WO2021163997A1 - Techniques for activating a secondary cell - Google Patents

Techniques for activating a secondary cell Download PDF

Info

Publication number
WO2021163997A1
WO2021163997A1 PCT/CN2020/076182 CN2020076182W WO2021163997A1 WO 2021163997 A1 WO2021163997 A1 WO 2021163997A1 CN 2020076182 W CN2020076182 W CN 2020076182W WO 2021163997 A1 WO2021163997 A1 WO 2021163997A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
amount
base station
threshold amount
reconfiguration message
Prior art date
Application number
PCT/CN2020/076182
Other languages
French (fr)
Inventor
Jinglin Zhang
Haojun WANG
Shuang Wang
Zhenqing CUI
Yuanqiang Cai
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/076182 priority Critical patent/WO2021163997A1/en
Publication of WO2021163997A1 publication Critical patent/WO2021163997A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0278Traffic management, e.g. flow control or congestion control using buffer status reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • H04W28/0221Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices power availability or consumption

Definitions

  • the following relates generally to wireless communications and more specifically to techniques for activating a secondary cell.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a base station may communicate with a UE using multiple cells.
  • communications over a first subset of the cells are performed in accordance with a first radio access technology and communications over a second subset of the cells are performed in accordance with a second radio access technology.
  • a pair of communication devices may be capable of communicating with one another in accordance with multiple radio access technologies (which may also be referred to as a dual-connectivity capability) .
  • the pair of communication devices may perform simultaneous communications with one another using the multiple radio access technologies.
  • the communications devices may activate a first set of serving cells (which may also be referred to as cells) that supports communications that are performed in accordance with the first radio access technology and a second set of cells that supports communications that are performed in accordance with the second radio access technology.
  • a communication device e.g., a UE
  • the network device may determine whether to activate a second cell that supports communications of the second radio access technology as part of the registration procedure or to delay the activation of the second cell.
  • the network device may calculate an amount of data (e.g., uplink and/or downlink data) that is available for transmission between the communication devices. The network device may then compare the calculated amount of data with the threshold amount of data.
  • the network device may initiate a procedure for activating the second cell-e.g., by transmitting a reconfiguration message to the communication device. Otherwise, the network device may not initiate the procedure-e.g., by refraining from transmitting the reconfiguration message.
  • a method of wireless communication at a base station may include receiving, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology, calculating, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE, and comparing the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology, calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE, and compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
  • the apparatus may include means for receiving, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology, calculating, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE, and comparing the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
  • a non-transitory computer-readable medium storing code for wireless communication at a base station is described.
  • the code may include instructions executable by a processor to receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology, calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE, and compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a value for the threshold amount of data based on a utilization of communication resources allocated to the first radio access technology.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the calculated amount of data satisfies the threshold amount of data based on the comparing, transmitting the reconfiguration message to the UE based on the calculated amount of data satisfying the threshold amount of data, and activating, for communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the calculated amount of data fails to satisfy the threshold amount of data based on the comparing, and refraining from transmitting the reconfiguration message to the UE based on the calculated amount of data failing to satisfy the threshold amount of data, where a second cell that supports communications of the second radio access technology may be not activated based on refraining from transmitting the reconfiguration message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for calculating a second amount of data that may be available for a second set of upcoming transmissions between the base station and the UE, comparing the second amount of data with the threshold amount of data, transmitting the reconfiguration message to the UE based on the calculated second amount of data satisfying the threshold amount of data, and activating, for communications with the UE, the second cell based on transmitting the reconfiguration message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a second threshold amount of data, comparing the calculated amount of data with the second threshold amount of data, transmitting the reconfiguration message to the UE based on the calculated amount of data satisfying the second threshold amount of data, and activating, for communications with the UE, the second cell based on transmitting the reconfiguration message.
  • calculating the amount of data may include operations, features, means, or instructions for calculating a first amount of data that may be available for transmission from the base station to the UE and a second amount of data that may be available for transmission from the UE to the base station, where the threshold amount of data includes a first threshold amount of data that may be based on data transmissions from the base station to the UE and a second threshold amount of data that may be based on data transmissions from the UE to the base station.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first amount of data satisfies the first threshold amount of data, the second amount of data satisfies the second threshold amount of data, or both, transmitting the reconfiguration message to the UE based on at least one of the first amount of data satisfying the first threshold amount of data or the second amount of data satisfying the second threshold amount of data, and activating, for communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first amount of data satisfies the first threshold amount of data and the second amount of data satisfies the second threshold amount of data, transmitting the reconfiguration message to the UE based on both the first amount of data satisfying the first threshold amount of data and the second amount of data satisfying the second threshold amount of data, and activating, for communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first amount of data fails to satisfy the first threshold amount of data, the second amount of data fails to satisfy the second threshold amount of data, or both, and refraining from transmitting the reconfiguration message to the UE based on at least one of the first amount of data failing to satisfy the first threshold amount of data or the second amount of data failing to satisfy the second threshold amount of data, where a second cell that supports communications of the second radio access technology may be not activated based on refraining from transmitting the reconfiguration message.
  • calculating the amount of data may include operations, features, means, or instructions for calculating a first amount of data that may be available for transmission from the UE to the base station, where the threshold amount of data may be based on data transmissions from the UE to the base station.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a buffer status report from the UE, where the buffer status report indicates a total amount of data that may be buffered for a set of logical channel groups, where the calculated amount of data may be equivalent to the total amount of data.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a buffer status report from the UE, where the buffer status report indicates a first size of a first buffer associated with a first logical channel group and a second size of a second buffer associated with a second logical channel group, where the calculated amount of data may be based on a summation of the first size and the second size.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a buffer status report from the UE, where the buffer status report indicates a first range of sizes for a first buffer associated with a first logical channel group and a second range of sizes for a second buffer associated with a second logical channel group, where the calculated amount of data may be based on a summation of an upper bound of the first range of sizes and an upper bound of the second range of sizes.
  • calculating the amount of data may include operations, features, means, or instructions for calculating a second amount of data that may be available for transmission from the base station to the UE, where the threshold amount of data may be based on data transmissions from the base station to the UE.
  • the calculated amount of data may be based on data in a packet data convergence protocol layer that may be available for transmission to the UE.
  • calculating the amount of data may include operations, features, means, or instructions for calculating the amount of data before, concurrently with, or after receiving the indication.
  • calculating the amount of data may include operations, features, means, or instructions for calculating the amount of data in response to receiving the indication.
  • the reconfiguration message directs the UE to measure a second cell that supports communications of the second radio access technology.
  • FIG. 1 illustrates an example of a wireless communications system that supports techniques for activating a secondary cell in accordance with various aspects of the present disclosure.
  • FIG. 2 illustrates aspects of a wireless communications subsystem that supports techniques for activating a secondary cell in accordance with various aspects of the present disclosure.
  • FIG. 3 illustrates aspects of a process for techniques for activating a secondary cell in accordance with various aspects of the present disclosure.
  • FIG. 4 illustrates aspects of a flowchart for techniques for activating a secondary cell in accordance with various aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support techniques for activating a secondary cell in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure.
  • FIGs. 9 and 10 show flowcharts illustrating methods that support techniques for activating a secondary cell in accordance with aspects of the present disclosure.
  • a dual-connectivity user equipment may be capable of communicating with a base station using a first radio access technology (RAT) and a second RAT.
  • a procedure for registering a UE with a base station as a dual-connectivity UE may result in the activation of one or more secondary cells for communications between the base station and UE-e.g., to enable near immediate communications over both master and secondary cells.
  • the base station may trigger a procedure to deactivate the secondary cell (s) if a rate of data transferred over the secondary cell (s) falls below a threshold for a duration-e.g., to conserve communication resources and power.
  • the base station and UE may communicate data solely over the master cell (s) or with only minimal (e.g., insignificant) data transfer occurring over the secondary cell (s) -e.g., the data rate over the secondary cell (s) may fail to reach or exceed the threshold during this period. That is, in some cases, the secondary cell (s) established during the initial signaling exchange may not be sufficiently utilized from the time the secondary cell (s) are established to the time the secondary cell (s) are deactivated. Thus, the establishment of the secondary cell (s) may have been unnecessary.
  • communication resources dedicated to the secondary RAT may be unnecessarily reserved, unnecessary signaling may be exchanged, power may be unnecessarily consumed, and/or current communications over the master cell (s) may be unnecessarily interrupted.
  • a registration procedure may be enhanced to include techniques for determining whether to activate secondary cell (s) .
  • the enhanced registration procedure includes techniques for determining (e.g., by calculating) a volume of upcoming uplink data transmission and/or a volume of upcoming downlink data transmission that occur before secondary cell (s) are activated.
  • the determined uplink data volume may be compared with an uplink threshold data volume and/or the determined downlink data volume may be compared with a downlink threshold data volume.
  • a process for activating secondary cell may be initiated as part of the registration procedure. Otherwise, procedures for activating the secondary cells may be avoided (e.g., skipped) .
  • aspects of the disclosure are initially described in the context of a wireless communications system. Specific examples are then described of exemplary processes that incorporate techniques for activating a secondary cell. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to techniques for activating a secondary cell.
  • FIG. 1 illustrates an example of a wireless communications system that supports techniques for activating a secondary cell in accordance with various aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to the network operators IP services 150.
  • the operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a wireless communications system 100 may configure UEs 115 to report, to a base station 105, an amount of data that is ready to be sent to the base station 105.
  • data that is ready to be sent to the base station 105 may also be referred to as “buffered data. ”
  • reporting an amount of buffered data may enable a base station 105 to efficiently allocate uplink resources to the UEs 115.
  • a UE 115 may partition buffered data into different groups, which may be referred to as logical channel groups (LCGs) .
  • LCGs logical channel groups
  • each LCG may be associated with a particular set of characteristics, and buffered data that is identified as having a particular set of characteristics may be included in a corresponding LCG-e.g., the buffered data may be tagged as belonging to an LCG and/or grouped together with other buffered data that has also been identified as belonging to the LCG.
  • a UE 115 may use a buffer status report (BSR) message to report an amount of buffered data.
  • BSR buffer status report
  • a UE 115 may be configured to transmit BSR messages using one or more of the following techniques: periodically; when an amount of buffered data exceeds a threshold; or when a reporting timer expires and there is data buffered at the UE 115.
  • a transmitted BSR message (which may also be referred to as a “short BSR message” ) may indicate an amount of buffered data for a single LCG (e.g., LCG_1) .
  • a BSR message may include an “LCG_ID field” -a field that indicates an identity of the LCG associated with the buffered data for which the amount is being reported.
  • the BSR message may include a “buffer size field” -a field that indicates the among of buffered data that is associated with an LCG field identified in the LCG_ID field by indicating a size of a buffer (e.g., in bytes) that is associated with the LCG.
  • a value of the buffer size field corresponds to a range of buffer sizes-e.g., based on a table that maps buffer size field values to buffer sizes. For example, a value of 0 for the buffer size field may correspond to a buffer size of 0 bytes and a value of 5 for the buffer size field may correspond to a buffer size that is between a lower bound of 17 bytes and an upper bound of 19 bytes.
  • the values of the buffer size field may be differently mapped to an “extended” range of buffer sizes. For example, a value of 5 for the buffer size field may correspond to a buffer size that is between a lower bound of 19 bytes and an upper bound of 23 bytes.
  • a UE 115 may determine, for one or more LCGs, an amount of data that is buffered and associated with a respective LCG. After determining an amount of buffered data for the respective LCGs, the UE 115 may determine, for the one or more LCGs, a value for a buffer size field that corresponds to the amount of data that is buffered and associated with a respective LCG-e.g., after determining that 18 bytes of data are buffered for an LCG_2, the UE 115 may select a value (or index) of 5 for the buffer size field.
  • the UE 115 may program the LCG_ID field of a short BSR message to a value that corresponds to an identify of the particular LCG-e.g., for LCG_2, a value of the LCG_ID field may be equivalent to 2. And the UE 115 may program the buffer size field of a short BSR message to a value that indicates a buffer size for the particular LCG-e.g., the buffer size of LCG_2 may be set to 5. After determining a value for the buffer size field and setting the values of the LCG_ID and buffer size fields, the UE 115 may transmit the short BSR message to a base station 105.
  • a base station 105 that receives a short BSR message may determine a buffer size (or range of buffer sizes) for an indicated LCG (which may also be referred to as BS_LCG (k) ) .
  • a base station 105 that receives a short BSR message with an LCG_ID field conveying a value of 2 and buffer size field conveying a value of 5 may determine that a buffer size for LCG_2 (e.g., BS_LCG (2) ) is between 17 and 19 bytes. Accordingly, the base station 105 may determine that an amount of data buffered at the UE 115 for LCG_2 is between 17 and 19 bytes.
  • a BSR message (which may also be referred to as a “long BSR message” ) may include multiple LCG_ID fields and multiple corresponding buffer size fields-e.g., to convey buffered data information for multiple LCGs.
  • a UE 115 may similarly set values of the LCG_ID fields and corresponding buffer size fields.
  • a base station 105 may similarly determine buffer sizes for the indicated LCG_ID fields.
  • a wireless communications system 100 may support communication devices that are capable of performing concurrent communications using different RATs (which may be referred to as “multi-RAT communications” ) .
  • different RATs may include 3G, LTE, 4G, and/or 5G.
  • a base station 105 and UE 115 may communicate with one another using a master RAT (e.g., LTE) .
  • Communicating using a master RAT may include scheduling communication resources, selecting transmission parameters, and using a frequency range in accordance with protocols established for the master RAT.
  • the base station 105 that communicates, or dedicated components within the base station 105 used to communicate, with the UE using the master RAT is referred to as a “master node.
  • communications between the base station 105 and the UE 115 using the master RAT are performed over “master cells” -master cells may be cells that are included in a master cell group (MCG) .
  • MCG master cell group
  • cells are also referred to as component carriers.
  • the base station 105 and UE 115 may also (e.g., concurrently or simultaneously) communicate with one another using a secondary RAT (e.g., NR) .
  • the base station 105 may communicate with the UE 115 using the secondary RAT after determining the UE 115 is capable of using multiple RATs for simultaneous communication-e.g., after the UE 115 indicates a dual-connectivity capability.
  • Communicating using a secondary RAT may include scheduling communication resources, selecting transmission parameters, and using a frequency range in accordance with protocol established for the secondary RAT.
  • a different base station 105 that communicates, or different dedicated circuitry within the aforementioned base station 105 that is used to communicate, with the UE 115 using the secondary RAT is referred to as a “secondary node. ”
  • communications to and from the UE 115 using the secondary RAT are performed using “secondary cells” -secondary cells may be cells that are included in a secondary cell group (SCG) .
  • the base station 105 may include a “master modem” -the master modem may be a modem that supports communicating in accordance with master RAT protocols.
  • the base station may include a “secondary modem” -the secondary modem be a modem that supports communicating in accordance with secondary RAT protocols.
  • the base station 105 may establish an “MCG bearer” -the MCG bearer may be a radio bearer that is used to configure the MCG. And the base station 105 may establish an “SCG bearer” -the SCG bearer may be a radio bearer that is used to configure the SCG.
  • the base station 105 may communicate first radio resource control (RRC) signaling over the MCG bearer to establish a connection with the UE 115 in accordance with the master RAT, and the base station may communicate second RRC signaling over the SCG bearer to establish a connection with the UE 115 in accordance with the secondary RAT.
  • RRC radio resource control
