WO2021164363A1 - 一种ect传感器标定方法 - Google Patents
一种ect传感器标定方法 Download PDFInfo
- Publication number
- WO2021164363A1 WO2021164363A1 PCT/CN2020/131882 CN2020131882W WO2021164363A1 WO 2021164363 A1 WO2021164363 A1 WO 2021164363A1 CN 2020131882 W CN2020131882 W CN 2020131882W WO 2021164363 A1 WO2021164363 A1 WO 2021164363A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- concrete
- calibration
- capacitance value
- ect
- ect sensor
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/22—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
- G01N27/223—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
Definitions
- the invention relates to the technical field of concrete durability monitoring, in particular to an ECT sensor calibration method.
- the concrete structure has become one of the most widely used building structures in modern engineering construction. However, the concrete structure will be affected by the load and the environment during the actual service process, resulting in the service life of the concrete structure not reaching the design service life. There are many reasons for the failure of concrete durability, and the existence and migration of moisture is an important inducement to the deterioration of concrete. On the one hand, moisture is a carrier for corrosive substances to enter the concrete, and on the other hand, moisture is a necessary condition for the occurrence of the degradation reaction process. Therefore, it is of great significance to dynamically monitor and quantify the water transmission process based on visualization technology.
- ECT Electrical capacitance tomography
- gas-solid In the visual monitoring of two-phase flow, gas-liquid two-phase flow, oil-water two-phase flow, and liquid-solid two-phase flow, it is the fastest growing and most mature in process tomography technology.
- ECT technology to study the law of water transmission within concrete structures conforms to the law of liquid-solid two-phase flow, and provides effective technical support for more objectively and accurately evaluating the durability of concrete structures.
- the ECT system consists of three parts: an array capacitive sensor, a data acquisition and information processing system, and an imaging computer. Due to the inherent soft field characteristics of the ECT sensor, the sensitive field distribution even under the empty sensor is extremely uneven, which greatly affects the quality of image reconstruction, and the non-uniformity depends on the structure of the capacitive sensor. Therefore, the design of the array capacitive sensor is one of the key and core technologies of the ECT system, and is an important prerequisite for the realization of two-dimensional unsaturated water transmission imaging inside cement-based materials.
- C m is the measured value of capacitance
- C e is the capacitance value of the empty field
- C f is the capacitance value of the full field
- [lambda] is the normalized capacitance values
- the ECT system monitors the moisture transmission inside the concrete, it is necessary to determine the empty and full field capacitance values, that is, the maximum capacitance value and the minimum capacitance value collected during the unsaturated moisture transmission process inside the concrete member, so as to determine the medium distribution and the normalized capacitance value
- This process is the calibration process of ECT imaging. Because the different mix ratios and types of concrete components will cause the mixed dielectric constant to change when moisture enters, which will cause the normalized capacitance to change, which will affect the accuracy of image reconstruction, the replacement of new concrete components requires recalibration.
- the usual calibration method is: remove the ECT sensor, and collect the capacitance value under two states of empty and full tube, and obtain the maximum and minimum values during the monitoring process, that is, the calibration is completed, assuming that the maximum and minimum values are between
- the capacitance value is linear with the moisture content, but in the actual measurement process, the relative permittivity of water (approximately 80) is much greater than that of dry concrete (6-8).
- the relative permittivity of the medium is mixed. Major changes have occurred, and the above-mentioned calibration method assuming a linear relationship will cause large errors; and every time a new concrete component is monitored, the ECT sensor needs to be removed and re-calibrated, which will cause unnecessary disassembly and assembly of the ECT sensor.
- ECT technology has developed rapidly and has become one of the fastest-growing tomography technologies in process tomography technology. It has achieved many results in the fields of pneumatic conveying, fluidized bed, petroleum, and chemical engineering. However, it has been used in cement-based materials There are few reports on ECT technology in the field, and there is no patent literature on the calibration method of ECT sensor in the field of cement-based materials.
