场显示模组20的一侧形成无缝拼接的多个第二成像面4,其中,所述第一成像面3显示的是对应的所述光场显示模组20的正立的虚像,参考图2-图5,所述第二成像面4位于所述第一成像面3远离所述光场显示模组20的一侧,即沿着远离人眼的方向依次设置透镜组1′、光场显示模组20、第一成像面3和第二成像面4,且每个所述光场显示模组20包括沿着远离人眼的方向设置的微透镜阵列22和显示屏21。
多个拼接的光场显示模组20经拼接透镜1成像,形成的正立的虚像是无缝拼接的,光场显示模组20的虚像可以等效为一个光场系统,在远离光场显示模组20的一侧再次成像,所得的光场像面为一个大视场的可被单眼聚焦的无缝光场成像面,既可实现大视场单眼立体视觉显示(光场显示),又可解决成像拼缝问题。
本实施例中,所述第一成像面3位于人眼的明视距离处。
明视距离就是在合适的照明条件下,眼睛最方便、最习惯的工作距离。最适合正常人眼观察近处较小物体的距离,约为25厘米。这时人眼的调节功能不太紧张,可以长时间观察而不易疲劳,所述第一成像面3位于人眼的明视距离处,可以获得清晰的图像、且人眼观看更为舒适。
本实施例中,利用凸透镜成像原理,所述拼接透镜1为双凸球面透镜,或者平凸球面透镜。拼接透镜的数量可根据实际需要设定,拼接透镜1的数量越多,所拼接的视场角就越大。图4中表示的拼接透镜1为双凸球面透镜,且示意了3个拼接透镜1的拼接组合,但并不以此为限。
需要说明的是,透镜组中的多个拼接透镜可以是分体设置,即透镜组由多个单独的拼接透镜拼接固定连接在一起形成;透镜组中的多个拼接透镜也可以是一体成型,即透镜组是一个整体。
需要说明的是,本实施例中,所述拼接透镜为平凸球面透镜时,所述平凸球面透镜的平面一侧可以面向显示屏设置,也可以面向人眼方向设置,由于平凸球面透镜的物方焦距和像方焦距没变,所以物象关系没变,不影响成像。
本实施例的一具体实施方式中,所述拼接透镜采用平凸球面透镜,所述平凸球面透镜的平面一侧面向人眼方向设置,利于清理污渍、在人眼距离屏幕较近时、视场角较大。
需要说明的是,透镜的焦距公式为:
Figure PCTCN2021076865-appb-000015
其中
f为透镜的焦距,n为透镜的折射率,R 1、R 2分别为透镜的相对的两侧的球面半径,d为透镜的厚度,由此可知,在焦距f确定的前提下,所述拼接透镜采用双凸球面透镜,相比于采用平凸球面透镜,双凸球面透镜的两侧的球面半径均比平凸球面透镜的凸面的球面半径小,这样可以减小拼接透镜的凸面的弯曲度,进而减小球差,因此,本实施例的一具体实施方式中,所述拼接透镜1优选为双凸球面透镜。
本实施例中,每个所述第一成像面3包括第一子成像面31和第二子成像面32,所述第一子成像面31显示对应的显示屏21的正立的虚像,所述第二子成像面32显示对应的微透镜阵列22的正立的虚像,所述第一子成像面31位于所述第二子成像面32显示的微透镜阵列22的虚像的焦平面上,使得所述第一成像面3显示的显示屏21的虚像发出的光束形成入射人眼的准直光束。
过焦点且垂直于透镜的主光轴的平面为焦平面,由焦平面上的一点发出的光线、经过透镜后成为一束与主光轴有固定夹角的平行光,本实施例中,第一子成像面31位于所述第二子成像面32显示的微透镜阵列22的虚像的焦平面上,即第一子成像面31显示的显示屏21的虚像位于第二子成像面32显示的微透镜阵列22的虚像的焦平面上,这样使得显示屏21的虚像发出的光束、经微透镜阵列22的虚像后形成入射人眼的准直平行光。
本实施例中,多个光场显示模组20拼接形成一曲面,该曲面的内凹面面向人眼。多个光场显示模组20拼接形成曲面,由此形成的第一成像面3为曲面,由第一成像面3显示的光场显示模组20的虚像形成的虚拟光场系统形成 的第二成像面4为曲面,扩大了视场,且相对于平面形式的成像面,避免边缘画面的不良。
需要说明的是,多个光场显示模组20拼接形成的曲面,并非严格意义上的曲面,如图4所示。
本实施例中,所述第一子成像面31与所述第二子成像面32之间的实际距离nf 2′和显示屏21与微透镜阵列22之间的距离t之间的关系满足关系式:
Figure PCTCN2021076865-appb-000016
