WO2021164449A1 - 调制编码策略的配置方法及装置、功率配置方法及装置、设备和存储介质 - Google Patents

调制编码策略的配置方法及装置、功率配置方法及装置、设备和存储介质 Download PDF

Info

Publication number
WO2021164449A1
WO2021164449A1 PCT/CN2021/070393 CN2021070393W WO2021164449A1 WO 2021164449 A1 WO2021164449 A1 WO 2021164449A1 CN 2021070393 W CN2021070393 W CN 2021070393W WO 2021164449 A1 WO2021164449 A1 WO 2021164449A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
symbol
coding strategy
mcs
coding
Prior art date
Application number
PCT/CN2021/070393
Other languages
English (en)
French (fr)
Inventor
边峦剑
戴博
胡有军
刘锟
杨维维
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021164449A1 publication Critical patent/WO2021164449A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits

Definitions

  • This application relates to the field of data communication, for example, to a modulation and coding strategy, a power configuration method, a device, a device, and a storage medium.
  • NB-IoT Narrow Band Internet of Things
  • QPSK Quadrature Phase Shift Keying
  • MCS Modulation and Coding Scheme
  • 16QAM is non-constant amplitude modulation
  • the NB-IoT user terminal needs to know the power configuration of the data and reference signals during demodulation.
  • MCS configuration and power configuration method that supports 16QAM in the related art. How to realize the modulation, coding and power configuration of data under 16QAM has become the focus of research in the field.
  • This application provides a modulation and coding strategy, a power configuration method, device, equipment, and storage medium.
  • the embodiment of the present application provides a method for configuring a modulation and coding strategy, and the method includes:
  • MCS Modulation and Coding Scheme
  • the first modulation and coding strategy set includes at least one modulation and coding strategy, and the highest order modulation mode corresponding to the first modulation and coding strategy set is 16 quadrature amplitude modulation.
  • the embodiment of the present application provides a power configuration method, which includes:
  • the first symbol is an Orthogonal Frequency Division Multiplexing (OFDM) symbol of a load reference signal
  • the second symbol is an OFDM symbol of a non-load reference signal
  • the second symbol is The OFDM symbol of the loaded reference signal
  • the first symbol is the OFDM symbol of the non-loaded reference signal.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the embodiment of the present application provides a modulation and coding strategy configuration device, which includes:
  • the strategy configuration module is set to configure a modulation and coding strategy for data based on the first modulation and coding strategy (Modulation and Coding Scheme, MCS) set;
  • MCS Modulation and Coding Scheme
  • the first modulation and coding strategy set includes at least one modulation and coding strategy, and the highest order modulation mode corresponding to the first modulation and coding strategy set is 16 quadrature amplitude modulation.
  • An embodiment of the present application provides a power configuration device, which includes:
  • a power determining module configured to determine the average power of the second symbol according to the average power of the first symbol
  • a power configuration module configured to configure power for data on the first symbol and the second symbol based on the average power of the first symbol and the average power of the second symbol, respectively;
  • the first symbol is an OFDM symbol carrying a reference signal
  • the second symbol is an OFDM symbol carrying a reference signal
  • the second symbol is an OFDM symbol carrying a reference signal
  • the first symbol is The OFDM symbol of the unloaded reference signal.
  • An embodiment of the present application provides a device, which includes:
  • One or more processors are One or more processors;
  • Memory set to store one or more programs
  • the one or more programs are executed by the one or more processors, so that the one or more processors implement the modulation and coding strategy configuration method or the power configuration method as described in any embodiment of the present application.
  • the embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the modulation and coding strategy configuration method or power configuration as described in any of the embodiments of the present application is implemented. method.
  • FIG. 1 is a flowchart of a method for configuring a modulation and coding strategy according to an embodiment of the present application
  • FIG. 2 is a flowchart of a method for configuring a modulation and coding strategy in uplink transmission according to an embodiment of the present application
  • Fig. 3 is a flowchart of a method for configuring a modulation and coding strategy during in-band deployment according to an embodiment of the present application
  • FIG. 4 is an exemplary diagram of a method for configuring a modulation and coding strategy according to an embodiment of the present application
  • FIG. 5 is an exemplary diagram of another modulation and coding strategy configuration method provided by an embodiment of the present application.
  • FIG. 6 is a flowchart of a power configuration method provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an apparatus for configuring a modulation and coding strategy according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a power configuration device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 1 is a flowchart of a method for configuring a modulation and coding strategy provided by an embodiment of the present application.
  • the embodiment of the present application may be applicable to the case where the maximum modulation mode is increased to 16QAM.
  • the method may be provided by an embodiment of the present application.
  • the modulation and coding strategy configuration device is executed, and the device can be implemented by software and/or hardware. Referring to FIG. 1, the method of the embodiment of the present application specifically includes the following steps:
  • Step 101 Configure a modulation and coding strategy for data based on a first modulation and coding strategy (Modulation and Coding Scheme, MCS) set; wherein, the first modulation and coding strategy set includes at least one modulation and coding strategy, and the first modulation and coding strategy The highest-order modulation mode corresponding to the strategy set is 16 Quadrature Amplitude Modulation (16QAM).
  • MCS Modulation and Coding Scheme
  • the MCS set may be expressed in the form of a table, or may be expressed in other ways, and this embodiment is only for illustration and not limitation. If the MCS set is represented in the form of a table, the first MCS set is the first MCS table.
  • one MCS corresponds to a modulation method and a data transmission size (Transport Block Size, TBS) index, where the TBS is the number of bits of the data transmission block, and the TBS index corresponds to The corresponding relationship of the number of bits in the data transmission block is defined by the TBS table in the standard protocol.
  • the TBS index is the TBS serial number.
  • the communication node configures the MCS for the data, it will select one from the first MCS set to encode and modulate the data.
  • the first set of modulation and coding strategies includes T modulation and coding strategies, where 16 ⁇ T ⁇ 32.
  • the modulation mode corresponding to the MCS at least includes Quadrature Phase Shift Keying (QPSK) and 16QAM.
  • QPSK Quadrature Phase Shift Keying
  • 16QAM 16QAM
  • the first MCS set is a first MCS table
  • the first MCS table includes QPSK modulation and 16QAM modulation.
  • the number of MCS corresponding to the QPSK modulation mode in the first MCS set is 14.
  • the number of MCS corresponding to the QPSK modulation mode is 14.
  • MCS indexes 0 to 13 correspond to TBS indexes 0 to 13, and the modulation mode is QPSK.
  • the MCS index is the MCS serial number.
  • the number of MCS corresponding to 16QAM in the first MCS set is L, where L is a positive integer greater than or equal to 12.
  • the largest MCS index corresponds to TBS index 21 or TBS index 22.
  • the index is the serial number.
  • the first MCS set may only include two modulation modes, QPSK and 16QAM modulation, then the number of configurable MCS is 14+L.
  • L can be a positive integer greater than or equal to 12.
  • the modulation and coding strategy in the first modulation and coding strategy set includes N groups, and the modulation and coding strategy in each group corresponds to different modulation modes, but the data transmission size is the same, where N is A positive integer greater than or equal to 4.
  • the MCS in the first MCS set, can be divided into N groups.
  • the N groups of MCS correspond to N TBSs respectively.
  • the MCSs in the group have the same TBS and different modulation modes, and the N is greater than Or a positive integer equal to 4.
  • each group of MCS includes two MCSs, and the two MCSs respectively correspond to QPSK modulation and 16QAM modulation. That is to say, in the first MCS set, there are N pairs of MCSs with overlapping TBSs, the TBSs of the two MCSs of each pair are the same, and the modulation modes are QPSK and 16QAM modulation respectively.
  • the corresponding N TBSs can be configured with QPSK and 16QAM modulation modes. These N TBSs have a higher code rate when configured with QPSK modulation, and have a lower code rate when configured with 16QAM modulation.
  • MCS modulation method and code rate suitable for channel transmission.
  • step 101 further includes:
  • Step 201 During uplink transmission, the configuration range of the modulation and coding strategy is modulation and coding strategy index 0 to 13+N, where N is a positive integer greater than or equal to 4.
  • the range of MCS available for configuration data based on the first MCS set is MCS index 0 to 13+N.
  • the uplink data transmission supports 16QAM
  • one MCS is selected from the MCS index 0 to 13+N of the first MCS set, and the data is encoded and modulated.
  • the maximum supported TBS for uplink 16QAM is TBS13, so the MCS that can be used for configuration data includes: 14 QPSK modulated MCS (MCS 0 to 13), N TBS overlapped 16QAM modulated MCS (MCS 14 to MCS) 13+N), it can be understood that N can be a positive integer greater than or equal to 4.
  • step 101 further includes:
  • Step 202 When the deployment mode is in-band (In Band) deployment, the configuration range of the modulation and coding strategy is the modulation and coding strategy index 0 to 16+N or 0 to 17+N, where N is greater than or equal to 4. Positive integer.
  • the range of MCS that can be used for configuration data is MCS index 0 to 16+N, or MCS index 0 to 17+ N.
  • MCS index 0 to 16+N MCS index 0 to 16+N
  • MCS index 0 to 17+ N MCS index 0 to 17+ N.
  • the MCS that can be used for configuration data includes: 14 QPSK modulated MCS (MCS 0 to 13), N TBS overlapping 16QAM Modulated MCS (MCS 14 to MCS 13+N), TBS 14, 15, 16 corresponding to MCS (MCS 14+N to 16+N).
  • the MCS that can be used for configuration data also includes MCS 17+N.
  • step 101 further includes:
  • Step 203 When the high-level configuration parameter L1 indicates that 16-quadrature amplitude modulation is not supported, the configuration range of the modulation and coding strategy is modulation and coding strategy index 0-13.
  • the range of MCS available for configuration data is MCS index 0-13.
  • step 101 further includes:
  • Step 204 When the high-level configuration parameter L1 indicates that 16 quadrature amplitude modulation is supported, a modulation and coding strategy is configured for the data based on the first modulation and coding strategy set; wherein the maximum number of repetitions of the physical shared channel corresponding to the data is less than or equal to 128.
  • the maximum number of repetitions of the physical shared channel is less than or equal to 128. Because 16QAM has a higher modulation order, better channel conditions are required during demodulation. When the physical shared channel is configured with a large number of repetitions, it indicates that the signal-to-noise ratio is low and the channel conditions are not good, making it unsuitable for 16QAM transmission. Therefore, the first communication node will only support 16QAM modulation when the physical shared channel has a small number of repetitions or no repetitive transmission.
  • the modulation and coding strategy configured for data is indicated by 5-bit downlink control information.