  • the master node may be interconnected with the secondary node.
  • a path of the SCG bearer may extend from an NR packet data convergence protocol (PDCP) layer of the master modem through control and physical layers (e.g., medium access control (MAC) and physical (PHY) layers) of the secondary modem.
  • PDCP packet data convergence protocol
  • the base station 105 may establish a “split radio bearer” that is used to communicate RRC signaling for the MCG using control and physical layers dedicated either to the master node or the secondary node.
  • the base station 105 may establish another split radio bearer that is used to communicate RRC signaling for the SCG using control and physical layers dedicated either to the master node or the secondary node.
  • the base station 105 and the UE 115 may participate in an initial signaling exchange that is used to register the UE 115 with the base station 105 as a dual-connectivity UE.
  • the initial signaling exchange may be referred to as a “registration procedure. ”
  • the registration procedure may begin with the UE 115 indicating a dual-connectivity capability to the base station 105 over the MCG-that is, the UE 115 may use the MCG to register as a dual-connectivity UE with the base station 105.
  • the base station 105 may configure the UE 115 to measure communication resources associated with the secondary RAT-e.g., the base station 105 may configure the UE 115 to measure one or more secondary cells.
  • the UE 115 may report the measurement (s) to the base station 105. In some cases, instead of reporting the measurement, the UE 115 transmits an indication that the measurements meet or exceed a threshold to the base station 105.
  • the base station 105 may use a secondary radio bearer to communicate control signaling that is used to establish one or more secondary cells for communications between the base station 105 and UE 115-e.g., the base station 105 may transmit RRC signaling (e.g., an RRC reconfiguration message) that directs the UE 115 to add secondary cell (s) .
  • RRC signaling e.g., an RRC reconfiguration message
  • the UE 115 may connect (or activate) the secondary cell (s) and may communicate with the base station over the secondary cell (s) in accordance with the secondary RAT and over the master cell (s) in accordance with the master RAT.
  • the UE 115 may transmit reference signals (e.g., SRS, SSB, CSI-RS) to support communications over the secondary cell (s) and/or may monitor physical downlink control channel (PDCCH) resources to identify communication resources in the secondary cell (s) .
  • reference signals e.g., SRS, SSB, CSI-RS
  • PDCCH physical downlink control channel
  • a base station 105 may be configured to deactivate secondary cells that have been established for communicating with a UE 115 based on an amount of data being communicated over the secondary cells.
  • a base station 105 may deactivate secondary cells when a rate of data transmitted between the base station 105 and the UE 115 over the secondary cells falls below a threshold. That is, after activating the secondary cell (s) , the base station 105 may determine that master cell (s) , on their own, are sufficient for communicating pending data between the base station 105 and the UE 115 without data interruption-e.g., while meeting latency and reliability specifications.
  • the base station 105 may transmit control (e.g., RRC) signaling directing the UE 115 to release (deactivate) the secondary cells.
  • control e.g., RRC
  • the base station 105 begins a deactivation procedure for the secondary cells after determining that the data rate for the secondary cells is below a threshold for a duration (e.g., 10 to 15 seconds) -e.g., to support temporary pauses in data transfer.
  • a duration e.g. 10 to 15 seconds
  • a procedure for registering a UE 115 with a base station 105 as a dual-connectivity UE may result in the activation of one or more secondary cells for communications between the base station 105 and UE 115-e.g., to enable near immediate communications over both master and secondary cells.
  • the base station 105 may trigger a procedure to deactivate the secondary cell (s) if a rate of data transferred over the secondary cell (s) falls below a threshold for a duration-e.g., to conserve communication resources and power.
  • the base station 105 and UE 115 may communicate data solely over the master cell (s) or with only minimal (e.g., insignificant) data transfer occurring over the secondary cell (s) -e.g., the data rate over the secondary cell (s) may fail to reach or exceed the threshold during this period. That is, in some cases, the secondary cell (s) established during the initial signaling exchange may not be sufficiently utilized from the time the secondary cell (s) are established to the time the secondary cell (s) are deactivated. Thus, the establishment of the secondary cell (s) may have been unnecessary.
  • communication resources dedicated to the secondary RAT may be unnecessarily reserved, unnecessary signaling may be exchanged, power may be unnecessarily consumed, and/or current communications over the master cell (s) may be unnecessarily interrupted.
  • the secondary cells were not activated as part of the registration procedure, then communication resources on the secondary cells that were dedicated to the UE 115 may have been dedicated to different UEs 115 that are configured to communicate using the secondary RAT. Also, the transmission of the signaling to activate and deactivate the secondary cell (s) between the base station 105 and the UE 115 may have been avoided. Additionally, the measurement by the UE 115 of the secondary cells and the transmission of overhead signaling may have been avoided. Moreover, switching between the MCG bearer and the SCG bearer (or split bearer) performed to establish the secondary cell (s) may result in data interruptions between the base station 105 and the UE 115 that may have been avoided.
  • a registration procedure may be enhanced to include techniques for determining whether to activate secondary cell (s) .
  • the enhanced registration procedure includes techniques for calculating a volume of upcoming uplink data transmission and/or a volume of upcoming downlink data transmission that occur before secondary cell (s) are activated.
  • the calculated uplink data volume may be compared with an uplink threshold data volume and/or the calculated downlink data volume may be compared with a downlink threshold data volume. In some cases, if one or both of the calculated uplink data volume or the calculated downlink data volume reach or exceed a respective uplink threshold data volume or downlink threshold data volume, then secondary cell (s) may be activated as part of the registration procedure.
  • FIG. 2 illustrates aspects of a wireless communications subsystem that supports techniques for activating a secondary cell in accordance with various aspects of the present disclosure.
  • Wireless communications subsystem 200 may include base station 205 and UE 215 which may be examples of a base station or UE described above with reference to FIG. 1.
  • Base station 205 and UE 215 may communicate with one another within coverage area 210, as described above with reference to FIG. 1.
  • a registration procedure for registering a UE with a base station as a dual-connectivity UE may result in the unnecessary activation of one or more secondary cells-e.g., if the master cells are sufficient to support data communications between the base station and UE.
  • a registration procedure may be enhanced to include operations for determining whether secondary cell (s) will be sufficiently utilized if activated as part of the registration procedure.
  • base station 205 may determine whether to initiate a procedure for activating one or more secondary cells for communications with UE 215 based on a calculated amount of data that is available to be transmit between base station 205 and UE 215.
  • Base station 205 and UE 215 may establish a communication link that uses a master RAT and communicate with one another over one or more master cells (e.g., master cell 220) .
  • UE 215 is capable of communicating with base station 205 using both the master RAT and a secondary RAT. That is, UE 215 may have a dual-connectivity capability.
  • UE 215 may register this dual-connectivity capability with base station 205 by transmitting an indication of the dual-connectivity capability-e.g., by transmitting registration message 230.
  • base station 205 may determine whether to activate one or more secondary cells (e.g., secondary cell 225) for communications with UE 215 based on receiving the registration message. In some examples, base station 205 may determine whether to activate the one or more secondary cells based on a calculated amount of data that is available for communication between base station 205 and UE 215 within a designated time period (which may also be referred to as “data volume” ) . In some examples, base station 205 calculates the data volume based on an amount of data at a PDCP layer that is available to be transmit from base station 205 to UE 215 (which may also be referred to as “downlink data volume” ) .
  • data volume which may also be referred to as “data volume”
  • base station 205 calculates the data volume based on an amount of data indicated in a BSR message (e.g., BSR message 235) that is available to be transmit from UE 215 to base station 205 (which may also be referred to as “uplink data volume” ) .
  • base station 205 may compare the calculated amount of data with a threshold amount of data.
  • base station 205 may determine a value for the threshold amount of data based on a traffic level associated with ongoing communications using the first RAT and/or a traffic level associated with ongoing communications using the second RAT-e.g., based on a service load.
  • base station 205 may transmit a control message (e.g., measurement trigger 240) to UE 215 that directs UE 215 to measure one or more secondary cells. Otherwise, base station 205 may refrain from transmitting the control message. In some cases, UE 215 reports the measurements to base station 205. Additionally, or alternatively, UE 215 may indicate to base station 205 that the measurements exceeded a corresponding threshold.
  • a control message e.g., measurement trigger 240
  • base station 205 may transmit a control message (e.g., activation message 245) to UE 215 that causes UE 215 to activate one or more secondary cells (e.g., secondary cell 225) .
  • a control message e.g., activation message 245
  • UE 215 may activate one or more secondary cells (e.g., secondary cell 225) .
  • secondary cells e.g., secondary cell 225
  • base station 205 and UE 215 may begin communication with one another using the one or more secondary cells.
  • FIG. 3 illustrates aspects of a process for techniques for activating a secondary cell in accordance with various aspects of the present disclosure.
  • Process flow 300 may be performed by base station 305 and UE 315, which may be examples of a base station or UE described above with reference to FIGs. 1 and 2.
  • process flow 300 illustrates an enhanced registration procedure that includes operations for determining whether secondary cell (s) will be sufficiently utilized if activated.
  • UE 315 may establish a connection with base station 305 in accordance with established communication protocols for a master RAT (e.g., LTE) .
  • a master RAT e.g., LTE
  • base station 305 and UE 315 may establish an MCG that supports communications between base station 305 and UE 315.
  • the MCG may include one or more master cells.
  • base station 305 and UE 315 may exchange control and user data over one or more master cells.
  • UE 315 may transmit a BSR message (e.g., BSR message 235 of FIG. 2) indicating an amount of data that is buffered at UE 315 for one or more LCGs.
  • base station 305 may identify data that is available for transmission to UE 315 at a PDCP layer (e.g., using a first PDCP entity associated with a first RAT or a second PDCP entity associated with a second RAT) .
  • base station 305 may determine a threshold data volume. In some cases, base station 305 may determine a downlink threshold data volume. In some cases, a value of the downlink threshold data volume may be represented by the parameter dlDataVolumeThreshold. Additionally, or alternatively, base station 305 may determine an uplink threshold data volume. In some cases, a value of the uplink threshold data volume may be represented by the parameter ulDataVolumeThreshold. In some cases, base station 305 may determine a combined threshold data volume based on the determined downlink threshold data volume and the determined uplink threshold data volume.
  • base station 305 may determine a value for a threshold data volume based on resource utilization (or communication traffic) observed by base station 305. That is, a value of the threshold data volume may be configured based on a service load for base station 305. In some examples, the threshold data volume may be configured with a lower value when base station 305 is communicating with a larger number of UEs using a master RAT. In some examples, the threshold data volume may be configured with a lower value when base station 305 is communicating with a small number of UEs using a secondary RAT. By setting a lower threshold data volume, a likelihood that base station 305 will initiate procedures for activating one or more secondary cells for communications with UE 315 may be increased. Also, by setting a lower threshold data volume, base station 305 may increase a utilization of communications resources that are allocated to a second RAT.
  • the threshold data volume may be configured with a higher value when base station 305 is communicating with a large number of UEs using the secondary RAT. By setting a higher threshold data volume, a likelihood that base station 305 will initiate procedures for activating one or more secondary cells for communications with UE 315 may be decreased. Also, by setting a higher threshold data volume, base station 305 may increase an availability of communications resources that are allocated to a second RAT.
  • base station 305 may set a threshold data volume to a lowest level when a traffic level for the master RAT is above a first threshold-e.g., when master RAT traffic is high. By setting a low threshold data volume, base station 305 may increase an availability of communications resources that are allocated to first RAT. Base station 305 may set a threshold data volume to an intermediate level when a traffic level for the master RAT is below the first threshold but above a second threshold-e.g., when master RAT traffic is intermediate. And base station 305 may set a threshold data volume to a highest level when a traffic level for the master RAT is below the second threshold-e.g., when master RAT traffic is low.
  • the downlink threshold data volume may be set to a low level-e.g., when base station 305 broadcasts data to multiple UEs using a first RAT-while uplink threshold data volume may be set to a high level-e.g., when, after a period of time, base station 305 receives a small amount of uplink data from connected UEs using the first RAT.
  • base station 305 may calculate an amount of data that is available for transmission between base station 305 and UE 315 (a “data volume” ) .
  • base station 305 may calculate an amount of data that is to be transmitted from base station 305 to UE 315 within a period of time (an “downlink data volume” ) .
  • the amount of downlink data volume may be represented by a parameter DL_Data_Volume.
  • base station 305 may calculate an amount of data that is to be transmitted from UE 315 to base station 305 within a period of time (a “uplink data volume” ) .
  • the amount of downlink data volume may be represented by a parameter UL_Data_Volume.
  • base station 305 may determine a combined data volume based on the calculated uplink data volume and the calculated downlink data volume.
  • base station 305 may calculate the downlink data volume based on the total available data in a PDCP layer. In some cases, base station 305 may use a PDCP entity associated with a first RAT to calculate the downlink data volume-e.g., if the master node uses the first RAT. In other cases, base station 305 may use a PDCP entity associated with a second RAT to calculate the downlink data volume-e.g., if the master node uses the second RAT.
  • base station 305 may calculate the uplink data volume based on a BSR message received from UE 315.
  • the BSR message indicates a buffer size of one or more LCGs
  • base station 305 may calculate the uplink data volume based on the indicated buffer size (s) .
  • the calculated uplink data volume may be equivalent to the aggregated buffer size for all of the LCGs indicated by the BSR.
  • the aggregated buffer size may closely correspond to an amount of data that is buffered at UE 315 for the indicated LCGs.
  • a value of the uplink data volume may be represented as
  • BS_LCG (k) may be the buffer size of the kth LCG, and N may equal 7. In some cases, if an LCG buffer k is not configured, then BA_LCG (k) may equal 0.
  • a corresponding buffer size field indicates a range of buffer sizes-e.g., a value of 5 for BS_LCG (0) may indicate that a buffer size of the first LCG is between 17 and 19.
  • a BSR field is configured to support the signaling of larger (or extended) buffer sizes.
  • a value of 5 for BS_LCG (0) may indicate that a buffer size of the first LCG is between 19 and 23 bytes, and uplink data volume may be computed using 23 bytes.
  • the uplink data volume calculation may be determined based on upper bounds of the buffer sizes indicated for each LCG-e.g., if a value of 5 for BS_LCG (0) indicates that a buffer size of the first LCG is between 17 and 19 bytes, then uplink data volume may be computed using 19 bytes.
  • a value of the uplink data volume may be represented as In other cases, the uplink data volume calculation may be determined based on lower bounds of the buffer sizes or an average of the upper and lower bounds.
  • UE 315 may transmit, using the one or more master cells, a registration message to base station 305.
  • the registration message (e.g., registration message 230 of FIG. 2) may indicate that UE 315 is capable of performing concurrent communications over multiple RATs
  • the transmitted signaling registers UE 315 with base station 305 as a UE with dual-connectivity capabilities.
  • base station 305 calculates the data volume and/or threshold data volume before the registration signaling is received from UE 315. In some cases, base station 305 calculates the data volume and/or threshold data volume concurrently with receiving the registration signaling from UE 315. In some cases, base station 305 calculates the data volume and/or threshold data volume after the registration signaling is received from UE 315-e.g., in some cases, the downlink data volume and/or uplink data volume calculation may be triggered by receiving the registration signaling.
  • base station 305 may determine whether to initiate a procedure for activating one or more secondary cell (s) for communications between base station 305 and UE 315 based on the registration signaling received from UE 315. In some cases, base station 305 may determine whether to initiate the procedure based on a calculated data volume-e.g., a calculated uplink data volume, a calculated downlink data volume, a calculated combined data volume, or any combination thereof. After receiving the registration signal from UE 315, base station 305 may compare calculated values for a downlink data volume and/or an uplink data volume with a respective downlink threshold data volume and/or uplink threshold data volume.
  • a calculated data volume e.g., a calculated uplink data volume, a calculated downlink data volume, a calculated combined data volume, or any combination thereof.
  • base station 305 may initiate procedures for activating one or more secondary cells for communications between base station 305 and UE 315. For example, base station 305 may send a NR measure RRC configuration message to UE 315 if (DL data volume ⁇ dlDataVolumeThreshold) or (UL data volume ⁇ ulDataVolumeThreshold) . In some cases, to initiate the procedures for activating the secondary cell, base station 305 transmit a control message (e.g., a NR measure RRC configuration message) to UE 315 that triggers UE 315 to measure one or more secondary cells. Otherwise, base station 305 may refrain from initiating the procedures for activating the secondary cell (s) .
  • a control message e.g., a NR measure RRC configuration message
  • base station 305 may initiate procedures for activating one or more secondary cells for communications between base station 305 and UE 315-that is, if either the calculated downlink data volume or the calculated uplink data volume fails to satisfy a respective downlink threshold data volume or uplink threshold data volume, base station 305 may refrain from initiating procedures for activating one or more secondary cells.
  • base station 305 may update the calculation of the downlink data volume and/or the uplink data volume.
  • Base station 305 may use the updated downlink data volume and/or uplink data volume to perform an additional comparison with a respective downlink threshold data volume and/or uplink threshold data volume.
  • base station 305 may initiate procedures for activating a secondary cell after determining that one or both of the updated downlink data volume or uplink data volume exceed a respective downlink threshold data volume and/or uplink threshold data volume.
