WO2021136162A1 - Systems and methods for motion control of a device - Google Patents

Systems and methods for motion control of a device Download PDF

Info

Publication number
WO2021136162A1
WO2021136162A1 PCT/CN2020/140107 CN2020140107W WO2021136162A1 WO 2021136162 A1 WO2021136162 A1 WO 2021136162A1 CN 2020140107 W CN2020140107 W CN 2020140107W WO 2021136162 A1 WO2021136162 A1 WO 2021136162A1
Authority
WO
WIPO (PCT)
Prior art keywords
gantry
motion
motion mode
move
causing
Prior art date
Application number
PCT/CN2020/140107
Other languages
French (fr)
Inventor
Kai CUI
Juan FENG
Jing YAN
Na Zhang
Guanji LENG
Original Assignee
Shanghai United Imaging Healthcare Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co., Ltd. filed Critical Shanghai United Imaging Healthcare Co., Ltd.
Publication of WO2021136162A1 publication Critical patent/WO2021136162A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4435Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure
    • A61B6/4441Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being coupled by a rigid structure the rigid structure being a C-arm or U-arm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4405Constructional features of apparatus for radiation diagnosis the apparatus being movable or portable, e.g. handheld or mounted on a trolley
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis

Definitions

  • the present disclosure generally relates to medical devices, and more particularly, relates to systems and methods for motion control of a device.
  • a radiation imaging device may include a radiation source and a detector that are supported by a gantry.
  • the radiation source and detector may rotate around a target object in a trajectory of the gantry such that the target object can be scanned in multiple gantry angles.
  • Scan data acquired by the radiation imaging device in the multiple gantry angles may be used to generate projection data corresponding to the multiple gantry angles.
  • an image e.g., a 3D image including multiple slices
  • the target object may be reconstructed based on the projection data corresponding to the gantry angles.
  • the quality of the reconstructed image may partly depend on the sufficiency of the scan data acquired by the radiation imaging device which relates to the trajectory of the gantry of the radiation imaging device.
  • the trajectory of the gantry may only make scan data corresponding to middle slices sufficient, which results in unsatisfactory reconstructed image quality. Therefore, it is desirable to provide systems and methods for motion control of a radiation imaging device, such that the radiation imaging device can acquire sufficient scan data corresponding to all slices of interest.
  • a device may be provided.
  • the device may include a gantry, a base, and a movement adjustment mechanism.
  • the base may be configured to support the gantry.
  • the movement adjustment mechanism may be configured to guide a motion of the gantry.
  • the gantry may be movable with respect to the base in two or more motion modes including a first motion mode and a second motion mode.
  • the first motion mode may be related to a translation motion.
  • the second motion mode may be related to a rotation motion.
  • the movement adjustment mechanism may include a first rail configured to guide the translation motion of the gantry in a first movement direction under the first motion mode.
  • the movement adjustment mechanism may include a second rail configured to guide the translation motion of the gantry in a second movement direction under the first motion mode.
  • the device may further include a counterweight assembly configured to balance the gantry and the base.
  • the counterweight assembly may be movable in a fourth motion mode related to a translation motion.
  • the movement adjustment mechanism may include a third rail configured to guide the translation motion of the counterweight assembly in a third movement direction under the fourth motion mode.
  • the third movement direction may be opposite to the first movement direction or the second movement direction.
  • the device may further include a supporting member configured to support the counterweight assembly.
  • the counterweight assembly, the supporting member, and the third rail may be disposed in the base.
  • the first movement direction may be parallel to a rotation axis of the rotation motion of the gantry in the second motion mode.
  • the second movement direction may be perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
  • the device may further include a control assembly configured to cause the gantry to move in the first motion mode and the second motion mode successively, alternately, or simultaneously.
  • control assembly may further be configured to cause the counterweight assembly to move in the fourth motion mode simultaneously with the gantry when the gantry is moving in the first motion mode.
  • the gantry may have a non-closed ring shape.
  • the gantry may include a C-arm gantry.
  • the device may include an X-ray imaging device.
  • the X-ray imaging device may include a digital subtraction angiography device.
  • the device may be movable.
  • the base may be movable.
  • the device may further include a radiation source and a detector disposed on the gantry.
  • the radiation source and the detector may be oppositely arranged and movable with the gantry.
  • a system for motion control of a device may include a base and a gantry.
  • the gantry may be disposed on the base and movable with respect to the base.
  • the system may include a storage device storing a set of instructions and at least one processor in communication with the storage device.
  • the at least one processor may be configured to direct the system to perform following operations.
  • the operations may include obtaining an instruction relating to a motion control of the gantry.
  • the operations may also include causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode.
  • the first motion mode may be related to a translation motion.
  • the second motion mode may be related to a rotation motion.
  • a movement direction of the translation motion of the gantry in the first motion mode may be parallel or perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
  • the rotation axis may be perpendicular to a plane of the gantry.
  • a rotation angle of the rotation motion of the gantry in the second motion mode may be less than 360°, 270°, or 180°.
  • the causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode may include causing the gantry to move in the first motion mode and the second motion mode successively.
  • the causing the gantry to move in the first motion mode and the second motion mode successively may include causing the gantry to move in one of the first motion mode and the second motion mode, and causing the gantry to move in another one of the first motion mode and the second motion mode.
  • the causing the gantry to move in the first motion mode and the second motion mode successively may include causing the gantry to move from an initial location in one of the first motion mode and the second motion mode; causing the gantry to move back to the initial location; and causing the gantry to move from the initial location in another one of the first motion mode and the second motion mode.
  • the causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode may include causing the gantry to move in the first motion mode and the second motion mode simultaneously.
  • the device may further include a counterweight assembly.
  • the operations may further include causing the counterweight assembly to move in a fourth motion mode related to a translation motion.
  • the operations may further include causing the gantry to move in a third motion mode related to a rotation motion.
  • a rotation axis of the rotation motion of the gantry in the third motion mode may be perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
  • the causing the gantry to move in a third motion mode may include causing the gantry to move in the first motion mode, the second motion mode, and the third motion mode successively or alternately.
  • the causing the gantry to move in a third motion mode may include causing the gantry to move in the first motion mode, the second motion mode, and the third motion mode simultaneously.
  • the gantry may have a non-closed ring shape.
  • the gantry may include a C-arm gantry.
  • the device may include an X-ray imaging device.
  • the X-ray imaging device may include a digital subtraction angiography device.
  • the X-ray imaging device may be movable.
  • the device may further include a radiation source and a detector disposed on the gantry, the radiation source and the detector may be oppositely arranged and movable with the gantry.
  • a method for motion control of a device may include a base and a gantry.
  • the gantry may be disposed on the base and movable with respect to the base.
  • the method may be implemented on a computing device including at least one processor and at least one storage device.
  • the method may include obtaining an instruction relating to a motion control of the gantry.
  • the method may also include causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode.
  • the first motion mode may be related to a translation motion.
  • the second motion mode may be related to a rotation motion.
  • a movement direction of the translation motion of the gantry in the first motion mode may be parallel or perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
  • the rotation axis may be perpendicular to a plane of the gantry.
  • a rotation angle of the rotation motion of the gantry in the second motion mode may be less than 360°, 270°, or 180°.
  • the causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode may include causing the gantry to move in the first motion mode and the second motion mode successively.
  • the causing the gantry to move in the first motion mode and the second motion mode successively may include causing the gantry to move in one of the first motion mode and the second motion mode, and causing the gantry to move in another one of the first motion mode and the second motion mode.
  • the causing the gantry to move in the first motion mode and the second motion mode successively may include causing the gantry to move from an initial location in one of the first motion mode and the second motion mode; causing the gantry to move back to the initial location; and causing the gantry to move from the initial location in another one of the first motion mode and the second motion mode.
  • the causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode may include causing the gantry to move in the first motion mode and the second motion mode simultaneously.
  • the device may include a counterweight assembly.
  • the operations may further include causing the counterweight assembly to move in a fourth motion mode related to a translation motion.
  • the method may further include causing the gantry to move in a third motion mode related to a rotation motion, a rotation axis of the rotation motion of the gantry in the third motion mode may be perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
  • the causing the gantry to move in a third motion mode may include causing the gantry to move in the first motion mode, the second motion mode, and the third motion mode successively or alternately.
  • the causing the gantry to move in a third motion mode may include causing the gantry to move in the first motion mode, the second motion mode, and the third motion mode simultaneously.
  • the gantry may have a non-closed ring shape.
  • the gantry may include a C-arm gantry.
  • the device may include an X-ray imaging device.
  • the X-ray imaging device may include a digital subtraction angiography device.
  • the X-ray imaging device may be movable.
  • the device may further include a radiation source and a detector disposed on the gantry.
  • the radiation source and the detector may be oppositely arranged and movable with the gantry.
  • a system for motion control of a device may include a base and a gantry.
  • the gantry may be disposed on the base and movable with respect to the base.
  • the system may include an obtaining module configured to obtain an instruction relating to a motion control of the gantry.
  • the system may also include a control module configured to cause, based on the instruction, the gantry to move in a first motion mode and a second motion mode.
  • the first motion mode may be related to a translation motion.
  • the second motion mode may be related to a rotation motion.
  • a non-transitory computer readable medium may include executable instructions that, when executed by at least one processor, direct the at least one processor to perform a method for motion control of a device.
  • the device may include a base and a gantry.
  • the gantry may be disposed on the base and movable with respect to the base.
  • the method may include obtaining an instruction relating to a motion control of the gantry.
  • the method may also include causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode.
  • the first motion mode may be related to a translation motion.
  • the second motion mode may be related to a rotation motion.
  • FIG. 1 is a schematic diagram illustrating an exemplary medical imaging system according to some embodiments of the present disclosure
  • FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary computing device according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary mobile device according to some embodiments of the present disclosure
  • FIG. 4 is a schematic diagram illustrating an exemplary imaging device according to some embodiments of the present disclosure.
  • FIG. 5A and FIG. 5B are schematic diagrams illustrating an exemplary first motion mode of a gantry of an imaging device according to some embodiments of the present disclosure
  • FIG. 6A and FIG. 6B are schematic diagrams illustrating an exemplary rotation motion mode of a gantry of an imaging device according to some embodiments of the present disclosure
  • FIG. 7A, FIG. 7B, and FIG. 7C are schematic diagrams illustrating an exemplary motion trajectory of a focus of an imaging device according to some embodiments of the present disclosure
  • FIG. 8 is a block diagram illustrating an exemplary processing device according to some embodiments of the present disclosure.
  • FIG. 9 is a flowchart illustrating an exemplary process for motion control of a device according to some embodiments of the present disclosure.
  • system, ” “engine, ” “unit, ” “module, ” and/or “block” used herein are one method to distinguish different components, elements, parts, sections or assembly of different levels in ascending order. However, the terms may be displaced by another expression if they achieve the same purpose.
  • module, ” “unit, ” or “block, ” as used herein refers to logic embodied in hardware or firmware, or to a collection of software instructions.
  • a module, a unit, or a block described herein may be implemented as software and/or hardware and may be stored in any type of non-transitory computer-readable medium or another storage device.
  • a software module/unit/block may be compiled and linked into an executable program. It will be appreciated that software modules can be callable from other modules/units/blocks or from themselves, and/or may be invoked in response to detected events or interrupts.
  • Software modules/units/blocks configured for execution on computing devices (e.g., processor 210 as illustrated in FIG.
  • a computer-readable medium such as a compact disc, a digital video disc, a flash drive, a magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that needs installation, decompression, or decryption prior to execution) .
  • a computer-readable medium such as a compact disc, a digital video disc, a flash drive, a magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that needs installation, decompression, or decryption prior to execution) .
  • Such software code may be stored, partially or fully, on a storage device of the executing computing device, for execution by the computing device.
  • Software instructions may be embedded in firmware, such as an EPROM.
  • hardware modules/units/blocks may be included in connected logic components, such as gates and flip-flops, and/or can be included of programmable units, such as programmable gate arrays or processors.
  • modules/units/blocks or computing device functionality described herein may be implemented as software modules/units/blocks but may be represented in hardware or firmware.
  • the modules/units/blocks described herein refer to logical modules/units/blocks that may be combined with other modules/units/blocks or divided into sub-modules/sub-units/sub-blocks despite their physical organization or storage. The description may be applicable to a system, an engine, or a portion thereof.
  • the subject may include a biological object and/or a non-biological object.
  • the biological subject may be a human being, an animal, a plant, or a portion thereof (e.g., a cell, a tissue, an organ, etc. ) .
  • the subject may be a man-made composition of organic and/or inorganic matters that are with or without life.
  • object or “subject” are used interchangeably in the present disclosure.
  • image in the present disclosure is used to collectively refer to image data (e.g., scan data, projection data) and/or images of various forms, including a two-dimensional (2D) image, a three-dimensional (3D) image, a four-dimensional (4D) , etc.
  • pixel and “voxel” in the present disclosure are used interchangeably to refer to an element of an image.
  • region, ” “location, ” and “area” in the present disclosure may refer to a location of an anatomical structure shown in the image or an actual location of the anatomical structure existing in or on a target subject’s body, since the image may indicate the actual location of a certain anatomical structure existing in or on the target subject’s body.
  • an image of an object may be referred to as the object for brevity.
  • Segmentation of an image of an object may be referred to as segmentation of the object.
  • segmentation of an organ refers to segmentation of a region corresponding to the organ in an image.
  • the terms “slice” and “layer” may be used interchangeably.
  • a device may include a base, a gantry, and a movement adjustment mechanism.
  • the gantry may be configured to support the radiation source and the detector.
  • the base may be configured to support the gantry.
  • the movement adjustment mechanism may be configured to guide a motion of the gantry.
  • the gantry may be movable with respect to the base in two or more motion modes including a first motion and a second motion.
  • the first motion mode may be related to a translation motion.
  • the second mode may be related to a rotation motion.
  • the device may further include a counterweight assembly.
  • the counterweight assembly may be movable in a third motion mode.
  • the third motion mode may be related to a translation motion.
  • systems and methods for motion control of the device may obtain an instruction relating to a motion control of the gantry.
  • the systems and methods may cause, based on the instruction, the gantry to move in the first motion mode and the second motion mode.
  • the systems and methods may also obtain an instruction relating to a motion control of the counterweight assembly.
  • the systems and methods may cause, based on the instruction, the counterweight assembly to move in the third motion mode.
  • the device may be used to perform a scan on a target object (e.g., a patient or a portion thereof) .
  • the movement adjustment mechanism may include a translation mechanism (e.g., a translation rail) used for guiding the gantry to move in the first motion mode, thereby the device can scan the target object (e.g., a patient or a portion thereof) in a translation trajectory. If the trajectory of the gantry includes a rotation trajectory and the translation trajectory during the scan of the target object, scan data acquired during the scan may be more sufficient than that is acquired when the trajectory of the gantry only includes the rotation trajectory. Accordingly, images of the target object reconstructed based on the sufficient scan data may have a relatively high image quality.
  • the movement adjustment mechanism may include another translation mechanism (e.g., another translation rail) used for guiding the counterweight assembly to move in the third motion mode.
  • a movement direction of the third motion mode may be opposite to a movement direction of the first motion mode, so that the balance and stability of the device are maintained during the scan process.
  • the device described in the present disclosure is not limited to be used for imaging purposes.
  • the device e.g., a device including a linear accelerator
  • the device may be used for a treatment of a target object (e.g., a tumor) .
  • the device may deliver sufficient radiation to the target object for treatment in all layers of the target object stably.
  • the device may be applied in the field of industrial radiation detection, security detection, etc.
  • the following descriptions regarding a medical imaging device are provided, which is not intended to limit the scope of the present disclosure.
  • FIG. 1 is a schematic diagram illustrating an exemplary medical imaging system according to some embodiments of the present disclosure.
  • the medical imaging system may be used for non-invasive imaging and/or treatment, such as for disease diagnosis, treatment or research purposes.
  • the medical imaging system may include a single modality system or a multi-modality system.
  • the single modality system may include, for example, an X-ray medical imaging system, a digital radiography (DR) system, etc.
  • the multi-modality system may include, for example, an image-guided radiotherapy (IGRT) system, a multi-modality medical imaging system, etc.
  • IGRT image-guided radiotherapy
  • FIG. 1 is a schematic diagram illustrating an exemplary medical imaging system according to some embodiments of the present disclosure.
  • the medical imaging system may be used for non-invasive imaging and/or treatment, such as for disease diagnosis, treatment or research purposes.
  • the medical imaging system may include a single modality system or a multi-modality system.
  • the single modality system may include,
  • the medical imaging system 100 may include an imaging device 110, a network 120, one or more terminals 130, a processing device 140, and a storage device 150.
  • two or more components of the medical imaging system 100 may be connected to and/or communicate with each other via a wireless connection (e.g., the network 120) , a wired connection, or a combination thereof.
  • the connection between the components of the medical imaging system 100 may be variable.
  • the imaging device 110 may be connected to the processing device 140 through the network 120 or directly.
  • the storage device 150 may be connected to the processing device 140 through the network 120 or connected to the processing device 140 directly.
  • the imaging device 110 may be configured to perform a scan on a target object (e.g., a patient or a portion thereof) .
  • the imaging device 110 may include a single modality device such as a computed radiography (CR) device, a digital radiotherapy (DR) device, a computed tomography (CT) device, a plain film X-ray device, a movable X-ray device (e.g., a movable C-arm device) , a digital subtraction angiography (DSA) device, an emission computed tomography (ECT) device (e.g., a positron emission tomography (PET) or a single photon emission computed tomography (SPECT) ) , etc.
  • CR computed radiography
  • DR digital radiotherapy
  • CT computed tomography
  • DSA digital subtraction angiography
  • ECT emission computed tomography
  • PET positron emission tomography
  • SPECT single photon emission computed to
  • the imaging device 110 may include a multi-modality device such as an IGRT device (e.g., including an imaging device and a linear accelerator) , a multi-modality device (e.g., including a DR device and an ECT device) .
  • the imaging device 110 may include an X-ray imaging device with a gantry that has a non-closed shape (e.g., a C-arm X-ray device) .
  • the C-arm X-ray device may be used for guiding surgeries.
  • the target object may need orthopedic surgery.
  • the C-arm X-ray device may be used for guiding nailing in a bone, bone setting, or the like, or any combination thereof.
  • the target object may need interventional therapy.
  • the C-arm X-ray device e.g., a DSA device
  • the C-arm X-ray device may be used for guiding the interventional therapy.
  • a portion inside the target object may need to be removed from the target object.
  • the C-arm X-ray device may be used for guiding the removal operation.
  • the C-arm X-ray device may be movable in different operating rooms for different surgery needs.
  • the C-arm X-ray device may remain relatively static during the surgery process.
  • the main body (e.g., a base) of the C-arm X-ray device may remain static and the gantry of the C-arm X-ray device may be movable for scanning the target object.
  • the C-arm X-ray device may be fixed in a specific operating room.
  • the imaging device 110 may include a base 111, a gantry 112, a radiation source 113, a detector 114, etc.
  • the base 111 may be configured to support one or more components (e.g., the gantry 112) of the imaging device 110.
  • the gantry 112 may be configured to support the radiation source 113 and the detector 114.
  • the radiation source 113 may be configured to emit a radiation beam (e.g., X-rays) towards the target object that is placed on a table 116.
  • the detector 114 may be configured to detect the radiation beam passing through the target object.
  • the gantry 112 may include a non-closed shaped gantry (e.g., a C-shaped gantry, a G-shaped gantry, a U-shaped gantry, etc. ) .
  • the gantry 112 may be movable with respect to the base 111 (e.g., rotating and/or translating with respect to the base 111) .
  • the radiation source 113 and the detector 114 may be movable with the gantry.
  • the radiation source 113 and the detector 114 may be oppositely arranged such that detector 114 can detect the radiation beam passing through the target object.
  • the table 116 may include a length and a width that is shorter than the length.
  • the imaging device 110 may be located close to a head end of the table 116, e.g., on a side along the width of the table 116. Alternatively, the imaging device 110 may be located close to a side end of the table 116, e.g., on a side along the length of the table 116. In some embodiments, the imaging device 110 may be movable.
  • the imaging device 110 may include one or more movable assemblies 115 (e.g., wheels) disposed under the bottom of the base 111. The imaging device 110 may be movable with movement (s) of the one or more assemblies.
  • the imaging device 110 may include one or more counterweight assemblies (not shown) which can maintain a balance of the imaging device 110 (e.g., a balance between the base 111 and the gantry 112) .
  • one or more counterweight assemblies may be disposed in the base 111.
  • the one or more counterweight assemblies may be movable (e.g., with respect to the base 111) . More descriptions regarding the imaging device 110 and the movement of the imaging device 110 (e.g., the movement of the gantry 112 and the movement of the counterweight assembly) may be found elsewhere in the present disclosure (e.g., FIGs. 4-9 and the descriptions thereof) .
  • the network 120 may include any suitable network that can facilitate the exchange of information and/or data for the medical imaging system 100.
  • one or more components of the medical imaging system 100 e.g., the imaging device 110, the processing device 140, the storage device 150, the terminal (s) 130
  • the processing device 140 may obtain image data from the imaging device 110 via the network 120.
  • the processing device 140 may obtain user instruction (s) from the terminal (s) 130 via the network 120.
  • the network 120 may be or include a public network (e.g., the Internet) , a private network (e.g., a local area network (LAN) ) , a wired network, a wireless network (e.g., an 802.11 network, a Wi-Fi network) , a frame relay network, a virtual private network (VPN) , a satellite network, a telephone network, routers, hubs, switches, server computers, and/or any combination thereof.
  • a public network e.g., the Internet
  • a private network e.g., a local area network (LAN)
  • a wireless network e.g., an 802.11 network, a Wi-Fi network
  • a frame relay network e.g., a virtual private network (VPN)
  • VPN virtual private network
  • satellite network e.g., a satellite network, a telephone network, routers, hubs, switches, server computers, and/or any combination thereof.
  • the network 120 may include a cable network, a wireline network, a fiber-optic network, a telecommunications network, an ⁇ , a wireless local area network (WLAN) , a metropolitan area network (MAN) , a public telephone switched network (PSTN) , a Bluetooth TM network, a ZigBee TM network, a near field communication (NFC) network, or the like, or any combination thereof.
  • the network 120 may include one or more network access points.
  • the network 120 may include wired and/or wireless network access points such as base stations and/or internet exchange points through which one or more components of the medical imaging system 100 may be connected to the network 120 to exchange data and/or information.
  • the terminal (s) 130 may be connected to and/or communicate with the imaging device 110, the processing device 140, and/or the storage device 150.
  • the terminal (s) 130 may obtain a reconstructed image of the target object from the processing device 140.
  • the terminal (s) 130 may enable user interactions with the medical imaging system 100.
  • the terminal (s) 130 may include a mobile device 131, a tablet computer 132, a laptop computer 133, or the like, or any combination thereof.
  • the mobile device 131 may include a mobile phone, a personal digital assistant (PDA) , a gaming device, a navigation device, a point of sale (POS) device, a laptop, a tablet computer, a desktop, or the like, or any combination thereof.
  • PDA personal digital assistant
  • POS point of sale
  • the terminal (s) 130 may include an input device, an output device, etc.
  • the input device may include alphanumeric and other keys that may be input via a keyboard, a touch screen (e.g., with haptics or tactile feedback) , a speech input, an eye-tracking input, a brain monitoring system, or any other comparable input mechanism.
  • the input information received through the input device may be transmitted to the processing device 140 via, for example, a bus, for further processing.
  • Other types of the input device may include a cursor control device, such as a mouse, a trackball, or cursor direction keys, etc.
  • the output device may include a display, a speaker, a printer, or the like, or a combination thereof.
  • the terminal (s) 130 may be part of the processing device 140.
  • the processing device 140 may process data and/or information obtained from the imaging device 110, the storage device 150, the terminal (s) 130, or other components of the medical imaging system 100. For example, the processing device 140 may obtain an instruction relating to a motion control of the gantry 112 and/or the counterweight assembly of the imaging device 110, e.g., from the terminal (s) 130. The processing device 140 may cause, based on the instruction, the gantry 112 and/or the counterweight assembly to move in rotation and/or translation. As another example, the processing device 140 may obtain scan data of the target object acquired by the imaging device 110. The processing device 140 may reconstruct one or more images of the target object based on the scan data of the target object.
  • the processing device 140 may be a single server or a server group.
  • the server group may be centralized or distributed.
  • the processing device 140 may be local to or remote from the medical imaging system 100.
  • the processing device 140 may access information and/or data from the imaging device 110, the storage device 150, and/or the terminal (s) 130 via the network 120.
  • the processing device 140 may be directly connected to the imaging device 110, the terminal (s) 130, and/or the storage device 150 to access information and/or data.
  • the processing device 140 may be implemented on a cloud platform.
  • the cloud platform may include a private cloud, a public cloud, a hybrid cloud, a community cloud, a distributed cloud, and inter-cloud, a multi-cloud, or the like, or a combination thereof.
  • the processing device 140 may be implemented by a computing device 200 having one or more components as described in connection with FIG. 2.
  • the storage device 150 may store data, instructions, and/or any other information. In some embodiments, the storage device 150 may store data obtained from the processing device 140, the terminal (s) 130, and/or the storage device 150. In some embodiments, the storage device 150 may store data and/or instructions that the processing device 140 may execute or use to perform exemplary methods described in the present disclosure. In some embodiments, the storage device 150 may include a mass storage device, a removable storage device, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof. Exemplary mass storage device may include a magnetic disk, an optical disk, a solid-state drive, etc.
  • Exemplary removable storage device may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc.
  • Exemplary volatile read-and-write memory may include a random access memory (RAM) .
  • Exemplary RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc.
  • DRAM dynamic RAM
  • DDR SDRAM double date rate synchronous dynamic RAM
  • SRAM static RAM
  • T-RAM thyristor RAM
  • Z-RAM zero-capacitor RAM
  • Exemplary ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc.
  • MROM mask ROM
  • PROM programmable ROM
  • EPROM erasable programmable ROM
  • EEPROM electrically erasable programmable ROM
  • CD-ROM compact disk ROM
  • digital versatile disk ROM etc.
  • the storage device 150 may be implemented on a cloud platform as described elsewhere in the disclosure.
  • the storage device 150 may be connected to the network 120 to communicate with one or more other components of the medical imaging system 100 (e.g., the processing device 140, the terminal (s) 130) .
  • One or more components of the medical imaging system 100 may access the data or instructions stored in the storage device 150 via the network 120.
  • the storage device 150 may be part of the processing device 140.
  • the storage device 150 may be a data storage device including cloud computing platforms, such as public cloud, private cloud, community, and hybrid clouds, etc. However, those variations and modifications do not depart the scope of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary computing device on which the processing device 140 may be implemented according to some embodiments of the present disclosure.
  • a computing device 200 may include a processor 210, a storage 220, an input/output (I/O) 230, and a communication port 240.
  • I/O input/output
  • the processor 210 may execute computer instructions (e.g., program code) and perform functions of the processing device 140 in accordance with techniques described herein.
  • the computer instructions may include, for example, routines, programs, objects, components, data structures, procedures, modules, and functions, which perform particular functions described herein.
  • the processor 210 may process image data obtained from the imaging device 110, the terminals 130, the storage device 150, and/or any other component of the medical imaging system 100.
  • the processor 210 may include one or more hardware processors, such as a microcontroller, a microprocessor, a reduced instruction set computer (RISC) , an application-specific integrated circuits (ASICs) , an application-specific instruction-set processor (ASIP) , a central processing unit (CPU) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a microcontroller unit, a digital signal processor (DSP) , a field programmable gate array (FPGA) , an advanced RISC machine (ARM) , a programmable logic device (PLD) , any circuit or processor capable of executing one or more functions, or the like, or any combinations thereof.