  • the 5-bit downlink control information indicates an MCS in the first MCS set, and this MCS is used to encode and modulate data.
  • one bit in the repetition count field in the downlink control information is used as one bit of the modulation and coding strategy indication information, wherein the modulation and coding strategy indication The information is used to indicate a modulation and coding strategy in the first modulation and coding strategy set.
  • the highest bit of the repetition count field in the downlink control information is used as one bit of the MCS indication information.
  • the MCS indication information is used to indicate one MCS in the MCS set.
  • the number of repetitions field is used to indicate the number of repetitions of the physical shared channel.
  • the high-level configuration parameter L1 may directly indicate whether 16QAM is supported, that is, whether 16QAM is enabled (enable 16QAM); it may also indirectly indicate whether 16QAM is supported, for example, the high-level configuration parameter L1 indicates whether Using the first MCS set and using the first MCS set indicates that 16QAM is supported, and if the first MCS set is not used, it indicates that 16QAM is not supported.
  • the repetition count field in the downlink control information contains 4-bit information, because the first communication node will only indicate that it supports 16QAM modulation when the physical shared channel has a small repetition count or no repetition transmission, so the repetition count The domain does not need so much bit information to indicate the number of repetitions. Then, when 16QAM modulation is supported, the lower number of repetitions, that is, the low-order 3 bits in the repetition number field, are used to indicate the number of repetitions of the physical shared channel, and the highest 1-bit information is used as MCS indicator information One bit of (can be used as the least significant bit or the most significant bit of MCS indication information). Therefore, the MCS indication information will include 5-bit information, which can be used to indicate the first MCS set. In an embodiment, the 5-bit MCS indication information is used to indicate one MCS in the first MCS set.
  • a modulation and coding strategy is configured for data through a preset first modulation and coding strategy set.
  • the first modulation and coding strategy set may include multiple modulation and coding strategies, and each modulation and coding strategy may correspond to a modulation and coding strategy.
  • Index, the highest order modulation method in the first set of modulation and coding strategies is 16 quadrature amplitude modulation, which realizes the compatibility of high modulation methods, enhances data communication capabilities, and improves data communication efficiency.
  • the first set of modulation and coding strategies may be represented in the form of a table.
  • an MCS table may be used to support the increase of the modulation order to 16QAM.
  • the modulation mode corresponding to MCS includes QPSK and 16QAM, and the corresponding TBS includes at least TBS 0 to 21;
  • MCS from 0 to 13 corresponds to TBS 0 to 13
  • the modulation mode corresponding to MCS 0 to 13 is QPSK.
  • the modulation mode corresponding to MCS 14 to 14+J is 16QAM, and 12 ⁇ J ⁇ 17.
  • the TBS index corresponding to MCS index 14+J is TBS 21 or TBS22.
  • N there are N pairs of MCSs with overlapping TBSs, that is, the two MCSs of each pair have the same TBS, and the modulation modes are QPSK and 16QAM modulation respectively.
  • N is a positive integer greater than or equal to 4.
  • the range of MCS that can be used for configuration data is MCS index 0 to 13+N.
  • the range of MCS that can be used for configuration data is MCS index 0 to 16+N, or MCS index 0 to 17+N.
  • the MCS table may be as shown in Table 1.
  • the J is equal to 12, the N is equal to 5, and the maximum TBS is TBS 21.
  • the modulation order 2 is QPSK modulation, and the modulation order 4 is 16QAM modulation.
  • Table 1 is as follows:
  • TBS index 0 2 0 1 2 1 2 2 2 3 2 3 4 2 4 5 2 5 6 2 6 7 2 7 8 2 8 9 2 9 10 2 10 11 2 11 12 2 12 13 2 13 14 4 9 15 4 10 16 4 11
  • Another MCS table example can be as shown in Table 2.
  • the J is equal to 13
  • the N is equal to 5
  • the maximum TBS is TBS 22.
  • the modulation order 2 is QPSK modulation
  • the modulation order 4 is 16QAM modulation.
  • Table 2 is as follows:
  • the MCS table is shown in Table 3.
  • the J is equal to 13
  • the N is equal to 6
  • the maximum TBS is TBS 21.
  • the modulation order 2 is QPSK modulation
  • the modulation order 4 is 16QAM modulation.
  • example four of the MCS table is shown in Table 4.
  • the J is equal to 14, the N is equal to 6, and the maximum TBS is TBS 22.
  • the modulation order 2 is QPSK modulation, and the modulation order 4 is 16QAM modulation.
  • an example of another MCS table is shown in Table 5.
  • the J is equal to 17, the N is equal to 10, and the maximum TBS is TBS 21.
  • the modulation order 2 is QPSK modulation, and the modulation order 4 is 16QAM modulation.
  • MCS index Modulation order TBS index 0 2 0 1 2 1 2 2 2 3 2 3 4 2 4 5 2 5 6 2 6 7 2 7 8 2 8 9 2 9 10 2 10 11 2 11 12 2 12 13 2 13 14 4 4 15 4 5 16 4 6 17 4 7 18 4 8 19 4 9 20 4 10 twenty one 4 11 twenty two 4 12 twenty three 4 13 twenty four 4 14 25 4 15 26 4 16 27 4 17 28 4 18 29 4 19 30 4 20 31 4 twenty one
  • the MCS table is shown in Table 6.
  • the J is equal to 17, the N is equal to 9, and the maximum TBS is TBS 22.
  • the modulation order 2 is QPSK modulation
  • the modulation order 4 is 16QAM modulation.
  • MCS index Modulation order TBS index 0 2 0 1 2 1 2 2 2 3 2 3 4 2 4 5 2 5 6 2 6 7 2 7 8 2 8 9 2 9 10 2 10 11 2 11 12 2 12 13 2 13 14 4 5 15 4 6 16 4 7 17 4 8 18 4 9 19 4 10 20 4 11 twenty one 4 12 twenty two 4 13 twenty three 4 14 twenty four 4 15 25 4 16 26 4 17 27 4 18 28 4 19 29 4 20 30 4 twenty one 31 4 twenty two
  • an MCS table is used to support modulation orders up to 16QAM, including:
  • the modulation mode corresponding to MCS includes QPSK and 16QAM, and the corresponding TBS includes at least TBS 0 to 21;
  • the number of MCS corresponding to the 16QAM modulation mode is L, and the L is greater than or equal to 12.
  • the largest MCS index corresponds to TBS21 or TBS22.
  • the range of MCS that can be used for configuration data is MCS index 0 to 16+N1, or MCS index 0 to 17+N1.
  • the N1 is a positive integer less than 4.
  • MCS table is shown in Table 7, where the number of MCS modulated by 16QAM is 12, corresponding to TBS 10 to 21 respectively. Based on Table 7, the range of MCS available for configuration data in inband mode is MCS index 0 to 17, or MCS index 0 to 18.
  • MCS table is shown in Table 8, where the number of MCS modulated by 16QAM is 13, corresponding to TBS 9 to 21 respectively. Based on Table 8, the range of MCS that can be used for configuration data in in-band mode is MCS index 0 to 18, or MCS index 0 to 19.
  • MCS table is shown in Table 9, where the number of MCS modulated by 16QAM is 14, corresponding to TBS 8 to 21 respectively. Based on Table 9, the range of MCS that can be used for configuration data in inband mode is MCS index 0 to 19, or MCS index 0 to 20.
  • MCS table is shown in Table 10, where the number of MCS modulated by 16QAM is 13, corresponding to TBS 10 to 22, respectively. Based on Table 10, the range of MCS that can be used for configuration data in inband mode is MCS index 0 to 17, or MCS index 0 to 18.
  • MCS table is shown in Table 11, where the number of MCS modulated by 16QAM is 14, corresponding to TBS 9 to 22, respectively. Based on Table 11, the range of MCS available for configuration data in inband mode is MCS index 0 to 18, or MCS index 0 to 19.
  • MCS table is shown in Table 12, where the number of MCS modulated by 16QAM is 15, corresponding to TBS 8 to 22, respectively. Based on Table 12, the range of MCS available for configuration data in inband mode is MCS index 0-19, or MCS index 0-20.
  • the data transmission supports 16QAM according to the high-level configuration parameter L1. If 16QAM is supported, the highest bit of the repetition count field in the downlink control information is used as the highest bit or the lowest bit of the MCS indication information. Bits.
  • the number of repetitions field is used to indicate the number of repetitions of a physical downlink shared channel (Physical Downlink Share Channel, PDSCH), and the MCS indication information is used to indicate one MCS in the MCS table.
  • PDSCH Physical Downlink Share Channel
  • the MCS indication field in the downlink control information includes 4 bits of information, indicating 14 MCSs.
  • the repetition count field in the downlink control information contains 4 bits of information, has 16 values, and indicates the 16 types of repetition times. The corresponding relationship between the value of the repetition count field and the repetition times can be shown in Table 13.
  • the number of MCS contained in the MCS table is greater than 16 and less than or equal to 32, so the MCS indication in the downlink control information requires 5-bit information to indicate; on the other hand, because the base station only It will indicate support for 16QAM modulation when the PDSCH has a small number of repetitions or no repetition transmission, so the repetition number field does not require as much information as 4 bits to indicate the number of repetitions of the PDSCH. Therefore, the most significant bit of the repetition count field in the downlink control information is used as the most significant bit or the least significant bit of the MCS indication information.
  • the lower number of repetitions that is, the low-order 3 bits in the repetition number field, are used to indicate the number of repetitions of the PDSCH.
  • the corresponding relationship is shown in Table 14; the most significant 1-bit information is used as one bit of the MCS indication information (it can be used as the least significant bit or the most significant bit of the MCS indication information). Adding the original 4 bits of the MCS indication field, the MCS indication information becomes 5-bit information.
  • the first communication node sends downlink control information
  • the downlink control information includes 5-bit MCS indication information
  • the MCS indication information is used to indicate one MCS in the first MCS set, that is, data MCS used for transmission.
  • the first communication node sends downlink control information.
  • the number of repetitions field in the downlink control information includes 4 bits
  • the MCS indication field includes 4 bits.
  • the number of repetitions field is used to indicate the number of repetitions of a physical shared channel (PDSCH or Physical Uplink Shared Channel (PUSCH)), and the MCS indicator field is used to indicate the MCS used for data transmission.
  • the 4-bit repetition count indication information can indicate a maximum of 16 repetition count configurations
  • the 4-bit MCS indication information can indicate a maximum of 16 MCS configurations.
  • one bit of the repetition number field in the downlink control information is used as a bit of the MCS indicator information, for example, the highest bit of the repetition number field in the downlink control information is taken as the highest bit of the MCS indicator information Bit or least significant bit.