- the purpose of the present invention is to overcome the shortcomings of the prior art and seek to design an ECT sensor calibration method to provide a theoretical basis for accurately monitoring the unsaturated water transmission inside the concrete member, and to be able to determine the moisture content and capacitance response value in the water transmission inside the concrete member. The relationship is calibrated.
- the specific process of the ECT sensor calibration method involved in the present invention includes five steps: preparing concrete specimens, connecting equipment, preparation, measuring capacitance, and normalizing:
- Preparing concrete specimens preparing concrete specimens of cylindrical structure, removing the molds 24 hours after pouring, and placing them in a standard curing room with constant temperature and humidity for 7 days. After taking them out, the two ends are symmetrically cut to eliminate the influence of the end and rinse. Clean, the remaining 5cm in the middle is made into a test sample;
- Measure capacitance value Measure the capacitance value between each electrode pair of the saturated test piece in sequence according to the above measurement mode.
- the number of measured electrode pairs is: After the measurement is completed, the saturated test piece is removed and placed in a blast drying oven with a temperature of 105°C for drying.
- the real-time mass m s of the test piece is obtained by the stepwise weighing method, and the dynamic monitoring method is adopted through the formula: Calculate the saturation of the test piece, repeat the above steps to prepare the test pieces with the saturation of 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20% and 10% in sequence, and save each saturation of the test piece.
- the capacitance value data is derived from the digital bridge, and the capacitance value is normalized according to the capacitance normalization parallel model, and the ECT sensor with the dry concrete specimen is taken as an empty tube, that is, normalization
- the “0” after the chemical treatment, the full tube of the ECT sensor where the saturated test piece is placed is taken, that is, the “1” after the normalization treatment, a total of 11 corresponding to the saturation of 0-100% (each 10% is 1)
- the capacitance value determines the functional relationship between the moisture content and the normalized capacitance value, and completes the calibration.
- the electrode pair measurement mode is consistent with the online monitoring electrode pair measurement mode, including three modes of excitation, measurement and grounding; during the process of online monitoring of the unsaturated moisture transmission inside the concrete specimen, Realize the accurate correspondence of the moisture content, normalized capacitance value, relative permittivity value and image gray value of the concrete specimen.
- the ECT sensor involved in the present invention is an ECT sensor disclosed in Chinese patent 201910904259.1 for monitoring the internal moisture transmission of concrete members.
- the present invention uses two identical ECT sensors to perform offline calibration and online measurement, and uses digital bridge calibration offline, which avoids the indeterminacy, ill-posedness and soft field characteristics of online calibration due to image reconstruction
- the error caused by the original data is used to calibrate, which has the advantages of fast speed and high accuracy
- the calibrated concrete specimen is placed inside the ECT sensor for online calibration to visually monitor the unsaturated moisture transmission inside the concrete specimen, eliminating the need
- the complex steps of disassembling and assembling the sensor in the conventional calibration method are avoided, and the error caused by disassembling and assembling the sensor is avoided;
- the concrete specimens with different saturations are prepared by the blast drying oven for calibration, which can simulate reality more realistically than directly calibrating the moisture.
- the reaction reflects the functional relationship between capacitance and relative permittivity and moisture; it realizes the accurate calibration of the visual monitoring of the unsaturated moisture transmission inside the cement-based material, which makes up for the inapplicability of the conventional calibration method to the monitoring process of the liquid-solid two-phase flow of cement-based materials. Insufficiency, it provides a theoretical basis for the visual monitoring of the internal unsaturated moisture transmission of cement-based materials.
- Figure 1 is a schematic diagram of the connection between an ECT sensor for off-line calibration and a digital bridge involved in step (2) of the present invention.
- Figure 2 is a schematic diagram of the connection between the ECT sensor for online measurement and the imaging computer involved in step (2) of the present invention.
- Fig. 3 is an operation cycle diagram of successively measuring test pieces with different saturation levels involved in the present invention.