凸透镜成像纵向放大倍率公式:h′/H=v/u,其中h′为像高,H为物高,v为像距,u为物距,横向放大率β=(h′/H) 2,本实施例中,参考图5,关于拼接透镜1的像距v=L 1-L 3,物距u=L 2,由此可得上述公式(1)。
光场显示的基准是:单眼接收各个微透镜下N个像素的准直化光线。其中,N也被称为视点数,并且要求N≥2,可选地,N≥20。准直化的意思是:显示屏21中像素出射的光束经过微透镜和拼接透镜1后,被准直出射,具体的参考图5所示,图5中示意了一个微透镜下所对应的部分显示屏21经过微透镜后成像在拼接透镜1的焦平面上,因此,光束经过拼接透镜1被准直出射。本实施例中,根据凸透镜成像原理可获得以下公式:
Figure PCTCN2021076865-appb-000017
上述光路准直过程,可以等效为图5中的位于观看距离L 1处的第二子成像面32和位于第二子成像面32显示的微透镜的虚像的焦平面处的第一子成像面31,第一子成像面31显示的是显示屏21的正立的虚像,第一子成像面31上显示的显示屏21的虚像上的像素出射光束经过第二子成像面32显示的微透镜的虚像直接被准直出射投射到人眼01。较佳的,观看距离L 1=250mm(明视距离),该过程满足以下公式:
Figure PCTCN2021076865-appb-000018
其中,f 1为拼接透镜1的焦距,f 2为微透镜的焦距,f 2′为等效空气层后所述第一子成像面31到所述第二子成像面32之间的距离,L 1为人眼01到第二子成像面32之间的距离,L 2为拼接透镜1与微透镜之间的距离,L 3为人眼 01到拼接透镜1之间的距离,n为微透镜的折射率,t为微透镜相对于显示屏21的实际放置高度;
需要说明的是,对于微透镜,f 1-L 2为像距,t/n为等效空气层后的物距;对于拼接透镜1,L 1-L 3为像距,L 2为物距。
需要说明的是,为了便于计算,物距和像距等为按照等效空气层后的数值进行计算,参考图5和图6,图6中等效空气后的显示屏311到第二子成像面的距离是f 2′,第一子成像面31与第二子成像面32之间的实际距离为nf 2′。
参考图5和图6,由几何关系可获得以下公式:
Figure PCTCN2021076865-appb-000019
Figure PCTCN2021076865-appb-000020
其中,Φ为人眼瞳孔的直径,N为视点数量,p为显示屏21上的像素间距,p′为第一子成像面31显示的显示屏21的虚像中的像素间距;
需要说明的是,L 1-L 3+nf 2′为拼接透镜1到第一子成像面31之间的实际距离,即像距,t+L 2为拼接透镜1到显示屏21之间的实际距离,即物距,若统一为等效空气层后的数值,则公式(5)转化为
Figure PCTCN2021076865-appb-000021
由公式(1)-(5)可获得等效空气层后所述第一子成像面31到所述第二子成像面32之间的距离f 2′:
Figure PCTCN2021076865-appb-000022
其中,
Figure PCTCN2021076865-appb-000023
b=ΦL 2-npNL 1,c=-(L 1-L 3)pNL 1
且由公式(1)-(5)可获得微透镜相对于显示屏21的实际放置高度t:
Figure PCTCN2021076865-appb-000024
由公式(1)-(5)可获得拼接透镜1的焦距f 1
Figure PCTCN2021076865-appb-000025
由公式(1)-(5)可获得微透镜的焦距f 2
Figure PCTCN2021076865-appb-000026
本实施例中,所述微透镜的孔径D 2满足以下公式:
Figure PCTCN2021076865-appb-000027
其中,ε为人眼的极限分辨角。
微透镜孔径需要满足单眼视点数N可被人眼识别,具体的还需要满足下述关系式:
Figure PCTCN2021076865-appb-000028
参考图7,
Figure PCTCN2021076865-appb-000029
以保证一个视锥细胞001上只接收识别一个视点,且
Figure PCTCN2021076865-appb-000030
Figure PCTCN2021076865-appb-000031