  • the indication information of the number of repetitions is changed from 4 bits to 3 bits.
  • the 3-bit repetition number indication information can indicate a maximum of 8 repetition times configuration; at the same time, the MCS indication information is changed from 4 bits. It is 5 bits.
  • the 5-bit MCS indication information can indicate a maximum of 32 types of MCS.
  • the second communication node receives downlink control information.
  • the MCS used for data transmission is determined according to the downlink control information.
  • the second communication node determines the MCS used for the data transmission according to the 4-bit MCS indication field in the downlink control information. At the same time, the second communication node determines the number of repetitions of the physical shared channel (PDSCH or PUSCH) according to the 4-bit repetition number field in the downlink control information.
  • PDSCH physical shared channel
  • the second communication node determines the MCS used for the data transmission based on the first MCS table and according to the 5-bit MCS indication information in the downlink control information.
  • the 5-bit MCS indication information is composed of 4 bits of the MCS indication field and 1 bit of the repetition count field.
  • the second communication node determines the number of repetitions of the physical shared channel according to the remaining 3 bits of the repetition number field in the downlink control information.
  • the maximum modulation mode of the first MCS table is 16QAM modulation.
  • the joint indication information indicates the MCS and the MCS of the physical shared channel. repeat times.
  • x1*y1 states represent the modulation method and the repetition number under R1 with the number of repetitions less than or equal to.
  • the modulation methods include 16QAM modulation and QPSK, x1 is the number of states corresponding to the modulation method at this time, and y1 is less than or equal to The number of repetition states of R1;
  • the x2*y2 states indicate that the number of repetitions is greater than the modulation method and the number of repetitions under R1.
  • the modulation method only includes QPSK
  • x2 is the number of states corresponding to the modulation method at this time
  • y2 is the state of the repetition number greater than R1. quantity.
  • the number of bits of the joint indication information is 8;.
  • the set of repetition times includes 1, 2, 4, 8, 16, 32, 64, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, and y1 repetition times correspond to the repetition
  • FIG. 6 is a flowchart of a power configuration method provided by an embodiment of the present application.
  • the embodiment of the present application may be applicable to the case where the maximum modulation mode is increased to 16QAM.
  • the method may be a power configuration device provided by an embodiment of the present application.
  • the device may be implemented by software and/or hardware. Referring to FIG. 6, the method of the embodiment of the present application specifically includes the following steps:
  • Step 301 Determine the average power of the second symbol according to the average power of the first symbol.
  • the average power of the first symbol may be the linear average power of all resource elements (Resource Element, RE) on the transmission bandwidth of the physical shared channel on the first symbol, and all REs on the first symbol include the reference signal ( Reference Signal (RS) RE and physical shared channel RE.
  • the physical shared channel is a physical uplink shared channel (Physical Uplink Share Channel, PUSCH) or a physical downlink shared channel (Physical Downlink Share Channel, PUSCH).
  • the average power of the second symbol may be the linear average power of all resource elements (Resource Element, RE) on the transmission bandwidth of the physical shared channel on the second symbol.
  • the average power of resource particles is also called energy per resource element (EPRE)
  • the average power of reference signal resource particles can be expressed as RS EPRE
  • the average power of physical uplink shared channel resource particles can be expressed as PUSCH EPRE
  • the average power of physical downlink shared channel resource particles can be expressed as PDSCH EPRE.
  • the corresponding power after the modulation and coding strategy may be determined according to the first symbol
  • the average power of the first symbol may be determined according to the power of the multiple first symbols
  • the average power of the second symbol may be determined according to the average power of the first symbol.
  • the reference signal is a narrowband reference signal (Narrowband Reference Signal, NRS).
  • the OFDM symbols of the load reference signal are OFDM symbol indexes 5 and 6 in a transmission slot
  • the OFDM symbols of the non-load reference signal are OFDM symbol indexes 0, 1, 2, 3, and 4 in a transmission slot. .
  • the index is the serial number.
  • the average power of the first symbol may be determined according to multiple symbols in the physical shared channel
  • the average power of the second symbol may be determined according to the first symbol.
  • Step 302 Configure power for data on the first symbol and the second symbol based on the average power of the first symbol and the average power of the second symbol, respectively; wherein, the first symbol is an OFDM symbol carrying a reference signal, so The second symbol is an OFDM symbol of a non-loaded reference signal, or the second symbol is an OFDM symbol of a loaded reference signal, and the first symbol is an OFDM symbol of a non-loaded reference signal.
  • the average power of the first symbol is used to configure power for data on the first symbol
  • the average power of the second symbol is used to configure power for data on the second symbol
  • the average power of the first symbol and the average power of the second symbol are equal.
  • the average power of the first symbol and the average power of the second symbol are equal. That is, the average power of the OFDM symbol of the loaded reference signal is the same as the average power of the OFDM symbol of the non-loaded reference signal.
  • the average power of the first symbol is determined according to the average power of the reference signal signal resource particles and the power offset value A; the power offset value A is the average power of the physical shared channel resource particles on the first symbol and the power offset value A.
  • the physical shared channel may include a physical uplink shared channel or a physical downlink shared channel. For a single-port NRS, the average power of the first symbol is equal to For a two-port NRS, the average power of the first symbol is equal to
  • the power offset value A is determined by the high-level configuration parameter L2.
  • a method for determining whether the high-level configuration parameter L2 is configured can be determined by determining that the high-level configuration parameter L2 is configured when the high-level configuration parameter L1 indicates that 16QAM is supported.
  • the first communication node sends a high-level configuration parameter L3 to the second communication node, and the high-level configuration parameter L3 indicates whether the high-level configuration parameter L2 is configured.
  • another method for determining whether the high-level configuration parameter L2 is configured may be by sending the high-level configuration parameter L3 to the second communication node through the first communication node, and the high-level configuration parameter L3 directly or indirectly indicates the high-level configuration parameter L2 Whether it is determined by configuration.
  • the high-level configuration parameter L3 indicates whether the release-17 version of the downlink power allocation (also called downlink power allocation enhancement) is supported, if it is supported, it indicates that the high-level configuration parameter L2 is configured, and if it is not supported, it indicates that the high-level The configuration parameter L2 is not configured.
  • the average power of the second symbol is determined by determining the average power of the first symbol after the modulation and coding strategy, and the power is allocated to the data on the second symbol according to the average power of the second symbol, so as to realize the high modulation mode.
  • Symbol power configuration enhances data communication capabilities and improves data communication efficiency.
  • FIG. 7 is a schematic structural diagram of a modulation and coding strategy configuration device provided by an embodiment of the present application, which can execute the modulation and coding strategy configuration method provided by any embodiment of the present application, and has the functional modules and effects corresponding to the execution method.
  • the device can be implemented by software and/or hardware, and specifically includes:
  • the strategy configuration module 401 is set to configure a modulation and coding strategy based on a first modulation and coding strategy (Modulation and Coding Scheme, MCS) set as data; wherein, the first modulation and coding strategy set includes at least one modulation and coding strategy, and The highest order modulation mode corresponding to the first set of modulation and coding strategies is 16 quadrature amplitude modulation.
  • MCS Modulation and Coding Scheme
  • the first modulation and coding strategy set preset by the strategy configuration module is used to configure the modulation and coding strategy for the data.
  • the first modulation and coding strategy set may include a modulation and coding strategy composed of a modulation method and a data transmission size. Each modulation and coding strategy can correspond to a modulation and coding strategy index.
  • the highest-order modulation method in the first modulation and coding strategy set is 16 quadrature amplitude modulation, which realizes the compatibility of high modulation methods, enhances data communication capabilities, and improves data Communication efficiency.
  • the modulation and coding strategy configured for data in the strategy configuration module 401 is indicated by 5-bit downlink control information.
  • the number of modulation and coding strategies corresponding to the quadrature phase shift keying modulation mode in the first modulation and coding strategy set in the strategy configuration module 401 is 14.
  • the number of modulation and coding strategies corresponding to 16 quadrature amplitude modulation modes in the first modulation and coding strategy set in the strategy configuration module 401 is L, where L is greater than or equal to A positive integer of 12.
  • the modulation and coding strategy in the first modulation and coding strategy set in the strategy configuration module 401 includes N groups, and the modulation and coding strategy in each group corresponds to different modulation modes, but the data transmission size Same, where N is a positive integer greater than or equal to 4.
  • the policy configuration module 401 further includes:
  • the uplink transmission unit is applied to uplink transmission.
  • the configuration range of the modulation and coding strategy is from 0 to 13+N of the modulation and coding strategy, where N is a positive integer greater than or equal to 4.
  • the policy configuration module 401 further includes:
  • the in-band deployment unit is set so that when the deployment mode is in-band deployment, the configuration range of the modulation and coding strategy is modulation and coding strategy index 0 to 16+N or 0 to 17+N, where N is greater than Or a positive integer equal to 4.
  • the policy configuration module 401 further includes:
  • the first high-level configuration unit is set to when the high-level configuration parameter L1 indicates that 16-quadrature amplitude modulation is not supported, the configuration range of the modulation and coding strategy is modulation and coding strategy indexes 0 to 13.
  • the policy configuration module 401 further includes:
  • the second high-level configuration unit is configured to configure a modulation and coding strategy for data based on the first set of modulation and coding strategies when the high-level configuration parameter L1 indicates that 16 quadrature amplitude modulation is supported; wherein, the maximum number of repetitions of the physical shared channel corresponding to the data Less than or equal to 128.
  • the policy configuration module 401 further includes:
  • the third high-level configuration unit is set to when the high-level configuration parameter L1 indicates that it supports 16-quadrature amplitude modulation, and when the high-level configuration parameter L1 indicates that it supports 16-quadrature amplitude modulation, one bit of the repetition count field in the downlink control information is used as the modulation code.
  • One bit of strategy indication information is used as the modulation code.
  • the modulation and coding strategy indication information is used to indicate one modulation and coding strategy in the first modulation and coding strategy set.
  • FIG. 8 is a schematic structural diagram of a power configuration device provided by an embodiment of the present application, which can execute the power configuration method provided in any embodiment of the present application, and has the functional modules and effects corresponding to the execution method.
  • the device can be implemented by software and/or hardware, and specifically includes:
  • the power determining module 501 is configured to determine the average power of the second symbol according to the average power of the first symbol.
  • the power configuration module 502 is configured to configure power for data on the first symbol and the second symbol based on the average power of the first symbol and the average power of the second symbol, respectively; wherein, the first symbol is the power of the load reference signal OFDM symbol, the second symbol is an OFDM symbol of a non-loaded reference signal, or the second symbol is an OFDM symbol of a loaded reference signal, and the first symbol is an OFDM symbol of a non-loaded reference signal.
