WO2021164455A1 - 液晶模组、电子设备及屏幕交互系统 - Google Patents

液晶模组、电子设备及屏幕交互系统 Download PDF

Info

Publication number
WO2021164455A1
WO2021164455A1 PCT/CN2021/070876 CN2021070876W WO2021164455A1 WO 2021164455 A1 WO2021164455 A1 WO 2021164455A1 CN 2021070876 W CN2021070876 W CN 2021070876W WO 2021164455 A1 WO2021164455 A1 WO 2021164455A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared light
infrared
liquid crystal
photoelectric sensor
light
Prior art date
Application number
PCT/CN2021/070876
Other languages
English (en)
French (fr)
Inventor
熊充
余俊逸
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to US17/800,424 priority Critical patent/US20230081976A1/en
Priority to EP21757467.2A priority patent/EP4083695A4/en
Priority to JP2022549360A priority patent/JP7471432B2/ja
Publication of WO2021164455A1 publication Critical patent/WO2021164455A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/135Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied
    • G02F1/1354Liquid crystal cells structurally associated with a photoconducting or a ferro-electric layer, the properties of which can be optically or electrically varied having a particular photoconducting structure or material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04108Touchless 2D- digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface without distance measurement in the Z direction

Definitions

  • This application relates to a liquid crystal module, electronic equipment and a screen interaction system.
  • Liquid crystal display has the characteristics of small size, low power consumption, non-radiation and soft picture, and has a wide range of applications in various electronic devices.
  • the interaction schemes between humans and electronic devices with LCDs mainly include on-screen touch interaction and off-screen interaction.
  • the on-screen touch interaction solution includes: attaching a conductive film with a metal grid to the surface of the LCD, adding infrared emitting light bars and infrared receiving light bars on the upper and lower or left and right outer frames of the LCD, and making capacitance detection inside the LCD ⁇ circuits, etc.
  • Off-screen interaction schemes mainly use the spatial electric field generated by the self-capacitance in the LCD for floating touch, and attach a camera above the LCD to obtain hand movements for gesture recognition.
  • Various schemes have their own advantages and disadvantages.
  • the purpose of this application is to provide a solution that can realize on-screen interaction and off-screen interaction at the same time.
  • the first aspect of the present application provides a liquid crystal module.
  • the liquid crystal module may include: a liquid crystal panel, a backlight assembly, and a photoelectric sensor array. Located between the photoelectric sensor array and the liquid crystal panel; the backlight assembly includes a reflective component, at least a part of the reflective component is an infrared transmissive area that can transmit infrared light; the photoelectric sensor array includes a plurality of photoelectric sensors, and the plurality of photoelectric sensors can receive Infrared light passing through the infrared transmission area.
  • a photoelectric sensor array is provided in the liquid crystal module to receive infrared light signals, thereby providing a low-cost interactive solution for devices with liquid crystal modules.
  • a plurality of openings may be provided on the reflective component, and the area where the plurality of openings are located is the infrared transmission area.
  • the multiple openings can correspond to multiple photoelectric sensors in the photoelectric sensor array one-to-one. This method of setting the infrared transmission area has low cost and is easy to operate.
  • the surface of the plurality of photoelectric sensors close to the backlight assembly may be provided with a selective reflection component, for example, a wavelength selective reflection sheet for transmitting infrared light passing through the opening and reflecting visible light passing through the opening, wherein the selective reflection component
  • a selective reflection component for example, a wavelength selective reflection sheet for transmitting infrared light passing through the opening and reflecting visible light passing through the opening, wherein the selective reflection component
  • the area is not less than the area of the opening.
  • a selective reflection component such as a wavelength selective reflection sheet can also be arranged at the opening of the reflection component to transmit infrared light and reflect visible light.
  • the area of the selective reflection component is not less than the area of the opening.
  • the entire reflective member may be a reflective member capable of reflecting visible light and transmitting infrared light, for example, the reflective member may be a wavelength selective reflector sheet.
  • the second aspect of the present application provides an electronic device.
  • the electronic device may include a memory, a processor, and the aforementioned first aspect or the liquid crystal module provided by any implementation of the first aspect.
  • the memory is used to store instructions and a photoelectric sensor.
  • the processor is used to read the instruction and the position of the photoelectric sensor, and determine the position of the infrared light projected on the liquid crystal panel according to the position of the photoelectric sensor and the intensity of the infrared light received by the photoelectric sensor.
  • the processor is used to: perform Gaussian fitting on the position of the photoelectric sensor and the intensity of the infrared light received by the photoelectric sensor to obtain the position of the intensity peak, where the intensity peak is the intensity peak of the infrared light received by the photoelectric sensor;
  • the position of the intensity peak is regarded as the position where the infrared light is projected on the liquid crystal panel. Since the intensity peak is the result of Gaussian fitting, it may not be one of the intensity data received by each photoelectric sensor, but higher than the infrared light intensity data received by all photoelectric sensors; this infrared light intensity peak
  • the position of may not be the position of a photoelectric sensor, but a position between two or more adjacent sensors. This method can more accurately locate the projection position of the infrared light.
  • the processor is used to determine the highest intensity among the intensities of the infrared light received by the photoelectric sensor, and use the position of the photoelectric sensor receiving the highest intensity as the position where the infrared light is projected on the liquid crystal panel. Using this method that does not perform data fitting, but directly finds the photoelectric sensor with the highest received light intensity, and uses its position as the projection position of the infrared light, the response speed of the system is higher.
  • the infrared light may be a pulsed infrared light signal
  • the frequency of the pulsed infrared light signal may be half of the driving frequency of the photoelectric sensor array.
  • the infrared light signal is modulated to half of the driving frequency of the control unit of the photoelectric sensor array by using the pulse signal.
  • the electronic device can also more easily determine whether the received infrared light signal is the infrared light emitted by the matched infrared light emitter.
  • the third aspect of the present application provides a screen interaction system.
  • the screen interaction system may include an electronic device and an infrared light emitter.
  • the infrared light emitter is used to emit infrared light.
  • the electronic device may include a liquid crystal module and a liquid crystal module.
  • the group includes a liquid crystal panel, a backlight assembly, and a photosensor array.
  • the photosensor array, the backlight assembly, and the liquid crystal panel are stacked in sequence; the backlight assembly includes a reflective part that is used to reflect visible light; wherein, at least a part of the reflective part is capable of reflecting visible light.
  • the infrared transmission area of the infrared light emitted by the infrared light transmitter is transmitted;
  • the photoelectric sensor array includes a plurality of photoelectric sensors, and the plurality of photoelectric sensors can receive the infrared light that passes through the infrared transmission area.
  • the infrared light emitter may include: a pulse drive device, which can be used to modulate the infrared light emitted by the infrared light emitter, so that the light emitted by the infrared light emitter is a pulsed infrared light signal; wherein, pulsed infrared light
  • the frequency of the optical signal is half of the driving frequency of the photoelectric sensor array.
  • This application uses a pulse signal to modulate the infrared light signal to half of the drive frequency of the control unit of the photoelectric sensor array. On the one hand, it can remove the interfering light signal by making a difference between the data of the two frames before and after, thereby effectively improving the anti-interference ability of the system. On the other hand, by judging the frequency of the received infrared light signal, the electronic device can also more easily determine whether the received infrared light signal is the infrared light emitted by the matched infrared light emitter.
  • the photoelectric sensor array is arranged in the liquid crystal module of the electronic device, and the infrared light emitter is used to communicate with the photoelectric sensor array in the electronic device on or off the screen of the electronic device, so that users can communicate with each other at a lower cost.
  • Fig. 1 shows a schematic diagram of a screen interaction system according to an embodiment of the present application.
  • Fig. 2 shows a structural example of an electronic device according to an embodiment of the present invention.
  • Fig. 3 shows an example of a photosensor array according to an embodiment of the present application.
  • Fig. 4 shows a schematic diagram of the internal structure of an infrared light emitter according to an embodiment of the present application.
  • FIG. 5A shows one of the structural examples of the reflective sheet according to the embodiment of the present application.
  • Fig. 5B shows an example of sticking a film on a photoelectric sensor according to an embodiment of the present application.
  • Fig. 6 shows the second structural example of the reflective sheet according to the embodiment of the present application.
  • FIG. 7 shows the third example of the structure of the reflective sheet according to the embodiment of the present application.
  • Fig. 8 shows an example of a control system of a photosensor array according to an embodiment of the present application.
  • Fig. 9A shows an example in which an infrared light spot covers a plurality of photoelectric sensors according to an embodiment of the present application.
  • Fig. 9B shows the light intensity values respectively received by each of the nine photoelectric sensors in Fig. 9A.
  • FIG. 10A shows an example of light intensity data of the k-th frame corresponding to the 9 photoelectric sensors covered by the infrared light spot under an ideal situation according to an embodiment of the present application.
  • FIG. 10B shows an example of light intensity data of the k+1 frame corresponding to the 9 photoelectric sensors covered by the infrared light spot under an ideal situation according to an embodiment of the present application.
