WO2021164553A1 - Protection system of imaging device and control method thereof - Google Patents

Protection system of imaging device and control method thereof Download PDF

Info

Publication number
WO2021164553A1
WO2021164553A1 PCT/CN2021/075083 CN2021075083W WO2021164553A1 WO 2021164553 A1 WO2021164553 A1 WO 2021164553A1 CN 2021075083 W CN2021075083 W CN 2021075083W WO 2021164553 A1 WO2021164553 A1 WO 2021164553A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
imaging device
plate
target position
plate component
Prior art date
Application number
PCT/CN2021/075083
Other languages
French (fr)
Inventor
Jie Gu
Original Assignee
Shanghai United Imaging Healthcare Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010095783.1A external-priority patent/CN111134707A/en
Priority claimed from CN202020175107.0U external-priority patent/CN211834427U/en
Application filed by Shanghai United Imaging Healthcare Co., Ltd. filed Critical Shanghai United Imaging Healthcare Co., Ltd.
Publication of WO2021164553A1 publication Critical patent/WO2021164553A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4405Constructional features of apparatus for radiation diagnosis the apparatus being movable or portable, e.g. handheld or mounted on a trolley
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/10Safety means specially adapted therefor
    • A61B6/107Protection against radiation, e.g. shielding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis

Definitions

  • the present disclosure generally relates to an imaging device, and more particularly, to protection system of an imaging device and a control method thereof.
  • a mobile digital radiography may move over a wide range to meet scanning needs of different portions of a patient with impaired mobility.
  • a mobile DR may move over a wide range to meet scanning needs of different portions of a patient with impaired mobility.
  • unnecessary radiation may be caused to surrounding subjects (e.g., a doctor, another patient) . Therefore, it is desirable to provide a protection system of an X-ray imaging device (e.g., the mobile DR) , thereby protecting the surrounding subjects from unnecessary radiation.
  • a system may include an imaging device configured to image a subject.
  • the imaging device may include a movable gantry; an X-ray source mounted on the movable gantry and configured to emit X-rays to irradiate the subject; and a detector configured to detect X-rays that pass through the subject.
  • the system may further include a protective assembly including a plate component and a driving device.
  • the driving device may be configured to drive at least one portion of the plate component to move to a target position so as to prevent the X-rays emitted by the X-ray source from irradiating a surrounding region.
  • the driving device may include a lifting driving device configured to drive the at least one portion of the plate component to move along a height direction of the imaging device.
  • the lifting driving device may include a linear rack component connected with the at least one portion of the plate component.
  • the linear rack component may be arranged along the height direction of the imaging device.
  • the lifting driving device may include a gear component meshing with the linear rack component.
  • the gear component may be rotatable to drive the linear rack component to move along the height direction of the imaging device.
  • the driving device may include a revolving driving device configured to drive the at least one portion of the plate component to move along a circumferential direction of the imaging device.
  • the revolving driving device may include a curved rack component connected with the at least one portion of the plate component.
  • the curved rack component may be arranged along the circumferential direction of the imaging device.
  • the revolving driving device may include a gear component meshing with the curved rack component.
  • the gear component may be rotatable to drive the curved rack component to move along the circumferential direction of the imaging device.
  • the driving device may further include a rocking handle configured to drive the gear component to rotate.
  • One end of the rocking handle may be connected with a center point of the gear component.
  • the driving device may further include a motor configured to drive the gear component to rotate.
  • a motor shaft of the motor may be connected with a center point of the gear component.
  • the protective assembly may be mounted on the movable gantry of the imaging device.
  • the plate component may include a fixed plate and a movable plate.
  • the fixed plate may be fixedly mounted on the movable gantry, and the movable plate may be slidably connected with the fixed plate.
  • the protective assembly may be mounted on a movable device in communication with the imaging device.
  • the plate component may include a fixed plate and a movable plate.
  • the fixed plate may be fixedly mounted on the movable device, and the movable plate may be slidably connected with the fixed plate.
  • the movable device may be capable of moving simultaneously with the imaging device.
  • the movable device may be capable of being fixedly connected with the imaging device.
  • the system may further include a terminal device configured to receive an instruction provided by a user for controlling a movement of the at least one portion of the plate component.
  • the terminal device may be further configured to receive an instruction provided by the user for controlling a movement of the movable device.
  • the terminal device may be removably attached to the imaging device.
  • the plate component may include at least one lead plate.
  • the plate component may include a see-through region.
  • the imaging device may include a mobile digital radiography device.
  • a method may be implemented on a computing device having one or more processors and one or more storage devices.
  • the method may include determining a first target position for at least one portion of a plate component of a protective assembly; causing a driving device of the protective assembly to drive the at least one portion of the plate component to move to the first target position; and causing an imaging device to image a subject.
  • the imaging device may include an X-ray source configured to emit X-rays to irradiate the subject.
  • the plate component may be capable of preventing the X-rays emitted by the X-ray source from irradiating a surrounding region.
  • the method may further include determining a second target position for the at least one portion of the plate component; and causing the driving device of the protective assembly to drive the at least one portion of the plate component to move to the second target position after the X-ray source stops emitting the X-rays.
  • the determining a first target position for at least one portion of a plate component of a protective assembly may includes receiving, via a terminal device, a first instruction provided by a user for controlling a movement of the at least one portion of the plate component; and determining the first target position based at least in part on the first instruction.
  • the determining a first target position for at least one portion of a plate component of a protective assembly may include obtaining a first operating state of the imaging device; and determining the first target position based at least in part on the first operating state of the imaging device.
  • the determining a second target position for the at least one portion of the plate component may include receiving, via the terminal device, a second instruction provided by the user for controlling the movement of the at least one portion of the plate component.
  • the second instruction may be provided after the X-ray source stops emitting the X-rays.
  • the determining a second target position for the at least one portion of the plate component may further include determining the second target position based at least in part on the second instruction.
  • the determining a second target position for the at least one portion of the plate component may include obtaining a second operating state of the imaging device.
  • the X-ray source may stop emitting the X-rays in the second operating state.
  • the determining a second target position for the at least one portion of the plate component may further include determining the second target position based at least in part on the second operating state of the imaging device.
  • a non-transitory computer readable medium may include executable instructions that, when executed by at least one processor, direct the at least one processor to perform a method.
  • the method may include determining a first target position for at least one portion of a plate component of a protective assembly; causing a driving device of the protective assembly to drive the at least one portion of the plate component to move to the first target position; and causing an imaging device to image a subject.
  • the imaging device may include an X-ray source configured to emit X-rays to irradiate the subject.
  • the plate component may be capable of preventing the X-rays emitted by the X-ray source from irradiating a surrounding region.
  • FIG. 1 is a schematic diagram illustrating an exemplary imaging system according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary computing device on which a processing device may be implemented according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary mobile device on which a terminal may be implemented according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram illustrating exemplary components of an imaging system according to some embodiments of the present disclosure
  • FIG. 5 is a schematic diagram illustrating an exemplary imaging device according to some embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating an exemplary imaging device according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram illustrating an exemplary imaging device with a driving device according to some embodiments of the present disclosure
  • FIG. 8 is a schematic diagram illustrating a side view of an exemplary imaging device illustrated in FIG. 7 according to some embodiments of the present disclosure
  • FIG. 9 is a schematic diagram illustrating an exemplary lifting driving device illustrated in FIG. 8 according to some embodiments of the present disclosure.
  • FIG. 10 is a schematic diagram illustrating a side view of another exemplary imaging device according to some embodiments of the present disclosure.
  • FIG. 11 is a schematic diagram illustrating an exemplary imaging device illustrated in FIG. 10 according to some embodiments of the present disclosure.
  • FIG. 12 is a schematic diagram illustrating an exemplary revolving driving device illustrated in FIG. 11 according to some embodiments of the present disclosure
  • FIG. 13 is a block diagram illustrating an exemplary processing device according to some embodiments of the present disclosure.
  • FIG. 14 is a flowchart illustrating an exemplary process for controlling an imaging device according to some embodiments of the present disclosure.
  • system, ” “engine, ” “unit, ” “module, ” and/or “block” used herein are one method to distinguish different components, elements, parts, section or assembly of different level in ascending order. However, the terms may be displaced by another expression if they achieve the same purpose.
  • module, ” “unit, ” or “block, ” as used herein refers to logic embodied in hardware or firmware, or to a collection of software instructions.
  • a module, a unit, or a block described herein may be implemented as software and/or hardware and may be stored in any type of non-transitory computer-readable medium or another storage device.
  • a software module/unit/block may be compiled and linked into an executable program. It will be appreciated that software modules can be callable from other modules/units/blocks or from themselves, and/or may be invoked in response to detected events or interrupts.
  • Software modules/units/blocks configured for execution on computing devices (e.g., the processor 210 illustrated in FIG.
  • a computer-readable medium such as a compact disc, a digital video disc, a flash drive, a magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that needs installation, decompression, or decryption prior to execution) .
  • a computer-readable medium such as a compact disc, a digital video disc, a flash drive, a magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that needs installation, decompression, or decryption prior to execution) .
  • Such software code may be stored, partially or fully, on a storage device of the executing computing device, for execution by the computing device.
  • Software instructions may be embedded in firmware, such as an EPROM.
  • hardware modules/units/blocks may be included in connected logic components, such as gates and flip-flops, and/or can be included of programmable units, such as programmable gate arrays or processors.
  • modules/units/blocks or computing device functionality described herein may be implemented as software modules/units/blocks but may be represented in hardware or firmware.
  • the modules/units/blocks described herein refer to logical modules/units/blocks that may be combined with other modules/units/blocks or divided into sub-modules/sub-units/sub-blocks despite their physical organization or storage. The description may apply to a system, an engine, or a portion thereof.
  • top, ” “bottom, ” “upper, ” “lower, ” “vertical, ” “lateral, ” “above, ” “below, ” “upward (s) , ” “downward (s) , ” “left-hand side, ” “right-hand side, ” “horizontal, ” and other such spatial reference terms are used in a relative sense to describe the positions or orientations of certain surfaces/parts/components of the imaging device with respect to other such features of the imaging device when the imaging device is in a normal operating position and may change if the position or orientation of the imaging device changes.
  • the imaging system may include a single modality imaging system and/or a multi-modality imaging system.
  • the single modality imaging system may include, for example, an X-ray imaging system, an emission computed tomography (ECT) system, a magnetic resonance imaging (MRI) system, an ultrasonography system, a positron emission tomography (PET) system, or the like, or any combination thereof.
  • ECT emission computed tomography
  • MRI magnetic resonance imaging
  • PET positron emission tomography
  • the multi-modality imaging system may include, for example, an X-ray imaging-magnetic resonance imaging (X-ray-MRI) system, a positron emission tomography-X-ray imaging (PET-X-ray) system, a single photon emission computed tomography-magnetic resonance imaging (SPECT-MRI) system, a digital subtraction angiography-magnetic resonance imaging (DSA-MRI) system, etc.
  • X-ray-MRI X-ray imaging-magnetic resonance imaging
  • PET-X-ray positron emission tomography-X-ray imaging
  • SPECT-MRI single photon emission computed tomography-magnetic resonance imaging
  • DSA-MRI digital subtraction angiography-magnetic resonance imaging
  • the disclosure describes systems and methods relating to X-ray imaging system. It should be noted that the X-ray imaging system described below is merely provided for illustration purposes, and not intended to limit the scope of the present disclosure.
  • the system may include an imaging device (e.g., a mobile DR) configured to image a subject.
  • the imaging device may include a movable gantry, an X-ray source mounted on the movable gantry and configured to emit X-rays to irradiate the subject, and a detector configured to detect X-rays that pass through the subject.
  • the system may further include a protective assembly including a plate component and a driving device.
  • the driving device may be configured to drive at least one portion of the plate component to move to a target position so as to prevent the X-rays emitted by the X-ray source from irradiating a surrounding region. Therefore, a subject (e.g., a doctor, a patient who is not to be scanned by the imaging device, etc. ) in the surrounding region may be protected from unnecessary radiation.
  • FIG. 1 is a schematic diagram illustrating an exemplary imaging system 100 according to some embodiments of the present disclosure.
  • the imaging system 100 may include an imaging device 110, a network 120, one or more terminal devices 130, a processing device 140, and a storage device 150.
  • the connection between the components in the imaging system 100 may be variable.
  • the imaging device 110 and/or the terminal device 130 may be connected to the processing device 140 through the network 120.
  • the imaging device 110 and/or the terminal device 130 may be connected to the processing device 140 directly.
  • the imaging device 110 may be configured to scan a subject using X-rays and generate imaging data used to generate one or more images relating to the subject. In some embodiments, the imaging device 110 may transmit the imaging data to the processing device 140 for further processing (e.g., generating one or more images) . In some embodiments, the imaging data and/or the one or more images associated with the subject may be stored in the storage device 150 and/or the processing device 140.
  • the imaging device 110 may include a computed tomography (CT) scanner, a digital radiography (DR) scanner (e.g., a mobile digital radiography) , a digital subtraction angiography (DSA) scanner, a dynamic spatial reconstruction (DSR) scanner, an X-ray microscopy scanner, a multi-modality scanner, or the like, or a combination thereof.
  • CT computed tomography
  • DR digital radiography
  • DSA digital subtraction angiography
  • DSR dynamic spatial reconstruction
  • X-ray microscopy scanner e.g., a multi-modality scanner, or the like, or a combination thereof.
  • exemplary multi-modality scanners may include a computed tomography-positron emission tomography (CT-PET) scanner, a computed tomography-magnetic resonance imaging (CT-MRI) scanner, etc.
  • CT-PET computed tomography-positron emission tomography
  • CT-MRI computed tomography-magnetic resonance imaging
  • the subject may include a specific portion, organ, and/or tissue of a patient.
  • the subject may include head, brain, neck, body, shoulder, arm, thorax, cardiac, stomach, blood vessel, soft tissue, knee, feet, or the like, or any combination thereof.
  • the imaging device 110 may include a gantry 111, an X-ray source 112, and a detector 113.
  • the gantry 111 may be configured to support the X-ray source 112 and the detector 113.
  • the gantry 111 may have a C-shape as illustrated in FIG. 1.
  • the gantry 111 may have a column-shape, an O-shape, a U-shape, a G-shape, or the like, or a combination thereof.
  • the X-ray source 112 may emit one or more X-rays to the subject.
  • the X-ray source 112 may include a tube, such as a cold cathode ion tube, a high vacuum hot cathode tube, a rotating anode tube, etc.
  • the tube may be powered by a high voltage generator, emitting X-rays that may be detected by the detector 113.
  • the X-rays emitted by the X-ray source 112 may be guided to form a beam having the shape of a line, a narrow pencil, a narrow fan, a fan, a cone, a wedge, an irregular shape, or the like, or a combination thereof.
  • the detector 113 may detect X-rays emitted from the X-ray source 112. In some embodiments, the detector 113 may be configured to produce an analog electrical signal that represents the intensity of the received X-rays, including the attenuated beam, as it passes through the subject. In some embodiments, the detector 113 may include one or more detector units. The detector units may include a scintillation detector (e.g., a cesium iodide detector) , a gas detector, etc. The pixels of the detector may be represented by the number of the smallest detector units, e.g., the number of detector units. The detector units of the detector 113 may be arranged in a single row, two rows, or another number of rows. The detector may be one-dimensional, two-dimensional, or three-dimensional.
  • a scintillation detector e.g., a cesium iodide detector
  • the pixels of the detector may be represented by the number of the smallest detector units, e.g., the number of
  • the imaging system 100 may include a protective assembly.
  • the protective assembly may include a plate component and a driving device.
  • the driving device may be caused to drive at least one portion of the plate component to move to a target position so as to prevent the X-rays emitted by the X-ray source 112 from irradiating a surrounding region.
  • the protective assembly may be mounted on the gantry 111 of the imaging device 110.
  • the protective assembly may be mounted on a movable device in communication with the imaging device 110. Details regarding the protective assembly may be found elsewhere in the present disclosure (e.g., FIGs. 4-11 and the relevant descriptions thereof) .
  • the network 120 may include any suitable network that can facilitate the exchange of information and/or data for the imaging system 100.
  • one or more components of the imaging system 100 e.g., the imaging device 110, the terminal device 130, the processing device 140, the storage device 150, etc.
  • the processing device 140 may obtain image data from the imaging device 110 via the network 120.
  • the processing device 140 may obtain user instructions from the terminal device 130 via the network 120.
  • the network 120 may be and/or include a public network (e.g., the Internet) , a private network (e.g., a local area network (LAN) , a wide area network (WAN) ) , etc. ) , a wired network (e.g., an Ethernet network) , a wireless network (e.g., an 802.11 network, a Wi-Fi network, etc. ) , a cellular network (e.g., a Long Term Evolution (LTE) network) , a frame relay network, a virtual private network (VPN) , a satellite network, a telephone network, routers, hubs, switches, server computers, and/or any combination thereof.
  • a public network e.g., the Internet
  • a private network e.g., a local area network (LAN) , a wide area network (WAN) ) , etc.
  • a wired network e.g., an Ethernet network
  • a wireless network e.g
  • the network 120 may include a cable network, a wireline network, a fiber-optic network, a telecommunications network, an intranet, a wireless local area network (WLAN) , a metropolitan area network (MAN) , a public telephone switched network (PSTN) , a Bluetooth TM network, a ZigBee TM network, a near field communication (NFC) network, or the like, or any combination thereof.
  • the network 120 may include one or more network access points.
  • the network 120 may include wired and/or wireless network access points such as base stations and/or internet exchange points through which one or more components of the imaging system 100 may be connected to the network 120 to exchange data and/or information.
  • the terminal device 130 may include a mobile device 131, a tablet computer 132, a laptop computer 133, or the like, or any combination thereof.
  • the mobile device 131 may include a smart home device, a wearable device, a mobile device, a virtual reality device, an augmented reality device, or the like, or any combination thereof.
  • the smart home device may include a smart lighting device, a control device of an intelligent electrical apparatus, a smart monitoring device, a smart television, a smart video camera, an interphone, or the like, or any combination thereof.
  • the wearable device may include a bracelet, footgear, eyeglasses, a helmet, a watch, clothing, a backpack, a smart accessory, or the like, or any combination thereof.
  • the mobile device may include a mobile phone, a personal digital assistant (PDA) , a gaming device, a navigation device, a point of sale (POS) device, a laptop, a tablet computer, a desktop, a virtual reality device, or the like, or any combination thereof.
  • the virtual reality device and/or the augmented reality device may include a virtual reality helmet, virtual reality glasses, a virtual reality patch, an augmented reality helmet, augmented reality glasses, an augmented reality patch, or the like, or any combination thereof.
  • the virtual reality device and/or the augmented reality device may include a Google Glass TM , an Oculus Rift TM , a HoloLens TM , a Gear VR TM , etc.
  • the terminal device 130 may be part of the processing device 140.
  • the terminal device 130 may control the operation of one or more components of the imaging system 100, such as the imaging device 110, the protective assembly, etc. For example, a user may set operating parameters of the imaging device 110 via the terminal device 130. As another example, the terminal device 130 may receive an instruction provided by a user for controlling a movement of the at least one portion of the plate component of the protective assembly. Further, the terminal device 130 may transmit signals indicating the instruction to the protective assembly to control a movement of the at least one portion of the plate component based on the signals. As a further example, the terminal device 130 may receive an instruction provided by the user for controlling a movement of the movable device.
  • the terminal device 130 may transmit signals indicating the instruction to the movable device to control a movement of the movable device based on the signals.
  • the terminal device 130 may be integrated into the imaging device 110.
  • the terminal device 130 may be a control panel mounted on the imaging device 110 and may be configured to perform the functions of the terminal device 130 disclosed in this application.
  • the terminal device 130 may be removably attached to the imaging device 110.
  • the processing device 140 may process data and/or information obtained from the imaging device 110, the terminal device 130, and/or the storage device 150.
  • the processing device 140 may process imaging data generated by the imaging device 110 to generate an image.
  • the processing device 140 may determine a target position for at least one portion of the plate component of the protective assembly.
  • the processing device 140 may be a single server or a server group.
  • the server group may be centralized or distributed.
  • the processing device 140 may be local or remote.
  • the processing device 140 may access information and/or data stored in the imaging device 110, the terminal device 130, and/or the storage device 150 via the network 120.
  • the processing device 140 may be directly connected to the imaging device 110, the terminal device 130 and/or the storage device 150 to access stored information and/or data.
  • the processing device 140 may be implemented on a cloud platform.
  • the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
  • the processing device 140 may be implemented by a computing device 200 having one or more components as illustrated in FIG. 3.
  • the storage device 150 may store data, instructions, and/or any other information. In some embodiments, the storage device 150 may store data obtained from the terminal device 130 and/or the processing device 140. In some embodiments, the storage device 150 may store data and/or instructions that the processing device 140 may execute or use to perform exemplary methods described in the present disclosure. In some embodiments, the storage device 150 may include a mass storage, removable storage, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof. Exemplary mass storage may include a magnetic disk, an optical disk, a solid-state drive, etc. Exemplary removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc.
  • Exemplary volatile read-and-write memory may include a random-access memory (RAM) .
  • RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc.
  • Exemplary ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc.
  • MROM mask ROM
  • PROM programmable ROM
  • EPROM erasable programmable ROM
  • EEPROM electrically erasable programmable ROM
  • CD-ROM compact disk ROM
  • digital versatile disk ROM etc.
  • the storage device 150 may be implemented on a cloud platform.
  • the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
  • the storage device 150 may be connected to the network 120 to communicate with one or more other components of the imaging system 100 (e.g., the processing device 140, the terminal device 130, the protective assembly, etc. ) .
  • One or more components of the imaging system 100 may access the data or instructions stored in the storage device 150 via the network 120.
  • the storage device 150 may be directly connected to or communicate with one or more other components of the imaging system 100 (e.g., the processing device 140, the terminal device 130, the protective assembly, etc. ) .
  • the storage device 150 may be part of the processing device 140.
  • FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary computing device 200 on which the processing device 140 may be implemented according to some embodiments of the present disclosure.
  • the computing device 200 may include a processor 210, a storage 220, an input/output (I/O) 230, and a communication port 240.