  • the average power of the first symbol after the modulation and coding strategy is determined by the power determination module determines the average power of the second symbol, and the power configuration module configures the power for the data on the second symbol according to the average power of the second symbol to achieve
  • the symbol power configuration under the high modulation mode is improved, the data communication capability is enhanced, and the data communication efficiency is improved.
  • the average power of the first symbol and the average power of the second symbol in the power configuration device are equal.
  • the power configuration device further includes:
  • the average power determining module is configured to determine the average power of the first symbol according to the average power of the reference signal signal resource particles and the power offset value A; the power offset value A is the physical shared channel on the first symbol The logarithmic value of the ratio of the average power of the resource particles to the average power of the reference signal resource particles.
  • the power configuration device is in NB-IoT, and the power offset value A is determined by the high-level configuration parameter L2.
  • the high-level configuration parameter L1 of the power configuration device indicates that 16 quadrature amplitude modulation is supported
  • the high-level configuration parameter L2 is configured.
  • the high-level configuration parameter L3 indicates whether the high-level configuration parameter L2 is configured.
  • FIG. 9 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • the device includes a processor 50, a memory 51, an input device 52, and an output device 53; the number of processors 50 in the device may be one Or more, one processor 50 is taken as an example in FIG. 9; the device processor 50, the memory 51, the input device 52, and the output device 53 may be connected by a bus or other means. In FIG. 9, the connection by a bus is taken as an example.
  • the memory 51 can be configured to store software programs, computer-executable programs, and modules, such as the modulation and coding strategy configuration device or the module corresponding to the power configuration device (strategy configuration module 401) in the embodiment of the present application. , Power determination module 501 and power configuration module 502).
  • the processor 50 executes multiple functional applications and data processing of the device by running the software programs, instructions, and modules stored in the memory 51, that is, implements the method described in any of the above application embodiments.
  • the memory 51 may mainly include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal, and the like.
  • the memory 51 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 51 may further include a memory remotely provided with respect to the processor 50, and these remote memories may be connected to the device through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the input device 52 may be configured to receive input digital or character information, and to generate key signal input related to user settings and function control of the device.
  • the output device 53 may include a display device such as a display screen.
  • the embodiment of the present application also provides a storage medium containing computer-executable instructions that are used to execute a modulation and coding strategy configuration method or a power configuration method when the computer-executable instructions are executed by a computer processor, wherein the modulation and coding
  • the strategy configuration methods include:
  • MCS Modulation and Coding Scheme
  • the first modulation and coding strategy set includes at least one modulation and coding strategy, and the highest order modulation mode corresponding to the first modulation and coding strategy set is 16 quadrature amplitude modulation.
  • the power configuration method includes:
  • the first symbol is an OFDM symbol carrying a reference signal
  • the second symbol is an OFDM symbol carrying a reference signal
  • the second symbol is an OFDM symbol carrying a reference signal
  • the first symbol is The OFDM symbol of the unloaded reference signal.
  • An embodiment of the present application provides a storage medium containing computer-executable instructions.
  • the computer-executable instructions are not limited to the method operations described above, and can also perform related operations in the methods provided in any embodiment of the present application.
  • user terminal encompasses any suitable type of wireless user equipment, such as a mobile phone, a portable data processing device, a portable web browser, or a vehicle-mounted mobile station.
  • the various embodiments of the present application can be implemented in hardware or dedicated circuits, software, logic or any combination thereof.
  • some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software that may be executed by a controller, microprocessor, or other computing device, although the present application is not limited thereto.
  • Computer program instructions can be assembly instructions, Instruction Set Architecture (ISA) instructions, machine instructions, machine-related instructions, microcode, firmware instructions, state setting data, or written in any combination of one or more programming languages Source code or object code.
  • ISA Instruction Set Architecture
  • the block diagram of any logic flow in the drawings of the present application may represent program steps, or may represent interconnected logic circuits, modules, and functions, or may represent a combination of program steps and logic circuits, modules, and functions.
  • the computer program can be stored on the memory.