  • FIG. 11A shows an example of light intensity data of the k-th frame corresponding to the 9 photoelectric sensors covered by the infrared light spot under actual conditions according to an embodiment of the present application.
  • FIG. 11B shows an example of the light intensity data of the k+1 frame corresponding to the 9 photoelectric sensors covered by the infrared light spot in the actual situation according to the embodiment of the present application.
  • Illustrative embodiments of the present application include, but are not limited to, liquid crystal modules, screen interaction methods, and screen interaction systems.
  • the solution provided by this application aims to integrate the on-screen interaction and off-screen interaction between users and electronic devices with liquid crystal display (LCD). Provide a low-cost interactive solution suitable for LCD.
  • LCD liquid crystal display
  • on-screen interaction mainly refers to interaction that needs to touch the display screen.
  • a stylus also known as a "stylus"
  • the electronic device detects the movement track of the stylus or finger, and sets it according to the preset The rules perform the corresponding actions.
  • a writing whiteboard is a typical on-screen interactive application, that is, a stylus is used to slide on the surface of the liquid crystal panel, so that the electronic device can detect the sliding track of the stylus to realize the function of writing.
  • the stylus can be an active stylus or a passive stylus.
  • An active stylus can also be called an "active pen.”
  • a circuit is provided in the active pen, and the active pen can transmit a signal to the screen so that the screen can detect the coordinates of the pen.
  • Passive stylus can also be called
  • Passive pen is similar to the function of a finger.
  • the passive pen itself does not emit a signal, but it can change the capacitance of the touch screen when it is in contact with the touch screen.
  • Off-screen interaction mainly refers to interaction that does not touch the screen surface.
  • the user's interactive information can be recognized through the posture, pointing position, or movement track of the hand or stylus outside the screen surface in conjunction with the UI interface of the electronic device; menu selection or control operation can be realized.
  • Common off-screen interaction scenarios include: sports games (for example, by controlling the active pen to swipe the LCD screen in front of the screen, electronic devices can realize some sports games by detecting the trajectory of the active pen swiping, such as cutting watermelons, etc. ), or remote control (click on the menu interface on the LCD screen through the remote control or active pen to achieve remote operation, such as remote shopping, etc.).
  • Fig. 1 shows a screen interaction system according to an embodiment of the present application.
  • an embodiment of the present application provides a screen interaction system 10 including an infrared light emitter 200 and an electronic device 100.
  • the electronic device 100 may be various devices including LCDs, for example, televisions, game consoles, display devices, outdoor display screens, music players, desktop computers, laptop computers, tablet computers, etc. kind of electronic equipment.
  • Fig. 2 shows a structural example of an electronic device 100 according to an embodiment of the present invention.
  • the electronic device 100 may include a processor 109, a display 101, a sensor module 102, a wireless communication module 103, a memory 104, a power supply 105, an audio module 107, and so on.
  • the processor 109 may include one or more processing units or devices, for example, may include a central processing unit (CPU), an image processor GPU (Graphics Processing Unit), a digital signal processor DSP, a microprocessor MCU (Micro -Programmed Control Unit), AI (Artificial Intelligence) processor or programmable logic device FPGA (Field Programmable Gate Array) and other processing modules or processing circuits.
  • the different processing units may be independent devices or integrated in one or more processors.
  • a storage unit may be provided in the processor 109 to store instructions and/or data.
  • the display 101 is used to display a human-computer interaction interface, images, videos, and the like.
  • the display 101 may be an LCD.
  • the sensor module 102 may include a photoelectric sensor for receiving infrared light, such as an infrared photodiode in the following text.
  • the sensor module may also include other sensors, such as a pressure sensor, a gyroscope sensor, an air pressure sensor, a magnetic sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, etc.
  • the wireless communication module 103 may include an antenna, and transmit and receive electromagnetic waves via the antenna.
  • the wireless communication module 103 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), bluetooth (BT), and global navigation satellites.
  • WLAN wireless local area networks
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • FM near field communication technology
  • NFC near field communication
  • infrared technology infrared, IR
  • the electronic device 100 may communicate with the network and other devices through wireless communication technology.
  • the power supply module 105 may include a power supply, a power management component, and the like.
  • the power management component is used to manage the charging of the power supply and the power supply of the power supply to other modules.
  • the audio module 107 is used for converting digital audio information into an analog audio signal for output, or converting an analog audio input into a digital audio signal.
  • the audio module 107 can also be used to encode and decode audio signals.
  • the audio module 107 may be provided in the processor 109, or part of the functional modules of the audio module 107 may be provided in the processor 109.
  • the audio module 107 may include a speaker 1071, an earpiece 1072, a microphone 1073 and a headphone interface 1074.
  • the speaker 1071 is also called a “speaker” and is used to convert audio signals into sound signals for output.
  • Microphone 1073 is also called “microphone” or “microphone”, which is used to convert sound signals into electrical signals.
  • the electronic device 100 may be provided with at least one microphone 1073. In other embodiments, the electronic device 100 may be provided with two microphones 1073, which can implement noise reduction functions in addition to collecting sound signals. In other embodiments, the electronic device 100 may also be provided with three, four or more microphones 1073 to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions.
  • the earphone interface 1074 can be used to connect earphones.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the electronic device 100.
  • the electronic device 100 may include more or fewer components than those shown in the figure, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the LCD in the electronic device 100 may include a liquid crystal module 150.
  • the liquid crystal module 150 may include a liquid crystal panel 110, a back light unit (BLU) 120 and a photosensor array 130 that are stacked in sequence, and the BLU 120 is located in the photosensor array 130 and the liquid crystal panel 110. between.
  • BLU back light unit
  • the liquid crystal panel 110 is a basic component of the liquid crystal module 150.
  • the liquid crystal display is passively illuminated.
  • the liquid crystal panel 110 itself does not emit light, but is illuminated by the BLU 120 below it.
  • the liquid crystal panel 110 uses liquid crystal as the basic material.
  • the liquid crystal material is filled between two parallel plates. The arrangement of the molecules inside the liquid crystal material is changed by voltage, the light transmittance of the external light source is changed, and the electro-optical conversion is completed to achieve light shielding and The purpose of light transmission, so as to display different shades and scattered images, and then use the different excitations of the three primary color signals of R, G, and B, and add a color filter layer between the two plates to realize the display of color images. .
  • the light emitted by the BLU 120 When the light emitted by the BLU 120 is irradiated on the liquid crystal panel 110, the light will first pass through the lower polarizer and be transmitted upward. After the light changes the polarization direction, it contacts the color filter to produce colors, and finally enters the upper polarizer. After the polarization direction is changed by the liquid crystal, part of the light can be emitted, and part of it will be absorbed. Each pixel on the entire liquid crystal panel can determine the intensity of the emitted light separately to produce an image.
  • the BLU 120 is used to supply sufficient brightness and uniformly distributed light for the liquid crystal panel 110, and the luminous effect of the BLU 120 will directly affect the visual effect of the LCD.
  • BLU usually contains various parts such as light-emitting parts, light-guiding parts, and light-reflecting parts.
  • FIG. 1 shows an example of a basic structure of the BLU 120 in the liquid crystal module 150.
  • the BLU 120 may be a flat uniform lighting device, which may include a light source 124, an optical film 121, a light guide plate 122, and a reflective sheet 123.
  • the light source 124 may include, but is not limited to, a cold cathode fluorescent tube or an LED light bar.
  • the light source 124 may be arranged on both sides or one side of the entire BLU 120 (may be the long side or the short side).
  • the cold cathode tube is a linear light source, and the LED is a point light source.
  • the light guide plate 122 is needed to convert these light sources into a surface light source.
  • the light guide plate 122 is used as a light guide component in the BLU.
  • the light guide plate 122 functions to guide the scattering direction of the light, so as to improve the brightness of the panel and ensure the uniformity of the brightness of the panel.
  • the light guide plate 122 is generally made of acrylic plastic with high light transmittance, and the surface is very smooth and flat, so that most of the internal light will be regularly and totally reflected on the flat surface, and will not be emitted to the outside of the light guide plate 122.
  • the bottom of the light guide plate 122 of the liquid crystal module 150 is usually printed with white dots. At the position where the light guide plate is printed with dots, the light will no longer be totally reflected regularly but will be emitted above the light guide plate 122.
  • Controlling the density of dots at each location can control how much light the light guide plate emits at this location.
  • the dots of the precisely designed light guide plate 122 can spread the incident light from both sides evenly on the entire plane.
  • An optical film 121 may be arranged above the light guide plate 122, and the optical film 121 can perform functions such as uniform light and converging large-angle light for frontal observation.
  • the reflective sheet 123 as a light-reflecting component in the BLU, is usually set at the bottom of the light guide plate 122, and can be used to reflect the light in the propagation process, and reflect the light leaking under the light guide plate 122 back to the area where the light guide plate 122 is located, so that the light source 124 emits light.
  • the utilization of light is maximized.
  • the structure of the BLU 120 shown in FIG. 1 is only an example for illustration, and is not a limitation to the present application.