  • base station 305 may update the downlink threshold data volume and/or the uplink threshold data volume-e.g., based on changing channel conditions associated with the first RAT or second RAT. In some examples, base station 305 may compare a previously calculated downlink data volume and/or the uplink data volume with the updated downlink threshold data volume and/or uplink threshold data volume, respectively. In some cases, base station 305 may initiate procedures for activating a secondary cell after determining that one or both of the downlink data volume or uplink data volume exceed the updated downlink threshold data volume and/or uplink threshold data volume, respectively.
  • base station 305 may compare an updated downlink data volume and/or the uplink data volume with the updated downlink threshold data volume and/or uplink threshold data volume, respectively. In some cases, base station 305 may initiate procedures for activating a secondary cell after determining that one or both of the updated downlink data volume or uplink data volume exceed the updated downlink threshold data volume and/or uplink threshold data volume, respectively.
  • base station 305 may transmit a measurement trigger to UE 315 based on determining to activate one or more secondary cells for communications with UE 315-e.g., based on one or both of a calculated downlink data volume or calculated uplink data volume satisfying a respective downlink threshold data volume or uplink threshold data volume.
  • the measurement trigger may be an example of measurement trigger 240 of FIG. 2.
  • UE 315 may measure one or more secondary cells and transmit a measurement report to base station 305.
  • measuring the one or more secondary cells may include measuring signal characteristics of reference signals received from base station 305 on the one or more secondary cells.
  • the measurement report may include information that representing one or more measurements taken by UE 315.
  • measurement report may include an indication that the one or more measurement taken by UE 315 satisfied a measurement threshold.
  • base station 305 may transmit an activation message to UE 315 based on determining that the measurements taken by UE 315 satisfied a measurement threshold.
  • the activation message may be an example of activation message 245 of FIG. 2.
  • UE 315 may activate one or more secondary cells based on receiving the activation message from base station 305.
  • base station 305 and UE 315 may exchange data over the one or more master cells and the one or more secondary cells.
  • an amount of data exchanged over the one or more secondary cells may exceed a threshold data rate-e.g., based on base station 305 first performing the operations for determining whether to activate the one or more secondary cells.
  • FIG. 4 illustrates aspects of a flowchart for techniques for activating a secondary cell in accordance with various aspects of the present disclosure.
  • Flowchart 400 may be performed by a base station-e.g., a base station described above with reference to FIGs. 1 through 3.
  • a base station may receive a registration message from a UE, as discussed herein.
  • the base station may determine whether to initiate a procedure for activating one or more secondary cells for communication with the UE, as described herein.
  • the base station may calculate a data volume and/or threshold data volume, as described herein. In some examples, the base station may calculate a downlink data volume and determine a corresponding downlink threshold data volume. Additionally, or alternatively, the base station may calculate an uplink data volume and determine a corresponding uplink threshold data volume.
  • the base station may compare the calculated data volume with the determined threshold data volume, as described herein. In some examples, the base station may compare the calculated downlink data volume with the determined downlink threshold data volume, as described herein. In some examples, the base station may compare the calculated uplink data volume with the determined uplink threshold data volume, as described herein.
  • the base station may determine whether the calculated data volume is greater than or equal to the threshold data volume. In some cases, if either the calculated downlink data volume is greater than or equal to the threshold downlink data volume or the calculated uplink data volume is greater than or equal to the threshold uplink data volume, then the base station may perform the operations described at block 425. Otherwise, the base station may return to the operation (s) described at block 415.
  • the base station may proceed to block 425 only if both the calculated downlink data volume is greater than or equal to the threshold downlink data volume and the calculated uplink data volume is greater than or equal to the threshold uplink data volume. Otherwise, the base station may return to the operation (s) described at block 415. In some cases, the base station may recalculate a data volume and/or redetermine a threshold data volume after returning to the operation (s) described at block 415. In some examples, the base station may continue to repeat the comparison of a calculated data volume with a determined threshold data volume until the base station determines that the calculated data volume is greater than or equal to the determine threshold data volume. At which time, the base station may perform the operation (s) described at block 425.
  • the base station may transmit a measurement trigger to the UE based on determining that the calculated data volume is greater than or equal to the threshold data volume. In some cases, the base station may return to the operation (s) described at block 415 after transmitting the measurement trigger. In some examples, the base station may wait a duration before returning to the operation (s) described at block 415.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a base station 105 as described herein.
  • the device 505 may include a receiver 510, a communications manager 515, and a transmitter 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for activating a secondary cell, etc. ) . Information may be passed on to other components of the device 505.
  • the receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 510 may utilize a single antenna or a set of antennas.
  • the communications manager 515 may receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology, calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE, and compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
  • the communications manager 515 may be an example of aspects of the communications manager 810 described herein.
  • the communications manager 515 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the communications manager 515 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communications manager 515, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communications manager 515, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 520 may transmit signals generated by other components of the device 505.
  • the transmitter 520 may be collocated with a receiver 510 in a transceiver module.
  • the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 520 may utilize a single antenna or a set of antennas.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505, or a base station 105 as described herein.
  • the device 605 may include a receiver 610, a communications manager 615, and a transmitter 635.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for activating a secondary cell, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communications manager 615 may be an example of aspects of the communications manager 515 as described herein.
  • the communications manager 615 may include a dual-connectivity component 620, a data volume component 625, and a cell activation component 630.
  • the communications manager 615 may be an example of aspects of the communications manager 810 described herein.
  • the dual-connectivity component 620 may receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology.
  • the data volume component 625 may calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE.
  • the cell activation component 630 may compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
  • the transmitter 635 may transmit signals generated by other components of the device 605.
  • the transmitter 635 may be collocated with a receiver 610 in a transceiver module.
  • the transmitter 635 may be an example of aspects of the transceiver 820 described with reference to FIG. 8.
  • the transmitter 635 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a communications manager 705 that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure.
  • the communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein.
  • the communications manager 705 may include a dual-connectivity component 710, a data volume component 715, a cell activation component 720, and a threshold data volume component 725. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the dual-connectivity component 710 may receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology.
  • the data volume component 715 may calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE. In some examples, the data volume component 715 may calculate the amount of data before, concurrently with, or after receiving the indication. In some examples, the data volume component 715 may calculate the amount of data in response to receiving the indication.
  • the data volume component 715 may calculate a first amount of data that is available for transmission from the base station to the UE and a second amount of data that is available for transmission from the UE to the base station, where the threshold amount of data includes a first threshold amount of data that is based on data transmissions from the base station to the UE and a second threshold amount of data that is based on data transmissions from the UE to the base station.
  • the data volume component 715 may include an uplink (UL) data volume component 730 and a downlink (DL) data volume component 735.
  • the UL data volume component 730 may calculate a first amount of data that is available for transmission from the UE to the base station, where the threshold amount of data is based on data transmissions from the UE to the base station. In some examples, the UL data volume component 730 may receive a buffer status report from the UE, where the buffer status report indicates a total amount of data that is buffered for a set of logical channel groups, where the calculated amount of data is equivalent to the total amount of data.
  • the UL data volume component 730 may receive a buffer status report from the UE, where the buffer status report indicates a first size of a first buffer associated with a first logical channel group and a second size of a second buffer associated with a second logical channel group, where the calculated amount of data is based on a summation of the first size and the second size.
  • the UL data volume component 730 may receive a buffer status report from the UE, where the buffer status report indicates a first range of sizes for a first buffer associated with a first logical channel group and a second range of sizes for a second buffer associated with a second logical channel group, where the calculated amount of data is based on a summation of an upper bound of the first range of sizes and an upper bound of the second range of sizes.
  • the DL data volume component 735 may calculate a second amount of data that is available for transmission from the base station to the UE, where the threshold amount of data is based on data transmissions from the base station to the UE. In some cases, the calculated amount of data is based on data in a packet data convergence protocol layer that is available for transmission to the UE.
  • the threshold data volume component 725 may determine a value for the threshold amount of data based on a utilization of communication resources allocated to the first radio access technology.
  • the cell activation component 720 may compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing. In some cases, the reconfiguration message directs the UE to measure a second cell that supports communications of the second radio access technology.
  • the cell activation component 720 may determine that the calculated amount of data satisfies the threshold amount of data based on the comparing. In some examples, the cell activation component 720 may transmit the reconfiguration message to the UE based on the calculated amount of data satisfying the threshold amount of data. In some examples, the cell activation component 720 may activate, for communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message.
  • the cell activation component 720 may determine that the first amount of data satisfies the first threshold amount of data, the second amount of data satisfies the second threshold amount of data, or both. In some examples, the cell activation component 720 may transmit the reconfiguration message to the UE based on at least one of the first amount of data satisfying the first threshold amount of data or the second amount of data satisfying the second threshold amount of data. In some examples, the cell activation component 720 may activate, for communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message.
  • the cell activation component 720 may determine that the first amount of data satisfies the first threshold amount of data and the second amount of data satisfies the second threshold amount of data. In some examples, the cell activation component 720 may transmit the reconfiguration message to the UE based on both the first amount of data satisfying the first threshold amount of data and the second amount of data satisfying the second threshold amount of data. In some examples, the cell activation component 720 may activate, for communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message.
  • the cell activation component 720 may determine that the calculated amount of data fails to satisfy the threshold amount of data based on the comparing. In some examples, the cell activation component 720 may refrain from transmitting the reconfiguration message to the UE based on the calculated amount of data failing to satisfy the threshold amount of data, where a second cell that supports communications of the second radio access technology is not activated based on refraining from transmitting the reconfiguration message.
  • the cell activation component 720 may determine that the first amount of data fails to satisfy the first threshold amount of data, the second amount of data fails to satisfy the second threshold amount of data, or both. In some examples, the cell activation component 720 may refrain from transmitting the reconfiguration message to the UE based on at least one of the first amount of data failing to satisfy the first threshold amount of data or the second amount of data failing to satisfy the second threshold amount of data, where a second cell that supports communications of the second radio access technology is not activated based on refraining from transmitting the reconfiguration message.
  • the data volume component 715 may calculate a second amount of data that is available for a second set of upcoming transmissions between the base station and the UE.
  • the cell activation component 720 may compare the second amount of data with the threshold amount of data.
  • the cell activation component 720 may transmit the reconfiguration message to the UE based on the calculated second amount of data satisfying the threshold amount of data.
  • the cell activation component 720 may activate, for communications with the UE, the second cell based on transmitting the reconfiguration message.
  • the threshold data volume component 725 may determine a second threshold amount of data.
  • the cell activation component 720 may compare the calculated amount of data with the second threshold amount of data.
  • the cell activation component 720 may transmit the reconfiguration message to the UE based on the calculated amount of data satisfying the second threshold amount of data.
  • the cell activation component 720 may activate, for communications with the UE, the second cell based on transmitting the reconfiguration message.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of device 505, device 605, or a base station 105 as described herein.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, a network communications manager 815, a transceiver 820, an antenna 825, memory 830, a processor 840, and an inter-station communications manager 845. These components may be in electronic communication via one or more buses (e.g., bus 850) .
  • buses e.g., bus 850
  • the communications manager 810 may receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology, calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE, and compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
  • the network communications manager 815 may manage communications with the core network (e.g., via one or more wired backhaul links) .
  • the network communications manager 815 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 830 may include random-access memory (RAM) , read-only memory (ROM) , or a combination thereof.
  • the memory 830 may store computer-readable code 835 including instructions that, when executed by a processor (e.g., the processor 840) cause the device to perform various functions described herein.
  • a processor e.g., the processor 840
  • the memory 830 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • the processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting techniques for activating a secondary cell) .
  • the inter-station communications manager 845 may manage communications with other base station 105 and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 845 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 845 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
  • the code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • FIG. 9 shows a flowchart illustrating a method 900 that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure.
  • the operations of method 900 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally, or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology.
  • the operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a dual-connectivity component as described with reference to FIGs. 5 through 8.
  • the base station may calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE.
  • the operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a data volume component as described with reference to FIGs. 5 through 8.
  • the base station may compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
  • the operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a cell activation component as described with reference to FIGs. 5 through 8.
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a base station 105 or its components as described herein.
  • the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 5 through 8.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally, or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
  • the base station may receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology.
  • the operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a dual-connectivity component as described with reference to FIGs. 5 through 8.
  • the base station may calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE.
  • the operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a data volume component as described with reference to FIGs. 5 through 8.
  • the base station may compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
  • the operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a cell activation component as described with reference to FIGs. 5 through 8.
  • the base station may determine that the calculated amount of data satisfies the threshold amount of data based on the comparing.
  • the operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a cell activation component1 as described with reference to FIGs. 5 through 8.
  • the base station may transmit the reconfiguration message to the UE based on the calculated amount of data satisfying the threshold amount of data.
  • the operations of 1025 may be performed according to the methods described herein. In some examples, aspects of the operations of 1025 may be performed by a cell activation component1 as described with reference to FIGs. 5 through 8.
  • the base station may activate, for communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message.
  • the operations of 1030 may be performed according to the methods described herein. In some examples, aspects of the operations of 1030 may be performed by a cell activation component1 as described with reference to FIGs. 5 through 8.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Methods, systems, and devices for wireless communications are described. A network device may receive, from a communication device and over a master cell, an indication that the communication device is capable of dual-connectivity operation using a master radio access technology and a secondary radio access technology. Based on receiving the indication, the network device may calculate an amount of data that is available for transmission between the communication devices. The network device may compare the calculated amount of data with a threshold amount data and may determine whether to initiate a secondary cell activation procedure based on a result of the comparison. The network device may transmit a reconfiguration message if the calculated amount of data satisfies the threshold amount of data.