- the specific process of the ECT sensor calibration method involved in this embodiment includes five steps: preparing concrete specimens, connecting equipment, preparation, measuring capacitance, and normalizing:
- Preparation of concrete specimens prepare concrete specimens with a cylindrical structure with a diameter of 15 cm and a height of 10 cm, remove the molds 24 hours after pouring, and place them in a standard curing room with a humidity of 95% and a temperature of 20 ⁇ 2°C. After taking it out, the two ends are symmetrically cut off by 2.5cm to eliminate the influence of the ends and rinse off. The remaining 5cm in the middle is made into a test sample;
- the real-time mass m s of the test piece is obtained by the stepwise weighing method, and the dynamic monitoring method is adopted through the formula: Calculate the saturation of the test piece, prepare the test pieces with the saturation of 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, and 10% in sequence according to the above steps, and save each saturation of the test piece.
- the capacitance value data is derived from the digital bridge, and the capacitance value is normalized according to the capacitance normalization parallel model, and the ECT sensor with the dry concrete specimen is taken as an empty tube, that is, normalization
- the “0” after the chemical treatment, the full tube of the ECT sensor where the saturated test piece is placed is taken, that is, the “1” after the normalization treatment, a total of 11 corresponding to the saturation of 0-100% (each 10% is 1)
- the capacitance value determines the functional relationship between the moisture content and the normalized capacitance value, and completes the calibration; in the process of online monitoring of the unsaturated water transmission inside the concrete specimen, the moisture content and the normalized capacitance value of the concrete specimen are realized , Correspondence of relative permittivity value and image gray value accurately.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
一种ECT传感器标定方法,涉及混凝土耐久性监测技术领域,标定方法的工艺过程包括制备混凝土试件、连接设备、准备工作、测量电容值和归一化处理共五个步骤,通过两个相同的ECT传感器进行线下标定和线上测量,标定好的混凝土试件放置于线下标定用ECT传感器内部进行混凝土试件内部非饱和水分传输的可视化监测,通过鼓风干燥箱制备不同饱和度的混凝土试件进行标定,相比于直接标定水分,能够更加真实的模拟现实环境中混凝土试件内部的水分;标定过程简单、快捷,能够及时校准归一化电容值,提高了ECT成像的精度,实现了水泥基材料内部非饱和水分传输可视化监测的精确标定,弥补了常规标定方法不适用于水泥基材料液固两相流监测过程的不足。