  • I/O input/output
  • the processor 210 may execute computer instructions (e.g., program code) and, when executing the instructions, cause the processing device 140 to perform functions of the processing device 140 in accordance with techniques described herein.
  • the computer instructions may include, for example, routines, programs, objects, components, data structures, procedures, modules, and functions, which perform particular functions described herein.
  • the processor 210 may process imaging data obtained from the imaging device 110, the terminal device 130, the storage device 150, and/or any other component of the imaging system 100.
  • the processor 210 may include one or more hardware processors, such as a microcontroller, a microprocessor, a reduced instruction set computer (RISC) , an application specific integrated circuits (ASICs) , an application-specific instruction-set processor (ASIP) , a central processing unit (CPU) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a microcontroller unit, a digital signal processor (DSP) , a field programmable gate array (FPGA) , an advanced RISC machine (ARM) , a programmable logic device (PLD) , any circuit or processor capable of executing one or more functions, or the like, or any combinations thereof.
  • RISC reduced instruction set computer
  • ASICs application specific integrated circuits
  • ASIP application-specific instruction-set processor
  • CPU central processing unit
  • GPU graphics processing unit
  • PPU physics processing unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ARM advanced RISC machine
  • the computing device 200 in the present disclosure may also include multiple processors.
  • operations and/or method steps that are performed by one processor as described in the present disclosure may also be jointly or separately performed by the multiple processors.
  • the processor of the computing device 200 executes both operation A and operation B
  • operation A and operation B may also be performed by two or more different processors jointly or separately in the computing device 200 (e.g., a first processor executes operation A and a second processor executes operation B, or the first and second processors jointly execute operations A and B) .
  • the storage 220 may store data/information obtained from the imaging device 110, the terminal device 130, the storage device 150, and/or any other component of the imaging system 100.
  • the storage 220 may be similar to the storage device 150 described in connection with FIG. 1, and the detailed descriptions are not repeated here.
  • the I/O 230 may input and/or output signals, data, information, etc. In some embodiments, the I/O 230 may allow a user interaction with the processing device 140. In some embodiments, the I/O 230 may include an input device and an output device. Examples of the input device may include a keyboard, a mouse, a touchscreen, a microphone, a sound recording device, or the like, or a combination thereof. Examples of the output device may include a display device, a loudspeaker, a printer, a projector, or the like, or a combination thereof.
  • Examples of the display device may include a liquid crystal display (LCD) , a light-emitting diode (LED) -based display, a flat panel display, a curved screen, a television device, a cathode ray tube (CRT) , a touchscreen, or the like, or a combination thereof.
  • LCD liquid crystal display
  • LED light-emitting diode
  • CRT cathode ray tube
  • the communication port 240 may be connected to a network (e.g., the network 120) to facilitate data communications.
  • the communication port 240 may establish connections between the processing device 140 and the imaging device 110, the terminal device 130, the storage device 150, and/or the protective assembly.
  • the connection may be a wired connection, a wireless connection, any other communication connection that can enable data transmission and/or reception, and/or any combination of these connections.
  • the wired connection may include, for example, an electrical cable, an optical cable, a telephone wire, or the like, or any combination thereof.
  • the wireless connection may include, for example, a Bluetooth TM link, a Wi-Fi TM link, a WiMAX TM link, a WLAN link, a ZigBee link, a mobile network link (e.g., 3G, 4G, 5G, etc. ) , or the like, or a combination thereof.
  • the communication port 240 may be and/or include a standardized communication port, such as RS232, RS485, etc.
  • the communication port 240 may be a specially designed communication port.
  • the communication port 240 may be designed in accordance with the digital imaging and communications in medicine (DICOM) protocol.
  • DICOM digital imaging and communications in medicine
  • FIG. 3 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary mobile device 300 on which the terminal device 130 may be implemented according to some embodiments of the present disclosure.
  • the mobile device 300 may include a communication platform 310, a display 320, a graphics processing unit (GPU) 330, a central processing unit (CPU) 340, an I/O 350, a memory 360, and a storage 390.
  • any other suitable component including but not limited to a system bus or a controller (not shown) , may also be included in the mobile device 300.
  • a mobile operating system 370 e.g., iOS TM , Android TM , Windows Phone TM , etc.
  • one or more applications 380 may be loaded into the memory 360 from the storage 390 in order to be executed by the CPU 340.
  • the applications 380 may include a browser or any other suitable mobile apps for receiving and rendering information relating to image processing, movement control, or other information from the processing device 140.
  • User interactions with the information stream may be achieved via the I/O 350 and provided to the processing device 140 and/or other components of the imaging system 100 via the network 120.
  • computer hardware platforms may be used as the hardware platform (s) for one or more of the elements described herein.
  • a computer with user interface elements may be used to implement a personal computer (PC) or any other type of work station or terminal device.
  • PC personal computer
  • a computer may also act as a server if appropriately programmed.
  • FIG. 4 is a schematic diagram illustrating exemplary components of an imaging system 400 according to some embodiments of the present disclosure.
  • the imaging system 110 described in connection with FIG. 1 may be implemented on the imaging system 400.
  • the imaging system 400 may include an imaging assembly 410, a protective assembly 420, and a control assembly 430.
  • the imaging assembly 410 may be configured to image a subject.
  • the imaging assembly 410 may be or include an imaging device (e.g., the imaging device 110 described in connection with FIG. 1) .
  • the imaging device may scan a subject using X-rays and generate imaging data used to generate one or more images relating to the subject.
  • the imaging device may include a computed tomography (CT) scanner, a digital radiography (DR) scanner (e.g., a mobile digital radiography) , a digital subtraction angiography (DSA) scanner, a dynamic spatial reconstruction (DSR) scanner, an X-ray microscopy scanner, a multi-modality scanner, or the like, or a combination thereof.
  • CT computed tomography
  • DR digital radiography
  • DSA digital subtraction angiography
  • DSR dynamic spatial reconstruction
  • the subject may be biological or non-biological.
  • the subject may include a patient, a man-made object, etc.
  • the subject may include a specific portion, organ
  • the imaging assembly 410 may include a movable gantry, an X-ray source, a detector, or the like, or any combination thereof.
  • the movable gantry may be used as a support structure on which other components of the imaging assembly 410 are installed.
  • the X-ray source and the detector may be connected to the movable gantry.
  • the movable gantry may have a C-shape, a U-shape, a G-shape, etc.
  • the movable gantry may have a first end and a second end. The first end may be connected to the X-ray source, and the second end may be connected to the detector.
  • the movable gantry may have an O-shape.
  • the X-ray source and the detector may be attached to different parts of the movable gantry and spaced from each other.
  • the detector may be opposite to the X-ray source, and a line linking the detector and the X-ray source may pass through the center of the O-shape.
  • the detector and the X-ray source may be spaced apart by a space. The space may be configured to accommodate a subject to be scanned.
  • the X-ray source and/or the detector may be indirectly connected to the movable gantry.
  • the imaging assembly 410 may include a robotic arm.
  • the robotic arm may include an end connected to the movable gantry.
  • the robotic arm may also include another end connected to the X-ray source.
  • the robotic arm may be movable and/or retractable with respect to the movable gantry.
  • the movable gantry may include a movable component that allows the movable gantry to move in any direction such that the X-ray source and the detector may move with the movable gantry.
  • exemplary movable components may include a trolley, wheels, movable parts corresponding to a track, or the like, or any combination thereof.
  • a bottom of the movable gantry may be installed with wheels.
  • the wheels may roll to realize the movement of the mobile DR, which may reduce resistance during the movement of the mobile DR, thereby improving the flexibility of the mobile DR during the movement.
  • the wheels may be universal wheels that can roll in any direction, which may improve the flexibility of the movable gantry during turning.
  • a count of the wheels may be determined according to requirements, such as three, four, five, or six.
  • the wheels may be evenly distributed on the bottom of the movable gantry so as to improve the stability of the movable gantry during the movement.
  • the X-ray source may be configured to emit X-rays to irradiate the subject.
  • the X-ray source may include a tube, such as a cold cathode ion tube, a high vacuum hot cathode tube, a rotating anode tube, etc.
  • the tube may be powered by a high voltage generator, emitting X-rays that may be detected by the detector.
  • the X-rays emitted by the X-ray source may form a beam having the shape of a line, a narrow pencil, a narrow fan, a fan, a cone, a wedge, an irregular shape, or the like, or a combination thereof.
  • the detector may be configured to detect X-rays that pass through the subject.
  • the detector may produce an analog electrical signal that represents the intensity of the received X-rays, including the attenuated beam, as it passes through the subject.
  • the detector may include one or more detector units.
  • the detector units may include a scintillation detector (e.g., a cesium iodide detector) , a gas detector, etc.
  • the pixels of the detector may be represented by the number of the smallest detector units, e.g., the number of detector units.
  • the detector units of the detector may be arranged in a single row, two rows, or another number of rows.
  • the detector may be one-dimensional, two-dimensional, or three-dimensional.
  • the protective assembly 420 may be configured to prevent the X-rays emitted by the X-ray source from irradiating a surrounding region.
  • the protective assembly 420 may be moved to a suitable position to prevent the X-rays from irradiating other patients.
  • the protective assembly 420 may include a plate component and a driving device.
  • the plate component may include one or more plates.
  • each of the one or more plates may have any shape and/or size.
  • a plate may be a quadrangle (e.g., a rectangle, a square) .
  • a surface of a plate may be flat or curved.
  • the one or more plates may have a same shape or different shapes.
  • the plate may be made of any material that can block radiation rays (e.g., the X-rays) .
  • the plate component may include at least one lead plate. The lead plate may be used to block the X-rays.
  • the plate component may include a see-through region.
  • the plate component may be made of a see-through material (e.g., lead glass) .
  • a user e.g., a doctor
  • the one or more plates may overlap each other at an initial position.
  • at least one of the one or more plates may be driven to a target position.
  • the plate component may be capable of preventing the X-rays emitted by the X-ray source from irradiating a surrounding region.
  • the driving device may be configured to drive at least one portion of the plate component to move to a target position so as to prevent the X-rays emitted by the X-ray source from irradiating a surrounding region.
  • the driving device may include a lifting driving device.
  • the lifting driving device may be configured to drive the at least one portion of the plate component to move along a height direction of the imaging device.
  • the driving device may include a revolving driving device.
  • the revolving driving device may be configured to drive the at least one portion of the plate component to move along a circumferential direction of the imaging device.
  • the at least one portion of the plate component may be driven by the driving device to move to a first target position (e.g., the periphery of the X-ray source and/or the detector) to block the X-rays, thereby protecting the X-rays from irradiating other subjects (e.g., a doctor, other patients, etc. ) .
  • a first target position e.g., the periphery of the X-ray source and/or the detector
  • the at least one portion of the plate component may be driven by the driving device to move to a second target position (e.g., an initial position) so as to avoid the plate component from affecting a flexible movement of the imaging assembly (e.g., a mobile DR) . Additionally, a probability of the plate component being damaged during the movement of the imaging assembly may also be reduced by moving the plate component to the second target position.
  • a second target position e.g., an initial position
  • the imaging assembly e.g., a mobile DR
  • a probability of the plate component being damaged during the movement of the imaging assembly may also be reduced by moving the plate component to the second target position. Details regarding the driving device may be found elsewhere in the present disclosure (e.g., FIG. 9, FIG. 12, and the relevant descriptions thereof) .
  • the protective assembly 420 may be mounted on or connected to the movable gantry of the imaging assembly 410.
  • the plate component may include one or more plates. At least one of the one or more plates may be fixedly mounted on the movable gantry.
  • the plate component may include a fixed plate and a movable plate.
  • the fixed plate may be fixedly mounted on the movable gantry.
  • Exemplary connection method between the fixed plate and the movable gantry may include a welded connection, a key connection, a pin connection, an interference fit connection, an integral molding, or the like, or any combination thereof.
  • the movable plate may be slidably connected with the fixed plate.
  • the driving device connected to the plate component may drive the movable plate to move to a target position (e.g., along a height direction of the imaging assembly 410) .
  • the plate component may include one or more plates. At least one of the one or more plates may be slidably connected with the movable gantry.
  • the plate component may include a movable plate. A bottom of the movable plate may have a movable part that may move along a track installed on the movable gantry such that the movable plate may be driven to move along a circumferential direction of the imaging assembly 410.
  • the protective assembly 420 may be mounted on or connected to a movable device in communication with the imaging assembly 410. In some embodiments, the protective assembly 420 may be mounted on or connected to the movable device in a similar method to the method the protective assembly 420 is mounted on or connected to the movable gantry as aforementioned.
  • the plate component may include one or more plates. At least one of the one or more plates may be fixedly mounted on the movable device.
  • the plate component may include a fixed plate and a movable plate. The fixed plate may be fixedly mounted on the movable device. Further, the movable plate may be slidably connected with the fixed plate.
  • the plate component may include one or more plates.
  • the plate component may include a movable plate.
  • a bottom of the movable plate may have a movable part that may move along a track installed on the movable device such that the movable plate may be driven to move along a circumferential direction of the movable device (and/or the imaging assembly 410) .
  • the movable device may be capable of moving simultaneously with the imaging assembly.
  • the movable device may be mechanically connected to the imaging assembly 410. When the imaging assembly 410 moves, the movable device may be driven to move simultaneously with the imaging assembly 410 through the mechanical connection.
  • the mechanical connection may be detachable such that the mechanical connection may be removed to stop moving simultaneously with the imaging assembly 410.
  • the movable device may move simultaneously with the imaging assembly 410 using an automatic following method. Exemplary automatic following methods may include an automatic following method based on an infrared sensor, an automatic following method based on ultrasonic ranging, or the like, or any combination thereof.
  • the movable device may be capable of being fixedly connected to the imaging assembly 410.
  • the movable device when the movable device follows the imaging assembly 410 to an imaging position at which the imaging assembly 410 may image the target subject, the movable device may be fixedly connected to the imaging assembly 410 via a mechanically connection (e.g., a key connection, a pin connection, an interference fit connection, a screw connection, etc. ) .
  • a mechanically connection e.g., a key connection, a pin connection, an interference fit connection, a screw connection, etc.
  • the control assembly 430 may be connected to and/or communicate with the imaging assembly 410, and/or the protective assembly 420.
  • the control assembly 430 may include a terminal device.
  • the control assembly 430 may be configured to control a movement of the at least one portion of the plate component of the protective assembly 420.
  • the terminal device may be configured to receive an instruction provided by a user for controlling the movement of the at least one portion of the plate component. Further, the terminal device may transmit a signal indicating the instruction to the protective assembly 420 to control the movement of the at least one portion of the plate component.
  • the control assembly 430 may be configured to control a movement of the movable device.
  • the terminal device may be configured to receive an instruction provided by a user for controlling the movement of the movable device. Further, the terminal device may transmit a signal indicating the instruction to the movable device to control the movement of the movable device.
  • the control assembly 430 may be configured to control an imaging process performed by the imaging assembly 410. For example, the terminal device may obtain, process, and transmit image data collected by the imaging assembly 410.
  • a user may provide an input via a user interface implemented on the terminal device. The input may include an imaging parameter, an image construction parameter, information associated with the subject to be imaged, etc. for controlling the imaging of the imaging assembly 410.
  • the terminal device may include an input device, an output device, etc.
  • the input device may include alphanumeric and other keys that may be input via a keyboard, a touchscreen, a speech input, an eye tracking input, a brain monitoring system, or the like, or any combination thereof.
  • Other types of the input device may include a cursor control device, such as a mouse, a trackball, or cursor direction keys, etc.
  • the output device may include a display, a printer, or the like, or any combination thereof.
  • software, programs, and/or applications for control signal transmission, image processing, movement of assembly e.g., the movable gantry, the plate component, the movable device, etc.
  • the like may be developed based on an operating system of the terminal device.
  • the terminal device may be removably attached to the imaging assembly 410.
  • the terminal device may be in communication with one or more other components of the imaging system 400 via a wireless connection.
  • a user may take the terminal device and be away from the imaging assembly 410 and control operations of the components remotely.
  • the above description of the imaging system 400 is merely provided for the purposes of illustration and not intended to limit the scope of the present disclosure.
  • multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
  • one or more other components e.g., a storage assembly configured to store data and/or instructions that the control assembly 430 may execute or use to perform exemplary methods described in the present disclosure
  • the protective assembly 420 may be integrated into the imaging assembly 410 as a component of the imaging assembly 410.
  • FIG. 5 is a schematic diagram illustrating an exemplary imaging device according to some embodiments of the present disclosure.
  • the imaging device 110 illustrated in FIG. 1 and/or the imaging assembly 410 illustrated in FIG. 4 may be implemented on the imaging device 500.
  • the imaging device 500 may include a movable gantry 510, a protective assembly 520, an X-ray source 530, and a workstation 540.
  • the movable gantry 510 may be connected with the X-ray source 530.
  • the movable gantry 510 may include or be connected to a robotic arm 511.
  • An end of the robotic arm 511 may be connected to the movable gantry 510, and another end of the robotic arm 511 may be connected to the X-ray source 530.
  • the X-ray source 530 may move with the robotic arm 511.
  • the robotic arm 511 and the X-ray source 530 may move along a height direction of the movable gantry 510 (i.e., a direction parallel to the Z axis as illustrated in FIG. 5) .
  • the robotic arm 511 and the X-ray source 530 may also rotate with respect to the movable gantry 510 along an axis that passes through the center of the movable gantry 510 and is parallel to the Z axis.
  • the robotic arm 511 may be retractable.
  • the horizontal distance between the X-ray source 530 and the movable gantry 510 may change when the length of the robotic arm 511 changes.
  • the movable gantry 510 may include one or more wheels 512 (e.g., a wheel 512-1, a wheel 512-2, etc. ) .
  • the movable gantry 510 may move via the wheels 512.
  • a user may grab a handle mounted on the movable gantry 510 to push the movable gantry 510.
  • the other components of the imaging device 500 e.g., the protective assembly 520, the X-ray source 530, the workstation 540
  • the movable gantry 510 may move automatically.
  • the movable gantry 510 may automatically move to a desirable position for the imaging device 500 to perform a scan.
  • the movable gantry 510 may move in a certain direction automatically.
  • the protective assembly 520 may be configured to prevent the X-rays emitted by the X-ray source 530 from irradiating a surrounding region.
  • the protective assembly 520 may include a plate component.
  • the plate component may include one or more plates.
  • FIG. 6 is a schematic diagram illustrating an exemplary imaging device according to some embodiments of the present disclosure. As shown in FIG. 6, the protective assembly 520 may include a fixed plate 521 and a movable plate 522. The fixed plate 521 may be fixedly mounted on the movable gantry 510.
  • Exemplary connection method between the fixed plate and the movable gantry may include a welded connection, a key connection, a pin connection, an interference fit connection, an integral molding, or the like, or any combination thereof.
  • the movable plate 522 may be slidably connected with the fixed plate 521. Before an imaging process of the imaging device 500, the movable plate 522 may be at an initial position. For example, the movable plate 522 may overlap with the fixed plate 521. During the imaging process of the imaging device 500, the movable plate 522 may move to a first target position such that the plate component is capable of preventing the X-rays emitted by the X-ray source 530 from irradiating a surrounding region. For example, as shown in FIG.
  • the movable plate 522 may move upward to the working position shown in FIG. 6 along a height direction of the imaging device 500 so as to block the X-rays emitted by the X-ray source 530.
  • the center of the movable plate 522 may be at the same height as that of the axis of the X-ray source 530.
  • the height of the movable plate 522 at the working position may be adjustable such that the center of the movable plate 522 may be higher or lower than that of the axis of the X-ray source 530, depending on the condition of the surrounding region.
  • the horizontal distance between the X-ray source 530 and the movable plate 522 may be adjustable. After the X-ray source 530 stops emitting the X-rays, the movable plate 522 may move to a second target position.
  • the second target position may be the same as or similar to the initial position.
  • the protective assembly 520 may include a driving device.
  • the driving device may be configured to drive at least one portion of the protective assembly 520 to move to a target position so as to prevent the X-rays emitted by the X-ray source 530 from irradiating the surrounding region.
  • FIG. 7 is a schematic diagram illustrating an exemplary imaging device with a driving device according to some embodiments of the present disclosure.
  • the protective assembly 520 may further include a driving device 523.
  • the driving device 523 may be a lifting driving device.
  • the lifting driving device may drive the movable plate 522 to move along a height direction of the imaging device 500 (e.g., the direction A shown in FIG. 7) . Details regarding the lifting driving device may be found elsewhere in the present disclosure (e.g., FIGs. 8 and 9, and the relevant descriptions thereof) .
  • the X-ray source 530 may emit X-rays to irradiate a subject.
  • the X-ray source 530 may include an X-ray tube and a beam limiting device (not shown in FIG. 5) .
  • the X-ray tube may be configured to emit one or more X-ray beams toward the subject.
  • the beam limiting device may be configured to control the irradiation region on the subject.
  • the imaging device 500 may also include a detector (not shown in FIG. 5) . The detector may detect X-rays emitted from the X-ray source 530.
  • the workstation 540 may be configured to process image data collected by the imaging device 500 or an image obtained from, such as a processing device (e.g., the processing device 140) , a storage device (e.g., the storage device 150) , etc.
  • a processing device e.g., the processing device 140
  • a storage device e.g., the storage device 150
  • the movable gantry 510 may be configured in any suitable manner, such as a C-shaped gantry, a U-shape gantry, a G-shape gantry, or the like.
  • the protective assembly 520 is disposed on only one side of the imaging device 500.
  • the protective assembly 520 may be disposed on two or more sides of the imaging device 500.
  • the protective assembly 520 may include a plurality of plates, positions of at least part of the plurality of plates may be adjusted so as to form a closed space that completely surrounds the X-ray source 530 and the detector.
  • FIG. 8 is a schematic diagram illustrating a side view of an exemplary imaging device illustrated in FIG. 7 according to some embodiments of the present disclosure.
  • the protective assembly 520 may include a plate component (i.e., the fixed plate 521, the movable plate 522) and the lifting driving device 523.
  • the lifting driving device 523 may be configured to drive the movable plate 522 to move along the height direction A of the imaging device 500.
  • FIG. 9 is a schematic diagram illustrating an exemplary lifting driving device illustrated in FIG. 8 according to some embodiments of the present disclosure.
  • the lifting driving device 523 may include a linear rack component 523-1, a gear component 523-2, and a motor 523-3.
  • the linear rack component 523-1 may be installed on the movable plate 522.
  • the linear rack component 523-1 may be arranged along the height direction of the imaging device 500.
  • the linear rack component 523-1 may be connected with a side 522-1 of the movable plate 522 that is parallel to the height direction A of the imaging device 500.
  • the gear component 523-2 may mesh with the linear rack component 523-1.
  • the gear component 523-2 and/or the motor 523-3 may be disposed at a fixed position on the imaging device.