图7中的D相当于本实施例中的D 2′,图7中的L相当于本实施例中的L 1,显示屏21经微透镜放大后的成像21′被人眼看到,由此可获得上述公式(10),其中,ε为人眼的极限分辨角,N为入射这单眼的视点的数量,D为微透镜在垂直于其主光轴方向上的长度,L是微透镜到人眼之间的距离,α为经过单个微透镜被人眼看到的N个像素、相对人眼的总夹角。
公式(10)中,D 2′为等效微透镜的孔径,它与微透镜孔径D 2的关系是:
Figure PCTCN2021076865-appb-000032
其中,L 2为拼接透镜1到微透镜之间的距离,L 1-L 3为拼接透镜1到第二子成像面32之间的距离。
由上述公式(10)和公式(11),可获得微透镜孔径D 2满足公式:
Figure PCTCN2021076865-appb-000033
由于光场成像的分辨率随着微透镜的孔径的增大而减小,因此为获得较佳的光场成像效果,本实施例的一具体实施方式中,微透镜孔径D 2为:
Figure PCTCN2021076865-appb-000034
本实施例中,参考图2和图5,所述拼接透镜1的孔径D 1满足以下公式:
Figure PCTCN2021076865-appb-000035
其中,θ为单个所述拼接透镜1所对应的视场角。
参考图2和图5,由几何关系可知,显示屏21的宽度W与第一子成像面31显示的显示屏的虚像的宽度W′需要满足下列关系式:nf 2
Figure PCTCN2021076865-appb-000036
Figure PCTCN2021076865-appb-000037
由上述公式(12)和(13)可获得,每个显示屏21的宽度w满足以下公式:
Figure PCTCN2021076865-appb-000038
参考图2,为了保证第二成像面进入人眼的光线是准直的,那么显示屏到人眼之间的距离、以及显示屏到拼接透镜、微透镜之间的距离都是确定的,从一个拼接透镜1的中心、向第一子成像面中显示的显示屏的虚像在垂直于该拼接透镜的主光轴的方向上的两端分别连线,形成一三角形的两个斜边,此时显示屏21在垂直于该拼接透镜的主光轴方向上的两端分别位于该三角形的两个斜边上,此时显示屏的长度W为最优设置,显示屏位于该三角形内,即显示屏在垂直于该拼接屏的主光轴的方向上的长度小于W,那么,相邻两个第一子成像面之间无法形成无缝拼接,显示屏在垂直于该拼接屏的主光轴的方向上的长度大于W,那么显示屏位于三角形外部的部分无法显示与第一子成像面上,浪费成本。
需要说明的是,本实施例中,透镜组中的多个拼接透镜的结构是相同的,多个光场显示模组的结构是相同的。
需要说明的是,相邻两个拼接透镜之间的夹角受到成像距离(第一成像面的位置)、单个拼接透镜的视场角θ等参数的限制,可根据实际需要设定。
需要说明的是,为了保证较佳的视觉效果,显示屏的长度W为最优设置时,对于单个拼接透镜,人眼到对应的第一成像面的边缘的连线形成等腰三角形,参考图2,本实施例中,采用3个拼接透镜,则形成了三个等腰三角形。单个拼接透镜对应的第一成像面3上的成像部分的中点与人眼的连线01是垂直于第一成像面上的成像部分的(该连线01是经过对应的显示屏的中点的,且垂直于对应的显示屏)。且由图2中可知,在本实施例中的一具体实施方式中,相邻两个拼接透镜之间的角度与单个拼接透镜的视场角θ是互补的(但并不以此为限),为了保证大视场效果,每个拼接透镜的视场角θ是相同的,其是最大的视场角20度(但并不以此为限),即相邻两个拼接透镜之间的角度为160度。
本实施例的一具体实施方式中,已知:L 1=250mm、L 2=30mm、L 3=40mm、像素pitch p=0.00847mm(物理空间3000PPI)、瞳孔直径Φ=3mm、人眼极限分辨角ε=1′、视点数N=20、单屏视场角θ=20°,n=1.5,通过上述公式可求得:
Figure PCTCN2021076865-appb-000039
以上所述为本公开较佳实施例,需要说明的是,对于本领域普通技术人员来说,在不脱离本公开所述原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开保护范围。