Description
本发明涉及混凝土耐久性监测技术领域,尤其是一种ECT传感器标定方法。
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。
混凝土结构目前已成为现代工程建筑中应用最广泛的建筑结构之一,然而,混凝土结构在实际服役过程中会受到荷载及环境的影响,导致混凝土结构的使用寿命不能达到设计使用年限。混凝土耐久性失效的原因多种多样,而水分的存在及其迁移是导致混凝土劣化的重要诱因,一方面水分是侵蚀性物质进入混凝土的载体,另一方面水分又是劣化反应过程发生的必要条件,因此基于可视化技术对水分传输过程进行动态监测、量化分析具有重要意义。
电容层析成像技术(ECT)是一种基于电容敏感机理的层析成像技术,具有非侵入性、响应速度快、适用范围广、成本低、无辐射、便携等优点,其广泛应用于气固两相流、气液两相流、油水两相流及液固两相流等的可视化监测中,是过程层析成像技术中发展最快、最为成熟的一种层析成像技术。利用ECT技术研究混凝土结构内部水分传输规律,符合液固两相流的研究规律,为更加客观准确地评价混凝土结构耐久性提供了有效的技术 支持。
ECT系统由阵列式电容传感器、数据采集及信息处理系统和成像计算机三部分组成。由于ECT传感器固有的软场特性,导致即使是在空传感器下的敏感场分布也是极不均匀的,这在很大程度上影响了图像重建的质量,而非均匀性又依赖于电容传感器的结构参数,因此阵列式电容传感器的设计是ECT系统的关键和核心技术之一,是实现水泥基材料内部二维非饱和水分传输成像的重要前提。
然而在混凝土内部水分传输的液固两相流流动的过程监测中,一方面系统采集处理的是有限个微小电容值,对测量噪声及干扰非常敏感;另一方面图像重建即逆问题的求解过程存在以下难点:(1)电压测量值远小于方程的未知量导致的欠定性;(2)电介质在电场中产生极化现象导致的软场特性;(3)边界测量值对中心区域介质变化不敏感导致的不适定性。这就导致ECT系统数据采集和重建图像存在较大误差且分辨率低,在图像重建过程中需要将采集的电容数据进行归一化处理,使其无量纲化,在便于计算的同时减小测量误差的影响。
ECT系统监测混凝土内部水分传输的过程中,需要测定空、满场电容值,即混凝土构件内部非饱和水分传输过程采集的最大电容值与最小电容值,从而确定出介质分布与归一化电容值的函数关系,这一过程即为ECT成像的标定过程。由于混凝土构件配合比和种类不同会导致水分进入时混合介 电常数发生变化,从而引起归一化电容变化,进而影响图像重建的准确性,因此更换新的混凝土构件需要重新标定。
通常的标定方法为:将ECT传感器拆下,并置于空、满管两种状态下采集电容值,得到监测过程中的最大值与最小值,即完成标定,假设最大值与最小值之间的电容值与水分含量呈线性关系,但在实际测量过程中,水的相对介电常数(约为80)远大于干混凝土的相对介电常数(6-8),介质混合后相对介电常数发生较大的变化,上述假设线性关系的标定方法会导致较大误差;且每次监测新的混凝土构件都需将ECT传感器拆下重新标定,在拆装ECT传感器的过程中会引起不必要的误差,耗时耗力。三十年来ECT技术发展迅速,成为过程层析成像技术中发展最快的层析成像技术之一,在气力输送、流化床、石油、化工等领域取得了较多成果,然而在水泥基材料领域有关ECT技术的相关报道少之又少,且尚未有在水泥基材料领域ECT传感器标定方法的专利文献。
通过学科交叉,将ECT技术应用于水泥基材料领域,并研发基于电容测量监测水泥基材料内部水分传输的阵列式电极传感器,探究更为精确的传感器标定方法,应用先进的ECT传感器和标定方法优先开展实验室内的水泥基材料耐久性研究,从水泥基材料内部水分监测、裂缝监测、钢筋位置监测和有害离子监测方面开展研究,并不断进行技术革新与设备完善,预计未来可应用于道路桥梁、地铁隧道和大坝等大型混凝土工程内部介质分布的实时无损监测,及时了解混凝土内部水分分布动态,为混凝土结构耐久性问题研究提供新的研究思路和手段,从而更好地评估混凝土结构的物质传输性能,实现结构耐久性的精准预测。
发明内容
本发明的目的在于克服现有技术存在的缺点,寻求设计一种ECT传感器标定方法,为准确监测混凝土构件内部非饱和水分传输提供理论依据,能够对混凝土构件内部水分传输中水分含量与电容响应值的关系进行标定。
为了实现上述目的,本发明涉及的ECT传感器标定方法的具体工艺过程包括制备混凝土试件、连接设备、准备工作、测量电容值和归一化处理共五个步骤:
(1)制备混凝土试件:制备圆柱体结构的混凝土试件,浇筑后24小时拆模并在恒温恒湿的标准养护室放置7天,取出后将两端对称切除以消除端部影响并冲洗干净,剩余中间5cm制成试验样本;
(2)连接设备:取两个ECT传感器,一个作为线下标定用ECT传感器与数字电桥连接;另一个作为线上测量用ECT传感器,通过数据采集箱与成像计算机连接;
(3)准备工作:将混凝土试件放置于温度为105℃的鼓风干燥箱中干燥至恒重,取出混凝土试件称重并将质量记为m