  • various BLUs of different structures can be adopted according to actual conditions, for example, a side-light type BLU with a light source placed on the side, a direct-type BLU with a light source placed directly below, and use of heat
  • the cathode tube is used as the light source, the air is used as the light source transmission medium, and the hollow BLU.
  • the photosensor array 130 is disposed under the reflective sheet 123 of the backlight assembly 120, that is, the side of the BLU away from the liquid crystal panel 110.
  • the photoelectric sensor array 130 may include multiple photoelectric sensors.
  • the photoelectric sensor may be an infrared photoelectric sensor, and the form of the photoelectric sensor may include, but is not limited to, a patch photodiode (PD) .
  • PD patch photodiode
  • the BLU 120 can transmit infrared light
  • the infrared light emitted by the infrared light emitter 200 can pass through the liquid crystal panel 110 and the BLU 120 to reach the infrared photoelectric sensor.
  • each photoelectric sensor in the photoelectric sensor array 130 receives the infrared light
  • the light intensity can lock the center position of the infrared light emitted by the infrared light emitter 200, thereby realizing the interaction between the user and the electronic device 100.
  • FIG. 3 shows an example of a photosensor array 130 according to an embodiment of the present application.
  • a plurality of infrared PDs 132 can be fixed on a substrate 131.
  • the substrate 131 can be a printed circuit board (PCB), and the plurality of infrared PDs 132 are preset
  • the arrangement is regularly fixed on the PCB board to form a photoelectric sensor array 130, which is uniformly driven by the driving board 133.
  • a drive control circuit may be provided on the drive board 133 for driving the infrared PD 132 on the control board 131.
  • the substrate 131 can be divided into multiple pieces as shown in FIG. 3, and a part of the infrared PD 132 is provided on each substrate 131; or, the substrate 131 can also be a whole piece, and all the infrared PDs 132 are fixed together. Type on the substrate 131.
  • the driving board 133 may be integrated with the substrate 131 provided with the infrared PD 132, or may be separated from the substrate 131 provided with the infrared PD 132 and provided separately.
  • the infrared light transmitter 200 can be implemented in an infrared laser pointer, a remote control, etc., for emitting infrared light that matches the infrared PD 132 in the photoelectric sensor array 130, that is, the wavelength of the infrared light transmitter 200 and the wavelength of the infrared PD 132
  • the response range must be matched. For example, when the wavelength of the infrared light emitter is 840 nm, the response wavelength range of the infrared PD 132 must cover 840 nm.
  • the infrared light transmitter 200 may include a housing 203, a laser 201, a collimating lens 202, and a switch (not shown).
  • the laser 201 may be a vertical-cavity surface-emitting laser (VCSEL).
  • VCSEL vertical-cavity surface-emitting laser
  • the collimating lens 202 is used to convert the light emitted by the VCSEL into parallel light.
  • the user controls the infrared light emitter 200 to emit infrared light through the switch, and irradiates it on the LCD of the electronic device 100, and locks the indicated position according to the light signal received by the infrared PD 132 to realize interaction.
  • the structure of the infrared light transmitter 200 shown in FIG. 4 is only an example, and is not a limitation to the present application.
  • the infrared light transmitter 200 may include more or With fewer components, its structure can also be changed according to actual conditions.
  • the reflective sheet 123 in the BLU 120 can usually reflect more than 98% of visible light and infrared light, in order to enable the infrared PD 132 to smoothly receive the infrared light emitted by the infrared light emitter, the reflective sheet 123 can be processed so that it can Transmit infrared light.
  • FIG. 5A shows a structural example of the reflective sheet 123 according to an embodiment of the present application.
  • the reflective sheet 123 is a reflective sheet of common material that reflects both visible light and infrared light.
  • the infrared PD 132 In order to enable the infrared PD 132 to smoothly receive the infrared light emitted by the infrared light emitter, it can be based on the infrared PD 132 In the arrangement of, an opening is provided at a position corresponding to the infrared PD 132 on the surface of the reflective sheet 123 of common material to facilitate the transmission of infrared light.
  • the reflective sheet 123 includes a common reflective material 401 and an opening 402 provided on the surface of the common reflective material 401.
  • the opening 402 may be a through hole, and the position of the opening 402 corresponds to the position of the photosensitive area of the infrared PD 132.
  • the infrared PD 132 can receive infrared light through the opening 402.
  • the opening 402 can be set in various shapes such as a circle or a polygon, which is not limited here.
  • the infrared PD 132 arranged under the reflective sheet can receive infrared light, and the cost is low. Even if other light (for example, visible light) passes through the opening 402 and is projected onto the infrared PD 132 together with infrared light, the infrared PD 132 can also sense the infrared light.
  • a small piece of wavelength selective reflective sheet for example, an enhanced specular reflector (ESR) 1320, as shown in Figure 5B
  • the wavelength selective reflector 1320 is used to reflect the visible light irradiated on the surface of the infrared PD 132, while transmitting the infrared light irradiated on the surface of the infrared PD 132 .
  • the wavelength selective reflector 1320 is used to reflect the visible light emitted from the opening 402 back to the conductive area, which can ensure the utilization rate of the light emitted by the light source 124, thereby improving the clarity of the liquid crystal screen.
  • the interference of non-infrared light on the infrared PD132 can be prevented, and the sensitivity and efficiency of the infrared PD132 can be improved.
  • the area of the wavelength selective reflector 1320 attached to the surface of the infrared PD 132 is preferably not less than the area of the opening 402 to ensure the reflection effect.
  • the area of the wavelength selective reflector 1320 attached to the surface of the infrared PD 132 The shape of the wavelength selective reflection sheet 1320 on the surface may be the same as the shape of the opening 402, or it may be inconsistent with the shape of the opening 402 but the area is large enough to cover the size of the opening 402.
  • FIG. 6 shows another structural example of the reflective sheet 123 according to the embodiment of the present application.
  • the reflective sheet 123 may include two kinds of reflective materials, one is a reflective material 501 that reflects both visible light and infrared light, and the other is a reflective material that can reflect visible light and transmit infrared light ( For example, ESR) 502.
  • the ESR 502 can be set at a position corresponding to the photosensitive area of the infrared PD 132, so that the infrared PD 132 can receive infrared light through the ESR 502.
  • ESR infrared light
  • openings can be provided on the surface of the reflective sheet 123 of common material at positions corresponding to the infrared PD 132, but the reflective material 502 that reflects visible light and transmits infrared light is no longer attached to the infrared PD 132 is attached to the opening, so that the reflective material of the area corresponding to the infrared PD 132 photosensitive area is the reflective material 502 of the multilayer film structure that reflects visible light and transmits infrared light, while the other areas are ordinary.
  • a reflective material 501 that reflects visible light and infrared light.
  • FIG. 7 shows another structural example of the reflective sheet 123 according to the embodiment of the present application.
  • a reflective material 601 with a multilayer film structure that can reflect visible light while transmitting infrared light can also be directly used as the reflective sheet 123 to be placed on the infrared PD.
  • the reflective sheet 123 is a wavelength selective reflective sheet capable of reflecting visible light while transmitting infrared light.
  • FIG. 5A to FIG. 7 show various design examples of the reflective sheet 123.
  • those skilled in the art can also use other methods to design the reflective sheet 123 on the basis of the foregoing structural examples, so as to make the BLU 120
  • the infrared light can be transmitted smoothly, so that the infrared PD 132 disposed under the BLU 120 can smoothly receive the infrared light emitted by the infrared light transmitter 200.
  • the infrared PD 132 After the infrared PD 132 receives the infrared light emitted by the infrared light emitter 200, it can lock the position indicated by the user through the infrared light emitter by analyzing the light intensity of each infrared PD 132 in the photoelectric sensor array 130.
  • the photosensor array 130 disposed under the reflective sheet 123 may include a plurality of infrared PDs 132.
  • the position of each infrared PD 132 may be pre-stored in the memory 104 of the electronic device 100 .
  • the location of the infrared PD 132 can be coordinates, a number, or other information that can indicate the location of the infrared PD. In the embodiment of the present invention, a coordinate is taken as an example for description.
  • a low-cost driving and control scheme can be adopted for the photoelectric sensor array 130 composed of patch infrared PDs. As shown in FIG.
  • a single-chip microcomputer or FPGA is used as the control unit 810.
  • the rows and columns of the PD array are controlled.
  • One channel of the control unit 810 can control the signal reception of a row switch transistor or a row of PDs of the PD array (or one channel controls a row switch transistor of the PD array or the signal reception of a row of PDs), then, for n rows
  • the m-column PD array 130 can realize drive control with only n+m channels. For example, taking 200 PDs with 20 rows and 10 columns as an example, only 30 channels can be driven.
  • the control unit 810 can collect the signal of each PD in a row-by-row or column-by-column scanning manner.
  • the driving frequency of the control unit 810 can be set.
  • the driving frequency can be 240 Hz, that is, 240 times per second, and the control unit 810 can transmit 240 frames per second of the PD array signal to the processor 109 of the electronic device 100 .
  • the infrared light When the user holds the infrared light emitter to illuminate the liquid crystal panel 110 of the electronic device 100, the infrared light will pass through the liquid crystal panel 110 and the backlight module 120 and irradiate the photoelectric sensor array 130, and the electrical signal of the infrared PD132 receiving the infrared light will be the same The electrical signals of other PDs that have not received infrared light will be significantly different.
  • the processor 109 can lock the position indicated by the user by comparing the differences of these 240 matrix signals and combining the pre-stored coordinates of each infrared PD to determine Is there a user interacting with the LCD?
  • the wavelength of the infrared light emitter must match the wavelength response range of the infrared PD 132.
  • the response wavelength range of the infrared PD 132 must cover 840 nm.
  • the light intensity of the infrared PD 132 that receives infrared light It will obviously exceed other infrared PDs 132 that have not received infrared light. Therefore, the position indicated by the user can be locked directly by determining the coordinates of the infrared PD 132 with the highest light intensity.