Claims (12)

  1. 一种光场显示系统,包括:
    呈角度拼接的多个光场显示模组,每个光场显示模组包括显示屏和位于显示屏的出光侧的微透镜阵列;
    透镜组,包括与所述多个光场显示模组一一对应的多个拼接透镜,所述透镜组位于所述微透镜阵列远离所述显示屏的一侧、用于在所述显示屏远离所述微透镜阵列的一侧形成与所述多个光场显示模组一一对应的多个第一成像面,且所述多个第一成像面之间无缝拼接、以在所述多个第一成像面远离所述光场显示模组的一侧形成无缝拼接的多个第二成像面,其中,所述第一成像面显示的是对应的所述光场显示模组的正立的虚像。
  2. 根据权利要求1所述的光场显示系统,其中,所述第一成像面位于人眼的明视距离处。
  3. 根据权利要求1所述的光场显示系统,其中,所述拼接透镜为双凸球面透镜,或者平凸球面透镜。
  4. 根据权利要求1所述的光场显示系统,其中,每个所述第一成像面包括第一子成像面和第二子成像面,所述第一子成像面显示对应的所述显示屏的正立的虚像,所述第二子成像面显示对应的所述微透镜阵列的正立的虚像,所述第一子成像面位于所述第二子成像面显示的所述微透镜阵列的虚像的焦平面上,使得所述第一成像面显示的所述显示屏的虚像发出的光束形成入射人眼的准直光束。
  5. 根据权利要求1所述的光场显示系统,其中,多个光场显示模组拼接形成一曲面,该曲面的内凹面面向人眼。
  6. 根据权利要求4所述的光场显示系统,其中,所述第一子成像面与所述第二子成像面之间的实际距离nf 2′和显示屏与微透镜阵列之间的距离t之间的关系满足关系式:
    Figure PCTCN2021076865-appb-100001
    其中,f 2′为等效空气层后所述第一子成像面到所述第二子成像面之间的距离,L 1为人眼到第二子成像面之间的距离,L 2为拼接透镜与微透镜之间的距离,L 3为人眼到拼接透镜之间的距离,n为微透镜的折射率,t为微透镜相 对于显示屏的实际放置高度。
  7. 根据权利要求6所述的光场显示系统,其中,
    微透镜相对于显示屏的实际放置高度t、拼接透镜的焦距f 1、微透镜的焦距f 2可由以下公式获得:
    根据凸透镜成像原理可获得以下公式:
    Figure PCTCN2021076865-appb-100002
    Figure PCTCN2021076865-appb-100003
    其中,f 1为拼接透镜的焦距,f 2为微透镜的焦距,f 2′为等效空气层后所述第一子成像面到所述第二子成像面之间的距离,L 1为人眼到第二子成像面之间的距离,L 2为拼接透镜与微透镜之间的距离,L 3为人眼到拼接透镜之间的距离,n为微透镜的折射率,t为微透镜相对于显示屏的实际放置高度;
    由几何关系可获得以下公式:
    Figure PCTCN2021076865-appb-100004
    Figure PCTCN2021076865-appb-100005
    其中,Φ为人眼瞳孔直径,N为视点数量,p为显示屏上的像素间距,p′为第一子成像面显示的显示屏的虚像中的像素间距;
    由公式(1)-(5)可获得:
    Figure PCTCN2021076865-appb-100006
    其中,
    Figure PCTCN2021076865-appb-100007
    b=ΦL 2-npNL 1,c=-(L 1-L 3)pNL 1
    且由公式(1)-(5)可获得:
    Figure PCTCN2021076865-appb-100008
    Figure PCTCN2021076865-appb-100009
    Figure PCTCN2021076865-appb-100010
  8. 根据权利要求7所述的光场显示系统,其中,所述微透镜的孔径D 2满 足以下公式:
    Figure PCTCN2021076865-appb-100011
    其中,ε为人眼的极限分辨角。
  9. 根据权利要求7所述的光场显示系统,其中,所述拼接透镜的孔径D 1满足以下公式:
    Figure PCTCN2021076865-appb-100012
    其中,θ为单个所述拼接透镜所对应的视场角。
  10. 根据权利要求7所述的光场显示系统,其中,显示屏的宽度w满足以下公式:
    Figure PCTCN2021076865-appb-100013
  11. 根据权利要求3所述的光场显示系统,其中,所述平凸球面透镜的平面一侧面向人眼方向设置。
  12. 根据权利要求1所述的光场显示系统,其中,所述多个光场显示模组拼接形成一曲面,所述曲面的内凹面面向人眼,以使所述多个第一成像面形成曲面,所述多个第二成像面形成曲面。
PCT/CN2021/076865 2020-02-19 2021-02-19 光场显示系统 WO2021164734A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/435,367 US20220146853A1 (en) 2020-02-19 2021-02-19 Light field display system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010102046.X 2020-02-19
CN202010102046.XA CN111175990B (zh) 2020-02-19 2020-02-19 光场显示系统