  • the memory can be of any type suitable for the local technical environment and can be implemented using any suitable data storage technology, such as but not limited to read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), optical Memory devices and systems (Digital Video Disc (DVD) or Compact Disk (CD)), etc.
  • Computer-readable media may include non-transitory storage media.
  • the data processor can be of any type suitable for the local technical environment, such as but not limited to general-purpose computers, special-purpose computers, microprocessors, digital signal processors (Digital Signal Processing, DSP), and application specific integrated circuits (ASICs). ), programmable logic devices (Field Programmable Gate Array, FPGA), and processors based on multi-core processor architecture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请提出了一种调制编码策略、功率配置方法、装置、设备和存储介质,其中,调制编码策略配置方法包括:基于第一调制编码策略集合为数据配置调制编码策略;其中,所述第一调制编码策略集合中包括至少一个调制编码策略,且所述第一调制编码策略集合对应的最高阶的调制方式为16正交幅度调制。

Description

调制编码策略的配置方法及装置、功率配置方法及装置、设备和存储介质
本申请要求在2020年02月20日提交中国专利局、申请号为202010105163.1的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据通信领域,例如涉及一种调制编码策略、功率配置方法、装置、设备和存储介质。
背景技术
在Release-16版本的窄带物理网(Narrow Band Internet of Things,NB-IoT)技术中,最大调制方式支持正交相移键控调制(Quadrature Phase Shift Keying,QPSK)调制,峰值速率为126.8千比特每秒。在Release-17版本中,NB-IoT将最大调制方式提高到16正交幅度调制(Quadrature Amplitude Modulation,QAM),以支持更高的数据传输速率。然而,最大调制方式从QPSK提升至16QAM后,将会产生新的调制编码策略(Modulation and Coding Scheme,MCS)。为了支持NB-IoT的16QAM调制,新的MCS集合和相应的MCS指示方法需要设计。此外,16QAM为非等幅调制,NB-IoT用户终端在解调时需要知道数据与参考信号的功率配置情况。但是相关技术中还不存在支持16QAM的MCS配置和功率配置方法。如何实现16QAM下的数据的调制编码和功率配置成为领域内研究的重点。
发明内容
本申请提供了一种用于调制编码策略、功率配置方法、装置、设备和存储介质。
本申请实施例提供了一种调制编码策略的配置方法,该方法包括:
基于第一调制编码策略(Modulation and Coding Scheme,MCS)集合为数据配置调制编码策略;
其中,所述第一调制编码策略集合中包括至少一个调制编码策略且所述第一调制编码策略集合对应的最高阶的调制方式为16正交幅度调制。
本申请实施例提供了一种功率配置方法,该方法包括:
根据第一符号平均功率确定第二符号平均功率;
基于所述第一符号平均功率和所述第二符号平均功率分别为第一符号和第二符号上的数据配置功率;
其中,所述第一符号为负载参考信号的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,所述第二符号为非负载参考信号的OFDM符号,或者,所述第二符号为负载参考信号的OFDM符号,所述第一符号为非负载参考信号的OFDM符号。
本申请实施例提供了一种调制编码策略的配置装置,该装置包括:
策略配置模块,设置为基于第一调制编码策略(Modulation and Coding Scheme,MCS)集合为数据配置调制编码策略;
其中,所述第一调制编码策略集合中包括至少一个调制编码策略,且所述第一调制编码策略集合对应的最高阶的调制方式为16正交幅度调制。
本申请实施例提供了一种功率配置装置,该装置包括:
功率确定模块,设置为根据第一符号平均功率确定第二符号平均功率;
功率配置模块,设置为基于所述第一符号平均功率和第二符号平均功率分别为第一符号和第二符号上的数据配置功率;
其中,所述第一符号为负载参考信号的OFDM符号,所述第二符号为非负载参考信号的OFDM符号,或者,所述第二符号为负载参考信号的OFDM符号,所述第一符号为非负载参考信号的OFDM符号。
本申请实施例提供了一种设备,该设备包括:
一个或多个处理器;
存储器,设置为存储一个或多个程序;
所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请任一实施例中所述的调制编码策略的配置方法或者功率配置方法。
本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如本申请任一实施例中所述的调制编码策略的配置方法或者功率配置方法。
附图说明
图1是本申请实施例提供的一种调制编码策略的配置方法的流程图;
图2是本申请实施例提供的一种上行传输时调制编码策略的配置方法的流程图;
图3是本申请实施例提供的一种带内部署时调制编码策略的配置方法的流 程图;
图4是本申请实施例提供的一种调制编码策略的配置方法的示例图;
图5是本申请实施例提供的另一种调制编码策略的配置方法的示例图;
图6是本申请实施例提供的一种功率配置方法的流程图;
图7是本申请实施例提供的一种调制编码策略的配置装置的结构示意图;
图8是本申请实施例提供的一种功率配置装置的结构示意图;
图9是本申请实施例提供的一种设备的结构示意图。
具体实施方式
下文中将结合附图对本申请的实施例进行详细说明。在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1是本申请实施例提供的一种调制编码策略的配置方法的流程图,本申请实施例可适用于将在最大调制方式提升到16QAM的情况,该方法可以由本申请实施例提供的一种调制编码策略的配置装置来执行,该装置可以通过软件和/或硬件的方式实现,参见图1,本申请实施例的方法具体包括如下步骤:
步骤101、基于第一调制编码策略(Modulation and Coding Scheme,MCS)集合为数据配置调制编码策略;其中,所述第一调制编码策略集合中包括至少一个调制编码策略,且所述第一调制编码策略集合对应的最高阶的调制方式为16正交幅度调制(16Quadrature Amplitude Modulation,16QAM)。
在本申请实施例中,所述MCS集合可以用表格的形式进行表示,也可以采用其他方式进行表示,本实施例中仅进行说明,而非限定。如果所述MCS集合由表格的形式表示,则所述第一MCS集合即为第一MCS表格。
在本申请实施例中,在所述第一MCS集合中,一个MCS对应一个调制方式和一个数据传输尺寸(Transport Block Size,TBS)索引,所述TBS为数据传输块的比特数量,TBS索引与数据传输块比特数量的对应关系由标准协议中的TBS表格定义。其中,TBS索引即为TBS序号。
因此,确定一个MCS,即可确定数据的传输块尺寸TBS和调制方式。当通信节点为数据配置MCS时,会从所述第一MCS集合中选择一个,对数据进行编码调制。
在一实施例中,所述第一调制编码策略集合包括T个调制编码策略,其中,16<T≤32。
在一实施例中,在上述申请实施例的基础上,在所述第一MCS集合中,MCS对应的调制方式至少包括正交相移键控(Quadrature Phase Shift Keying,QPSK)和16QAM。
在一实施例中,所述第一MCS集合为第一MCS表格,所述第一MCS表格包含QPSK调制和16QAM调制。
在本申请实施例中,所述第一MCS集合中对应QPSK调制方式的MCS的数量为14个。
在所述第一MCS集合中,对应QPSK调制方式的MCS的数量为14个。在一实施例中,MCS索引0至13对应TBS索引0至13,调制方式为QPSK。其中,所述MCS索引即为MCS序号。
在本申请实施例中,所述第一MCS集合中对应16QAM的MCS的数量为L个,其中,所述L为大于或等于12的正整数。
在一种实施方式中,对于所述L个16QAM调制方式的MCS,其中最大的MCS索引对应TBS索引21或TBS索引22。其中,所述索引即为序号。
在另一种实施方式中,第一MCS集合中,可以只包含QPSK和16QAM调制两种调制方式,那么,可配置的MCS的数量为14+L。其中,L可以是大于或等于12的正整数。
在上述申请实施例的基础上,所述第一调制编码策略集合中的调制编码策略包括N个分组,每个分组内的调制编码策略对应调制方式不同,但数据传输尺寸相同,其中,N为大于或等于4的正整数。
在一实施例中,在第一MCS集合中,MCS可以划分为N个分组,N组MCS分别对应N个TBS,组内MCS之间具有相同的TBS和不同的调制方式,所述N为大于或等于4的正整数。其中,每组MCS包含两个MCS,所述两个MCS分别对应QPSK调制和16QAM调制。也就是说,在所述第一MCS集合中,有N对MCS具有重叠的TBS,每一对的两个MCS的TBS相同,调制方式分别为QPSK和16QAM调制。设置所述N组MCS,可以使相应的N个TBS配置QPSK 和16QAM两种调制方式,这N个TBS配置QPSK调制时具有更高的码率,配置16QAM调制时具有更低的码率。在为数据配置MCS时,可以选择适合信道传输的调制方式和码率。
在上述申请实施例的基础上,参见图2,在数据上行传输时,步骤101还包括:
步骤201、在上行传输时,所述调制编码策略的配置范围为调制编码策略索引0至13+N,其中,N为大于或等于4的正整数。
在一种实施方式中,对于上行传输,基于第一MCS集合可用于配置数据的MCS的范围为MCS索引0至13+N。在上行数据传输支持16QAM的情况下,从所述第一MCS集合的MCS索引0至13+N中选择一个MCS,对数据进行编码调制。这是因为,上行16QAM最大支持的TBS为TBS13,那么,可用于配置数据的MCS包括:14个QPSK调制的MCS(MCS 0至13),N个TBS重叠的16QAM调制的MCS(MCS 14至MCS 13+N),可以理解的是,N可以是大于或等于4的正整数。
在上述申请实施例的基础上,参见图3,当NB-IoT带内部署时,步骤101还包括:
步骤202、当部署方式为带内(In Band)部署时,所述调制编码策略的配置范围为调制编码策略索引0至16+N或0至17+N,其中,N为大于或等4的正整数。
在一实施例中,对于NB-IoT带内(In band)部署方式,基于所述第一MCS集合,可用于配置数据的MCS范围为MCS索引0至16+N,或MCS索引0至17+N。在In band方式数据传输支持16QAM的情况下,从所述第一MCS集合的MCS索引0至16+N中选择一个MCS,或者,从所述第一MCS集合的MCS索引0至17+N中选择一个MCS,对数据进行编码调制。这是因为,In band模式下的16QAM最大支持的TBS为TBS 16或TBS 17,那么,可用于配置数据的MCS包括:14个QPSK调制的MCS(MCS 0至13),N个TBS重叠的16QAM调制的MCS(MCS 14至MCS 13+N),TBS 14、15、16对应的MCS(MCS 14+N至16+N)。此外,如果最大支持的TBS为TBS 17,则可用于配置数据的MCS 还包括MCS 17+N。
在上述申请实施例的基础上,参见图4,当高层配置参数指示不支持16QAM时,步骤101还包括:
步骤203、当高层配置参数L1指示不支持16正交幅度调制时,所述调制编码策略的配置范围为调制编码策略索引0至13。
在本申请实施例中,当高层配置参数L1指示数据传输不支持16QAM时,针对该第一MCS集合,可用于配置数据的MCS范围为MCS索引0至13。在一实施例中,根据高层配置参数L1确定输出传输是否支持16QAM调制,如果高层配置参数指示支持16QAM调制,则可以使用所述第一MCS集合中所有QPSK和16QAM调制的MCS;如果高层配置参数指示不支持16QAM调制,则可使用所述第一MCS集合中所有QPSK调制的MCS,即MCS 0至13。
在上述申请实施例的基础上,参见图5,当高层配置参数指示支持16QAM时,步骤101还包括:
步骤204、当高层配置参数L1指示支持16正交幅度调制时,基于第一调制编码策略集合为数据配置调制编码策略;其中,所述数据对应的物理共享信道的最大重复次数小于或等于128。
在一实施例中,当高层配置参数L1指示支持16QAM时,物理共享信道的最大重复次数小于或等于128。因为16QAM的调制阶数较高,所以解调时需求较好的信道条件,当所述物理共享信道被配置大重复次数时,说明信噪比低,信道条件不好,不适合16QAM传输。因此,第一通信节点只会在物理共享信道小重复次数或无重复传输时支持16QAM调制。
在本申请实施例中,基于第一调制编码策略集合,为数据配置的调制编码策略由5比特下行控制信息指示。