  • the motor 523-3 may be mounted on one of the movable gantry 510, the fixed plate 521, the workstation 540, or the like.
  • the gear component 523-2 may be mounted on the motor 523-3 (e.g., on one end of a motor shaft of the motor 523-3) and meshed with the linear rack component 523-1.
  • the gear component 523-2 may be rotatable (e.g., under an external force) to drive the linear rack component 523-1 to move along the height direction A of the imaging device 500.
  • the gear component 523-2 rotates clockwise (along a direction B illustrated in FIG. 9)
  • the linear rack component 523-1 may be driven to move upward based on the meshing connection.
  • the movable plate 522 fixedly connected with the linear rack component 523-1 may be driven to move upward.
  • the gear component 523-2 rotates counterclockwise (opposite to the direction B illustrated in FIG.
  • the linear rack component 523-1 may be driven to move down based on the meshing connection. Then the movable plate 522 fixedly connected with the linear rack component 523-1 may be driven to move down.
  • the motor 523-3 may be configured to drive the gear component 523-2 to rotate.
  • a motor shaft of the motor 523-3 may be fixedly connected with a center point of the gear component 523-2 such that the gear component 523-2 may rotate simultaneously with the motor shaft.
  • the gear component 523-2 and/or the motor 523-3 may be installed on the movable plate 522.
  • the motor 523-3 may be mounted on the movable plate 522 near the side 522-1.
  • the gear component 523-2 may be mounted on the motor 523-3.
  • the linear rack component 523-1 may be disposed at a fixed position on the imaging device.
  • the linear rack component 523-1 may be installed on the movable gantry 510 in a direction parallel to the height direction A of the imaging device 500. In such cases, when the gear component 523-2 rotates clockwise, the gear component 523-2 may move down based on the meshing connection with the linear rack component 523-1.
  • the motor 523-3 and the movable plate 522 may move down simultaneously with the gear component 523-2.
  • the gear component 523-2 rotates counterclockwise, the gear component 523-2 may move upward based on the meshing connection with the linear rack component 523-1.
  • the motor 523-3 and the movable plate 522 may move upward simultaneously with the gear component 523-2.
  • a user may control the movement of the movable plate 522 using a terminal device (e.g., the terminal device 130, the terminal device in the control assembly 430, etc. ) .
  • the terminal device may receive an instruction provided by the user for controlling the movement of the movable plate 522.
  • the terminal device may transmit a signal indicating the instruction to a control device of the motor 523-3 to control the operation of the motor 523-3.
  • the gear component 523-2 may rotate to drive the movable plate 522 to move up and down in the height direction of the imaging device 500. In such cases, an automatic rotation of the gear component 523-2, causing an automatic lifting of the movable plate 522, may be achieved using the motor 523-3.
  • the signal transmitted by the terminal device may include movement parameters relating to a target position of the movable plate 522.
  • the movement parameters may be generated based on imaging parameters used by the imaging device 500.
  • the imaging parameters may include a scanning position of a subject (e.g., a head of a patient) .
  • the target position may be a position around the scanning position.
  • the movement parameters may be generated based on the scanning position.
  • the imaging parameters may include parameters (e.g., an irradiation region, a shape) relating to the X-rays emitted by the X-ray source. Further, a distribution of the X-rays may be determined based on the parameters relating to the X-rays.
  • the movement parameters may be generated based on the distribution of the X-rays.
  • the control device of the motor 523-3 may control the operation of the motor 523-3 based on the movement parameters, such that the movable plate 522 may be driven to move to the target position.
  • the lifting driving device 523 may include a rocking handle.
  • the rocking handle may be configured to drive the gear component 523-2 to rotate.
  • One end of the rocking handle may be connected with a center point of the gear component 523-2.
  • the gear component 523-2 may be driven to rotate by manually rotating the other end of the rocking handle such that the movable plate 522 may be driven to move up and down in the height direction of the imaging device 500.
  • the rocking handle may be in any shape that may be easily operated by a user.
  • the rocking handle may be in a shape of “Z” , “L” , or the like.
  • FIGs. 8 and 9 are provided for the purposes of illustration, and not intended to limit the scope of the present disclosure.
  • the lifting driving device 523 illustrated in FIGs. 8 and 9 is merely provided as an example of a lifting driving mechanism.
  • Other structures that can be used as a lifting driving mechanism, such as a glass lifting mechanism used on a car, may also be applied to the present disclosure.
  • FIG. 10 is a schematic diagram illustrating a side view of an exemplary imaging device according to some embodiments of the present disclosure.
  • the imaging device 110 illustrated in FIG. 1 and/or the imaging assembly 410 illustrated in FIG. 4 may be implemented on the imaging device 1000.
  • the imaging device 1000 may include a movable gantry 1010, a protective assembly 1020, an X-ray source 1030, and a workstation 1040.
  • the movable gantry 1010 may be connected to the X-ray source 1030.
  • the movable gantry 1010 may include or be connected to a robotic arm 1011.
  • An end of the robotic arm 1011 may be connected to the movable gantry 1010, and another end of the robotic arm 1011 may be connected to the X-ray source 1030.
  • the protective assembly 1020 may be configured to prevent the X-rays emitted by the X-ray source 1030 from irradiating a surrounding region.
  • the protective assembly 1020 may include a plate component (e.g., a curved plate 1021) and a revolving driving device 1022.
  • the curved plate 1021 may be slidably connected with the movable gantry 1010.
  • a bottom of the curved plate 1021 may be placed in a track disposed on the movable gantry 1010.
  • the track may be disposed along a circumferential direction of the imaging device 110 such that the curved plate 1021 may be driven to move along the circumferential direction of the imaging device 1000.
  • the curved plate 1021 Before an imaging process of the imaging device 1000, the curved plate 1021 may be at an initial position (e.g., a position close to the movable gantry 1010) . During the imaging process of the imaging device 1000, the curved plate 1021 may move to a first target position such that the plate component is capable of preventing the X-rays emitted by the X-ray source from irradiating a surrounding region. After the X-ray source 1030 stops emitting the X-rays, the curved plate 1021 may move to a second target position. For example, the second target position may be the same as or similar to the initial position.
  • the revolving driving device 1022 may be configured to drive the curved plate 1021 to move along a circumferential direction of the imaging device 1000. Details regarding the revolving driving device may be found elsewhere in the present disclosure (e.g., FIGs. 11 and 12, and the relevant descriptions thereof) .
  • the X-ray source 1030 may emit one or more X-rays to irradiate a subject.
  • the imaging device 1000 may also include a detector (not shown in FIG. 5) . The detector may detect X-rays emitted from the X-ray source 1030.
  • the workstation 1040 may be configured to process image data collected by the imaging device 1000 or an image obtained from, such as a processing device (e.g., the processing device 140) , a storage device (e.g., the storage device 150) , etc.
  • a processing device e.g., the processing device 140
  • a storage device e.g., the storage device 150
  • the movable gantry 1010, the X-ray source 1030, and the workstation 1040 may be similar to the movable gantry 510, the X-ray source 530, and the workstation 540, respectively, as described in connection with FIG. 5, and the descriptions thereof are not repeated here.
  • the movable gantry 1010 may be configured in any suitable manner, such as a C-shaped gantry, a U-shape gantry, a G-shape gantry, or the like.
  • a C-shaped gantry such as a C-shaped gantry, a U-shape gantry, a G-shape gantry, or the like.
  • the protective assembly may include two or more curved plates.
  • the protective assembly may include a plurality of curved plates, at least part of the plurality of curved plates may be driven to move along the circumferential direction of the imaging device 1000 so as to surround the imaging device 1000 in the circumferential direction.
  • the curved plates When the curved plates are at their initial positions, the curved plates may overlap each other to occupy a small space.
  • FIG. 11 is a schematic diagram illustrating an exemplary imaging device illustrated in FIG. 10 according to some embodiments of the present disclosure.
  • the protective assembly 1020 may include a plate component (i.e., the curved plate 1021) and the revolving driving device 1022.
  • the revolving driving device 1022 may be configured to drive the curved plate 1021 to move along a circumferential direction of the imaging device 1000.
  • FIG. 12 is a schematic diagram illustrating an exemplary revolving driving device illustrated in FIG. 11 according to some embodiments of the present disclosure.
  • the revolving driving device 1022 may include a curved rack component 1022-1, a gear component 1022-2, a motor 1022-3, and a fixing component 1022-4.
  • the curved rack component 1022-1 may be installed on the movable gantry 1010.
  • the curved rack component 1022-1 may be fixedly disposed on a base of the movable gantry 1010 and along the circumferential direction of the imaging device 1000.
  • the gear component 1022-2 may mesh with the curved rack component 1022-1.
  • the gear component 1022-2 and/or the motor 1022-3 may move relative to the curved rack component 1022-1.
  • the motor 1022-3 may be mounted on the bottom of an inner wall of the curved plate 1021 (e.g., via the fixing component 1022-4) .
  • the gear component 1022-2 may be mounted on the motor 1022-3 (e.g., on one end of a motor shaft of the motor 1022-3) and meshed with the curved rack component 1022-1.
  • the gear component 1022-2 may be rotatable to drive the curved plate 1021 to move along the circumferential direction of the imaging device 1000. For example, as shown in FIG. 12, when the gear component 1022-2 rotates clockwise, the gear component 1022-2 may move in a direction C along the circumferential direction of the imaging device 1000 based on the meshing connection with the curved rack component 1022-1.
  • the motor 1022-3 may move simultaneously with the gear component 1022-2.
  • the curved plate 1021 on which the motor 1022-3 is mounted may move in the direction C simultaneously with the motor 1022-3.
  • the gear component 1022-2 rotates counterclockwise, the gear component 1022-2 may move in a direction opposite to the direction C along the circumferential direction of the imaging device 1000 based on the meshing connection with the curved rack component 1022-1.
  • the motor 1022-3 may move simultaneously with the gear component 1022-2.
  • the curved plate 1021 may move in the direction opposite to the direction C simultaneously with the motor 1022-3.
  • the curved rack component 1022-1 may be installed on the curved plate 1021.
  • the curved rack component 1022-1 may be slidably disposed on a base of the movable gantry 1010 and along the circumferential direction of the imaging device 1000.
  • the curved plate 1021 may be fixedly connected with at least a portion of the curved rack component 1022-1 such that the curved plate 1021 may move simultaneously with the curved rack component 1022-1.
  • the gear component 1022-2 and/or the motor 1022-3 may be disposed at a fixed position on the imaging device.
  • the motor 1022-3 may be mounted on the base of the movable gantry 1010.
  • the gear component 1022-2 may be mounted on the motor 1022-3 (e.g., on one end of the motor shaft) and meshed with the curved rack component 1022-1.
  • the gear component 1022-2 may be rotatable (e.g., under an external force) to drive the curved rack component 1022-1 to move along the circumferential direction of the imaging device 1000.
  • the gear component 1022-2 rotates clockwise, the curved rack component 1022-1 may be driven to move in a direction opposite to the direction C along the circumferential direction of the imaging device 1000 based on the meshing connection.
  • the curved plate 1021 fixedly connected with the curved rack component 1022-1 may be driven to move in the direction opposite to the direction C.
  • the curved rack component 1022-1 When the gear component 1022-2 rotates counterclockwise (opposite to the direction B illustrated in FIG. 9) , the curved rack component 1022-1 may be driven to move in the direction C along the circumferential direction of the imaging device 1000. Then the curved plate 1021 fixedly connected with the curved rack component 1022-1 may be driven to move simultaneously with the curved rack component 1022-1.
  • the motor 1022-3 may be configured to drive the gear component 1022-2 to rotate.
  • a motor shaft of the motor 1022-3 may be fixedly connected with a center point of the gear component 1022-2 such that the gear component 1022-2 may rotate simultaneously with the motor shaft.
  • a user may control the movement of the curved plate 1021 using a terminal device (e.g., the terminal device 130, the terminal device in the control assembly 430, etc. ) .
  • the terminal device may receive an instruction provided by the user for controlling the movement of the curved plate 1021.
  • the terminal device may transmit a signal indicating the instruction to a control device of the motor 1022-3 to control the operation of the motor 1022-3.
  • the gear component 1022-2 may rotate to drive the curved plate 1021 to move along the circumferential direction of the imaging device 1000.
  • the revolving driving device 1022 may include a rocking handle.
  • the rocking handle may be configured to drive the gear component 1022-2 to rotate.
  • One end of the rocking handle may be connected with a center point of the gear component 1022-2.
  • the gear component 1022-2 may be driven to rotate by manually rotating the other end of the rocking handle such that the curved plate 1021 may be driven to move along the circumferential direction of the imaging device 1000.
  • the rocking handle may be in any shape that may be easily operated by a user.
  • the rocking handle may be in a shape of “Z” , “L” , or the like.
  • the imaging device 500 and/or the imaging device 1000 may include one or more additional components and/or one or more components described above may be omitted. Additionally or alternatively, two or more components of the imaging device 500 and/or the imaging device 1000 may be integrated into a single component. A component of the imaging device 500 and/or the imaging device 1000 may be implemented on two or more sub-components.
  • the count, the position, the shape, and/or the size of a component (e.g., the protective assembly 520, the protective assembly 1020, etc. ) of the imaging device 500 and/or the imaging device 1000 as shown in FIGs. 5-12 are illustrative, and the component may be mounted at any position and have any size and/or shape.
  • the protective assembly 520 and/or the protective assembly 1020 may also be mounted on a movable device in communication with the imaging device 500 and/or the imaging device 1000.
  • the plate component of the protective assembly may include a plurality of plates overlapping each other at their respective initial positions.
  • the movement mechanisms e.g., the lifting driving device 523, the revolving driving device 1022 described in connection with FIGs. 5-12 are illustrative, the at least one portion of the plate component may also move through other movement mechanisms and/or along other directions.
  • FIG. 13 is a block diagram illustrating an exemplary processing device according to some embodiments of the present disclosure.
  • the processing device 140 may include a determination module 1310, and an execution module 1320.
  • the determination module 1310 may be configured to determine a first target position for at least one portion of a plate component of a protective assembly. For example, the determination module 1310 may receive, via a terminal device (e.g., the terminal device 130, the terminal device in the control assembly 430, etc. ) , a first instruction provided by a user for controlling a movement of the at least one portion of the plate component. Further, the determination module 1310 may determine the first target position based at least in part on the first instruction. As another example, the determination module 1310 may identify a first operating state (e.g., an exposure preparation state) of the imaging device. Further, the determination module 1310 may determine the first target position (e.g., a position at a pre-determined height) based at least in part on the first operating state of the imaging device.
  • a terminal device e.g., the terminal device 130, the terminal device in the control assembly 430, etc.
  • a first instruction provided by a user for controlling a movement of the at least one portion of the
  • the execution module 1320 may be configured to cause a driving device of the protective assembly to drive the at least one portion of the plate component to move to the first target position.
  • the driving device may include a rotatable gear component to drive the at least one portion of the plate component to move, and a motor to drive the gear component to rotate.
  • the execution module 1320 may be configured to generate a control signal to control an operation of the motor so as to drive the at least one portion of the plate component to move to the first target position.
  • the execution module 1320 may be further configured to cause an imaging device to image a subject.
  • the execution module 1320 may cause an X-ray source of the imaging device to emit X-rays to irradiate the subject.
  • the plate component with the at least one portion at the first target position may be capable of preventing the X-rays from irradiating a surrounding region, which may protect other subjects in the surrounding region from unnecessary radiation.
  • the determination module 1310 may be further configured to determine a second target position for the at least one portion of the plate component.
  • the determination module 1310 may receive, via a terminal device (e.g., the terminal device 130, the terminal device in the control assembly 430, etc. ) , a second instruction provided by a user for controlling a movement of the at least one portion of the plate component.
  • the second instruction may be provided after the X-ray source stops emitting the X-rays.
  • the determination module 1310 may determine the second target position (e.g., an initial position of the least one portion of the plate component) based at least in part on the second instruction.
  • the determination module 1310 may identify a second operating state (e.g., a state in which the X-ray source stops emitting the X-rays) of the imaging device. Further, the determination module 1310 may determine the second target position based at least in part on the second operating state of the imaging device. Furthermore, the execution module 1320 may be configured to cause the driving device of the protective assembly to drive the at least one portion of the plate component to move to the second target position after the X-ray source stops emitting the X-rays.
  • a second operating state e.g., a state in which the X-ray source stops emitting the X-rays
  • the processing device 140 may include one or more other modules.
  • the processing device 140 may include a storage module to store data generated by the modules in the processing device 140.
  • FIG. 14 is a flowchart illustrating an exemplary process for controlling an imaging device according to some embodiments of the present disclosure.
  • the processing device 140 may be implemented in, for example, the computing device 200 shown in FIG. 2) .
  • the process 1400 may be stored in a storage device (e.g., the storage device 150, the storage 220, the storage 390) in the form of instructions (e.g., an application) , and invoked and/or executed by the processing device 140 (e.g., the processor 210 illustrated in FIG. 2, the CPU 340 illustrated in FIG. 3, the control assembly 430 illustrated in FIG. 4, one or more modules illustrated in FIG. 13) .
  • the processing device 140 e.g., the processor 210 illustrated in FIG. 2, the CPU 340 illustrated in FIG. 3, the control assembly 430 illustrated in FIG. 4, one or more modules illustrated in FIG. 13.
  • the processing device 140 may determine a first target position for at least one portion of a plate component of a protective assembly.
  • the protective assembly may include the plate component and a driving device.
  • the driving device may be configured to drive the at least one portion of the plate component to move to the first target position.
  • the processing device 140 may determine a first target position for the movable plate 522 illustrated in FIGs. 6-9.
  • the processing device 140 may determine a first target position for the curved plate 1021 illustrated in FIGs. 10-12.
  • the plate component when the at least one portion of the plate component moves to the first target position, the plate component may be capable of preventing X-rays emitted by an X-ray source (e.g., the X-ray source 112 illustrated in FIG. 1, the X-ray source 530 illustrated in FIG. 5, the X-ray source 1030 illustrated in FIG. 10) of an imaging device from irradiating a surrounding region.
  • an X-ray source e.g., the X-ray source 112 illustrated in FIG. 1, the X-ray source 530 illustrated in FIG. 5, the X-ray source 1030 illustrated in FIG.
  • the processing device 140 may receive, via a terminal device (e.g., the terminal device 130, the terminal device in the control assembly 430, etc. ) , a first instruction provided by a user for controlling a movement of the at least one portion of the plate component.
  • a terminal device e.g., the terminal device 130, the terminal device in the control assembly 430, etc.
  • the user may input, via an input device of the terminal device, the first instruction before the X-ray source starts to emit the X-rays.
  • Exemplary input devices may include alphanumeric and other keys that may be input via a keyboard, a touchscreen, a speech input, an eye tracking input, a brain monitoring system, a cursor control device such as a mouse, a trackball, or cursor direction keys, or the like, or any combination thereof.
  • the processing device 140 may determine the first target position based at least in part on the first instruction. For example, if the first instruction input by the user is to drive the at least one portion of the plate component to move upward by a first input distance, the processing device 140 may determine a position at a height calculated based at least in part on the first input distance as the first target position.
  • the processing device 140 may identify a first operating state of the imaging device. In some embodiments, the processing device 140 may identify the first operating state according to operation information of the imaging device. Further, the processing device 140 may determine the first target position based at least in part on the first operating state of the imaging device.
  • the first operating state may be an exposure preparation state in which the imaging device may be preparing to emit (or may be emitting) X-rays.
  • the processing device 140 may determine a position at a pre-determined height as the first target position. In such cases, the at least one portion of the plate component at the first target position may be capable of preventing the X-rays from irradiating a surrounding region.
  • the processing device 140 may cause a driving device of the protective assembly to drive the at least one portion of the plate component to move to the first target position.
  • the driving device may include a rotatable gear component to drive the at least one portion of the plate component to move, and a motor to drive the gear component to rotate.
  • the processing device 140 may generate a control signal to control an operation of the motor so as to drive the at least one portion of the plate component to move to the first target position.
  • the processing device 140 may cause the imaging device to image a subject.
  • the processing device 140 may cause the X-ray source of the imaging device to emit X-rays to irradiate the subject.
  • the plate component with the at least one portion at the first target position may be capable of preventing the X-rays from irradiating a surrounding region, which may protect other subjects in the surrounding region from unnecessary radiation.
  • the processing device 140 may further determine a second target position for the at least one portion of the plate component. Further, the processing device 140 may cause the driving device of the protective assembly to drive the at least one portion of the plate component to move to the second target position after the X-ray source stops emitting the X-rays.
  • the processing device 140 may receive, via a terminal device (e.g., the terminal device 130, the terminal device in the control assembly 430, etc. ) , a second instruction provided by a user for controlling a movement of the at least one portion of the plate component.
  • a terminal device e.g., the terminal device 130, the terminal device in the control assembly 430, etc.
  • the processing device 140 may determine the second target position based at least in part on the second instruction.
  • the processing device 140 may determine a position at a height calculated based at least in part on the second input distance as the second target position.
  • the second instruction input by the user may be to drive the at least one portion of the plate component to move back to an initial position (e.g., the bottom of the imaging device) of the at least one portion of the plate component. Then, the processing device 140 may determine the initial position of the at least one portion of the plate component as the second target position.
  • the processing device 140 may identify a second operating state of the imaging device. In some embodiments, the processing device 140 may identify the second operating state according to operation information of the imaging device. Further, the processing device 140 may determine the second target position based at least in part on the second operating state of the imaging device. For example, the X-ray source may stop emitting the X-rays in the second operating state. Then the processing device 140 may determine the initial position as the second target position.
  • one or more operations of the process 1400 may be added or omitted.
  • operation 1410 and/or operation 1420 may be omitted.
  • the at least one portion of the plate component may be driven to move to the first target position manually (using a rocking handle) .
  • aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “unit, ” “module, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer-readable medium having computer readable program code embodied thereon.
  • a computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electromagnetic, optical, or the like, or any suitable combination thereof.
  • a computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object-oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB. NET, Python or the like, conventional procedural programming languages, such as the “C” programming language, Visual Basic, Fortran 2103, Perl, COBOL 2102, PHP, ABAP, dynamic programming languages such as Python, Ruby, and Groovy, or other programming languages.
  • the program code may execute entirely on the user’s computer, partly on the user’s computer, as a stand-alone software package, partly on the user’s computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user’s computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS) .
  • LAN local area network
  • WAN wide area network
  • SaaS Software as a Service
  • the numbers expressing quantities or properties used to describe and claim certain embodiments of the application are to be understood as being modified in some instances by the term “about, ” “approximate, ” or “substantially. ”
  • “about, ” “approximate, ” or “substantially” may indicate ⁇ 20%variation of the value it describes, unless otherwise stated.
  • the numerical parameters set forth in the written description and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by a particular embodiment.
  • the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the application are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