Publications (1)

Publication Number Publication Date
WO2021164734A1 true WO2021164734A1 (zh) 2021-08-26

Family

ID=70625184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076865 WO2021164734A1 (zh) 2020-02-19 2021-02-19 光场显示系统

Country Status (3)

Country Link
US (1) US20220146853A1 (zh)
CN (1) CN111175990B (zh)
WO (1) WO2021164734A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111175990B (zh) * 2020-02-19 2022-07-15 京东方科技集团股份有限公司 光场显示系统
CN111624784B (zh) * 2020-06-23 2022-10-18 京东方科技集团股份有限公司 一种光场显示装置
CN112019831B (zh) * 2020-09-04 2022-09-09 中国人民解放军陆军装甲兵学院 一种拓宽集成成像系统视场区域的方法和系统
CN114578555B (zh) * 2020-11-30 2024-07-26 京东方科技集团股份有限公司 一种光场显示装置、vr设备、显示装置以及显示方法
CN114967215B (zh) * 2022-05-31 2023-11-10 京东方科技集团股份有限公司 显示装置和虚拟现实装置
CN116224587A (zh) * 2022-12-29 2023-06-06 上海视涯技术有限公司 一种近眼显示设备和近眼显示光学模组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130077021A (ko) * 2011-12-29 2013-07-09 전자부품연구원 집적 부유형 디스플레이 모듈
CN103605210A (zh) * 2013-11-07 2014-02-26 四川大学 一种虚模式集成成像3d显示装置
CN110402412A (zh) * 2019-05-30 2019-11-01 京东方科技集团股份有限公司 近眼显示面板和近眼显示装置
CN110583016A (zh) * 2017-07-13 2019-12-17 谷歌有限责任公司 非平面计算显示
CN111175990A (zh) * 2020-02-19 2020-05-19 京东方科技集团股份有限公司 光场显示系统