Description

TECHNIQUES FOR ACTIVATING A SECONDARY CELL
FIELD OF TECHNOLOGY
The following relates generally to wireless communications and more specifically to techniques for activating a secondary cell.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
A base station may communicate with a UE using multiple cells. In some cases, communications over a first subset of the cells are performed in accordance with a first radio access technology and communications over a second subset of the cells are performed in accordance with a second radio access technology.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support techniques for activating a secondary cell. A pair of communication devices may be capable of communicating with one another in accordance with multiple radio access technologies (which may also be referred to as a dual-connectivity capability) . In some cases, the pair of communication devices may perform simultaneous communications  with one another using the multiple radio access technologies. To support the simultaneous communications, the communications devices may activate a first set of serving cells (which may also be referred to as cells) that supports communications that are performed in accordance with the first radio access technology and a second set of cells that supports communications that are performed in accordance with the second radio access technology.
During a registration procedure, a communication device (e.g., a UE) may indicate to a network device (e.g., a base station) that the communication device is capable of dual-connectivity communications using a first cell that supports communications of the first radio access technology. After receiving the indication, the network device may determine whether to activate a second cell that supports communications of the second radio access technology as part of the registration procedure or to delay the activation of the second cell. In some cases, the network device may calculate an amount of data (e.g., uplink and/or downlink data) that is available for transmission between the communication devices. The network device may then compare the calculated amount of data with the threshold amount of data. In some cases, if the calculated amount of data satisfies the threshold amount of data, the network device may initiate a procedure for activating the second cell-e.g., by transmitting a reconfiguration message to the communication device. Otherwise, the network device may not initiate the procedure-e.g., by refraining from transmitting the reconfiguration message.
A method of wireless communication at a base station is described. The method may include receiving, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology, calculating, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE, and comparing the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
An apparatus for wireless communication at a base station is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, over a first cell that supports communications of a first radio access  technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology, calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE, and compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
Another apparatus for wireless communication at a base station is described. The apparatus may include means for receiving, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology, calculating, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE, and comparing the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
A non-transitory computer-readable medium storing code for wireless communication at a base station is described. The code may include instructions executable by a processor to receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology, calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE, and compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a value for the threshold amount of data based on a utilization of communication resources allocated to the first radio access technology.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the calculated amount of data satisfies the threshold amount of data based on the comparing, transmitting the reconfiguration message to the UE based on the calculated  amount of data satisfying the threshold amount of data, and activating, for communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the calculated amount of data fails to satisfy the threshold amount of data based on the comparing, and refraining from transmitting the reconfiguration message to the UE based on the calculated amount of data failing to satisfy the threshold amount of data, where a second cell that supports communications of the second radio access technology may be not activated based on refraining from transmitting the reconfiguration message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for calculating a second amount of data that may be available for a second set of upcoming transmissions between the base station and the UE, comparing the second amount of data with the threshold amount of data, transmitting the reconfiguration message to the UE based on the calculated second amount of data satisfying the threshold amount of data, and activating, for communications with the UE, the second cell based on transmitting the reconfiguration message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a second threshold amount of data, comparing the calculated amount of data with the second threshold amount of data, transmitting the reconfiguration message to the UE based on the calculated amount of data satisfying the second threshold amount of data, and activating, for communications with the UE, the second cell based on transmitting the reconfiguration message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, calculating the amount of data may include operations, features, means, or instructions for calculating a first amount of data that may be available for transmission from the base station to the UE and a second amount of data that may be available for transmission from the UE to the base station, where the threshold amount of data includes a first threshold amount of data that may be based on data transmissions from  the base station to the UE and a second threshold amount of data that may be based on data transmissions from the UE to the base station.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first amount of data satisfies the first threshold amount of data, the second amount of data satisfies the second threshold amount of data, or both, transmitting the reconfiguration message to the UE based on at least one of the first amount of data satisfying the first threshold amount of data or the second amount of data satisfying the second threshold amount of data, and activating, for communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first amount of data satisfies the first threshold amount of data and the second amount of data satisfies the second threshold amount of data, transmitting the reconfiguration message to the UE based on both the first amount of data satisfying the first threshold amount of data and the second amount of data satisfying the second threshold amount of data, and activating, for communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the first amount of data fails to satisfy the first threshold amount of data, the second amount of data fails to satisfy the second threshold amount of data, or both, and refraining from transmitting the reconfiguration message to the UE based on at least one of the first amount of data failing to satisfy the first threshold amount of data or the second amount of data failing to satisfy the second threshold amount of data, where a second cell that supports communications of the second radio access technology may be not activated based on refraining from transmitting the reconfiguration message.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, calculating the amount of data may include operations,  features, means, or instructions for calculating a first amount of data that may be available for transmission from the UE to the base station, where the threshold amount of data may be based on data transmissions from the UE to the base station.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a buffer status report from the UE, where the buffer status report indicates a total amount of data that may be buffered for a set of logical channel groups, where the calculated amount of data may be equivalent to the total amount of data.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a buffer status report from the UE, where the buffer status report indicates a first size of a first buffer associated with a first logical channel group and a second size of a second buffer associated with a second logical channel group, where the calculated amount of data may be based on a summation of the first size and the second size.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving a buffer status report from the UE, where the buffer status report indicates a first range of sizes for a first buffer associated with a first logical channel group and a second range of sizes for a second buffer associated with a second logical channel group, where the calculated amount of data may be based on a summation of an upper bound of the first range of sizes and an upper bound of the second range of sizes.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, calculating the amount of data may include operations, features, means, or instructions for calculating a second amount of data that may be available for transmission from the base station to the UE, where the threshold amount of data may be based on data transmissions from the base station to the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the calculated amount of data may be based on data in a packet data convergence protocol layer that may be available for transmission to the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, calculating the amount of data may include operations, features, means, or instructions for calculating the amount of data before, concurrently with, or after receiving the indication.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, calculating the amount of data may include operations, features, means, or instructions for calculating the amount of data in response to receiving the indication.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the reconfiguration message directs the UE to measure a second cell that supports communications of the second radio access technology.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports techniques for activating a secondary cell in accordance with various aspects of the present disclosure.
FIG. 2 illustrates aspects of a wireless communications subsystem that supports techniques for activating a secondary cell in accordance with various aspects of the present disclosure.
FIG. 3 illustrates aspects of a process for techniques for activating a secondary cell in accordance with various aspects of the present disclosure.
FIG. 4 illustrates aspects of a flowchart for techniques for activating a secondary cell in accordance with various aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support techniques for activating a secondary cell in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communications manager that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure.
FIGs. 9 and 10 show flowcharts illustrating methods that support techniques for activating a secondary cell in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
A dual-connectivity user equipment (UE) may be capable of communicating with a base station using a first radio access technology (RAT) and a second RAT. A procedure for registering a UE with a base station as a dual-connectivity UE may result in the activation of one or more secondary cells for communications between the base station and UE-e.g., to enable near immediate communications over both master and secondary cells. As also discussed above, the base station may trigger a procedure to deactivate the secondary cell (s) if a rate of data transferred over the secondary cell (s) falls below a threshold for a duration-e.g., to conserve communication resources and power. In some cases, from a time the secondary cell (s) are established to a time the secondary cell (s) are deactivated, the base station and UE may communicate data solely over the master cell (s) or with only minimal (e.g., insignificant) data transfer occurring over the secondary cell (s) -e.g., the data rate over the secondary cell (s) may fail to reach or exceed the threshold during this period. That is, in some cases, the secondary cell (s) established during the initial signaling exchange may not be sufficiently utilized from the time the secondary cell (s) are established to the time the secondary cell (s) are deactivated. Thus, the establishment of the secondary cell (s) may have been unnecessary. In such cases, communication resources dedicated to the secondary RAT may be unnecessarily reserved, unnecessary signaling may be exchanged, power may be unnecessarily consumed, and/or current communications over the master cell (s) may be unnecessarily interrupted.
To avoid unnecessary signaling, power consumption, communication resource dedication, and/or data interruption, a registration procedure may be enhanced to include techniques for determining whether to activate secondary cell (s) . In some examples, the enhanced registration procedure includes techniques for determining (e.g., by calculating) a volume of upcoming uplink data transmission and/or a volume of upcoming downlink data transmission that occur before secondary cell (s) are activated. In some examples, the determined uplink data volume may be compared with an uplink threshold data volume and/or the determined downlink data volume may be compared with a downlink threshold data volume. In some cases, if one or both of the calculated uplink data volume or the  calculated downlink data volume reach or exceed a respective uplink threshold data volume or downlink threshold data volume, then a process for activating secondary cell (s) may be initiated as part of the registration procedure. Otherwise, procedures for activating the secondary cells may be avoided (e.g., skipped) .
By refraining from activating secondary cells when a calculated uplink and/or downlink data volume is below a threshold, signaling overhead associated with establishing and maintaining secondary cells, power consumption associated with measuring the secondary cells, data interruptions associated with establishing secondary cells, and unnecessary reservations of secondary communications resources on the secondary cells may be reduced. Also, by activating secondary cells when a calculated uplink and/or downlink data volume satisfies a threshold, near immediate communications over both master and secondary cells may be supported.
Aspects of the disclosure are initially described in the context of a wireless communications system. Specific examples are then described of exemplary processes that incorporate techniques for activating a secondary cell. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to techniques for activating a secondary cell.
FIG. 1 illustrates an example of a wireless communications system that supports techniques for activating a secondary cell in accordance with various aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage  area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC)  device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink  transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115, or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may  be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s= 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally, or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control  channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may  support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to  receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to the network operators IP services 150. The operators IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .  Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally, or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
wireless communications system 100 may configure UEs 115 to report, to a base station 105, an amount of data that is ready to be sent to the base station 105. In some cases, data that is ready to be sent to the base station 105 may also be referred to as “buffered data. ” In some cases, reporting an amount of buffered data may enable a base station 105 to efficiently allocate uplink resources to the UEs 115. In some cases, a UE 115 may partition  buffered data into different groups, which may be referred to as logical channel groups (LCGs) . In some examples, each LCG may be associated with a particular set of characteristics, and buffered data that is identified as having a particular set of characteristics may be included in a corresponding LCG-e.g., the buffered data may be tagged as belonging to an LCG and/or grouped together with other buffered data that has also been identified as belonging to the LCG.
In some examples, a UE 115 may use a buffer status report (BSR) message to report an amount of buffered data. In some cases, a UE 115 may be configured to transmit BSR messages using one or more of the following techniques: periodically; when an amount of buffered data exceeds a threshold; or when a reporting timer expires and there is data buffered at the UE 115. In some cases, a transmitted BSR message (which may also be referred to as a “short BSR message” ) may indicate an amount of buffered data for a single LCG (e.g., LCG_1) . To indicate an amount of buffered data that has been designated as belonging to a particular LCG, a BSR message may include an “LCG_ID field” -a field that indicates an identity of the LCG associated with the buffered data for which the amount is being reported. And the BSR message may include a “buffer size field” -a field that indicates the among of buffered data that is associated with an LCG field identified in the LCG_ID field by indicating a size of a buffer (e.g., in bytes) that is associated with the LCG.
In some cases, to support the signaling of an increased number of buffer sizes, a value of the buffer size field corresponds to a range of buffer sizes-e.g., based on a table that maps buffer size field values to buffer sizes. For example, a value of 0 for the buffer size field may correspond to a buffer size of 0 bytes and a value of 5 for the buffer size field may correspond to a buffer size that is between a lower bound of 17 bytes and an upper bound of 19 bytes. In some cases, to support signaling a further increased number of buffer sizes, the values of the buffer size field may be differently mapped to an “extended” range of buffer sizes. For example, a value of 5 for the buffer size field may correspond to a buffer size that is between a lower bound of 19 bytes and an upper bound of 23 bytes.
In some examples, before transmitting a short BSR message, a UE 115 may determine, for one or more LCGs, an amount of data that is buffered and associated with a respective LCG. After determining an amount of buffered data for the respective LCGs, the UE 115 may determine, for the one or more LCGs, a value for a buffer size field that  corresponds to the amount of data that is buffered and associated with a respective LCG-e.g., after determining that 18 bytes of data are buffered for an LCG_2, the UE 115 may select a value (or index) of 5 for the buffer size field. To report an amount of data that is buffered for a particular LCG, the UE 115 may program the LCG_ID field of a short BSR message to a value that corresponds to an identify of the particular LCG-e.g., for LCG_2, a value of the LCG_ID field may be equivalent to 2. And the UE 115 may program the buffer size field of a short BSR message to a value that indicates a buffer size for the particular LCG-e.g., the buffer size of LCG_2 may be set to 5. After determining a value for the buffer size field and setting the values of the LCG_ID and buffer size fields, the UE 115 may transmit the short BSR message to a base station 105.
In some cases, a base station 105 that receives a short BSR message may determine a buffer size (or range of buffer sizes) for an indicated LCG (which may also be referred to as BS_LCG (k) ) . For example, a base station 105 that receives a short BSR message with an LCG_ID field conveying a value of 2 and buffer size field conveying a value of 5 may determine that a buffer size for LCG_2 (e.g., BS_LCG (2) ) is between 17 and 19 bytes. Accordingly, the base station 105 may determine that an amount of data buffered at the UE 115 for LCG_2 is between 17 and 19 bytes. In some examples, a BSR message (which may also be referred to as a “long BSR message” ) may include multiple LCG_ID fields and multiple corresponding buffer size fields-e.g., to convey buffered data information for multiple LCGs. In such cases, a UE 115 may similarly set values of the LCG_ID fields and corresponding buffer size fields. And a base station 105 may similarly determine buffer sizes for the indicated LCG_ID fields.
wireless communications system 100 may support communication devices that are capable of performing concurrent communications using different RATs (which may be referred to as “multi-RAT communications” ) . Some examples of different RATs may include 3G, LTE, 4G, and/or 5G. In some examples, a base station 105 and UE 115 may communicate with one another using a master RAT (e.g., LTE) . Communicating using a master RAT may include scheduling communication resources, selecting transmission parameters, and using a frequency range in accordance with protocols established for the master RAT. In some examples, the base station 105 that communicates, or dedicated components within the base station 105 used to communicate, with the UE using the master RAT is referred to as a “master node. ” In some examples, communications between the base  station 105 and the UE 115 using the master RAT are performed over “master cells” -master cells may be cells that are included in a master cell group (MCG) . In some cases, cells are also referred to as component carriers.
In some examples, the base station 105 and UE 115 may also (e.g., concurrently or simultaneously) communicate with one another using a secondary RAT (e.g., NR) . In some examples, the base station 105 may communicate with the UE 115 using the secondary RAT after determining the UE 115 is capable of using multiple RATs for simultaneous communication-e.g., after the UE 115 indicates a dual-connectivity capability. Communicating using a secondary RAT may include scheduling communication resources, selecting transmission parameters, and using a frequency range in accordance with protocol established for the secondary RAT. In some examples, a different base station 105 that communicates, or different dedicated circuitry within the aforementioned base station 105 that is used to communicate, with the UE 115 using the secondary RAT, is referred to as a “secondary node. ” In some examples, communications to and from the UE 115 using the secondary RAT are performed using “secondary cells” -secondary cells may be cells that are included in a secondary cell group (SCG) . In some examples, the base station 105 may include a “master modem” -the master modem may be a modem that supports communicating in accordance with master RAT protocols. And the base station may include a “secondary modem” -the secondary modem be a modem that supports communicating in accordance with secondary RAT protocols.