A system (100, 400) is disclosed, which may include an imaging device (110, 500, 1000) configured to image a subject. The imaging device (110, 500, 1000) may include a movable gantry (111, 510, 1010); an X-ray source (112, 530, 1030) mounted on the movable gantry (111, 510, 1010) and configured to emit X-rays to irradiate the subject; and a detector (113) configured to detect X-rays that pass through the subject. The system (100, 400) may further include a protective assembly (420, 520, 1020) including a plate component (521, 522, 1021) and a driving device (523, 1022). The driving device (523, 1022) may be configured to drive at least one portion of the plate component (522, 1021) to move to a target position so as to prevent the X-rays emitted by the X-ray source (112, 530, 1030) from irradiating a surrounding region.

Description

PROTECTION SYSTEM OF IMAGING DEVICE AND CONTROL METHOD THEREOF
CROSS-REFERENCE TO RELATED APPLICATION
This application claims priority of Chinese Patent Application No. 202010095783.1, filed on February 17, 2020, and Chinese Patent Application No. 202020175107.0, filed on February 17, 2020, the contents of each of which are hereby incorporated by reference in their entireties.
TECHNICAL FIELD
The present disclosure generally relates to an imaging device, and more particularly, to protection system of an imaging device and a control method thereof.
BACKGROUND
Medical imaging systems, such as an X-ray imaging device, have been widely used in clinical examinations and medical diagnoses in recent years. For example, a mobile digital radiography (DR) may move over a wide range to meet scanning needs of different portions of a patient with impaired mobility. When using a mobile DR to perform a scan on a subject (e.g., a patent) , unnecessary radiation may be caused to surrounding subjects (e.g., a doctor, another patient) . Therefore, it is desirable to provide a protection system of an X-ray imaging device (e.g., the mobile DR) , thereby protecting the surrounding subjects from unnecessary radiation.
SUMMARY
According to an aspect of the present disclosure, a system is provided. The system may include an imaging device configured to image a subject. The imaging device may include a movable gantry; an X-ray source mounted on the movable gantry and configured to emit X-rays to irradiate the subject; and a detector configured to detect X-rays that pass through the subject. The system may further include a protective assembly including a plate component and a driving device. The driving device may be configured to drive at least one portion of the plate component to move  to a target position so as to prevent the X-rays emitted by the X-ray source from irradiating a surrounding region.
In some embodiments, the driving device may include a lifting driving device configured to drive the at least one portion of the plate component to move along a height direction of the imaging device.
In some embodiments, the lifting driving device may include a linear rack component connected with the at least one portion of the plate component. The linear rack component may be arranged along the height direction of the imaging device. And the lifting driving device may include a gear component meshing with the linear rack component. The gear component may be rotatable to drive the linear rack component to move along the height direction of the imaging device.
In some embodiments, the driving device may include a revolving driving device configured to drive the at least one portion of the plate component to move along a circumferential direction of the imaging device.
In some embodiments, the revolving driving device may include a curved rack component connected with the at least one portion of the plate component. The curved rack component may be arranged along the circumferential direction of the imaging device. And the revolving driving device may include a gear component meshing with the curved rack component. The gear component may be rotatable to drive the curved rack component to move along the circumferential direction of the imaging device.
In some embodiments, the driving device may further include a rocking handle configured to drive the gear component to rotate. One end of the rocking handle may be connected with a center point of the gear component.
In some embodiments, the driving device may further include a motor configured to drive the gear component to rotate. A motor shaft of the motor may be connected with a center point of the gear component.
In some embodiments, the protective assembly may be mounted on the movable gantry of the imaging device.
In some embodiments, the plate component may include a fixed plate and a movable plate. The fixed plate may be fixedly mounted on the movable gantry, and the movable plate may be slidably connected with the fixed plate.
In some embodiments, the protective assembly may be mounted on a movable device in communication with the imaging device.
In some embodiments, the plate component may include a fixed plate and a movable plate. The fixed plate may be fixedly mounted on the movable device, and the movable plate may be slidably connected with the fixed plate.
In some embodiments, the movable device may be capable of moving simultaneously with the imaging device.
In some embodiments, the movable device may be capable of being fixedly connected with the imaging device.
In some embodiments, the system may further include a terminal device configured to receive an instruction provided by a user for controlling a movement of the at least one portion of the plate component.
In some embodiments, the terminal device may be further configured to receive an instruction provided by the user for controlling a movement of the movable device.
In some embodiments, the terminal device may be removably attached to the imaging device.
In some embodiments, the plate component may include at least one lead plate.
In some embodiments, the plate component may include a see-through region.
In some embodiments, the imaging device may include a mobile digital radiography device.
According to another aspect of the present disclosure, a method is provided. The method may be implemented on a computing device having one or more processors and one or more storage devices. The method may include determining a  first target position for at least one portion of a plate component of a protective assembly; causing a driving device of the protective assembly to drive the at least one portion of the plate component to move to the first target position; and causing an imaging device to image a subject. The imaging device may include an X-ray source configured to emit X-rays to irradiate the subject. When the at least one portion of the plate component moves to the first target position, the plate component may be capable of preventing the X-rays emitted by the X-ray source from irradiating a surrounding region.
In some embodiments, the method may further include determining a second target position for the at least one portion of the plate component; and causing the driving device of the protective assembly to drive the at least one portion of the plate component to move to the second target position after the X-ray source stops emitting the X-rays.
In some embodiments, the determining a first target position for at least one portion of a plate component of a protective assembly may includes receiving, via a terminal device, a first instruction provided by a user for controlling a movement of the at least one portion of the plate component; and determining the first target position based at least in part on the first instruction.
In some embodiments, the determining a first target position for at least one portion of a plate component of a protective assembly may include obtaining a first operating state of the imaging device; and determining the first target position based at least in part on the first operating state of the imaging device.
In some embodiments, the determining a second target position for the at least one portion of the plate component may include receiving, via the terminal device, a second instruction provided by the user for controlling the movement of the at least one portion of the plate component. The second instruction may be provided after the X-ray source stops emitting the X-rays. And the determining a second target position for  the at least one portion of the plate component may further include determining the second target position based at least in part on the second instruction.
In some embodiments, the determining a second target position for the at least one portion of the plate component may include obtaining a second operating state of the imaging device. The X-ray source may stop emitting the X-rays in the second operating state. And the determining a second target position for the at least one portion of the plate component may further include determining the second target position based at least in part on the second operating state of the imaging device.
According to a further aspect of the present disclosure, a non-transitory computer readable medium is provided. The non-transitory computer readable medium may include executable instructions that, when executed by at least one processor, direct the at least one processor to perform a method. The method may include determining a first target position for at least one portion of a plate component of a protective assembly; causing a driving device of the protective assembly to drive the at least one portion of the plate component to move to the first target position; and causing an imaging device to image a subject. The imaging device may include an X-ray source configured to emit X-rays to irradiate the subject. When the at least one portion of the plate component moves to the first target position, the plate component may be capable of preventing the X-rays emitted by the X-ray source from irradiating a surrounding region.
Additional features will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following and the accompanying drawings or may be learned by production or operation of the examples. The features of the present disclosure may be realized and attained by practice or use of various aspects of the methodologies, instrumentalities and combinations set forth in the detailed examples discussed below.
BRIEF DESCRIPTION OF THE DRAWINGS
The present disclosure is further described in terms of exemplary embodiments. These exemplary embodiments are described in detail with reference to the drawings. The drawings are not to scale. These embodiments are non-limiting exemplary embodiments, in which like reference numerals represent similar structures throughout the several views of the drawings, and wherein:
FIG. 1 is a schematic diagram illustrating an exemplary imaging system according to some embodiments of the present disclosure;
FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary computing device on which a processing device may be implemented according to some embodiments of the present disclosure;
FIG. 3 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary mobile device on which a terminal may be implemented according to some embodiments of the present disclosure;
FIG. 4 is a schematic diagram illustrating exemplary components of an imaging system according to some embodiments of the present disclosure;
FIG. 5 is a schematic diagram illustrating an exemplary imaging device according to some embodiments of the present disclosure;
FIG. 6 is a schematic diagram illustrating an exemplary imaging device according to some embodiments of the present disclosure;
FIG. 7 is a schematic diagram illustrating an exemplary imaging device with a driving device according to some embodiments of the present disclosure;
FIG. 8 is a schematic diagram illustrating a side view of an exemplary imaging device illustrated in FIG. 7 according to some embodiments of the present disclosure;
FIG. 9 is a schematic diagram illustrating an exemplary lifting driving device illustrated in FIG. 8 according to some embodiments of the present disclosure;
FIG. 10 is a schematic diagram illustrating a side view of another exemplary imaging device according to some embodiments of the present disclosure;
FIG. 11 is a schematic diagram illustrating an exemplary imaging device illustrated in FIG. 10 according to some embodiments of the present disclosure;
FIG. 12 is a schematic diagram illustrating an exemplary revolving driving device illustrated in FIG. 11 according to some embodiments of the present disclosure;
FIG. 13 is a block diagram illustrating an exemplary processing device according to some embodiments of the present disclosure; and
FIG. 14 is a flowchart illustrating an exemplary process for controlling an imaging device according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant disclosure. However, it should be apparent to those skilled in the art that the present disclosure may be practiced without such details. In other instances, well-known methods, procedures, systems, components, and/or circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present disclosure. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present disclosure is not limited to the embodiments shown, but to be accorded the widest scope consistent with the claims.
The terminology used herein is to describe particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a, ” “an, ” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise, ” “comprises, ” and/or “comprising, ” “include, ” “includes, ” and/or “including, ” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or  more other features, integers, steps, operations, elements, components, and/or groups thereof.
It will be understood that the term “system, ” “engine, ” “unit, ” “module, ” and/or “block” used herein are one method to distinguish different components, elements, parts, section or assembly of different level in ascending order. However, the terms may be displaced by another expression if they achieve the same purpose.
Generally, the word “module, ” “unit, ” or “block, ” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions. A module, a unit, or a block described herein may be implemented as software and/or hardware and may be stored in any type of non-transitory computer-readable medium or another storage device. In some embodiments, a software module/unit/block may be compiled and linked into an executable program. It will be appreciated that software modules can be callable from other modules/units/blocks or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules/units/blocks configured for execution on computing devices (e.g., the processor 210 illustrated in FIG. 2 and/or the CPU 340 illustrated in FIG. 3) may be provided on a computer-readable medium, such as a compact disc, a digital video disc, a flash drive, a magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that needs installation, decompression, or decryption prior to execution) . Such software code may be stored, partially or fully, on a storage device of the executing computing device, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules/units/blocks may be included in connected logic components, such as gates and flip-flops, and/or can be included of programmable units, such as programmable gate arrays or processors. The modules/units/blocks or computing device functionality described herein may be implemented as software modules/units/blocks but may be represented in hardware or firmware. In general, the modules/units/blocks described herein refer to logical modules/units/blocks that may be  combined with other modules/units/blocks or divided into sub-modules/sub-units/sub-blocks despite their physical organization or storage. The description may apply to a system, an engine, or a portion thereof.
It will be understood that, although the terms “first, ” “second, ” “third, ” etc., may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of exemplary embodiments of the present disclosure.
It will be understood that when a unit, engine, module or block is referred to as being “on, ” “connected to, ” or “coupled to, ” another unit, engine, module, or block, it may be directly on, connected or coupled to, or communicate with the other unit, engine, module, or block, or an intervening unit, engine, module, or block may be present, unless the context clearly indicates otherwise. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It should also be understood that terms such as “top, ” “bottom, ” “upper, ” “lower, ” “vertical, ” “lateral, ” “above, ” “below, ” “upward (s) , ” “downward (s) , ” “left-hand side, ” “right-hand side, ” “horizontal, ” and other such spatial reference terms are used in a relative sense to describe the positions or orientations of certain surfaces/parts/components of the imaging device with respect to other such features of the imaging device when the imaging device is in a normal operating position and may change if the position or orientation of the imaging device changes.
These and other features, and characteristics of the present disclosure, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, may become more apparent upon consideration of the following description with reference to the accompanying drawings, all of which form a part of this disclosure. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not  intended to limit the scope of the present disclosure. It is understood that the drawings are not to scale.
Provided herein are systems and components for medical imaging. In some embodiments, the imaging system may include a single modality imaging system and/or a multi-modality imaging system. The single modality imaging system may include, for example, an X-ray imaging system, an emission computed tomography (ECT) system, a magnetic resonance imaging (MRI) system, an ultrasonography system, a positron emission tomography (PET) system, or the like, or any combination thereof. The multi-modality imaging system may include, for example, an X-ray imaging-magnetic resonance imaging (X-ray-MRI) system, a positron emission tomography-X-ray imaging (PET-X-ray) system, a single photon emission computed tomography-magnetic resonance imaging (SPECT-MRI) system, a digital subtraction angiography-magnetic resonance imaging (DSA-MRI) system, etc.
For illustration purposes, the disclosure describes systems and methods relating to X-ray imaging system. It should be noted that the X-ray imaging system described below is merely provided for illustration purposes, and not intended to limit the scope of the present disclosure.
An aspect of the present disclosure relates to a system. The system may include an imaging device (e.g., a mobile DR) configured to image a subject. The imaging device may include a movable gantry, an X-ray source mounted on the movable gantry and configured to emit X-rays to irradiate the subject, and a detector configured to detect X-rays that pass through the subject. The system may further include a protective assembly including a plate component and a driving device. The driving device may be configured to drive at least one portion of the plate component to move to a target position so as to prevent the X-rays emitted by the X-ray source from irradiating a surrounding region. Therefore, a subject (e.g., a doctor, a patient who is not to be scanned by the imaging device, etc. ) in the surrounding region may be protected from unnecessary radiation.
FIG. 1 is a schematic diagram illustrating an exemplary imaging system 100 according to some embodiments of the present disclosure. As shown in FIG. 1, the imaging system 100 may include an imaging device 110, a network 120, one or more terminal devices 130, a processing device 140, and a storage device 150. The connection between the components in the imaging system 100 may be variable. For example, the imaging device 110 and/or the terminal device 130 may be connected to the processing device 140 through the network 120. As another example, the imaging device 110 and/or the terminal device 130 may be connected to the processing device 140 directly.
The imaging device 110 may be configured to scan a subject using X-rays and generate imaging data used to generate one or more images relating to the subject. In some embodiments, the imaging device 110 may transmit the imaging data to the processing device 140 for further processing (e.g., generating one or more images) . In some embodiments, the imaging data and/or the one or more images associated with the subject may be stored in the storage device 150 and/or the processing device 140.
In some embodiments, the imaging device 110 may include a computed tomography (CT) scanner, a digital radiography (DR) scanner (e.g., a mobile digital radiography) , a digital subtraction angiography (DSA) scanner, a dynamic spatial reconstruction (DSR) scanner, an X-ray microscopy scanner, a multi-modality scanner, or the like, or a combination thereof. Exemplary multi-modality scanners may include a computed tomography-positron emission tomography (CT-PET) scanner, a computed tomography-magnetic resonance imaging (CT-MRI) scanner, etc. The subject may be biological or non-biological. Merely by way of example, the subject may include a patient, a man-made object, etc. As another example, the subject may include a specific portion, organ, and/or tissue of a patient. For example, the subject may include head, brain, neck, body, shoulder, arm, thorax, cardiac, stomach, blood vessel, soft tissue, knee, feet, or the like, or any combination thereof.
The imaging device 110 may include a gantry 111, an X-ray source 112, and a detector 113. The gantry 111 may be configured to support the X-ray source 112 and the detector 113. In some embodiments, the gantry 111 may have a C-shape as illustrated in FIG. 1. Alternatively, the gantry 111 may have a column-shape, an O-shape, a U-shape, a G-shape, or the like, or a combination thereof.
The X-ray source 112 may emit one or more X-rays to the subject. In some embodiments, the X-ray source 112 may include a tube, such as a cold cathode ion tube, a high vacuum hot cathode tube, a rotating anode tube, etc. The tube may be powered by a high voltage generator, emitting X-rays that may be detected by the detector 113. The X-rays emitted by the X-ray source 112 may be guided to form a beam having the shape of a line, a narrow pencil, a narrow fan, a fan, a cone, a wedge, an irregular shape, or the like, or a combination thereof.
The detector 113 may detect X-rays emitted from the X-ray source 112. In some embodiments, the detector 113 may be configured to produce an analog electrical signal that represents the intensity of the received X-rays, including the attenuated beam, as it passes through the subject. In some embodiments, the detector 113 may include one or more detector units. The detector units may include a scintillation detector (e.g., a cesium iodide detector) , a gas detector, etc. The pixels of the detector may be represented by the number of the smallest detector units, e.g., the number of detector units. The detector units of the detector 113 may be arranged in a single row, two rows, or another number of rows. The detector may be one-dimensional, two-dimensional, or three-dimensional.
In some embodiments, the imaging system 100 may include a protective assembly. The protective assembly may include a plate component and a driving device. The driving device may be caused to drive at least one portion of the plate component to move to a target position so as to prevent the X-rays emitted by the X-ray source 112 from irradiating a surrounding region. In some embodiments, the protective assembly may be mounted on the gantry 111 of the imaging device 110. In  some embodiments, the protective assembly may be mounted on a movable device in communication with the imaging device 110. Details regarding the protective assembly may be found elsewhere in the present disclosure (e.g., FIGs. 4-11 and the relevant descriptions thereof) .