g,然后将混凝土试件放置于混凝土智能真空饱水机中,饱水22小时制成饱和度为100%的饱水试件,取出饱水试件称重并将质量记为m
b后固定放置于线下标定用ECT传感器的内部;
(4)测量电容值:按照上述测量模式依次测量饱水试件各电极对间电容值,测量电极对数目为:
测量完成后,将饱水试件拆下放置于温度为105℃的鼓风干燥箱中干燥,通过阶段性称重法得到试件的 实时质量m
s,采用动态监测的方法通过公式:
计算试件的饱和度,重复上述步骤依次制备饱和度为90%、80%、70%、60%、50%、40%、30%、20%和10%的试件,保存试件各个饱和度对应的电容值;
(5)归一化处理:从数字电桥中导出电容值数据,根据电容归一化并联模型将电容值进行归一化处理,取放置干燥混凝土试件的ECT传感器为空管,即归一化处理后的“0”,取放置饱水试件的ECT传感器为满管,即归一化处理后的“1”,通过饱和度为0-100%对应的共11个(每10%为1个)电容值确定水分含量与归一化电容值的函数关系式,完成标定。
本发明涉及的ECT传感器标定方法标定时,电极对测量模式与在线监测电极对测量模式保持一致,包括激励、测量和接地三种模式;在线上监测混凝土试件内部非饱和水分传输的过程中,实现混凝土试件的含水率、归一化电容值、相对介电常数值和图像灰度值的准确对应。
本发明涉及的ECT传感器为中国专利201910904259.1公开的一种监测混凝土构件内部水分传输的ECT传感器。
本发明与现有技术相比,通过两个相同的ECT传感器进行线下标定和线上测量,在线下运用数字电桥标定,避免了在线标定由于图像重建的欠定性、不适定性和软场特性引起的误差,利用原始数据进行标定,具有速度快和准确度高的优点;标定好的混凝土试件放置于线上标定用ECT传感器内部进行混凝土试件内部非饱和水分传输的可视化监测,省去了常规标定方法中拆装传感器的复杂步骤,避免了拆装传感器引起的误差;通过鼓风干燥箱制备不同饱和度的混凝土试件进行标定,相比于直接标定水分,能够更加真实的模拟现实环境中混凝土试件内部的水分;标定过程简单、 快捷,能够及时校准归一化电容值,提高了ECT成像的精度;优化了常规传感器假设线性函数的标定方法,中间多点取值,更加准确的反应出电容和相对介电常数与水分的函数关系;实现了水泥基材料内部非饱和水分传输可视化监测的精确标定,弥补了常规标定方法不适用于水泥基材料液固两相流监测过程的不足,为水泥基材料内部非饱和水分传输的可视化监测提供了理论依据。
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明步骤(2)涉及的线下标定用ECT传感器与数字电桥的连接示意图。
图2为本发明步骤(2)涉及的线上测量用ECT传感器与成像计算机的连接示意图。
图3为本发明涉及的依次测量不同饱和度试件的操作循环图。
下面通过实施实例对本发明做进一步描述。
实施例1:
本实施例涉及的ECT传感器标定方法的具体工艺过程包括制备混凝土试件、连接设备、准备工作、测量电容值和归一化处理共五个步骤:
(1)制备混凝土试件:制备直径为15cm,高为10cm的圆柱体结构的混凝土试件,浇筑后24小时拆模并在湿度为95%、温度为20±2℃的标准 养护室放置7天,取出后将两端对称切除2.5cm以消除端部影响并冲洗干净,剩余中间5cm制成试验样本;
(2)连接设备:取两个ECT传感器,一个作为线下标定用ECT传感器与数字电桥连接,其中,激励电极接到H端口,检测电极接到L端口,其余电极和外壳接到屏蔽端口,打开数字电桥开关并将参数调至Cs-X(并联电容),选取设定的测量电压与测量频率,预热30分钟,通过CAL键校准测量电路并通过USB接口将数字电桥与电脑连接,以便测量完成后通过SAVE键保存数据并上传至电脑进行数据的整合处理;另一个作为线上测量用ECT传感器,通过数据采集箱与成像计算机连接,在混凝土试件标定完成后,监测混凝土试件内部非饱和水分传输;
(3)准备工作:将混凝土试件放置于温度为105℃的鼓风干燥箱中干燥至恒重,取出混凝土试件放至室温后称重并将质量记为m
g后放置于混凝土智能真空饱水机中,添加设定量去离子水且饱水22小时制成饱和度为100%的饱水试件,取出饱水试件用半干抹布擦拭表面,称重并将质量记为m
b后固定放置于标定用ECT传感器的内部;
(4)测量电容值:首先测量1-2号电极间电容值,1号电极作为激励电极,2号电极作为测量电极,其余电极处于接地模式,依次测量1-3号、1-4号…2-3号、2-4号…直至所有电极对测量完成,测量电极对数目为:
测量完成后将饱水试件拆下放置于温度为105℃的鼓风干燥箱中干燥,通过阶段性称重法得到试件的实时质量m
s,采用动态监测的方法通过公式:
计算试件的饱和度,按照上述步骤依次 制备饱和度为90%、80%、70%、60%、50%、40%、30%、20%和10%的试件,保存试件各个饱和度对应的电容值;
(5)归一化处理:从数字电桥中导出电容值数据,根据电容归一化并联模型将电容值进行归一化处理,取放置干燥混凝土试件的ECT传感器为空管,即归一化处理后的“0”,取放置饱水试件的ECT传感器为满管,即归一化处理后的“1”,通过饱和度为0-100%对应的共11个(每10%为1个)电容值确定水分含量与归一化电容值的函数关系式,完成标定;在线上监测混凝土试件内部非饱和水分传输的过程中,实现混凝土试件的含水率、归一化电容值、相对介电常数值和图像灰度值的准确对应。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (2)