To support multi-RAT communications, ” the base station 105 may establish an “MCG bearer” -the MCG bearer may be a radio bearer that is used to configure the MCG. And the base station 105 may establish an “SCG bearer” -the SCG bearer may be a radio bearer that is used to configure the SCG. In some examples, the base station 105 may communicate first radio resource control (RRC) signaling over the MCG bearer to establish a connection with the UE 115 in accordance with the master RAT, and the base station may communicate second RRC signaling over the SCG bearer to establish a connection with the UE 115 in accordance with the secondary RAT. In some examples, the master node may be interconnected with the secondary node. For example, a path of the SCG bearer may extend from an NR packet data convergence protocol (PDCP) layer of the master modem through control and physical layers (e.g., medium access control (MAC) and physical (PHY) layers) of the secondary modem. In some examples, the base station 105 may establish a “split radio  bearer” that is used to communicate RRC signaling for the MCG using control and physical layers dedicated either to the master node or the secondary node. In some examples, the base station 105 may establish another split radio bearer that is used to communicate RRC signaling for the SCG using control and physical layers dedicated either to the master node or the secondary node.
Before performing multi-RAT communications, the base station 105 and the UE 115 may participate in an initial signaling exchange that is used to register the UE 115 with the base station 105 as a dual-connectivity UE. In some cases, the initial signaling exchange may be referred to as a “registration procedure. ” In some examples, after UE 115 connects with base station 105 using a master RAT (e.g., over the MCG) , the registration procedure may begin with the UE 115 indicating a dual-connectivity capability to the base station 105 over the MCG-that is, the UE 115 may use the MCG to register as a dual-connectivity UE with the base station 105. After the UE 115 registers with the base station 105, the base station 105 may configure the UE 115 to measure communication resources associated with the secondary RAT-e.g., the base station 105 may configure the UE 115 to measure one or more secondary cells. After measuring the communication resources, the UE 115 may report the measurement (s) to the base station 105. In some cases, instead of reporting the measurement, the UE 115 transmits an indication that the measurements meet or exceed a threshold to the base station 105.
After determining that the measurement (s) meet or exceed a threshold, the base station 105 may use a secondary radio bearer to communicate control signaling that is used to establish one or more secondary cells for communications between the base station 105 and UE 115-e.g., the base station 105 may transmit RRC signaling (e.g., an RRC reconfiguration message) that directs the UE 115 to add secondary cell (s) . After receiving the control signaling, the UE 115 may connect (or activate) the secondary cell (s) and may communicate with the base station over the secondary cell (s) in accordance with the secondary RAT and over the master cell (s) in accordance with the master RAT. After the secondary cell (s) are activated, the UE 115 may transmit reference signals (e.g., SRS, SSB, CSI-RS) to support communications over the secondary cell (s) and/or may monitor physical downlink control channel (PDCCH) resources to identify communication resources in the secondary cell (s) . By establishing secondary cells for communication during the registration procedure, a base station 105 and UE 115 may begin communicating (e.g., concurrently) over  master and secondary cells, increasing throughput and/or communication reliability for the UE 115 almost immediately after the UE 115 is registered with the base station 105 as having a dual-connectivity capability.
In some cases, a base station 105 may be configured to deactivate secondary cells that have been established for communicating with a UE 115 based on an amount of data being communicated over the secondary cells. In some examples, a base station 105 may deactivate secondary cells when a rate of data transmitted between the base station 105 and the UE 115 over the secondary cells falls below a threshold. That is, after activating the secondary cell (s) , the base station 105 may determine that master cell (s) , on their own, are sufficient for communicating pending data between the base station 105 and the UE 115 without data interruption-e.g., while meeting latency and reliability specifications. In some examples, after determining a data rate for the secondary cells is below a threshold, the base station 105 may transmit control (e.g., RRC) signaling directing the UE 115 to release (deactivate) the secondary cells. In some cases, the base station 105 begins a deactivation procedure for the secondary cells after determining that the data rate for the secondary cells is below a threshold for a duration (e.g., 10 to 15 seconds) -e.g., to support temporary pauses in data transfer. By deactivating the secondary cell (s) when a rate of data communicated over the secondary cells is below a threshold, communication resources that are dedicated to the secondary RAT may be conserved and power consumption at the UE 115 may be reduced.
As discussed above, a procedure for registering a UE 115 with a base station 105 as a dual-connectivity UE may result in the activation of one or more secondary cells for communications between the base station 105 and UE 115-e.g., to enable near immediate communications over both master and secondary cells. As also discussed above, the base station 105 may trigger a procedure to deactivate the secondary cell (s) if a rate of data transferred over the secondary cell (s) falls below a threshold for a duration-e.g., to conserve communication resources and power. In some cases, from the time the secondary cell (s) are established to the time the secondary cell (s) are deactivated, the base station 105 and UE 115 may communicate data solely over the master cell (s) or with only minimal (e.g., insignificant) data transfer occurring over the secondary cell (s) -e.g., the data rate over the secondary cell (s) may fail to reach or exceed the threshold during this period. That is, in some cases, the secondary cell (s) established during the initial signaling exchange may not be sufficiently utilized from the time the secondary cell (s) are established to the time the  secondary cell (s) are deactivated. Thus, the establishment of the secondary cell (s) may have been unnecessary. In such cases, communication resources dedicated to the secondary RAT may be unnecessarily reserved, unnecessary signaling may be exchanged, power may be unnecessarily consumed, and/or current communications over the master cell (s) may be unnecessarily interrupted.
That is, if the secondary cells were not activated as part of the registration procedure, then communication resources on the secondary cells that were dedicated to the UE 115 may have been dedicated to different UEs 115 that are configured to communicate using the secondary RAT. Also, the transmission of the signaling to activate and deactivate the secondary cell (s) between the base station 105 and the UE 115 may have been avoided. Additionally, the measurement by the UE 115 of the secondary cells and the transmission of overhead signaling may have been avoided. Moreover, switching between the MCG bearer and the SCG bearer (or split bearer) performed to establish the secondary cell (s) may result in data interruptions between the base station 105 and the UE 115 that may have been avoided.
To avoid unnecessary signaling, power consumption, communication resource dedication, and/or data interruption, a registration procedure may be enhanced to include techniques for determining whether to activate secondary cell (s) . In some examples, the enhanced registration procedure includes techniques for calculating a volume of upcoming uplink data transmission and/or a volume of upcoming downlink data transmission that occur before secondary cell (s) are activated. In some examples, the calculated uplink data volume may be compared with an uplink threshold data volume and/or the calculated downlink data volume may be compared with a downlink threshold data volume. In some cases, if one or both of the calculated uplink data volume or the calculated downlink data volume reach or exceed a respective uplink threshold data volume or downlink threshold data volume, then secondary cell (s) may be activated as part of the registration procedure. Otherwise, procedures for activating the secondary cells may be avoided. By refraining from activating secondary cells when a calculated uplink and/or downlink data volume is below a threshold, signaling overhead associated with establishing and maintaining secondary cells, power consumption associated with measuring the secondary cells, data interruptions associated with establishing secondary cells, and unnecessary reservations of secondary communications resources on the secondary cells may be reduced. Also, by activating secondary cells when a  calculated uplink and/or downlink data volume satisfies a threshold, near immediate communications over both master and secondary cells may be supported.
FIG. 2 illustrates aspects of a wireless communications subsystem that supports techniques for activating a secondary cell in accordance with various aspects of the present disclosure. Wireless communications subsystem 200 may include base station 205 and UE 215 which may be examples of a base station or UE described above with reference to FIG. 1. Base station 205 and UE 215 may communicate with one another within coverage area 210, as described above with reference to FIG. 1.
As discussed above, a registration procedure for registering a UE with a base station as a dual-connectivity UE may result in the unnecessary activation of one or more secondary cells-e.g., if the master cells are sufficient to support data communications between the base station and UE. To prevent the unnecessary activation of the one or more secondary cells, a registration procedure may be enhanced to include operations for determining whether secondary cell (s) will be sufficiently utilized if activated as part of the registration procedure.
In some examples, to prevent the unnecessary activation of one or more secondary cells, base station 205 may determine whether to initiate a procedure for activating one or more secondary cells for communications with UE 215 based on a calculated amount of data that is available to be transmit between base station 205 and UE 215.
Base station 205 and UE 215 may establish a communication link that uses a master RAT and communicate with one another over one or more master cells (e.g., master cell 220) . In some examples, UE 215 is capable of communicating with base station 205 using both the master RAT and a secondary RAT. That is, UE 215 may have a dual-connectivity capability. In some examples, UE 215 may register this dual-connectivity capability with base station 205 by transmitting an indication of the dual-connectivity capability-e.g., by transmitting registration message 230.
In some examples, base station 205 may determine whether to activate one or more secondary cells (e.g., secondary cell 225) for communications with UE 215 based on receiving the registration message. In some examples, base station 205 may determine whether to activate the one or more secondary cells based on a calculated amount of data that is available for communication between base station 205 and UE 215 within a designated  time period (which may also be referred to as “data volume” ) . In some examples, base station 205 calculates the data volume based on an amount of data at a PDCP layer that is available to be transmit from base station 205 to UE 215 (which may also be referred to as “downlink data volume” ) . Additionally, or alternatively, base station 205 calculates the data volume based on an amount of data indicated in a BSR message (e.g., BSR message 235) that is available to be transmit from UE 215 to base station 205 (which may also be referred to as “uplink data volume” ) . In some cases, base station 205 may compare the calculated amount of data with a threshold amount of data. In some cases, base station 205 may determine a value for the threshold amount of data based on a traffic level associated with ongoing communications using the first RAT and/or a traffic level associated with ongoing communications using the second RAT-e.g., based on a service load.
In some examples, after determining that the calculated amount of data satisfies a corresponding threshold amount of data, base station 205 may transmit a control message (e.g., measurement trigger 240) to UE 215 that directs UE 215 to measure one or more secondary cells. Otherwise, base station 205 may refrain from transmitting the control message. In some cases, UE 215 reports the measurements to base station 205. Additionally, or alternatively, UE 215 may indicate to base station 205 that the measurements exceeded a corresponding threshold.
After determining that the measurements taken by UE 215 exceed a corresponding threshold, base station 205 may transmit a control message (e.g., activation message 245) to UE 215 that causes UE 215 to activate one or more secondary cells (e.g., secondary cell 225) . Once the one or more secondary cells are activated, base station 205 and UE 215 may begin communication with one another using the one or more secondary cells.
FIG. 3 illustrates aspects of a process for techniques for activating a secondary cell in accordance with various aspects of the present disclosure. Process flow 300 may be performed by base station 305 and UE 315, which may be examples of a base station or UE described above with reference to FIGs. 1 and 2.
In some examples, process flow 300 illustrates an enhanced registration procedure that includes operations for determining whether secondary cell (s) will be sufficiently utilized if activated.
At arrow 320, UE 315 may establish a connection with base station 305 in accordance with established communication protocols for a master RAT (e.g., LTE) . In some examples, base station 305 and UE 315 may establish an MCG that supports communications between base station 305 and UE 315. In some cases, the MCG may include one or more master cells.
At arrow 325, base station 305 and UE 315 may exchange control and user data over one or more master cells. In some cases, before transmitting uplink data to base station 305, UE 315 may transmit a BSR message (e.g., BSR message 235 of FIG. 2) indicating an amount of data that is buffered at UE 315 for one or more LCGs. In some cases, base station 305 may identify data that is available for transmission to UE 315 at a PDCP layer (e.g., using a first PDCP entity associated with a first RAT or a second PDCP entity associated with a second RAT) .
At block 330, base station 305 may determine a threshold data volume. In some cases, base station 305 may determine a downlink threshold data volume. In some cases, a value of the downlink threshold data volume may be represented by the parameter dlDataVolumeThreshold. Additionally, or alternatively, base station 305 may determine an uplink threshold data volume. In some cases, a value of the uplink threshold data volume may be represented by the parameter ulDataVolumeThreshold. In some cases, base station 305 may determine a combined threshold data volume based on the determined downlink threshold data volume and the determined uplink threshold data volume.
In some cases, base station 305 may determine a value for a threshold data volume based on resource utilization (or communication traffic) observed by base station 305. That is, a value of the threshold data volume may be configured based on a service load for base station 305. In some examples, the threshold data volume may be configured with a lower value when base station 305 is communicating with a larger number of UEs using a master RAT. In some examples, the threshold data volume may be configured with a lower value when base station 305 is communicating with a small number of UEs using a secondary RAT. By setting a lower threshold data volume, a likelihood that base station 305 will initiate procedures for activating one or more secondary cells for communications with UE 315 may be increased. Also, by setting a lower threshold data volume, base station 305 may increase a utilization of communications resources that are allocated to a second RAT.
In some examples, the threshold data volume may be configured with a higher value when base station 305 is communicating with a large number of UEs using the secondary RAT. By setting a higher threshold data volume, a likelihood that base station 305 will initiate procedures for activating one or more secondary cells for communications with UE 315 may be decreased. Also, by setting a higher threshold data volume, base station 305 may increase an availability of communications resources that are allocated to a second RAT.
In some cases, base station 305 may set a threshold data volume to a lowest level when a traffic level for the master RAT is above a first threshold-e.g., when master RAT traffic is high. By setting a low threshold data volume, base station 305 may increase an availability of communications resources that are allocated to first RAT. Base station 305 may set a threshold data volume to an intermediate level when a traffic level for the master RAT is below the first threshold but above a second threshold-e.g., when master RAT traffic is intermediate. And base station 305 may set a threshold data volume to a highest level when a traffic level for the master RAT is below the second threshold-e.g., when master RAT traffic is low. In some examples, the downlink threshold data volume may be set to a low level-e.g., when base station 305 broadcasts data to multiple UEs using a first RAT-while uplink threshold data volume may be set to a high level-e.g., when, after a period of time, base station 305 receives a small amount of uplink data from connected UEs using the first RAT.
At block 335, base station 305 may calculate an amount of data that is available for transmission between base station 305 and UE 315 (a “data volume” ) . In some cases, base station 305 may calculate an amount of data that is to be transmitted from base station 305 to UE 315 within a period of time (an “downlink data volume” ) . In some cases, the amount of downlink data volume may be represented by a parameter DL_Data_Volume. Additionally, or alternatively, base station 305 may calculate an amount of data that is to be transmitted from UE 315 to base station 305 within a period of time (a “uplink data volume” ) . In some cases, the amount of downlink data volume may be represented by a parameter UL_Data_Volume. In some cases, base station 305 may determine a combined data volume based on the calculated uplink data volume and the calculated downlink data volume.
In some cases, base station 305 may calculate the downlink data volume based on the total available data in a PDCP layer. In some cases, base station 305 may use a PDCP  entity associated with a first RAT to calculate the downlink data volume-e.g., if the master node uses the first RAT. In other cases, base station 305 may use a PDCP entity associated with a second RAT to calculate the downlink data volume-e.g., if the master node uses the second RAT.
In some cases, base station 305 may calculate the uplink data volume based on a BSR message received from UE 315. In some examples, the BSR message indicates a buffer size of one or more LCGs, and base station 305 may calculate the uplink data volume based on the indicated buffer size (s) . In some examples, the calculated uplink data volume may be equivalent to the aggregated buffer size for all of the LCGs indicated by the BSR. In some cases, the aggregated buffer size may closely correspond to an amount of data that is buffered at UE 315 for the indicated LCGs. When the calculated uplink data volume is based on the aggregated buffer size, a value of the uplink data volume may be represented as
Figure PCTCN2020076182-appb-000001
In some cases, BS_LCG (k) may be the buffer size of the kth LCG, and N may equal 7. In some cases, if an LCG buffer k is not configured, then BA_LCG (k) may equal 0.
In some examples, for each of the LCGs indicated in a BSR message, a corresponding buffer size field indicates a range of buffer sizes-e.g., a value of 5 for BS_LCG (0) may indicate that a buffer size of the first LCG is between 17 and 19. In some cases, a BSR field is configured to support the signaling of larger (or extended) buffer sizes. In such cases, a value of 5 for BS_LCG (0) may indicate that a buffer size of the first LCG is between 19 and 23 bytes, and uplink data volume may be computed using 23 bytes.
In some cases, when a buffer size field indicates a range of buffer size, the uplink data volume calculation may be determined based on upper bounds of the buffer sizes indicated for each LCG-e.g., if a value of 5 for BS_LCG (0) indicates that a buffer size of the first LCG is between 17 and 19 bytes, then uplink data volume may be computed using 19 bytes. When the calculated uplink data volume is based on the upper bounds of the aggregated buffer sizes, a value of the uplink data volume may be represented as
Figure PCTCN2020076182-appb-000002
In other cases, the uplink data volume calculation may be determined based on lower bounds of the buffer sizes or an average of the upper and lower bounds.
At arrow 340, UE 315 may transmit, using the one or more master cells, a registration message to base station 305. In some cases, the registration message (e.g., registration message 230 of FIG. 2) may indicate that UE 315 is capable of performing concurrent communications over multiple RATs In some cases, the transmitted signaling registers UE 315 with base station 305 as a UE with dual-connectivity capabilities.
In some cases, base station 305 calculates the data volume and/or threshold data volume before the registration signaling is received from UE 315. In some cases, base station 305 calculates the data volume and/or threshold data volume concurrently with receiving the registration signaling from UE 315. In some cases, base station 305 calculates the data volume and/or threshold data volume after the registration signaling is received from UE 315-e.g., in some cases, the downlink data volume and/or uplink data volume calculation may be triggered by receiving the registration signaling.
At block 345, base station 305 may determine whether to initiate a procedure for activating one or more secondary cell (s) for communications between base station 305 and UE 315 based on the registration signaling received from UE 315. In some cases, base station 305 may determine whether to initiate the procedure based on a calculated data volume-e.g., a calculated uplink data volume, a calculated downlink data volume, a calculated combined data volume, or any combination thereof. After receiving the registration signal from UE 315, base station 305 may compare calculated values for a downlink data volume and/or an uplink data volume with a respective downlink threshold data volume and/or uplink threshold data volume. In some examples, if either the calculated downlink data volume or the calculated uplink data volume satisfy a respective downlink threshold data volume or uplink threshold data volume, base station 305 may initiate procedures for activating one or more secondary cells for communications between base station 305 and UE 315. For example, base station 305 may send a NR measure RRC configuration message to UE 315 if (DL data volume≥ dlDataVolumeThreshold) or (UL data volume≥ulDataVolumeThreshold) . In some cases, to initiate the procedures for activating the secondary cell, base station 305 transmit a control message (e.g., a NR measure RRC configuration message) to UE 315 that triggers UE 315 to measure one or more secondary cells. Otherwise, base station 305 may refrain from initiating the procedures for activating the secondary cell (s) .
In some examples, if both the calculated downlink data volume and the calculated uplink data volume satisfy a respective downlink threshold data volume or uplink threshold data volume, base station 305 may initiate procedures for activating one or more secondary cells for communications between base station 305 and UE 315-that is, if either the calculated downlink data volume or the calculated uplink data volume fails to satisfy a respective downlink threshold data volume or uplink threshold data volume, base station 305 may refrain from initiating procedures for activating one or more secondary cells.