  • RISC reduced instruction set computer
  • ASICs application-specific integrated circuits
  • ASIP application-specific instruction-set processor
  • CPU central processing unit
  • GPU graphics processing unit
  • PPU physics processing unit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ARM advanced RIS
  • the computing device 200 in the present disclosure may also include multiple processors, and thus operations and/or method operations that are performed by one processor as described in the present disclosure may also be jointly or separately performed by the multiple processors.
  • the processor of the computing device 200 executes both operation A and operation B
  • operation A and operation B may also be performed by two or more different processors jointly or separately in the computing device 200 (e.g., a first processor executes operation A and a second processor executes operation B, or the first and second processors jointly execute operations A and B) .
  • the storage 220 may store data/information obtained from the imaging device 110, the terminals 130, the storage device 150, and/or any other component of the medical imaging system 100.
  • the storage 220 may include a mass storage device, a removable storage device, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof.
  • the storage 220 may store one or more programs and/or instructions to perform exemplary methods described in the present disclosure.
  • the storage 220 may store a program for the processing device 140 for motion control of a device (e.g., the imaging device 110) .
  • the I/O 230 may input and/or output signals, data, information, etc. In some embodiments, the I/O 230 may enable a user interaction with the processing device 140. In some embodiments, the I/O 230 may include an input device and an output device. Exemplary input devices may include a keyboard, a mouse, a touch screen, a microphone, or the like, or a combination thereof. Exemplary output devices may include a display device, a loudspeaker, a printer, a projector, or the like, or a combination thereof.
  • Exemplary display devices may include a liquid crystal display (LCD) , a light-emitting diode (LED) -based display, a flat panel display, a curved screen, a television device, a cathode ray tube (CRT) , a touch screen, or the like, or a combination thereof.
  • LCD liquid crystal display
  • LED light-emitting diode
  • flat panel display a flat panel display
  • curved screen a curved screen
  • television device a cathode ray tube (CRT)
  • CTR cathode ray tube
  • touch screen or the like, or a combination thereof.
  • the communication port 240 may be connected to a network (e.g., the network 120) to facilitate data communications.
  • the communication port 240 may establish connections between the processing device 140 and the imaging device 110, the terminals 130, and/or the storage device 150.
  • the connection may be a wired connection, a wireless connection, any other communication connection that can enable data transmission and/or reception, and/or any combination of these connections.
  • the wired connection may include, for example, an electrical cable, an optical cable, a telephone wire, or the like, or any combination thereof.
  • the wireless connection may include, for example, a Bluetooth TM link, a Wi-Fi TM link, a WiMax TM link, a WLAN link, a ZigBee TM link, a mobile network link (e.g., 3G, 4G, 5G) , or the like, or a combination thereof.
  • the communication port 240 may be and/or include a standardized communication port, such as RS232, RS485, etc.
  • the communication port 240 may be a specially designed communication port.
  • the communication port 240 may be designed in accordance with the digital imaging and communications in medicine (DICOM) protocol.
  • DICOM digital imaging and communications in medicine
  • FIG. 3 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary mobile device according to some embodiments of the present disclosure.
  • one or more components e.g., the terminal (s) 130 and/or the processing device 140
  • the medical imaging system 100 may be implemented on the mobile device 300.
  • the mobile device 300 may include a communication platform 310, a display 320, a graphic processing unit (GPU) 330, a central processing unit (CPU) 340, an I/O 350, a memory 360, and a storage 390.
  • any other suitable component including but not limited to a system bus or a controller (not shown) , may also be included in the mobile device 300.
  • a mobile operating system 370 e.g., iOS TM , Android TM , Windows Phone TM
  • one or more applications 380 may be loaded into the memory 360 from the storage 390 in order to be executed by the CPU 340.
  • the applications 380 may include a browser or any other suitable mobile apps for receiving and rendering information relating to image processing or other information from the processing device 140.
  • User interactions with the information stream may be achieved via the I/O 350 and provided to the processing device 140 and/or other components of the medical imaging system 100 via the network 120.
  • computer hardware platforms may be used as the hardware platform (s) for one or more of the elements described herein.
  • a computer with user interface elements may be used to implement a personal computer (PC) or any other type of work station or terminal device.
  • PC personal computer
  • a computer may also act as a server if appropriately programmed.
  • FIG. 4 is a schematic diagram of an exemplary imaging device according to some embodiments of the present disclosure.
  • FIG. 4 shows a side view of the imaging device 400 (e.g., a radiation imaging device) .
  • the imaging device 400 may be an exemplary embodiment of the imaging device 110.
  • the imaging device 400 may be configured to deliver radiation towards a target object for generating scan data of the target object.
  • the scan data of the target object may be used to reconstruct one or more images (e.g., a 3D image) of the target object.
  • the imaging device 400 may include a base 410, a gantry (e.g., including a first part 420-1 and a second part 420-2) , a radiation source 430, a detector 440, and a control assembly 450.
  • the first part 420-1 of the gantry may be configured to connect the second part 420-2 and the base 410 and achieve a translation motion of the gantry.
  • the second part 420-2 of the gantry may be configured to support the radiation source 430 and the detector 440 and achieve a rotation motion of the gantry.
  • the imaging device 400 may include a movement adjustment mechanism (e.g., a rail or a mechanical arm) configured to guide the motion of one or more components (e.g., the gantry) of the imaging device 400.
  • the movement adjustment mechanism may include a first rail 460-1 and/or a second rail 460-2 disposed above the base 410, and one or more cooperating assemblies (e.g., one or more sliders) that cooperate with the first rail 460-1 and/or the second rail 460-2.
  • the imaging device 400 may include both the first rail 460-1 and the second rail 460-2.
  • the imaging device may include only one rail, e.g., one of the first rail 460-1 and the second rail 460-2.
  • the first rail 460-1 and/or the second rail 460-2 may be disposed horizontally. It should be understood that the components of the imaging device 400 may be connected with circuits or equipped with wireless communication devices for receiving instructions (e.g., motion control signals) .
  • a three-dimensional coordinate system 401 may be used for illustration purposes.
  • the coordinate system 401 may include an X-axis (not shown in FIG. 4) , a Y-axis, and a Z-axis.
  • the Y-axis may be parallel to a central axis 402 of the gantry.
  • the Z-axis (e.g., in a vertical plane of the gantry) may be perpendicular to the central axis 402 of the gantry.
  • the Y-Z plane may be parallel to the vertical plane of the gantry.
  • the X-axis may be perpendicular to the Y-Z plane and may have a direction facing outward.
  • the origin of the coordinate system 401 may be any point in space. In some embodiments, the origin of the three-dimensional coordinate system 401 may be determined by a user (e.g., an operator or a doctor) . In some embodiments, the origin of the three-dimensional coordinate system 401 may be determined by the medical imaging system 100.
  • the base 410 may be configured to support one or more components (e.g., the first part 420-1 and the second part 420-2 of the gantry, the control assembly 450, etc. ) of the imaging device 400.
  • the first part 420-1 of the gantry and/or the control assembly 450 may be disposed on the base 410 through various connection mechanisms such as welding, riveting, bonding, or the like, or a combination thereof.
  • the component (s) (e.g., the control assembly 450) supported by the base 410 may be fixed relative to the base 410.
  • the component (s) (e.g., the first part 420-1 of the gantry, and/or the second part 420-2 of the gantry) supported by the base 410 may be movable relative to the base 410.
  • the base 410 may be movable such that the imaging device 110 can move on the ground.
  • one or more movable assemblies e.g., wheels 413-1 and 413-2
  • the user may cause the imaging device 400 to move by, e.g., pushing an armrest (not shown in FIG. 4) disposed on the base 410.
  • one or more drive assemblies or power assemblies may be disposed on the base 410 and may provide a driving force for the one or more movable assemblies, such that the imaging device 400 or a portion thereof (e.g., the gantry) can be moved.
  • the user may input an instruction relating to a motion control of the imaging device 400 or a portion thereof via a terminal (e.g., the terminal 130) .
  • the one or more drive assemblies may be activated to provide the driving force according to the instruction.
  • the one or more drive assemblies may be provided with one or more transmission assemblies (e.g., gears, a driving rod, etc. ) .
  • the one or more drive assemblies may transmit the driving force through the transmission assemblies to the one or more movable assemblies.
  • the base 410 may be a hollow base, e.g., including a storage space inside the base 410.
  • the imaging device 400 may include a counterweight assembly 411.
  • the counterweight assembly 411 may be configured to balance the imaging device 400 (e.g., balance the base 410 and the gantry) .
  • the counterweight assembly 411 may be disposed in the base 410 (e.g., inside the storage space of the base 410) .
  • the counterweight assembly 411 may be made of one or more solid materials (e.g., cast iron, stones, cast sands, etc. ) and may have a relatively large weight.
  • the solid material may have a relatively high density, such that the counterweight assembly 411 may have a relatively large weight with a relatively small volume.
  • the counterweight assembly 411 may be movable in a translation motion mode.
  • the movement direction of the counterweight assembly 411 may be opposite to a movement direction of the first part 420-1 and/or the second part 420-2 of the gantry, such that the counterweight assembly 411 can improve the stability and the balance of the imaging device 400.
  • a center of gravity of the imaging device 400 may be shifted inward.
  • the center of gravity of the imaging device 400 may be shifted outward. Accordingly, when the second part 420-2 of the gantry moves along the movement direction from outward to inward and the counterweight assembly 411 moves along the moving direction from inward to outward, the center of gravity of the imaging device 400 may remain unchanged or substantially unchanged, such that the balance of the base 410 and the gantry of the imaging device 400 may be maintained.
  • a motion adjustment mechanism (e.g., one or more third rails 412 and/or a cooperated assembly) may be disposed in the base 410 to guide a translation motion of the counterweight assembly 411.
  • the third rail 412 may be configured to guide a translation motion of the counterweight assembly 411 (e.g., horizontally or vertically) .
  • the motion adjustment mechanism may be disposed on the bottom surface of the base 410 to guide the translation motion of the counterweight assembly 411 in the horizontal direction.
  • the motion adjustment mechanism may be disposed on a side surface of the base 410 to guide the translation motion of the counterweight assembly 411 in the vertical direction.
  • the cooperated assembly may be configured to cooperate with the third rail 412 to facilitate the translation motion of the counterweight assembly 411 on the third rail 412.
  • the imaging device 400 may include more than one counterweight assemblies 411.
  • the imaging device 400 may include two counterweight assemblies 411.
  • One of the two counterweight assemblies 411 may be disposed on the bottom surface of the base 410, and another one of the two counterweight assemblies 411 may be disposed on a side surface of the base 410.
  • a drive assembly e.g., an electronic motor not shown in FIG. 4
  • the drive assembly may transmit the driving force through one or more transmission assemblies (e.g., gears, a driving rod, etc. ) to the counterweight assembly 411.
  • a supporting member (not shown in FIG. 4) may be disposed in the base 410.
  • the supporting member may be configured to support the counterweight assembly 411.
  • the counterweight assembly 411 may be fixed on the supporting member, e.g., by welding, riveting, or bonding.
  • the supporting member may be movable on the third rail 412 such that the counterweight assembly 411 can move with the supporting member.
  • the base 410 may provide additional storage spaces for sterile gloves, medical alcohol, medical masks, or other medical objects.
  • the gantry may include the first part 420-1 and the second part 420-2.
  • the first part 420-1 may be configured to achieve a translation motion of the gantry.
  • the second part 420-2 may be configured to achieve a rotation motion of the gantry.
  • the first part 420-1 of the gantry may be used as a connection component, e.g., for connecting the second part 420-2 of the gantry and the base 410. As shown in FIG.
  • the bottom surface of the first part 420-1 of the gantry (e.g., a surface of the first part 420-1 of the gantry facing the negative direction of the Z-axis) may be connected to the base 410, and the right side of the first part 420-1 of the gantry (e.g., a side surface of the first part 420-1 of the gantry facing the positive direction of the Y-axis) may be connected to the second part 420- 2 of the gantry.
  • the first part 420-1 of the gantry may be connected to the base 410 and/or the second part 420-2 of the gantry by a connection mechanism (e.g., a rail or a mechanical arm) .
  • one or more rails may be disposed on the upper surface of the base 410 (e.g., a surface of the base 410 facing the positive direction of the Z-axis) .
  • the first rail 460-1 and the second rail 460-2 may be fixed on the upper surface of the base 410, e.g., by welding, riveting, bonding, etc.
  • the first rail 460-1 may be configured to guide a translation motion of the first part 420-1 of the gantry in a first movement direction (e.g., a direction parallel to the X-axis, a direction parallel to the Y-axis, etc. ) .
  • the second part 420-2 of the gantry connected to the first part 420-1 of the gantry may be driven to move in the first movement direction, which may also be referred to as that the second part 420-2 of the gantry may move in a first motion mode. That is, the first motion mode may be related to the translation motion in the first movement direction (e.g., a translation motion in a direction parallel to the Y-axis) .
  • a cooperated assembly e.g., a slider
  • the slider may be fixed on the first rail 460-1, e.g., by welding, riveting, bonding, etc.
  • the slider may be configured to cooperate with the first rail 460-1 to facilitate the translation motion of the first part 420-1 of the gantry in the first movement direction.
  • the first part 420-1 of the gantry may be disposed on the base 410 through the first rail 460-1 and be movable on the first rail 460-1 through the slider.
  • the first part 420-1 and/or the second part 420-2 of the gantry may be equipped with one or more drive assemblies and/or one or more transmission assemblies to achieve the movement of the first part 420-1 and/or the second part 420-2 of the gantry with respect to the base 410.
  • the first part 420-1 of the gantry may include two portions arranged along a direction parallel to the Y-axis, e.g., a left portion 420-1a and a right portion 420-1b.
  • the right portion 420-1b may be disposed closer to the second part 420-2 of the gantry than the left portion 420-1a.
  • the left portion 420-1a may be connected to the base 410 and the right portion 420-1b may be connected to the second part 420-2 of the gantry.
  • the left portion 420-1a and the right portion 420-1b may be connected by a second rail 460-2.
  • the left portion 420-1a and the right portion 420-1b may be movable with respect to each other.
  • the left portion 420-1a and/or the right portion 420-1b may move upward and downward (e.g., move along a vertical direction parallel to the Z-axis) , or move horizontally (e.g., translate in a plane parallel to the X-Y plane) , or rotate relative to each other, or translate in a plane parallel to the X-Z plane.
  • the second rail 460-2 may be disposed on the right side of the left portion 420-1a of the first part 420-1 of the gantry (e.g., a side surface of the left portion 420-1a facing the positive direction of the Y-axis) .
  • the second rail 460-2 may be fixed on the right of the left portion 410-1a, e.g., by welding, riveting, bonding, etc.
  • a cooperated assembly e.g., a slider
  • the second rail 460-2 may be disposed on the left side of the right portion 420-1b to cooperate with the second rail 460-2, such that the right portion 420-1b of the first part 420-1 of the gantry can move on the second rail 460-2 via the slider.
  • the second part 420-2 of the gantry may move with the right portion 420-1b of the first part 420-1 of the gantry.
  • the left portion 420-1a of the first part 420-1 of the gantry may be fixed on the base 410, e.g., by, e.g., by welding, riveting, bonding, etc.
  • the right portion 420-1b of the first part 420-1 of the gantry may be movable on the base 410 through the second rail 460-2.
  • the first part 420-1 of the gantry may include two portions arranged along a direction parallel to the Z-axis, e.g., an upper portion and a lower portion.
  • the upper portion may be arranged above the lower portion.
  • the upper portion of the first part 420-1 of the gantry may be movable horizontally relative to the lower portion of the first part 420-1 of the gantry.
  • the second rail 460-2 may be disposed on the upper surface of the lower portion of the first part 420-1 of the gantry (e.g., a surface of the lower portion facing the positive direction of the Z-axis) .
  • a slider may be disposed underneath the upper portion of the first part 420-1 of the gantry (e.g., on a surface of the upper portion of the first part 420-1 of the gantry facing the negative direction of the Z-axis) to cooperate with the second rail 460-2.
  • the upper portion of the first part 420-1 of the gantry may be movable with respect to the base 410.
  • the lower portion of the first part 420-1 of the gantry may be movable horizontally relative to the lower portion of the first part 420-1 of the gantry.
  • the second rail 460-2 may be disposed on the bottom surface of the upper portion of the first part 420-1 of the gantry (e.g., a side of the upper portion facing the negative direction of the Z-axis) .
  • a slider may be disposed on the upper surface of the lower portion of the first part 420-1 of the gantry (e.g., on a surface of the lower portion of the first part 420-1 of the gantry facing the positive direction of the Z-axis) to cooperate with the second rail 460-2.
  • the lower portion of the first part 420-1 of the gantry may be movable with respect to the base 410.
  • the second part 420-2 of the gantry may be configured to support the radiation source 430 and the detector 440.
  • the second part 420-2 of the gantry may be connected to a surface of the first part 420-1 of the gantry (e.g., the right side of the first part 420-1 of the gantry or the right side of the right portion 420-1b of the first part 420-1 of the gantry) .
  • the first part 420-1 of the gantry may be movable with respect to the base 410 in the first movement direction under the first motion mode with the motion of the first part 420-1 of the gantry.
  • the second part 420-2 of the gantry may rotate with respect to the first part 420-1 of the gantry.
  • the first part 420-1 and the second part 420-2 of the gantry may be arranged along the positive direction of the Y-axis, and the second part 420-2 of the gantry may be connected to the right side of the first part 420-1 of the gantry.
  • the connection mechanism between the first part 420-1 and the second part 420-2 of the gantry may include an arc-shaped rail, a connection rod, etc.
  • the arc-shaped rail may be configured to guide a rotation motion of the second part 420-2 of the gantry on the plane of the second part 420-2 of the gantry (e.g., the Y-Z plane) , which may also be referred to as that the second part 420-2 of the gantry may move in a second motion mode. That is, the second motion mode may be related to the rotation motion around a rotation axis (e.g., an axis parallel to the X-axis) .
  • the connection rod may be configured to connect the first part 420-1 and the second part 420-2.
  • the second part 420-2 may be movable with a rotation of the connection rod or be movable around the connection rod.
  • the second part 420-2 of the gantry may rotate with a connection point connecting the second part 420-2 of the gantry and the first part 420-1 of the gantry, which may also be referred to as that the second part 420-2 of the gantry may move in a third motion mode.
  • the connection point may function as a fulcrum for the rotation of the second part 420-2 of the gantry.
  • the third motion mode may be related to a rotation motion around a rotation axis that is parallel to the Y-axis. More descriptions regarding the motion of the second part 420-2 of the gantry in the first, second, and/or third motion modes may be found elsewhere in the present disclosure (e.g., FIGs.
  • the second part 420-2 of the gantry may have a non-closed ring shape, including a C-shaped ring, a G-shaped ring, a U-shaped ring, or the like.
  • the second pat 420-2 may have a closed ring shape (e.g., a circle ring) .
  • the second part 420-2 of the gantry may include a C-shaped ring.
  • the gantry with the C-shaped ring may also be referred to as a C-arm gantry for brevity. If the second part 420-2 of the gantry is a C-arm gantry, a central angle corresponding to an arc of the C-arm gantry may be less than 180 degrees, equal to 180 degrees, or greater than 180 degrees.
  • the radiation source 430 may be configured to emit a radiation beam towards the target object.
  • the radiation beam may include at least one of particle rays, photon rays, etc.
  • the particle rays may include neutrons, protons, electrons, heavy ions, or the like, or any combination thereof.
  • the photon rays may include X-rays, gamma rays, ultraviolet rays, lasers, or the like, or any combination thereof.
  • the shape of the radiation beam may include a straight line, a narrow pencil shape, a narrow fan shape, a fan shape, a cone shape, a wedge shape, an irregular shape, etc.
  • the shape of the X-ray may be a cone shape.
  • the detector 440 may be configured to detect the radiation beam passing through the target object to generate scan data of the target object.
  • the shape of the detector 440 may include a flat plate, an arc, a circle, or the like, or any combination thereof.
  • the detector 440 may include a plurality of detector units.
  • the detector units may include a scintillation detector (e.g., a cesium iodide detector) , a photodetector, or a gas detector.
  • the detector units can be arranged in a single row or multiple rows.
  • the radiation source 430 and the detector 440 supported by the second part 420-2 of the gantry may be oppositely arranged such that the detector 440 can detect at least a portion of the radiation beam passing through the target object.
  • a line connecting the radiation source 430 and the detector 440 may pass through a center of the arc of the second part 420-2 of the gantry.
  • the detector 440 may be disposed at one end of the second part 420-2 of the gantry, and the radiation source 430 may be disposed at the other end of the second part 420-2 of the gantry opposite to the detector 440.
  • the radiation source 430 and the detector 440 may remain stationary relative to each other (e.g., a relative position between the radiation source 430 and the detector 440 with respect to the second part 420-2 of the gantry may be unchanged) and move together with the second part 420-2 of the gantry.
  • the radiation source 430 and the detector 440 may move in the first motion mode with the gantry (e.g., translating along a movement direction parallel to the Y-axis) .
  • the radiation source 430 and the detector 440 may move in the second motion mode with the gantry 420 (e.g., rotating around a rotation axis parallel to the X-axis) .
  • the radiation source 430 and the detector 440 may move in the third motion mode with the gantry 420 (e.g., rotating around a rotation axis parallel to the Y-axis) .
  • control assembly 450 may be disposed on a component (e.g., the base 410, the first part 420-1 of the gantry) of the imaging device 400, e.g., by welding, riveting, or bonding.
  • the control assembly 450 may be individually set.
  • the control assembly 450 may be configured for motion control of one or more components of the imaging device 400.
  • the control assembly 450 may generate a control signal.
  • the control assembly 450 may transmit the control signal to a drive assembly.
  • the drive assembly may drive, based on the control signal, one or more components (e.g., the gantry, the counterweight assembly 411, the base 410, etc. ) of the imaging device 40 corresponding to the drive assembly to move.
  • control assembly 450 may control the gantry (e.g., the first part 420-1 of the gantry and/or the second part 420-2 of the gantry) to move in a motion mode (e.g., the first motion mode, the second motion mode, and/or the third motion mode) .
  • control assembly 450 can control a movement direction of the gantry (e.g., a first movement direction and/or a second movement direction different from the first movement direction of the second part 420-2 of the gantry under the first motion mode) .
  • control assembly 450 can control a motion speed of the gantry.
  • control assembly 450 can control a rotation angle of the gantry.
  • control assembly 450 may control a motion of the counterweight assembly 411 (e.g., a motion mode, a motion speed, a movement direction of the counterweight assembly 411) .
  • control assembly 450 may control a motion of the imaging device 400 (e.g., control the wheels 413-1 and 413-2 of the imaging device 400) .
  • the control assembly 450 may be configured to provide a dose signal and a time signal for controlling the radiation source 430 to emit the radiation beam in a certain dose and/or a certain radiation duration.
  • the control assembly 450 may be a part of the processing device 140. Alternatively, the terminal 130 and the processing device 140 may be integrated as the control assembly 450.
  • imaging device 400 is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure.
  • multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
  • FIG. 5A and FIG. 5B are schematic diagrams illustrating an exemplary first motion mode of a gantry of an imaging device according to some embodiments of the present disclosure.
  • FIG. 5A and FIG. 5B may be described in connection with the imaging device 400 as shown in FIG. 4.
  • FIG. 5A shows a top view of the imaging device 400.
  • FIG. 5B shows an oblique view of the imaging device.
  • FIG. 5A and FIG. 5B illustrate the first motion mode of the first part 420-1 of the gantry and the second part 420-2 of the gantry.
  • the gantry (e.g., the first part 420-1 of the gantry) may move in the first motion mode (e.g., a translation motion) .
  • the second part 420-2 of the gantry is connected to the first part 420-1 of the gantry, when the first part 420-1 of the gantry moves horizontally on the first rail 460-1, the second part 420-2 of the gantry may also move horizontally with the motion of the first part 420-1 of the gantry.
  • the first part 420-1 of the gantry may move in a first movement direction (e.g., denoted by a double arrow A) parallel to the X-axis under the first motion mode.
  • the second part 420-2 of the gantry may move with the first part 420-1 of the gantry in the first movement direction under the first motion mode.
  • other motion modes e.g., a rotation motion mode such as the second motion mode or the third motion mode
  • a movement direction of the second part 420-2 of the gantry may be perpendicular to or intersect with a plane of the second part 420-2 of the gantry (e.g., the plane of the second part 420-2 of the gantry being parallel to the Y-Z plane or having a certain inclination with the Y-Z plane) .
  • a translation range of the gantry e.g., the first part 420-1 of the gantry and/or the second part 420-2 of the gantry
  • the length of the first rail 460-1 may be denoted by a distance between point A1 and point A2.
  • the second part 420-2 of the gantry may be translated from position A3 to position A4, or from position A4 to position A3, or in any interval between position A3 and position A4, as indicated by the arrow A in FIGs. 5A and 5B.
  • a horizontal rail e.g., the second rail 460-2
  • the motion of the second part 420-2 of the gantry may be similar to that as shown in FIG. 5A.
  • the second part 420-2 of the gantry may move with a portion (e.g., the right portion 420-1b) of the first part 420-1 of the gantry to which the second part 420-2 of the gantry is connected.
  • a movement direction of the second part 420-2 of the gantry may be perpendicular to or intersect with the plane of the second part 420-2 of the gantry.
  • the translation range of the second part 420-2 of the gantry may relate to the length of the rail 160-2. Accordingly, the radiation source 430 may move in parallel with the second part 420-2 of the gantry according to the first rail 460-1 and/or the second rail 460-2.
  • a trajectory of the radiation source 430 may be a straight line (e.g., a second sub-trajectory 722 as shown in FIG. 7B) .
  • the radiation source 430 may move in one or more other movement directions different from the movement direction shown in FIG. 5A and FIG. 5B.
  • the first rail 460-1 may be set parallel to the Y-axis.
  • the second part 420-2 of the gantry may move with the first part 420-1 of the gantry in a movement direction parallel to the Y-axis.
  • the movement direction of the second part 420-2 of the gantry (or the radiation source 430) may be parallel to or intersect with the plane of the second part 420-2 of the gantry (e.g., the plane of the second part 420-2 of the gantry being parallel to the Y-Z plane or having a certain inclination with the Y-Z plane) .
  • FIG. 6A is a schematic diagram illustrating an exemplary rotation motion mode of a gantry of an imaging device according to some embodiments of the present disclosure.
  • FIG. 6A may be described in connection with the imaging device 400 as shown in FIG. 4.
  • FIG. 6A shows a side view of the imaging device 400.
  • the second part 420-2 of the gantry may move in the rotation motion mode (also referred to as the second motion mode) .
  • the second part 420-2 of the gantry may move along the right surface of the first part 420-1 of the gantry. If the second part 420-2 of the gantry has a non-closed ring shape, the second motion mode may also be referred to as a circular arc rotation mode.
  • the second part 420-2 of the gantry may move in a rotation direction denoted by the arrow C as shown in FIG. 6A.
  • a rotation axis 620 of the second part 420-2 of the gantry may be a straight line passing through a center of the ring of the second part 420-2 of the gantry and be perpendicular to the plane of the second part 420-2 of the gantry.
  • the rotation axis 620 of the second part 420-2 of the gantry may be parallel to the X-axis.
  • the rotation axis 620 may be illustrated as a point in FIG. 6A.
  • the movement direction e.g., indicated by the arrow A shown in FIG. 5A
  • the movement direction e.g., the direction parallel to the X-axis shown in FIG. 5A
  • the first motion mode of the second part 420-2 of the gantry may be parallel to the rotation axis 620.
  • a maximum motion range of the second part 420-2 of the gantry under the second motion moded may relate to an arc length of the second part 420-2 of the gantry.
  • position C1 and position C3 may correspond to two ends of the ring of the second part 420-2 of the gantry, respectively.
  • Position C2 and position C4 may correspond to an upper end of the right end of the first part 420-1 of the gantry and a lower end of the right end of the first part 420-1 of the gantry, respectively.
  • an initial state of the second part 420-2 of the gantry before rotation is that position C1 overlaps a first position above the position C2 and the position C3 overlaps a second position under the position C4 as shown in FIG. 6A
  • the position C1 of the second part 420-2 of the gantry may rotate from the first position to position C2; if the second part 420-2 of the gantry rotates clockwise, the position C3 of the second part 420-2 of the gantry may rotate from the second position to position C4.
  • the maximum motion range of the second part 420-2 of the gantry may be an arc between the position C1 and the position C2.
  • a rotation angle of the second part 420-2 of the gantry may range from 0° to 360°.
  • the rotation angle of the second part 420-2 of the gantry may be equal to 360°.
  • the rotation angle of the second part 420-2 of the gantry may be less than at least one of 360°, 330°, 300°, 270°, 240°, 210°, 180°, etc.
  • the radiation source 430 may rotate with the second part 420-2 of the gantry and may have an arc trajectory (e.g., a first sub-trajectory 720 as shown in FIG. 7B) .
  • FIG. 6B is a schematic diagram illustrating an exemplary rotation motion mode of a gantry of an imaging device according to some embodiments of the present disclosure.
  • FIG. 6B may be described in connection with the imaging device 400 as shown in FIG. 4.
  • FIG. 6B shows a top view of the imaging device 400.
  • the second part 420-2 of the gantry may move in the rotation motion mode (also referred to as the third motion mode) .
  • the second part 420-2 of the gantry may rotate with a connection point connecting the second part 420-2 of the gantry and the first part 420-1 of the gantry.
  • the connection point may function as a fulcrum.
  • the second part 420-2 of the gantry may rotate in a direction denoted by the arrow D as shown in FIG. 6B.
  • a rotation axis 630 of the second part 420-2 of the gantry under the third motion mode may be parallel to the Y-axis.
  • the rotation axis 630 may be located in the plane of the second part 420-2 of the gantry and pass through the connection point of the gantry 120-2 and the first part 420-1 of the gantry.
  • the rotation axis 630 of the second part 420-2 of the gantry under the third motion mode may be perpendicular to the rotation axis 620 of the second part 420-2 of the gantry under the second motion mode.
  • a rotation direction of the second part 420-2 of the gantry under the third motion mode may be arbitrary.
  • the second part 420-2 of the gantry may rotate from right to left or from left to right as indicated by the arrow D.
  • a range of the rotation angle of the second part 420-2 of the gantry may be arbitrary, e.g., an arbitrary angle greater than 0°.
  • the motion of the gantry may be automatically controlled.
  • the user may input instructions (including, for example, motion parameters) via the control assembly 450 to control the motion of the gantry.
  • various parameters relating to the motion of the gantry e.g., a motion mode, a motion speed, a movement direction, etc.
  • the control assembly 450 may receive the instruction to control the motion of the gantry according to the determined parameters.
  • the motion of the gantry may be manually controlled. For example, the user can manually push or pull the gantry to move.
  • FIG. 7A is a schematic diagram illustrating an exemplary motion trajectory of a focus of an imaging device according to some embodiments of the present disclosure.
  • FIG. 7A may be described in connection with FIG. 4.
  • the radiation source 430 may be regarded as a point source.
  • the focus may refer to a point of the radiation source 430 from which the radiation source 430 emits the radiation beam (e.g., a focus 702 as shown in FIG. 7A) .
  • the radiation source 430 may move together with the second part 420-2 of the gantry, and the focus 702 may rotate to generate a motion trajectory.
  • FIG. 7A may be described in connection with FIG. 4.
  • the radiation source 430 may be regarded as a point source.
  • the focus may refer to a point of the radiation source 430 from which the radiation source 430 emits the radiation beam (e.g., a focus 702 as shown in FIG. 7A) .
  • the radiation source 430 may move together with the second part 420-2 of the gan
  • the radiation source 430 may rotate around a target object 708 with a rotation axis 706 (e.g., parallel to the X-axis) to generate a motion trajectory 704 of the focus 702.
  • the detector 440 may rotate with the rotation axis 706 to acquire scan data of the target object 708.
  • the detector 440 may be located at position 710.
  • the motion trajectory of the focus 702 may affect the sufficiency of the scan data of the target object 708 acquired by the imaging device 400.
  • An image of the target object 708 reconstructed based on sufficient scan data may have a relatively high image quality, while an image of the target object 708 reconstructed based on insufficient data may have a relatively low image quality.
  • the imaging device 400 may emit a cone beam
  • the scan data may need to satisfy a data sufficiency condition, e.g., a Tuy condition, such that the scan data may be sufficient.
  • the Tuy condition may refer that each plane intersecting with the target object 708 may need to include at least one position of a focus (e.g., the focus 702) of the cone beam to satisfy the sufficiency demand of the scan data. That is, the Tuy condition may also refer to that each plane intersecting with the target object 708 scanned by the con beam may need to have at least one intersection point with a motion trajectory of the focus of the cone beam (e.g., the motion trajectory 704 of the focus 702) .
  • the detector 440 may detect the cone beam passing through the target object 708 and generate projection data (i.e., the scan data) of the target object 708.
  • the projection data of the target object 708 may include 2D image data of the target object 708.
  • the 2D image data may be used to reconstruct a 3D image including multiple slices of the target object 708.
  • a middle slice of the multiple slices may refer to a slice obtained by a central fan beam of the cone beam intersecting with the object.
  • any plane that passes through the object and intersects or overlaps with the middle slice may have an intersection point with the motion trajectory 704 of the focus 702. Accordingly, scan data corresponding to the middle slice may be sufficient.
  • a plane of the parallel slice may be parallel to the plane of the motion trajectory 704 of the focus 702 and may never intersect with the motion trajectory 704 of the focus 702.
  • a plane 728 that intersects with the target object 708 may be parallel to the plane of the motion trajectory 704 of the focus 702 and may never intersect with the motion trajectory 704 of the focus 702. Accordingly, scan data corresponding to a parallel slice overlaps with the plane 728 may not satisfy the Tuy condition. The farther the parallel slice is from the middle slice, the worse the sufficiency of scan data corresponding to the parallel slice may be.
  • the data sufficiency condition may be applied to imaging with other rotation angels.
  • a rotation angle of the second part 420-2 of the gantry in the second motion mode may be less than 360°.
  • the sufficiency of scan data corresponding to other slices except the middle slice may be worse than that as described in FIG. 7A.
  • an image reconstruction algorithm with a relatively good performance may overcome the problem of low reconstructed image quality caused by insufficient scan data to a certain extent, however, it cannot solve the problem from the source.
  • the present disclosure provides a specific structure of the imaging device 400 (e.g., a movable C-arm gantry) , the second part 420-2 of the gantry of which can move in various motion modes, and thus, the focus of the imaging device 400 may have various motion trajectories (e.g., a motion trajectory as shown in FIG. 7B or 7C) .
  • various scanning trajectories may be achieved. According to the scan trajectories, the scan data corresponding to all slices may be sufficient, and the image quality of image (s) reconstructed based on the sufficient scan data can be improved.
  • FIG. 7B is a schematic diagram illustrating a motion trajectory of a focus of an imaging device according to some embodiments of the present disclosure.
  • FIG. 7B may be described in connection with FIG. 4.
  • the imaging device 400 may be configured to acquire scan data of a target object 732 according to the motion trajectory of the focus.
  • the motion trajectory of the focus of the imaging device 400 may include a first sub-trajectory 720 and a second sub-trajectory 722.
  • the second part 420-2 of the gantry of the imaging device 400 may move in a translation motion mode (e.g., the first motion mode) and a rotation motion mode (e.g., the second motion mode or the third motion mode) successively.
  • the radiation source 430 of the imaging device 400 may move together with the second part 420-2 of the gantry, thereby generating the motion trajectory of the focus including the first sub-trajectory 720 and the second sub-trajectory 722.
  • the second sub-trajectory 722 may be generated when the second part 420-2 of the gantry moves in a first movement direction (e.g., parallel to the X-axis as indicated by the arrow A shown in FIG. 5A) under the first motion mode, and the sub-trajectory 732 may be generated when the second part 420-2 of the gantry moves around a rotation axis 718 (e.g., parallel to the X-axis) in the second motion mode as indicated by the arrow C shown in FIG. 6A.
  • a first movement direction e.g., parallel to the X-axis as indicated by the arrow A shown in FIG. 5A
  • the sub-trajectory 732 may be generated when the second part 420-2 of the gantry moves around a rotation axis 718 (e.g., parallel to the X-axis) in the second motion mode as indicated by the arrow C shown in FIG. 6A.
  • the second sub-trajectory 722 may be generated when the second part 420-2 of the gantry moves in a first movement direction (e.g., parallel to the Y-axis) under the first motion mode, and the sub-trajectory 732 may be generated when the second part 420-2 of the gantry moves around a rotation axis 718 (e.g., parallel to the Y-axis as indicated by the arrow D shown in FIG. 6B) in the third motion mode.
  • an order of a translation motion of the second part 420-2 of the gantry and a rotation motion of the second part 420-2 of the gantry may be arbitrary.
  • the second part 420-2 of the gantry may firstly move in the translation motion mode (e.g., the first motion mode) and secondly move in the rotation motion mode (e.g., the second motion mode or the third motion mode) .
  • the second part 420-2 of the gantry may firstly move in the rotation motion mode and secondly move in the translation motion mode.
  • the second part 420-2 of the gantry may move in the translation motion mode and the rotation mode simultaneously, descriptions of which may be found elsewhere in the present disclosure (e.g., FIG. 7C and the description thereof) .
  • the first sub-trajectory 720 may be a circular arc trajectory
  • the second sub-trajectory 722 may be a straight-line trajectory.
  • the scan data of the target object 732 corresponding to all slices may satisfy the sufficiency condition described in FIG. 7A. Any plane passing through the target object 732 (especially for one or more planes parallel to the middle slice) may intersect with the second sub-trajectory 722 and/or the first sub-trajectory 720.
  • a plane 730 parallel to a plane of the first sub-trajectory 720 may intersect with the target object 732 and intersect with the second sub-trajectory 722 at a point J. That is, the plane 730 intersecting with the target object 732 may contain a location of the focus of the cone beam, which satisfies the data sufficiency condition, thereby compensating for the defect that the projection data corresponding to the motion trajectory 704 shown in FIG. 7A does not satisfy the data sufficiency condition.
  • the motion of the second part 420-2 of the gantry in the first direction movement direction (e.g., parallel to the X-axis or parallel to the Y-axis) under the first motion mode may be realized by a translation of the base 410 relative to the ground during which the second part 420-2 of the gantry is stationarily disposed on the base 410, thereby generating the second sub-trajectory 722.
  • the second sub-trajectory 722 may be generated by moving the table 116 where the target object 732 is placed in the first movement direction (e.g., a longitudinal direction of the table 116) .
  • FIG. 7C is a schematic diagram illustrating an exemplary motion trajectory of a focus of an imaging device according to some embodiments of the present disclosure.
  • FIG. 7C may be described in connection with FIG. 4.
  • the imaging device 400 may be configured to acquire scan data of a target object 736 according to the motion trajectory 726 of the focus.
  • the second part 420-2 of the gantry of the imaging device 400 may rotate around a rotation axis 724 in a rotation motion mode and translate in a translation motion mode simultaneously to generate the motion trajectory 726 of the focus.
  • the second part 420-2 of the gantry of the imaging device 400 may rotate in the second motion mode (e.g., as indicated by the arrow C shown in FIG. 6A) and translate in the first motion mode (e.g., as indicated by the arrow A shown in FIG. 5A) simultaneously to generate the motion trajectory 726 of the focus.
  • the second part 420-2 of the gantry of the imaging device 400 may rotate in the third motion mode (e.g., as indicated by the arrow D shown in FIG.
  • the motion trajectory 726 may be a spiral trajectory. Any plane passing through the target object 736 may intersect with the motion trajectory 726. Accordingly, according to the motion trajectory 726, the scan data corresponding to all slices may satisfy the data sufficiency condition, which compensates for the defect that the projection data corresponding to the motion trajectory 704 shown in FIG. 7A does not satisfy the data sufficiency condition.
  • FIG. 8 is a block diagram illustrating an exemplary processing device according to some embodiments of the present disclosure.
  • the processing device 140 may include an obtaining module 801 and a control module 803.
  • the processing device 140 may be a part of the control assembly 450.
  • the control module 803 may be a software implementation, and the control assembly 450 may be a hardware implementation.
  • the control module 803 may implement functions (or a portion thereof) of the control assembly 450.
  • the obtaining module 801 may be configured to obtain data/information from one or more components of the medical imaging system 100.
  • the obtaining module 801 may obtain an instruction relating to a motion control of a gantry and/a counterweight assembly of an imaging device (e.g., the imaging device 110 or the imaging device 400) .
  • the instruction may include motion parameters relating to a motion (e.g., a translation motion and/or a rotation motion) of the gantry (e.g., the first part 420-1 and/or the second part 420-2 of the gantry) .
  • the instruction may include motion parameters relating to a motion (e.g., a translation motion) of the counterweight assembly 411.
  • the obtaining module 801 may obtain the instruction according to a user instruction, a size of the target object (e.g., a region of interest (ROI) in the target object) , the sufficiency demand of data detected in a field of view (FOV) of the detector 440, tube parameters of the radiation source 430 and parameters of the detector 440, or the like, or any combination thereof. More descriptions regarding the obtaining of the instruction may be found elsewhere in the present disclosure (e..g, operation 910 and the description thereof) .
  • a size of the target object e.g., a region of interest (ROI) in the target object
  • FOV field of view
  • the control module 803 may be configured to control the operation of one or more components of the medical imaging system 100.
  • the control module 803 may cause the gantry to rotate in a translation motion mode and/or a rotation motion mode.
  • the control module 803 may cause the counterweight assembly 411 to move in a translation motion mode.
  • the control module 803 may cause the base 410 to move on the ground.
  • the control module 803 may cause the imaging device 400 to perform a scan on a subject during the motion of the gantry and/or the counterweight assembly 411.
  • processing device 140 and its modules as shown in FIG. 8 may be implemented in various ways.
  • the processing device 140 and its modules may be implemented by hardware, software, or a combination of software and hardware.
  • the portion of hardware may be realized by using special logics.
  • the portion of the software may be stored in a memory and executed by an appropriate instruction execution system (e.g., a microprocessor or specially designed hardware) .
  • an appropriate instruction execution system e.g., a microprocessor or specially designed hardware.
  • Those skilled in the art may understand that the above-mentioned methods and systems may be implemented using computer-executable instructions and/or be included in processor control codes.
  • a carrier medium e.g., a disk, a CD, or a DVD-ROM
  • a programmable memory e.g., a read-only memory (firmware)
  • a data carrier e.g., an optical or electronic signal carrier
  • the systems and their modules of the present disclosure may be implemented by a very large-scale integrated circuit or gate array, a semiconductor such as a logic chip and a transistor, hardware circuits of programmable hardware devices such as an FPGA and a programmable logic device.
  • the systems and their modules may be implemented by software executed by various types of processors.
  • the systems and their modules may be implemented by a combination of the foregoing hardware circuits and software (e.g., a firmware) .
  • the processing device 140 may include a storage module for storing data/information (e.g., the instruction) .
  • FIG. 9 is a flowchart illustrating an exemplary process for motion control of a device according to some embodiments of the present disclosure.
  • process 900 may be implemented as a set of instructions (e.g., an application) stored in the storage device 150, storage 220, or storage 390.
  • the processing device 140, the processor 210 and/or the CPU 340 may execute the set of instructions, and when executing the instructions, the processing device 140, the processor 210 and/or the CPU 340 may be configured to perform the process 900.
  • the operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 900 may be accomplished with one or more additional operations not described, and/or without one or more of the operations discussed. Additionally, the order of the operations of the process 900 illustrated in FIG. 9 and described below is not intended to be limiting. For illustration purposes, the process 900 may be described in connection with the imaging device as illustrated in FIG. 4, which is not intended to be limiting.
  • the device may include a base (e.g., the base 410) , a gantry (e.g., including the first part 420-1 of the gantry and the second part 420-2 of the gantry) , a radiation source (e.g., the radiation source 430) , a detector (e.g., the detector 440) , etc.
  • the base 410 may be configured to support one or more components (e.g., the gantry, the control assembly 450, etc. ) of the imaging device 400.
  • the base 410 may include a hollow storage space for storing the counterweight assembly 411.
  • the counterweight assembly 411 may be configured to balance the base 410 and the gantry.
  • the counterweight assembly 411 may be movable with respect to the base 410.
  • the gantry may be configured to support the radiation source 430 and the detector 440.
  • the gantry may be movable with respect to the base 410.
  • the imaging device 400 may include one or more movement adjustment mechanisms (e.g., the first rail 460-1 and/or the second rail 460-2) .
  • the gantry (e.g., the first part 420-1 of the gantry and the second part 420-2 of the gantry) may move horizontally with respect to the base 410 through the first rail 460-1 that is disposed between the base 410 and the gantry (e.g., the first part 420-1 of the gantry) .
  • the radiation source 430 and the detector 440 may be oppositely arranged and move together with the gantry.
  • the control device 450 e.g., the processing device 140
  • the processing device 140 may obtain an instruction relating to a motion control of the gantry (e.g., the first part 420-1 of the gantry and/or the second part 420-2 of the gantry) and the counterweight assembly 411 of the imaging device 400.
  • a motion control of the gantry e.g., the first part 420-1 of the gantry and/or the second part 420-2 of the gantry
  • the counterweight assembly 411 of the imaging device 400 e.g., the first part 420-1 of the gantry and/or the second part 420-2 of the gantry
  • the instruction may include motion parameters relating to a motion (e.g., a translation motion and/or a rotation motion) of the gantry.
  • the motion parameters relating to the motion of the gantry may include one or more motion modes, an execution sequence of the one or more motion modes, a motion duration under one of the one or more motion modes, a motion speed under one of the one or more motion modes, a movement direction under one of the one or more motion modes, a motion range (e.g., a motion distance, a rotation angle, etc. ) under one of the one or more motion modes, or the like, or any combination thereof.
  • the one or more motion modes may include a translation motion mode (e.g., the first motion mode as described in FIGs.
  • the execution sequence of the one or more motion modes may include executing the motion modes successively, alternately, or simultaneously.
  • the motion duration under one of the one or more motion modes may refer to a time length during which the gantry moves in the motion mode, a start time point when the gantry begins to move in the motion mode, an end time point when the gantry stops to move in the motion mode, etc.
  • a motion speed under the first motion mode may include 0.1 cm/s, 0.2 cm/s, 0.3 cm/s, etc.
  • a movement direction of the gantry under the first motion mode may include a movement direction along the X-axis (e.g., from the position A3 to the position A4, from the position A4 to the position A3, etc., as shown in FIG. 5A) .
  • a motion range (i.e., a motion distance) of the gantry under the first motion mode may be from 0 to a length of the first rail 460-1 (e.g., from 0 to 8 cm) .
  • the motion range of the gantry under the first motion mode may include 2 cm, 5 cm, 6 cm, 8 cm, etc.
  • a motion speed of the gantry under the second motion mode may include 5°/s, 10°/s, 15°/s, etc.
  • a motion direction of the gantry under the second motion mode may include a movement direction around the X-axis (e.g., from the position C1 to the position C2, from the position C2 to the position C1, etc., as shown in FIG. 6A) .
  • a rotation axis (e.g., the rotation axis 620 as shown in FIG. 6A) of the second motion mode may be perpendicular to the plane of the gantry (e.g., the second part 420-2 of the gantry) .
  • the rotation axis 620 of the second motion mode as shown in FIG.
  • a movement duration of the gantry under the second motion mode may include 10 s, 15 s, 20 s, etc.
  • a motion range (e.g., a motion angle) of the gantry under the second motion mode may be from 0° to 360° (e.g., 180°, 210°, 270°, 300°, etc. ) .
  • a motion speed of the gantry under the third motion mode may include 5°/s, 10°/s, 15°/s, etc.
  • a motion direction of the gantry under the third motion mode may include rotating towards the positive direction of the X-axis (e.g., rotate from left to right as indicated by the arrow D in FIG. 6B) , rotate towards the negative direction of the X-axis (e.g., rotate from right to left as indicated by the arrow D in FIG. 6B) , etc.
  • a motion duration of the gantry under the third motion mode may include 10 s, 15 s, 20 s, etc.
  • a motion range (e.g., a rotation angle) of the gantry under the third motion mode may be from 0° to 360° (e.g., 180°, 210°, 270°, 300°, 330°, 360°, etc. ) .
  • the motion parameters relating to the motion of the gantry may be related to a timeline of the motion of the gantry.
  • the instruction of the motion control of the gantry may be related to controlling the gantry to move continuously in 5 minutes.
  • the instruction of the motion control of the gantry may be related to controlling the gantry to move every 5 minutes during a predetermined time period.
  • the instruction may include motion parameters relating to a motion (e.g., a translation motion) of the counterweight assembly 411.
  • the motion parameters relating to the motion of the counterweight assembly 411 may include a motion mode, a motion duration of the counterweight assembly 411 under the motion mode, a motion speed of the counterweight assembly 411 under the motion mode, a movement direction of the counterweight assembly 411 under the motion mode, a motion range (e.g., a motion distance) of the counterweight assembly 411 under the motion mode, or the like, or any combination thereof.
  • the motion mode of the counterweight assembly 411 may include a translation motion mode (also referred to as a fourth motion mode) .
  • the motion duration of the counterweight assembly 411 under the fourth motion mode may refer to a time length during which the counterweight assembly 411 moves in the fourth motion mode, a start time point when the counterweight assembly 411 begins to move in the fourth motion mode, an end time point when the counterweight assembly 411 stops to move in the fourth motion mode, etc.
  • the motion duration of the counterweight assembly 411 under the fourth motion mode may be the same as or substantially the same as the duration under the first motion mode.
  • the movement direction of the counterweight assembly 411 under the fourth motion mode may be opposite to the movement direction of the gantry under the first motion mode. For example, when the movement direction of the gantry under the first motion mode is from left to right, the movement direction of the counterweight assembly 411 under the fourth motion mode may be from right to left.
  • the movement direction of the counterweight assembly 411 under the fourth motion mode may be from downward to upward.
  • the motion range of the counterweight assembly 411 under the fourth motion mode may be from 0 to a length of the third rail 412 (e.g., from 0 to 8 cm) .
  • the motion range of the counterweight assembly 411 under the fourth motion mode may include 2 cm, 5 cm, 6 cm, 8 cm, etc.
  • the motion range of the counterweight assembly 411 under the fourth motion mode may be the same or substantially same as the motion range of the gantry under the first motion mode.
  • the processing device 140 may not obtain the instruction relating to the motion of the counterweight assembly 411 in operation 910.
  • the processing device 140 may cause the counterweight assembly 411 to move automatically based on the motion of the gantry.
  • the processing device 140 may predetermine and store the motion parameters relating to the motion of the gantry according to an actual imaging need.
  • the processing device 140 may receive a user instruction for selecting one or more parameters from the motion parameters.
  • the processing device 140 may determine the instruction relating to the motion control of the gantry based on the user instruction.
  • the motion parameters may be determined according to a size of the target object (e.g., a region of interest (ROI) in the target object) , the sufficiency demand of data detected in a field of view (FOV) of the detector 440, tube parameters of the radiation source 430 and parameters of the detector 440, or the like, or any combination thereof.
  • ROI region of interest
  • FOV field of view
  • a plurality of scan protocols including a set of motion parameters may be pre-determined and provided for the user for selection.
  • the processing device 140 may generate the instruction in response to the user selection.
  • the processing device 140 may determine motion parameters automatically, e.g., based on an imaging demand (e.g., a desired imaging quality thereof) .
  • the processing device 140 may generate the instruction based on the motion parameters.
  • the instruction relating to the motion control of the gantry may be a default instruction of the medical system 100.
  • the processing device 140 may receive the instruction relating to the motion control of the gantry from an interactive device of the medical system 100 (e.g., the terminal 130 of the medical system 100, the control assembly of the imaging device 400, etc. ) .
  • an interactive device of the medical system 100 e.g., the terminal 130 of the medical system 100, the control assembly of the imaging device 400, etc.
  • a user e.g., a doctor or an operator
  • the user may input the motion parameters through the interactive device (e.g., a mouse, a keyboard, etc. of the terminal 130) to generate the instruction relating to the motion of the gantry.
  • the processing device 140 may obtain the instruction relating to the motion of the gantry from the interactive device via a wireless or wired manner (e.g., the network 120) . In some embodiments, the processing device 140 may determine the instruction relating to the motion of the counterweight assembly 411 based on the instruction relating to the motion of the gantry. Alternatively, the processing device 140 may receive the instruction relating to the motion of the counterweight assembly 411 similar to the receiving of the instruction relating to the motion of the gantry.
  • the processing device 140 may cause, based on the instruction, the gantry to move in the translation motion mode (e.g., the first motion mode) and/or the rotation motion mode (e.g., the second motion mode, the third motion mode) .
  • the translation motion mode e.g., the first motion mode
  • the rotation motion mode e.g., the second motion mode, the third motion mode
  • the processing device 140 may generate a control signal relating to the motion of the gantry based on the instruction.
  • the processing device 140 may transmit the control signal to one or more driving assembles.
  • Each of the one or more driving assemblies may generate a driving force and transmit the driving force to a corresponding part of the gantry.
  • the gantry may be driven to move by the driving force (s) .
  • the control signal may include a first signal relating to the first motion mode and a second signal relating to the second motion mode.
  • the processing device 140 may transmit the first signal to a first driving assembly corresponding to the first part 420-1 of the gantry.
  • the first driving assembly may transmit a first driving force to cause the first part 420-1 to move in the first motion mode.
  • the processing device 140 may transmit the second signal to a second driving assembly corresponding to the second part 420-2 of the gantry.
  • the second driving assembly may transmit a second driving assembly to cause the second part 420-2 to move in the second motion mode.
  • the processing device 140 may cause, based on the instruction, the gantry to move in the translation motion mode and the rotation motion mode successively or alternately. Taking the first motion mode and the second motion mode as an example, the processing device 140 may first cause the gantry to move in one of the first motion mode and the second motion mode, and then cause the gantry to move in another one of the first motion mode and the second motion mode. Specifically, the processing device 140 may cause the gantry to move from an initial location in one of the first motion mode and the second motion mode. The processing device 140 may cause the gantry to move back to the initial location. The processing device 140 may cause the gantry to move from the initial location in another one of the first motion mode and the second motion mode.
  • the processing device 140 may cause the gantry to move from the initial location to a first location in one of the first motion mode and the second motion mode.
  • the processing device 140 may cause the gantry to move from the first location to a second location in another one of the first motion mode and the second motion mode.
  • the processing device 140 may cause the gantry to move from the second location to the initial location.
  • a motion trajectory of a focus of the imaging device 400 may be the same as or similar to that as described in FIG. 7B and scan data of the target object acquired during the motion of the gantry may be sufficient.
  • the processing device 140 may cause the gantry to move in the first motion mode, the second motion mode, and the third motion mode successively or alternately according to 6 different orders (e.g., ) .
  • the processing device 140 may cause the gantry to move from the initial location in the first motion mode and cause the gantry to move back to the initial location.
  • the processing device 140 may cause the gantry to move from the initial location in the second motion mode and cause the gantry to move back to the initial location.
  • the processing device 140 may cause the gantry to move from the initial location in the third motion mode and cause the gantry to move back to the initial location.
  • the processing device 140 may not cause the gantry to move back to the initial location except for the last motion mode (e.g., the third motion mode) in the execution sequence.
  • the processing device 140 may cause, based on the instruction, the gantry to move in the translation motion mode and the rotation motion mode simultaneously. For example, the processing device 140 may cause the gantry to move in the first motion mode and the second motion mode simultaneously. In such situations, a motion trajectory of a focus of the imaging device 400 may be the same as or similar to that as described in FIG. 7C and scan data of the target object acquired during the motion of the gantry may be sufficient. As another example, the processing device 140 may cause the gantry to move in the first motion mode, the second motion mode, and the third motion mode simultaneously. In some embodiments, the processing device 140 may first cause the gantry to move in at least two of the first motion mode, the second motion mode, and the third motion mode simultaneously.
  • the processing device 140 may then cause the gantry to move in another one of the first motion mode, the second motion mode, and the third motion mode.
  • the processing device 140 may first cause the gantry to move in one of the first motion mode, the second motion mode, and the third motion mode.
  • the processing device 140 may then cause the gantry to move in another two of the first motion mode, the second motion mode, and the third motion mode.
  • the processing device 140 may cause, based on the instruction, the counter assembly 411 to move in the translation motion mode (e.g., the fourth motion mode) .
  • the processing device 140 may cause the counterweight assembly 411 to move in the fourth motion mode and cause the gantry to move in the first motion mode simultaneously.
  • the movement direction under the fourth motion mode may be opposite to that under the first motion mode.
  • the movement range under the fourth motion mode may be the same as or different from that under the first motion mode.
  • the motion duration (e.g., the start time and the end time) under the fourth motion mode may be the same as that under the first motion mode.
  • the counterweight assembly 411 may move from a second initial location to a third location.
  • the counterweight assembly 411 may move from the third location back to the second initial location.
  • the imaging device 400 may have a stable state (e.g., components of the imaging device may be balanced) and perform a scan on the subject.
  • the radiation source 430 of the imaging device 400 may emit the radiation beam on the target object continuously or at intervals according to the instruction.
  • the processing device 140 may obtain the scan data of the target object detected by the detector 140 of the imaging device during the motion of the gantry and the counterweight assembly 411.
  • the processing device 140 may reconstruct one or more images of the target object based on the scan data of the target object. For example, the processing device 140 may preprocess the scan data by performing a geometric position correction on the scan data.
  • the processing device 140 may reconstruct the image (s) of the target object based on the preprocessed scan data. Further, the processing device 140 may cause the image (s) of the target object to be displayed for the user.
  • one or more operations may be omitted and/or one or more additional operations may be added.
  • an operation for generating the instruction may be added before the operation 910.
  • an operation may be added for storing information/data that are used and/or generated in the process 900.
  • the operation 910 may include two sub-operations.
  • One of the two sub-operations may be implemented to obtain a first instruction relating to the motion of the gantry.
  • the other of the two sub-operations may be implemented to determine, based on the first instruction, a second instruction relating to the motion of the counterweight assembly 411.
  • the imaging device 400 may include a movement standby mechanism (e.g., an automatic control (APC) button, a hand switch control) .
  • the user may actuate the movement standby mechanism.
  • the processing device 140 may cause, based on the instruction, the gantry and/or the counterweight assembly 411 to move in response to the actuation of the movement standby mechanism.
  • APC automatic control
  • aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “unit, ” “module, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer-readable media having computer-readable program code embodied thereon.
  • a non-transitory computer-readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electromagnetic, optical, or the like, or any suitable combination thereof.
  • a computer-readable signal medium may be any computer-readable medium that is not a computer-readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
  • Program code embodied on a computer-readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
  • Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object-oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB. NET, Python or the like, conventional procedural programming languages, such as the "C" programming language, Visual Basic, Fortran, Perl, COBOL, PHP, ABAP, dynamic programming languages such as Python, Ruby, and Groovy, or other programming languages.
  • the program code may execute entirely on the user′s computer, partly on the user′s computer, as a stand-alone software package, partly on the user′s computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user′s computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS) .
  • LAN local area network
  • WAN wide area network
  • SaaS Software as a Service
  • the numbers expressing quantities, properties, and so forth, used to describe and claim certain embodiments of the application are to be understood as being modified in some instances by the term “about, ” “approximate, ” or “substantially. ”
  • “about, ” “approximate” or “substantially” may indicate ⁇ 20%variation of the value it describes, unless otherwise stated.
  • the numerical parameters set forth in the written description and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by a particular embodiment.
  • the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the application are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable.

Abstract

Systems and methods for motion control of a device. The device may include a base and a gantry. The gantry may be disposed on the base and movable with respect to the base. The methods may include obtaining an instruction relating to a motion control of the gantry. The methods may also include causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode, the first motion mode being related to a translation motion, the second motion mode being related to a rotation motion.

Description

SYSTEMS AND METHODS FOR MOTION CONTROL OF A DEVICE
CROSS-REFERENCE TO RELATED APPLICATIONS
The present disclosure claims priority of Chinese Patent Application No. 201911394622.6, field on December 30, 2019, the contents of which are hereby incorporated by reference.
TECHNICAL FIELD
The present disclosure generally relates to medical devices, and more particularly, relates to systems and methods for motion control of a device.
BACKGROUND
In recent years, devices such as radiation imaging devices have been widely used in the field of medical diagnosis and/or treatment. A radiation imaging device may include a radiation source and a detector that are supported by a gantry. During a scan process using the radiation imaging device, the radiation source and detector may rotate around a target object in a trajectory of the gantry such that the target object can be scanned in multiple gantry angles. Scan data acquired by the radiation imaging device in the multiple gantry angles may be used to generate projection data corresponding to the multiple gantry angles. Further, an image (e.g., a 3D image including multiple slices) of the target object may be reconstructed based on the projection data corresponding to the gantry angles. The quality of the reconstructed image may partly depend on the sufficiency of the scan data acquired by the radiation imaging device which relates to the trajectory of the gantry of the radiation imaging device. However, in the existing radiation imaging device, the trajectory of the gantry may only make scan data corresponding to middle slices sufficient, which results in unsatisfactory reconstructed image quality. Therefore, it is desirable to provide systems and methods for motion control of a radiation imaging device, such that the radiation imaging device can acquire sufficient scan data corresponding to all slices of interest.
SUMMARY
In an aspect of the present disclosure, a device may be provided. The device may include a gantry, a base, and a movement adjustment mechanism. The base may be configured to support the gantry. The movement adjustment mechanism may be configured to guide a motion of the gantry. The gantry may be movable with respect to the base in two or more motion modes including a first motion mode and a second motion mode. The first motion mode may be related to a translation motion. The second motion mode may be related to a rotation motion.
In some embodiments, the movement adjustment mechanism may include a first rail configured to guide the translation motion of the gantry in a first movement direction under the first motion mode.
In some embodiments, the movement adjustment mechanism may include a second rail configured to guide the translation motion of the gantry in a second movement direction under the first motion mode.
In some embodiments, the device may further include a counterweight assembly configured to balance the gantry and the base. The counterweight assembly may be movable in a fourth motion mode related to a translation motion.
In some embodiments, the movement adjustment mechanism may include a third rail configured to guide the translation motion of the counterweight assembly in a third movement direction under the fourth motion mode.
In some embodiments, the third movement direction may be opposite to the first movement direction or the second movement direction.
In some embodiments, the device may further include a supporting member configured to support the counterweight assembly.
In some embodiments, the counterweight assembly, the supporting member, and the third rail may be disposed in the base.
In some embodiments, the first movement direction may be parallel to a rotation axis of the rotation motion of the gantry in the second motion mode.
In some embodiments, the second movement direction may be perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
In some embodiments, the device may further include a control assembly configured to cause the gantry to move in the first motion mode and the second motion mode successively, alternately, or simultaneously.
In some embodiments, the control assembly may further be configured to cause the counterweight assembly to move in the fourth motion mode simultaneously with the gantry when the gantry is moving in the first motion mode.
In some embodiments, the gantry may have a non-closed ring shape.
In some embodiments, the gantry may include a C-arm gantry.
In some embodiments, the device may include an X-ray imaging device.
In some embodiments, the X-ray imaging device may include a digital subtraction angiography device.
In some embodiments, the device may be movable.
In some embodiments, the base may be movable.
In some embodiments, the device may further include a radiation source and a detector disposed on the gantry. The radiation source and the detector may be oppositely arranged and movable with the gantry.
In another aspect of the present disclosure, a system for motion control of a device is provided. The device may include a base and a gantry. The gantry may be disposed on the base and movable with respect to the base. The system may include a storage device storing a set of instructions and at least one processor in communication with the storage device. When executing the set of instructions, the at least one processor may be configured to direct the system to perform following operations. The operations may include obtaining an instruction relating to a motion control of the gantry. The operations may also include causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode.  The first motion mode may be related to a translation motion. The second motion mode may be related to a rotation motion.
In some embodiments, a movement direction of the translation motion of the gantry in the first motion mode may be parallel or perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
In some embodiments, the rotation axis may be perpendicular to a plane of the gantry.
In some embodiments, a rotation angle of the rotation motion of the gantry in the second motion mode may be less than 360°, 270°, or 180°.
In some embodiments, the causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode may include causing the gantry to move in the first motion mode and the second motion mode successively.
In some embodiments, the causing the gantry to move in the first motion mode and the second motion mode successively may include causing the gantry to move in one of the first motion mode and the second motion mode, and causing the gantry to move in another one of the first motion mode and the second motion mode.
In some embodiments, the causing the gantry to move in the first motion mode and the second motion mode successively may include causing the gantry to move from an initial location in one of the first motion mode and the second motion mode; causing the gantry to move back to the initial location; and causing the gantry to move from the initial location in another one of the first motion mode and the second motion mode.
In some embodiments, the causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode may include causing the gantry to move in the first motion mode and the second motion mode simultaneously.
In some embodiments, the device may further include a counterweight assembly. The operations may further include causing the counterweight assembly to move in a fourth motion mode related to a translation motion.
In some embodiments, the operations may further include causing the gantry to move in a third motion mode related to a rotation motion. A rotation axis of the rotation motion of the gantry in the third motion mode may be perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
In some embodiments, the causing the gantry to move in a third motion mode may include causing the gantry to move in the first motion mode, the second motion mode, and the third motion mode successively or alternately.
In some embodiments, the causing the gantry to move in a third motion mode may include causing the gantry to move in the first motion mode, the second motion mode, and the third motion mode simultaneously.
In some embodiments, the gantry may have a non-closed ring shape.
In some embodiments, the gantry may include a C-arm gantry.
In some embodiments, the device may include an X-ray imaging device.
In some embodiments, the X-ray imaging device may include a digital subtraction angiography device.
In some embodiments, the X-ray imaging device may be movable.
In some embodiments, the device may further include a radiation source and a detector disposed on the gantry, the radiation source and the detector may be oppositely arranged and movable with the gantry.
In another aspect of the present disclosure, a method for motion control of a device. The device may include a base and a gantry. The gantry may be disposed on the base and movable with respect to the base. The method may be implemented on a computing device including at least one processor and at least one storage device. The method may include obtaining an instruction relating to a motion control of the gantry. The method may also include causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode. The first motion mode may be related to a translation motion. The second motion mode may be related to a rotation motion.
In some embodiments, a movement direction of the translation motion of the gantry in the first motion mode may be parallel or perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
In some embodiments, the rotation axis may be perpendicular to a plane of the gantry.
In some embodiments, a rotation angle of the rotation motion of the gantry in the second motion mode may be less than 360°, 270°, or 180°.
In some embodiments, the causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode may include causing the gantry to move in the first motion mode and the second motion mode successively.
In some embodiments, the causing the gantry to move in the first motion mode and the second motion mode successively may include causing the gantry to move in one of the first motion mode and the second motion mode, and causing the gantry to move in another one of the first motion mode and the second motion mode.
In some embodiments, the causing the gantry to move in the first motion mode and the second motion mode successively may include causing the gantry to move from an initial location in one of the first motion mode and the second motion mode; causing the gantry to move back to the initial location; and causing the gantry to move from the initial location in another one of the first motion mode and the second motion mode.
In some embodiments, the causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode may include causing the gantry to move in the first motion mode and the second motion mode simultaneously.
In some embodiments, the device may include a counterweight assembly. The operations may further include causing the counterweight assembly to move in a fourth motion mode related to a translation motion.
In some embodiments, the method may further include causing the gantry to move in a third motion mode related to a rotation motion, a rotation axis of the  rotation motion of the gantry in the third motion mode may be perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
In some embodiments, the causing the gantry to move in a third motion mode may include causing the gantry to move in the first motion mode, the second motion mode, and the third motion mode successively or alternately.
In some embodiments, the causing the gantry to move in a third motion mode may include causing the gantry to move in the first motion mode, the second motion mode, and the third motion mode simultaneously.
In some embodiments, the gantry may have a non-closed ring shape.
In some embodiments, the gantry may include a C-arm gantry.
In some embodiments, the device may include an X-ray imaging device.
In some embodiments, the X-ray imaging device may include a digital subtraction angiography device.
In some embodiments, the X-ray imaging device may be movable.
In some embodiments, the device may further include a radiation source and a detector disposed on the gantry. The radiation source and the detector may be oppositely arranged and movable with the gantry.
In another aspect of the present disclosure, a system for motion control of a device. The device may include a base and a gantry. The gantry may be disposed on the base and movable with respect to the base. The system may include an obtaining module configured to obtain an instruction relating to a motion control of the gantry. The system may also include a control module configured to cause, based on the instruction, the gantry to move in a first motion mode and a second motion mode. The first motion mode may be related to a translation motion. The second motion mode may be related to a rotation motion.
In another aspect of the present disclosure, a non-transitory computer readable medium is provided. The medium may include executable instructions that, when executed by at least one processor, direct the at least one processor to perform a method for motion control of a device. The device may include a base  and a gantry. The gantry may be disposed on the base and movable with respect to the base. The method may include obtaining an instruction relating to a motion control of the gantry. The method may also include causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode. The first motion mode may be related to a translation motion. The second motion mode may be related to a rotation motion.
Additional features will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following and the accompanying drawings or may be learned by production or operation of the examples. The features of the present disclosure may be realized and attained by practice or use of various aspects of the methodologies, instrumentalities, and combinations set forth in the detailed examples discussed below.
BRIEF DESCRIPTION OF THE DRAWINGS
The present disclosure is further described in terms of exemplary embodiments. These exemplary embodiments are described in detail with reference to the drawings. The drawings are not to scale. These embodiments are non-limiting exemplary embodiments, in which like reference numerals represent similar structures throughout the several views of the drawings, and wherein:
FIG. 1 is a schematic diagram illustrating an exemplary medical imaging system according to some embodiments of the present disclosure;
FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary computing device according to some embodiments of the present disclosure;
FIG. 3 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary mobile device according to some embodiments of the present disclosure;
FIG. 4 is a schematic diagram illustrating an exemplary imaging device according to some embodiments of the present disclosure;
FIG. 5A and FIG. 5B are schematic diagrams illustrating an exemplary first motion mode of a gantry of an imaging device according to some embodiments of the present disclosure;
FIG. 6A and FIG. 6B are schematic diagrams illustrating an exemplary rotation motion mode of a gantry of an imaging device according to some embodiments of the present disclosure;
FIG. 7A, FIG. 7B, and FIG. 7C are schematic diagrams illustrating an exemplary motion trajectory of a focus of an imaging device according to some embodiments of the present disclosure;
FIG. 8 is a block diagram illustrating an exemplary processing device according to some embodiments of the present disclosure; and
FIG. 9 is a flowchart illustrating an exemplary process for motion control of a device according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant disclosure. However, it should be apparent to those skilled in the art that the present disclosure may be practiced without such details. In other instances, well-known methods, procedures, systems, components, and/or circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present disclosure. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present disclosure is not limited to the embodiments shown, but to be accorded the widest scope consistent with the claims.
The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a, ” “an, ” and “the” may be intended to include the plural forms as  well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprise, ” “comprises, ” and/or “comprising, ” “include, ” “includes, ” and/or “including, ” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
It will be understood that the term “system, ” “engine, ” “unit, ” “module, ” and/or “block” used herein are one method to distinguish different components, elements, parts, sections or assembly of different levels in ascending order. However, the terms may be displaced by another expression if they achieve the same purpose.
Generally, the word “module, ” “unit, ” or “block, ” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions. A module, a unit, or a block described herein may be implemented as software and/or hardware and may be stored in any type of non-transitory computer-readable medium or another storage device. In some embodiments, a software module/unit/block may be compiled and linked into an executable program. It will be appreciated that software modules can be callable from other modules/units/blocks or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules/units/blocks configured for execution on computing devices (e.g., processor 210 as illustrated in FIG. 2) may be provided on a computer-readable medium, such as a compact disc, a digital video disc, a flash drive, a magnetic disc, or any other tangible medium, or as a digital download (and can be originally stored in a compressed or installable format that needs installation, decompression, or decryption prior to execution) . Such software code may be stored, partially or fully, on a storage device of the executing computing device, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules/units/blocks may be included in connected logic components, such as gates and flip-flops, and/or can be included of programmable units, such as  programmable gate arrays or processors. The modules/units/blocks or computing device functionality described herein may be implemented as software modules/units/blocks but may be represented in hardware or firmware. In general, the modules/units/blocks described herein refer to logical modules/units/blocks that may be combined with other modules/units/blocks or divided into sub-modules/sub-units/sub-blocks despite their physical organization or storage. The description may be applicable to a system, an engine, or a portion thereof.
It will be understood that when a unit, engine, module or block is referred to as being “on, ” “connected to, ” or “coupled to, ” another unit, engine, module, or block, it may be directly on, connected or coupled to, or communicate with the other unit, engine, module, or block, or an intervening unit, engine, module, or block may be present unless the context clearly indicates otherwise. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
These and other features, and characteristics of the present disclosure, as well as the methods of operation and functions of the related elements of structure and the combination of parts and economies of manufacture, may become more apparent upon consideration of the following description with reference to the accompanying drawings, all of which form a part of this disclosure. It is to be expressly understood, however, that the drawings are for the purpose of illustration and description only and are not intended to limit the scope of the present disclosure. It is understood that the drawings are not to scale.
The term “modality” as used herein broadly refers to an imaging or treatment method or technology that gathers, generates, processes, and/or analyzes imaging information of a subject or treatments the subject. The subject may include a biological object and/or a non-biological object. The biological subject may be a human being, an animal, a plant, or a portion thereof (e.g., a cell, a tissue, an organ, etc. ) . In some embodiments, the subject may be a man-made composition of  organic and/or inorganic matters that are with or without life. The term “object” or “subject” are used interchangeably in the present disclosure.
The term “image” in the present disclosure is used to collectively refer to image data (e.g., scan data, projection data) and/or images of various forms, including a two-dimensional (2D) image, a three-dimensional (3D) image, a four-dimensional (4D) , etc. The term “pixel” and “voxel” in the present disclosure are used interchangeably to refer to an element of an image. The term “region, ” “location, ” and "area" in the present disclosure may refer to a location of an anatomical structure shown in the image or an actual location of the anatomical structure existing in or on a target subject’s body, since the image may indicate the actual location of a certain anatomical structure existing in or on the target subject’s body. In some embodiments, an image of an object may be referred to as the object for brevity. Segmentation of an image of an object may be referred to as segmentation of the object. For example, segmentation of an organ refers to segmentation of a region corresponding to the organ in an image. The terms “slice” and “layer” may be used interchangeably.
According to an aspect of the present disclosure, a device is provided. The device may include a base, a gantry, and a movement adjustment mechanism. The gantry may be configured to support the radiation source and the detector. The base may be configured to support the gantry. The movement adjustment mechanism may be configured to guide a motion of the gantry. The gantry may be movable with respect to the base in two or more motion modes including a first motion and a second motion. The first motion mode may be related to a translation motion. The second mode may be related to a rotation motion. In some embodiments, the device may further include a counterweight assembly. The counterweight assembly may be movable in a third motion mode. The third motion mode may be related to a translation motion.
According to another aspect of the present disclosure, systems and methods for motion control of the device are provided. The systems and methods may  obtain an instruction relating to a motion control of the gantry. The systems and methods may cause, based on the instruction, the gantry to move in the first motion mode and the second motion mode. In some embodiments, the systems and methods may also obtain an instruction relating to a motion control of the counterweight assembly. The systems and methods may cause, based on the instruction, the counterweight assembly to move in the third motion mode.
According to some embodiments of the present disclosure, the device may be used to perform a scan on a target object (e.g., a patient or a portion thereof) . The movement adjustment mechanism may include a translation mechanism (e.g., a translation rail) used for guiding the gantry to move in the first motion mode, thereby the device can scan the target object (e.g., a patient or a portion thereof) in a translation trajectory. If the trajectory of the gantry includes a rotation trajectory and the translation trajectory during the scan of the target object, scan data acquired during the scan may be more sufficient than that is acquired when the trajectory of the gantry only includes the rotation trajectory. Accordingly, images of the target object reconstructed based on the sufficient scan data may have a relatively high image quality. Besides, during the scan of the target object, the movement adjustment mechanism may include another translation mechanism (e.g., another translation rail) used for guiding the counterweight assembly to move in the third motion mode. A movement direction of the third motion mode may be opposite to a movement direction of the first motion mode, so that the balance and stability of the device are maintained during the scan process. It should be noted that the device described in the present disclosure is not limited to be used for imaging purposes. For example, the device (e.g., a device including a linear accelerator) may be used for a treatment of a target object (e.g., a tumor) . In such occasions, the device may deliver sufficient radiation to the target object for treatment in all layers of the target object stably. As another example, the device may be applied in the field of industrial radiation detection, security detection, etc. For illustration purposes, the  following descriptions regarding a medical imaging device are provided, which is not intended to limit the scope of the present disclosure.
FIG. 1 is a schematic diagram illustrating an exemplary medical imaging system according to some embodiments of the present disclosure. The medical imaging system may be used for non-invasive imaging and/or treatment, such as for disease diagnosis, treatment or research purposes. In some embodiments, the medical imaging system may include a single modality system or a multi-modality system. The single modality system may include, for example, an X-ray medical imaging system, a digital radiography (DR) system, etc. The multi-modality system may include, for example, an image-guided radiotherapy (IGRT) system, a multi-modality medical imaging system, etc. It should be noted that the medical imaging system described below is merely provided for illustration purposes, and not intended to limit the scope of the present disclosure.
As shown in FIG. 1, the medical imaging system 100 may include an imaging device 110, a network 120, one or more terminals 130, a processing device 140, and a storage device 150. In some embodiments, two or more components of the medical imaging system 100 may be connected to and/or communicate with each other via a wireless connection (e.g., the network 120) , a wired connection, or a combination thereof. The connection between the components of the medical imaging system 100 may be variable. Merely by way of example, the imaging device 110 may be connected to the processing device 140 through the network 120 or directly. As a further example, the storage device 150 may be connected to the processing device 140 through the network 120 or connected to the processing device 140 directly.
The imaging device 110 (e.g., a radiation imaging device) may be configured to perform a scan on a target object (e.g., a patient or a portion thereof) . In some embodiments, the imaging device 110 may include a single modality device such as a computed radiography (CR) device, a digital radiotherapy (DR) device, a computed tomography (CT) device, a plain film X-ray device, a movable X-ray device (e.g., a  movable C-arm device) , a digital subtraction angiography (DSA) device, an emission computed tomography (ECT) device (e.g., a positron emission tomography (PET) or a single photon emission computed tomography (SPECT) ) , etc. In some embodiments, the imaging device 110 may include a multi-modality device such as an IGRT device (e.g., including an imaging device and a linear accelerator) , a multi-modality device (e.g., including a DR device and an ECT device) . In some embodiments, the imaging device 110 may include an X-ray imaging device with a gantry that has a non-closed shape (e.g., a C-arm X-ray device) . The C-arm X-ray device may be used for guiding surgeries. For example, the target object may need orthopedic surgery. The C-arm X-ray device may be used for guiding nailing in a bone, bone setting, or the like, or any combination thereof. As another example, the target object may need interventional therapy. The C-arm X-ray device (e.g., a DSA device) may be used for guiding the interventional therapy. As still another example, a portion inside the target object may need to be removed from the target object. The C-arm X-ray device may be used for guiding the removal operation. In some embodiments, the C-arm X-ray device may be movable in different operating rooms for different surgery needs. The C-arm X-ray device may remain relatively static during the surgery process. For example, during a surgery process, the main body (e.g., a base) of the C-arm X-ray device may remain static and the gantry of the C-arm X-ray device may be movable for scanning the target object. Alternatively, the C-arm X-ray device may be fixed in a specific operating room.
As shown in FIG. 1, the imaging device 110 (e.g., a C-arm X-ray device) may include a base 111, a gantry 112, a radiation source 113, a detector 114, etc. The base 111 may be configured to support one or more components (e.g., the gantry 112) of the imaging device 110. The gantry 112 may be configured to support the radiation source 113 and the detector 114. The radiation source 113 may be configured to emit a radiation beam (e.g., X-rays) towards the target object that is placed on a table 116. The detector 114 may be configured to detect the radiation beam passing through the target object. The gantry 112 may include a non-closed  shaped gantry (e.g., a C-shaped gantry, a G-shaped gantry, a U-shaped gantry, etc. ) . The gantry 112 may be movable with respect to the base 111 (e.g., rotating and/or translating with respect to the base 111) . The radiation source 113 and the detector 114 may be movable with the gantry. The radiation source 113 and the detector 114 may be oppositely arranged such that detector 114 can detect the radiation beam passing through the target object. In some embodiments, the table 116 may include a length and a width that is shorter than the length. The imaging device 110 may be located close to a head end of the table 116, e.g., on a side along the width of the table 116. Alternatively, the imaging device 110 may be located close to a side end of the table 116, e.g., on a side along the length of the table 116. In some embodiments, the imaging device 110 may be movable. For example, the imaging device 110 may include one or more movable assemblies 115 (e.g., wheels) disposed under the bottom of the base 111. The imaging device 110 may be movable with movement (s) of the one or more assemblies. In some embodiments, the imaging device 110 may include one or more counterweight assemblies (not shown) which can maintain a balance of the imaging device 110 (e.g., a balance between the base 111 and the gantry 112) . For example, one or more counterweight assemblies may be disposed in the base 111. As another example, the one or more counterweight assemblies may be movable (e.g., with respect to the base 111) . More descriptions regarding the imaging device 110 and the movement of the imaging device 110 (e.g., the movement of the gantry 112 and the movement of the counterweight assembly) may be found elsewhere in the present disclosure (e.g., FIGs. 4-9 and the descriptions thereof) .
The network 120 may include any suitable network that can facilitate the exchange of information and/or data for the medical imaging system 100. In some embodiments, one or more components of the medical imaging system 100 (e.g., the imaging device 110, the processing device 140, the storage device 150, the terminal (s) 130) may communicate information and/or data with one or more other components of the medical imaging system 100 via the network 120. For example,  the processing device 140 may obtain image data from the imaging device 110 via the network 120. As another example, the processing device 140 may obtain user instruction (s) from the terminal (s) 130 via the network 120. The network 120 may be or include a public network (e.g., the Internet) , a private network (e.g., a local area network (LAN) ) , a wired network, a wireless network (e.g., an 802.11 network, a Wi-Fi network) , a frame relay network, a virtual private network (VPN) , a satellite network, a telephone network, routers, hubs, switches, server computers, and/or any combination thereof. For example, the network 120 may include a cable network, a wireline network, a fiber-optic network, a telecommunications network, an` , a wireless local area network (WLAN) , a metropolitan area network (MAN) , a public telephone switched network (PSTN) , a Bluetooth TM network, a ZigBee TM network, a near field communication (NFC) network, or the like, or any combination thereof. In some embodiments, the network 120 may include one or more network access points. For example, the network 120 may include wired and/or wireless network access points such as base stations and/or internet exchange points through which one or more components of the medical imaging system 100 may be connected to the network 120 to exchange data and/or information.
The terminal (s) 130 may be connected to and/or communicate with the imaging device 110, the processing device 140, and/or the storage device 150. For example, the terminal (s) 130 may obtain a reconstructed image of the target object from the processing device 140. As another example, the terminal (s) 130 may enable user interactions with the medical imaging system 100. In some embodiments, the terminal (s) 130 may include a mobile device 131, a tablet computer 132, a laptop computer 133, or the like, or any combination thereof. For example, the mobile device 131 may include a mobile phone, a personal digital assistant (PDA) , a gaming device, a navigation device, a point of sale (POS) device, a laptop, a tablet computer, a desktop, or the like, or any combination thereof. In some embodiments, the terminal (s) 130 may include an input device, an output device, etc. The input device may include alphanumeric and other keys that may  be input via a keyboard, a touch screen (e.g., with haptics or tactile feedback) , a speech input, an eye-tracking input, a brain monitoring system, or any other comparable input mechanism. The input information received through the input device may be transmitted to the processing device 140 via, for example, a bus, for further processing. Other types of the input device may include a cursor control device, such as a mouse, a trackball, or cursor direction keys, etc. The output device may include a display, a speaker, a printer, or the like, or a combination thereof. In some embodiments, the terminal (s) 130 may be part of the processing device 140.
The processing device 140 may process data and/or information obtained from the imaging device 110, the storage device 150, the terminal (s) 130, or other components of the medical imaging system 100. For example, the processing device 140 may obtain an instruction relating to a motion control of the gantry 112 and/or the counterweight assembly of the imaging device 110, e.g., from the terminal (s) 130. The processing device 140 may cause, based on the instruction, the gantry 112 and/or the counterweight assembly to move in rotation and/or translation. As another example, the processing device 140 may obtain scan data of the target object acquired by the imaging device 110. The processing device 140 may reconstruct one or more images of the target object based on the scan data of the target object. In some embodiments, the processing device 140 may be a single server or a server group. The server group may be centralized or distributed. In some embodiments, the processing device 140 may be local to or remote from the medical imaging system 100. For example, the processing device 140 may access information and/or data from the imaging device 110, the storage device 150, and/or the terminal (s) 130 via the network 120. As another example, the processing device 140 may be directly connected to the imaging device 110, the terminal (s) 130, and/or the storage device 150 to access information and/or data. In some embodiments, the processing device 140 may be implemented on a cloud platform. For example, the cloud platform may include a private cloud, a public cloud, a hybrid  cloud, a community cloud, a distributed cloud, and inter-cloud, a multi-cloud, or the like, or a combination thereof. In some embodiments, the processing device 140 may be implemented by a computing device 200 having one or more components as described in connection with FIG. 2.
The storage device 150 may store data, instructions, and/or any other information. In some embodiments, the storage device 150 may store data obtained from the processing device 140, the terminal (s) 130, and/or the storage device 150. In some embodiments, the storage device 150 may store data and/or instructions that the processing device 140 may execute or use to perform exemplary methods described in the present disclosure. In some embodiments, the storage device 150 may include a mass storage device, a removable storage device, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof. Exemplary mass storage device may include a magnetic disk, an optical disk, a solid-state drive, etc. Exemplary removable storage device may include a flash drive, a floppy disk, an optical disk, a memory card, a zip disk, a magnetic tape, etc. Exemplary volatile read-and-write memory may include a random access memory (RAM) . Exemplary RAM may include a dynamic RAM (DRAM) , a double date rate synchronous dynamic RAM (DDR SDRAM) , a static RAM (SRAM) , a thyristor RAM (T-RAM) , and a zero-capacitor RAM (Z-RAM) , etc. Exemplary ROM may include a mask ROM (MROM) , a programmable ROM (PROM) , an erasable programmable ROM (EPROM) , an electrically erasable programmable ROM (EEPROM) , a compact disk ROM (CD-ROM) , and a digital versatile disk ROM, etc. In some embodiments, the storage device 150 may be implemented on a cloud platform as described elsewhere in the disclosure.
In some embodiments, the storage device 150 may be connected to the network 120 to communicate with one or more other components of the medical imaging system 100 (e.g., the processing device 140, the terminal (s) 130) . One or more components of the medical imaging system 100 may access the data or instructions stored in the storage device 150 via the network 120. In some  embodiments, the storage device 150 may be part of the processing device 140.
This description is intended to be illustrative, and not to limit the scope of the present disclosure. Many alternatives, modifications, and variations will be apparent to those skilled in the art. The features, structures, methods, and other characteristics of the exemplary embodiments described herein may be combined in various ways to obtain additional and/or alternative exemplary embodiments. For example, the storage device 150 may be a data storage device including cloud computing platforms, such as public cloud, private cloud, community, and hybrid clouds, etc. However, those variations and modifications do not depart the scope of the present disclosure.
FIG. 2 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary computing device on which the processing device 140 may be implemented according to some embodiments of the present disclosure. As illustrated in FIG. 2, a computing device 200 may include a processor 210, a storage 220, an input/output (I/O) 230, and a communication port 240.
The processor 210 may execute computer instructions (e.g., program code) and perform functions of the processing device 140 in accordance with techniques described herein. The computer instructions may include, for example, routines, programs, objects, components, data structures, procedures, modules, and functions, which perform particular functions described herein. For example, the processor 210 may process image data obtained from the imaging device 110, the terminals 130, the storage device 150, and/or any other component of the medical imaging system 100. In some embodiments, the processor 210 may include one or more hardware processors, such as a microcontroller, a microprocessor, a reduced instruction set computer (RISC) , an application-specific integrated circuits (ASICs) , an application-specific instruction-set processor (ASIP) , a central processing unit (CPU) , a graphics processing unit (GPU) , a physics processing unit (PPU) , a microcontroller unit, a digital signal processor (DSP) , a field programmable gate  array (FPGA) , an advanced RISC machine (ARM) , a programmable logic device (PLD) , any circuit or processor capable of executing one or more functions, or the like, or any combinations thereof.
Merely for illustration, only one processor is described in the computing device 200. However, it should be noted that the computing device 200 in the present disclosure may also include multiple processors, and thus operations and/or method operations that are performed by one processor as described in the present disclosure may also be jointly or separately performed by the multiple processors. For example, if in the present disclosure the processor of the computing device 200 executes both operation A and operation B, it should be understood that operation A and operation B may also be performed by two or more different processors jointly or separately in the computing device 200 (e.g., a first processor executes operation A and a second processor executes operation B, or the first and second processors jointly execute operations A and B) .
The storage 220 may store data/information obtained from the imaging device 110, the terminals 130, the storage device 150, and/or any other component of the medical imaging system 100. In some embodiments, the storage 220 may include a mass storage device, a removable storage device, a volatile read-and-write memory, a read-only memory (ROM) , or the like, or any combination thereof. In some embodiments, the storage 220 may store one or more programs and/or instructions to perform exemplary methods described in the present disclosure. For example, the storage 220 may store a program for the processing device 140 for motion control of a device (e.g., the imaging device 110) .
The I/O 230 may input and/or output signals, data, information, etc. In some embodiments, the I/O 230 may enable a user interaction with the processing device 140. In some embodiments, the I/O 230 may include an input device and an output device. Exemplary input devices may include a keyboard, a mouse, a touch screen, a microphone, or the like, or a combination thereof. Exemplary output devices may include a display device, a loudspeaker, a printer, a projector, or the  like, or a combination thereof. Exemplary display devices may include a liquid crystal display (LCD) , a light-emitting diode (LED) -based display, a flat panel display, a curved screen, a television device, a cathode ray tube (CRT) , a touch screen, or the like, or a combination thereof.
The communication port 240 may be connected to a network (e.g., the network 120) to facilitate data communications. The communication port 240 may establish connections between the processing device 140 and the imaging device 110, the terminals 130, and/or the storage device 150. The connection may be a wired connection, a wireless connection, any other communication connection that can enable data transmission and/or reception, and/or any combination of these connections. The wired connection may include, for example, an electrical cable, an optical cable, a telephone wire, or the like, or any combination thereof. The wireless connection may include, for example, a Bluetooth TM link, a Wi-Fi TM link, a WiMax TM link, a WLAN link, a ZigBee TM link, a mobile network link (e.g., 3G, 4G, 5G) , or the like, or a combination thereof. In some embodiments, the communication port 240 may be and/or include a standardized communication port, such as RS232, RS485, etc. In some embodiments, the communication port 240 may be a specially designed communication port. For example, the communication port 240 may be designed in accordance with the digital imaging and communications in medicine (DICOM) protocol.
FIG. 3 is a schematic diagram illustrating exemplary hardware and/or software components of an exemplary mobile device according to some embodiments of the present disclosure. In some embodiments, one or more components (e.g., the terminal (s) 130 and/or the processing device 140) of the medical imaging system 100 may be implemented on the mobile device 300.
As illustrated in FIG. 3, the mobile device 300 may include a communication platform 310, a display 320, a graphic processing unit (GPU) 330, a central processing unit (CPU) 340, an I/O 350, a memory 360, and a storage 390. In some embodiments, any other suitable component, including but not limited to a system  bus or a controller (not shown) , may also be included in the mobile device 300. In some embodiments, a mobile operating system 370 (e.g., iOS TM, Android TM, Windows Phone TM) and one or more applications 380 may be loaded into the memory 360 from the storage 390 in order to be executed by the CPU 340. The applications 380 may include a browser or any other suitable mobile apps for receiving and rendering information relating to image processing or other information from the processing device 140. User interactions with the information stream may be achieved via the I/O 350 and provided to the processing device 140 and/or other components of the medical imaging system 100 via the network 120.
To implement various modules, units, and their functionalities described in the present disclosure, computer hardware platforms may be used as the hardware platform (s) for one or more of the elements described herein. A computer with user interface elements may be used to implement a personal computer (PC) or any other type of work station or terminal device. A computer may also act as a server if appropriately programmed.
FIG. 4 is a schematic diagram of an exemplary imaging device according to some embodiments of the present disclosure. FIG. 4 shows a side view of the imaging device 400 (e.g., a radiation imaging device) . The imaging device 400 may be an exemplary embodiment of the imaging device 110. As described in connection with FIG. 1, the imaging device 400 may be configured to deliver radiation towards a target object for generating scan data of the target object. The scan data of the target object may be used to reconstruct one or more images (e.g., a 3D image) of the target object.
As shown in FIG. 4, the imaging device 400 may include a base 410, a gantry (e.g., including a first part 420-1 and a second part 420-2) , a radiation source 430, a detector 440, and a control assembly 450. The first part 420-1 of the gantry may be configured to connect the second part 420-2 and the base 410 and achieve a translation motion of the gantry. The second part 420-2 of the gantry may be configured to support the radiation source 430 and the detector 440 and achieve a  rotation motion of the gantry. In some embodiments, the imaging device 400 may include a movement adjustment mechanism (e.g., a rail or a mechanical arm) configured to guide the motion of one or more components (e.g., the gantry) of the imaging device 400. For illustration purposes, the movement adjustment mechanism may include a first rail 460-1 and/or a second rail 460-2 disposed above the base 410, and one or more cooperating assemblies (e.g., one or more sliders) that cooperate with the first rail 460-1 and/or the second rail 460-2. For example, the imaging device 400 may include both the first rail 460-1 and the second rail 460-2. As another example, the imaging device may include only one rail, e.g., one of the first rail 460-1 and the second rail 460-2. In some embodiments, the first rail 460-1 and/or the second rail 460-2 may be disposed horizontally. It should be understood that the components of the imaging device 400 may be connected with circuits or equipped with wireless communication devices for receiving instructions (e.g., motion control signals) . A three-dimensional coordinate system 401 may be used for illustration purposes. The coordinate system 401 may include an X-axis (not shown in FIG. 4) , a Y-axis, and a Z-axis. The Y-axis may be parallel to a central axis 402 of the gantry. The Z-axis (e.g., in a vertical plane of the gantry) may be perpendicular to the central axis 402 of the gantry. The Y-Z plane may be parallel to the vertical plane of the gantry. The X-axis may be perpendicular to the Y-Z plane and may have a direction facing outward. The origin of the coordinate system 401 may be any point in space. In some embodiments, the origin of the three-dimensional coordinate system 401 may be determined by a user (e.g., an operator or a doctor) . In some embodiments, the origin of the three-dimensional coordinate system 401 may be determined by the medical imaging system 100.
In some embodiments, the base 410 may be configured to support one or more components (e.g., the first part 420-1 and the second part 420-2 of the gantry, the control assembly 450, etc. ) of the imaging device 400. For example, the first part 420-1 of the gantry and/or the control assembly 450 may be disposed on the base 410 through various connection mechanisms such as welding, riveting,  bonding, or the like, or a combination thereof. The component (s) (e.g., the control assembly 450) supported by the base 410 may be fixed relative to the base 410. Alternatively, the component (s) (e.g., the first part 420-1 of the gantry, and/or the second part 420-2 of the gantry) supported by the base 410 may be movable relative to the base 410. In some embodiments, the base 410 may be movable such that the imaging device 110 can move on the ground. For example, one or more movable assemblies (e.g., wheels 413-1 and 413-2) may be disposed on one or more sides of the base 410 that contacts the ground (e.g., on the bottom of the base 410) . In some embodiments, the user may cause the imaging device 400 to move by, e.g., pushing an armrest (not shown in FIG. 4) disposed on the base 410. Alternatively, one or more drive assemblies or power assemblies (e.g., one or more electronic motors or hydraulic presses) ) may be disposed on the base 410 and may provide a driving force for the one or more movable assemblies, such that the imaging device 400 or a portion thereof (e.g., the gantry) can be moved. The user may input an instruction relating to a motion control of the imaging device 400 or a portion thereof via a terminal (e.g., the terminal 130) . The one or more drive assemblies may be activated to provide the driving force according to the instruction. In some embodiments, the one or more drive assemblies may be provided with one or more transmission assemblies (e.g., gears, a driving rod, etc. ) . The one or more drive assemblies may transmit the driving force through the transmission assemblies to the one or more movable assemblies.
In some embodiments, the base 410 may be a hollow base, e.g., including a storage space inside the base 410. In some embodiments, the imaging device 400 may include a counterweight assembly 411. The counterweight assembly 411 may be configured to balance the imaging device 400 (e.g., balance the base 410 and the gantry) . In some embodiments, the counterweight assembly 411 may be disposed in the base 410 (e.g., inside the storage space of the base 410) . The counterweight assembly 411 may be made of one or more solid materials (e.g., cast iron, stones, cast sands, etc. ) and may have a relatively large weight. For example, the solid  material may have a relatively high density, such that the counterweight assembly 411 may have a relatively large weight with a relatively small volume. The counterweight assembly 411 may be movable in a translation motion mode. In some embodiments, under the translation motion mode, the movement direction of the counterweight assembly 411 may be opposite to a movement direction of the first part 420-1 and/or the second part 420-2 of the gantry, such that the counterweight assembly 411 can improve the stability and the balance of the imaging device 400. For example, when the second part 420-2 moves along a movement direction parallel to the X-axis from outward to inward with a motion of the first part 420-1, a center of gravity of the imaging device 400 may be shifted inward. When the counterweight assembly 411 moves along a moving direction opposite to the movement direction of the second part 420-2 of the gantry (e.g., parallel to the X-axis from inward to outward) , the center of gravity of the imaging device 400 may be shifted outward. Accordingly, when the second part 420-2 of the gantry moves along the movement direction from outward to inward and the counterweight assembly 411 moves along the moving direction from inward to outward, the center of gravity of the imaging device 400 may remain unchanged or substantially unchanged, such that the balance of the base 410 and the gantry of the imaging device 400 may be maintained. In some embodiments, a motion adjustment mechanism (e.g., one or more third rails 412 and/or a cooperated assembly) may be disposed in the base 410 to guide a translation motion of the counterweight assembly 411. The third rail 412 may be configured to guide a translation motion of the counterweight assembly 411 (e.g., horizontally or vertically) . For example, the motion adjustment mechanism may be disposed on the bottom surface of the base 410 to guide the translation motion of the counterweight assembly 411 in the horizontal direction. As another example, the motion adjustment mechanism may be disposed on a side surface of the base 410 to guide the translation motion of the counterweight assembly 411 in the vertical direction. The cooperated assembly may be configured to cooperate with the third rail 412 to facilitate the translation  motion of the counterweight assembly 411 on the third rail 412. In some embodiments, the imaging device 400 may include more than one counterweight assemblies 411. Merely by way of example, the imaging device 400 may include two counterweight assemblies 411. One of the two counterweight assemblies 411 may be disposed on the bottom surface of the base 410, and another one of the two counterweight assemblies 411 may be disposed on a side surface of the base 410. In some embodiments, a drive assembly (e.g., an electronic motor not shown in FIG. 4) may be disposed in the base 410 and provide a driving force for the counterweight assembly 411 to move on the third rail 412. In some embodiments, the drive assembly may transmit the driving force through one or more transmission assemblies (e.g., gears, a driving rod, etc. ) to the counterweight assembly 411. In some embodiments, a supporting member (not shown in FIG. 4) may be disposed in the base 410. The supporting member may be configured to support the counterweight assembly 411. For instance, the counterweight assembly 411 may be fixed on the supporting member, e.g., by welding, riveting, or bonding. The supporting member may be movable on the third rail 412 such that the counterweight assembly 411 can move with the supporting member. In some embodiments, the base 410 may provide additional storage spaces for sterile gloves, medical alcohol, medical masks, or other medical objects.
In some embodiments, the gantry may include the first part 420-1 and the second part 420-2. The first part 420-1 may be configured to achieve a translation motion of the gantry. The second part 420-2 may be configured to achieve a rotation motion of the gantry. The first part 420-1 of the gantry may be used as a connection component, e.g., for connecting the second part 420-2 of the gantry and the base 410. As shown in FIG. 4, the bottom surface of the first part 420-1 of the gantry (e.g., a surface of the first part 420-1 of the gantry facing the negative direction of the Z-axis) may be connected to the base 410, and the right side of the first part 420-1 of the gantry (e.g., a side surface of the first part 420-1 of the gantry facing the positive direction of the Y-axis) may be connected to the second part 420- 2 of the gantry. In some embodiments, the first part 420-1 of the gantry may be connected to the base 410 and/or the second part 420-2 of the gantry by a connection mechanism (e.g., a rail or a mechanical arm) . For example, one or more rails (e.g., a first rail 460-1 and/or a second rail 460-2) may be disposed on the upper surface of the base 410 (e.g., a surface of the base 410 facing the positive direction of the Z-axis) . For example, the first rail 460-1 and the second rail 460-2 may be fixed on the upper surface of the base 410, e.g., by welding, riveting, bonding, etc. The first rail 460-1 may be configured to guide a translation motion of the first part 420-1 of the gantry in a first movement direction (e.g., a direction parallel to the X-axis, a direction parallel to the Y-axis, etc. ) . When the first part 420-1 of the gantry moves on the first rail 460-1, the second part 420-2 of the gantry connected to the first part 420-1 of the gantry may be driven to move in the first movement direction, which may also be referred to as that the second part 420-2 of the gantry may move in a first motion mode. That is, the first motion mode may be related to the translation motion in the first movement direction (e.g., a translation motion in a direction parallel to the Y-axis) . In some embodiments, a cooperated assembly (e.g., a slider) may be disposed on the bottom surface of the first part 420-1 of the gantry (e.g., the surface of the first part 420-1 of the gantry facing the negative direction of the Z-axis) . For example, the slider may be fixed on the first rail 460-1, e.g., by welding, riveting, bonding, etc. The slider may be configured to cooperate with the first rail 460-1 to facilitate the translation motion of the first part 420-1 of the gantry in the first movement direction. The first part 420-1 of the gantry may be disposed on the base 410 through the first rail 460-1 and be movable on the first rail 460-1 through the slider. Similar to the one or more movable assemblies of the base 410 and the counterweight assembly 411, the first part 420-1 and/or the second part 420-2 of the gantry may be equipped with one or more drive assemblies and/or one or more transmission assemblies to achieve the movement of the first part 420-1 and/or the second part 420-2 of the gantry with respect to the base 410.
In some embodiments, the first part 420-1 of the gantry may include two portions arranged along a direction parallel to the Y-axis, e.g., a left portion 420-1a and a right portion 420-1b. The right portion 420-1b may be disposed closer to the second part 420-2 of the gantry than the left portion 420-1a. The left portion 420-1a may be connected to the base 410 and the right portion 420-1b may be connected to the second part 420-2 of the gantry. The left portion 420-1a and the right portion 420-1b may be connected by a second rail 460-2. The left portion 420-1a and the right portion 420-1b may be movable with respect to each other. For example, the left portion 420-1a and/or the right portion 420-1b may move upward and downward (e.g., move along a vertical direction parallel to the Z-axis) , or move horizontally (e.g., translate in a plane parallel to the X-Y plane) , or rotate relative to each other, or translate in a plane parallel to the X-Z plane. In some embodiments, the second rail 460-2 may be disposed on the right side of the left portion 420-1a of the first part 420-1 of the gantry (e.g., a side surface of the left portion 420-1a facing the positive direction of the Y-axis) . For example, the second rail 460-2 may be fixed on the right of the left portion 410-1a, e.g., by welding, riveting, bonding, etc. In some embodiments, a cooperated assembly (e.g., a slider) may be disposed on the left side of the right portion 420-1b to cooperate with the second rail 460-2, such that the right portion 420-1b of the first part 420-1 of the gantry can move on the second rail 460-2 via the slider. When the right portion 420-1b of the first part 420-1 of the gantry moves via the slider, the second part 420-2 of the gantry may move with the right portion 420-1b of the first part 420-1 of the gantry. In some embodiments, the left portion 420-1a of the first part 420-1 of the gantry may be fixed on the base 410, e.g., by, e.g., by welding, riveting, bonding, etc. The right portion 420-1b of the first part 420-1 of the gantry may be movable on the base 410 through the second rail 460-2.
Alternatively, in some embodiments, the first part 420-1 of the gantry may include two portions arranged along a direction parallel to the Z-axis, e.g., an upper portion and a lower portion. The upper portion may be arranged above the lower  portion. In some embodiments, the upper portion of the first part 420-1 of the gantry may be movable horizontally relative to the lower portion of the first part 420-1 of the gantry. For example, the second rail 460-2 may be disposed on the upper surface of the lower portion of the first part 420-1 of the gantry (e.g., a surface of the lower portion facing the positive direction of the Z-axis) . A slider may be disposed underneath the upper portion of the first part 420-1 of the gantry (e.g., on a surface of the upper portion of the first part 420-1 of the gantry facing the negative direction of the Z-axis) to cooperate with the second rail 460-2. In such occasions, the upper portion of the first part 420-1 of the gantry may be movable with respect to the base 410. In some embodiments, the lower portion of the first part 420-1 of the gantry may be movable horizontally relative to the lower portion of the first part 420-1 of the gantry. For example, the second rail 460-2 may be disposed on the bottom surface of the upper portion of the first part 420-1 of the gantry (e.g., a side of the upper portion facing the negative direction of the Z-axis) . A slider may be disposed on the upper surface of the lower portion of the first part 420-1 of the gantry (e.g., on a surface of the lower portion of the first part 420-1 of the gantry facing the positive direction of the Z-axis) to cooperate with the second rail 460-2. In such occasions, the lower portion of the first part 420-1 of the gantry may be movable with respect to the base 410.
In some embodiments, the second part 420-2 of the gantry may be configured to support the radiation source 430 and the detector 440. In some embodiments, the second part 420-2 of the gantry may be connected to a surface of the first part 420-1 of the gantry (e.g., the right side of the first part 420-1 of the gantry or the right side of the right portion 420-1b of the first part 420-1 of the gantry) . In some embodiments, the first part 420-1 of the gantry may be movable with respect to the base 410 in the first movement direction under the first motion mode with the motion of the first part 420-1 of the gantry. In some embodiments, the second part 420-2 of the gantry may rotate with respect to the first part 420-1 of the gantry. In some embodiments, the first part 420-1 and the second part 420-2 of  the gantry may be arranged along the positive direction of the Y-axis, and the second part 420-2 of the gantry may be connected to the right side of the first part 420-1 of the gantry. In some embodiments, the connection mechanism between the first part 420-1 and the second part 420-2 of the gantry may include an arc-shaped rail, a connection rod, etc. For example, the arc-shaped rail may be configured to guide a rotation motion of the second part 420-2 of the gantry on the plane of the second part 420-2 of the gantry (e.g., the Y-Z plane) , which may also be referred to as that the second part 420-2 of the gantry may move in a second motion mode. That is, the second motion mode may be related to the rotation motion around a rotation axis (e.g., an axis parallel to the X-axis) . As another example, the connection rod may be configured to connect the first part 420-1 and the second part 420-2. The second part 420-2 may be movable with a rotation of the connection rod or be movable around the connection rod. In some embodiments, the second part 420-2 of the gantry may rotate with a connection point connecting the second part 420-2 of the gantry and the first part 420-1 of the gantry, which may also be referred to as that the second part 420-2 of the gantry may move in a third motion mode. In some embodiments, the connection point may function as a fulcrum for the rotation of the second part 420-2 of the gantry. The third motion mode may be related to a rotation motion around a rotation axis that is parallel to the Y-axis. More descriptions regarding the motion of the second part 420-2 of the gantry in the first, second, and/or third motion modes may be found elsewhere in the present disclosure (e.g., FIGs. 5A-5B, 6A-6B, 8, and 9 and the descriptions thereof) . In some embodiments, the second part 420-2 of the gantry may have a non-closed ring shape, including a C-shaped ring, a G-shaped ring, a U-shaped ring, or the like. Alternatively, the second pat 420-2 may have a closed ring shape (e.g., a circle ring) . For illustration purposes, the second part 420-2 of the gantry may include a C-shaped ring. The gantry with the C-shaped ring may also be referred to as a C-arm gantry for brevity. If the second part 420-2 of the gantry is a C-arm gantry, a central  angle corresponding to an arc of the C-arm gantry may be less than 180 degrees, equal to 180 degrees, or greater than 180 degrees.
In some embodiments, the radiation source 430 may be configured to emit a radiation beam towards the target object. The radiation beam may include at least one of particle rays, photon rays, etc. The particle rays may include neutrons, protons, electrons, heavy ions, or the like, or any combination thereof. The photon rays may include X-rays, gamma rays, ultraviolet rays, lasers, or the like, or any combination thereof. The shape of the radiation beam may include a straight line, a narrow pencil shape, a narrow fan shape, a fan shape, a cone shape, a wedge shape, an irregular shape, etc. For example, the shape of the X-ray may be a cone shape. The detector 440 may be configured to detect the radiation beam passing through the target object to generate scan data of the target object. The shape of the detector 440 may include a flat plate, an arc, a circle, or the like, or any combination thereof. Taking a flat panel detector 440 as an example, the detector 440 may include a plurality of detector units. The detector units may include a scintillation detector (e.g., a cesium iodide detector) , a photodetector, or a gas detector. The detector units can be arranged in a single row or multiple rows.
In some embodiments, the radiation source 430 and the detector 440 supported by the second part 420-2 of the gantry may be oppositely arranged such that the detector 440 can detect at least a portion of the radiation beam passing through the target object. Merely by way of example, a line connecting the radiation source 430 and the detector 440 may pass through a center of the arc of the second part 420-2 of the gantry. In some embodiments, the detector 440 may be disposed at one end of the second part 420-2 of the gantry, and the radiation source 430 may be disposed at the other end of the second part 420-2 of the gantry opposite to the detector 440. In some embodiments, when the second part 420-2 of the gantry moves, the radiation source 430 and the detector 440 may remain stationary relative to each other (e.g., a relative position between the radiation source 430 and the detector 440 with respect to the second part 420-2 of the gantry may be unchanged)  and move together with the second part 420-2 of the gantry. For example, when the second part 420-2 of the gantry moves in the first motion mode, the radiation source 430 and the detector 440 may move in the first motion mode with the gantry (e.g., translating along a movement direction parallel to the Y-axis) . As another example, when the second part 420-2 of the gantry moves in the second motion mode, the radiation source 430 and the detector 440 may move in the second motion mode with the gantry 420 (e.g., rotating around a rotation axis parallel to the X-axis) . As still another example, when the second part 420-2 of the gantry moves in the third motion mode, the radiation source 430 and the detector 440 may move in the third motion mode with the gantry 420 (e.g., rotating around a rotation axis parallel to the Y-axis) .
In some embodiments, the control assembly 450 may be disposed on a component (e.g., the base 410, the first part 420-1 of the gantry) of the imaging device 400, e.g., by welding, riveting, or bonding. Alternatively, the control assembly 450 may be individually set. The control assembly 450 may be configured for motion control of one or more components of the imaging device 400. For instance, the control assembly 450 may generate a control signal. The control assembly 450 may transmit the control signal to a drive assembly. The drive assembly may drive, based on the control signal, one or more components (e.g., the gantry, the counterweight assembly 411, the base 410, etc. ) of the imaging device 40 corresponding to the drive assembly to move. For example, the control assembly 450 may control the gantry (e.g., the first part 420-1 of the gantry and/or the second part 420-2 of the gantry) to move in a motion mode (e.g., the first motion mode, the second motion mode, and/or the third motion mode) . As another example, the control assembly 450 can control a movement direction of the gantry (e.g., a first movement direction and/or a second movement direction different from the first movement direction of the second part 420-2 of the gantry under the first motion mode) . As still another example, the control assembly 450 can control a motion speed of the gantry. As still another example, the control assembly 450 can  control a rotation angle of the gantry. As a further example, the control assembly 450 may control a motion of the counterweight assembly 411 (e.g., a motion mode, a motion speed, a movement direction of the counterweight assembly 411) . As still a further example, the control assembly 450 may control a motion of the imaging device 400 (e.g., control the wheels 413-1 and 413-2 of the imaging device 400) . In some embodiments, the control assembly 450 may be configured to provide a dose signal and a time signal for controlling the radiation source 430 to emit the radiation beam in a certain dose and/or a certain radiation duration. In some embodiments, the control assembly 450 may be a part of the processing device 140. Alternatively, the terminal 130 and the processing device 140 may be integrated as the control assembly 450.
It should be noted that the above description of the imaging device 400 is merely provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. For persons having ordinary skills in the art, multiple variations and modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure.
FIG. 5A and FIG. 5B are schematic diagrams illustrating an exemplary first motion mode of a gantry of an imaging device according to some embodiments of the present disclosure. FIG. 5A and FIG. 5B may be described in connection with the imaging device 400 as shown in FIG. 4. FIG. 5A shows a top view of the imaging device 400. FIG. 5B shows an oblique view of the imaging device. FIG. 5A and FIG. 5B illustrate the first motion mode of the first part 420-1 of the gantry and the second part 420-2 of the gantry.
As shown in FIGs. 5A and 5B, the gantry (e.g., the first part 420-1 of the gantry) may move in the first motion mode (e.g., a translation motion) . As the second part 420-2 of the gantry is connected to the first part 420-1 of the gantry, when the first part 420-1 of the gantry moves horizontally on the first rail 460-1, the second part 420-2 of the gantry may also move horizontally with the motion of the  first part 420-1 of the gantry. For example, the first part 420-1 of the gantry may move in a first movement direction (e.g., denoted by a double arrow A) parallel to the X-axis under the first motion mode. Assuming that the second part 420-2 of the gantry does not move in other motion modes (e.g., a rotation motion mode such as the second motion mode or the third motion mode) during the motion of the first part 420-1 of the gantry, the second part 420-2 of the gantry may move with the first part 420-1 of the gantry in the first movement direction under the first motion mode. A movement direction of the second part 420-2 of the gantry (i.e., the first movement direction) may be perpendicular to or intersect with a plane of the second part 420-2 of the gantry (e.g., the plane of the second part 420-2 of the gantry being parallel to the Y-Z plane or having a certain inclination with the Y-Z plane) . In some embodiments, under the first motion mode, a translation range of the gantry (e.g., the first part 420-1 of the gantry and/or the second part 420-2 of the gantry) may depend on the length of the first rail 460-1. As shown in FIG. 5A, the length of the first rail 460-1 may be denoted by a distance between point A1 and point A2. In some embodiments, according to the length of the first rail 460-1, the second part 420-2 of the gantry may be translated from position A3 to position A4, or from position A4 to position A3, or in any interval between position A3 and position A4, as indicated by the arrow A in FIGs. 5A and 5B. In some embodiments, if a horizontal rail (e.g., the second rail 460-2) is disposed between two portions (e.g., a left portion 420-1a and a right portion 420-1b) of the first part 420-1 of the gantry, the motion of the second part 420-2 of the gantry may be similar to that as shown in FIG. 5A. For example, the second part 420-2 of the gantry may move with a portion (e.g., the right portion 420-1b) of the first part 420-1 of the gantry to which the second part 420-2 of the gantry is connected. A movement direction of the second part 420-2 of the gantry may be perpendicular to or intersect with the plane of the second part 420-2 of the gantry. The translation range of the second part 420-2 of the gantry may relate to the length of the rail 160-2. Accordingly, the radiation source 430 may move in parallel with the second part 420-2 of the gantry according to the first rail  460-1 and/or the second rail 460-2. A trajectory of the radiation source 430 may be a straight line (e.g., a second sub-trajectory 722 as shown in FIG. 7B) .
In some embodiments, under the first motion mode, the radiation source 430 may move in one or more other movement directions different from the movement direction shown in FIG. 5A and FIG. 5B. For example, the first rail 460-1 may be set parallel to the Y-axis. In such occasions, when the first part 420-1 of the gantry moves on the first rail 460-1, the second part 420-2 of the gantry may move with the first part 420-1 of the gantry in a movement direction parallel to the Y-axis. That is, the movement direction of the second part 420-2 of the gantry (or the radiation source 430) may be parallel to or intersect with the plane of the second part 420-2 of the gantry (e.g., the plane of the second part 420-2 of the gantry being parallel to the Y-Z plane or having a certain inclination with the Y-Z plane) .
FIG. 6A is a schematic diagram illustrating an exemplary rotation motion mode of a gantry of an imaging device according to some embodiments of the present disclosure. FIG. 6A may be described in connection with the imaging device 400 as shown in FIG. 4. FIG. 6A shows a side view of the imaging device 400. As shown in FIG. 6A, the second part 420-2 of the gantry may move in the rotation motion mode (also referred to as the second motion mode) .
As shown in FIG. 6A, under the second motion mode, the second part 420-2 of the gantry may move along the right surface of the first part 420-1 of the gantry. If the second part 420-2 of the gantry has a non-closed ring shape, the second motion mode may also be referred to as a circular arc rotation mode. The second part 420-2 of the gantry may move in a rotation direction denoted by the arrow C as shown in FIG. 6A. A rotation axis 620 of the second part 420-2 of the gantry may be a straight line passing through a center of the ring of the second part 420-2 of the gantry and be perpendicular to the plane of the second part 420-2 of the gantry. That is, the rotation axis 620 of the second part 420-2 of the gantry may be parallel to the X-axis. The rotation axis 620 may be illustrated as a point in FIG. 6A. As described in connection with FIG. 5A, the movement direction (e.g., indicated by the  arrow A shown in FIG. 5A) under the first motion mode of the second part 420-2 of the gantry may be parallel to the rotation axis 620. The movement direction (e.g., the direction parallel to the X-axis shown in FIG. 5A) under the first motion mode of the second part 420-2 of the gantry may be parallel to the rotation axis 620. In some embodiments, a maximum motion range of the second part 420-2 of the gantry under the second motion moded may relate to an arc length of the second part 420-2 of the gantry. As shown in FIG. 6A, position C1 and position C3 may correspond to two ends of the ring of the second part 420-2 of the gantry, respectively. Position C2 and position C4 may correspond to an upper end of the right end of the first part 420-1 of the gantry and a lower end of the right end of the first part 420-1 of the gantry, respectively. Merely by way of example, assuming that an initial state of the second part 420-2 of the gantry before rotation is that position C1 overlaps a first position above the position C2 and the position C3 overlaps a second position under the position C4 as shown in FIG. 6A, if the second part 420-2 of the gantry rotates counterclockwise, the position C1 of the second part 420-2 of the gantry may rotate from the first position to position C2; if the second part 420-2 of the gantry rotates clockwise, the position C3 of the second part 420-2 of the gantry may rotate from the second position to position C4. In such occasions, the maximum motion range of the second part 420-2 of the gantry may be an arc between the position C1 and the position C2. According to the specific structural design of the second part 420-2 of the gantry, when the second part 420-2 of the gantry moves in the second motion mode, a rotation angle of the second part 420-2 of the gantry may range from 0° to 360°. For example, the rotation angle of the second part 420-2 of the gantry may be equal to 360°. As another example, the rotation angle of the second part 420-2 of the gantry may be less than at least one of 360°, 330°, 300°, 270°, 240°, 210°, 180°, etc. When the second part 420-2 of the gantry rotates in the second motion mode, the radiation source 430 may rotate with the second part 420-2 of the gantry and may have an arc trajectory (e.g., a first sub-trajectory 720 as shown in FIG. 7B) .
FIG. 6B is a schematic diagram illustrating an exemplary rotation motion mode of a gantry of an imaging device according to some embodiments of the present disclosure. FIG. 6B may be described in connection with the imaging device 400 as shown in FIG. 4. FIG. 6B shows a top view of the imaging device 400. As shown in FIG. 6B, the second part 420-2 of the gantry may move in the rotation motion mode (also referred to as the third motion mode) .
As shown in FIG. 6B, under the third motion mode, the second part 420-2 of the gantry may rotate with a connection point connecting the second part 420-2 of the gantry and the first part 420-1 of the gantry. The connection point may function as a fulcrum. The second part 420-2 of the gantry may rotate in a direction denoted by the arrow D as shown in FIG. 6B. A rotation axis 630 of the second part 420-2 of the gantry under the third motion mode may be parallel to the Y-axis. When the second part 420-2 of the gantry starts to rotate from a state as shown in FIG. 6B (e.g., a state where a plane of the first part 420-1 of the gantry is parallel to the Y-Z plane) , the rotation axis 630 may be located in the plane of the second part 420-2 of the gantry and pass through the connection point of the gantry 120-2 and the first part 420-1 of the gantry. As described in connection with FIG. 6A, the rotation axis 630 of the second part 420-2 of the gantry under the third motion mode may be perpendicular to the rotation axis 620 of the second part 420-2 of the gantry under the second motion mode. In some embodiments, a rotation direction of the second part 420-2 of the gantry under the third motion mode may be arbitrary. For example, the second part 420-2 of the gantry may rotate from right to left or from left to right as indicated by the arrow D. In some embodiments, a range of the rotation angle of the second part 420-2 of the gantry may be arbitrary, e.g., an arbitrary angle greater than 0°.
It should be understood that the motion of the gantry (e.g., the first part 420-1 of the gantry and/or the second part 420-2 of the gantry) may be automatically controlled. For example, the user may input instructions (including, for example, motion parameters) via the control assembly 450 to control the motion of the gantry.  As another example, various parameters relating to the motion of the gantry (e.g., a motion mode, a motion speed, a movement direction, etc. ) may be pre-determined and stored in a storage device described elsewhere in the present disclosure. In some embodiments, the control assembly 450 may receive the instruction to control the motion of the gantry according to the determined parameters. In some embodiments, the motion of the gantry may be manually controlled. For example, the user can manually push or pull the gantry to move.
FIG. 7A is a schematic diagram illustrating an exemplary motion trajectory of a focus of an imaging device according to some embodiments of the present disclosure. FIG. 7A may be described in connection with FIG. 4. In some embodiments, the radiation source 430 may be regarded as a point source. The focus may refer to a point of the radiation source 430 from which the radiation source 430 emits the radiation beam (e.g., a focus 702 as shown in FIG. 7A) . For example, when the second part 420-2 of the gantry rotates in the second motion mode as shown in FIG. 6A, the radiation source 430 may move together with the second part 420-2 of the gantry, and the focus 702 may rotate to generate a motion trajectory. As shown in FIG. 7A, assuming that the rotation angle of the second part 420-2 of the gantry under the second motion mode can reach 360°, the radiation source 430 may rotate around a target object 708 with a rotation axis 706 (e.g., parallel to the X-axis) to generate a motion trajectory 704 of the focus 702. The detector 440 may rotate with the rotation axis 706 to acquire scan data of the target object 708. When the focus 702 corresponding to the radiation source 430 is located at point E on the motion trajectory 704, the detector 440 may be located at position 710.
It should be understood that the motion trajectory of the focus 702 may affect the sufficiency of the scan data of the target object 708 acquired by the imaging device 400. An image of the target object 708 reconstructed based on sufficient scan data may have a relatively high image quality, while an image of the target object 708 reconstructed based on insufficient data may have a relatively low image  quality. Assuming that the imaging device 400 may emit a cone beam, the scan data may need to satisfy a data sufficiency condition, e.g., a Tuy condition, such that the scan data may be sufficient. The Tuy condition may refer that each plane intersecting with the target object 708 may need to include at least one position of a focus (e.g., the focus 702) of the cone beam to satisfy the sufficiency demand of the scan data. That is, the Tuy condition may also refer to that each plane intersecting with the target object 708 scanned by the con beam may need to have at least one intersection point with a motion trajectory of the focus of the cone beam (e.g., the motion trajectory 704 of the focus 702) . When the cone beam emitted by the radiation source 430 passes through the target object 708, the detector 440 may detect the cone beam passing through the target object 708 and generate projection data (i.e., the scan data) of the target object 708. The projection data of the target object 708 may include 2D image data of the target object 708. The 2D image data may be used to reconstruct a 3D image including multiple slices of the target object 708. In traditional imaging devices, for the multiple slices of the 3D image, only projection data corresponding to the middle slice (s) of the multiple slices may meet the data sufficiency condition. A middle slice of the multiple slices may refer to a slice obtained by a central fan beam of the cone beam intersecting with the object. As the motion trajectory of the focus 702 is on the middle slice, any plane that passes through the object and intersects or overlaps with the middle slice may have an intersection point with the motion trajectory 704 of the focus 702. Accordingly, scan data corresponding to the middle slice may be sufficient. For scan data corresponding to a slice of the multiple slices that is parallel to the middle slice (also referred to as a parallel slice) , a plane of the parallel slice may be parallel to the plane of the motion trajectory 704 of the focus 702 and may never intersect with the motion trajectory 704 of the focus 702. For example, a plane 728 that intersects with the target object 708 may be parallel to the plane of the motion trajectory 704 of the focus 702 and may never intersect with the motion trajectory 704 of the focus 702. Accordingly, scan data corresponding to a parallel slice overlaps with the  plane 728 may not satisfy the Tuy condition. The farther the parallel slice is from the middle slice, the worse the sufficiency of scan data corresponding to the parallel slice may be.
Though the above description of FIG. 7A is provided in the assumption that the rotation angle of the second part 420-2 of the gantry in the second motion mode reaches 360°, the data sufficiency condition may be applied to imaging with other rotation angels. For example, when the imaging device 400 includes the second part 420-2 of the gantry with a movable C-arm, a rotation angle of the second part 420-2 of the gantry in the second motion mode may be less than 360°. In such occasions, the sufficiency of scan data corresponding to other slices except the middle slice may be worse than that as described in FIG. 7A. In some embodiments, an image reconstruction algorithm with a relatively good performance may overcome the problem of low reconstructed image quality caused by insufficient scan data to a certain extent, however, it cannot solve the problem from the source. The present disclosure provides a specific structure of the imaging device 400 (e.g., a movable C-arm gantry) , the second part 420-2 of the gantry of which can move in various motion modes, and thus, the focus of the imaging device 400 may have various motion trajectories (e.g., a motion trajectory as shown in FIG. 7B or 7C) . Correspondingly, various scanning trajectories may be achieved. According to the scan trajectories, the scan data corresponding to all slices may be sufficient, and the image quality of image (s) reconstructed based on the sufficient scan data can be improved.
FIG. 7B is a schematic diagram illustrating a motion trajectory of a focus of an imaging device according to some embodiments of the present disclosure. FIG. 7B may be described in connection with FIG. 4. The imaging device 400 may be configured to acquire scan data of a target object 732 according to the motion trajectory of the focus.
As shown in FIG. 7B, the motion trajectory of the focus of the imaging device 400 may include a first sub-trajectory 720 and a second sub-trajectory 722. The  second part 420-2 of the gantry of the imaging device 400 may move in a translation motion mode (e.g., the first motion mode) and a rotation motion mode (e.g., the second motion mode or the third motion mode) successively. The radiation source 430 of the imaging device 400 may move together with the second part 420-2 of the gantry, thereby generating the motion trajectory of the focus including the first sub-trajectory 720 and the second sub-trajectory 722. For example, the second sub-trajectory 722 may be generated when the second part 420-2 of the gantry moves in a first movement direction (e.g., parallel to the X-axis as indicated by the arrow A shown in FIG. 5A) under the first motion mode, and the sub-trajectory 732 may be generated when the second part 420-2 of the gantry moves around a rotation axis 718 (e.g., parallel to the X-axis) in the second motion mode as indicated by the arrow C shown in FIG. 6A. As another example, the second sub-trajectory 722 may be generated when the second part 420-2 of the gantry moves in a first movement direction (e.g., parallel to the Y-axis) under the first motion mode, and the sub-trajectory 732 may be generated when the second part 420-2 of the gantry moves around a rotation axis 718 (e.g., parallel to the Y-axis as indicated by the arrow D shown in FIG. 6B) in the third motion mode. In some embodiments, an order of a translation motion of the second part 420-2 of the gantry and a rotation motion of the second part 420-2 of the gantry may be arbitrary. For example, the second part 420-2 of the gantry may firstly move in the translation motion mode (e.g., the first motion mode) and secondly move in the rotation motion mode (e.g., the second motion mode or the third motion mode) . As another example, the second part 420-2 of the gantry may firstly move in the rotation motion mode and secondly move in the translation motion mode. Alternatively, the second part 420-2 of the gantry may move in the translation motion mode and the rotation mode simultaneously, descriptions of which may be found elsewhere in the present disclosure (e.g., FIG. 7C and the description thereof) .
As shown in FIG. 7B, the first sub-trajectory 720 may be a circular arc trajectory, and the second sub-trajectory 722 may be a straight-line trajectory.  According to the motion trajectory of the focus formed by combining the first sub-trajectory 720 and the second sub-trajectory 722, the scan data of the target object 732 corresponding to all slices may satisfy the sufficiency condition described in FIG. 7A. Any plane passing through the target object 732 (especially for one or more planes parallel to the middle slice) may intersect with the second sub-trajectory 722 and/or the first sub-trajectory 720. For example, a plane 730 parallel to a plane of the first sub-trajectory 720 may intersect with the target object 732 and intersect with the second sub-trajectory 722 at a point J. That is, the plane 730 intersecting with the target object 732 may contain a location of the focus of the cone beam, which satisfies the data sufficiency condition, thereby compensating for the defect that the projection data corresponding to the motion trajectory 704 shown in FIG. 7A does not satisfy the data sufficiency condition.
It should be noted that the above description is provided for illustrative purposes only, and is not intended to limit the scope of the application. For those skilled in the art, various modifications and changes can be made under the teaching of the present disclosure. However, these amendments and changes do not deviate from the scope of the present disclosure. For example, the motion of the second part 420-2 of the gantry in the first direction movement direction (e.g., parallel to the X-axis or parallel to the Y-axis) under the first motion mode may be realized by a translation of the base 410 relative to the ground during which the second part 420-2 of the gantry is stationarily disposed on the base 410, thereby generating the second sub-trajectory 722. As another example, the second sub-trajectory 722 may be generated by moving the table 116 where the target object 732 is placed in the first movement direction (e.g., a longitudinal direction of the table 116) .
FIG. 7C is a schematic diagram illustrating an exemplary motion trajectory of a focus of an imaging device according to some embodiments of the present disclosure. FIG. 7C may be described in connection with FIG. 4. The imaging  device 400 may be configured to acquire scan data of a target object 736 according to the motion trajectory 726 of the focus.
As shown in FIG. 7C, the second part 420-2 of the gantry of the imaging device 400 may rotate around a rotation axis 724 in a rotation motion mode and translate in a translation motion mode simultaneously to generate the motion trajectory 726 of the focus. For example, the second part 420-2 of the gantry of the imaging device 400 may rotate in the second motion mode (e.g., as indicated by the arrow C shown in FIG. 6A) and translate in the first motion mode (e.g., as indicated by the arrow A shown in FIG. 5A) simultaneously to generate the motion trajectory 726 of the focus. As another example, the second part 420-2 of the gantry of the imaging device 400 may rotate in the third motion mode (e.g., as indicated by the arrow D shown in FIG. 6B) and translate in the first motion mode (e.g., along a movement direction parallel to the Y-axis) simultaneously to generate the motion trajectory 726 of the focus. As shown in FIG. 7C, the motion trajectory 726 may be a spiral trajectory. Any plane passing through the target object 736 may intersect with the motion trajectory 726. Accordingly, according to the motion trajectory 726, the scan data corresponding to all slices may satisfy the data sufficiency condition, which compensates for the defect that the projection data corresponding to the motion trajectory 704 shown in FIG. 7A does not satisfy the data sufficiency condition.
FIG. 8 is a block diagram illustrating an exemplary processing device according to some embodiments of the present disclosure. As shown in FIG. 8, the processing device 140 may include an obtaining module 801 and a control module 803. In some embodiments, the processing device 140 may be a part of the control assembly 450. In some embodiments, the control module 803 may be a software implementation, and the control assembly 450 may be a hardware implementation. The control module 803 may implement functions (or a portion thereof) of the control assembly 450.
The obtaining module 801 may be configured to obtain data/information from one or more components of the medical imaging system 100. For example, the obtaining module 801 may obtain an instruction relating to a motion control of a gantry and/a counterweight assembly of an imaging device (e.g., the imaging device 110 or the imaging device 400) . The instruction may include motion parameters relating to a motion (e.g., a translation motion and/or a rotation motion) of the gantry (e.g., the first part 420-1 and/or the second part 420-2 of the gantry) . The instruction may include motion parameters relating to a motion (e.g., a translation motion) of the counterweight assembly 411. In some embodiments, the obtaining module 801 may obtain the instruction according to a user instruction, a size of the target object (e.g., a region of interest (ROI) in the target object) , the sufficiency demand of data detected in a field of view (FOV) of the detector 440, tube parameters of the radiation source 430 and parameters of the detector 440, or the like, or any combination thereof. More descriptions regarding the obtaining of the instruction may be found elsewhere in the present disclosure (e..g, operation 910 and the description thereof) .