- 一种ECT传感器标定方法,其特征在于,具体工艺过程包括制备混凝土试件、连接设备、准备工作、测量电容值和归一化处理共五个步骤:(1)制备混凝土试件:制备圆柱体结构的混凝土试件,浇筑后24小时拆模并在恒温恒湿的标准养护室放置7天,取出后将两端对称切除以消除端部影响并冲洗干净,剩余中间5cm制成试验样本;(2)连接设备:取两个ECT传感器,一个作为线下标定用ECT传感器与数字电桥连接;另一个作为线上测量用ECT传感器,通过数据采集箱与成像计算机连接;(3)准备工作:将混凝土试件放置于温度为105℃的鼓风干燥箱中干燥至恒重,取出混凝土试件称重并将质量记为m g,然后将混凝土试件放置于混凝土智能真空饱水机中,饱水22小时制成饱和度为100%的饱水试件,取出饱水试件称重并将质量记为m b后固定放置于线下标定用ECT传感器的内部;(4)测量电容值:按照上述测量模式依次测量饱水试件各电极对间电容值,测量电极对数目为: 测量完成后,将饱水试件拆下放置于温度为105℃的鼓风干燥箱中干燥,通过阶段性称重法得到试件的实时质量m s,采用动态监测的方法通过公式: 计算试件的饱和度,重复上述步骤依次制备饱和度为90%、80%、70%、60%、50%、40%、30%、20%和10%的试件,保存试件各个饱和度对应的电容值;(5)归一化处理:从数字电桥中导出电容值数据,根据电容归一化并联模型将电容值进行归一化处理,取放置干燥混凝土试件的ECT传感器为 空管,即归一化处理后的“0”,取放置饱水试件的ECT传感器为满管,即归一化处理后的“1”,通过饱和度为0-100%对应的共11个电容值确定水分含量与归一化电容值的函数关系式,完成标定。
- 根据权利要求1所述的一种ECT传感器标定方法,其特征在于,标定时,电极对测量模式与在线监测电极对测量模式保持一致,包括激励、测量和接地三种模式;在线上监测混凝土试件内部非饱和水分传输的过程中,实现混凝土试件的含水率、归一化电容值、相对介电常数值和图像灰度值的准确对应。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010095437.3 | 2020-02-17 | ||
CN202010095437.3A CN111257377A (zh) | 2020-02-17 | 2020-02-17 | 一种ect传感器标定方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021164363A1 true WO2021164363A1 (zh) | 2021-08-26 |
Family
ID=70945572
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/131882 WO2021164363A1 (zh) | 2020-02-17 | 2020-11-26 | 一种ect传感器标定方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111257377A (zh) |
WO (1) | WO2021164363A1 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113654721A (zh) * | 2021-09-13 | 2021-11-16 | 中国地质大学(武汉) | 考虑土-结构物接触面特性的压力传感器标定装置及方法 |
CN114544717A (zh) * | 2022-01-04 | 2022-05-27 | 青岛理工大学 | 一种ect定量监测水分传输方法 |
CN115014397A (zh) * | 2022-06-30 | 2022-09-06 | 北京理工大学 | 一种捷联式磁力计传递标定方法和分体式标定装置 |
CN118362614A (zh) * | 2024-06-20 | 2024-07-19 | 湖南大学 | 一种电容层析成像自动化标定方法、装置、设备及介质 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111257377A (zh) * | 2020-02-17 | 2020-06-09 | 青岛理工大学 | 一种ect传感器标定方法 |
CN112630270A (zh) * | 2020-12-28 | 2021-04-09 | 青岛理工大学 | 一种混凝土结构中钢筋状态检测方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2227096A (en) * | 1989-01-12 | 1990-07-18 | Sinar Agritec Ltd | Moisture analysis of a variable volume sample |