  • the light intensity received by the infrared PD 132 can be used to determine the center position of the light spot, and the center position is used as the indicator position, that is, the light intensity distribution is used to lock the user's Indicates the location.
  • the infrared PD 132 is arranged under the reflective sheet 123 in the BLU 120, and the material of the optical film 121 in the BLU 120 generally has a diffusing effect on light, the infrared light received by the liquid crystal panel 110 When passing through the BLU 120 and reaching the photoelectric sensor array 130, the infrared light spot will expand. As shown in Figure 1, when the infrared light emitted by the infrared light emitter 200 reaches the liquid crystal panel 110, it forms a first light spot 310. After passing through the liquid crystal panel 110 and the BLU 120, it reaches the photoelectric sensor array 130 to form a second light spot 320.
  • the area of the second light spot 320 will be larger than the area of the first light spot 310.
  • the spacing between the infrared PDs 132 may be small. These situations may cause the infrared light emitted by the infrared light emitter to fall on the photoelectric sensor array 130, and the infrared light spot may cover multiple infrared PDs 132.
  • FIG. 9A shows an example in which an infrared light spot covers a plurality of infrared PDs 132.
  • a plurality of infrared PDs 132 are arranged on the substrate 131 arranged under the reflective sheet 123, and the coordinates of each infrared PD 132 may be stored in the memory of the electronic device 100 in advance.
  • an infrared light spot 210 covers nine infrared PDs 132 arranged in a 3*3 matrix.
  • the light intensity received by the nine infrared PDs 132 receiving infrared light signals may not be the same. Are not the same.
  • the light intensity received by each of the nine infrared PDs 132 in FIG. 9A may be as shown in FIG. 9B.
  • the processor 109 of the electronic device 100 After the processor 109 of the electronic device 100 receives the signal from each infrared PD 132, it can determine the indicated position according to the light intensity data received by each infrared PD 132. Since the coordinates of each infrared PD 132 have been pre-stored in the processor 109, it is only necessary to perform a peak judgment on the data collected by the infrared PD 132 to find the position of the peak light intensity in the area, and the position of the light intensity peak is enough. It is recognized as the location of the infrared light source, that is, the location indicated by the user.
  • the light intensity peak can be obtained by Gaussian fitting using the light intensity data received by each infrared PD 132, because for most laser beams, the ideal spot light intensity distribution should satisfy the Gaussian distribution. That is, on any cross section (x, y) perpendicular to the beam, the light intensity distribution conforms to the Gaussian function, namely:
  • I(x, y) is the light intensity of the laser beam at the section (x, y)
  • H is the intensity amplitude of the light spot of the section
  • (x 0 , y 0 ) is the position of the peak light intensity
  • ⁇ 1 and ⁇ 2 are the standard deviations in the two directions.
  • the light intensity peak data I(x 0 , y 0 ) obtained by the Gaussian fitting may not be one of the light intensity data received by each PD, but higher than the infrared light intensity data received by all PDs.
  • the position (x 0 , y 0 ) of the infrared light intensity peak may not be the position of a certain PD, but a position between two or more adjacent PDs.
  • the processor 109 of the electronic device 100 can calculate the position of the light intensity peak from the 9 data shown in FIG. Between the PDs.
  • the above method of Gaussian fitting can more accurately locate the projection position of the infrared light, that is, the position indicated by the user.
  • high-precision positioning may not be required.
  • data fitting may not be performed.
  • the received optical signal can be found directly based on the intensity of the optical signal received by each infrared PD 132.
  • the infrared PD 132 with the highest light intensity uses the coordinates of the infrared PD 132 as the indicating position, thereby improving the response speed of the system.
  • the positioning accuracy can be improved by increasing the number of infrared photoelectric sensors 132, and the cost can also be reduced by reducing the number of infrared photoelectric sensors 132. At the same time, the amount of data that needs to be processed is reduced, thereby improving the response speed of the system. .
  • the embodiment of the present application provides the function of locking the user's indicated position, and the realization of the specific interaction between the user and the LCD usually requires the cooperation of user interface (UI) design.
  • UI user interface
  • specific interaction rules can be set in conjunction with UI design.
  • the interaction rules may include, but are not limited to, specific instructions represented by user clicks and slides.
  • the interaction rule is: "When the electronic device 100 detects that the infrared light spot moves rapidly from top to bottom from the edge of the LCD of the electronic device 100, it means that the user wants to turn the page.” Then, the user is using the LCD of the electronic device 100 to watch When taking a photo, you can control the infrared light emitter (for example, a mobile emitter) so that the processor calculates that the infrared light irradiated on the LCD moves down from the edge of the LCD quickly to turn the page to view the next photo.
  • the infrared light emitter for example, a mobile emitter
  • an identifier (such as a mouse pointer, etc.) can be designed in the UI to identify the infrared light spot.
  • a visible light emitter can be provided in the infrared light emitter 200, and the light emitted by the visible light emitter can be made to have the same directivity as the light emitted by the VCSEL, and the visible light emitter can be emitted The light is used as a guide light to facilitate the user to perceive the position of the infrared light.
  • the photoelectric sensor array 130 is arranged in the LCD of the electronic device 100, and the infrared light emitter 200 is used to connect the electronic device 100 on or off the screen of the electronic device 100.
  • the photoelectric sensor array 130 in the device 100 communicates, which can realize the functions of on-screen interaction and off-screen interaction between the user and the electronic device 100 at a lower cost.
  • the embodiment of the present application also provides a solution to eliminate interference by pulse-modulating the infrared light signal emitted by the infrared light transmitter 200.
  • the following describes a scheme for improving the anti-interference ability of the system by pulse modulation of the infrared light signal in conjunction with FIG. 10A and FIG. 10B.
  • the infrared light transmitter 200 may also include a pulse driving device for modulating the infrared light signal by pulse, so that the light emitted by the infrared light transmitter 200 is a pulsed infrared light signal.
  • the modulation frequency of the transmitter 200 can be set to half of the driving frequency of the infrared PD array. Then, in this case, the signal of the PD array collected by the processor 109 of the electronic device 100 will change, and only one of the two adjacent frames before and after will collect the infrared light emitted by the infrared light emitter, and the other The frame will not collect the infrared light emitted by the infrared light emitter.
  • the frequency of the infrared light transmitter matched with it can be set to half of the driving frequency of the infrared PD array, that is, 120 Hz.
  • the 240 frames of data collected by the control unit 810 will change. Only one of the two adjacent frames before and after will collect the infrared light emitted by the infrared light emitter, while the other frame will not collect the infrared light. Infrared light emitted by a light emitter.
  • the infrared light spot covers 9 infrared PDs 132 arranged in a 3*3 matrix (as shown in FIG. 9A)
  • the infrared light is received
  • the data of the 9 infrared PDs 132 corresponding to the two adjacent frames of light may be shown in Figure 10A and Figure 10B respectively, that is, the data in the kth frame is the intensity value of the infrared light received by each infrared photoelectric sensor, as shown in Figure 10A
  • the light intensity value corresponding to each infrared photoelectric sensor in the k+1 frame data is 0, as shown in FIG. 10B.
  • the frames collected by the control unit 810 There will be interference signals in the signal, that is, the data in the kth frame contains both the infrared light intensity data emitted by the infrared transmitter and the interference signal data, while the data in the k+1 frame only contains the data of the interference signal.
  • the data of the frame and the k+1th frame may be as shown in FIG. 11A and FIG. 11B, respectively.
  • the interfering light signal can be removed by making the difference between the signal data of the two frames before and after, and the infrared signal emitted by the received infrared light transmitter will be retained.
  • the infrared light signal is modulated to half of the driving frequency of the control unit of the photoelectric sensor array by using the pulse signal.
  • the electronic device can also more easily determine whether the received infrared light signal is the infrared light emitted by the matched infrared light emitter.
  • the embodiments provided in this application cooperate with an infrared light emitter and a specially designed liquid crystal module in the LCD.
  • the infrared light emitter can be used as an on-screen interactive tool such as a writing pen to realize on-screen interaction with the LCD in close proximity. ;
  • it can also be used as a remote control, mouse and other off-screen interactive tools to achieve long-distance interaction with the LCD away from the screen.
  • the embodiments provided in this application can be applied to various scenarios such as on-screen writing, living room games, remote control, etc. .
  • first, second, etc. may be used herein to describe various features, these features should not be limited by these terms. These terms are used only for distinction, and cannot be understood as indicating or implying relative importance.
  • first feature may be referred to as the second feature, and similarly the second feature may be referred to as the first feature.
  • references in the specification to "one embodiment”, “an embodiment”, “an illustrative embodiment”, etc. indicate that the described embodiment may include specific features, structures, or properties, but each embodiment may or may not necessarily include specific The characteristics, structure or properties of. Moreover, these phrases are not necessarily referring to the same embodiment. In addition, when specific features are described in conjunction with specific embodiments, the knowledge of those skilled in the art can influence the combination of these features with other embodiments, regardless of whether these embodiments are explicitly described.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal (AREA)
  • Position Input By Displaying (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请涉及一种液晶模组、电子设备及屏幕交互系统。其中,液晶模组可以包括:液晶面板、背光组件和光电传感器阵列;其中,光电传感器阵列、背光组件和液晶面板被依次层叠设置;背光组件包括反射部件,该反射部件的至少一部分区域为能够透射红外光的红外透射区域;光电传感器阵列包括多个光电传感器,并且多个光电传感器能够接收透过红外透射区域的红外光。本申请通过在液晶模组中设置光电传感器阵列来接收红外光信号,从而为带有液晶模组的设备提供一种低成本的交互方案。