The network 120 may include any suitable network that can facilitate the exchange of information and/or data for the imaging system 100. In some embodiments, one or more components of the imaging system 100 (e.g., the imaging device 110, the terminal device 130, the processing device 140, the storage device 150, etc. ) may communicate information and/or data with one or more other components of the imaging system 100 via the network 120. For example, the processing device 140 may obtain image data from the imaging device 110 via the network 120. As another example, the processing device 140 may obtain user instructions from the terminal device 130 via the network 120. The network 120 may be and/or include a public network (e.g., the Internet) , a private network (e.g., a local area network (LAN) , a wide area network (WAN) ) , etc. ) , a wired network (e.g., an Ethernet network) , a wireless network (e.g., an 802.11 network, a Wi-Fi network, etc. ) , a cellular network (e.g., a Long Term Evolution (LTE) network) , a frame relay network, a virtual private network (VPN) , a satellite network, a telephone network, routers, hubs, switches, server computers, and/or any combination thereof. Merely by way of example, the network 120 may include a cable network, a wireline network, a fiber-optic network, a telecommunications network, an intranet, a wireless local area network (WLAN) , a metropolitan area network (MAN) , a public telephone switched network (PSTN) , a Bluetooth TM network, a ZigBee TM network, a near field communication (NFC) network, or the like, or any combination thereof. In some embodiments, the network 120 may include one or more network access points. For example, the network 120 may include wired and/or wireless network access points such as base stations and/or internet exchange points through which one or more components of the imaging system 100 may be connected to the network 120 to exchange data and/or information.
The terminal device 130 may include a mobile device 131, a tablet computer 132, a laptop computer 133, or the like, or any combination thereof. In some embodiments, the mobile device 131 may include a smart home device, a wearable device, a mobile device, a virtual reality device, an augmented reality device, or the like, or any combination thereof. In some embodiments, the smart home device may include a smart lighting device, a control device of an intelligent electrical apparatus, a smart monitoring device, a smart television, a smart video camera, an interphone, or the like, or any combination thereof. In some embodiments, the wearable device may include a bracelet, footgear, eyeglasses, a helmet, a watch, clothing, a backpack, a smart accessory, or the like, or any combination thereof. In some embodiments, the mobile device may include a mobile phone, a personal digital assistant (PDA) , a gaming device, a navigation device, a point of sale (POS) device, a laptop, a tablet computer, a desktop, a virtual reality device, or the like, or any combination thereof. In some embodiments, the virtual reality device and/or the augmented reality device may include a virtual reality helmet, virtual reality glasses, a virtual reality patch, an augmented reality helmet, augmented reality glasses, an augmented reality patch, or the like, or any combination thereof. For example, the virtual reality device and/or the augmented reality device may include a Google Glass TM, an Oculus Rift TM, a HoloLens TM, a Gear VR TM, etc. In some embodiments, the terminal device 130 may be part of the processing device 140.
In some embodiments, the terminal device 130 may control the operation of one or more components of the imaging system 100, such as the imaging device 110, the protective assembly, etc. For example, a user may set operating parameters of the imaging device 110 via the terminal device 130. As another example, the terminal device 130 may receive an instruction provided by a user for controlling a movement of the at least one portion of the plate component of the protective assembly. Further, the terminal device 130 may transmit signals indicating the instruction to the protective assembly to control a movement of the at least one portion of the plate component  based on the signals. As a further example, the terminal device 130 may receive an instruction provided by the user for controlling a movement of the movable device. Further, the terminal device 130 may transmit signals indicating the instruction to the movable device to control a movement of the movable device based on the signals. In some embodiments, the terminal device 130 may be integrated into the imaging device 110. For example, the terminal device 130 may be a control panel mounted on the imaging device 110 and may be configured to perform the functions of the terminal device 130 disclosed in this application. In some embodiments, the terminal device 130 may be removably attached to the imaging device 110.
The processing device 140 may process data and/or information obtained from the imaging device 110, the terminal device 130, and/or the storage device 150. For example, the processing device 140 may process imaging data generated by the imaging device 110 to generate an image. As another example, the processing device 140 may determine a target position for at least one portion of the plate component of the protective assembly. In some embodiments, the processing device 140 may be a single server or a server group. The server group may be centralized or distributed. In some embodiments, the processing device 140 may be local or remote. For example, the processing device 140 may access information and/or data stored in the imaging device 110, the terminal device 130, and/or the storage device 150 via the network 120. As another example, the processing device 140 may be directly connected to the imaging device 110, the terminal device 130 and/or the storage device 150 to access stored information and/or data. In some embodiments, the processing device 140 may be implemented on a cloud platform. Merely by way of example, the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof. In some embodiments, the processing device 140 may be implemented by a computing device 200 having one or more components as illustrated in FIG. 3.
The storage device 150 may store data, instructions, and/or any other information. In some embodiments, the storage device 150 may store data obtained from the terminal device 130 and/or the processing device 140. In some embodiments, the storage device 150 may store data and/or instructions that the processing device 140 may execute or use to perform exemplary methods described in the present disclosure. In some embodiments, the storage device 150 may include a mass storage, removable storage, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof. Exemplary mass storage may include a magnetic disk, an optical disk, a solid-state drive, etc. Exemplary removable storage may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc. Exemplary volatile read-and-write memory may include a random-access memory (RAM) . Exemplary RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc. Exemplary ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc. In some embodiments, the storage device 150 may be implemented on a cloud platform. Merely by way of example, the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, an inter-cloud, a multi-cloud, or the like, or any combination thereof.
In some embodiments, the storage device 150 may be connected to the network 120 to communicate with one or more other components of the imaging system 100 (e.g., the processing device 140, the terminal device 130, the protective assembly, etc. ) . One or more components of the imaging system 100 may access the data or instructions stored in the storage device 150 via the network 120. In some embodiments, the storage device 150 may be directly connected to or communicate with one or more other components of the imaging system 100 (e.g., the processing  device 140, the terminal device 130, the protective assembly, etc. ) . In some embodiments, the storage device 150 may be part of the processing device 140.
This description is intended to be illustrative, and not to limit the scope of the present disclosure. Many alternatives, modifications, and variations will be apparent to those skilled in the art. The features, structures, methods, and other characteristics of the exemplary embodiments described herein may be combined in various ways to obtain additional and/or alternative exemplary embodiments. For example, the processing device 140 and the imaging device 110 may be integrated into one single device. However, those variations and modifications do not depart the scope of the present disclosure.
FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary computing device 200 on which the processing device 140 may be implemented according to some embodiments of the present disclosure. As illustrated in FIG. 2, the computing device 200 may include a processor 210, a storage 220, an input/output (I/O) 230, and a communication port 240.
The processor 210 may execute computer instructions (e.g., program code) and, when executing the instructions, cause the processing device 140 to perform functions of the processing device 140 in accordance with techniques described herein. The computer instructions may include, for example, routines, programs, objects, components, data structures, procedures, modules, and functions, which perform particular functions described herein. For example, the processor 210 may process imaging data obtained from the imaging device 110, the terminal device 130, the storage device 150, and/or any other component of the imaging system 100. In some embodiments, the processor 210 may include one or more hardware processors, such as a microcontroller, a microprocessor, a reduced instruction set computer (RISC) , an application specific integrated circuits (ASICs) , an application-specific instruction-set processor (ASIP) , a central processing unit (CPU) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a microcontroller unit, a digital signal processor (DSP) , a  field programmable gate array (FPGA) , an advanced RISC machine (ARM) , a programmable logic device (PLD) , any circuit or processor capable of executing one or more functions, or the like, or any combinations thereof.
Merely for illustration, only one processor is described in the computing device 200. However, it should be noted that the computing device 200 in the present disclosure may also include multiple processors. Thus operations and/or method steps that are performed by one processor as described in the present disclosure may also be jointly or separately performed by the multiple processors. For example, if in the present disclosure the processor of the computing device 200 executes both operation A and operation B, it should be understood that operation A and operation B may also be performed by two or more different processors jointly or separately in the computing device 200 (e.g., a first processor executes operation A and a second processor executes operation B, or the first and second processors jointly execute operations A and B) .
The storage 220 may store data/information obtained from the imaging device 110, the terminal device 130, the storage device 150, and/or any other component of the imaging system 100. The storage 220 may be similar to the storage device 150 described in connection with FIG. 1, and the detailed descriptions are not repeated here.
The I/O 230 may input and/or output signals, data, information, etc. In some embodiments, the I/O 230 may allow a user interaction with the processing device 140. In some embodiments, the I/O 230 may include an input device and an output device. Examples of the input device may include a keyboard, a mouse, a touchscreen, a microphone, a sound recording device, or the like, or a combination thereof. Examples of the output device may include a display device, a loudspeaker, a printer, a projector, or the like, or a combination thereof. Examples of the display device may include a liquid crystal display (LCD) , a light-emitting diode (LED) -based display, a flat panel  display, a curved screen, a television device, a cathode ray tube (CRT) , a touchscreen, or the like, or a combination thereof.
The communication port 240 may be connected to a network (e.g., the network 120) to facilitate data communications. The communication port 240 may establish connections between the processing device 140 and the imaging device 110, the terminal device 130, the storage device 150, and/or the protective assembly. The connection may be a wired connection, a wireless connection, any other communication connection that can enable data transmission and/or reception, and/or any combination of these connections. The wired connection may include, for example, an electrical cable, an optical cable, a telephone wire, or the like, or any combination thereof. The wireless connection may include, for example, a Bluetooth TM link, a Wi-Fi TM link, a WiMAX TM link, a WLAN link, a ZigBee link, a mobile network link (e.g., 3G, 4G, 5G, etc. ) , or the like, or a combination thereof. In some embodiments, the communication port 240 may be and/or include a standardized communication port, such as RS232, RS485, etc. In some embodiments, the communication port 240 may be a specially designed communication port. For example, the communication port 240 may be designed in accordance with the digital imaging and communications in medicine (DICOM) protocol.
FIG. 3 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary mobile device 300 on which the terminal device 130 may be implemented according to some embodiments of the present disclosure.
As illustrated in FIG. 3, the mobile device 300 may include a communication platform 310, a display 320, a graphics processing unit (GPU) 330, a central processing unit (CPU) 340, an I/O 350, a memory 360, and a storage 390. In some embodiments, any other suitable component, including but not limited to a system bus or a controller (not shown) , may also be included in the mobile device 300. In some embodiments, a mobile operating system 370 (e.g., iOS TM, Android TM, Windows Phone TM, etc. ) and one or more applications 380 may be loaded into the memory 360 from the storage 390 in  order to be executed by the CPU 340. The applications 380 may include a browser or any other suitable mobile apps for receiving and rendering information relating to image processing, movement control, or other information from the processing device 140. User interactions with the information stream may be achieved via the I/O 350 and provided to the processing device 140 and/or other components of the imaging system 100 via the network 120.
To implement various modules, units, and their functionalities described in the present disclosure, computer hardware platforms may be used as the hardware platform (s) for one or more of the elements described herein. A computer with user interface elements may be used to implement a personal computer (PC) or any other type of work station or terminal device. A computer may also act as a server if appropriately programmed.
FIG. 4 is a schematic diagram illustrating exemplary components of an imaging system 400 according to some embodiments of the present disclosure. In some embodiments, the imaging system 110 described in connection with FIG. 1 may be implemented on the imaging system 400. As illustrated in FIG. 4, the imaging system 400 may include an imaging assembly 410, a protective assembly 420, and a control assembly 430.
The imaging assembly 410 may be configured to image a subject. In some embodiments, the imaging assembly 410 may be or include an imaging device (e.g., the imaging device 110 described in connection with FIG. 1) . The imaging device may scan a subject using X-rays and generate imaging data used to generate one or more images relating to the subject. For example, the imaging device may include a computed tomography (CT) scanner, a digital radiography (DR) scanner (e.g., a mobile digital radiography) , a digital subtraction angiography (DSA) scanner, a dynamic spatial reconstruction (DSR) scanner, an X-ray microscopy scanner, a multi-modality scanner, or the like, or a combination thereof. The subject may be biological or non-biological. Merely by way of example, the subject may include a patient, a man-made object, etc.  As another example, the subject may include a specific portion, organ, and/or tissue of a patient.
In some embodiments, the imaging assembly 410 may include a movable gantry, an X-ray source, a detector, or the like, or any combination thereof. The movable gantry may be used as a support structure on which other components of the imaging assembly 410 are installed. Merely by way of example, the X-ray source and the detector may be connected to the movable gantry. For example, the movable gantry may have a C-shape, a U-shape, a G-shape, etc. The movable gantry may have a first end and a second end. The first end may be connected to the X-ray source, and the second end may be connected to the detector. As another example, the movable gantry may have an O-shape. The X-ray source and the detector may be attached to different parts of the movable gantry and spaced from each other. For instance, the detector may be opposite to the X-ray source, and a line linking the detector and the X-ray source may pass through the center of the O-shape. In some embodiments, the detector and the X-ray source may be spaced apart by a space. The space may be configured to accommodate a subject to be scanned. In some embodiments, the X-ray source and/or the detector may be indirectly connected to the movable gantry. Merely by way of example, the imaging assembly 410 may include a robotic arm. The robotic arm may include an end connected to the movable gantry. The robotic arm may also include another end connected to the X-ray source. In some embodiments, the robotic arm may be movable and/or retractable with respect to the movable gantry.
In some embodiments, the movable gantry may include a movable component that allows the movable gantry to move in any direction such that the X-ray source and the detector may move with the movable gantry. Exemplary movable components may include a trolley, wheels, movable parts corresponding to a track, or the like, or any combination thereof. Merely by way of example, a bottom of the movable gantry may be installed with wheels. The wheels may roll to realize the movement of the mobile  DR, which may reduce resistance during the movement of the mobile DR, thereby improving the flexibility of the mobile DR during the movement. Optionally or additionally, the wheels may be universal wheels that can roll in any direction, which may improve the flexibility of the movable gantry during turning. A count of the wheels may be determined according to requirements, such as three, four, five, or six. In some embodiments, the wheels may be evenly distributed on the bottom of the movable gantry so as to improve the stability of the movable gantry during the movement.
The X-ray source may be configured to emit X-rays to irradiate the subject. In some embodiments, the X-ray source may include a tube, such as a cold cathode ion tube, a high vacuum hot cathode tube, a rotating anode tube, etc. The tube may be powered by a high voltage generator, emitting X-rays that may be detected by the detector. The X-rays emitted by the X-ray source may form a beam having the shape of a line, a narrow pencil, a narrow fan, a fan, a cone, a wedge, an irregular shape, or the like, or a combination thereof.
The detector may be configured to detect X-rays that pass through the subject. In some embodiments, the detector may produce an analog electrical signal that represents the intensity of the received X-rays, including the attenuated beam, as it passes through the subject. In some embodiments, the detector may include one or more detector units. The detector units may include a scintillation detector (e.g., a cesium iodide detector) , a gas detector, etc. The pixels of the detector may be represented by the number of the smallest detector units, e.g., the number of detector units. The detector units of the detector may be arranged in a single row, two rows, or another number of rows. The detector may be one-dimensional, two-dimensional, or three-dimensional.
The protective assembly 420 may be configured to prevent the X-rays emitted by the X-ray source from irradiating a surrounding region. Taking the mobile DR as an example, when the mobile DR scans a target patient with impaired mobility in a ward, there may be other patients in the ward that may be exposed to unnecessary radiation  caused by X-rays emitted by an X-ray source of the mobile DR. In this occasion, the protective assembly 420 may be moved to a suitable position to prevent the X-rays from irradiating other patients. In some embodiments, the protective assembly 420 may include a plate component and a driving device.
The plate component may include one or more plates. In some embodiments, each of the one or more plates may have any shape and/or size. Merely by way of example, a plate may be a quadrangle (e.g., a rectangle, a square) . As another example, a surface of a plate may be flat or curved. In some embodiments, the one or more plates may have a same shape or different shapes. In some embodiments, the plate may be made of any material that can block radiation rays (e.g., the X-rays) . For example, the plate component may include at least one lead plate. The lead plate may be used to block the X-rays. In some embodiments, the plate component may include a see-through region. For example, at least a portion of the plate component may be made of a see-through material (e.g., lead glass) . A user (e.g., a doctor) may check status of a subject scanned by the imaging assembly or status of the imaging assembly in real time through the see-through region without being exposed to radiation. In some embodiments, the one or more plates may overlap each other at an initial position. In some embodiments, at least one of the one or more plates may be driven to a target position. When the at least one plate is at the target position, the plate component may be capable of preventing the X-rays emitted by the X-ray source from irradiating a surrounding region.
The driving device may be configured to drive at least one portion of the plate component to move to a target position so as to prevent the X-rays emitted by the X-ray source from irradiating a surrounding region. In some embodiments, the driving device may include a lifting driving device. The lifting driving device may be configured to drive the at least one portion of the plate component to move along a height direction of the imaging device. In some embodiments, the driving device may include a revolving driving device. The revolving driving device may be configured to drive the at least one  portion of the plate component to move along a circumferential direction of the imaging device. In some embodiments, when the X-ray source emits X-rays to a target subject, the at least one portion of the plate component may be driven by the driving device to move to a first target position (e.g., the periphery of the X-ray source and/or the detector) to block the X-rays, thereby protecting the X-rays from irradiating other subjects (e.g., a doctor, other patients, etc. ) . After the X-ray source stops emitting the X-rays, the at least one portion of the plate component may be driven by the driving device to move to a second target position (e.g., an initial position) so as to avoid the plate component from affecting a flexible movement of the imaging assembly (e.g., a mobile DR) . Additionally, a probability of the plate component being damaged during the movement of the imaging assembly may also be reduced by moving the plate component to the second target position. Details regarding the driving device may be found elsewhere in the present disclosure (e.g., FIG. 9, FIG. 12, and the relevant descriptions thereof) .
In some embodiments, the protective assembly 420 may be mounted on or connected to the movable gantry of the imaging assembly 410. For example, the plate component may include one or more plates. At least one of the one or more plates may be fixedly mounted on the movable gantry. For illustration purposes, the plate component may include a fixed plate and a movable plate. The fixed plate may be fixedly mounted on the movable gantry. Exemplary connection method between the fixed plate and the movable gantry may include a welded connection, a key connection, a pin connection, an interference fit connection, an integral molding, or the like, or any combination thereof. Further, the movable plate may be slidably connected with the fixed plate. Furthermore, the driving device connected to the plate component may drive the movable plate to move to a target position (e.g., along a height direction of the imaging assembly 410) . As another example, the plate component may include one or more plates. At least one of the one or more plates may be slidably connected with the movable gantry. For illustration purposes, the plate component may include a movable  plate. A bottom of the movable plate may have a movable part that may move along a track installed on the movable gantry such that the movable plate may be driven to move along a circumferential direction of the imaging assembly 410.