At block 350, after determining that the calculated downlink data volume and/or the calculated uplink data volume do not satisfy a respective downlink threshold data volume and/or uplink threshold data volume, base station 305 may update the calculation of the downlink data volume and/or the uplink data volume. Base station 305 may use the updated downlink data volume and/or uplink data volume to perform an additional comparison with a respective downlink threshold data volume and/or uplink threshold data volume. In some cases, base station 305 may initiate procedures for activating a secondary cell after determining that one or both of the updated downlink data volume or uplink data volume exceed a respective downlink threshold data volume and/or uplink threshold data volume.
In some cases, after determining that the calculated downlink data volume and/or the calculated uplink data volume do not satisfy a respective downlink threshold data volume and/or uplink threshold data volume, base station 305 may update the downlink threshold data volume and/or the uplink threshold data volume-e.g., based on changing channel conditions associated with the first RAT or second RAT. In some examples, base station 305 may compare a previously calculated downlink data volume and/or the uplink data volume with the updated downlink threshold data volume and/or uplink threshold data volume, respectively. In some cases, base station 305 may initiate procedures for activating a secondary cell after determining that one or both of the downlink data volume or uplink data volume exceed the updated downlink threshold data volume and/or uplink threshold data volume, respectively. In some examples, base station 305 may compare an updated downlink data volume and/or the uplink data volume with the updated downlink threshold data volume and/or uplink threshold data volume, respectively. In some cases, base station 305 may initiate procedures for activating a secondary cell after determining that one or both of the updated downlink data volume or uplink data volume exceed the updated downlink threshold data volume and/or uplink threshold data volume, respectively.
At arrow 355, base station 305 may transmit a measurement trigger to UE 315 based on determining to activate one or more secondary cells for communications with UE 315-e.g., based on one or both of a calculated downlink data volume or calculated uplink data volume satisfying a respective downlink threshold data volume or uplink threshold data volume. In some cases, the measurement trigger may be an example of measurement trigger 240 of FIG. 2.
At arrow 360, UE 315 may measure one or more secondary cells and transmit a measurement report to base station 305. In some cases, measuring the one or more secondary cells may include measuring signal characteristics of reference signals received from base station 305 on the one or more secondary cells. In some cases, the measurement report may include information that representing one or more measurements taken by UE 315. In some cases, measurement report may include an indication that the one or more measurement taken by UE 315 satisfied a measurement threshold.
At arrow 365, base station 305 may transmit an activation message to UE 315 based on determining that the measurements taken by UE 315 satisfied a measurement threshold. In some cases, the activation message may be an example of activation message 245 of FIG. 2.
At block 370, UE 315 may activate one or more secondary cells based on receiving the activation message from base station 305.
At arrow 375, base station 305 and UE 315 may exchange data over the one or more master cells and the one or more secondary cells. In some cases, an amount of data exchanged over the one or more secondary cells may exceed a threshold data rate-e.g., based on base station 305 first performing the operations for determining whether to activate the one or more secondary cells.
FIG. 4 illustrates aspects of a flowchart for techniques for activating a secondary cell in accordance with various aspects of the present disclosure. Flowchart 400 may be performed by a base station-e.g., a base station described above with reference to FIGs. 1 through 3.
At block 405, a base station may receive a registration message from a UE, as discussed herein. At block 410, the base station may determine whether to initiate a  procedure for activating one or more secondary cells for communication with the UE, as described herein. At block 415, the base station may calculate a data volume and/or threshold data volume, as described herein. In some examples, the base station may calculate a downlink data volume and determine a corresponding downlink threshold data volume. Additionally, or alternatively, the base station may calculate an uplink data volume and determine a corresponding uplink threshold data volume.
At decision block 420, the base station may compare the calculated data volume with the determined threshold data volume, as described herein. In some examples, the base station may compare the calculated downlink data volume with the determined downlink threshold data volume, as described herein. In some examples, the base station may compare the calculated uplink data volume with the determined uplink threshold data volume, as described herein.
Ins some cases, the base station may determine whether the calculated data volume is greater than or equal to the threshold data volume. In some cases, if either the calculated downlink data volume is greater than or equal to the threshold downlink data volume or the calculated uplink data volume is greater than or equal to the threshold uplink data volume, then the base station may perform the operations described at block 425. Otherwise, the base station may return to the operation (s) described at block 415.
In some cases, the base station may proceed to block 425 only if both the calculated downlink data volume is greater than or equal to the threshold downlink data volume and the calculated uplink data volume is greater than or equal to the threshold uplink data volume. Otherwise, the base station may return to the operation (s) described at block 415. In some cases, the base station may recalculate a data volume and/or redetermine a threshold data volume after returning to the operation (s) described at block 415. In some examples, the base station may continue to repeat the comparison of a calculated data volume with a determined threshold data volume until the base station determines that the calculated data volume is greater than or equal to the determine threshold data volume. At which time, the base station may perform the operation (s) described at block 425.
At block 425, the base station may transmit a measurement trigger to the UE based on determining that the calculated data volume is greater than or equal to the threshold data volume. In some cases, the base station may return to the operation (s) described at block  415 after transmitting the measurement trigger. In some examples, the base station may wait a duration before returning to the operation (s) described at block 415.
FIG. 5 shows a block diagram 500 of a device 505 that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a base station 105 as described herein. The device 505 may include a receiver 510, a communications manager 515, and a transmitter 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for activating a secondary cell, etc. ) . Information may be passed on to other components of the device 505. The receiver 510 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 510 may utilize a single antenna or a set of antennas.
The communications manager 515 may receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology, calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE, and compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing. The communications manager 515 may be an example of aspects of the communications manager 810 described herein.
The communications manager 515, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communications manager 515, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communications manager 515, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some examples, the communications manager 515, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communications manager 515, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 520 may transmit signals generated by other components of the device 505. In some examples, the transmitter 520 may be collocated with a receiver 510 in a transceiver module. For example, the transmitter 520 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 520 may utilize a single antenna or a set of antennas.
FIG. 6 shows a block diagram 600 of a device 605 that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505, or a base station 105 as described herein. The device 605 may include a receiver 610, a communications manager 615, and a transmitter 635. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for activating a secondary cell, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The receiver 610 may utilize a single antenna or a set of antennas.
The communications manager 615 may be an example of aspects of the communications manager 515 as described herein. The communications manager 615 may include a dual-connectivity component 620, a data volume component 625, and a cell  activation component 630. The communications manager 615 may be an example of aspects of the communications manager 810 described herein.
The dual-connectivity component 620 may receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology. The data volume component 625 may calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE. The cell activation component 630 may compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
The transmitter 635 may transmit signals generated by other components of the device 605. In some examples, the transmitter 635 may be collocated with a receiver 610 in a transceiver module. For example, the transmitter 635 may be an example of aspects of the transceiver 820 described with reference to FIG. 8. The transmitter 635 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a communications manager 705 that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure. The communications manager 705 may be an example of aspects of a communications manager 515, a communications manager 615, or a communications manager 810 described herein. The communications manager 705 may include a dual-connectivity component 710, a data volume component 715, a cell activation component 720, and a threshold data volume component 725. Each of these modules may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The dual-connectivity component 710 may receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology.
The data volume component 715 may calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE. In some examples, the data volume component 715 may calculate the amount of data before, concurrently with, or after receiving the indication. In some examples, the data  volume component 715 may calculate the amount of data in response to receiving the indication.
In some examples, the data volume component 715 may calculate a first amount of data that is available for transmission from the base station to the UE and a second amount of data that is available for transmission from the UE to the base station, where the threshold amount of data includes a first threshold amount of data that is based on data transmissions from the base station to the UE and a second threshold amount of data that is based on data transmissions from the UE to the base station. In some cases, the data volume component 715 may include an uplink (UL) data volume component 730 and a downlink (DL) data volume component 735.
The UL data volume component 730 may calculate a first amount of data that is available for transmission from the UE to the base station, where the threshold amount of data is based on data transmissions from the UE to the base station. In some examples, the UL data volume component 730 may receive a buffer status report from the UE, where the buffer status report indicates a total amount of data that is buffered for a set of logical channel groups, where the calculated amount of data is equivalent to the total amount of data. In some examples, the UL data volume component 730 may receive a buffer status report from the UE, where the buffer status report indicates a first size of a first buffer associated with a first logical channel group and a second size of a second buffer associated with a second logical channel group, where the calculated amount of data is based on a summation of the first size and the second size. In some examples, the UL data volume component 730 may receive a buffer status report from the UE, where the buffer status report indicates a first range of sizes for a first buffer associated with a first logical channel group and a second range of sizes for a second buffer associated with a second logical channel group, where the calculated amount of data is based on a summation of an upper bound of the first range of sizes and an upper bound of the second range of sizes.
The DL data volume component 735 may calculate a second amount of data that is available for transmission from the base station to the UE, where the threshold amount of data is based on data transmissions from the base station to the UE. In some cases, the calculated amount of data is based on data in a packet data convergence protocol layer that is available for transmission to the UE.
The threshold data volume component 725 may determine a value for the threshold amount of data based on a utilization of communication resources allocated to the first radio access technology.
The cell activation component 720 may compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing. In some cases, the reconfiguration message directs the UE to measure a second cell that supports communications of the second radio access technology.
In some examples, the cell activation component 720 may determine that the calculated amount of data satisfies the threshold amount of data based on the comparing. In some examples, the cell activation component 720 may transmit the reconfiguration message to the UE based on the calculated amount of data satisfying the threshold amount of data. In some examples, the cell activation component 720 may activate, for communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message.
In some examples, the cell activation component 720 may determine that the first amount of data satisfies the first threshold amount of data, the second amount of data satisfies the second threshold amount of data, or both. In some examples, the cell activation component 720 may transmit the reconfiguration message to the UE based on at least one of the first amount of data satisfying the first threshold amount of data or the second amount of data satisfying the second threshold amount of data. In some examples, the cell activation component 720 may activate, for communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message.
The cell activation component 720 may determine that the first amount of data satisfies the first threshold amount of data and the second amount of data satisfies the second threshold amount of data. In some examples, the cell activation component 720 may transmit the reconfiguration message to the UE based on both the first amount of data satisfying the first threshold amount of data and the second amount of data satisfying the second threshold amount of data. In some examples, the cell activation component 720 may activate, for  communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message.
In some examples, the cell activation component 720 may determine that the calculated amount of data fails to satisfy the threshold amount of data based on the comparing. In some examples, the cell activation component 720 may refrain from transmitting the reconfiguration message to the UE based on the calculated amount of data failing to satisfy the threshold amount of data, where a second cell that supports communications of the second radio access technology is not activated based on refraining from transmitting the reconfiguration message.
The cell activation component 720 may determine that the first amount of data fails to satisfy the first threshold amount of data, the second amount of data fails to satisfy the second threshold amount of data, or both. In some examples, the cell activation component 720 may refrain from transmitting the reconfiguration message to the UE based on at least one of the first amount of data failing to satisfy the first threshold amount of data or the second amount of data failing to satisfy the second threshold amount of data, where a second cell that supports communications of the second radio access technology is not activated based on refraining from transmitting the reconfiguration message.
In some examples, the data volume component 715 may calculate a second amount of data that is available for a second set of upcoming transmissions between the base station and the UE. In some examples, the cell activation component 720 may compare the second amount of data with the threshold amount of data. In some examples, the cell activation component 720 may transmit the reconfiguration message to the UE based on the calculated second amount of data satisfying the threshold amount of data. In some examples, the cell activation component 720 may activate, for communications with the UE, the second cell based on transmitting the reconfiguration message.
In some examples, the threshold data volume component 725 may determine a second threshold amount of data. The cell activation component 720 may compare the calculated amount of data with the second threshold amount of data. In some examples, the cell activation component 720 may transmit the reconfiguration message to the UE based on the calculated amount of data satisfying the second threshold amount of data. In some  examples, the cell activation component 720 may activate, for communications with the UE, the second cell based on transmitting the reconfiguration message.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of device 505, device 605, or a base station 105 as described herein. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 810, a network communications manager 815, a transceiver 820, an antenna 825, memory 830, a processor 840, and an inter-station communications manager 845. These components may be in electronic communication via one or more buses (e.g., bus 850) .
The communications manager 810 may receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology, calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE, and compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing.
The network communications manager 815 may manage communications with the core network (e.g., via one or more wired backhaul links) . For example, the network communications manager 815 may manage the transfer of data communications for client devices, such as one or more UEs 115.
The transceiver 820 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 820 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 820 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 825. However, in some cases the device may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 830 may include random-access memory (RAM) , read-only memory (ROM) , or a combination thereof. The memory 830 may store computer-readable code 835 including instructions that, when executed by a processor (e.g., the processor 840) cause the device to perform various functions described herein. In some cases, the memory 830 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In some cases, a memory controller may be integrated into processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting techniques for activating a secondary cell) .
The inter-station communications manager 845 may manage communications with other base station 105 and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 845 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 845 may provide an X2 interface within an LTE/LTE-A wireless communication network technology to provide communication between base stations 105.
The code 835 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
FIG. 9 shows a flowchart illustrating a method 900 that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure. The operations of method 900 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 900 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally, or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 905, the base station may receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology. The operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a dual-connectivity component as described with reference to FIGs. 5 through 8.
At 910, the base station may calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE. The operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a data volume component as described with reference to FIGs. 5 through 8.
At 915, the base station may compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing. The operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a cell activation component as described with reference to FIGs. 5 through 8.
FIG. 10 shows a flowchart illustrating a method 1000 that supports techniques for activating a secondary cell in accordance with aspects of the present disclosure. The operations of method 1000 may be implemented by a base station 105 or its components as described herein. For example, the operations of method 1000 may be performed by a communications manager as described with reference to FIGs. 5 through 8. In some  examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the functions described below. Additionally, or alternatively, a base station may perform aspects of the functions described below using special-purpose hardware.
At 1005, the base station may receive, over a first cell that supports communications of a first radio access technology, an indication that a UE is capable of dual connectivity communications using the first radio access technology and a second radio access technology. The operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by a dual-connectivity component as described with reference to FIGs. 5 through 8.
At 1010, the base station may calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE. The operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a data volume component as described with reference to FIGs. 5 through 8.
At 1015, the base station may compare the calculated amount of data with a threshold amount of data, where transmission of a reconfiguration message to the UE triggering dual connectivity operation is based on the comparing. The operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a cell activation component as described with reference to FIGs. 5 through 8.
At 1020, the base station may determine that the calculated amount of data satisfies the threshold amount of data based on the comparing. The operations of 1020 may be performed according to the methods described herein. In some examples, aspects of the operations of 1020 may be performed by a cell activation component1 as described with reference to FIGs. 5 through 8.
At 1025, the base station may transmit the reconfiguration message to the UE based on the calculated amount of data satisfying the threshold amount of data. The operations of 1025 may be performed according to the methods described herein. In some examples, aspects of the operations of 1025 may be performed by a cell activation component1 as described with reference to FIGs. 5 through 8.
At 1030, the base station may activate, for communications with the UE, a second cell that supports communications of the second radio access technology based on transmitting the reconfiguration message. The operations of 1030 may be performed according to the methods described herein. In some examples, aspects of the operations of 1030 may be performed by a cell activation component1 as described with reference to FIGs. 5 through 8.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple  microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (67)