在一实施例中,所述5比特下行控制信息指示所述第一MCS集合中的一个MCS,采用这个MCS对数据进行编码调制。
在本申请实施例中,当高层配置参数L1指示支持16正交幅度调制时,将下行控制信息中重复次数域的一个比特作为调制编码策略指示信息的一个比特,其中,所述调制编码策略指示信息用于指示所述于第一调制编码策略集合 中的一个调制编码策略。
在一实施例中,当高层配置参数L1指示支持16QAM时,将下行控制信息中的重复次数域的最高位比特作为MCS指示信息的一个比特。所述MCS指示信息用于指示MCS集合中的一个MCS。其中,所述重复次数域用于指示物理共享信道的重复次数。
在本申请实施例中,所述高层配置参数L1可以是直接指示是否支持16QAM,即是否使能16QAM(enable 16QAM);也可以是间接指示是否支持16QAM,例如,所述高层配置参数L1指示是否使用所述第一MCS集合,使用所述第一MCS集合,则表明支持16QAM,不使用所述第一MCS集合,则表明不支持16QAM。
在一实施例中,所述下行控制信息中的重复次数域包含4比特信息,因为第一通信节点只会在物理共享信道小重复次数或无重复传输时指示支持16QAM调制,所以所述重复次数域不需要这么多的比特信息来指示重复次数。那么,当16QAM调制被支持时,将较低的重复次数,即所述重复次数域中低比特位的3个比特用于指示物理共享信道的重复次数,将最高位1比特信息作为MCS指示信息的一个比特(可以作为MCS指示信息的最低位比特或最高位比特)。由此,MCS指示信息将包含5比特信息,可用于指示所述第一MCS集合,在一实施例中,所述5比特MCS指示信息用于指示所述第一MCS集合中的一个MCS。
本申请实施例的技术方案,通过预先设置的第一调制编码策略集合为数据配置调制编码策略,第一调制编码策略集合可以包括多个调制编码策略,每个调制编码策略可以对应一个调制编码策略索引,在第一调制编码策略集合中最高阶的调制方式为16正交幅度调制,实现了高调制方式的兼容,增强了数据通信能力,提高了数据通信效率。
所述第一调制编码策略集合可以由表格的形式来表示。
在一个示例性实施方式中,一个MCS表格可以用于支持调制阶数提高到16QAM,在所述MCS表格中,MCS对应的调制方式包括QPSK和16QAM,对应的TBS至少包括TBS 0至21;
本申请实施例中,在所述MCS表格中,MCS从0至13对应TBS 0至13,MCS 0至13对应的调制方式为QPSK。
本申请实施例中,在所述MCS表格中,MCS 14至14+J对应的调制方式为16QAM,12≤J≤17。其中,MCS索引14+J对应的TBS索引是TBS 21或TBS22。
本申请实施例中,在MCS表格中,有N对MCS具有重叠的TBS,即,每一对的两个MCS具有相同的TBS,且调制方式分别为QPSK和16QAM调制。N大于或等于4的正整数。
本申请实施例中,对于上行传输,基于所述MCS表格,可用于配置数据的MCS的范围为MCS索引0至13+N。
本申请实施例中,对于NB-IoT带内(In band)部署方式,基于所述MCS表格,可用于配置数据的MCS范围为MCS索引0至16+N,或MCS索引0至17+N。
可选地,所述MCS表格可以如表一所示,所述J等于12,所述N等于5,最大TBS为TBS 21。其中,调制阶数2为QPSK调制,调制阶数4为16QAM调制。表一如下所示:
表一
MCS索引 调制阶数 TBS索引
0 2 0
1 2 1
2 2 2
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9
10 2 10
11 2 11
12 2 12
13 2 13
14 4 9
15 4 10
16 4 11
17 4 12
18 4 13
19 4 14
20 4 15
21 4 16
22 4 17
23 4 18
24 4 19
25 4 20
26 4 21
27~31 保留 保留
可选地,另一种MCS表格示例可以如表二所示。所述J等于13,所述N等于5,最大TBS为TBS 22。其中,调制阶数2为QPSK调制,调制阶数4为16QAM调制。表二如下所示:
表二
Figure PCTCN2021070393-appb-000001
Figure PCTCN2021070393-appb-000002
可选地,另一种MCS表格示例如表三所示,所述J等于13,所述N等于6,最大TBS为TBS 21。其中,调制阶数2为QPSK调制,调制阶数4为16QAM调制。
表三
Figure PCTCN2021070393-appb-000003
可选地,MCS表格示例四如表四所示,所述J等于14,所述N等于6,最大TBS为TBS 22。其中,调制阶数2为QPSK调制,调制阶数4为16QAM调制。
表四
Figure PCTCN2021070393-appb-000004
可选地,另一种MCS表格的示例如表五所示,所述J等于17,所述N等于10,最大TBS为TBS 21。其中,调制阶数2为QPSK调制,调制阶数4为 16QAM调制。
表五
MCS索引 调制阶数 TBS索引
0 2 0
1 2 1
2 2 2
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9
10 2 10
11 2 11
12 2 12
13 2 13
14 4 4
15 4 5
16 4 6
17 4 7
18 4 8
19 4 9
20 4 10
21 4 11
22 4 12
23 4 13
24 4 14
25 4 15
26 4 16
27 4 17
28 4 18
29 4 19
30 4 20
31 4 21
可选地,另一种MCS表格示例如表六所示,所述J等于17,所述N等于9,最大TBS为TBS 22。其中,调制阶数2为QPSK调制,调制阶数4为16QAM调制。
表六
MCS索引 调制阶数 TBS索引
0 2 0
1 2 1
2 2 2
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9
10 2 10
11 2 11
12 2 12
13 2 13
14 4 5
15 4 6
16 4 7
17 4 8
18 4 9
19 4 10
20 4 11
21 4 12
22 4 13
23 4 14
24 4 15
25 4 16
26 4 17
27 4 18
28 4 19
29 4 20
30 4 21
31 4 22
在另一个实施方式中,一种MCS表格,用于支持调制阶数最高至16QAM,包括:
在所述MCS表格中,MCS对应的调制方式包括QPSK和16QAM,对应的TBS至少包括TBS 0至21;
本申请实施例中,对应16QAM调制方式的MCS的数量为L个,所述L大于或等于12。在所述L个16QAM调制的MCS中,最大的MCS索引对应TBS21或TBS 22。
本申请实施例中,对于NB-IoT带内(In band)部署方式,基于所述MCS表格,可用于配置数据的MCS范围为MCS索引0至16+N1,或MCS索引0至17+N1。其中,所述N1为小于4的正整数。
可选地,MCS表格示例如表七所示,其中,16QAM调制的MCS的数量为12个,分别对应TBS 10至21。基于表七,In band模式下可用于配置数据的MCS范围为MCS索引0至17,或MCS索引0至18。
表七
Figure PCTCN2021070393-appb-000005
可选地,MCS表格示例如表八所示,其中,16QAM调制的MCS的数量为13个,分别对应TBS 9至21。基于表八,In band模式下可用于配置数据的MCS范围为MCS索引0至18,或MCS索引0至19。
表八
Figure PCTCN2021070393-appb-000006
可选地,MCS表格示例如表九所示,其中,16QAM调制的MCS的数量为14个,分别对应TBS 8至21。基于表九,In band模式下可用于配置数据的MCS范围为MCS索引0至19,或MCS索引0至20。
表九
Figure PCTCN2021070393-appb-000007
Figure PCTCN2021070393-appb-000008
可选地,MCS表格示例如表十所示,其中,16QAM调制的MCS的数量为13个,分别对应TBS 10至22。基于表十,In band模式下可用于配置数据的MCS范围为MCS索引0至17,或MCS索引0至18。
表十
Figure PCTCN2021070393-appb-000009
Figure PCTCN2021070393-appb-000010
可选地,MCS表格示例如表十一所示,其中,16QAM调制的MCS的数量为14个,分别对应TBS 9至22。基于表十一,In band模式下可用于配置数据的MCS范围为MCS索引0至18,或MCS索引0至19。
表十一
Figure PCTCN2021070393-appb-000011
可选地,MCS表格示例如表十二所示,其中,16QAM调制的MCS的数量为15个,分别对应TBS 8至22。基于表十二,In band模式下可用于配置数据的MCS范围为MCS索引0至19,或MCS索引0至20。
表十二
Figure PCTCN2021070393-appb-000012
在另一种实施方式中,可以根据高层配置参数L1确定数据传输是否支持16QAM,如果支持16QAM,则将下行控制信息中的重复次数域的最高位比特作为MCS指示信息的最高位比特或最低位比特。其中,所述重复次数域用于指示物理下行共享信道(Physical Downlink Share Channel,PDSCH)的重复次数,所述MCS指示信息用于指示MCS表格中的一个MCS。
对于Release-16版本的NB-IoT,下行控制信息中的MCS指示域包括4比特信息,针对14个MCS进行指示。下行控制信息中的重复次数域包含4比特信息,具有16个取值,针对16种重复次数进行指示,重复次数域的取值与重 复次数对应关系可以如表十三所示。
表十三
重复次数域的取值 重复次数
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
8 192
9 256
10 384
11 512
12 768
13 1024
14 1536
15 2048
然而,当16QAM调制被支持时,一方面,MCS表格包含的MCS数量大于16个且小于或等于32个,所以下行控制信息中的MCS指示需要5比特信息进行指示;另一方面,因为基站只会在PDSCH小重复次数或无重复传输时指示支持16QAM调制,所以所述重复次数域不需要4比特这么多的信息来指示PDSCH的重复次数。因此,将下行控制信息中的重复次数域的最高位比特作为MCS指示信息的最高位比特或最低位比特。
本申请实施例中,将较低的重复次数,即所述重复次数域中低比特位的3个比特用于指示PDSCH的重复次数,包含3比特信息的重复次数域的取值与重复次数的对应关系如表十四所示;将最高位1比特信息作为MCS指示信息的一个比特(可以作为MCS指示信息的最低位比特或最高位比特)。加上MCS指示域原有的4比特,MCS指示信息变为5比特信息。
表十四
重复次数域的取值 重复次数
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
在一个具体实施例中,第一通信节点发送下行控制信息,所述下行控制信息中包含5比特MCS指示信息,所述MCS指示信息用于指示所述第一MCS集合中的一个MCS,即数据传输所采用的MCS。
在又一个具体实施例中,第一通信节点发送下行控制信息。
在数据传输不支持16QAM的情况下,所述下行控制信息中重复次数域包含4个比特,MCS指示域包含4个比特。其中,所述重复次数域用于指示物理共享信道(PDSCH或物理上行共享信(Physical Uplink Shared Channel,PUSCH))的重复次数,MCS指示域用于指示数据传输所采用的MCS。在这种情况下,4比特的重复次数指示信息可以针对最多16种重复次数配置进行指示,4比特的MCS指示信息可以针对最多16种MCS进行指示。
在数据传输支持16QAM的情况下,将下行控制信息中重复次数域的一个比特作为MCS指示信息的一个比特,例如,将下行控制信息中的重复次数域的最高位比特作为MCS指示信息的最高位比特或最低位比特。由此,重复次数的指示信息由4比特变为3比特,在这种情况下,3比特的重复次数指示信息可以针对最多8种重复次数配置进行指示;同时,MCS指示信息息由4比特变为5比特,在这种情况下,5比特的MCS指示信息可以针对最多32种MCS进行指示。
在一个实施例中,第二通信节点接收下行控制信息。根据所述下行控制信息确定传输数据所采用的MCS。
在数据传输不支持16QAM的情况下,第二通信节点根据下行控制信息中的4比特MCS指示域确定数据传输所采用的MCS。同时,第二通信节点根据下行控制信息中的4比特重复次数域确定物理共享信道(PDSCH或PUSCH)的重复次数。
在数据传输支持16QAM的情况下,第二通信节点基于第一MCS表格,根据下行控制信息中的5比特MCS指示信息确定数据传输所采用的MCS。其中,所述5比特MCS指示信息由MCS指示域的4比特和重复次数域的1比特构成。 同时,第二通信节点根据下行控制信息中的重复次数域剩余的3个比特确定物理共享信道的重复次数。其中,所述第一MCS表格最大调制方式为16QAM调制。在另一种实施方式中,可以根据高层配置参数L1确定数据传输是否支持16QAM,如果支持16QAM,则将MCS域和重复次数域作为联合指示信息,所述联合指示信息指示物理共享信道的MCS和重复次数。
本申请实施例中,x1*y1个状态表示重复次数小于或等于R1下的调制方式和重复次数,该调制方式包括16QAM调制和QPSK,x1为此时调制方式对应的状态数量,y1为小于等于R1的重复次数状态数量;
本申请实施例中,x2*y2个状态表示重复次数大于R1下的调制方式和重复次数,该调制方式仅包括QPSK,x2为此时调制方式对应的状态数量,y2为大于R1的重复次数状态数量。
本申请实施例中,所述联合指示信息的比特数量为8;.