WO2007065570A1 (de) * | 2005-12-09 | 2007-06-14 | Areva Np Gmbh | Verfahren und einrichtung zum kalibrieren eines feuchtigkeitssensors |
CN102156225A (zh) * | 2011-03-18 | 2011-08-17 | 华北电力大学 | 具有粉粒体介电系数变化测量电极的电容层析成像传感器 |
CN105403578A (zh) * | 2015-11-24 | 2016-03-16 | 国际竹藤中心 | 一种基于x射线计算机断层扫描技术的竹材含水率快速检测方法 |
CN206330804U (zh) * | 2016-11-25 | 2017-07-14 | 中国石油大学(北京) | 利用微波快速制备不同含水饱和度页岩样品的设备 |
CN110470706A (zh) * | 2019-09-24 | 2019-11-19 | 青岛理工大学 | 一种监测混凝土构件内部水分传输的ect传感器 |
CN110542636A (zh) * | 2019-09-26 | 2019-12-06 | 浙江工业大学 | 部分饱和的水泥基材料渗透系数测定方法及其试验装置 |
CN111257377A (zh) * | 2020-02-17 | 2020-06-09 | 青岛理工大学 | 一种ect传感器标定方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06105295B2 (ja) * | 1986-03-27 | 1994-12-21 | 株式会社島津製作所 | Ect装置の散乱線補正法 |
GB0717080D0 (en) * | 2007-09-03 | 2007-10-10 | Univ Manchester | Methods and apparatus relating to fluidised beds |
CN101839881A (zh) * | 2010-04-14 | 2010-09-22 | 南京工业大学 | 气固两相流在线标定电容层析成像系统及在线标定方法 |
US9901282B2 (en) * | 2015-04-27 | 2018-02-27 | Tech4Imaging Llc | Multi-phase flow decomposition using electrical capacitance volume tomography sensors |
CN205301034U (zh) * | 2015-12-29 | 2016-06-08 | 河海大学 | 一种制备不同含水饱和度试样的装置 |
CN110186999A (zh) * | 2019-05-10 | 2019-08-30 | 天津大学 | 基于lcr表/阻抗分析仪的电容/电磁双模态成像测量系统 |
-
2020
- 2020-02-17 CN CN202010095437.3A patent/CN111257377A/zh active Pending
- 2020-11-26 WO PCT/CN2020/131882 patent/WO2021164363A1/zh active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2227096A (en) * | 1989-01-12 | 1990-07-18 | Sinar Agritec Ltd | Moisture analysis of a variable volume sample |
WO2007065570A1 (de) * | 2005-12-09 | 2007-06-14 | Areva Np Gmbh | Verfahren und einrichtung zum kalibrieren eines feuchtigkeitssensors |
CN102156225A (zh) * | 2011-03-18 | 2011-08-17 | 华北电力大学 | 具有粉粒体介电系数变化测量电极的电容层析成像传感器 |
CN105403578A (zh) * | 2015-11-24 | 2016-03-16 | 国际竹藤中心 | 一种基于x射线计算机断层扫描技术的竹材含水率快速检测方法 |
CN206330804U (zh) * | 2016-11-25 | 2017-07-14 | 中国石油大学(北京) | 利用微波快速制备不同含水饱和度页岩样品的设备 |
CN110470706A (zh) * | 2019-09-24 | 2019-11-19 | 青岛理工大学 | 一种监测混凝土构件内部水分传输的ect传感器 |
CN110542636A (zh) * | 2019-09-26 | 2019-12-06 | 浙江工业大学 | 部分饱和的水泥基材料渗透系数测定方法及其试验装置 |
CN111257377A (zh) * | 2020-02-17 | 2020-06-09 | 青岛理工大学 | 一种ect传感器标定方法 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113654721A (zh) * | 2021-09-13 | 2021-11-16 | 中国地质大学(武汉) | 考虑土-结构物接触面特性的压力传感器标定装置及方法 |