Description

液晶模组、电子设备及屏幕交互系统
本申请要求2020年2月17日递交的申请号为CN202010095747.5、发明名称为“液晶模组、电子设备及屏幕交互系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种液晶模组、电子设备及屏幕交互系统。
背景技术
液晶显示器(liquid crystal display,LCD)具有体积小、低功耗、无辐射和画面柔和等特点,在各类电子设备上有着广泛的应用。
目前,人与带有LCD的电子设备的交互方案主要有屏上触控交互和屏外交互。屏上触控交互的方案包括:在LCD表面贴合带有金属网格的导电膜,在LCD的上下或左右的外边框增加红外发射灯条和红外接收灯条,以及在LCD内部制作电容探测器电路等。屏外交互方案主要有利用LCD中的自电容产生的空间电场进行悬浮触控,在LCD上方外挂相机来获取手部动作来进行手势识别等,各种方案各有优劣。
然而,目前市面上还缺乏成熟的整合屏上交互和屏外交互的方案,也就是既可以在屏上做二维方向的位置触控,也可以在屏外实现远距离交互和二维坐标定位的方案。
发明内容
本申请的目的在于提供一种可以同时实现屏上交互和屏外交互的方案。
本申请的第一方面提供了一种液晶模组,该液晶模组可以包括:液晶面板、背光组件和光电传感器阵列,其中,光电传感器阵列、背光组件和液晶面板被依次层叠设置,并且背光组件位于光电传感器阵列和液晶面板之间;背光组件中包括反射部件,该反射部件的至少一部分区域为能够透射红外光的红外透射区域;光电传感器阵列包括多个光电传感器,并且多个光电传感器能够接收透过红外透射区域的红外光。
本申请通过在液晶模组中设置光电传感器阵列来接收红外光信号,从而为带有液晶模组的设备提供一种低成本的交互方案。
进一步,反射部件上可以设置有多个开孔,并以多个开孔所在的区域为红外透射区域。其中这多个开孔可以与光电传感器阵列中的多个光电传感器一一对应。这种设置红外透射区域的方式成本较低且易于操作。
进一步,多个光电传感器靠近背光组件的表面可以设置有选择反射部件,例如,波长选择反射片,用于透射穿过开孔的红外光并反射穿过开孔的可见光,其中,选择反射部件的面积不小于所述开孔的面积。以保证可见光的利用率,从而提高液晶屏幕的清晰 度。或者,诸如波长选择反射片之类的选择反射部件也可以设置在反射部件的开孔处,用于透射红外光并反射可见光,同样,该选择反射部件的面积不小于所述开孔的面积。
进一步,反射部件整个可以是能够反射可见光并透射红外光的反射部件,例如反射部件可以是波长选择反射片。
本申请的第二方面提供了一种电子设备,该电子设备可以包括存储器、处理器和前述第一方面或第一方面的任一实现方式提供的液晶模组,存储器用于存储指令和光电传感器阵列中的每个光电传感器的位置,处理器用于读取指令和光电传感器的位置,并根据光电传感器的位置和光电传感器接收到的红外光的强度,确定红外光投射在液晶面板上的位置。
进一步,处理器用于:对光电传感器的位置和光电传感器接收到的红外光的强度进行高斯拟合,以得到强度峰值的位置,其中,强度峰值为光电传感器接收到的红外光的强度峰值;将强度峰值的位置作为红外光投射在液晶面板上的位置。由于该强度峰值是通过高斯拟合出来的结果,其可能并不是各个光电传感器接收到的强度数据中的一个,而是比所有光电传感器接收到的红外光强度数据都高;该红外光强度峰值的位置可能也并不是某个光电传感器位置,而是处于相邻的两个或多个传感器之间的位置。该方式能够更为准确的定位红外光的投射位置。
进一步,处理器用于:确定光电传感器接收到的红外光的强度中的最高强度,将接收到最高强度的光电传感器的位置作为红外光投射在液晶面板上的位置。使用这种不进行数据拟合,而是直接找到收到的光强度最高的光电传感器,并以其位置作为红外光的投射位置的方式,系统的响应速度更高。
进一步,红外光可以是脉冲式红外光信号,并且,脉冲式红外光信号的频率可以为光电传感器阵列的驱动频率的一半。利用脉冲信号将红外光信号调制为光电传感器阵列的控制单元的驱动频率的一半,一方面可以通过对前后两帧的数据做差以去掉干扰光信号,从而有效地提高系统的抗干扰能力,另一方面,通过判断收到的红外光信号的频率,也可以使电子设备更为容易地判断接收到的红外光信号是否是配套的红外光发射器发出的红外光。
本申请的第三方面提供了一种屏幕交互系统,该屏幕交互系统可以包括电子设备和红外光发射器,其中,红外光发射器用于发射红外光,电子设备中可以包括液晶模组,液晶模组包括液晶面板、背光组件和光电传感器阵列,其中,光电传感器阵列、背光组件和液晶面板依次层叠设置;背光组件包括反射部件,反射部件用于反射可见光;其中,反射部件的至少一部分区域为能够透射红外光发射器发出的红外光的红外透射区域;光电传感器阵列包括多个光电传感器,并且多个光电传感器能够接收透过红外透射区域的红外光。
进一步,红外光发射器可以包括:脉冲驱动装置,该脉冲驱动装置可以用于调制红外光发射器发出的红外光,使红外光发射器发出的光为脉冲式红外光信号;其中,脉冲式红外光信号的频率为光电传感器阵列的驱动频率的一半。
本申请利用脉冲信号将红外光信号调制为光电传感器阵列的控制单元的驱动频率的一半,一方面可以通过对前后两帧的数据做差以去掉干扰光信号,从而有效地提高系 统的抗干扰能力,另一方面,通过判断收到的红外光信号的频率,也可以使电子设备更为容易地判断接收到的红外光信号是否是配套的红外光发射器发出的红外光。
本申请通过在电子设备的液晶模组中设置光电传感器阵列,并通过红外光发射器在电子设备的屏上或屏外与电子设备中的光电传感器阵列通信,可以以较低的成本实现用户与电子设备的屏上交互和屏外交互的功能。
附图说明
图1示出了根据本申请的实施例的屏幕交互系统的示意图。
图2示出了根据本发明的实施例的电子设备的一种结构示例。
图3示出了根据本申请的实施例的光电传感器阵列的示例。
图4示出了根据本申请的实施例的红外光发射器的内部结构示意图。
图5A示出了根据本申请的实施例的反射片的结构示例之一。
图5B示出了根据本申请的实施例的在光电传感器上贴膜的示例。
图6示出了根据本申请的实施例的反射片的结构示例之二。
图7示出了根据本申请的实施例的反射片的结构示例之三。
图8示出了根据本申请的实施例的光电传感器阵列的控制系统示例。
图9A示出了根据本申请的实施例的红外光斑覆盖多个光电传感器的示例。
图9B示出了图9A中的九个光电传感器各自分别收到的光强度值。
图10A示出了根据本申请的实施例的理想情况下与红外光斑覆盖到的9个光电传感器对应的第k帧的光强数据示例。
图10B示出了根据本申请的实施例的理想情况下与红外光斑覆盖到的9个光电传感器对应的第k+1帧的光强数据示例。
图11A示出了根据本申请的实施例的实际情况下与红外光斑覆盖到的9个光电传感器对应的第k帧的光强数据示例。
图11B示出了根据本申请的实施例的实际情况下与红外光斑覆盖到的9个光电传感器对应的第k+1帧的光强数据示例。
具体实施方式
下面结合具体实施例和附图对本申请做进一步说明。可以理解的是,此处描述的具体实施例仅仅是为了解释本申请,而非对本申请的限定。此外,为了便于描述,附图中仅示出了与本申请相关的部分而非全部的结构或过程。应注意的是,在本说明书中,相似的标号和字母在下面的附图中表示类似项。
本申请的说明性实施例包括但不限于液晶模组、屏幕交互方法以及屏幕交互系统等。
将使用本领域技术人员通常采用的术语来描述说明性实施例的各个方面,以将他们工作的实质传达给本领域其他技术人员。然而,对于本领域技术人员来说,使用部分所描述的特征来施行一些替代性实施例是显而易见的。出于解释的目的,阐述了具体的数字和配置,以便对说明性实施例进行更加透彻的理解。然而,对于本领域技术人员来说显而易见的是,可以在没有具体细节的情况下实施替代实施例。在一些其他情况下,本 文省略或简化了一些众所周知的特征,以避免使本申请的说明性实施例模糊不清。
在附图中,可能以特定布置和/或顺序示出了一些结构特征。然而,应当理解的是,这样的特定布置和/或排序不是必需的。而是,在一些实施例中,这些特征可以以不同于说明性附图中所示的方式和/或顺序来进行说明。另外,特定附图中所包含的结构特征并不意味着所有实施例都需要包含这样的特征,在一些实施例中,可以不包含这些特征,或者可以将这些特征与其他特征进行组合。
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请的实施方式作进一步地详细描述。
本申请提供的方案旨在整合用户与带有液晶显示器(liquid crystal display,LCD)的电子设备的屏上交互和屏外交互。提供一种低成本的适合LCD的交互方案。
根据本申请的一些实施例,屏上交互主要指需要接触显示屏的交互。例如,触控笔(也被称为“手写笔”)或手指等在电子设备的液晶面板表面在表面点按或滑动,电子设备检测到触控笔或手指等的动作轨迹,并根据预先设置的规则执行对应的操作。例如书写白板就是一种典型的屏上交互的应用,即通过手写笔在液晶面板表面滑动,让电子设备检测手写笔的滑动轨迹,实现书写的功能。其中,手写笔可以是主动式手写笔,也可以是被动式手写笔。主动式手写笔也可被称为“主动笔”,主动笔中设置有电路,主动笔可以发射信号给屏幕,以便屏幕检测笔的坐标。被动式手写笔也可被称为
“被动笔”,类似于手指的作用,被动笔本身不发射信号,但与触摸屏接触时可以改变触摸屏的电容等。
屏外交互主要指不接触屏幕表面的交互。例如,通过手或者手写笔在屏幕表面之外的姿势、指向位置或者运动轨迹,配合电子设备的UI界面,识别出用户的交互信息;实现菜单选择或者控制操作等。常见的屏外交互场景包括:运动类游戏(例如通过在屏幕前方,通过控制主动笔对着LCD屏幕挥动,电子设备通过探测主动笔挥动的轨迹,可以实现一些运动类的游戏,例如切西瓜等),或者远程遥控(通过遥控器或者主动笔等点击LCD屏幕上的菜单界面,实现远距离的操作,例如遥控购物等)。
本申请的实施例提供一种利用红外光进行通信的适合LCD的低成本交互方案。图1示出了根据本申请的实施例的屏幕交互系统。
如图1所示,本申请的实施例提供一种屏幕交互系统10,包括红外光发射器200和电子设备100。在本申请的实施例中,电子设备100可以是包括LCD的各种设备,例如,电视、游戏机、显示设备、户外显示屏、音乐播放器、台式机、膝上型计算机、平板计算机等各种电子设备。
图2示出了根据本发明的实施例的电子设备100的一种结构示例。
如图2所示,电子设备100可以包括处理器109、显示器101、传感器模块102、无线通信模块103、存储器104、电源105和音频模块107等。
处理器109可以包括一个或多个处理单元或器件,例如,可以包括中央处理器CPU(Central Processing Unit)、图像处理器GPU(Graphics Processing Unit)、数字信号处理器DSP、微处理器MCU(Micro-programmed Control Unit)、AI(Artificial Intelligence,人工智能)处理器或可编程逻辑器件FPGA(Field Programmable Gate Array)等的处理模块 或处理电路。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。处理器109中可以设置存储单元,用于存储指令和/或数据。
显示器101用于显示人机交互界面、图像、视频等。在本申请的实施例中,显示器101可以是LCD。
传感器模块102可以包括光电传感器,用于接收红外光,例如后文中的红外光电二极管等。在一些实施例中,传感器模块还可以包括其他传感器,例如压力传感器,陀螺仪传感器,气压传感器,磁传感器,距离传感器,接近光传感器,指纹传感器,温度传感器,触摸传感器等。
无线通信模块103可以包括天线,并经由天线实现对电磁波的收发。无线通信模块103可以提供应用在电子设备100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。电子设备100可以通过无线通信技术与网络以及其他设备进行通信。
电源模块105可以包括电源、电源管理部件等。电源管理部件用于管理电源的充电和电源向其他模块的供电等。
音频模块107用于将数字音频信息转换成模拟音频信号输出,或者将模拟音频输入转换为数字音频信号。音频模块107还可以用于对音频信号编码和解码。在一些实施例中,音频模块107可以设置于处理器109中,或将音频模块107的部分功能模块设置于处理器109中。