  1. A method for wireless communication at a base station, comprising:
    receiving, over a first cell that supports communications of a first radio access technology, an indication that a user equipment (UE) is capable of dual connectivity communications using the first radio access technology and a second radio access technology;
    calculating, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE; and
    comparing the calculated amount of data with a threshold amount of data, wherein transmission of a reconfiguration message to the UE triggering dual connectivity operation is based at least in part on the comparing.
  2. The method of claim 1, further comprising:
    determining a value for the threshold amount of data based at least in part on a utilization of communication resources allocated to the first radio access technology.
  3. The method of claim 1, further comprising:
    determining that the calculated amount of data satisfies the threshold amount of data based at least in part on the comparing;
    transmitting the reconfiguration message to the UE based at least in part on the calculated amount of data satisfying the threshold amount of data; and
    activating, for communications with the UE, a second cell that supports communications of the second radio access technology based at least in part on transmitting the reconfiguration message.
  4. The method of claim 1, further comprising:
    determining that the calculated amount of data fails to satisfy the threshold amount of data based at least in part on the comparing; and
    refraining from transmitting the reconfiguration message to the UE based at least in part on the calculated amount of data failing to satisfy the threshold amount of data, wherein a second cell that supports communications of the second radio access technology is  not activated based at least in part on refraining from transmitting the reconfiguration message.
  5. The method of claim 4, further comprising:
    calculating a second amount of data that is available for a second set of upcoming transmissions between the base station and the UE;
    comparing the second amount of data with the threshold amount of data;
    transmitting the reconfiguration message to the UE based at least in part on the calculated second amount of data satisfying the threshold amount of data; and
    activating, for communications with the UE, the second cell based at least in part on transmitting the reconfiguration message.
  6. The method of claim 4, further comprising:
    determining a second threshold amount of data;
    comparing the calculated amount of data with the second threshold amount of data; and
    transmitting the reconfiguration message to the UE based at least in part on the calculated amount of data satisfying the second threshold amount of data; and
    activating, for communications with the UE, the second cell based at least in part on transmitting the reconfiguration message.
  7. The method of claim 1, wherein calculating the amount of data comprises:
    calculating a first amount of data that is available for transmission from the base station to the UE and a second amount of data that is available for transmission from the UE to the base station, wherein the threshold amount of data comprises a first threshold amount of data that is based at least in part on data transmissions from the base station to the UE and a second threshold amount of data that is based at least in part on data transmissions from the UE to the base station.
  8. The method of claim 7, further comprising:
    determining that the first amount of data satisfies the first threshold amount of data, the second amount of data satisfies the second threshold amount of data, or both; and
    transmitting the reconfiguration message to the UE based at least in part on at least one of the first amount of data satisfying the first threshold amount of data or the second amount of data satisfying the second threshold amount of data; and
    activating, for communications with the UE, a second cell that supports communications of the second radio access technology based at least in part on transmitting the reconfiguration message.
  9. The method of claim 7, further comprising:
    determining that the first amount of data satisfies the first threshold amount of data and the second amount of data satisfies the second threshold amount of data; and
    transmitting the reconfiguration message to the UE based at least in part on both the first amount of data satisfying the first threshold amount of data and the second amount of data satisfying the second threshold amount of data; and
    activating, for communications with the UE, a second cell that supports communications of the second radio access technology based at least in part on transmitting the reconfiguration message.
  10. The method of claim 7, further comprising:
    determining that the first amount of data fails to satisfy the first threshold amount of data, the second amount of data fails to satisfy the second threshold amount of data, or both; and
    refraining from transmitting the reconfiguration message to the UE based at least in part on at least one of the first amount of data failing to satisfy the first threshold amount of data or the second amount of data failing to satisfy the second threshold amount of data, wherein a second cell that supports communications of the second radio access technology is not activated based at least in part on refraining from transmitting the reconfiguration message.
  11. The method of claim 1, wherein calculating the amount of data comprises:
    calculating a first amount of data that is available for transmission from the UE to the base station, wherein the threshold amount of data is based at least in part on data transmissions from the UE to the base station.
  12. The method of claim 11, further comprising:
    receiving a buffer status report from the UE, wherein the buffer status report indicates a total amount of data that is buffered for a set of logical channel groups, wherein the calculated amount of data is equivalent to the total amount of data.
  13. The method of claim 11, further comprising:
    receiving a buffer status report from the UE, wherein the buffer status report indicates a first size of a first buffer associated with a first logical channel group and a second size of a second buffer associated with a second logical channel group, wherein the calculated amount of data is based on a summation of the first size and the second size.
  14. The method of claim 11, further comprising:
    receiving a buffer status report from the UE, wherein the buffer status report indicates a first range of sizes for a first buffer associated with a first logical channel group and a second range of sizes for a second buffer associated with a second logical channel group, wherein the calculated amount of data is based on a summation of an upper bound of the first range of sizes and an upper bound of the second range of sizes.
  15. The method of claim 1, wherein calculating the amount of data comprises:
    calculating a second amount of data that is available for transmission from the base station to the UE, wherein the threshold amount of data is based at least in part on data transmissions from the base station to the UE.
  16. The method of claim 15, wherein the calculated amount of data is based at least in part on data in a packet data convergence protocol layer that is available for transmission to the UE.
  17. The method of claim 1, wherein calculating the amount of data comprises:
    calculating the amount of data before, concurrently with, or after receiving the indication.
  18. The method of claim 1, wherein calculating the amount of data comprises:
    calculating the amount of data in response to receiving the indication.
  19. The method of claim 1, wherein the reconfiguration message directs the UE to measure a second cell that supports communications of the second radio access technology.
  20. An apparatus for wireless communication at a base station, comprising:
    a processor,
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, over a first cell that supports communications of a first radio access technology, an indication that a user equipment (UE) is capable of dual connectivity communications using the first radio access technology and a second radio access technology;
    calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE; and
    compare the calculated amount of data with a threshold amount of data, wherein transmission of a reconfiguration message to the UE triggering dual connectivity operation is based at least in part on the comparing.
  21. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a value for the threshold amount of data based at least in part on a utilization of communication resources allocated to the first radio access technology.
  22. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the calculated amount of data satisfies the threshold amount of data based at least in part on the comparing;
    transmit the reconfiguration message to the UE based at least in part on the calculated amount of data satisfying the threshold amount of data; and
    activate, for communications with the UE, a second cell that supports communications of the second radio access technology based at least in part on transmitting the reconfiguration message.
  23. The apparatus of claim 20, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the calculated amount of data fails to satisfy the threshold amount of data based at least in part on the comparing; and
    refrain from transmitting the reconfiguration message to the UE based at least in part on the calculated amount of data failing to satisfy the threshold amount of data, wherein a second cell that supports communications of the second radio access technology is not activated based at least in part on refraining from transmitting the reconfiguration message.
  24. The apparatus of claim 23, wherein the instructions are further executable by the processor to cause the apparatus to:
    calculate a second amount of data that is available for a second set of upcoming transmissions between the base station and the UE;
    compare the second amount of data with the threshold amount of data;
    transmit the reconfiguration message to the UE based at least in part on the calculated second amount of data satisfying the threshold amount of data; and
    activate, for communications with the UE, the second cell based at least in part on transmitting the reconfiguration message.
  25. The apparatus of claim 23, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a second threshold amount of data;
    compare the calculated amount of data with the second threshold amount of data;
    transmit the reconfiguration message to the UE based at least in part on the calculated amount of data satisfying the second threshold amount of data; and
    activate, for communications with the UE, the second cell based at least in part on transmitting the reconfiguration message.
  26. The apparatus of claim 20, wherein the instructions to calculate the amount of data are executable by the processor to cause the apparatus to:
    calculate a first amount of data that is available for transmission from the base station to the UE and a second amount of data that is available for transmission from the UE to the base station, wherein the threshold amount of data comprises a first threshold amount of data that is based at least in part on data transmissions from the base station to the UE and a second threshold amount of data that is based at least in part on data transmissions from the UE to the base station.
  27. The apparatus of claim 26, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the first amount of data satisfies the first threshold amount of data, the second amount of data satisfies the second threshold amount of data, or both;
    transmit the reconfiguration message to the UE based at least in part on at least one of the first amount of data satisfying the first threshold amount of data or the second amount of data satisfying the second threshold amount of data; and
    activate, for communications with the UE, a second cell that supports communications of the second radio access technology based at least in part on transmitting the reconfiguration message.
  28. The apparatus of claim 26, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the first amount of data satisfies the first threshold amount of data and the second amount of data satisfies the second threshold amount of data;
    transmit the reconfiguration message to the UE based at least in part on both the first amount of data satisfying the first threshold amount of data and the second amount of data satisfying the second threshold amount of data; and
    activate, for communications with the UE, a second cell that supports communications of the second radio access technology based at least in part on transmitting the reconfiguration message.
  29. The apparatus of claim 26, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the first amount of data fails to satisfy the first threshold amount of data, the second amount of data fails to satisfy the second threshold amount of data, or both; and
    refrain from transmitting the reconfiguration message to the UE based at least in part on at least one of the first amount of data failing to satisfy the first threshold amount of data or the second amount of data failing to satisfy the second threshold amount of data, wherein a second cell that supports communications of the second radio access technology is not activated based at least in part on refraining from transmitting the reconfiguration message.
  30. The apparatus of claim 20, wherein the instructions to calculate the amount of data are executable by the processor to cause the apparatus to:
    calculate a first amount of data that is available for transmission from the UE to the base station, wherein the threshold amount of data is based at least in part on data transmissions from the UE to the base station.
  31. The apparatus of claim 30, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive a buffer status report from the UE, wherein the buffer status report indicates a total amount of data that is buffered for a set of logical channel groups, wherein the calculated amount of data is equivalent to the total amount of data.
  32. The apparatus of claim 20, wherein the instructions to calculate the amount of data are executable by the processor to cause the apparatus to:
    calculate a second amount of data that is available for transmission from the base station to the UE, wherein the threshold amount of data is based at least in part on data transmissions from the base station to the UE.
  33. The apparatus of claim 32, wherein the calculated amount of data is based at least in part on data in a packet data convergence protocol layer that is available for transmission to the UE.
  34. The apparatus of claim 20, wherein the instructions to calculate the amount of data are executable by the processor to cause the apparatus to:
    calculate the amount of data before, concurrently with, or after receiving the indication.
  35. The apparatus of claim 20, wherein the instructions to calculate the amount of data are executable by the processor to cause the apparatus to:
    calculate the amount of data in response to receiving the indication.
  36. An apparatus for wireless communication at a base station, comprising:
    means for receiving, over a first cell that supports communications of a first radio access technology, an indication that a user equipment (UE) is capable of dual connectivity communications using the first radio access technology and a second radio access technology;
    means for calculating, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE; and
    means for comparing the calculated amount of data with a threshold amount of data, wherein transmission of a reconfiguration message to the UE triggering dual connectivity operation is based at least in part on the comparing.
  37. The apparatus of claim 36, further comprising:
    means for determining a value for the threshold amount of data based at least in part on a utilization of communication resources allocated to the first radio access technology.
  38. The apparatus of claim 36, further comprising:
    means for determining that the calculated amount of data satisfies the threshold amount of data based at least in part on the comparing;
    means for transmitting the reconfiguration message to the UE based at least in part on the calculated amount of data satisfying the threshold amount of data; and
    means for activating, for communications with the UE, a second cell that supports communications of the second radio access technology based at least in part on transmitting the reconfiguration message.
  39. The apparatus of claim 36, further comprising:
    means for determining that the calculated amount of data fails to satisfy the threshold amount of data based at least in part on the comparing; and
    means for refraining from transmitting the reconfiguration message to the UE based at least in part on the calculated amount of data failing to satisfy the threshold amount of data, wherein a second cell that supports communications of the second radio access technology is not activated based at least in part on refraining from transmitting the reconfiguration message.
  40. The apparatus of claim 39, further comprising:
    means for calculating a second amount of data that is available for a second set of upcoming transmissions between the base station and the UE;
    means for comparing the second amount of data with the threshold amount of data;
    means for transmitting the reconfiguration message to the UE based at least in part on the calculated second amount of data satisfying the threshold amount of data; and
    means for activating, for communications with the UE, the second cell based at least in part on transmitting the reconfiguration message.
  41. The apparatus of claim 39, further comprising:
    means for determining a second threshold amount of data;
    means for comparing the calculated amount of data with the second threshold amount of data;
    means for transmitting the reconfiguration message to the UE based at least in part on the calculated amount of data satisfying the second threshold amount of data; and
    means for activating, for communications with the UE, the second cell based at least in part on transmitting the reconfiguration message.
  42. The apparatus of claim 36, wherein the means for calculating the amount of data comprises:
    means for calculating a first amount of data that is available for transmission from the base station to the UE and a second amount of data that is available for transmission from the UE to the base station, wherein the threshold amount of data comprises a first threshold amount of data that is based at least in part on data transmissions from the base station to the UE and a second threshold amount of data that is based at least in part on data transmissions from the UE to the base station.
  43. The apparatus of claim 42, further comprising:
    means for determining that the first amount of data satisfies the first threshold amount of data, the second amount of data satisfies the second threshold amount of data, or both;
    means for transmitting the reconfiguration message to the UE based at least in part on at least one of the first amount of data satisfying the first threshold amount of data or the second amount of data satisfying the second threshold amount of data; and
    means for activating, for communications with the UE, a second cell that supports communications of the second radio access technology based at least in part on transmitting the reconfiguration message.
  44. The apparatus of claim 42, further comprising:
    means for determining that the first amount of data satisfies the first threshold amount of data and the second amount of data satisfies the second threshold amount of data;
    means for transmitting the reconfiguration message to the UE based at least in part on both the first amount of data satisfying the first threshold amount of data and the second amount of data satisfying the second threshold amount of data; and
    means for activating, for communications with the UE, a second cell that supports communications of the second radio access technology based at least in part on transmitting the reconfiguration message.
  45. The apparatus of claim 42, further comprising:
    means for determining that the first amount of data fails to satisfy the first threshold amount of data, the second amount of data fails to satisfy the second threshold amount of data, or both; and
    means for refraining from transmitting the reconfiguration message to the UE based at least in part on at least one of the first amount of data failing to satisfy the first threshold amount of data or the second amount of data failing to satisfy the second threshold amount of data, wherein a second cell that supports communications of the second radio access technology is not activated based at least in part on refraining from transmitting the reconfiguration message.
  46. The apparatus of claim 36, wherein the means for calculating the amount of data comprises:
    means for calculating a first amount of data that is available for transmission from the UE to the base station, wherein the threshold amount of data is based at least in part on data transmissions from the UE to the base station.
  47. The apparatus of claim 46, further comprising:
    means for receiving a buffer status report from the UE, wherein the buffer status report indicates a total amount of data that is buffered for a set of logical channel groups, wherein the calculated amount of data is equivalent to the total amount of data.
  48. The apparatus of claim 36, wherein the means for calculating the amount of data comprises:
    means for calculating a second amount of data that is available for transmission from the base station to the UE, wherein the threshold amount of data is based at least in part on data transmissions from the base station to the UE.
  49. The apparatus of claim 48, wherein the calculated amount of data is based at least in part on data in a packet data convergence protocol layer that is available for transmission to the UE.
  50. The apparatus of claim 36, wherein the means for calculating the amount of data comprises:
    means for calculating the amount of data before, concurrently with, or after receiving the indication.
  51. The apparatus of claim 36, wherein the means for calculating the amount of data comprises:
    means for calculating the amount of data in response to receiving the indication.
  52. A non-transitory computer-readable medium storing code for wireless communication at a base station, the code comprising instructions executable by a processor to:
    receive, over a first cell that supports communications of a first radio access technology, an indication that a user equipment (UE) is capable of dual connectivity communications using the first radio access technology and a second radio access technology;
    calculate, for a set of upcoming transmissions, an amount of data that is available for communication between the base station and UE; and
    compare the calculated amount of data with a threshold amount of data, wherein transmission of a reconfiguration message to the UE triggering dual connectivity operation is based at least in part on the comparing.
  53. The non-transitory computer-readable medium of claim 52, wherein the instructions are further executable to:
    determine a value for the threshold amount of data based at least in part on a utilization of communication resources allocated to the first radio access technology.
  54. The non-transitory computer-readable medium of claim 52, wherein the instructions are further executable to:
    determine that the calculated amount of data satisfies the threshold amount of data based at least in part on the comparing;
    transmit the reconfiguration message to the UE based at least in part on the calculated amount of data satisfying the threshold amount of data; and
    activate, for communications with the UE, a second cell that supports communications of the second radio access technology based at least in part on transmitting the reconfiguration message.
  55. The non-transitory computer-readable medium of claim 52, wherein the instructions are further executable to:
    determine that the calculated amount of data fails to satisfy the threshold amount of data based at least in part on the comparing; and
    refrain from transmitting the reconfiguration message to the UE based at least in part on the calculated amount of data failing to satisfy the threshold amount of data, wherein a second cell that supports communications of the second radio access technology is not activated based at least in part on refraining from transmitting the reconfiguration message.
  56. The non-transitory computer-readable medium of claim 55, wherein the instructions are further executable to:
    calculate a second amount of data that is available for a second set of upcoming transmissions between the base station and the UE;
    compare the second amount of data with the threshold amount of data;
    transmit the reconfiguration message to the UE based at least in part on the calculated second amount of data satisfying the threshold amount of data; and
    activate, for communications with the UE, the second cell based at least in part on transmitting the reconfiguration message.
  57. The non-transitory computer-readable medium of claim 55, wherein the instructions are further executable to:
    determine a second threshold amount of data;
    compare the calculated amount of data with the second threshold amount of data;
    transmit the reconfiguration message to the UE based at least in part on the calculated amount of data satisfying the second threshold amount of data; and
    activate, for communications with the UE, the second cell based at least in part on transmitting the reconfiguration message.
  58. The non-transitory computer-readable medium of claim 52, wherein the instructions to calculate the amount of data are executable to:
    calculate a first amount of data that is available for transmission from the base station to the UE and a second amount of data that is available for transmission from the UE to the base station, wherein the threshold amount of data comprises a first threshold amount of data that is based at least in part on data transmissions from the base station to the UE and a second threshold amount of data that is based at least in part on data transmissions from the UE to the base station.
  59. The non-transitory computer-readable medium of claim 58, wherein the instructions are further executable to:
    determine that the first amount of data satisfies the first threshold amount of data, the second amount of data satisfies the second threshold amount of data, or both;
    transmit the reconfiguration message to the UE based at least in part on at least one of the first amount of data satisfying the first threshold amount of data or the second amount of data satisfying the second threshold amount of data; and
    activate, for communications with the UE, a second cell that supports communications of the second radio access technology based at least in part on transmitting the reconfiguration message.
  60. The non-transitory computer-readable medium of claim 58, wherein the instructions are further executable to:
    determine that the first amount of data satisfies the first threshold amount of data and the second amount of data satisfies the second threshold amount of data;
    transmit the reconfiguration message to the UE based at least in part on both the first amount of data satisfying the first threshold amount of data and the second amount of data satisfying the second threshold amount of data; and
    activate, for communications with the UE, a second cell that supports communications of the second radio access technology based at least in part on transmitting the reconfiguration message.
  61. The non-transitory computer-readable medium of claim 58, wherein the instructions are further executable to:
    determine that the first amount of data fails to satisfy the first threshold amount of data, the second amount of data fails to satisfy the second threshold amount of data, or both; and
    refrain from transmitting the reconfiguration message to the UE based at least in part on at least one of the first amount of data failing to satisfy the first threshold amount of data or the second amount of data failing to satisfy the second threshold amount of data, wherein a second cell that supports communications of the second radio access technology is not activated based at least in part on refraining from transmitting the reconfiguration message.
  62. The non-transitory computer-readable medium of claim 52, wherein the instructions to calculate the amount of data are executable to:
    calculate a first amount of data that is available for transmission from the UE to the base station, wherein the threshold amount of data is based at least in part on data transmissions from the UE to the base station.
  63. The non-transitory computer-readable medium of claim 62, wherein the instructions are further executable to:
    receive a buffer status report from the UE, wherein the buffer status report indicates a total amount of data that is buffered for a set of logical channel groups, wherein the calculated amount of data is equivalent to the total amount of data.
  64. The non-transitory computer-readable medium of claim 52, wherein the instructions to calculate the amount of data are executable to:
    calculate a second amount of data that is available for transmission from the base station to the UE, wherein the threshold amount of data is based at least in part on data transmissions from the base station to the UE.
  65. The non-transitory computer-readable medium of claim 64, wherein the calculated amount of data is based at least in part on data in a packet data convergence protocol layer that is available for transmission to the UE.
  66. The non-transitory computer-readable medium of claim 52, wherein the instructions to calculate the amount of data are executable to:
    calculate the amount of data before, concurrently with, or after receiving the indication.
  67. The non-transitory computer-readable medium of claim 52, wherein the instructions to calculate the amount of data are executable to:
    calculate the amount of data in response to receiving the indication.
PCT/CN2020/076182 2020-02-21 2020-02-21 Techniques for activating a secondary cell WO2021163997A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/076182 WO2021163997A1 (en) 2020-02-21 2020-02-21 Techniques for activating a secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/076182 WO2021163997A1 (en) 2020-02-21 2020-02-21 Techniques for activating a secondary cell