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3331238B2 (ja) * 1992-11-17 2002-10-07 シャープ株式会社 直視型表示装置
CN102231044A (zh) * 2011-06-29 2011-11-02 浙江大学 基于多屏拼接的体视三维显示装置
TWI471607B (zh) * 2011-12-21 2015-02-01 Ind Tech Res Inst 混合多工式立體顯示器及混合多工式立體影像之顯示方法
CN103149696A (zh) * 2013-02-28 2013-06-12 京东方科技集团股份有限公司 显示系统
DK3075150T3 (da) * 2013-11-25 2022-09-12 Tesseland Llc Immersive kompakte displayglas
CN103823305B (zh) * 2014-03-06 2016-09-14 成都贝思达光电科技有限公司 一种基于曲面微透镜阵列的近眼显示光学系统
CN104486537B (zh) * 2014-10-27 2018-09-04 北京智谷技术服务有限公司 光场采集控制方法和装置
CN105739093B (zh) * 2014-12-08 2018-02-06 北京蚁视科技有限公司 透过式增强现实近眼显示器
CN105676466B (zh) * 2016-01-07 2017-12-15 京东方科技集团股份有限公司 一种3d显示面板、显示装置
CN105911747B (zh) * 2016-07-01 2019-03-12 京东方科技集团股份有限公司 一种显示面板和显示装置
EP3574364A4 (en) * 2017-01-25 2020-04-15 Samsung Electronics Co., Ltd. HEAD-MOUNTED DISPLAY DEVICE AND METHOD FOR THE PRODUCTION OF INFORMATION OF A 3D IMAGE
CN106898039B (zh) * 2017-02-23 2020-08-21 京东方科技集团股份有限公司 用于生成计算全息图的方法和系统
CN109581678A (zh) * 2017-09-29 2019-04-05 中强光电股份有限公司 近眼光场显示装置及近眼显示装置
CN107991835B (zh) * 2017-11-15 2019-10-25 北京理工大学 基于微纳结构偏振复用短焦扩束投影系统和方法
CN110692008A (zh) * 2017-11-16 2020-01-14 深圳市柔宇科技有限公司 近眼显示装置
CN108513123B (zh) * 2017-12-06 2020-06-02 中国人民解放军陆军装甲兵学院 一种集成成像光场显示的图像阵列生成方法
CN109991751B (zh) * 2017-12-29 2021-05-11 中强光电股份有限公司 光场显示装置与方法
WO2019164745A1 (en) * 2018-02-20 2019-08-29 Pcms Holdings, Inc. Multifocal optics for light field displays
CN108663799B (zh) * 2018-03-30 2020-10-09 蒋昊涵 一种vr图像的显示控制系统及其显示控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130077021A (ko) * 2011-12-29 2013-07-09 전자부품연구원 집적 부유형 디스플레이 모듈
CN103605210A (zh) * 2013-11-07 2014-02-26 四川大学 一种虚模式集成成像3d显示装置
CN110583016A (zh) * 2017-07-13 2019-12-17 谷歌有限责任公司 非平面计算显示
CN110402412A (zh) * 2019-05-30 2019-11-01 京东方科技集团股份有限公司 近眼显示面板和近眼显示装置
CN111175990A (zh) * 2020-02-19 2020-05-19 京东方科技集团股份有限公司 光场显示系统

Also Published As

Publication number Publication date
CN111175990B (zh) 2022-07-15
CN111175990A (zh) 2020-05-19
US20220146853A1 (en) 2022-05-12

Similar Documents

Publication Publication Date Title
WO2021164734A1 (zh) 光场显示系统
US10663626B2 (en) Advanced refractive optics for immersive virtual reality
US10133347B2 (en) Near-eye microlens array display having diopter detection device
WO2021258873A1 (zh) 光场显示装置
JP3755036B2 (ja) 広視野角ヘッドマウントディスプレイ装置
CN102004317B (zh) 眼镜型图像显示装置
CN103926679B (zh) 透镜模块及眼底相机
JP6913441B2 (ja) 画像表示装置
JP4761539B2 (ja) 視覚表示装置
US10558041B2 (en) Virtual reality image system with high definition
KR101255803B1 (ko) 단안식 입체 영상 카메라
JP4728825B2 (ja) 立体像表示装置
RU2017125776A (ru) Стереодисплей (варианты), видеокамера для стереосъёмки и способ компьютерного формирования стереоизображений для этого стереодисплея
CN101000403A (zh) 光学系统
RU2301436C2 (ru) Широкоугольный виртуальный шлем с возможностью совмещения реального и виртуального пространства
WO2019095215A1 (zh) 近眼显示装置
JP2008176180A (ja) 視覚表示装置
WO2019019739A1 (zh) 显示装置
RU2001133732A (ru) Стереоскопическая система
CN105204281A (zh) 投影屏幕及应用其的投影系统
JP2000275755A (ja) 画像表示装置および指向性反射スクリーン
WO2023280198A1 (zh) 用于悬浮图像的拼接显示装置以及包括其的多层显示设备
US20230194841A1 (en) Augmented reality display device
TW202210904A (zh) 近眼光場顯示裝置
JP2023048008A (ja) ヘッドマウントディスプレイおよびクロスリアリティシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757930

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21757930

Country of ref document: EP

Kind code of ref document: A1