In some embodiments, the protective assembly 420 may be mounted on or connected to a movable device in communication with the imaging assembly 410. In some embodiments, the protective assembly 420 may be mounted on or connected to the movable device in a similar method to the method the protective assembly 420 is mounted on or connected to the movable gantry as aforementioned. For example, the plate component may include one or more plates. At least one of the one or more plates may be fixedly mounted on the movable device. For illustration purposes, the plate component may include a fixed plate and a movable plate. The fixed plate may be fixedly mounted on the movable device. Further, the movable plate may be slidably connected with the fixed plate. As another example, the plate component may include one or more plates. At least one of the one or more plates may be slidably connected with the movable gantry. For illustration purposes, the plate component may include a movable plate. A bottom of the movable plate may have a movable part that may move along a track installed on the movable device such that the movable plate may be driven to move along a circumferential direction of the movable device (and/or the imaging assembly 410) . In some embodiments, the movable device may be capable of moving simultaneously with the imaging assembly. For example, the movable device may be mechanically connected to the imaging assembly 410. When the imaging assembly 410 moves, the movable device may be driven to move simultaneously with the imaging assembly 410 through the mechanical connection. Optionally or additionally, the mechanical connection may be detachable such that the mechanical connection may be removed to stop moving simultaneously with the imaging assembly 410. As another example, the movable device may move simultaneously with the imaging assembly 410 using an automatic following method. Exemplary automatic following methods may include an automatic following method  based on an infrared sensor, an automatic following method based on ultrasonic ranging, or the like, or any combination thereof. In some embodiments, the movable device may be capable of being fixedly connected to the imaging assembly 410. For example, when the movable device follows the imaging assembly 410 to an imaging position at which the imaging assembly 410 may image the target subject, the movable device may be fixedly connected to the imaging assembly 410 via a mechanically connection (e.g., a key connection, a pin connection, an interference fit connection, a screw connection, etc. ) .
The control assembly 430 may be connected to and/or communicate with the imaging assembly 410, and/or the protective assembly 420. In some embodiments, the control assembly 430 may include a terminal device. In some embodiments, the control assembly 430 may be configured to control a movement of the at least one portion of the plate component of the protective assembly 420. For example, the terminal device may be configured to receive an instruction provided by a user for controlling the movement of the at least one portion of the plate component. Further, the terminal device may transmit a signal indicating the instruction to the protective assembly 420 to control the movement of the at least one portion of the plate component. In some embodiments, the control assembly 430 may be configured to control a movement of the movable device. For example, the terminal device may be configured to receive an instruction provided by a user for controlling the movement of the movable device. Further, the terminal device may transmit a signal indicating the instruction to the movable device to control the movement of the movable device. In some embodiments, the control assembly 430 may be configured to control an imaging process performed by the imaging assembly 410. For example, the terminal device may obtain, process, and transmit image data collected by the imaging assembly 410. As another example, a user may provide an input via a user interface implemented on the terminal device. The input may include an imaging parameter, an image  construction parameter, information associated with the subject to be imaged, etc. for controlling the imaging of the imaging assembly 410.
In some embodiments, the terminal device may include an input device, an output device, etc. The input device may include alphanumeric and other keys that may be input via a keyboard, a touchscreen, a speech input, an eye tracking input, a brain monitoring system, or the like, or any combination thereof. Other types of the input device may include a cursor control device, such as a mouse, a trackball, or cursor direction keys, etc. The output device may include a display, a printer, or the like, or any combination thereof. In some embodiments, software, programs, and/or applications for control signal transmission, image processing, movement of assembly (e.g., the movable gantry, the plate component, the movable device, etc. ) , or the like, may be developed based on an operating system of the terminal device.
In some embodiments, the terminal device may be removably attached to the imaging assembly 410. In this situation, the terminal device may be in communication with one or more other components of the imaging system 400 via a wireless connection. A user may take the terminal device and be away from the imaging assembly 410 and control operations of the components remotely.
It should be noted that the above description of the imaging system 400 is merely provided for the purposes of illustration and not intended to limit the scope of the present disclosure. For persons having ordinary skill in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. For example, one or more other components (e.g., a storage assembly configured to store data and/or instructions that the control assembly 430 may execute or use to perform exemplary methods described in the present disclosure) may be included in the imaging system 400. As another example, the protective assembly 420 may be integrated into the imaging assembly 410 as a component of the imaging assembly 410.
FIG. 5 is a schematic diagram illustrating an exemplary imaging device according to some embodiments of the present disclosure. In some embodiments, the imaging device 110 illustrated in FIG. 1 and/or the imaging assembly 410 illustrated in FIG. 4 may be implemented on the imaging device 500. As shown in FIG. 5, the imaging device 500 may include a movable gantry 510, a protective assembly 520, an X-ray source 530, and a workstation 540.
The movable gantry 510 may be connected with the X-ray source 530. In some embodiments, the movable gantry 510 may include or be connected to a robotic arm 511. An end of the robotic arm 511 may be connected to the movable gantry 510, and another end of the robotic arm 511 may be connected to the X-ray source 530. The X-ray source 530 may move with the robotic arm 511. For example, the robotic arm 511 and the X-ray source 530 may move along a height direction of the movable gantry 510 (i.e., a direction parallel to the Z axis as illustrated in FIG. 5) . The robotic arm 511 and the X-ray source 530 may also rotate with respect to the movable gantry 510 along an axis that passes through the center of the movable gantry 510 and is parallel to the Z axis. In some embodiments, the robotic arm 511 may be retractable. The horizontal distance between the X-ray source 530 and the movable gantry 510 may change when the length of the robotic arm 511 changes. In some embodiments, the movable gantry 510 may include one or more wheels 512 (e.g., a wheel 512-1, a wheel 512-2, etc. ) . The movable gantry 510 may move via the wheels 512. For example, a user may grab a handle mounted on the movable gantry 510 to push the movable gantry 510. The other components of the imaging device 500 (e.g., the protective assembly 520, the X-ray source 530, the workstation 540) may move with the movable gantry 510. In some embodiments, the movable gantry 510 may move automatically. For example, the movable gantry 510 may automatically move to a desirable position for the imaging device 500 to perform a scan. As another example, the movable gantry 510 may move in a certain direction automatically.
The protective assembly 520 may be configured to prevent the X-rays emitted by the X-ray source 530 from irradiating a surrounding region. In some embodiments, the protective assembly 520 may include a plate component. The plate component may include one or more plates. For example, FIG. 6 is a schematic diagram illustrating an exemplary imaging device according to some embodiments of the present disclosure. As shown in FIG. 6, the protective assembly 520 may include a fixed plate 521 and a movable plate 522. The fixed plate 521 may be fixedly mounted on the movable gantry 510. Exemplary connection method between the fixed plate and the movable gantry may include a welded connection, a key connection, a pin connection, an interference fit connection, an integral molding, or the like, or any combination thereof. The movable plate 522 may be slidably connected with the fixed plate 521. Before an imaging process of the imaging device 500, the movable plate 522 may be at an initial position. For example, the movable plate 522 may overlap with the fixed plate 521. During the imaging process of the imaging device 500, the movable plate 522 may move to a first target position such that the plate component is capable of preventing the X-rays emitted by the X-ray source 530 from irradiating a surrounding region. For example, as shown in FIG. 6, the movable plate 522 may move upward to the working position shown in FIG. 6 along a height direction of the imaging device 500 so as to block the X-rays emitted by the X-ray source 530. Optionally, when the movable plate 522 is at the working position, the center of the movable plate 522 may be at the same height as that of the axis of the X-ray source 530. Alternatively, the height of the movable plate 522 at the working position may be adjustable such that the center of the movable plate 522 may be higher or lower than that of the axis of the X-ray source 530, depending on the condition of the surrounding region. Similarly, the horizontal distance between the X-ray source 530 and the movable plate 522 may be adjustable. After the X-ray source 530 stops emitting the X-rays, the movable plate 522 may move to a second target position. For example, the second target position may be the same as or similar to the initial position.
In some embodiments, the protective assembly 520 may include a driving device. The driving device may be configured to drive at least one portion of the protective assembly 520 to move to a target position so as to prevent the X-rays emitted by the X-ray source 530 from irradiating the surrounding region. For example, FIG. 7 is a schematic diagram illustrating an exemplary imaging device with a driving device according to some embodiments of the present disclosure. As shown in FIG. 7, the protective assembly 520 may further include a driving device 523. In some embodiments, the driving device 523 may be a lifting driving device. The lifting driving device may drive the movable plate 522 to move along a height direction of the imaging device 500 (e.g., the direction A shown in FIG. 7) . Details regarding the lifting driving device may be found elsewhere in the present disclosure (e.g., FIGs. 8 and 9, and the relevant descriptions thereof) .
The X-ray source 530 may emit X-rays to irradiate a subject. In some embodiments, the X-ray source 530 may include an X-ray tube and a beam limiting device (not shown in FIG. 5) . The X-ray tube may be configured to emit one or more X-ray beams toward the subject. The beam limiting device may be configured to control the irradiation region on the subject. In some embodiments, the imaging device 500 may also include a detector (not shown in FIG. 5) . The detector may detect X-rays emitted from the X-ray source 530.
The workstation 540 may be configured to process image data collected by the imaging device 500 or an image obtained from, such as a processing device (e.g., the processing device 140) , a storage device (e.g., the storage device 150) , etc.
It should be noted that the examples illustrated in FIGs. 5-7 are provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, various modifications and changes in the forms and details of the application of the above method and system may occur without departing from the principles of the present disclosure. In some embodiments, the movable gantry 510 may be configured in any suitable manner, such as a C-shaped  gantry, a U-shape gantry, a G-shape gantry, or the like. In the above examples, the protective assembly 520 is disposed on only one side of the imaging device 500. In some embodiments, the protective assembly 520 may be disposed on two or more sides of the imaging device 500. For example, the protective assembly 520 may include a plurality of plates, positions of at least part of the plurality of plates may be adjusted so as to form a closed space that completely surrounds the X-ray source 530 and the detector.
FIG. 8 is a schematic diagram illustrating a side view of an exemplary imaging device illustrated in FIG. 7 according to some embodiments of the present disclosure. As shown in FIG. 8, the protective assembly 520 may include a plate component (i.e., the fixed plate 521, the movable plate 522) and the lifting driving device 523. The lifting driving device 523 may be configured to drive the movable plate 522 to move along the height direction A of the imaging device 500.
FIG. 9 is a schematic diagram illustrating an exemplary lifting driving device illustrated in FIG. 8 according to some embodiments of the present disclosure. As shown in FIG. 9, the lifting driving device 523 may include a linear rack component 523-1, a gear component 523-2, and a motor 523-3.
The linear rack component 523-1 may be installed on the movable plate 522. In some embodiments, the linear rack component 523-1 may be arranged along the height direction of the imaging device 500. For example, as shown in FIG. 8 or FIG. 9, the linear rack component 523-1 may be connected with a side 522-1 of the movable plate 522 that is parallel to the height direction A of the imaging device 500. The gear component 523-2 may mesh with the linear rack component 523-1. In some embodiments, the gear component 523-2 and/or the motor 523-3 may be disposed at a fixed position on the imaging device. For example, the motor 523-3 may be mounted on one of the movable gantry 510, the fixed plate 521, the workstation 540, or the like. And the gear component 523-2 may be mounted on the motor 523-3 (e.g., on one end of a motor shaft of the motor 523-3) and meshed with the linear rack component 523-1.  The gear component 523-2 may be rotatable (e.g., under an external force) to drive the linear rack component 523-1 to move along the height direction A of the imaging device 500. For example, when the gear component 523-2 rotates clockwise (along a direction B illustrated in FIG. 9) , the linear rack component 523-1 may be driven to move upward based on the meshing connection. Then the movable plate 522 fixedly connected with the linear rack component 523-1 may be driven to move upward. When the gear component 523-2 rotates counterclockwise (opposite to the direction B illustrated in FIG. 9) , the linear rack component 523-1 may be driven to move down based on the meshing connection. Then the movable plate 522 fixedly connected with the linear rack component 523-1 may be driven to move down. The motor 523-3 may be configured to drive the gear component 523-2 to rotate. In some embodiments, a motor shaft of the motor 523-3 may be fixedly connected with a center point of the gear component 523-2 such that the gear component 523-2 may rotate simultaneously with the motor shaft.
In some alternative embodiments, the gear component 523-2 and/or the motor 523-3 may be installed on the movable plate 522. For example, the motor 523-3 may be mounted on the movable plate 522 near the side 522-1. And the gear component 523-2 may be mounted on the motor 523-3. Correspondingly, the linear rack component 523-1 may be disposed at a fixed position on the imaging device. For example, the linear rack component 523-1 may be installed on the movable gantry 510 in a direction parallel to the height direction A of the imaging device 500. In such cases, when the gear component 523-2 rotates clockwise, the gear component 523-2 may move down based on the meshing connection with the linear rack component 523-1. The motor 523-3 and the movable plate 522 may move down simultaneously with the gear component 523-2. When the gear component 523-2 rotates counterclockwise, the gear component 523-2 may move upward based on the meshing connection with the linear rack component 523-1. The motor 523-3 and the movable plate 522 may move upward simultaneously with the gear component 523-2.
In some embodiments, a user may control the movement of the movable plate 522 using a terminal device (e.g., the terminal device 130, the terminal device in the control assembly 430, etc. ) . For example, the terminal device may receive an instruction provided by the user for controlling the movement of the movable plate 522. Further, the terminal device may transmit a signal indicating the instruction to a control device of the motor 523-3 to control the operation of the motor 523-3. Furthermore, the gear component 523-2 may rotate to drive the movable plate 522 to move up and down in the height direction of the imaging device 500. In such cases, an automatic rotation of the gear component 523-2, causing an automatic lifting of the movable plate 522, may be achieved using the motor 523-3. In some embodiments, the signal transmitted by the terminal device may include movement parameters relating to a target position of the movable plate 522. The movement parameters may be generated based on imaging parameters used by the imaging device 500. For example, the imaging parameters may include a scanning position of a subject (e.g., a head of a patient) . Correspondingly, the target position may be a position around the scanning position. The movement parameters may be generated based on the scanning position. As another example, the imaging parameters may include parameters (e.g., an irradiation region, a shape) relating to the X-rays emitted by the X-ray source. Further, a distribution of the X-rays may be determined based on the parameters relating to the X-rays. The movement parameters may be generated based on the distribution of the X-rays. In such cases, the control device of the motor 523-3 may control the operation of the motor 523-3 based on the movement parameters, such that the movable plate 522 may be driven to move to the target position.
In some alternative embodiments, the lifting driving device 523 may include a rocking handle. The rocking handle may be configured to drive the gear component 523-2 to rotate. One end of the rocking handle may be connected with a center point of the gear component 523-2. The gear component 523-2 may be driven to rotate by  manually rotating the other end of the rocking handle such that the movable plate 522 may be driven to move up and down in the height direction of the imaging device 500. In some embodiments, the rocking handle may be in any shape that may be easily operated by a user. Merely by way of example, the rocking handle may be in a shape of “Z” , “L” , or the like.
It should be noted that the examples illustrated in FIGs. 8 and 9 are provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, various modifications and changes in the forms and details of the application of the above method and system may occur without departing from the principles of the present disclosure. For example, the lifting driving device 523 illustrated in FIGs. 8 and 9 is merely provided as an example of a lifting driving mechanism. Other structures that can be used as a lifting driving mechanism, such as a glass lifting mechanism used on a car, may also be applied to the present disclosure.
FIG. 10 is a schematic diagram illustrating a side view of an exemplary imaging device according to some embodiments of the present disclosure. In some embodiments, the imaging device 110 illustrated in FIG. 1 and/or the imaging assembly 410 illustrated in FIG. 4 may be implemented on the imaging device 1000. As shown in FIG. 10, the imaging device 1000 may include a movable gantry 1010, a protective assembly 1020, an X-ray source 1030, and a workstation 1040.
The movable gantry 1010 may be connected to the X-ray source 1030. In some embodiments, the movable gantry 1010 may include or be connected to a robotic arm 1011. An end of the robotic arm 1011 may be connected to the movable gantry 1010, and another end of the robotic arm 1011 may be connected to the X-ray source 1030.
The protective assembly 1020 may be configured to prevent the X-rays emitted by the X-ray source 1030 from irradiating a surrounding region. The protective assembly 1020 may include a plate component (e.g., a curved plate 1021) and a  revolving driving device 1022. In some embodiments, the curved plate 1021 may be slidably connected with the movable gantry 1010. Merely by way of example, a bottom of the curved plate 1021 may be placed in a track disposed on the movable gantry 1010. The track may be disposed along a circumferential direction of the imaging device 110 such that the curved plate 1021 may be driven to move along the circumferential direction of the imaging device 1000. Before an imaging process of the imaging device 1000, the curved plate 1021 may be at an initial position (e.g., a position close to the movable gantry 1010) . During the imaging process of the imaging device 1000, the curved plate 1021 may move to a first target position such that the plate component is capable of preventing the X-rays emitted by the X-ray source from irradiating a surrounding region. After the X-ray source 1030 stops emitting the X-rays, the curved plate 1021 may move to a second target position. For example, the second target position may be the same as or similar to the initial position. The revolving driving device 1022 may be configured to drive the curved plate 1021 to move along a circumferential direction of the imaging device 1000. Details regarding the revolving driving device may be found elsewhere in the present disclosure (e.g., FIGs. 11 and 12, and the relevant descriptions thereof) .
The X-ray source 1030 may emit one or more X-rays to irradiate a subject. In some embodiments, the imaging device 1000 may also include a detector (not shown in FIG. 5) . The detector may detect X-rays emitted from the X-ray source 1030.
The workstation 1040 may be configured to process image data collected by the imaging device 1000 or an image obtained from, such as a processing device (e.g., the processing device 140) , a storage device (e.g., the storage device 150) , etc. In some embodiments, the movable gantry 1010, the X-ray source 1030, and the workstation 1040 may be similar to the movable gantry 510, the X-ray source 530, and the workstation 540, respectively, as described in connection with FIG. 5, and the descriptions thereof are not repeated here.
It should be noted that the example illustrated in FIG. 10 is provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, various modifications and changes in the forms and details of the application of the above method and system may occur without departing from the principles of the present disclosure. In some embodiments, the movable gantry 1010 may be configured in any suitable manner, such as a C-shaped gantry, a U-shape gantry, a G-shape gantry, or the like. In the above example, only one curved plate is illustrated. In some embodiments, the protective assembly may include two or more curved plates. For example, the protective assembly may include a plurality of curved plates, at least part of the plurality of curved plates may be driven to move along the circumferential direction of the imaging device 1000 so as to surround the imaging device 1000 in the circumferential direction. When the curved plates are at their initial positions, the curved plates may overlap each other to occupy a small space.
FIG. 11 is a schematic diagram illustrating an exemplary imaging device illustrated in FIG. 10 according to some embodiments of the present disclosure. As shown in FIG. 11, the protective assembly 1020 may include a plate component (i.e., the curved plate 1021) and the revolving driving device 1022. The revolving driving device 1022 may be configured to drive the curved plate 1021 to move along a circumferential direction of the imaging device 1000.
FIG. 12 is a schematic diagram illustrating an exemplary revolving driving device illustrated in FIG. 11 according to some embodiments of the present disclosure. As shown in FIG. 12, the revolving driving device 1022 may include a curved rack component 1022-1, a gear component 1022-2, a motor 1022-3, and a fixing component 1022-4.