本申请实施例中,重复次数集合包括1、2、4、8、16、32、64、128、192、256、384、512、768、1024、1536、2048,y1个重复次数对应所述重复次数集合中前y1个重复次数,y2个重复次数对应重复次数集合中除去y1后剩余的重复次数;
假设为物理共享信道配置的重复次数索引为y,调制方式索引为x,则所述联合指示信息对应的取值W包括:如果重复次数索引y对应的重复次数小于或等于R1,则W=y*x,如果重复次数索引y对应的重复次数大于R1,则W=y1*x1+y*x。或者,如果重复次数索引y对应的重复次数小于或等于R1,则W=y*x+y2*x2,如果重复次数索引y对应的重复次数大于R1,则W=y*x。
具体应用包括:
方案一:R1=2,y1=2,x1=30或28或27或26或25,x2=14,y2=14;
方案二:R1=4,y1=3,x1=30或28或27或26或25,x2=14,y2=13;
方案三:R1=8,y1=4,x1=30或28或27或26或25,x2=14,y2=12;
图6是本申请实施例提供的一种功率配置方法的流程图,本申请实施例可适用于将在最大调制方式提升到16QAM的情况,该方法可以由本申请实施例提 供的一种功率配置装置来执行,该装置可以通过软件和/或硬件的方式实现,参见图6,本申请实施例的方法具体包括如下步骤:
步骤301、根据第一符号平均功率确定第二符号平均功率。
其中,第一符号平均功率可以是所述第一符号上,物理共享信道的传输带宽上所有资源粒子(Resource Element,RE)的线性平均功率,所述第一符号上的所有RE包括参考信号(Reference Signal,RS)RE和物理共享信道RE,所述物理共享信道为物理上行共享信道(Physical Uplink Share Channel,PUSCH)或物理下行共享信道(Physical Downlink Share Channel,PUSCH)。第二符号平均功率可以是在所述第二符号上,物理共享信道的传输带宽上所有资源粒子(Resource Element,RE)的线性平均功率。其中,资源粒子的平均功率也称为每个资源单元的能量(Energy Per Resource Element,EPRE),参考信号资源粒子的平均功率可表示为RS EPRE,物理上行共享信道资源粒子的平均功率可表示为PUSCH EPRE,物理下行共享信道资源粒子的平均功率可表示为PDSCH EPRE。
在一实施例中,可以根据第一符号确定调制编码策略后对应的功率,根据多个第一符号的功率确定第一符号平均功率,再根据第一符号平均功率确定第二符号平均功率。示例性的,在NB-IoT中,所述参考信号为窄带参考信号(Narrowband Reference Signal,NRS)。所述负载参考信号的OFDM符号为一个传输时隙内的OFDM符号索引5和6,所述非负载参考信号的OFDM符号为一个传输时隙内的OFDM符号索引0、1、2、3、4。索引即序号。可以根据物理共享信道中多个符号确定出第一符号平均功率,并根据第一符号确定出第二符号平均功率。
步骤302、基于所述第一符号平均功率和所述第二符号平均功率分别为第一符号和第二符号上的数据配置功率;其中,所述第一符号为负载参考信号的OFDM符号,所述第二符号为非负载参考信号的OFDM符号,或者,所述第二符号为负载参考信号的OFDM符号,所述第一符号为非负载参考信号的OFDM符号。
在本申请实施例中,利用所述第一符号平均功率为第一符号上的数据配置 功率,利用第二符号平均功率为第二符号上的数据配置功率。
在上述申请实施例的基础上,第一符号平均功率和第二符号平均功率相等。
本申请实施例中,所述第一符号平均功率和第二符号平均功率相等。即负载参考信号的OFDM符号的平均功率和非负载参考信号的OFDM符号的平均功率相同。
在上述申请实施例的基础上,还包括:
根据参考信号信号资源粒子的平均功率和功率偏移值A确定所述第一符号平均功率;所述功率偏移值A为在所述第一符号上,物理共享信道资源粒子的平均功率与所述参考信号资源粒子的平均功率之比的对数值。
在一实施例中,参考信号资源粒子的平均功率为P0,可根据高层配置参数获取;在所述第一符号上,物理共享信道资源粒子的平均功率与参考信号资源粒子的平均功率的线性比值R根据功率偏移值A确定。由此,基于P0和R可以得出在所述第一符号上的物理共享信道资源粒子的平均功率值P1,即P1=R×P0。根据P0和P1可以计算出所述第一符号平均功率。其中,物理共享信道可以包括物理上行共享信道或物理下行共享信道。对于单端口NRS,所述第一符号平均功率等于
Figure PCTCN2021070393-appb-000013
对于两端口NRS,所述第一符号平均功率等于
Figure PCTCN2021070393-appb-000014
在上述申请实施例的基础上,在NB-IoT中,所述功率偏移值A由高层配置参数L2确定。
本申请实施例中,一种确定所述高层配置参数L2是否被配置的方法可以通过当高层配置参数L1指示支持16QAM时,确定高层配置参数L2被配置。
在一实施例中,根据高层配置参数L1的指示,确定是否支持16QAM调制;如果支持16QAM调制,则所述高层配置参数L2才会被配置,如果不支持16QAM调制,则所述高层配置参数L2不被配置。
在本申请实施例中,第一通信节点向第二通信节点发送高层配置参数L3,所述高层配置参数L3指示所述高层配置参数L2是否被配置。
在一实施例中,另一种确定高层配置参数L2是否被配置可以通过第一通信 节点向第二通信节点发送高层配置参数L3,所述高层配置参数L3直接或间接指示所述高层配置参数L2是否被配置确定。例如,高层配置参数L3指示是否支持Release-17版本的下行功率分配(也可以叫下行功率分配增强),如果支持,则表明所述高层配置参数L2被配置,如果不支持,则表明所述高层配置参数L2不被配置。
本申请实施例的技术方案,通过确定调制编码策略后的第一符号平均功率确定第二符号平均功率,根据第二符号平均功率为第二符号上的数据配置功率,实现了高调制方式下的符号功率配置,增强了数据通信能力,提高了数据通信效率。
图7是本申请实施例提供的一种调制编码策略的配置装置的结构示意图,可执行本申请任意实施例所提供的调制编码策略的配置方法,具备执行方法相应的功能模块和效果。该装置可以由软件和/或硬件实现,具体包括:
策略配置模块401,设置为基于第一调制编码策略(Modulation and Coding Scheme,MCS)集合为数据配置调制编码策略;其中,所述第一调制编码策略集合中包括至少一个调制编码策略,且所述第一调制编码策略集合对应的最高阶的调制方式为16正交幅度调制。
本申请实施例的技术方案,通过策略配置模块预先设置的第一调制编码策略集合为数据进行调制编码策略配置,第一调制编码策略集合可以包括由调制方式和数据传输尺寸组成的调制编码策略,每个调制编码策略可以对应一个调制编码策略索引,在第一调制编码策略集合中最高阶的调制方式为16正交幅度调制,实现了高调制方式的兼容,增强了数据通信能力,提高了数据通信效率。在上述申请实施例的基础上,策略配置模块401中为数据配置的所述调制编码策略由5比特下行控制信息指示。
在上述申请实施例的基础上,策略配置模块401中的第一调制编码策略集合中对应正交相移键控调制方式的调制编码策略的数量为14个。
在上述申请实施例的基础上,策略配置模块401中的所述第一调制编码策略集合中对应16正交幅度调制方式的调制编码策略的数量为L个,其中,所述L为大于或等于12的正整数。
在上述申请实施例的基础上,策略配置模块401中的所述第一调制编码策略集合中的调制编码策略包括N个分组,每个分组内的调制编码策略对应调制方式不同,但数据传输尺寸相同,其中,N为大于或等于4的正整数。
在上述申请实施例的基础上,策略配置模块401还包括:
上行传输单元,应用于在上行传输时,所述调制编码策略的配置范围为调制编码策略索引0至13+N,其中,N为大于或等于4的正整数。
在上述申请实施例的基础上,策略配置模块401还包括:
带内部署单元,设置为当部署方式为带内(In Band)部署时,所述调制编码策略的配置范围为调制编码策略索引0至16+N或0至17+N,其中,N为大于或等4的正整数。
在上述申请实施例的基础上,策略配置模块401还包括:
第一高层配置单元,设置为当高层配置参数L1指示不支持16正交幅度调制时,所述调制编码策略的配置范围为调制编码策略索引0至13。在上述申请实施例的基础上,策略配置模块401还包括:
第二高层配置单元,设置为当高层配置参数L1指示支持16正交幅度调制时,基于第一调制编码策略集合为数据配置调制编码策略;其中,所述数据对应的物理共享信道的最大重复次数小于或等于128。
在上述申请实施例的基础上,策略配置模块401还包括:
第三高层配置单元,设置为当高层配置参数L1指示支持16正交幅度调制时,当高层配置参数L1指示支持16正交幅度调制时,将下行控制信息中重复次数域的一个比特作为调制编码策略指示信息的一个比特;
其中,所述调制编码策略指示信息用于指示所述于第一调制编码策略集合中的一个调制编码策略。
图8是本申请实施例提供的一种功率配置装置的结构示意图,可执行本申请任意实施例所提供的功率配置方法,具备执行方法相应的功能模块和效果。该装置可以由软件和/或硬件实现,具体包括:
功率确定模块501,设置为根据第一符号平均功率确定第二符号平均功率。
功率配置模块502,设置为基于所述第一符号平均功率和所述第二符号平均 功率分别为第一符号和第二符号上的数据配置功率;其中,所述第一符号为负载参考信号的OFDM符号,所述第二符号为非负载参考信号的OFDM符号,或者,所述第二符号为负载参考信号的OFDM符号,所述第一符号为非负载参考信号的OFDM符号。
本申请实施例的技术方案,通过功率确定模块确定调制编码策略后的第一符号平均功率确定第二符号平均功率,功率配置模块根据第二符号平均功率为第二符号上的数据配置功率,实现了高调制方式下的符号功率配置,增强了数据通信能力,提高了数据通信效率。
在上述申请实施例的基础上,功率配置装置中的第一符号平均功率和第二符号平均功率相等。
在上述申请实施例的基础上,功率配置装置还包括:
平均功率确定模块,设置为根据参考信号信号资源粒子的平均功率和功率偏移值A确定所述第一符号平均功率;所述功率偏移值A为在所述第一符号上的物理共享信道资源粒子的平均功率与所述参考信号资源粒子的平均功率之比的对数值。
在上述申请实施例的基础上,功率配置装置在NB-IoT中,所述功率偏移值A由高层配置参数L2确定。
在上述申请实施例的基础上,功率配置装置的当高层配置参数L1指示支持16正交幅度调制时,所述高层配置参数L2被配置。
在上述申请实施例的基础上,功率配置装置的当第一通信节点向第二通信节点发送高层配置参数L3,所述高层配置参数L3指示所述高层配置参数L2是否被配置。
图9是本申请实施例提供的一种设备的结构示意图,如图9所示,该设备包括处理器50、存储器51、输入装置52和输出装置53;设备中处理器50的数量可以是一个或多个,图9中以一个处理器50为例;设备处理器50、存储器51、输入装置52和输出装置53可以通过总线或其他方式连接,图9中以通过总线连接为例。
存储器51作为一种计算机可读存储介质,可设置为存储软件程序、计算机 可执行程序以及模块,如本申请实施例中的调制编码策略的配置装置或者功率配置装置对应的模块(策略配置模块401、功率确定模块501和功率配置模块502)。处理器50通过运行存储在存储器51中的软件程序、指令以及模块,从而执行设备的多种功能应用以及数据处理,即实现上述任一申请实施例所述方法。
存储器51可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器51可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器51可进一步包括相对于处理器50远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置52可设置为接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置53可包括显示屏等显示设备。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种调制编码策略的配置方法或功率配置方法,其中,调制编码策略的配置方法方法包括:
基于第一调制编码策略(Modulation and Coding Scheme,MCS)集合为数据配置调制编码策略;
其中,所述第一调制编码策略集合中包括至少一个调制编码策略,且所述第一调制编码策略集合对应的最高阶的调制方式为16正交幅度调制。
其中,功率配置方法包括:
根据第一符号平均功率确定第二符号平均功率;
基于所述第一符号平均功率和所述第二符号平均功率分别为第一符号和第二符号上的数据配置功率;
其中,所述第一符号为负载参考信号的OFDM符号,所述第二符号为非负载参考信号的OFDM符号,或者,所述第二符号为负载参考信号的OFDM符号,所述第一符号为非负载参考信号的OFDM符号。
本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供方法中的相关操作。
以上所述,仅为本申请的示例性实施例而已,并非用于限定本申请的保护范围。
本领域内的技术人员应明白,术语用户终端涵盖任何适合类型的无线用户设备,例如移动电话、便携数据处理装置、便携网络浏览器或车载移动台。
一般来说,本申请的多种实施例可以在硬件或专用电路、软件、逻辑或其任何组合中实现。例如,一些方面可以被实现在硬件中,而其它方面可以被实现在可以被控制器、微处理器或其它计算装置执行的固件或软件中,尽管本申请不限于此。
本申请的实施例可以通过移动装置的数据处理器执行计算机程序指令来实现,例如在处理器实体中,或者通过硬件,或者通过软件和硬件的组合。计算机程序指令可以是汇编指令、指令集架构(Instruction Set Architecture,ISA)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码。