Publications (1)

Publication Number Publication Date
WO2021163997A1 true WO2021163997A1 (en) 2021-08-26

Family

ID=77390321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076182 WO2021163997A1 (en) 2020-02-21 2020-02-21 Techniques for activating a secondary cell

Country Status (1)

Country Link
WO (1) WO2021163997A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147380A1 (en) * 2022-01-28 2023-08-03 Qualcomm Incorporated Techniques for communicating expected data indication for network power savings
WO2024012548A1 (en) * 2022-07-15 2024-01-18 展讯通信(上海)有限公司 Uplink transmission method and apparatus, and computer readable storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105376801A (en) * 2014-08-25 2016-03-02 中兴通讯股份有限公司 uplink data transmission method and terminal
EP3116260A1 (en) * 2015-07-06 2017-01-11 Lg Electronics Inc. Method for triggering a buffer status reporting in dual connectivity and a device therefor
US20180375776A1 (en) * 2014-01-28 2018-12-27 Mediatek Inc. Buffer status report and logical channel prioritization for dual connectivity
CN110072245A (en) * 2019-03-22 2019-07-30 华为技术有限公司 A kind of data transmission method and device
CN110191461A (en) * 2019-06-14 2019-08-30 Oppo广东移动通信有限公司 Data transfer control method, device and electronic equipment
CN110612686A (en) * 2017-06-02 2019-12-24 摩托罗拉移动有限责任公司 Determining data available for transmission

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180375776A1 (en) * 2014-01-28 2018-12-27 Mediatek Inc. Buffer status report and logical channel prioritization for dual connectivity
CN105376801A (en) * 2014-08-25 2016-03-02 中兴通讯股份有限公司 uplink data transmission method and terminal
EP3116260A1 (en) * 2015-07-06 2017-01-11 Lg Electronics Inc. Method for triggering a buffer status reporting in dual connectivity and a device therefor
CN110612686A (en) * 2017-06-02 2019-12-24 摩托罗拉移动有限责任公司 Determining data available for transmission
CN110072245A (en) * 2019-03-22 2019-07-30 华为技术有限公司 A kind of data transmission method and device
CN110191461A (en) * 2019-06-14 2019-08-30 Oppo广东移动通信有限公司 Data transfer control method, device and electronic equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147380A1 (en) * 2022-01-28 2023-08-03 Qualcomm Incorporated Techniques for communicating expected data indication for network power savings
WO2024012548A1 (en) * 2022-07-15 2024-01-18 展讯通信(上海)有限公司 Uplink transmission method and apparatus, and computer readable storage medium

Similar Documents

Publication Publication Date Title
WO2021168848A1 (en) Techniques for selecting and reselecting sidelink relay
US11382098B2 (en) Sidelink timing control
US11882588B2 (en) Scheduling sidelink transmission with relay
US20210368407A1 (en) Network triggered handover
US20220338188A1 (en) User equipment (ue) capability frequency band combination prioritization
US20240007922A1 (en) Measurement reporting and handover procedures between relay paths
US11363656B2 (en) Techniques for indicating full configuration to a secondary node in dual connectivity
US20210410013A1 (en) Indication of operating configuration priorities
WO2021163997A1 (en) Techniques for activating a secondary cell
US11711826B2 (en) On-demand multicast control channel messages
US20230217290A1 (en) Sidelink interference monitoring for full-duplex and half-duplex operation
WO2021203282A1 (en) Slot format for intra-frequency cross link interference measurement
WO2021026802A1 (en) Timing advance adjustment for downlink carrier aggregation
US11653402B2 (en) User equipment (UE) assisted termination selection for non-standalone or dual connectivity
US20230247511A1 (en) Cell selection techniques for dual-connectivity operation
US11910434B2 (en) Sidelink channel access timeline techniques for wireless communications systems
US20230247461A1 (en) Measurement reporting timing adjustments
US20220377832A1 (en) Method and apparatus for configuring connected mode discontinuous reception (cdrx)
WO2021195822A1 (en) Techniques for mitigating endc device data stall
US11770861B2 (en) Two-step random access procedure for a backhaul node
WO2022147753A1 (en) Techniques for selecting a slice-based random access procedure
US20230262754A1 (en) Coverage enhancement for contention free random access
US20210345232A1 (en) Physical cell identifier limit configuration
WO2022011530A1 (en) Radio access technology measurement periodicity
WO2021203375A1 (en) Connectivity with non-standalone cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919474

Country of ref document: EP

Kind code of ref document: A1