The curved rack component 1022-1 may be installed on the movable gantry 1010. For example, as shown in FIG. 11 or FIG. 12, the curved rack component 1022-1 may be fixedly disposed on a base of the movable gantry 1010 and along the  circumferential direction of the imaging device 1000. The gear component 1022-2 may mesh with the curved rack component 1022-1. The gear component 1022-2 and/or the motor 1022-3 may move relative to the curved rack component 1022-1. For example, the motor 1022-3 may be mounted on the bottom of an inner wall of the curved plate 1021 (e.g., via the fixing component 1022-4) . And the gear component 1022-2 may be mounted on the motor 1022-3 (e.g., on one end of a motor shaft of the motor 1022-3) and meshed with the curved rack component 1022-1. The gear component 1022-2 may be rotatable to drive the curved plate 1021 to move along the circumferential direction of the imaging device 1000. For example, as shown in FIG. 12, when the gear component 1022-2 rotates clockwise, the gear component 1022-2 may move in a direction C along the circumferential direction of the imaging device 1000 based on the meshing connection with the curved rack component 1022-1. The motor 1022-3 may move simultaneously with the gear component 1022-2. Then the curved plate 1021 on which the motor 1022-3 is mounted may move in the direction C simultaneously with the motor 1022-3. When the gear component 1022-2 rotates counterclockwise, the gear component 1022-2 may move in a direction opposite to the direction C along the circumferential direction of the imaging device 1000 based on the meshing connection with the curved rack component 1022-1. The motor 1022-3 may move simultaneously with the gear component 1022-2. Then the curved plate 1021 may move in the direction opposite to the direction C simultaneously with the motor 1022-3.
In some alternative embodiments, the curved rack component 1022-1 may be installed on the curved plate 1021. For example, the curved rack component 1022-1 may be slidably disposed on a base of the movable gantry 1010 and along the circumferential direction of the imaging device 1000. The curved plate 1021 may be fixedly connected with at least a portion of the curved rack component 1022-1 such that the curved plate 1021 may move simultaneously with the curved rack component 1022-1. The gear component 1022-2 and/or the motor 1022-3 may be disposed at a fixed position on the imaging device. For example, the motor 1022-3 may be mounted on  the base of the movable gantry 1010. And the gear component 1022-2 may be mounted on the motor 1022-3 (e.g., on one end of the motor shaft) and meshed with the curved rack component 1022-1. In some embodiments, the gear component 1022-2 may be rotatable (e.g., under an external force) to drive the curved rack component 1022-1 to move along the circumferential direction of the imaging device 1000. For example, when the gear component 1022-2 rotates clockwise, the curved rack component 1022-1 may be driven to move in a direction opposite to the direction C along the circumferential direction of the imaging device 1000 based on the meshing connection. Then the curved plate 1021 fixedly connected with the curved rack component 1022-1 may be driven to move in the direction opposite to the direction C. When the gear component 1022-2 rotates counterclockwise (opposite to the direction B illustrated in FIG. 9) , the curved rack component 1022-1 may be driven to move in the direction C along the circumferential direction of the imaging device 1000. Then the curved plate 1021 fixedly connected with the curved rack component 1022-1 may be driven to move simultaneously with the curved rack component 1022-1. The motor 1022-3 may be configured to drive the gear component 1022-2 to rotate. In some embodiments, a motor shaft of the motor 1022-3 may be fixedly connected with a center point of the gear component 1022-2 such that the gear component 1022-2 may rotate simultaneously with the motor shaft.
In some embodiments, a user may control the movement of the curved plate 1021 using a terminal device (e.g., the terminal device 130, the terminal device in the control assembly 430, etc. ) . For example, the terminal device may receive an instruction provided by the user for controlling the movement of the curved plate 1021. Further, the terminal device may transmit a signal indicating the instruction to a control device of the motor 1022-3 to control the operation of the motor 1022-3. Furthermore, the gear component 1022-2 may rotate to drive the curved plate 1021 to move along the circumferential direction of the imaging device 1000.
In some alternative embodiments, the revolving driving device 1022 may include a rocking handle. The rocking handle may be configured to drive the gear component 1022-2 to rotate. One end of the rocking handle may be connected with a center point of the gear component 1022-2. The gear component 1022-2 may be driven to rotate by manually rotating the other end of the rocking handle such that the curved plate 1021 may be driven to move along the circumferential direction of the imaging device 1000. In some embodiments, the rocking handle may be in any shape that may be easily operated by a user. Merely by way of example, the rocking handle may be in a shape of “Z” , “L” , or the like.
It should be noted that the examples illustrated in FIGs. 5-12 and the above descriptions thereof are merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. For example, the imaging device 500 and/or the imaging device 1000 may include one or more additional components and/or one or more components described above may be omitted. Additionally or alternatively, two or more components of the imaging device 500 and/or the imaging device 1000 may be integrated into a single component. A component of the imaging device 500 and/or the imaging device 1000 may be implemented on two or more sub-components.
In addition, the count, the position, the shape, and/or the size of a component (e.g., the protective assembly 520, the protective assembly 1020, etc. ) of the imaging device 500 and/or the imaging device 1000 as shown in FIGs. 5-12 are illustrative, and the component may be mounted at any position and have any size and/or shape. For example, the protective assembly 520 and/or the protective assembly 1020 may also be mounted on a movable device in communication with the imaging device 500 and/or the imaging device 1000. As another example, the plate component of the protective assembly may include a plurality of plates overlapping each other at their respective  initial positions. Moreover, the movement mechanisms (e.g., the lifting driving device 523, the revolving driving device 1022) described in connection with FIGs. 5-12 are illustrative, the at least one portion of the plate component may also move through other movement mechanisms and/or along other directions.
FIG. 13 is a block diagram illustrating an exemplary processing device according to some embodiments of the present disclosure. The processing device 140 may include a determination module 1310, and an execution module 1320.
The determination module 1310 may be configured to determine a first target position for at least one portion of a plate component of a protective assembly. For example, the determination module 1310 may receive, via a terminal device (e.g., the terminal device 130, the terminal device in the control assembly 430, etc. ) , a first instruction provided by a user for controlling a movement of the at least one portion of the plate component. Further, the determination module 1310 may determine the first target position based at least in part on the first instruction. As another example, the determination module 1310 may identify a first operating state (e.g., an exposure preparation state) of the imaging device. Further, the determination module 1310 may determine the first target position (e.g., a position at a pre-determined height) based at least in part on the first operating state of the imaging device.
The execution module 1320 may be configured to cause a driving device of the protective assembly to drive the at least one portion of the plate component to move to the first target position. For example, the driving device may include a rotatable gear component to drive the at least one portion of the plate component to move, and a motor to drive the gear component to rotate. The execution module 1320 may be configured to generate a control signal to control an operation of the motor so as to drive the at least one portion of the plate component to move to the first target position. In some embodiments, the execution module 1320 may be further configured to cause an imaging device to image a subject. For example, the execution module 1320 may cause an X-ray source of the imaging device to emit X-rays to irradiate the subject. In  some embodiments, when the X-ray source emits the X-rays, the plate component with the at least one portion at the first target position may be capable of preventing the X-rays from irradiating a surrounding region, which may protect other subjects in the surrounding region from unnecessary radiation.
In some embodiments, the determination module 1310 may be further configured to determine a second target position for the at least one portion of the plate component. For example, the determination module 1310 may receive, via a terminal device (e.g., the terminal device 130, the terminal device in the control assembly 430, etc. ) , a second instruction provided by a user for controlling a movement of the at least one portion of the plate component. The second instruction may be provided after the X-ray source stops emitting the X-rays. Further, the determination module 1310 may determine the second target position (e.g., an initial position of the least one portion of the plate component) based at least in part on the second instruction. As another example, the determination module 1310 may identify a second operating state (e.g., a state in which the X-ray source stops emitting the X-rays) of the imaging device. Further, the determination module 1310 may determine the second target position based at least in part on the second operating state of the imaging device. Furthermore, the execution module 1320 may be configured to cause the driving device of the protective assembly to drive the at least one portion of the plate component to move to the second target position after the X-ray source stops emitting the X-rays.
It should be noted that the above descriptions of the processing device 140 are provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, various modifications and changes in the forms and details of the application of the above method and system may occur without departing from the principles of the present disclosure. However, those variations and modifications also fall within the scope of the present disclosure. In some embodiments, the processing device 140 may include one or more other  modules. For example, the processing device 140 may include a storage module to store data generated by the modules in the processing device 140.
FIG. 14 is a flowchart illustrating an exemplary process for controlling an imaging device according to some embodiments of the present disclosure. In some embodiments, at least part of process 1400 may be performed by the processing device 140 (implemented in, for example, the computing device 200 shown in FIG. 2) . For example, the process 1400 may be stored in a storage device (e.g., the storage device 150, the storage 220, the storage 390) in the form of instructions (e.g., an application) , and invoked and/or executed by the processing device 140 (e.g., the processor 210 illustrated in FIG. 2, the CPU 340 illustrated in FIG. 3, the control assembly 430 illustrated in FIG. 4, one or more modules illustrated in FIG. 13) . The operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 1400 may be accomplished with one or more additional operations not described, and/or without one or more of the operations discussed. Additionally, the order in which the operations of the process 1400 as illustrated in FIG. 14 and described below is not intended to be limiting.
In 1410, the processing device 140 (e.g., the determination module 1310) may determine a first target position for at least one portion of a plate component of a protective assembly. The protective assembly may include the plate component and a driving device. The driving device may be configured to drive the at least one portion of the plate component to move to the first target position. Merely by way of example, the processing device 140 may determine a first target position for the movable plate 522 illustrated in FIGs. 6-9. As another example, the processing device 140 may determine a first target position for the curved plate 1021 illustrated in FIGs. 10-12. In some embodiments, when the at least one portion of the plate component moves to the first target position, the plate component may be capable of preventing X-rays emitted by an X-ray source (e.g., the X-ray source 112 illustrated in FIG. 1, the X-ray source  530 illustrated in FIG. 5, the X-ray source 1030 illustrated in FIG. 10) of an imaging device from irradiating a surrounding region.
In some embodiments, to determine the first target position for the at least one portion of a plate component, the processing device 140 may receive, via a terminal device (e.g., the terminal device 130, the terminal device in the control assembly 430, etc. ) , a first instruction provided by a user for controlling a movement of the at least one portion of the plate component. For example, the user may input, via an input device of the terminal device, the first instruction before the X-ray source starts to emit the X-rays. Exemplary input devices may include alphanumeric and other keys that may be input via a keyboard, a touchscreen, a speech input, an eye tracking input, a brain monitoring system, a cursor control device such as a mouse, a trackball, or cursor direction keys, or the like, or any combination thereof. Further, the processing device 140 may determine the first target position based at least in part on the first instruction. For example, if the first instruction input by the user is to drive the at least one portion of the plate component to move upward by a first input distance, the processing device 140 may determine a position at a height calculated based at least in part on the first input distance as the first target position.
In some embodiments, to determine the first target position for the at least one portion of a plate component, the processing device 140 may identify a first operating state of the imaging device. In some embodiments, the processing device 140 may identify the first operating state according to operation information of the imaging device. Further, the processing device 140 may determine the first target position based at least in part on the first operating state of the imaging device. For example, the first operating state may be an exposure preparation state in which the imaging device may be preparing to emit (or may be emitting) X-rays. The processing device 140 may determine a position at a pre-determined height as the first target position. In such cases, the at least one portion of the plate component at the first target position may be capable of preventing the X-rays from irradiating a surrounding region.
In 1420, the processing device 140 (e.g., the execution module 1320) may cause a driving device of the protective assembly to drive the at least one portion of the plate component to move to the first target position. For example, the driving device may include a rotatable gear component to drive the at least one portion of the plate component to move, and a motor to drive the gear component to rotate. The processing device 140 may generate a control signal to control an operation of the motor so as to drive the at least one portion of the plate component to move to the first target position.
In 1430, the processing device 140 (e.g., the execution module 1320) may cause the imaging device to image a subject. For example, the processing device 140 may cause the X-ray source of the imaging device to emit X-rays to irradiate the subject. In some embodiments, when the X-ray source emits the X-rays, the plate component with the at least one portion at the first target position may be capable of preventing the X-rays from irradiating a surrounding region, which may protect other subjects in the surrounding region from unnecessary radiation.
In some embodiments, the processing device 140 (e.g., the determination module 1310) may further determine a second target position for the at least one portion of the plate component. Further, the processing device 140 may cause the driving device of the protective assembly to drive the at least one portion of the plate component to move to the second target position after the X-ray source stops emitting the X-rays.
In some embodiments, to determine the second target position for the at least one portion of a plate component, the processing device 140 may receive, via a terminal device (e.g., the terminal device 130, the terminal device in the control assembly 430, etc. ) , a second instruction provided by a user for controlling a movement of the at least one portion of the plate component. For example, the user may input, via an input device of the terminal device, the second instruction after the X-ray source stops emitting the X-rays. Further, the processing device 140 may determine the second  target position based at least in part on the second instruction. For example, if the second instruction input by the user is to drive the at least one portion of the plate component to move downward by a second input distance, the processing device 140 may determine a position at a height calculated based at least in part on the second input distance as the second target position. As another example, the second instruction input by the user may be to drive the at least one portion of the plate component to move back to an initial position (e.g., the bottom of the imaging device) of the at least one portion of the plate component. Then, the processing device 140 may determine the initial position of the at least one portion of the plate component as the second target position.
In some embodiments, to determine the second target position for the at least one portion of a plate component, the processing device 140 may identify a second operating state of the imaging device. In some embodiments, the processing device 140 may identify the second operating state according to operation information of the imaging device. Further, the processing device 140 may determine the second target position based at least in part on the second operating state of the imaging device. For example, the X-ray source may stop emitting the X-rays in the second operating state. Then the processing device 140 may determine the initial position as the second target position.
It should be noted that the above description of the process 1400 is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations or modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. In some embodiments, one or more operations of the process 1400 may be added or omitted. For example, operation 1410 and/or operation 1420 may be omitted. The at least one portion of the plate component may be driven to move to the first target position manually (using a rocking handle) .
Having thus described the basic concepts, it may be rather apparent to those skilled in the art after reading this detailed disclosure that the foregoing detailed disclosure is intended to be presented by way of example only and is not limiting. Various alterations, improvements, and modifications may occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested by this disclosure and are within the spirit and scope of the exemplary embodiments of this disclosure.
Moreover, certain terminology has been used to describe embodiments of the present disclosure. For example, the terms “one embodiment, ” “an embodiment, ” and/or “some embodiments” mean that a particular feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment of the present disclosure. Therefore, it is emphasized and should be appreciated that two or more references to “an embodiment” or “one embodiment” or “an alternative embodiment” in various portions of this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined as suitable in one or more embodiments of the present disclosure.
Further, it will be appreciated by one skilled in the art, aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “unit, ” “module, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer-readable medium having computer readable program code embodied thereon.
A computer readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electromagnetic, optical, or the like, or any suitable combination thereof. A computer readable signal medium may be any computer readable medium that is not a computer readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object-oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB. NET, Python or the like, conventional procedural programming languages, such as the “C” programming language, Visual Basic, Fortran 2103, Perl, COBOL 2102, PHP, ABAP, dynamic programming languages such as Python, Ruby, and Groovy, or other programming languages. The program code may execute entirely on the user’s computer, partly on the user’s computer, as a stand-alone software package, partly on the user’s computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user’s computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS) .
Furthermore, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations, therefore, is not intended to limit the claimed processes and methods to any order except as may be specified in the claims.  Although the above disclosure discusses through various examples what is currently considered to be a variety of useful embodiments of the disclosure, it is to be understood that such detail is solely for that purpose and that the appended claims are not limited to the disclosed embodiments, but, on the contrary, are intended to cover modifications and equivalent arrangements that are within the spirit and scope of the disclosed embodiments. For example, although the implementation of various components described above may be embodied in a hardware device, it may also be implemented as a software-only solution, for example, an installation on an existing server or mobile device.
Similarly, it should be appreciated that in the foregoing description of embodiments of the present disclosure, various features are sometimes grouped together in a single embodiment, figure, or description thereof to streamline the disclosure aiding in the understanding of one or more of the various inventive embodiments. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed object matter requires more features than are expressly recited in each claim. Rather, inventive embodiments lie in less than all features of a single foregoing disclosed embodiment.
In some embodiments, the numbers expressing quantities or properties used to describe and claim certain embodiments of the application are to be understood as being modified in some instances by the term “about, ” “approximate, ” or “substantially. ” For example, “about, ” “approximate, ” or “substantially” may indicate ±20%variation of the value it describes, unless otherwise stated. Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the application are  approximations, the numerical values set forth in the specific examples are reported as precisely as practicable.
Each of the patents, patent applications, publications of patent applications, and other material, such as articles, books, specifications, publications, documents, things, and/or the like, referenced herein is hereby incorporated herein by this reference in its entirety for all purposes, excepting any prosecution file history associated with same, any of same that is inconsistent with or in conflict with the present document, or any of same that may have a limiting affect as to the broadest scope of the claims now or later associated with the present document. By way of example, should there be any inconsistency or conflict between the description, definition, and/or the use of a term associated with any of the incorporated material and that associated with the present document, the description, definition, and/or the use of the term in the present document shall prevail.
In closing, it is to be understood that the embodiments of the application disclosed herein are illustrative of the principles of the embodiments of the application. Other modifications that may be employed may be within the scope of the application. Thus, by way of example, but not of limitation, alternative configurations of the embodiments of the application may be utilized in accordance with the teachings herein. Accordingly, embodiments of the present application are not limited to that precisely as shown and described.