本申请附图中的任何逻辑流程的框图可以表示程序步骤,或者可以表示相互连接的逻辑电路、模块和功能,或者可以表示程序步骤与逻辑电路、模块和功能的组合。计算机程序可以存储在存储器上。存储器可以具有任何适合于本地技术环境的类型并且可以使用任何适合的数据存储技术实现,例如但不限于只读存储器(Read-Only Memory,ROM)、随机访问存储器(Random Access Memory,RAM)、光存储器装置和系统(数码多功能光碟(Digital Video Disc,DVD)或光盘(Compact Disk,CD))等。计算机可读介质可以包括非瞬时性存储介质。数据处理器可以是任何适合于本地技术环境的类型,例如但不限于通用计算机、专用计算机、微处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Field Programmable Gate Array,FPGA)以及基于多核处理器架构的处理器。

Claims (20)

  1. 一种调制编码策略的配置方法,包括:
    基于第一调制编码策略集合为数据配置调制编码策略;
    其中,所述第一调制编码策略集合中包括至少一个调制编码策略,且所述第一调制编码策略集合对应的最高阶的调制方式为16正交幅度调制。
  2. 根据权利要求1所述的方法,其中,所述基于第一调制编码策略集合为数据配置调制编码策略,包括:为数据配置的所述调制编码策略由5比特下行控制信息指示。
  3. 根据权利要求1所述的方法,其中,所述第一调制编码策略集合中对应正交相移键控调制方式的调制编码策略的数量为14个。
  4. 根据权利要求1所述的方法,其中,所述第一调制编码策略集合中对应16正交幅度调制方式的调制编码策略的数量为L个,其中,所述L为大于或等于12的正整数。
  5. 根据权利要求1所述的方法,其中,所述第一调制编码策略集合中的调制编码策略包括N个分组,每个分组内的调制编码策略对应调制方式不同,但数据传输尺寸相同,其中,N为大于或等于4的正整数。
  6. 根据权利要求1或5任一所述的方法,其中,所述基于第一调制编码策略集合为数据配置调制编码策略,包括:
    在上行传输时,所述调制编码策略的配置范围为调制编码策略索引0至13+N,其中,N为大于或等于4的正整数。
  7. 根据权利要求1或5任一所述的方法,其中,所述基于第一调制编码策略集合为数据配置调制编码策略,包括:
    在部署方式为带内部署的情况下,所述调制编码策略的配置范围为调制编码策略索引0至16+N或0至17+N,其中,N为大于或等4的正整数。
  8. 根据权利要求1所述的方法,其中,所述基于第一调制编码策略集合为数据配置调制编码策略,包括:
    在高层配置参数L1指示不支持16正交幅度调制的情况下,所述调制编码策略的配置范围为调制编码策略索引0至13。
  9. 根据权利要求1所述的方法,其中,所述基于第一调制编码策略集合为 数据配置调制编码策略,包括:
    在高层配置参数L1指示支持16正交幅度调制的情况下,基于所述第一调制编码策略集合为所述数据配置所述调制编码策略;
    其中,所述数据对应的物理共享信道的最大重复次数小于或等于128。
  10. 根据权利要求1所述的方法,其中,所述基于第一调制编码策略集合为数据配置调制编码策略,包括:
    在高层配置参数L1指示支持16正交幅度调制的情况下,将下行控制信息中重复次数域的一个比特作为调制编码策略指示信息的一个比特;
    其中,所述调制编码策略指示信息用于指示所述第一调制编码策略集合中的一个调制编码策略。
  11. 一种功率配置方法,包括:
    根据第一符号平均功率确定第二符号平均功率;
    基于所述第一符号平均功率和所述第二符号平均功率分别为第一符号和第二符号上的数据配置功率;
    其中,所述第一符号为负载参考信号的正交频分复用OFDM符号,所述第二符号为非负载参考信号的OFDM符号,或者,所述第二符号为负载参考信号的OFDM符号,所述第一符号为非负载参考信号的OFDM符号。
  12. 根据权利要求11所述的方法,其中,所述第一符号平均功率和所述第二符号平均功率相等。
  13. 根据权利要求11所述的方法,还包括:
    根据参考信号资源粒子的平均功率和功率偏移值A确定所述第一符号平均功率;
    所述功率偏移值A为所述第一符号上的物理共享信道资源粒子的平均功率与所述参考信号资源粒子的平均功率之比的对数值。
  14. 根据权利要求13所述的方法,其中,在NB-IoT中,所述功率偏移值A由高层配置参数L2确定。
  15. 根据权利要求11、13或14中任一所述的方法,还包括:
    在高层配置参数L1指示支持16正交幅度调制的情况下,所述高层配置参 数L2被配置。
  16. 根据权利要求11、13或14中任一所述的方法,还包括:
    第一通信节点向第二通信节点发送高层配置参数L3,所述高层配置参数L3指示所述高层配置参数L2是否被配置。
  17. 一种调制编码策略的配置装置,包括:
    策略配置模块,设置为基于第一调制编码策略MCS集合为数据配置调制编码策略;
    其中,所述第一调制编码策略集合中包括至少一个调制编码策略,且所述第一调制编码策略集合对应的最高阶的调制方式为16正交幅度调制。
  18. 一种功率配置装置,包括:
    功率确定模块,设置为根据第一符号平均功率确定第二符号平均功率;
    功率配置模块,设置为基于所述第一符号平均功率和所述第二符号平均功率分别为第一符号和第二符号上的数据配置功率;
    其中,所述第一符号为负载参考信号的正交频分复用OFDM符号,所述第二符号为非负载参考信号的OFDM符号,或者,所述第二符号为负载参考信号的OFDM符号,所述第一符号为非负载参考信号的OFDM符号。
  19. 一种设备,包括:
    一个或多个处理器;
    存储器,设置为存储一个或多个程序;
    所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-10中任一项所述的调制编码策略的配置方法或者如权利要求11-16中任一项所述的功率配置方法。
  20. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-10中任一项所述的调制编码策略的配置方法或者如权利要求11-16中任一项所述的功率配置方法。
PCT/CN2021/070393 2020-02-20 2021-01-06 调制编码策略的配置方法及装置、功率配置方法及装置、设备和存储介质 WO2021164449A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010105163.1 2020-02-20
CN202010105163.1A CN111901280A (zh) 2020-02-20 2020-02-20 调制编码策略、功率配置方法、装置、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2021164449A1 true WO2021164449A1 (zh) 2021-08-26

Family

ID=73169763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/070393 WO2021164449A1 (zh) 2020-02-20 2021-01-06 调制编码策略的配置方法及装置、功率配置方法及装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN111901280A (zh)
WO (1) WO2021164449A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111901280A (zh) * 2020-02-20 2020-11-06 中兴通讯股份有限公司 调制编码策略、功率配置方法、装置、设备和存储介质
US20230412301A1 (en) * 2020-11-13 2023-12-21 Beijing Xiaomi Mobile Software Co., Ltd. Communication method and communication device
CN115173989B (zh) * 2021-04-02 2024-06-04 华为技术有限公司 数据传输方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133552A1 (zh) * 2016-02-05 2017-08-10 中兴通讯股份有限公司 数据共享信道的传输参数的确定方法、装置及系统
WO2018085666A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Modulation and coding scheme restriction for specific combinations of transport block size and number of resource blocks for limited buffer rate matching
CN108781153A (zh) * 2016-03-15 2018-11-09 高通股份有限公司 窄带无线通信中的下行链路功率调整
CN111901280A (zh) * 2020-02-20 2020-11-06 中兴通讯股份有限公司 调制编码策略、功率配置方法、装置、设备和存储介质
CN111901067A (zh) * 2020-02-12 2020-11-06 中兴通讯股份有限公司 一种配置、接收方法、装置、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017133552A1 (zh) * 2016-02-05 2017-08-10 中兴通讯股份有限公司 数据共享信道的传输参数的确定方法、装置及系统
CN108781153A (zh) * 2016-03-15 2018-11-09 高通股份有限公司 窄带无线通信中的下行链路功率调整
WO2018085666A1 (en) * 2016-11-04 2018-05-11 Intel IP Corporation Modulation and coding scheme restriction for specific combinations of transport block size and number of resource blocks for limited buffer rate matching
CN111901067A (zh) * 2020-02-12 2020-11-06 中兴通讯股份有限公司 一种配置、接收方法、装置、设备及存储介质
CN111901280A (zh) * 2020-02-20 2020-11-06 中兴通讯股份有限公司 调制编码策略、功率配置方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN111901280A (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2021164449A1 (zh) 调制编码策略的配置方法及装置、功率配置方法及装置、设备和存储介质
US10637618B2 (en) Data transmission method and device
CN109600835B (zh) 确定资源分配、指示资源分配的方法、终端及网络侧设备
WO2022078343A1 (zh) 调制编码策略的配置方法、功率的配置方法、信道质量的上报方法、设备和介质
US11757688B2 (en) Sequence-based signal processing method and apparatus
CN110324897B (zh) 频域资源分配的指示信息发送方法及装置、接收方法及装置、存储介质、基站、用户终端
WO2021159846A1 (zh) 配置、接收方法、装置、设备及存储介质
EP3605985B1 (en) Method and device for determining a modulation and coding scheme
WO2017157247A1 (zh) 确定传输信息的方法、装置及系统
CN104995948A (zh) 数据传输方法、基站和用户设备
JP7181195B2 (ja) リソース指示方法および装置、ならびにアップリンク制御信号伝送方法および装置
WO2019072206A1 (zh) 一种通信方法及装置
WO2021258975A1 (zh) 数据调制方法、装置、设备和存储介质
WO2021143426A1 (zh) 编码方法及装置、调制编码方法及装置、设备、存储介质
CN106559175B (zh) 一种数据传输方法、设备和系统
CN106576269B (zh) 一种数据传输方法、设备及系统
CN114650119A (zh) 数据传输方法、装置、系统、电子设备和存储介质
CN113826342B (zh) 一种通信方法及相关设备
JP7501628B2 (ja) データ伝送方法および装置
JP2023503656A (ja) データ伝送方法および装置
CN114070529A (zh) 上行控制信息的传输方法、终端、网络设备及存储介质
CN114466439A (zh) 一种用于基站的输入功率转换方法、装置、设备和介质
CN115883487A (zh) 电力通信系统的资源分配方法、装置及存储介质
CN111867079A (zh) 一种资源分配的方法、装置及计算机可读存储介质
CN109309546A (zh) 控制信道处理方法、装置、系统、相关设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21756303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21756303

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/02/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21756303

Country of ref document: EP

Kind code of ref document: A1