如图2所示,音频模块107可以包括扬声器1071、听筒1072、麦克风1073以及耳机接口1074。扬声器1071也称“喇叭”,用于将音频信号转换为声音信号后输出。麦克风1073也称“话筒”,“传声器”,用于将声音信号转换为电信号。电子设备100可以设置至少一个麦克风1073。在另一些实施例中,电子设备100可以设置两个麦克风1073,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,电子设备100还可以设置三个,四个或更多麦克风1073,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。耳机接口1074可以用于连接耳机。
可以理解的是,本发明实施例示意的结构并不构成对电子设备100的具体限定。在本申请另一些实施例中,电子设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
下面参考回图1,电子设备100中的LCD中可以包括液晶模组150。根据本申请的一些实施例,液晶模组150可以包括依次层叠设置的液晶面板110、背光组件(Back Light Unit,BLU)120和光电传感器阵列130,并且BLU 120位于光电传感器阵列130和液晶面板110之间。
液晶面板110是液晶模组150的基本组件,液晶显示是被动发光,液晶面板110本身并不发光,而是由其下方的BLU 120照亮。液晶面板110以液晶为基本材料,在两块平行板之间填充液晶材料,通过电压来改变液晶材料内部分子的排列状况,使外光源 透光率改变,完成电-光变换,以达到遮光和透光的目的,从而显示深浅不一,错落有致的图像,再利用R、G、B三基色信号的不同激励,在两块平板间再加上彩色的滤光层,就可实现显示彩色图像。BLU 120发出的光线照射到液晶面板110上时,光线会先通过下偏振片向上透出,光线转变偏振方向后,接触到彩色滤光片产生颜色,最后入射到上偏振片。在被液晶转变偏振方向后,有部分光线可以出射,有部分会被吸收。整个液晶面板上每一个像素都可以分别决定出射光线的强度,从而产生图像。
BLU 120用于为液晶面板110供应充足的亮度与分布均匀的光,BLU 120的发光效果将直接影响到LCD的视觉效果。BLU中通常包含发光部件、导光部件和反光部件等各种部件。
图1中示出了液晶模组150中的BLU 120的一种基本结构示例。BLU 120可以是一个平板状的均匀照明装置,其可以包括光源124、光学膜片121、导光板122和反射片123。
光源124作为BLU中的发光部件,可以包括但不限于,冷阴极荧光灯管或LED灯条,光源124可以设置在整个BLU 120的两边或一边(可能是长边,也可能是短边)。冷阴极灯管是线光源,LED是点光源,把这些光源转换为面光源需要使用导光板122。
导光板122作为BLU中的导光部件,导光板122的作用在于引导光的散射方向,用来提高面板的亮度,并确保面板亮度的均匀性。导光板122一般由高透光率的亚克力塑料制成,表面非常光滑平整,以致大部分内部光线会在其平整表面上规则的全反射,而不会射出到导光板122外部。液晶模组150的导光板122的底部通常印有白色的网点。在导光板印有网点的位置上,光线不再规则的全反射而是会向导光板122的上方射出。控制每个位置网点的密度就可以控制导光板在这个位置射出光线的多少。精密设计的导光板122的网点可以让两侧入射的光线均匀的铺散在整个平面上。导光板122的上方可以设置光学膜片121,光学膜片121可以起到均匀光线,和汇聚大角度光以供正面观察等作用。
反射片123作为BLU中的反光部件,通常设置在导光板122底部,可以用来反射传播过程中的光,将导光板122下方漏出的光反射回导光板122所在的区域,使得光源124发出的光的利用率达到最大化。
需要注意的是,图1中示出的BLU 120的结构仅仅是举例说明,并不是对本申请的限制。在根据本申请的各种实施例中,可以根据实际情况采用各种不同结构的BLU,例如,发光源设置在侧边的侧光式BLU,光源放置于正下方的直下型BLU,以及使用热阴极管作为发光源、以空气作为光源传递的媒介的中空型BLU等。
光电传感器阵列130设置在背光组件120的反射片123的下方,即BLU远离液晶面板110的那一侧。光电传感器阵列130中可以包括多个光电传感器,在本申请的实施例中,光电传感器可以是红外光电传感器,光电传感器的形式可以包括但不限于,贴片式光电二极管(Photo-Diode,PD)。在BLU 120能够透射红外光的情况下,红外光发射器200发射的红外光便可以透过液晶面板110和BLU 120到达红外光电传感器,通过判断光电传感器阵列130中的各个光电传感器接收到红外光光强度,便可以锁定红外光发射器200发射的红外光的中心位置,从而实现用户与电子设备100的交互。
下面以贴片式PD作为光电传感器的示例说明光电传感器阵列130的具体结构。图3示出了根据本申请的实施例的光电传感器阵列130的示例。
如图3所示,多个红外PD 132可以固定在基板131上,根据本申请的一些实施例,基板131可以是印刷电路板(Printed circuit board,PCB),多个红外PD 132按照预设的排布规则固定在PCB板上,形成光电传感器阵列130,由驱动板133统一驱动。驱动板133上可以设置有驱动控制电路,用于驱动控制基板131上的红外PD 132。
在不同实施方式中,基板131可以如图3这样分为多块,每块基板131上设置一部分红外PD 132;或者,基板131也可以是一整块,并将所有的红外PD 132固定到一体式的基板131上。而驱动板133可以与设置有红外PD 132的基板131集成在一起,也可以与设置有红外PD 132的基板131分离开而单独设置。
红外光发射器200可以以红外激光笔、遥控器等方式实现,用于发射与光电传感器阵列130中的红外PD 132匹配的红外光,即,红外光发射器200的波长与红外PD 132的波长响应范围要匹配,例如,在红外光发射器的波长为840nm的情况下,红外PD 132的响应波长范围要覆盖840nm。
下面结合图4介绍红外光发射器200的内部结构示例。
如图4所示,红外光发射器200可以包括外壳203、激光器201、准直透镜202以及开关(未示出)。其中,激光器201可以是垂直腔面发射激光器(vertical-cavity surface-emitting laser,VCSEL),相较于边射型激光器,VCSEL产生输出光束的发散角度较小,通常可以控制在10°以内。准直透镜202用于把VCSEL发出的光转换为平行光。通过激光器201与准直透镜202的配合,红外光发射器200不管离电子设备100的LCD屏的距离多远,LCD屏上的光斑大小都可以保持一致。用户通过开关控制红外光发射器200发射红外光,照射在电子设备100的LCD上,根据红外PD 132接收到的光信号,锁定指示位置,便可以实现交互。
需要注意的是,图4中示出的红外光发射器200的结构仅仅是举例说明,并不是对本申请的限制在根据本申请的各种实施例中,红外光发射器200可以包括更多或更少的部件,其结构也可以根据实际情况改变。
由于BLU 120中的反射片123通常可以反射98%以上的可见光和红外光,为了使红外PD 132能够顺利的接收到红外光发射器发出的红外光,可以对反射片123进行处理,使其可以透射红外光。
下面结合图5A至图7介绍反射片123的各种实施例。
图5A示出了根据本申请的实施例的反射片123的一种结构示例。
根据本申请的一些实施例,反射片123为普通材质的既反射可见光又反射红外光的反射片,为了使红外PD 132能够顺利的接收到红外光发射器发射的红外光,可以根据红外PD 132的布置,在普通材质的反射片123的表面上与红外PD 132对应的位置设置开孔,以方便红外光透过。如图5A所示,反射片123包括普通反射材料401和设置在普通反射材料401表面的开孔402,开孔402可以是通孔,开孔402位置与红外PD 132的感光区的位置对应,使红外PD 132能够透过开孔402接收到红外光。根据加工条件和红外PD 132感光区的不同形状,开孔402可以被设置为圆形或者多边形等各种形状, 在此不做限制。通过这种直接在普通反射片上开孔的方式使设置在反射片下方的红外PD 132接收到红外光,成本较低。即使有其他光线(例如可见光)连同红外光一起穿过开孔402投射到红外PD132上,红外PD132也能感应到红外光。
根据本申请的另一些实施例,在BLU 120的反射片123上开孔的同时,可以在红外PD 132靠近背光组件的表面贴一小块用于反射可见光并且透射红外光的波长选择反射片(例如增强型镜面反射片(Enhanced Specular Reflector,ESR))1320,如图5B所示,波长选择反射片1320用来反射照射在红外PD 132表面的可见光,同时透射照射在红外PD 132表面的红外光。利用波长选择反射片1320,将射出开孔402的可见光反射回传导区,可以保证光源124发出的光的利用率,从而提高液晶屏幕的清晰度。此外,由于只有红外光照射在红外PD132上,可以防止非红外光的对红外PD132的干扰,提高红外PD132的灵敏度和效率。
在本申请各种实施例中,贴合在红外PD 132的表面的波长选择反射片1320的面积最好不低于开孔402的面积,以保证反射效果,此外,贴合在红外PD 132的表面的波长选择反射片1320的形状可以与开孔402的形状一致,也可以与开孔402的形状不一致但面积足够大能够覆盖开孔402的大小。
图6示出了根据本申请的实施例的反射片123的另一种结构示例。
根据本申请的一些实施例,反射片123可以包括两种材质的反射材料,一种是既反射可见光又反射红外光的反射材料501,另一种是能够反射可见光并且透射红外光的反射材料(例如ESR)502。ESR 502可以设置在与红外PD 132的感光区对应的位置,使红外PD 132能够通过ESR 502接收到红外光。该实施例中,与图5A类似,可以通过在普通材质的反射片123的表面上与红外PD 132对应的位置设置开孔,但是,反射可见光透射红外光的反射材料502不再贴合在红外PD 132上,而是贴合在开孔处,使与红外PD 132感光区对应的区域的反射材料为反射可见光透射红外光的多层膜结构的反射材料502,而其他区域则是普通的既反射可见光又反射红外光的反射材料501。
图7示出了根据本申请的实施例的反射片123的又一种结构示例。
根据本申请的另一些实施例,为了使红外PD 132能够顺利的接收到红外光,也可以直接采用可以反射可见光同时透射红外光的多层膜结构的反射材料601作为反射片123设置在红外PD 132上方,即,反射片123为能够反射可见光同时透射红外光的波长选择反射片。
图5A至图7示出了各种反射片123的设计示例,在本申请的不同实施方式中,本领域技术人员也可以在上述结构示例的基础上采用其他方式设计反射片123,以使BLU120能够顺利透射红外光,让设置在BLU 120下方的红外PD 132能够顺利的接收到红外光发射器200发出的红外光。红外PD 132接收到红外光发射器200发出的红外光后,通过分析光电传感器阵列130中的各个红外PD 132的光强度即可锁定用户通过红外光发射器指示的位置。
下面结合图8至图9B来说明根据本申请的实施例的通过光电传感器阵列130的光强度锁定指示位置的具体方案。
如上文所述,设置在反射片123下方的光电传感器阵列130可以包括多个红外PD 132,根据本申请的一些实施例,每个红外PD 132的位置可以预先存储在电子设备100的存储器104中。红外PD 132的位置可以是坐标,编号,或者其他可以表示红外PD的位置的信息。本发明实施例中以坐标为例进行说明。对于贴片式红外PD组成的光电传感器阵列130,根据本申请的一些实施例,可以采用一种低成本的驱动与控制方案,如图8所示,用单片机或FPGA等作为控制单元810,按照PD阵列的行和列来进行控制。控制单元810的一个通道可以控制PD阵列的一个行开关的三极管或是一列PD的信号接收(或者一个通道控制PD阵列的一个列开关的三极管或是一行PD的信号接收),那么,对于n行m列的PD阵列130,只需要n+m个通道就可以实现驱动控制,例如,以20行10列的200个PD为例,只需要30个通道便可以驱动。