Claims (26)

  1. A system, comprising:
    an imaging device configured to image a subject, the imaging device including:
    a movable gantry;
    an X-ray source mounted on the movable gantry and configured to emit X-rays to irradiate the subject; and
    a detector configured to detect X-rays that pass through the subject; and a protective assembly including a plate component and a driving device, wherein
    the driving device is configured to drive at least one portion of the plate component to move to a target position so as to prevent the X-rays emitted by the X-ray source from irradiating a surrounding region.
  2. The system of claim 1, wherein the driving device includes a lifting driving device configured to drive the at least one portion of the plate component to move along a height direction of the imaging device.
  3. The system of claim 2, wherein the lifting driving device includes
    a linear rack component connected with the at least one portion of the plate component, the linear rack component being arranged along the height direction of the imaging device; and
    a gear component meshing with the linear rack component, the gear component being rotatable to drive the linear rack component to move along the height direction of the imaging device.
  4. The system of claim 1, wherein the driving device includes a revolving driving device configured to drive the at least one portion of the plate component to move along a circumferential direction of the imaging device.
  5. The system of claim 4, wherein the revolving driving device includes
    a curved rack component connected with the at least one portion of the plate component, the curved rack component being arranged along the circumferential direction of the imaging device; and
    a gear component meshing with the curved rack component, the gear component being rotatable to drive the curved rack component to move along the circumferential direction of the imaging device.
  6. The system of claim 3 or 5, wherein the driving device further includes a rocking handle configured to drive the gear component to rotate, one end of the rocking handle being connected with a center point of the gear component.
  7. The system of claim 3 or 5, wherein the driving device further includes a motor configured to drive the gear component to rotate, a motor shaft of the motor being connected with a center point of the gear component.
  8. The system of any one of claims 1-7, wherein the protective assembly is mounted on the movable gantry of the imaging device.
  9. The system of claim 8, wherein the plate component includes a fixed plate and a movable plate, the fixed plate being fixedly mounted on the movable gantry, and the movable plate being slidably connected with the fixed plate.
  10. The system of any one of claims 1-7, wherein the protective assembly is mounted on a movable device in communication with the imaging device.
  11. The system of claim 10, wherein the plate component includes a fixed plate and a movable plate, the fixed plate being fixedly mounted on the movable device, and  the movable plate being slidably connected with the fixed plate.
  12. The system of claim 10 or claim 11, wherein the movable device is capable of moving simultaneously with the imaging device.
  13. The system of any one of claims 10-12, wherein the movable device is capable of being fixedly connected with the imaging device.
  14. The system of any one of claims 1-13, further comprising a terminal device configured to receive an instruction provided by a user for controlling a movement of the at least one portion of the plate component.
  15. The system of claim 14, wherein the terminal device is further configured to receive an instruction provided by the user for controlling a movement of the movable device.
  16. The system of claim 14 or claim 15, wherein the terminal device is removably attached to the imaging device.
  17. The system of any one of claims 1-16, wherein the plate component includes at least one lead plate.
  18. The system of any one of claims 1-17, wherein the plate component includes a see-through region.
  19. The system of any one of claims 1-18, wherein the imaging device includes a mobile digital radiography device.
  20. A method implemented on a computing device having one or more processors and one or more storage devices, the method comprising:
    determining a first target position for at least one portion of a plate component of a protective assembly;
    causing a driving device of the protective assembly to drive the at least one portion of the plate component to move to the first target position; and
    causing an imaging device to image a subject, the imaging device including an X-ray source configured to emit X-rays to irradiate the subject, wherein
    when the at least one portion of the plate component moves to the first target position, the plate component is capable of preventing the X-rays emitted by the X-ray source from irradiating a surrounding region.
  21. The method of claim 20, further comprising:
    determining a second target position for the at least one portion of the plate component; and
    causing the driving device of the protective assembly to drive the at least one portion of the plate component to move to the second target position after the X-ray source stops emitting the X-rays.
  22. The method of claim 20 or claim 21, wherein the determining a first target position for at least one portion of a plate component of a protective assembly includes:
    receiving, via a terminal device, a first instruction provided by a user for controlling a movement of the at least one portion of the plate component; and
    determining the first target position based at least in part on the first instruction.
  23. The method of claim 20 or claim 21, wherein the determining a first target position for at least one portion of a plate component of a protective assembly includes:
    obtaining a first operating state of the imaging device; and
    determining the first target position based at least in part on the first operating state of the imaging device.
  24. The method of claim 21, wherein the determining a second target position for the at least one portion of the plate component includes:
    receiving, via the terminal device, a second instruction provided by the user for controlling the movement of the at least one portion of the plate component, the second instruction being provided after the X-ray source stops emitting the X-rays; and
    determining the second target position based at least in part on the second instruction.
  25. The method of claim 21, wherein the determining a second target position for the at least one portion of the plate component includes:
    obtaining a second operating state of the imaging device, wherein the X-ray source stops emitting the X-rays in the second operating state; and
    determining the second target position based at least in part on the second operating state of the imaging device.
  26. A non-transitory computer readable medium, comprising executable instructions that, when executed by at least one processor, direct the at least one processor to perform a method, the method comprising:
    determining a first target position for at least one portion of a plate component of a protective assembly;
    causing a driving device of the protective assembly to drive the at least one portion of the plate component to move to the first target position; and
    causing an imaging device to image a subject, the imaging device including an X-ray source configured to emit X-rays to irradiate the subject, wherein
    when the at least one portion of the plate component moves to the first  target position, the plate component is capable of preventing the X-rays emitted by the X-ray source from irradiating a surrounding region.
PCT/CN2021/075083 2020-02-17 2021-02-03 Protection system of imaging device and control method thereof WO2021164553A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010095783.1 2020-02-17
CN202020175107.0 2020-02-17
CN202010095783.1A CN111134707A (en) 2020-02-17 2020-02-17 Mobile DR
CN202020175107.0U CN211834427U (en) 2020-02-17 2020-02-17 Mobile DR

Publications (1)

Publication Number Publication Date
WO2021164553A1 true WO2021164553A1 (en) 2021-08-26

Family

ID=77390424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075083 WO2021164553A1 (en) 2020-02-17 2021-02-03 Protection system of imaging device and control method thereof

Country Status (1)

Country Link
WO (1) WO2021164553A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062518A (en) * 1976-11-10 1977-12-13 General Electric Company X-ray shielding device
CN101496727A (en) * 2009-03-05 2009-08-05 王昕� Radiation protection device for medical radiodiagnosis and therapy
WO2019216934A2 (en) * 2017-08-11 2019-11-14 Intervention For Life, Llc Radiation shielding system
CN110575192A (en) * 2019-09-20 2019-12-17 南宁卫康医疗器械有限公司 Medical ray vertical type film shooting frame protection device
CN111134707A (en) * 2020-02-17 2020-05-12 上海联影医疗科技有限公司 Mobile DR
CN211834427U (en) * 2020-02-17 2020-11-03 上海联影医疗科技有限公司 Mobile DR

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4062518A (en) * 1976-11-10 1977-12-13 General Electric Company X-ray shielding device
CN101496727A (en) * 2009-03-05 2009-08-05 王昕� Radiation protection device for medical radiodiagnosis and therapy
WO2019216934A2 (en) * 2017-08-11 2019-11-14 Intervention For Life, Llc Radiation shielding system
CN110575192A (en) * 2019-09-20 2019-12-17 南宁卫康医疗器械有限公司 Medical ray vertical type film shooting frame protection device
CN111134707A (en) * 2020-02-17 2020-05-12 上海联影医疗科技有限公司 Mobile DR
CN211834427U (en) * 2020-02-17 2020-11-03 上海联影医疗科技有限公司 Mobile DR

Similar Documents

Publication Publication Date Title
US11295153B2 (en) Systems and methods for patient positioning
US11872063B2 (en) System and method for diagnosis and treatment
US20200320326A1 (en) Systems and methods for determining scanning parameter in imaging
US10857391B2 (en) System and method for diagnosis and treatment
US11564644B2 (en) Systems and methods for X-ray scanner positioning
WO2021136162A1 (en) Systems and methods for motion control of a device
AU2022200948B2 (en) System and method for locating target subject
US11707247B2 (en) Systems and methods for controlling an X-ray imaging device
WO2020228587A1 (en) Systems and methods for determining correction parameters for imaging devices
WO2021164553A1 (en) Protection system of imaging device and control method thereof
US11963806B2 (en) Systems and methods for a parameter adjustment of a multi-energy computed tomograph device
US11419563B2 (en) Systems and methods for controlling an x-ray imaging device
CA3062934C (en) Systems and methods for controlling an x-ray imaging device
US20220323027A1 (en) Imaging systems and methods
WO2023087260A1 (en) Systems and methods for data processing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757492

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21757492

Country of ref document: EP

Kind code of ref document: A1