The control module 803 may be configured to control the operation of one or more components of the medical imaging system 100. For example, the control module 803 may cause the gantry to rotate in a translation motion mode and/or a rotation motion mode. As another example, the control module 803 may cause the counterweight assembly 411 to move in a translation motion mode. As still another example, the control module 803 may cause the base 410 to move on the ground. As further another example, the control module 803 may cause the imaging device 400 to perform a scan on a subject during the motion of the gantry and/or the counterweight assembly 411.
It should be understood that the processing device 140 and its modules as shown in FIG. 8 may be implemented in various ways. For example, the processing device 140 and its modules may be implemented by hardware, software, or a combination of software and hardware. The portion of hardware may be realized by  using special logics. The portion of the software may be stored in a memory and executed by an appropriate instruction execution system (e.g., a microprocessor or specially designed hardware) . Those skilled in the art may understand that the above-mentioned methods and systems may be implemented using computer-executable instructions and/or be included in processor control codes. For example, a carrier medium (e.g., a disk, a CD, or a DVD-ROM) , a programmable memory (e.g., a read-only memory (firmware) ) , a data carrier (e.g., an optical or electronic signal carrier) may provide such codes. In some embodiments, the systems and their modules of the present disclosure may be implemented by a very large-scale integrated circuit or gate array, a semiconductor such as a logic chip and a transistor, hardware circuits of programmable hardware devices such as an FPGA and a programmable logic device. Alternatively, the systems and their modules may be implemented by software executed by various types of processors. Additionally or alternatively, the systems and their modules may be implemented by a combination of the foregoing hardware circuits and software (e.g., a firmware) .
It should be noted that the above description of the processing device 140 is provided for the purposes of illustration, and not intended to limit the scope of the present disclosure. It should be understood that for those skilled in the art, after understanding the principle of the systems and methods disclosed in the present disclosure, it is possible to arbitrarily combine various modules or form subsystems to connect with other modules, without departing from this principle. For example, the obtaining module 801 and the control module 803 may be different modules in a processing device. As another example, the obtaining module 801 and the control module 803 may be integrated into a single module to implement the functions of the obtaining module 801 and the control module 803. In some embodiments, the processing device 140 may include a storage module for storing data/information (e.g., the instruction) .
FIG. 9 is a flowchart illustrating an exemplary process for motion control of a device according to some embodiments of the present disclosure. In some  embodiments, process 900 may be implemented as a set of instructions (e.g., an application) stored in the storage device 150, storage 220, or storage 390. The processing device 140, the processor 210 and/or the CPU 340 may execute the set of instructions, and when executing the instructions, the processing device 140, the processor 210 and/or the CPU 340 may be configured to perform the process 900. The operations of the illustrated process presented below are intended to be illustrative. In some embodiments, the process 900 may be accomplished with one or more additional operations not described, and/or without one or more of the operations discussed. Additionally, the order of the operations of the process 900 illustrated in FIG. 9 and described below is not intended to be limiting. For illustration purposes, the process 900 may be described in connection with the imaging device as illustrated in FIG. 4, which is not intended to be limiting.
In some embodiments, the device (e.g., the imaging device 110 or the imaging device 400) may include a base (e.g., the base 410) , a gantry (e.g., including the first part 420-1 of the gantry and the second part 420-2 of the gantry) , a radiation source (e.g., the radiation source 430) , a detector (e.g., the detector 440) , etc. The base 410 may be configured to support one or more components (e.g., the gantry, the control assembly 450, etc. ) of the imaging device 400. The base 410 may include a hollow storage space for storing the counterweight assembly 411. The counterweight assembly 411 may be configured to balance the base 410 and the gantry. The counterweight assembly 411 may be movable with respect to the base 410. The gantry may be configured to support the radiation source 430 and the detector 440. The gantry may be movable with respect to the base 410. For example, the imaging device 400 may include one or more movement adjustment mechanisms (e.g., the first rail 460-1 and/or the second rail 460-2) . The gantry (e.g., the first part 420-1 of the gantry and the second part 420-2 of the gantry) may move horizontally with respect to the base 410 through the first rail 460-1 that is disposed between the base 410 and the gantry (e.g., the first part 420-1 of the gantry) . The radiation source 430 and the detector 440 may be oppositely arranged  and move together with the gantry. The control device 450 (e.g., the processing device 140) may be configured to control the motion of one or more components (e.g., the gantry, the base 410, the counterweight assembly 411, etc. ) of the imaging device 400.
In 910, the processing device 140 (e.g., the obtaining module 810) may obtain an instruction relating to a motion control of the gantry (e.g., the first part 420-1 of the gantry and/or the second part 420-2 of the gantry) and the counterweight assembly 411 of the imaging device 400.
In some embodiments, the instruction may include motion parameters relating to a motion (e.g., a translation motion and/or a rotation motion) of the gantry. For example, the motion parameters relating to the motion of the gantry may include one or more motion modes, an execution sequence of the one or more motion modes, a motion duration under one of the one or more motion modes, a motion speed under one of the one or more motion modes, a movement direction under one of the one or more motion modes, a motion range (e.g., a motion distance, a rotation angle, etc. ) under one of the one or more motion modes, or the like, or any combination thereof. The one or more motion modes may include a translation motion mode (e.g., the first motion mode as described in FIGs. 5A and 5B) , a rotation motion mode (e.g., the second motion mode as described in FIG. 6A, the third motion mode as described in FIG. 6B, etc. ) , or the like. The execution sequence of the one or more motion modes may include executing the motion modes successively, alternately, or simultaneously. The motion duration under one of the one or more motion modes may refer to a time length during which the gantry moves in the motion mode, a start time point when the gantry begins to move in the motion mode, an end time point when the gantry stops to move in the motion mode, etc.
For example, a motion speed under the first motion mode may include 0.1 cm/s, 0.2 cm/s, 0.3 cm/s, etc. A movement direction of the gantry under the first motion mode may include a movement direction along the X-axis (e.g., from the  position A3 to the position A4, from the position A4 to the position A3, etc., as shown in FIG. 5A) . A motion range (i.e., a motion distance) of the gantry under the first motion mode may be from 0 to a length of the first rail 460-1 (e.g., from 0 to 8 cm) . For example, the motion range of the gantry under the first motion mode may include 2 cm, 5 cm, 6 cm, 8 cm, etc. As another example, a motion speed of the gantry under the second motion mode may include 5°/s, 10°/s, 15°/s, etc. A motion direction of the gantry under the second motion mode may include a movement direction around the X-axis (e.g., from the position C1 to the position C2, from the position C2 to the position C1, etc., as shown in FIG. 6A) . A rotation axis (e.g., the rotation axis 620 as shown in FIG. 6A) of the second motion mode may be perpendicular to the plane of the gantry (e.g., the second part 420-2 of the gantry) . The rotation axis 620 of the second motion mode as shown in FIG. 6A may be parallel to or intersect with the movement direction of the first motion mode shown in FIGs. 5A and 5B. A movement duration of the gantry under the second motion mode may include 10 s, 15 s, 20 s, etc. A motion range (e.g., a motion angle) of the gantry under the second motion mode may be from 0° to 360° (e.g., 180°, 210°, 270°, 300°, etc. ) . As still another example, a motion speed of the gantry under the third motion mode may include 5°/s, 10°/s, 15°/s, etc. A motion direction of the gantry under the third motion mode may include rotating towards the positive direction of the X-axis (e.g., rotate from left to right as indicated by the arrow D in FIG. 6B) , rotate towards the negative direction of the X-axis (e.g., rotate from right to left as indicated by the arrow D in FIG. 6B) , etc. A motion duration of the gantry under the third motion mode may include 10 s, 15 s, 20 s, etc. A motion range (e.g., a rotation angle) of the gantry under the third motion mode may be from 0° to 360° (e.g., 180°, 210°, 270°, 300°, 330°, 360°, etc. ) . In some embodiments, the motion parameters relating to the motion of the gantry may be related to a timeline of the motion of the gantry. For example, the instruction of the motion control of the gantry may be related to controlling the gantry to move continuously in 5 minutes. As another example, the instruction of the motion control of the gantry may be  related to controlling the gantry to move every 5 minutes during a predetermined time period.
In some embodiments, the instruction may include motion parameters relating to a motion (e.g., a translation motion) of the counterweight assembly 411. For example, the motion parameters relating to the motion of the counterweight assembly 411 may include a motion mode, a motion duration of the counterweight assembly 411 under the motion mode, a motion speed of the counterweight assembly 411 under the motion mode, a movement direction of the counterweight assembly 411 under the motion mode, a motion range (e.g., a motion distance) of the counterweight assembly 411 under the motion mode, or the like, or any combination thereof. The motion mode of the counterweight assembly 411 may include a translation motion mode (also referred to as a fourth motion mode) . The motion duration of the counterweight assembly 411 under the fourth motion mode may refer to a time length during which the counterweight assembly 411 moves in the fourth motion mode, a start time point when the counterweight assembly 411 begins to move in the fourth motion mode, an end time point when the counterweight assembly 411 stops to move in the fourth motion mode, etc. The motion duration of the counterweight assembly 411 under the fourth motion mode may be the same as or substantially the same as the duration under the first motion mode. The movement direction of the counterweight assembly 411 under the fourth motion mode may be opposite to the movement direction of the gantry under the first motion mode. For example, when the movement direction of the gantry under the first motion mode is from left to right, the movement direction of the counterweight assembly 411 under the fourth motion mode may be from right to left. As another example, when the movement direction of the gantry under the first motion mode is from upward to downward, the movement direction of the counterweight assembly 411 under the fourth motion mode may be from downward to upward. The motion range of the counterweight assembly 411 under the fourth motion mode may be from 0 to a length of the third rail 412 (e.g., from 0 to 8 cm) . For example, the motion  range of the counterweight assembly 411 under the fourth motion mode may include 2 cm, 5 cm, 6 cm, 8 cm, etc. In some embodiments, the motion range of the counterweight assembly 411 under the fourth motion mode may be the same or substantially same as the motion range of the gantry under the first motion mode. In some embodiments, the processing device 140 may not obtain the instruction relating to the motion of the counterweight assembly 411 in operation 910. When the gantry is caused to move in operation 920, the processing device 140 may cause the counterweight assembly 411 to move automatically based on the motion of the gantry.
In some embodiments, the processing device 140 may predetermine and store the motion parameters relating to the motion of the gantry according to an actual imaging need. The processing device 140 may receive a user instruction for selecting one or more parameters from the motion parameters. The processing device 140 may determine the instruction relating to the motion control of the gantry based on the user instruction. For example, the motion parameters may be determined according to a size of the target object (e.g., a region of interest (ROI) in the target object) , the sufficiency demand of data detected in a field of view (FOV) of the detector 440, tube parameters of the radiation source 430 and parameters of the detector 440, or the like, or any combination thereof. In some embodiments, a plurality of scan protocols including a set of motion parameters may be pre-determined and provided for the user for selection. The processing device 140 may generate the instruction in response to the user selection. In some embodiments, the processing device 140 may determine motion parameters automatically, e.g., based on an imaging demand (e.g., a desired imaging quality thereof) . The processing device 140 may generate the instruction based on the motion parameters. In some embodiments, the instruction relating to the motion control of the gantry may be a default instruction of the medical system 100. In some embodiments, the processing device 140 may receive the instruction relating to the motion control of the gantry from an interactive device of the medical system 100  (e.g., the terminal 130 of the medical system 100, the control assembly of the imaging device 400, etc. ) . For example, a user (e.g., a doctor or an operator) may determine scan parameters (e.g., including the motion parameters) of the target object (e.g., a patient) according to the age, the gender, the weight, the shape, etc. of the patient. The user may input the motion parameters through the interactive device (e.g., a mouse, a keyboard, etc. of the terminal 130) to generate the instruction relating to the motion of the gantry. The processing device 140 may obtain the instruction relating to the motion of the gantry from the interactive device via a wireless or wired manner (e.g., the network 120) . In some embodiments, the processing device 140 may determine the instruction relating to the motion of the counterweight assembly 411 based on the instruction relating to the motion of the gantry. Alternatively, the processing device 140 may receive the instruction relating to the motion of the counterweight assembly 411 similar to the receiving of the instruction relating to the motion of the gantry.
In 920, the processing device 140 (e.g., the control module 803) may cause, based on the instruction, the gantry to move in the translation motion mode (e.g., the first motion mode) and/or the rotation motion mode (e.g., the second motion mode, the third motion mode) .
In some embodiments, the processing device 140 may generate a control signal relating to the motion of the gantry based on the instruction. The processing device 140 may transmit the control signal to one or more driving assembles. Each of the one or more driving assemblies may generate a driving force and transmit the driving force to a corresponding part of the gantry. The gantry may be driven to move by the driving force (s) . For example, the control signal may include a first signal relating to the first motion mode and a second signal relating to the second motion mode. The processing device 140 may transmit the first signal to a first driving assembly corresponding to the first part 420-1 of the gantry. The first driving assembly may transmit a first driving force to cause the first part 420-1 to move in the first motion mode. The processing device 140 may transmit the second signal  to a second driving assembly corresponding to the second part 420-2 of the gantry. The second driving assembly may transmit a second driving assembly to cause the second part 420-2 to move in the second motion mode.
In some embodiments, the processing device 140 may cause, based on the instruction, the gantry to move in the translation motion mode and the rotation motion mode successively or alternately. Taking the first motion mode and the second motion mode as an example, the processing device 140 may first cause the gantry to move in one of the first motion mode and the second motion mode, and then cause the gantry to move in another one of the first motion mode and the second motion mode. Specifically, the processing device 140 may cause the gantry to move from an initial location in one of the first motion mode and the second motion mode. The processing device 140 may cause the gantry to move back to the initial location. The processing device 140 may cause the gantry to move from the initial location in another one of the first motion mode and the second motion mode. Alternatively, the processing device 140 may cause the gantry to move from the initial location to a first location in one of the first motion mode and the second motion mode. The processing device 140 may cause the gantry to move from the first location to a second location in another one of the first motion mode and the second motion mode. The processing device 140 may cause the gantry to move from the second location to the initial location. In such situations, a motion trajectory of a focus of the imaging device 400 may be the same as or similar to that as described in FIG. 7B and scan data of the target object acquired during the motion of the gantry may be sufficient. Taking the first motion mode, the second motion mode, and the third motion mode as an example, the processing device 140 may cause the gantry to move in the first motion mode, the second motion mode, and the third motion mode successively or alternately according to 6 different orders (e.g., 
Figure PCTCN2020140107-appb-000001
) . Merely by way of example, the processing device 140 may cause the gantry to move from the initial location in the first motion mode and cause the gantry to move back to the initial location. The processing device 140 may cause the gantry to move from  the initial location in the second motion mode and cause the gantry to move back to the initial location. The processing device 140 may cause the gantry to move from the initial location in the third motion mode and cause the gantry to move back to the initial location. Alternatively, during the motion of the gantry under the first motion mode and/or the second motion mode, the processing device 140 may not cause the gantry to move back to the initial location except for the last motion mode (e.g., the third motion mode) in the execution sequence.
In some embodiments, the processing device 140 may cause, based on the instruction, the gantry to move in the translation motion mode and the rotation motion mode simultaneously. For example, the processing device 140 may cause the gantry to move in the first motion mode and the second motion mode simultaneously. In such situations, a motion trajectory of a focus of the imaging device 400 may be the same as or similar to that as described in FIG. 7C and scan data of the target object acquired during the motion of the gantry may be sufficient. As another example, the processing device 140 may cause the gantry to move in the first motion mode, the second motion mode, and the third motion mode simultaneously. In some embodiments, the processing device 140 may first cause the gantry to move in at least two of the first motion mode, the second motion mode, and the third motion mode simultaneously. The processing device 140 may then cause the gantry to move in another one of the first motion mode, the second motion mode, and the third motion mode. Alternatively, the processing device 140 may first cause the gantry to move in one of the first motion mode, the second motion mode, and the third motion mode. The processing device 140 may then cause the gantry to move in another two of the first motion mode, the second motion mode, and the third motion mode.
In 930, the processing device 140 (e.g., the control module 803) may cause, based on the instruction, the counter assembly 411 to move in the translation motion mode (e.g., the fourth motion mode) .
In some embodiments, the processing device 140 may cause the counterweight assembly 411 to move in the fourth motion mode and cause the gantry to move in the first motion mode simultaneously. The movement direction under the fourth motion mode may be opposite to that under the first motion mode. The movement range under the fourth motion mode may be the same as or different from that under the first motion mode. The motion duration (e.g., the start time and the end time) under the fourth motion mode may be the same as that under the first motion mode. For example, when the gantry moves from the initial location to the first location, the counterweight assembly 411 may move from a second initial location to a third location. When the gantry moves from the first location back to the initial location, the counterweight assembly 411 may move from the third location back to the second initial location. During the motion of the gantry and the counterweight assembly 411, the imaging device 400 may have a stable state (e.g., components of the imaging device may be balanced) and perform a scan on the subject.
In some embodiments, during the motion of the gantry and the counterweight assembly 411, the radiation source 430 of the imaging device 400 may emit the radiation beam on the target object continuously or at intervals according to the instruction. The processing device 140 may obtain the scan data of the target object detected by the detector 140 of the imaging device during the motion of the gantry and the counterweight assembly 411. The processing device 140 may reconstruct one or more images of the target object based on the scan data of the target object. For example, the processing device 140 may preprocess the scan data by performing a geometric position correction on the scan data. The processing device 140 may reconstruct the image (s) of the target object based on the preprocessed scan data. Further, the processing device 140 may cause the image (s) of the target object to be displayed for the user.
It should be noted that the above description regarding the process 900 is merely provided for the purposes of illustration, and not intended to limit the scope of  the present disclosure. For persons having ordinary skills in the art, multiple variations or modifications may be made under the teachings of the present disclosure. However, those variations and modifications do not depart from the scope of the present disclosure. In some embodiments, one or more operations may be omitted and/or one or more additional operations may be added. For example, an operation for generating the instruction may be added before the operation 910. As another example, an operation may be added for storing information/data that are used and/or generated in the process 900. In some embodiments, the operation 910 may include two sub-operations. One of the two sub-operations may be implemented to obtain a first instruction relating to the motion of the gantry. The other of the two sub-operations may be implemented to determine, based on the first instruction, a second instruction relating to the motion of the counterweight assembly 411. In some embodiments, the imaging device 400 may include a movement standby mechanism (e.g., an automatic control (APC) button, a hand switch control) . The user may actuate the movement standby mechanism. The processing device 140 may cause, based on the instruction, the gantry and/or the counterweight assembly 411 to move in response to the actuation of the movement standby mechanism.
Having thus described the basic concepts, it may be rather apparent to those skilled in the art after reading this detailed disclosure that the foregoing detailed disclosure is intended to be presented by way of example only and is not limiting. Various alterations, improvements, and modifications may occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested by this disclosure and are within the spirit and scope of the exemplary embodiments of this disclosure.
Moreover, certain terminology has been used to describe embodiments of the present disclosure. For example, the terms “one embodiment, ” “an embodiment, ” and/or “some embodiments” mean that a particular feature, structure or characteristic described in connection with the embodiment is included in at least  one embodiment of the present disclosure. Therefore, it is emphasized and should be appreciated that two or more references to “an embodiment” or “one embodiment” or “an alternative embodiment” in various portions of this specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined as suitable in one or more embodiments of the present disclosure.
Further, it will be appreciated by one skilled in the art, aspects of the present disclosure may be illustrated and described herein in any of a number of patentable classes or context including any new and useful process, machine, manufacture, or composition of matter, or any new and useful improvement thereof. Accordingly, aspects of the present disclosure may be implemented entirely hardware, entirely software (including firmware, resident software, micro-code, etc. ) or combining software and hardware implementation that may all generally be referred to herein as a “unit, ” “module, ” or “system. ” Furthermore, aspects of the present disclosure may take the form of a computer program product embodied in one or more computer-readable media having computer-readable program code embodied thereon.
A non-transitory computer-readable signal medium may include a propagated data signal with computer readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including electromagnetic, optical, or the like, or any suitable combination thereof. A computer-readable signal medium may be any computer-readable medium that is not a computer-readable storage medium and that may communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device. Program code embodied on a computer-readable signal medium may be transmitted using any appropriate medium, including wireless, wireline, optical fiber cable, RF, or the like, or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the present disclosure may be written in any combination of one or more programming languages, including an object-oriented programming language such as Java, Scala, Smalltalk, Eiffel, JADE, Emerald, C++, C#, VB. NET, Python or the like, conventional procedural programming languages, such as the "C" programming language, Visual Basic, Fortran, Perl, COBOL, PHP, ABAP, dynamic programming languages such as Python, Ruby, and Groovy, or other programming languages. The program code may execute entirely on the user′s computer, partly on the user′s computer, as a stand-alone software package, partly on the user′s computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user′s computer through any type of network, including a local area network (LAN) or a wide area network (WAN) , or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider) or in a cloud computing environment or offered as a service such as a Software as a Service (SaaS) .
Furthermore, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations, therefore, is not intended to limit the claimed processes and methods to any order except as may be specified in the claims. Although the above disclosure discusses through various examples what is currently considered to be a variety of useful embodiments of the disclosure, it is to be understood that such detail is solely for that purpose and that the appended claims are not limited to the disclosed embodiments, but, on the contrary, are intended to cover modifications and equivalent arrangements that are within the spirit and scope of the disclosed embodiments. For example, although the implementation of various components described above may be embodied in a hardware device, it may also be implemented as a software-only solution, e.g., an installation on an existing server or mobile device.
Similarly, it should be appreciated that in the foregoing description of embodiments of the present disclosure, various features are sometimes grouped  together in a single embodiment, figure, or description thereof to streamline the disclosure aiding in the understanding of one or more of the various inventive embodiments. This method of disclosure, however, is not to be interpreted as reflecting an intention that the claimed object matter requires more features than are expressly recited in each claim. Rather, inventive embodiments lie in less than all features of a single foregoing disclosed embodiment.
In some embodiments, the numbers expressing quantities, properties, and so forth, used to describe and claim certain embodiments of the application are to be understood as being modified in some instances by the term “about, ” “approximate, ” or “substantially. ” For example, “about, ” “approximate” or “substantially” may indicate ±20%variation of the value it describes, unless otherwise stated. Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that may vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the application are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable.
Each of the patents, patent applications, publications of patent applications, and other material, such as articles, books, specifications, publications, documents, things, and/or the like, referenced herein is hereby incorporated herein by this reference in its entirety for all purposes, excepting any prosecution file history associated with same, any of same that is inconsistent with or in conflict with the present document, or any of same that may have a limiting effect as to the broadest scope of the claims now or later associated with the present document. By way of example, should there be any inconsistency or conflict between the description, definition, and/or the use of a term associated with any of the incorporated material  and that associated with the present document, the description, definition, and/or the use of the term in the present document shall prevail.
In closing, it is to be understood that the embodiments of the application disclosed herein are illustrative of the principles of the embodiments of the application. Other modifications that may be employed may be within the scope of the application. Thus, by way of example, but not of limitation, alternative configurations of the embodiments of the application may be utilized in accordance with the teachings herein. Accordingly, embodiments of the present application are not limited to that precisely as shown and described.