红外PD器件在被施加有电压的情况下,如果有光线辐射到PD感光区域则会产生光电流,而光电流流经负载电阻则会产生电压信号,该电流信号或者电压信号可被控制单元810采集,控制单元810可以通过逐行或者逐列扫描的方式采集每一个PD的信号。举例来说,可以设置控制单元810的驱动频率,例如驱动频率可以是240赫兹,也就是每秒240次,控制单元810可以把每秒240帧的PD阵列信号传输给电子设备100的处理器109。在用户持红外光发射器照射电子设备100的液晶面板110时,红外光将透过液晶面板110和背光模组120照射到光电传感器阵列130上,接收到红外光的红外PD132的电信号将与其他未接收到红外光的PD的电信号会有显著不同,处理器109通过比较这240个矩阵信号的差异,结合预先存储的每个红外PD的坐标,即可锁定用户指示的位置,从而判断是否有用户在与LCD交互。在具体实施过程中,红外光发射器的波长与红外PD 132的波长响应范围要匹配,例如,在红外光发射器的波长为840nm的情况下,红外PD 132的响应波长范围要覆盖840nm。
根据本申请的一些实施例,接收到红外光的红外PD 132可能是一个也可能是多个,在接收到红外光的PD 132只有一个的情况下,接收到红外光的红外PD 132的光强度将明显超过其他未接收到红外光的红外PD 132,因此,直接通过确定光强度最高的红外PD 132的坐标即可锁定用户指示的位置。而在红外光斑覆盖多个红外PD 132情况下,则可以通过红外PD 132接收到的光强度来判断光斑的中心位置,将该中心位置作为指示位置,即,利用光强度的分布来锁定用户的指示位置。
在本申请的实施例中,由于红外PD 132设置在BLU 120中的反射片123的下方,而BLU 120中的光学膜片121的材料通常对光有扩散作用,液晶面板110收到的红外光穿过BLU 120到达光电传感器阵列130时,红外光斑会扩大。如图1所示,红外光发射器200发射的红外光到达液晶面板110时,形成第一光斑310,穿过液晶面板110和BLU 120后,达到光电传感器阵列130形成第二光斑320,由于光学膜片121的扩散作用,第二光斑320的面积会大于第一光斑310的面积。此外,在一些实施例中,红外PD 132之间的间距可能较小。这些情况都可能导致红外光发射器发出的红外光落在光电传感器阵列130上时,红外光斑可能会覆盖多个红外PD 132。
下面结合图9A和图9B来说明红外光斑可能会覆盖多个红外PD 132的情况下,根据红外PD 132收到的光强度的分布来锁定指示位置的实施例。
图9A示出了红外光斑覆盖多个红外PD 132的示例。根据本申请的一些实施例, 设置在反射片123下方的基板131上设置有多个红外PD 132,每个红外PD 132的坐标可以预先存储在电子设备100的存储器中。假设某一时刻,有一红外光斑210覆盖到按照3*3矩阵排列的9个红外PD 132上,如图9A所示,接收到红外光信号的这九个红外PD 132接收到的光强度可能并不相同。例如,图9A中的九个红外PD 132各自分别收到的光强度可能如图9B所示。
电子设备100的处理器109收到来自各个红外PD 132的信号后,可以根据每个红外PD 132接收到的光强度数据来确定指示位置。由于每个红外PD 132的坐标已经预先存储在处理器109中,因此,只需要对红外PD 132采集到的数据做一次峰值判断找到区域内的光强度峰值的位置,光强度峰值的位置即可认定为红外光源的定位位置,也就是用户的指示位置。
根据本申请的一些实施例,光强度峰值可以利用各个红外PD 132接收到的光强度数据通过高斯拟合来得到,因为对于大多数激光光束而言,理想的光斑光强分布应该满足高斯分布,即在任意一个垂直于光束的截面(x,y)上,光强分布符合高斯函数,即:
Figure PCTCN2021070876-appb-000001
式中,I(x,y)为激光光束在该截面(x,y)处的光强,H为该截面的光斑光强幅值,(x 0,y 0)为光强度峰值的位置,σ 1,σ 2为两个方向上的标准差。利用上述函数和各个红外光电传感器接收到的光强度数据,根据最小二乘原理可以确定参数σ 1,σ 2,进而得到(x 0,y 0),即为红外光源的定位位置,也就是用户的指示位置。
通过上述高斯拟合得到的光强度峰值数据I(x 0,y 0)可能并不是各个PD接收到的光强度数据中的一个,而是比所有的PD接收到的红外光强度数据都高。同样,该红外光强度峰值的位置(x 0,y 0)可能也并不是某个PD所在的位置,而是处于相邻的两个或多个PD之间的位置。例如,在上文描述的示例中,电子设备100的处理器109可以通过图9B示出的9个数据计算出光强度峰值的位置大约在第二行第一列的PD至第二行第二列的PD之间的位置。
上述通过高斯拟合的方式能够较为准确的定位红外光的投射位置,即用户的指示位置。然而,在一些实施例中,可能并不需要高精度的定位,在这种情况下,也可以不进行数据拟合,而是直接根据各个红外PD 132收到的光信号的强度找到收到的光强度最大的红外PD 132,以该红外PD 132的坐标作为指示位置,从而提高系统的响应速度。
根据本申请的一些实施例,可以通过增加红外光电传感器132的数量来提高定位准确度,也可以通过减少红外光电传感器132的数量来降低成本,同时减少需要处理的数据量从而提高系统的响应速度。
上面结合图9A和图9B描述了根据红外PD 132收到的光强度的分布来锁定指示位置的示例。但是,本领域技术人员应当理解,上述获取指示位置方式并不构成对本申请的限制,在一些其他实施方式中,也可以通过其他方式来获取指示位置,本申请对此并不作限制。
本申请的实施例提供了锁定用户的指示位置的功能,用户与LCD的具体交互的实现通常还需要用户界面(user interface,UI)设计的配合。在实际应用中,结合UI设计 可以设定具体的交互规则,交互规则可以包括但不限于,用户点击、滑动所代表的具体指令等。例如假设交互规则为:“当电子设备100检测到红外光斑从电子设备100的LCD的边缘从上往下快速移动时,代表用户想要翻页”,那么,用户在使用电子设备100的LCD观看照片时,就可以通过控制红外光发射器(例如移动发射器),使处理器计算出照射在LCD上的红外光从LCD的边缘快速向下移动来翻页查看下一张照片。
此外,在实际应用中,由于红外光不可见,为了方便用户感知红外光的位置,根据本申请的一些实施例,可以在UI中设计标识符(例如鼠标指针符等),用以标识红外光斑的实时位置;或者,根据本申请的一些实施例,可以在红外光发射器200中设置可见光发射器,并使可见光发射器发出的光与VCSEL发出的光的指向性一致,将可见光发射器发出的光作为指引光,方便用户感知红外光的位置。
上面结合图1至图9B详细介绍了本申请的一些实施例,通过在电子设备100的LCD中设置光电传感器阵列130,并通过红外光发射器200在电子设备100的屏上或屏外与电子设备100中的光电传感器阵列130通信,可以以较低的成本实现用户与电子设备100的屏上交互和屏外交互的功能。
然而,在实际应用中,除了与液晶模组匹配的红外光发射器200发出的红外光之外,空间内可能还会存在其他属于红外PD 132的响应波长范围的红外光,这些红外光会对系统的定位造成干扰,影响定位准确度。鉴于这种情况,本申请的实施例还提供通过脉冲调制红外光发射器200发出的红外光信号来消除干扰的方案。
下面结合图10A和图10B介绍通过脉冲调制红外光信号,提高系统的抗干扰能力的方案。
根据本申请的一些实施例,在红外光发射器200中,还可以包括脉冲驱动装置,用以通过脉冲调制红外光信号,使红外光发射器200发出的光为脉冲式红外光信号,红外光发射器200的调制频率可以设置为红外PD阵列的驱动频率的一半。那么,在这种情况下,电子设备100的处理器109采集到PD阵列的信号会有变化,相邻的前后两帧中只有一帧会采集到红外光发射器发射的红外光,而另一帧则不会采集到红外光发射器发射的红外光。
以图8示出的红外PD阵列130的控制系统为例,假设红外PD阵列130中,控制单元的驱动频率是240Hz,即每秒将得到240帧PD阵列的光强度数据。那么,根据本申请的一个实施例,与之配套的红外光发射器的频率可以设置为红外PD阵列的驱动频率的一半,即120Hz。在这种情况下,控制单元810采集的240帧数据会有变化,相邻的前后两帧中只有一帧会采集到红外光发射器发射的红外光,而另一帧则不会采集到红外光发射器发射的红外光。
假设红外光斑覆盖到的按照3*3矩阵排列的9个红外PD 132上(如图9A所示),那么,在电子设备100所在的空间内没有其他红外光干扰的理想情况下,收到红外光的9个红外PD 132相应的相邻两帧的数据可能分别如图10A和图10B所示,即,第k帧中的数据为各个红外光电传感器接收到的红外光强度数值,如图10A所示,而第k+1帧数据中与各个红外光电传感器对应的光强度值为0,如图10B所示。
而在实际应用中,通常不存在这样的理想情况,在电子设备100所在的空间内存在 其他的干扰信号(例如,室内的光源产生的红外光)的情况下,控制单元810采集到的各帧信号中都会有干扰信号,即,第k帧中的数据既包含红外发射器发射的红外光强数据也包含干扰信号数据,而第k+1帧中的数据则只有干扰信号的数据,第k帧和第k+1帧的数据可能分别如图11A和图11B所示。在这种情况下,通过对前后两帧的信号数据做差就可以去掉干扰光信号,而接收到的红外光发射器发射的红外信号则会被保留下来。
利用脉冲信号将红外光信号调制为光电传感器阵列的控制单元的驱动频率的一半,一方面可以通过对前后两帧的数据做差以去掉干扰光信号,从而有效地提高系统的抗干扰能力,另一方面,通过判断收到的红外光信号的频率,也可以使电子设备更为容易地判断接收到的红外光信号是否是配套的红外光发射器发出的红外光。
本申请提供的实施例通过红外光发射器与LCD中的特别设计的液晶模组的配合,红外光发射器一方面可以作为书写笔等屏上互动工具,实现在近处与LCD进行屏上交互;另一方面也可以作为遥控器、鼠标等屏外互动工具,实现了离开屏幕与LCD进行远距离交互,本申请提供的实施例可以应用于屏上书写、客厅游戏、远程遥控等各种场景。
应当理解的是,虽然在本文中可能使用了术语“第一”、“第二”等等来描述各个特征,但是这些特征不应当受这些术语限制。使用这些术语仅仅是为了进行区分,而不能理解为指示或暗示相对重要性。举例来说,在不背离示例性实施例的范围的情况下,第一特征可以被称为第二特征,并且类似地第二特征可以被称为第一特征。
在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“设置”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本实施例中的具体含义。
另外,在以上的说明中所使用的“上”、“下”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
另外,除非上下文另有规定,否则术语“包含”、“具有”和“包括”是同义词。短语“A/B”表示“A或B”。短语“A和/或B”表示“(A)、(B)或(A和B)”。
此外,各种操作将以最有助于理解说明性实施例的方式被描述为多个彼此分离的操作;然而,描述的顺序不应被解释为暗示这些操作必须依赖描述的顺序,其中的许多操作可以被并行地、并发地或者同时实施。此外,各项操作的顺序也可以被重新安排。当所描述的操作完成时,所述处理可以被终止,但是还可以具有未包括在附图中的附加操作。所述处理可以对应于方法、函数、规程、子例程、子程序等等。
说明书中对“一个实施例”,“实施例”,“说明性实施例”等的引用表示所描述的实施例可以包括特定特征、结构或性质,但是每个实施例也可能或不是必需包括特定的特征、结构或性质。而且,这些短语不一定是针对同一实施例。此外,当结合具体实施例 描述特定特征,本领域技术人员的知识能够影响到这些特征与其他实施例的结合,无论这些实施例是否被明确描述。
上面结合附图对本申请的实施例做了详细说明,但本申请技术方案的使用不仅仅局限于本专利实施例中提及的各种应用,各种结构和变型都可以参考本申请技术方案轻易地实施,以达到本文中提及的各种有益效果。在本领域普通技术人员所具备的知识范围内,在不脱离本申请宗旨的前提下做出的各种变化,均应归属于本申请专利涵盖范围。