CN114544717A (zh) * | 2022-01-04 | 2022-05-27 | 青岛理工大学 | 一种ect定量监测水分传输方法 |
CN114544717B (zh) * | 2022-01-04 | 2023-09-29 | 青岛理工大学 | 一种ect定量监测水分传输方法 |
CN115014397A (zh) * | 2022-06-30 | 2022-09-06 | 北京理工大学 | 一种捷联式磁力计传递标定方法和分体式标定装置 |
CN118362614A (zh) * | 2024-06-20 | 2024-07-19 | 湖南大学 | 一种电容层析成像自动化标定方法、装置、设备及介质 |
Also Published As
Publication number | Publication date |
---|---|
CN111257377A (zh) | 2020-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021164363A1 (zh) | 一种ect传感器标定方法 | |
Wang et al. | Application of three self-developed ECT sensors for monitoring the moisture content in sand and mortar | |
WO2021098197A1 (zh) | 混凝土中钢筋检测装置及其方法 | |
WO2023130674A1 (zh) | 一种ect定量监测水分传输方法 | |
Ren et al. | Visualized investigation of defect in cementitious materials with electrical resistance tomography | |
CN102053115A (zh) | 一种检测复合材料缺陷的装置及方法 | |
CN104390932A (zh) | 基于红外差谱技术的木材含水率检测方法 | |
CN113031514B (zh) | 一种基于计量学的R-test标定不确定度评定方法 | |
CN112326419B (zh) | 基于毛细孔应力的混凝土弹性模量测量方法 | |
CN116930274A (zh) | 介质替代法木结构的水分电容层析成像标定装置及方法 | |
CN109507021B (zh) | 一种复合材料力学性能的快速表征方法 | |
WO2020248853A1 (zh) | 基于电阻抗成像的复合材料高温部件氧化程度监测方法 | |
CN108318529A (zh) | 用于电压检测的温度补偿方法、电场指纹检测方法及系统 | |
CN117249776A (zh) | 一种基于位移放大的复合材料早期体积变形测试装置与测试方法 | |
CN114324096A (zh) | 流化床干燥过程中颗粒浓度分布和湿度的在线检测方法 | |
RU2758272C1 (ru) | Способ поверки устройства измерения контактной разности потенциалов металлических деталей авиационной техники | |
CN106959318A (zh) | 一种测定煤中全硫的方法 | |
CN109946356B (zh) | 一种高温、火灾后混凝土损伤定量评价方法 | |
CN112347598A (zh) | 双覆盖层结构涡流检测方法 | |
JP2512178B2 (ja) | 腐食環境き裂進展試験装置 | |
Pati et al. | A Pilot Study on the Comparison of the Methods for Uncertainty Analysis of Micropipette Calibration | |
JPH0574021B2 (zh) | ||
RU2110786C1 (ru) | Способ определения влажностного коэффициента расширения листового композиционного материала | |
Liang et al. | Development of a wireless multichannel miniature impedance measurement system and its application for bolt loosening detection | |
CN117232421A (zh) | 一种放大机构以及混凝土体积变形测试方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20919978 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20919978 Country of ref document: EP Kind code of ref document: A1 |