Claims (57)

  1. A device, comprising:
    a gantry;
    a base configured to support the gantry; and
    a movement adjustment mechanism configured to guide a motion of the gantry, wherein
    the gantry is movable with respect to the base in two or more motion modes including a first motion mode and a second motion mode, the first motion mode being related to a translation motion, the second motion mode being related to a rotation motion.
  2. The device of claim 1, wherein the movement adjustment mechanism includes a first rail configured to guide the translation motion of the gantry in a first movement direction under the first motion mode.
  3. The device of claim 2, wherein the movement adjustment mechanism includes a second rail configured to guide the translation motion of the gantry in a second movement direction under the first motion mode.
  4. The device of claim 3, further comprising a counterweight assembly configured to balance the gantry and the base, wherein the counterweight assembly is movable in a fourth motion mode related to a translation motion.
  5. The device of claim 4, wherein the movement adjustment mechanism includes a third rail configured to guide the translation motion of the counterweight assembly in a third movement direction under the fourth motion mode.
  6. The device of claim 5, wherein the third movement direction is opposite to the first movement direction or the second movement direction.
  7. The device of claim 5, further comprising a supporting member configured to support the counterweight assembly.
  8. The device of claim 7, wherein the counterweight assembly, the supporting member, and the third rail are disposed in the base.
  9. The device of claim 2, wherein the first movement direction is parallel to a rotation axis of the rotation motion of the gantry in the second motion mode.
  10. The device of claim 3, wherein the second movement direction is perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
  11. The device of any one of claims 4-10, further comprising a control assembly configured to cause the gantry to move in the first motion mode and the second motion mode successively, alternately, or simultaneously.
  12. The device of claim 11, wherein the control assembly is further configured to cause the counterweight assembly to move in the fourth motion mode simultaneously with the gantry when the gantry is moving in the first motion mode.
  13. The device of any one of claims 1-12, wherein the gantry has a non-closed ring shape.
  14. The device of claim 13, wherein the gantry includes a C-arm gantry.
  15. The device of any one of claims 1-14, wherein the device includes an X-ray imaging device.
  16. The device of claim 15, wherein the X-ray imaging device includes a digital subtraction angiography device.
  17. The device of any one of claims 1-16, wherein the device is movable.
  18. The device of any one of claims 1-17, wherein the base is movable.
  19. The device of any one of claims 1-18, further comprising a radiation source and a detector disposed on the gantry, the radiation source and the detector being oppositely arranged and movable with the gantry.
  20. A system for motion control of a device, the device including a base and a gantry, the gantry being disposed on the base and movable with respect to the base, the system comprising:
    a storage device storing a set of instructions;
    at least one processor in communication with the storage device, wherein when executing the set of instructions, the at least one processor is configured to direct the system to perform operations including:
    obtaining an instruction relating to a motion control of the gantry; and
    causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode, the first motion mode being related to a translation motion, the second motion mode being related to a rotation motion.
  21. The system of claim 20, wherein a movement direction of the translation motion of the gantry in the first motion mode is parallel or perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
  22. The system of claim 21, wherein the rotation axis is perpendicular to a plane of the gantry.
  23. The system of claim 20, wherein a rotation angle of the rotation motion of the gantry in the second motion mode is less than 360°, 270°, or 180°.
  24. The system of claim 20, wherein the causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode includes:
    causing the gantry to move in the first motion mode and the second motion mode successively.
  25. The system of claim 24, wherein the causing the gantry to move in the first motion mode and the second motion mode successively includes:
    causing the gantry to move in one of the first motion mode and the second motion mode; and
    causing the gantry to move in another one of the first motion mode and the second motion mode.
  26. The system of claim 24, wherein the causing the gantry to move in the first motion mode and the second motion mode successively includes:
    causing the gantry to move from an initial location in one of the first motion mode and the second motion mode;
    causing the gantry to move back to the initial location; and
    causing the gantry to move from the initial location in another one of the first motion mode and the second motion mode.
  27. The system of claim 20, wherein the causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode includes:
    causing the gantry to move in the first motion mode and the second motion mode simultaneously.
  28. The system of claim 20, wherein the device includes a counterweight assembly, the operations further including:
    causing the counterweight assembly to move in a fourth motion mode related to a translation motion.
  29. The system of claim 20, the operations further including:
    causing the gantry to move in a third motion mode related to a rotation motion, a rotation axis of the rotation motion of the gantry in the third motion mode being perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
  30. The system of claim 29, wherein the causing the gantry to move in a third motion mode includes:
    causing the gantry to move in the first motion mode, the second motion mode, and the third motion mode successively or alternately.
  31. The system of claim 29, wherein the causing the gantry to move in a third motion mode includes:
    causing the gantry to move in the first motion mode, the second motion mode, and the third motion mode simultaneously.
  32. The system of any one of claims 20-31, wherein the gantry has a non-closed ring shape.
  33. The system of claim 32, wherein the gantry includes a C-arm gantry.
  34. The system of any one of claims 20-33, wherein the device includes an X-ray imaging device.
  35. The system of claim 34, wherein the X-ray imaging device includes a digital subtraction angiography device.
  36. The system of claim 34 or 35, wherein the X-ray imaging device is movable.
  37. The system of any one of claims 20-36, wherein the device further includes a radiation source and a detector disposed on the gantry, the radiation source and the detector being oppositely arranged and movable with the gantry.
  38. A method for motion control of a device, the device including a base and a gantry, the gantry being disposed on the base and movable with respect to the base, the method being implemented on a computing device including at least one processor and at least one storage device, the method comprising:
    obtaining an instruction relating to a motion control of the gantry; and
    causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode, the first motion mode being related to a translation motion, the second motion mode being related to a rotation motion.
  39. The method of claim 38, wherein a movement direction of the translation motion of the gantry in the first motion mode is parallel or perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
  40. The method of claim 39, wherein the rotation axis is perpendicular to a plane of the gantry.
  41. The method of claim 38, wherein a rotation angle of the rotation motion of the gantry in the second motion mode is less than 360°, 270°, or 180°.
  42. The method of claim 38, wherein the causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode includes:
    causing the gantry to move in the first motion mode and the second motion mode successively.
  43. The method of claim 42, wherein the causing the gantry to move in the first motion mode and the second motion mode successively includes:
    causing the gantry to move in one of the first motion mode and the second motion mode; and
    causing the gantry to move in another one of the first motion mode and the second motion mode.
  44. The method of claim 42, wherein the causing the gantry to move in the first motion mode and the second motion mode successively includes:
    causing the gantry to move from an initial location in one of the first motion mode and the second motion mode;
    causing the gantry to move back to the initial location; and
    causing the gantry to move from the initial location in another one of the first motion mode and the second motion mode.
  45. The method of claim 38, wherein the causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode includes:
    causing the gantry to move in the first motion mode and the second motion mode simultaneously.
  46. The method of claim 38, wherein the device includes a counterweight assembly, the operations further including:
    causing the counterweight assembly to move in a fourth motion mode related to a translation motion.
  47. The method of claim 38, further comprising:
    causing the gantry to move in a third motion mode related to a rotation motion, a rotation axis of the rotation motion of the gantry in the third motion mode being perpendicular to a rotation axis of the rotation motion of the gantry in the second motion mode.
  48. The method of claim 47, wherein the causing the gantry to move in a third motion mode includes:
    causing the gantry to move in the first motion mode, the second motion mode, and the third motion mode successively or alternately.
  49. The method of claim 47, wherein the causing the gantry to move in a third motion mode includes:
    causing the gantry to move in the first motion mode, the second motion mode, and the third motion mode simultaneously.
  50. The method of any one of claims 38-49, wherein the gantry has a non-closed ring shape.
  51. The method of claim 50, wherein the gantry includes a C-arm gantry.
  52. The method of any one of claims 38-51, wherein the device includes an X-ray imaging device.
  53. The method of claim 52, wherein the X-ray imaging device includes a digital subtraction angiography device.
  54. The method of claim 52 or 53, wherein the X-ray imaging device is movable.
  55. The method of any one of claims 38-54, wherein the device further includes a radiation source and a detector disposed on the gantry, the radiation source and the detector being oppositely arranged and movable with the gantry.
  56. A system for motion control of a device, the device including a base and a gantry, the gantry being disposed on the base and movable with respect to the base, the system comprising:
    an obtaining module configured to obtain an instruction relating to a motion control of the gantry; and
    a control module configured to cause, based on the instruction, the gantry to move in a first motion mode and a second motion mode, the first motion mode being related to a translation motion, the second motion mode being related to a rotation motion.
  57. A non-transitory computer readable medium, comprising executable instructions that, when executed by at least one processor, direct the at least one processor to perform a method for motion control of a device, the device including a base and a gantry, the gantry being disposed on the base and movable with respect to the base, the method comprising:
    obtaining an instruction relating to a motion control of the gantry; and
    causing, based on the instruction, the gantry to move in a first motion mode and a second motion mode, the first motion mode being related to a translation motion, the second motion mode being related to a rotation motion.
PCT/CN2020/140107 2019-12-30 2020-12-28 Systems and methods for motion control of a device WO2021136162A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911394622.6 2019-12-30
CN201911394622.6A CN111096760A (en) 2019-12-30 2019-12-30 Radiation imaging apparatus, motion control method, system, medium, and storage medium thereof

Publications (1)

Publication Number Publication Date
WO2021136162A1 true WO2021136162A1 (en) 2021-07-08

Family

ID=70425045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140107 WO2021136162A1 (en) 2019-12-30 2020-12-28 Systems and methods for motion control of a device

Country Status (2)

Country Link
CN (1) CN111096760A (en)
WO (1) WO2021136162A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111096760A (en) * 2019-12-30 2020-05-05 上海联影医疗科技有限公司 Radiation imaging apparatus, motion control method, system, medium, and storage medium thereof
CN111528881B (en) * 2020-05-09 2023-08-18 上海联影医疗科技股份有限公司 Scanning system based on C-shaped arm
WO2021228056A1 (en) * 2020-05-09 2021-11-18 上海联影医疗科技股份有限公司 Scanning apparatus, and method and system
WO2022116196A1 (en) * 2020-12-04 2022-06-09 西安大医集团股份有限公司 Real-time position monitoring method, and electronic device, system and storage medium
US11864938B2 (en) 2021-06-18 2024-01-09 GE Precision Healthcare LLC Imaging system with carbon fiber C-arm
CN114485741A (en) * 2022-01-24 2022-05-13 杭州堃博生物科技有限公司 C-arm machine and detection processing method, device, equipment and medium thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300205B2 (en) * 2005-11-25 2007-11-27 Grady John K Angio capable portable x-ray fluoroscopy unit with sliding C-arm and variable pivot
US7502174B2 (en) * 2006-11-23 2009-03-10 General Electric Company System and method for imaging
CN104783820A (en) * 2014-01-20 2015-07-22 三星电子株式会社 Method of tracing region of interest, radiographic apparatus, and method of controlling radiographic apparatus
CN108601569A (en) * 2016-02-03 2018-09-28 格罗伯斯医疗有限公司 Portable medical imaging system
CN109562638A (en) * 2016-08-05 2019-04-02 皇家飞利浦有限公司 Medical device with omni-directional wheel and omni-directional wheel arragement construction
CN110090035A (en) * 2018-01-30 2019-08-06 格罗伯斯医疗有限公司 Portable medical imaging system
CN111096760A (en) * 2019-12-30 2020-05-05 上海联影医疗科技有限公司 Radiation imaging apparatus, motion control method, system, medium, and storage medium thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6092928A (en) * 1998-11-12 2000-07-25 Picker International, Inc. Apparatus and method to determine the relative position of a detector array and an x-ray tube focal spot
JP5389345B2 (en) * 2007-10-04 2014-01-15 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X-ray CT system
EP2868277B1 (en) * 2013-11-04 2017-03-01 Surgivisio Method for reconstructing a 3d image from 2d x-ray images
EP3442421B1 (en) * 2016-04-11 2020-11-25 Dedicated2Imaging, LLC C-arm with integrated ct system
CN208610867U (en) * 2017-08-11 2019-03-19 上海优医基医疗影像设备有限公司 A kind of multi-action computer layer radiography system
CN109480878B (en) * 2018-12-07 2021-01-12 上海联影医疗科技股份有限公司 C-arm X-ray apparatus and method of acquiring X-ray image

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7300205B2 (en) * 2005-11-25 2007-11-27 Grady John K Angio capable portable x-ray fluoroscopy unit with sliding C-arm and variable pivot
US7502174B2 (en) * 2006-11-23 2009-03-10 General Electric Company System and method for imaging
CN104783820A (en) * 2014-01-20 2015-07-22 三星电子株式会社 Method of tracing region of interest, radiographic apparatus, and method of controlling radiographic apparatus
CN108601569A (en) * 2016-02-03 2018-09-28 格罗伯斯医疗有限公司 Portable medical imaging system
CN109562638A (en) * 2016-08-05 2019-04-02 皇家飞利浦有限公司 Medical device with omni-directional wheel and omni-directional wheel arragement construction
CN110090035A (en) * 2018-01-30 2019-08-06 格罗伯斯医疗有限公司 Portable medical imaging system
CN111096760A (en) * 2019-12-30 2020-05-05 上海联影医疗科技有限公司 Radiation imaging apparatus, motion control method, system, medium, and storage medium thereof

Also Published As

Publication number Publication date
CN111096760A (en) 2020-05-05

Similar Documents

Publication Publication Date Title
WO2021136162A1 (en) Systems and methods for motion control of a device
US11369805B2 (en) System and method for pretreatement imaging in adaptive radiation therapy
US11679279B2 (en) System and method for adaptive radiation therapy
US11877873B2 (en) Systems and methods for determining scanning parameter in imaging
US11872063B2 (en) System and method for diagnosis and treatment
US20210267558A1 (en) Systems and methods for x-ray scanner positioning
US11395928B2 (en) Systems and methods for CT imaging in image-guided radiotherapy
US11738210B2 (en) Medical systems and methods
US20200406064A1 (en) X-ray imaging system for radiation therapy
US20220192619A1 (en) Imaging systems and methods
US10925570B2 (en) Systems and methods for controlling an X-ray imaging device
EP3806129A1 (en) Systems and methods for focal point position correction
US20220313202A1 (en) Systems and methods for generating calibration images for couch position calibration
US11246208B2 (en) Systems and methods for focus control in x-rays
US20230083704A1 (en) Systems and methods for determining examination parameters
US20220323027A1 (en) Imaging systems and methods
US11963806B2 (en) Systems and methods for a parameter adjustment of a multi-energy computed tomograph device
WO2021164553A1 (en) Protection system of imaging device and control method thereof
US20220211337A1 (en) Systems and methods for a parameter adjustment of a multi-energy computed tomograph device
US11974383B2 (en) Systems and methods for focus control in X-rays
US20210290979A1 (en) Systems and methods for adjusting beam-limiting devices
US20230298233A1 (en) Systems and methods for material decomposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20911047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20911047

Country of ref document: EP

Kind code of ref document: A1