Claims (12)

  1. 一种液晶模组,其特征在于,包括:液晶面板、背光组件和光电传感器阵列,其中,所述光电传感器阵列、所述背光组件和所述液晶面板被依次层叠设置;
    所述背光组件包括反射部件,所述反射部件的至少一部分区域为能够透射红外光的红外透射区域;
    所述光电传感器阵列包括多个光电传感器,并且所述多个光电传感器能够接收透过所述红外透射区域的所述红外光。
  2. 根据权利要求1所述的液晶模组,其特征在于,
    所述反射部件上设置有多个开孔,所述多个开孔所在的区域为所述红外透射区域。
  3. 根据权利要求2所述的液晶模组,其特征在于,
    所述多个开孔与所述光电传感器阵列中的所述多个光电传感器一一对应。
  4. 根据权利要求3所述的液晶模组,其特征在于,
    所述多个光电传感器的表面设置有选择反射部件,用于透射穿过所述开孔的所述红外光并反射穿过所述开孔的可见光;
    其中,所述选择反射部件的面积不小于所述开孔的面积。
  5. 根据权利要求2所述的液晶模组,其特征在于,
    所述反射部件的开孔处设置有选择反射部件,用于透射所述红外光并反射可见光,且所述选择反射部件的面积不小于所述开孔的面积。
  6. 根据权利要求1所述的液晶模组,其特征在于,
    所述反射部件为反射可见光并透射所述红外光的选择反射部件。
  7. 一种电子设备,其特征在于,包括:存储器、处理器和如权利要求1-6中任意一项所述的液晶模组,
    所述存储器,用于存储指令和所述光电传感器阵列中的每个光电传感器的位置,
    所述处理器,用于读取所述指令和所述光电传感器的位置,并根据所述光电传感器的位置和所述光电传感器接收到的红外光的强度,确定所述红外光投射在所述液晶面板上的位置。
  8. 根据权利要求7所述的电子设备,其特征在于,所述处理器,用于:
    对所述光电传感器的位置和所述光电传感器接收到的红外光的强度进行高斯拟合,以得到强度峰值的位置,其中,所述强度峰值为所述光电传感器接收到的红外光的强度峰值;
    将所述强度峰值的位置作为所述红外光投射在所述液晶面板上的位置。
  9. 根据权利要求7所述的电子设备,其特征在于,所述处理器,用于:
    确定所述光电传感器接收到的红外光的强度中的最高强度,
    将接收到所述最高强度的光电传感器的位置作为所述红外光投射在所述液晶面板上的位置。
  10. 根据权利要求7所述的电子设备,其特征在于,所述红外光为脉冲式红外光信号,并且,所述脉冲式红外光信号的频率为所述光电传感器阵列的驱动频率的一半。
  11. 一种屏幕交互系统,包括电子设备和红外光发射器,其特征在于,
    所述红外光发射器用于发射红外光;
    所述电子设备中包括液晶模组,所述液晶模组包括液晶面板、背光组件和光电传感器阵列,其中,所述光电传感器阵列、所述背光组件和所述液晶面板依次层叠设置;所述背光组件包括反射部件,所述反射部件用于反射可见光;其中,所述反射部件的至少一部分区域为能够透射所述红外光发射器发出的红外光的红外透射区域;所述光电传感器阵列包括多个光电传感器,并且所述多个光电传感器能够接收透过所述红外透射区域的红外光。
  12. 根据权利要求11所述的屏幕交互系统,其特征在于,所述红外光发射器包括:
    脉冲驱动装置,用于调制所述红外光发射器发出的红外光,使所述红外光发射器发出的光为脉冲式红外光信号,
    其中,所述脉冲式红外光信号的频率为所述光电传感器阵列的驱动频率的一半。
PCT/CN2021/070876 2020-02-17 2021-01-08 液晶模组、电子设备及屏幕交互系统 WO2021164455A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/800,424 US20230081976A1 (en) 2020-02-17 2021-01-08 Liquid crystal module, electronic device, and screen interaction system
EP21757467.2A EP4083695A4 (en) 2020-02-17 2021-01-08 LIQUID CRYSTAL MODULE, ELECTRONIC DEVICE AND SCREEN INTERACTION SYSTEM
JP2022549360A JP7471432B2 (ja) 2020-02-17 2021-01-08 液晶モジュール、電子デバイス、および画面インタラクションシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010095747.5 2020-02-17
CN202010095747.5A CN113267919A (zh) 2020-02-17 2020-02-17 液晶模组、电子设备及屏幕交互系统

Publications (1)

Publication Number Publication Date
WO2021164455A1 true WO2021164455A1 (zh) 2021-08-26

Family

ID=77227594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070876 WO2021164455A1 (zh) 2020-02-17 2021-01-08 液晶模组、电子设备及屏幕交互系统

Country Status (5)

Country Link
US (1) US20230081976A1 (zh)
EP (1) EP4083695A4 (zh)
JP (1) JP7471432B2 (zh)
CN (1) CN113267919A (zh)
WO (1) WO2021164455A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114884578A (zh) * 2022-04-14 2022-08-09 深圳市稳耀半导体科技有限公司 一种带led指示灯或传感器的多功能红外接收模组

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153972A (zh) * 2006-09-26 2008-04-02 Lg.菲利浦Lcd株式会社 具有红外背光源和多触摸感应功能的显示器
US20140183342A1 (en) * 2013-01-02 2014-07-03 Apple Inc. Electronic Devices With Light Sensors And Displays
CN109100886A (zh) * 2017-06-20 2018-12-28 群创光电股份有限公司 显示装置及其操作方法
CN208488620U (zh) * 2018-07-31 2019-02-12 Oppo广东移动通信有限公司 显示屏及电子设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009517755A (ja) 2005-11-30 2009-04-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電磁ビーム投影の位置検出
US8085249B2 (en) * 2007-04-18 2011-12-27 Luidia Inc. Pre-assembled part with an associated surface convertible to a transcription apparatus
KR101407300B1 (ko) * 2007-11-19 2014-06-13 엘지디스플레이 주식회사 멀티 터치 평판 표시모듈
JP4699536B2 (ja) * 2009-03-06 2011-06-15 シャープ株式会社 位置検出装置、制御方法、制御プログラムおよび記録媒体
US20120062817A1 (en) * 2009-05-26 2012-03-15 Sharp Kabushiki Kaisha Liquid crystal display device
US9454241B2 (en) * 2010-11-12 2016-09-27 3M Innovative Properties Company Interactive polarization-preserving projection display
CN104182727B (zh) 2014-05-16 2021-07-30 深圳印象认知技术有限公司 超薄型指纹、掌纹采集装置及指纹、掌纹图像采集方法
CN105786255B (zh) * 2016-03-03 2018-11-06 京东方科技集团股份有限公司 压力感测触摸系统和方法以及显示系统
KR102630789B1 (ko) * 2016-08-01 2024-01-30 삼성전자주식회사 터치 입력을 처리하는 방법 및 전자 장치
WO2018116462A1 (ja) 2016-12-22 2018-06-28 Necディスプレイソリューションズ株式会社 カメラ装置、電子黒板システム及び描画信号生成方法
CN107678602B (zh) * 2017-10-18 2020-11-06 京东方科技集团股份有限公司 红外触控模组和触控显示装置
DE102018203584A1 (de) * 2018-03-09 2019-09-12 Robert Bosch Gmbh Betriebsverfahren für ein LiDAR-System, Steuereinheit für ein LiDAR-System, LiDAR-System und Arbeitsvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101153972A (zh) * 2006-09-26 2008-04-02 Lg.菲利浦Lcd株式会社 具有红外背光源和多触摸感应功能的显示器
US20140183342A1 (en) * 2013-01-02 2014-07-03 Apple Inc. Electronic Devices With Light Sensors And Displays
CN109100886A (zh) * 2017-06-20 2018-12-28 群创光电股份有限公司 显示装置及其操作方法
CN208488620U (zh) * 2018-07-31 2019-02-12 Oppo广东移动通信有限公司 显示屏及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4083695A4

Also Published As

Publication number Publication date
EP4083695A1 (en) 2022-11-02
EP4083695A4 (en) 2023-06-21
US20230081976A1 (en) 2023-03-16
JP2023513637A (ja) 2023-03-31
JP7471432B2 (ja) 2024-04-19
CN113267919A (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN109061922B (zh) 显示屏组件及电子设备
JP4513918B2 (ja) 照明装置及び電気光学装置
US9141235B2 (en) Optical position detecting device and display device with position detecting function
US8847907B2 (en) Display device and display direction switching system
US20090141001A1 (en) Display apparatus, liquid crystal display apparatus, position detection system and position detection method
EP3822738B1 (en) Display screen assembly, electronic device, and control method for electronic device
WO2020133479A1 (zh) 光学指纹识别模组及电子设备
WO2019213865A1 (zh) 一种光源模组、图像获取装置、身份识别装置及电子设备
US20140362054A1 (en) Display control system and reading device
WO2021164455A1 (zh) 液晶模组、电子设备及屏幕交互系统
CN209707863U (zh) 电子设备及其背光单元和感测模组
CN209707727U (zh) 导光板和背光单元
CN109709714A (zh) 电子设备和背光单元
Izadi et al. Thinsight: a thin form-factor interactive surface technology
KR101430334B1 (ko) 표시 시스템
CN209707871U (zh) 电子设备和背光单元
WO2024016478A1 (zh) 一种3d传感模组、3d传感方法及电子设备
CN101887328B (zh) 光学式触控面板及触控显示装置及其触控输入方法
CN209044429U (zh) 一种设备
CN101924896A (zh) 多通道人机交互桌体表面电视机
US11747545B2 (en) Electronic device
WO2021190479A1 (zh) 显示组件和电子设备
CN209707870U (zh) 电子设备及其背光单元和感测模组
CN109902652A (zh) 生物特征检测模组和背光模组及电子装置
CN209707869U (zh) 电子设备和背光单元

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021757467

Country of ref document: EP

Effective date: 20220729

ENP Entry into the national phase

Ref document number: 2022549360

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE