WO2021163899A1 - 物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统 - Google Patents

物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统 Download PDF

Info

Publication number
WO2021163899A1
WO2021163899A1 PCT/CN2020/075772 CN2020075772W WO2021163899A1 WO 2021163899 A1 WO2021163899 A1 WO 2021163899A1 CN 2020075772 W CN2020075772 W CN 2020075772W WO 2021163899 A1 WO2021163899 A1 WO 2021163899A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
precoders
pusch
processor
precoder
Prior art date
Application number
PCT/CN2020/075772
Other languages
English (en)
French (fr)
Inventor
王明哲
纪刘榴
任翔
杭海存
施弘哲
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20920381.9A priority Critical patent/EP4096111A4/en
Priority to PCT/CN2020/075772 priority patent/WO2021163899A1/zh
Priority to CN202080097051.4A priority patent/CN115152158A/zh
Publication of WO2021163899A1 publication Critical patent/WO2021163899A1/zh
Priority to US17/889,674 priority patent/US20220417965A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • This application relates to the field of communication technology, and in particular to a method for transmitting data on a physical uplink shared channel, a method for transmitting data, a terminal, a network device, and a chip system.
  • ultra-reliable low-latency communication URLLC
  • bit the transmission
  • the terminal can transmit a maximum of 4 data streams, and supports two types of transmission modes: codebook-based (CB) uplink transmission mode (UL transmission scheme) and the uplink transmission scheme (UL transmission scheme) based on non-codebook (non-codebook based, NCB).
  • CB codebook-based uplink transmission mode
  • NCB non-codebook based, NCB
  • a slot aggregation (slot aggregation) transmission method is supported.
  • this time slot aggregation transmission method must ensure that all time slots (slots) use the same precoder, and cannot perform intra-slot (ie mini-slot-based) transmission. Therefore, if the aggregated slot is very large, the channel conditions If there is a change in the aggregated multiple slots or the position of the terminal has moved, then a configured precoder may no longer be applicable in the aggregated multiple slots, which will reduce the performance of data interpretation received by the network device.
  • the uplink performance of the terminal cannot be guaranteed, especially the performance of the cell edge terminal, and the uplink coverage cannot be improved.
  • This application discloses a method for transmitting data on a physical uplink shared channel, a method for transmitting data, a terminal, a network device, and a chip system.
  • this application provides a method for transmitting data on a physical uplink shared channel PUSCH, which includes: a terminal receiving indication information issued by multiple network devices, where the indication information is used to indicate multiple precoding precoders; The terminal determines multiple precoders according to the instruction information, and uses the multiple precoders to repeatedly send PUSCHs; among them, at least two PUSCHs use different precoders.
  • different precoders can be used for PUSCH transmission data.
  • the multiple precoders indicated by the instruction information may be issued to the terminal by a network device.
  • the terminal may use different precoders when the channel conditions change to ensure transmission. The decoding performance enhances the reliability of uplink transmission.
  • the indication information indicates a plurality of precoders, and the indication information configures different quasi-colocation (QCL) relationships or different transmission configuration indication (Transmission Configuration Indication, TCI) states. That is, the different precoders correspond to different network devices.
  • the instruction information indicating multiple precoders can be delivered to the terminal through one network device, or can be delivered to the terminal separately through multiple network devices. In this way, the terminal can use different precoders to repeatedly send PUSCH to different network devices.
  • the uplink PUSCH repeated transmission is different from the existing time slot aggregation transmission method which can only use a single same precoder.
  • the PUSCH repeated transmission in the multi-station scenario can use different precoders to obtain diversity gain. And when the terminal moves to a different cell coverage area, the decoding performance of the transmission can also be guaranteed, and the reliability of the uplink transmission is enhanced.
  • the terminal before the terminal receives the indication information, it further includes the following steps: the terminal first receives multiple channel state reference signals (Channel State Information Reference Signal, CSI-RS) issued by multiple network devices. ) Or multiple CSI-RSs issued by a network device, and then the terminal performs channel measurement on the multiple CSI-RSs to obtain multiple channel matrices. At this time, the terminal needs to select sounding reference signal precoding (Sounding Reference Signal Precoding) according to the multiple channel matrices. reference signal precoder, SRS precoder), and then the terminal configures multiple sounding reference signal resources (Sounding reference signal resource, SRS resource) according to multiple SRS precoders, and then sends a sounding reference signal (Sounding reference signal, SRS).
  • Sounding reference signal precoding Sounding Reference Signal Precoding
  • the terminal performs measurement based on the CSI-RS issued by the network device to obtain an SRS precoder
  • this technical solution can perform channel measurement based on multiple CSI-RS issued by the network device to obtain multiple SRS
  • the precoder is used by the network device to select and deliver to the terminal, thereby providing a basis for the terminal to use different precoders to send PUSCH.
  • the terminal configures multiple SRS resources based on channel measurement of multiple CSI-RSs, that is, multiple SRS resources correspond to multiple CSI-RSs respectively.
  • the multiple precoders received by the terminal are selected by the network device from multiple SRS precoders and are indicated by the sounding reference signal resource indicator (SRI) field. It can be indicated jointly by one SRI in the SRI domain, that is, multiple precoders selected by the network device are indicated by one SRI; it can also be independently indicated by multiple SRIs in the SRI domain, that is, different precoders are indicated by different SRIs.
  • SRI sounding reference signal resource indicator
  • the multiple precoders received by the terminal may also be indicated by multiple TPMIs in the transmission precoding matrix indicator (TPMI) field, where each TPMI corresponds to one precoder; or the terminal
  • the multiple received precoders may also be respectively indicated by a TPMI in the TPMI field, and each TPMI corresponds to multiple precoders, that is, the multiple precoders indicated by the TPMI field are determined respectively according to different channel matrices.
  • the TPMI field includes multiple TPMI implementations, such as increasing the number of bits in the TPMI field so that it can indicate multiple TPMIs at the same time; or using the reserved index in the TPMI table and making it Multiple TPMIs can be indicated; or a new TPMI table can be used to include indexes that indicate multiple TPMIs.
  • the multiple SRS resources configured by the terminal may be multiple SRS resources in a sounding reference signal resource set (Sounding reference signal resource set, SRS resource set), or may be multiple SRS resource sets. Multiple SRS resources.
  • a part of the SRS resource set of the SRS resource set can correspond to a CSI-RS received by the terminal; and another part of the SRS resource can correspond to another CSI-RS received by the terminal; this method is beneficial Maximize the use of SRS resource resources.
  • all SRS resources in one SRS resource set correspond to one CSI-RS, and all SRS resources in the other SRS resource set correspond to another CSI-RS; this method is beneficial to the existing protocol Maintain compatibility; or a part of the SRS resource in an SRS resource set corresponds to one CSI-RS, and the other part of the SRS resource corresponds to another CSI-RS.
  • the terminal may use the same time domain resource to send PUSCH, or use different time domain resources to send PUSCH, that is, the terminal may send at different time domain locations, and different time domain locations may be different The slot, continuous slot or different time domain symbols on the same slot;
  • the terminal may use the same port to transmit PUSCH, or use different ports to transmit PUSCH, where the port may be an SRS port that transmits SRS or a port that transmits PUSCH;
  • the terminal may use the same frequency domain resource to transmit the PUSCH, or use different frequency domain resources to transmit the PUSCH, and the frequency domain resources may be continuous or discontinuous.
  • this application also provides a method for transmitting data on a physical uplink shared channel PUSCH, including:
  • the terminal After receiving multiple CSI-RSs, the terminal uses multiple CSI-RSs to perform joint channel measurement to obtain the SRS precoder;
  • the terminal performs joint channel measurement on multiple CSI-RSs, that is, the multiple channel matrices are regarded as a joint channel matrix that can be combined, and then the joint channel matrix is subjected to singular value decomposition (SVD) to obtain the joint channel matrix.
  • the feature vector of the matrix the terminal selects multiple candidate SRS precoders according to the feature vector and configures multiple SRS resources, and then sends the SRS carrying the multiple SRS precoders to the network device; finally, the terminal sends the SRS according to the network device
  • the indication information instructs one or more precoders to select the precoder to send the PUSCH.
  • multiple CSI-RSs are configured with different QCL relationships, that is, multiple CSI-RSs are CSI-RSs from different network devices.
  • the SRS precoder used for detection in the uplink is determined by the joint channel matrix, that is, the terminal selects the SRS precoder based on the joint matrix of multiple transmission channels, based on the reciprocity of the uplink and downlink channels,
  • the terminal sends the SRS precoder carried on the SRS to the network equipment, corresponding to the channel information obtained by the terminal according to the joint channel measurement, which is equivalent to increasing the number of receiving antennas; at the same time, due to the low correlation of the joint channel matrix, it also reduces the number of MIMO antennas.
  • the demodulation interference further ensures the performance gain of multiple antennas.
  • the method realizes the uplink PUSCH joint reception in the multi-station scenario, improves the uplink decoding performance through the combination of the uplink received signals, and enhances the transmission reliability.
  • the terminal configures the multiple SRS resources respectively according to one SRS precoder obtained by the multiple CSI-RS joint channel measurement, that is, the multiple SRS resources are respectively corresponding to the multiple CSI-RSs.
  • the multiple SRS resources configured by the terminal may be multiple SRS resources in one SRS resource set, or multiple SRS resources in multiple SRS resource sets.
  • the terminal may repeatedly send the PUSCH.
  • at least two of the multiple precoders received by the terminal are different; that is, the precoders used by the at least two PUSCHs sent by the terminal are different.
  • the terminal performs joint channel measurement on multiple CSI-RSs to obtain the SRS precoder, so as to provide conditions for the network equipment to receive multiple PUSCHs jointly, and multiple different PUSCHs sent to different network equipment can be Using different precoders for repeated transmission can further enhance the reliability of uplink transmission.
  • the multiple precoders received by the terminal are selected by the network device from multiple SRS precoders and indicated by the SRI field, where the multiple precoders may be jointly indicated by one SRI in the SRI field, That is, one SRI indicates all selected precoders; it may also be independently indicated by multiple SRIs in the SRI domain, that is, different SRIs are used to indicate different precoders selected according to different CSI-RSs.
  • the terminal may use the same time domain resource to send PUSCH, or use different time domain resources to send PUSCH, that is, the terminal may send at different time domain locations, and different time domain locations may be different The slot, continuous slot or different time domain symbols on the same slot;
  • the terminal may use the same port to transmit PUSCH, or use different ports to transmit PUSCH, where the port may be an SRS port that transmits SRS or a port that transmits PUSCH;
  • the terminal may use the same frequency domain resource to transmit the PUSCH, or use different frequency domain resources to transmit the PUSCH, and the frequency domain resources may be continuous or discontinuous.
  • this application also provides a method for transmitting data, including:
  • the network device issues a CSI-RS to the terminal, and the network device receives multiple SRSs.
  • the multiple SRS resources that send the multiple SRSs correspond to the multiple SRS precoders obtained by channel measurement based on the multiple CSI-RSs, and then the network device Select a suitable precoder from multiple SRS precoders, and finally send indication information indicating multiple precoders.
  • the network device may send multiple CSI-RSs to the terminal, the multiple CSI-RSs are configured with the same QCL relationship, and an indication indicating multiple precoders sent to the terminal
  • the information is configured to the same QCL relationship or TCI state, and at least two precoders are different.
  • a single same precoder can be used. Repeated transmission of PUSCH in a single station scenario can also be used Different precoders can also guarantee the decoding performance of transmission when the channel conditions change, which enhances the reliability of uplink transmission in a single-site scenario.
  • the CSI-RS sent by the network device and the CSI-RS sent by other network devices are configured with different QCL relationships, that is, the multiple CSI-RS received by the terminal are from different network devices. CSI-RS.
  • the network device sends instructions to the terminal to indicate multiple precoders, so that the terminal can use multiple different precoders to repeatedly send the PUSCH, realizing the repeated transmission of the uplink PUSCH in the multi-station scenario, which is combined with the existing time slot transmission mode Only a single same precoder can be used in the multi-station scenario.
  • the repeated transmission of PUSCH in the multi-station scenario can use different precoders, so that when the terminal moves to a different cell coverage, the transmission decoding performance can be guaranteed, and the uplink transmission performance can be enhanced. reliability.
  • the indication information that indicates multiple precoders issued by the network device is the SRI field, where multiple precoders can be jointly indicated by one SRI in the SRI field, that is, all the selected precoders are indicated by one SRI. ; It can also be independently indicated by multiple SRIs in the SRI domain, that is, different SRIs are used to indicate different precoders selected according to different CSI-RSs.
  • the network device can also combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving uplink translation. The probability that the code is correct.
  • this application also provides a data transmission method, including:
  • the network device receives multiple SRSs sent by the terminal, selects multiple precoders according to the channel status according to the uplink channel state measured by the multiple SRSs, and sends indication information indicating the multiple precoders.
  • the network device sends instruction information indicating multiple precoders to the terminal, and the instruction information configures different QCL relationships or different TCI states, that is, the different precoders correspond to different network devices, so It enables the terminal to use multiple different precoders to repeatedly send PUSCH to different network devices, realizing the repeated transmission of the uplink PUSCH in the multi-station scenario, which is different from the existing time slot aggregation transmission mode that can only use a single same precoder. , Thereby ensuring the decoding performance of the transmission and enhancing the reliability of the uplink transmission.
  • the network device sends the indication information indicating multiple precoders as the TPMI field, and the TPMI field contains multiple TPMIs, where each TPMI corresponds to one precoder, or the multiple precoders are assigned by the TPMI field.
  • One TPMI is separately indicated, wherein each TPMI corresponds to multiple precoders; wherein, the multiple precoders indicated by the TPMI field are determined respectively according to different channel matrices.
  • the TPMI field includes multiple TPMI implementations, such as increasing the number of bits in the TPMI field so that it can indicate multiple TPMIs at the same time; or using the reserved index in the TPMI table and making it Multiple TPMIs can be indicated; or a new TPMI table can be used to include indexes that indicate multiple TPMIs.
  • the network device may also receive multiple repeatedly sent PUSCHs, where at least two PUSCHs use different precoders.
  • the network device combines the soft information of the multiple PUSCHs to demodulate multiple PUSCHs at the same time, and combines and decodes the demodulated soft information, thereby improving the accuracy of uplink decoding.
  • the probability is the probability.
  • this application also provides a data transmission method: a network device sends a CSI-RS to a terminal, where the CSI-RS sent by the network device and the CSI-RS sent by other network devices have a different QCL relationship, which means CSI-RS from different network devices; the network device receives multiple SRS, and sends multiple SRS resources of the multiple SRS corresponding to the SRS precoder obtained based on the joint measurement of the CSI-RS, and then the network device sends the data according to the terminal For multiple SRS, select one or more precoders from the SRS precoder, and then send indication information indicating one or more precoders to the terminal.
  • the SRS precoder used for detection in the uplink is determined by the joint channel matrix, that is, the terminal selects the SRS precoder based on the joint matrix of multiple transmission channels, based on the reciprocity of the uplink and downlink channels.
  • the terminal sends the SRS precoder carried on the SRS to the network equipment, corresponding to the channel information obtained by the terminal according to the joint channel measurement, which is equivalent to increasing the number of receiving antennas; at the same time, due to the low correlation of the joint channel matrix, the MIMO antenna is also reduced
  • the inter-demodulation interference further ensures the performance gain of multiple antennas.
  • the method realizes the uplink PUSCH joint reception in the multi-station scenario, improves the uplink decoding performance through the combination of the uplink received signals, and enhances the transmission reliability.
  • the indication information that indicates multiple precoders issued by the network device is an SRI field, where the multiple precoders may be jointly indicated by one SRI in the SRI field, that is, through one SRI indication All selected precoders; there may also be multiple SRI independent indications in the SRI field, that is, different SRIs are used to indicate different precoders selected according to different CSI-RSs.
  • the terminal performs joint channel measurement on multiple CSI-RSs to obtain the SRS precoder, so as to provide conditions for the network equipment to receive multiple PUSCHs jointly, and multiple different PUSCHs sent to different network equipment can be Using different precoders for repeated transmission can further enhance the reliability of uplink transmission.
  • the network device can receive the PUSCH sent by the terminal using the same time domain resource, or the PUSCH sent by the terminal using different time domain resources, that is, the network device can receive the PUSCH at different time domain locations. , Where different time domain positions can be different slots, continuous slots or different time domain symbols on the same slot;
  • the network device can receive the PUSCH sent by the terminal using the same port, or the PUSCH sent by the terminal using different ports, where the port can be the SRS port that sends the SRS, or it can be the PUSCH sent by the terminal.
  • the port can be the SRS port that sends the SRS, or it can be the PUSCH sent by the terminal.
  • the network device can receive the PUSCH sent by the terminal using the same frequency domain resource, or the PUSCH sent by the terminal using different frequency domain resources, and the frequency domain resources can be continuous or discontinuous. of.
  • the network device also combines multiple received PUSCHs, and demodulates the combined PUSCH to obtain soft information for decoding.
  • multiple PUSCHs received by the network device use the same precoder
  • At least two of the multiple precoders indicated by the indication information are different; the at least two PUSCHs received by the network device use different precoders.
  • this application also provides a data transmission method, including: a network device receives multiple SRSs sent by a terminal, performs joint channel measurement based on the multiple SRSs, and selects one or more suitable precoders , And then send instructions to the terminal indicating one or more precoders.
  • the network device performs joint channel measurement based on multiple SRSs to obtain the uplink joint channel state, then selects the appropriate precoder, and sends indication information to the terminal, which configures different QCL relationships Or different TCI states, that is, the instruction information indicating multiple precoders can be delivered to the terminal through one network device, or can be delivered to the terminal separately through multiple network devices. That is, the PUSCH joint reception in the multi-station scenario is realized, and the uplink decoding performance is improved through the combination of the uplink received signals, and the transmission reliability is enhanced.
  • the network device is also used to combine multiple received PUSCHs, and demodulate the combined PUSCH to obtain soft information for decoding.
  • multiple PUSCHs received by the network device use the same precoder
  • At least two of the multiple precoders indicated by the indication information are different; the at least two PUSCHs received by the network device use different precoders.
  • the present application also provides a terminal, which has some or all of the functions of the terminal in the method example described in the first aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the terminal may include a processing unit and a communication unit, and the processing unit is configured to support the terminal to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the terminal and other devices.
  • the terminal may also include a storage unit, which is configured to be coupled with the processing unit and the sending unit, and stores necessary program instructions and data for the terminal.
  • the terminal includes:
  • the communication unit is configured to receive instruction information indicating multiple precoders
  • a processing unit configured to determine the multiple precoders based on the indication information
  • the communication unit is further configured to repeatedly send PUSCH based on the precoder determined by the processing unit;
  • At least two precoders used by the PUSCH are different.
  • the processing unit may be a processor
  • the communication unit may be a transceiver
  • the storage unit may be a memory
  • the terminal includes:
  • Transceiver for receiving indication information indicating multiple precoders
  • a processor configured to determine the multiple precoders based on the indication information
  • the transceiver is further configured to repeatedly send PUSCH based on the precoder determined by the processor; wherein, at least two PUSCHs use different precoders.
  • the indication information indicates multiple precoders, and the indication information configures different QCL relationships or different TCI states, that is, the different precoders correspond to different network devices.
  • the transceiver before the transceiver receives the indication information, the transceiver first receives multiple CSI-RSs issued by multiple network devices or multiple CSI-RSs issued by one network device, and then The processor performs channel measurement on multiple CSI-RSs to obtain multiple channel matrices. At this time, the processor needs to select SRS precoders according to the multiple channel matrices, and then configure multiple SRS resources according to the multiple SRS precoders and send multiple channels through the transceiver. SRS.
  • the multiple SRS resources are configured by the processor according to the SRS precoders measured by the multiple CSI-RS channels, that is, the multiple SRS resources are respectively corresponding to the multiple CSI-RSs .
  • the multiple precoders received by the transceiver are selected by the network device from multiple SRS precoders and indicated by the SRI domain, where the multiple precoders may be jointly indicated by one SRI in the SRI domain. That is, one SRI is used to indicate all multiple precoders selected by the network device; it can also be independently indicated by multiple SRIs in the SRI field, that is, different precoders are indicated through different SRIs.
  • the multiple precoders received by the transceiver may also be indicated by multiple TPMIs in the TPMI domain, where each TPMI corresponds to one precoder; or, the multiple precoders are represented by one of the TPMI domains.
  • the TPMI is indicated separately, where each TPMI corresponds to multiple precoders, that is, the multiple precoders indicated by the TPMI domain are respectively determined according to different channel matrices.
  • the TPMI field includes multiple TPMI implementations, such as increasing the number of bits in the TPMI field so that it can indicate multiple TPMIs at the same time; or using the reserved index in the TPMI table and making it Multiple TPMIs can be indicated; or a new TPMI table can be used to include indexes that indicate multiple TPMIs.
  • the multiple SRS resources configured by the processor may be multiple SRS resources in one SRS resource set, or multiple SRS resources in multiple SRS resource sets.
  • the transceiver can use the same time domain resource to transmit PUSCH, or use different time domain resources to transmit PUSCH, that is, the transceiver can transmit at different time domain locations, where different time domain locations can be Different slots, consecutive slots, or different time domain symbols on the same slot;
  • the transceiver can use the same port to send PUSCH, or use different ports to send PUSCH, where the port can be the SRS port for sending SRS or the port for sending PUSCH;
  • the transceiver may use the same frequency domain resource to transmit the PUSCH, or use different frequency domain resources to transmit the PUSCH, and the frequency domain resources may be continuous or discontinuous.
  • the processor can also combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving uplink translation. The probability that the code is correct.
  • the present application also provides a terminal, which has some or all of the functions of the terminal in the method example described in the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the terminal may include a processing unit and a communication unit, and the processing unit is configured to support the terminal to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the terminal and other devices.
  • the terminal may also include a storage unit, which is configured to be coupled with the processing unit and the sending unit, and stores necessary program instructions and data for the terminal.
  • the terminal includes:
  • the communication unit is used to receive multiple CSI-RS;
  • the processing unit is configured to perform joint channel measurement based on the received multiple CSI-RS to obtain an SRS precoder
  • the processing unit is further configured to configure multiple SRS resources based on the SRS precoder;
  • the communication unit is further configured to send multiple SRS on the multiple SRS resources;
  • the communication unit is further configured to receive indication information indicating one or more precoders
  • the processing unit is further configured to determine one or more precoders based on the indication information
  • the communication unit is further configured to send PUSCH based on the one or more precoders determined by the processing unit.
  • the processing unit may be a processor
  • the communication unit may be a transceiver
  • the storage unit may be a memory
  • the terminal includes:
  • Transceiver for receiving multiple CSI-RS
  • the processor is used to perform joint channel measurement based on the received multiple CSI-RS to obtain an SRS precoder
  • the processor is further configured to configure multiple SRS resources based on the SRS precoder;
  • the transceiver is further configured to send multiple SRS on the multiple SRS resources;
  • the transceiver is also used to receive indication information indicating one or more precoders
  • the processor is further configured to determine one or more precoders based on the instruction information
  • the transceiver is further configured to send PUSCH based on the one or more precoders determined by the processor.
  • multiple CSI-RSs are configured with different QCL relationships, that is, multiple CSI-RSs are CSI-RSs from different network devices.
  • the processor configures the multiple SRS resources respectively according to one SRS precoder obtained by the multiple CSI-RS joint channel measurements, that is, the multiple SRS resources correspond to the multiple CSI-RSs respectively .
  • the multiple SRS resources configured by the processor may be multiple SRS resources in one SRS resource set, or multiple SRS resources in multiple SRS resource sets.
  • at least two of the multiple precoders received by the transceiver are different; that is, the precoders used by the at least two PUSCHs sent by the transceiver are different.
  • the processor performs joint channel measurement on multiple CSI-RSs to obtain the SRS precoder, thereby providing conditions for the network device to receive multiple PUSCHs jointly, multiple different PUSCHs sent to different network devices Different precoders can be used for repeated transmission, which can further enhance the reliability of uplink transmission.
  • the multiple precoders received by the transceiver are selected by the network device from multiple SRS precoders and indicated by the SRI domain, where the multiple precoders may be jointly indicated by one SRI in the SRI domain , That is, one SRI indicates all selected precoders; it can also be independently indicated by multiple SRIs in the SRI field, that is, different SRIs are used to indicate different precoders selected according to different CSI-RSs.
  • the transceiver can use the same time domain resource to send PUSCH, or use different time domain resources to send PUSCH, that is, the terminal can send at different time domain locations, and the different time domain locations can be Different slots, consecutive slots or different time domain symbols on the same slot;
  • the transceiver may use the same port to transmit PUSCH, or use different ports to transmit PUSCH, where the port may be an SRS port that transmits SRS or a port that transmits PUSCH;
  • the transceiver may use the same frequency domain resource to transmit the PUSCH, or use different frequency domain resources to transmit the PUSCH, and the frequency domain resources may be continuous or discontinuous.
  • the processor can also combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving uplink translation. The probability that the code is correct.
  • this application also provides a network device.
  • the network device has some or all of the functions of the network device in the method example described in the third aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the network device may include a processing unit and a communication unit, and the communication unit is configured to support the network device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the network device and other devices.
  • the network device may further include a storage unit, which is configured to be coupled with the acquisition unit and the sending unit, and stores the program instructions and data necessary for the network device.
  • the network device includes:
  • the communication unit is used to send multiple CSI-RS
  • the communication unit is configured to receive multiple SRSs, and the multiple SRSs correspond to multiple SRS precoders obtained based on channel measurement of the CSI-RS; that is, the multiple SRSs correspond to multiple SRS precoders
  • the multiple SRSs are obtained based on channel measurement of the CSI-RS.
  • a processing unit configured to select multiple precoders from the multiple SRS precoders based on the SRS
  • the communication unit is configured to send instruction information indicating a plurality of the precoders.
  • the communication unit may be a transceiver
  • the storage unit may be a memory
  • the processing unit may be a processor.
  • the network device includes:
  • Transceiver used to send multiple CSI-RS
  • the transceiver is configured to receive multiple SRSs, and the multiple SRSs correspond to multiple SRS precoders obtained based on channel measurement of the CSI-RS; that is, the multiple SRSs correspond to multiple SRS precoders The multiple SRSs are obtained based on channel measurement of the CSI-RS.
  • a processor configured to select multiple precoders from the multiple SRS precoders based on the SRS;
  • the transceiver is configured to send indication information indicating multiple precoders.
  • multiple CSI-RSs are configured with different QCL relationships, that is, multiple CSI-RSs are CSI-RSs from different network devices.
  • the indication information issued by the transceiver indicating multiple precoders is the SRI field, where multiple precoders can be jointly indicated by one SRI in the SRI field, that is, all the selected precoders are indicated by one SRI. ; It can also be independently indicated by multiple SRIs in the SRI domain, that is, different SRIs are used to indicate different precoders selected according to different CSI-RSs.
  • the transceiver may also receive multiple repeatedly transmitted PUSCHs, where at least two PUSCHs use different precoders.
  • the processor is also used to combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving the uplink Probability of correct decoding.
  • this application also provides a network device.
  • the network device has some or all of the functions of the network device in the method example described in the fourth aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the network device may include a processing unit and a communication unit, and the communication unit is configured to support the network device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the network device and other devices.
  • the network device may further include a storage unit, which is configured to be coupled with the acquisition unit and the sending unit, and stores the program instructions and data necessary for the network device.
  • the network device includes:
  • the processing unit is configured to obtain an uplink channel state based on the received multiple SRS measurements, and is configured to select multiple precoders based on the uplink channel state.
  • the communication unit is configured to send indication information indicating the multiple precoders.
  • the communication unit may be a transceiver
  • the storage unit may be a memory
  • the processing unit may be a processor
  • the network device includes:
  • Transceiver used to receive multiple SRS
  • the processor is configured to obtain an uplink channel state based on the received multiple SRS measurements, and is configured to select multiple precoders based on the uplink channel state.
  • the transceiver is configured to send indication information indicating the multiple precoders.
  • the instruction information sent by the network device and the instruction information sent by other network devices are configured with different QCL relationships or different TCI states, respectively, which are used to indirectly indicate that the different precoders correspond to different network devices.
  • the transceiver sends the indication information indicating multiple precoders as the TPMI domain, and the TPMI domain contains multiple TPMIs, where each TPMI corresponds to one precoder, or the multiple precoders are assigned by the TPMI domain.
  • One TPMI is separately indicated, wherein each TPMI corresponds to multiple precoders; wherein, the multiple precoders indicated by the TPMI domain are respectively determined according to different channel matrices.
  • the TPMI field includes multiple TPMI implementations, such as increasing the number of bits in the TPMI field so that it can indicate multiple TPMIs at the same time; or using the reserved index in the TPMI table and making it Multiple TPMIs can be indicated; or a new TPMI table can be used to include indexes that indicate multiple TPMIs.
  • the network device may also receive multiple repeatedly sent PUSCHs, where at least two PUSCHs use different precoders.
  • the processor combines the soft information of the multiple PUSCHs to simultaneously demodulate the multiple PUSCHs, and combines and decodes the demodulated soft information, thereby improving the accuracy of uplink decoding.
  • the probability is the probability.
  • this application also provides a network device.
  • the network device has part or all of the functions of the network device in the method example described in the fifth aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the network device may include a processing unit and a communication unit, and the communication unit is configured to support the network device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the network device and other devices.
  • the network device may further include a storage unit, which is configured to be coupled with the acquisition unit and the sending unit, and stores the program instructions and data necessary for the network device.
  • the network device includes:
  • the communication unit is used to send CSI-RS
  • the communication unit is configured to receive multiple SRSs, and the multiple SRSs correspond to the SRS precoder obtained by performing joint channel measurement on the CSI-RS;
  • a processing unit configured to select one or more SRS precoders from the multiple SRS precoders based on the multiple SRS;
  • the communication unit is configured to send indication information indicating the one or more SRS precoders.
  • the communication unit may be a transceiver
  • the storage unit may be a memory
  • the processing unit may be a processor.
  • the network device includes:
  • Transceiver used to send CSI-RS
  • the transceiver is configured to receive multiple SRSs, and the multiple SRSs correspond to an SRS precoder obtained based on joint channel measurement of the CSI-RS;
  • the processor is configured to select one or more precoders from the multiple SRS precoders based on the multiple SRS.
  • the transceiver is configured to send indication information indicating the one or more precoders.
  • multiple CSI-RSs are configured with different QCL relationships, indicating CSI-RSs from different network devices.
  • the indication information that indicates multiple precoders issued by the transceiver is an SRI field, where the multiple precoders may be jointly indicated by one SRI in the SRI field, that is, through one SRI indication All selected precoders; there may also be multiple SRI independent indications in the SRI field, that is, different SRIs are used to indicate different precoders selected according to different CSI-RSs.
  • At least two of the multiple precoders received by the transceiver are different; the at least two PUSCHs sent by the terminal use different precoders.
  • the processor performs joint channel measurement on multiple CSI-RSs to obtain the SRS precoder, thereby providing conditions for the processor to jointly receive multiple PUSCHs, and multiple different PUSCHs sent to different processors
  • Different precoders can be used for repeated transmission, which can further enhance the reliability of uplink transmission.
  • the transceiver can receive the PUSCH sent by the terminal using the same time domain resource, and it can also receive the PUSCH sent by the terminal using different time domain resources, that is, the transceiver can receive at different time domain locations.
  • different time domain positions can be different slots, continuous slots or different time domain symbols on the same slot;
  • the transceiver can either receive the PUSCH sent by the terminal using the same port, or the PUSCH sent by the terminal using different ports, where the port can be the SRS port that sends the SRS, or it can be the PUSCH that sends the SRS. Port
  • the transceiver may receive PUSCH sent by the terminal using the same frequency domain resource, or PUSCH sent by the terminal using different frequency domain resources, and the frequency domain resources may be continuous or discontinuous of.
  • the transceiver also combines multiple received PUSCHs, and demodulates the combined PUSCH to obtain soft information for decoding.
  • multiple PUSCHs received by the transceiver use the same precoder
  • At least two of the multiple precoders indicated by the indication information are different; the at least two PUSCHs received by the transceiver use different precoders.
  • this application also provides a network device.
  • the network device has some or all of the functions of the network device in the method example described in the sixth aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the structure of the network device may include a processing unit and a communication unit, and the communication unit is configured to support the network device to perform corresponding functions in the foregoing method.
  • the communication unit is used to support communication between the network device and other devices.
  • the network device may further include a storage unit, which is configured to be coupled with the acquisition unit and the sending unit, and stores the program instructions and data necessary for the network device.
  • the network device includes:
  • a processing unit configured to perform joint channel measurement based on the multiple SRS
  • the processing unit is configured to select the one or more precoders based on the joint channel measurement result
  • the communication unit is configured to send indication information indicating the one or more precoders.
  • the communication unit may be a transceiver
  • the storage unit may be a memory
  • the processing unit may be a processor.
  • the network device includes:
  • Transceiver used to receive multiple SRS
  • a processor configured to perform joint channel measurement based on the multiple SRS
  • the processor is configured to select the one or more precoders based on the result of the joint channel measurement
  • the transceiver is configured to send indication information indicating the one or more precoders.
  • the processor is based on the uplink joint channel state obtained by joint channel measurement of multiple SRSs, then selects a suitable precoder, and sends indication information to the terminal.
  • the indication information is configured with different QCL relationships or different QCL relationships.
  • the TCI state that is, the instruction information indicating multiple precoders can be delivered to the terminal through one interface, or can be delivered to the terminal separately through multiple interfaces.
  • At least two of the multiple precoders received by the transceiver are different.
  • the processor can also combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving uplink translation. The probability that the code is correct.
  • the present application provides a chip system that includes a processor and an interface, and is used to support the terminal to implement the functions involved in the first aspect, for example, to determine or process the data and information involved in the above method At least one of them.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the chip system includes: at least one processor and an interface
  • Interface for inputting indication information indicating multiple precoding precoders
  • a processor configured to determine the multiple precoders based on the indication information
  • the interface is further configured to output the repeatedly transmitted physical uplink shared channel PUSCH based on the multiple precoders determined by the processor; wherein, at least two PUSCHs use different precoders.
  • the indication information indicates multiple precoders, and the indication information configures different QCL relationships or different TCI states, that is, the different precoders correspond to different network devices.
  • the method before the interface inputs the indication information, the method further includes the following steps: the interface first inputs multiple CSI-RSs issued by multiple network devices or multiple CSI-RSs issued by one network device, Then the processor performs channel measurement on multiple CSI-RSs to obtain multiple channel matrices. At this time, the processor needs to select SRS precoders according to the multiple channel matrices, and then the processor configures multiple SRS resources according to the multiple SRS precoders and sends multiple channels. SRS.
  • the multiple SRS resources are configured by the processor according to the SRS precoders measured by the multiple CSI-RS channels, that is, the multiple SRS resources are respectively corresponding to the multiple CSI-RSs .
  • the multiple precoders input from the interface are selected by the network device from multiple SRS precoders and indicated by the SRI field, where the multiple precoders may be jointly indicated by one SRI in the SRI field, That is, one SRI is used to indicate all multiple precoders selected by the network device; it can also be independently indicated by multiple SRIs in the SRI domain, that is, different precoders are indicated by different SRIs.
  • the multiple precoders input from the interface may also be indicated by multiple TPMIs in the TPMI domain, where each TPMI corresponds to one precoder; or, the multiple precoders are represented by one TPMI in the TPMI domain.
  • the TPMI field includes multiple TPMI implementations, such as increasing the number of bits in the TPMI field so that it can indicate multiple TPMIs at the same time; or using the reserved index in the TPMI table and making it Multiple TPMIs can be indicated; or a new TPMI table can be used to include indexes that indicate multiple TPMIs.
  • the multiple SRS resources configured by the processor may be multiple SRS resources in one SRS resource set, or multiple SRS resources in multiple SRS resource sets.
  • the PUSCH output from the interface can be sent using the same time domain resource, or can be sent using different time domain resources, that is, it can be sent at different time domain locations, where the different time domain locations can be Different slots, consecutive slots or different time domain symbols on the same slot;
  • the PUSCH output from the interface can use the same port or different ports to send PUSCH, where the port can be the SRS port for sending SRS, or the port for sending PUSCH;
  • the PUSCH output from the interface may use the same frequency domain resource to transmit the PUSCH, or may use different frequency domain resources, and the frequency domain resources may be continuous or discontinuous.
  • the processor can also combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving uplink translation. The probability that the code is correct.
  • this application provides a chip system that includes a processor and an interface, and is used to support the terminal to implement the functions involved in the second aspect, for example, to determine or process the data and information involved in the above method At least one of them.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the terminal device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the chip system includes: at least one processor and an interface
  • Interface used to input multiple channel state reference signals CSI-RS
  • the processor is used to perform joint channel measurement based on multiple input CSI-RSs to obtain a sounding reference signal precoding SRS precoder;
  • the processor is further configured to configure multiple sounding reference signal resources SRS resources based on the SRS precoder;
  • the interface is also used to output multiple sounding reference signals SRS sent on the multiple SRS resources;
  • the interface is also used to input indication information indicating one or more precoding precoders
  • the processor is further configured to determine one or more precoders based on the instruction information
  • the interface is further configured to output the physical uplink shared channel PUSCH sent based on the one or more precoders determined by the processor.
  • multiple CSI-RSs are configured with different QCL relationships, that is, multiple CSI-RSs are CSI-RSs from different network devices.
  • the processor configures the multiple SRS resources respectively according to one SRS precoder obtained by the multiple CSI-RS joint channel measurements, that is, the multiple SRS resources correspond to the multiple CSI-RSs respectively .
  • the multiple SRS resources configured by the processor may be multiple SRS resources in one SRS resource set, or multiple SRS resources in multiple SRS resource sets.
  • at least two of the multiple precoders input from the interface are different; that is, the precoders used by the at least two PUSCHs sent by the terminal are different.
  • the processor performs joint channel measurement on multiple CSI-RSs to obtain the SRS precoder, thereby providing conditions for the network device to receive multiple PUSCHs jointly, multiple different PUSCHs sent to different network devices Different precoders can be used for repeated transmission, which can further enhance the reliability of uplink transmission.
  • the multiple precoders input from the interface are selected by the network device from multiple SRS precoders and indicated by the SRI field, where the multiple precoders may be jointly indicated by one SRI in the SRI field, That is, one SRI indicates all selected precoders; it may also be independently indicated by multiple SRIs in the SRI domain, that is, different SRIs are used to indicate different precoders selected according to different CSI-RSs.
  • the interface can use the same time domain resource to output PUSCH, or use different time domain resources to output PUSCH, that is, the interface can output at different time domain locations, where different time domain locations can be different The slot, continuous slot or different time domain symbols on the same slot;
  • the interface can use the same port to output PUSCH, or use different ports to output PUSCH, where the port can be an SRS port that outputs SRS, or a port that outputs PUSCH;
  • the interface may use the same frequency domain resource to output the PUSCH, or use different frequency domain resources to output the PUSCH, and the frequency domain resources may be continuous or discontinuous.
  • the processor can also combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving uplink translation. The probability that the code is correct.
  • this application provides a chip system that includes a processor and an interface, and is used to support network devices to implement the functions involved in the third aspect, for example, to determine or process the data and data involved in the above methods. At least one of the information.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the chip system includes: at least one processor and an interface
  • Interface used to output multiple channel state reference signals CSI-RS
  • the interface is used to input multiple sounding reference signal SRS, and send the sounding reference signal resource SRS resource of the multiple SRS corresponding to the multiple sounding reference signal precoding SRS precoder obtained based on the channel measurement of the CSI-RS ;
  • a processor configured to select multiple precoding precoders from the multiple SRS precoders based on the SRS;
  • the interface is used to output indication information indicating multiple SRS precoders.
  • multiple CSI-RSs are configured with different QCL relationships, that is, multiple CSI-RSs are CSI-RSs from different network devices.
  • the indication information indicating multiple precoders output from the interface is an SRI field, where multiple precoders can be jointly indicated by one SRI in the SRI field, that is, all selected precoders are indicated through one SRI; It may also be independently indicated by multiple SRIs in the SRI domain, that is, different SRIs are used to indicate different precoders selected according to different CSI-RSs.
  • multiple repeatedly transmitted PUSCHs may also be input from the interface, where at least two PUSCHs use different precoders.
  • the processor can also combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving uplink translation. The probability that the code is correct.
  • the present application provides a chip system, which includes a processor and an interface, and is used to support network devices to implement the functions involved in the fourth aspect, for example, to determine or process the data and data involved in the above methods. At least one of the information.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the chip system includes: at least one processor and an interface
  • Interface used to input multiple SRS
  • the processor is configured to obtain an uplink channel state based on the multiple input SRS measurements, and is configured to select multiple precoders based on the uplink channel state.
  • the interface is used to output indication information indicating the multiple precoders.
  • the indication information configures different QCL relationships or different TCI states, that is, the different precoders correspond to different network devices.
  • the indication information output from the interface indicating multiple precoders is a TPMI field
  • the TPMI field contains multiple TPMIs, where each TPMI corresponds to one precoder, or the multiple precoders are defined by one of the TPMI fields.
  • TPMI is indicated separately, wherein each of the TPMI corresponds to multiple precoders; wherein, the multiple precoders indicated by the TPMI domain are respectively determined according to different channel matrices.
  • the TPMI field includes multiple TPMI implementations, such as increasing the number of bits in the TPMI field so that it can indicate multiple TPMIs at the same time; or using the reserved index in the TPMI table and making it Multiple TPMIs can be indicated; or a new TPMI table can be used to include indexes that indicate multiple TPMIs.
  • the network device may also receive multiple repeatedly sent PUSCHs, where at least two PUSCHs use different precoders.
  • the processor combines the soft information of the multiple PUSCHs to simultaneously demodulate the multiple PUSCHs, and combines and decodes the demodulated soft information, thereby improving the accuracy of uplink decoding.
  • the probability is the probability.
  • the present application provides a chip system, which includes a processor and an interface, and is used to support network devices to implement the functions involved in the fifth aspect, for example, to determine or process the data and data involved in the above methods. At least one of the information.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the chip system includes: at least one processor and an interface
  • the interface is used to input multiple SRSs, and the multiple SRSs correspond to an SRS precoder obtained based on joint channel measurement of the CSI-RS;
  • the processor is configured to select one or more precoders from the multiple SRS precoders based on the multiple SRS.
  • the interface is used to output indication information indicating the one or more precoders.
  • multiple CSI-RSs are configured with different QCL relationships, indicating CSI-RSs from different network devices.
  • the indication information indicating multiple precoders output from the interface is an SRI field, where the multiple precoders may be jointly indicated by one SRI in the SRI field, that is, indicated by one SRI indication. All precoders selected; there may also be multiple SRI independent indications in the SRI field, that is, different SRIs are used to indicate different precoders selected according to different CSI-RSs.
  • At least two of the multiple precoders input from the interface are different; and the precoders used by the at least two PUSCHs sent by the terminal are different.
  • the processor performs joint channel measurement on multiple CSI-RSs to obtain the SRS precoder, thereby providing conditions for the processor to jointly receive multiple PUSCHs, and multiple different PUSCHs sent to different processors
  • Different precoders can be used for repeated transmission, which can further enhance the reliability of uplink transmission.
  • the interface can either input the PUSCH sent by the terminal using the same time domain resource, or input the PUSCH sent by the terminal using different time domain resources, that is, the interface can input at different time domain positions, where Different time domain positions can be different slots, continuous slots or different time domain symbols on the same slot;
  • the interface can input the PUSCH sent by the terminal using the same port, or the PUSCH sent by the terminal using a different port, where the port can be the SRS port that sends the SRS or the PUSCH that sends the PUSCH. port;
  • the interface can either input the PUSCH sent by the terminal using the same frequency domain resource, or input the PUSCH sent by the terminal using different frequency domain resources, and the frequency domain resources can be continuous or discontinuous. .
  • the processor also combines multiple received PUSCHs, and demodulates the combined PUSCH to obtain soft information for decoding.
  • multiple PUSCHs input by the interface use the same precoder
  • At least two of the multiple precoders indicated by the indication information are different; at least two PUSCHs input by the interface use different precoders.
  • the present application provides a chip system, which includes a processor and an interface, and is used to support network devices to implement the functions involved in the sixth aspect, for example, to determine or process the data and data involved in the above methods. At least one of the information.
  • the chip system further includes a memory, and the memory is used to store necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the chip system includes: at least one processor and an interface
  • Interface used to input multiple SRS
  • a processor configured to perform joint channel measurement based on the multiple SRS
  • the processor is configured to select the one or more precoders based on the result of the joint channel measurement
  • the interface is used to output indication information indicating the one or more precoders.
  • the processor is based on the uplink joint channel state obtained by joint channel measurement of multiple SRSs, then selects a suitable precoder, and sends indication information to the terminal.
  • the indication information is configured with different QCL relationships or different QCL relationships.
  • the TCI state that is, the instruction information indicating multiple precoders can be delivered to the terminal through one interface, or can be delivered to the terminal separately through multiple interfaces.
  • At least two of the multiple precoders input from the interface are different.
  • the processor can also combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving uplink translation. The probability that the code is correct.
  • an embodiment of the present invention provides a computer-readable storage medium for storing computer software instructions used by the above-mentioned terminal. The procedures involved.
  • an embodiment of the present invention provides a computer-readable storage medium for storing computer software instructions used by the above-mentioned network device, which includes any aspect of the third aspect to the sixth aspect of the foregoing method. The procedures involved.
  • the present application also provides a computer program product including instructions, which when run on a computer, cause the computer to execute the method described in any one of the first or second aspects.
  • the present application also provides a computer program product including instructions, which when run on a computer, causes the computer to execute the method described in any one of the third aspect to the sixth aspect.
  • FIG. 1 is a schematic diagram of a wireless communication system provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a V2X system provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a codebook-based uplink transmission mode provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a process in which a terminal obtains precoding in a codebook-based uplink transmission mode according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of a non-codebook-based uplink transmission mode provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a process in which a terminal obtains precoding in a non-codebook-based uplink transmission mode according to an embodiment of the present application
  • FIG. 7 is a schematic diagram of transmitting PSUCH on 4 time units according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a PUSCH transmission method in a single-station transmission scenario provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of sending PSUCH in 8 time units according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of PUSCH repeated transmission provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of PUSCH repeated transmission in NCB mode according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of PUSCH repeated transmission in CB mode according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of PUSCH space division transmission provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of PUSCH time division transmission provided by an embodiment of the present application.
  • 15 is a schematic diagram of a different PUSCH time-domain position distribution provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of another different PUSCH time-domain position distribution provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of another different PUSCH time-domain position distribution provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of another different PUSCH time-domain position distribution provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of another different PUSCH time-domain position distribution provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of PUSCH frequency division transmission according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of transmitting PSUCH in 4 time units according to an embodiment of the present application.
  • FIG. 22 is a schematic diagram of transmitting PSUCH in 4 time units according to an embodiment of the present application.
  • FIG. 23 is a schematic diagram of transmitting PSUCH in a time unit according to an embodiment of the present application.
  • FIG. 24 is a schematic diagram of PUSCH joint reception provided by an embodiment of the present application.
  • FIG. 25 is a schematic diagram of PUSCH joint reception in NCB mode according to an embodiment of the present application.
  • FIG. 26 is a schematic diagram of PUSCH joint reception in CB mode according to an embodiment of the present application.
  • FIG. 27 is a schematic structural diagram of a device provided by an embodiment of the present application.
  • FIG. 28 is a schematic structural diagram of a terminal device provided by an embodiment of the present application.
  • the technical solutions provided by the embodiments of the present application can be applied to various communication systems, for example, a new radio (NR) communication system using 5G communication technology, a future evolution system, or multiple communication convergence systems, and so on.
  • the technical solution provided in this application can be applied to a variety of application scenarios, such as machine to machine (M2M), macro and micro communications, enhanced mobile broadband (eMBB), uRLLC, and massive IoT communications ( massive machine type communication, mMTC) and other scenarios.
  • M2M machine to machine
  • eMBB enhanced mobile broadband
  • uRLLC massive IoT communications
  • mMTC massive machine type communication
  • These scenarios may include, but are not limited to: a communication scenario between a communication device and a communication device, a communication scenario between a network device and a network device, a communication scenario between a network device and a communication device, and so on.
  • the application in the communication scenario between the network device and the terminal is taken as an example for description.
  • Figure 1 shows a schematic diagram of a communication system to which the technical solution provided by this application is applicable.
  • the communication system may include one or more network devices (only two are shown in Figure 1) and one or more terminals (in Figure 1). Only one is shown). Among them, one terminal can communicate with multiple network devices at the same time; or, one terminal can communicate with one network device.
  • FIG. 1 is only a schematic diagram, and does not constitute a limitation on the applicable scenarios of the technical solutions provided in this application.
  • the network device may be a base station or a base station controller for wireless communication.
  • the base station may include various types of base stations, such as: micro base stations (also referred to as small stations), macro base stations, relay stations, access points, etc., which are not specifically limited in the embodiment of the present application.
  • the long term evolution (LTE) of the base station is an evolved base station (evolutional node B, eNB or e-NodeB), the Internet of things (IoT) or the narrowband Internet of Things (IoT).
  • TRP transmission reception point
  • PLMN public land mobile network
  • TRP can refer to various types of base stations or controllers, and can also be antenna panels, etc.
  • the embodiment of the present application does not impose any limitation on this. The embodiments of the present application will be described later by taking a network device or a TRP as an example.
  • the base station mentioned in this application usually includes a baseband unit (BBU), a remote radio unit (RRU), an antenna, and a feeder for connecting the RRU and the antenna.
  • BBU baseband unit
  • RRU remote radio unit
  • the antenna is responsible for the conversion between the guided wave on the cable and the space wave in the air.
  • the distributed base station greatly shortens the length of the feeder between the RRU and the antenna, which can reduce signal loss and reduce the cost of the feeder.
  • RRU plus antenna is relatively small and can be installed anywhere, making network planning more flexible.
  • all BBUs can also be centralized and placed in the Central Office (CO).
  • CO Central Office
  • decentralized BBUs are centralized and turned into a BBU baseband pool, they can be managed and scheduled uniformly, and resource allocation is more flexible. In this mode, all physical base stations have evolved into virtual base stations. All virtual base stations share the user's data transmission and reception, channel quality and other information in the BBU baseband pool, and cooperate with each other to realize joint scheduling.
  • the terminals involved in the embodiments of the present application are used to provide users with voice or data connectivity services, or provide voice and data connectivity services.
  • the terminal may have different names, such as user equipment (UE), access terminal, terminal unit, terminal station, mobile station, mobile station, remote station, remote terminal, mobile equipment, wireless communication equipment, terminal agent Or terminal devices, etc.
  • the terminal may be various handheld devices, vehicle-mounted devices, wearable devices, and computers with communication functions, which are not limited in the embodiment of the present application.
  • the handheld device may be a smart phone.
  • the vehicle-mounted device may be a vehicle-mounted navigation system.
  • the wearable device may be a smart bracelet or a virtual reality (VR) device.
  • the computer may be a personal digital assistant (PDA) computer, a tablet computer, and a laptop computer.
  • PDA personal digital assistant
  • V2X vehicle to everything
  • X stands for anything
  • the communication methods in the V2X system are collectively referred to as V2X communication.
  • the V2X communication includes: communication between vehicles and vehicles (V2V), communication between vehicles and roadside infrastructure (V2I), and communication between vehicles and pedestrians. pedestrian, V2P) or vehicle to network (V2N) communication, etc.
  • the communication between terminal devices involved in the V2X system is widely referred to as slide link (SL) communication.
  • SL slide link
  • the technical solution of the present application may also be applied to the Internet of Vehicles, that is, the terminal described in the present application may also be a vehicle or a vehicle component applied to a vehicle.
  • V2X communication can be collectively referred to as V2X communication.
  • Fig. 2 is a schematic diagram of a V2X system in the prior art. The schematic diagram includes V2V communication, V2P communication, and V2I/N communication. V2X communication is aimed at high-speed devices represented by vehicles. It is the basic technology and key technology applied in scenarios with very high communication delay requirements in the future, such as smart cars, autonomous driving, intelligent transportation systems and other scenarios.
  • vehicles or vehicle components communicate through V2V.
  • Vehicles or vehicle components can broadcast their own speed, driving direction, specific location, whether they have stepped on emergency brakes and other information to surrounding vehicles.
  • Drivers of surrounding vehicles can better perceive traffic conditions outside the line of sight by obtaining this type of information.
  • vehicles or vehicle components communicate with roadside infrastructure through V2I, and roadside infrastructure can provide various types of service information and data network access for vehicles or vehicle components .
  • roadside infrastructure for example, roadside unit (RSU) includes two types: one is a terminal equipment type RSU.
  • the RSU of this terminal equipment type is in a non-mobile state, and there is no need to consider mobility; the other is the RSU of the network equipment type.
  • the RSU of this network device type can provide timing synchronization and resource scheduling for vehicles or vehicle components that communicate with network devices. Vehicles or vehicle components communicate with people through V2P; vehicles or vehicle components communicate with the network through V2N. V2N and the aforementioned V2I can be collectively referred to as V2I/N.
  • the network architecture and business scenarios described in the embodiments of this application are intended to illustrate the technical solutions of the embodiments of this application more clearly, and do not constitute a limitation on the technical solutions provided in the embodiments of this application.
  • Those of ordinary skill in the art will know that With the evolution of the network architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • the word "exemplary” is used to mean serving as an example, illustration, or illustration. Any embodiment or design solution described as an "example” in this application should not be construed as being more preferable or advantageous than other embodiments or design solutions. Rather, the term example is used to present the concept in a concrete way.
  • SRS Sounding Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • Sounding reference signal (Sounding reference signal, SRS) has many uses in the NR protocol: uplink beam management, channel measurement based on codebook and non-codebook transmission, and antenna switching.
  • SRS is mainly used for uplink channel measurement based on codebook and non-codebook transmission, and the base station can use SRS reference signals to evaluate uplink channel parameters.
  • CSI-RS Channel State Information Reference Signal
  • CSI-IM Channel state information-interference measurement
  • ZP-CSI-RS Zero-power Channel State Information Reference Signal
  • NZP-CSI-RS Non-zero power Channel State Information Reference Signal
  • CSI-RS is mainly used for downlink channel measurement in non-codebook (Non-Codebook, NCB) transmission.
  • Uplink transmission mode based on codebook (Codebook based UL transmission scheme)
  • the codebook-based uplink transmission mode is also referred to as CB uplink transmission mode or CB mode for short.
  • CB uplink transmission mode As shown in Figure 3, in a single-site scenario consisting of TRP and UE, the process in CB uplink transmission mode is briefly described as follows:
  • the terminal receives the RRC signaling, and sends SRS to TRP according to the RRC configuration; for example, the UE sends sounding reference signal 1 (hereinafter referred to as SRS1) And sounding reference signal 2 (hereinafter referred to as SRS2) to TRP;
  • SRS1 sounding reference signal 1
  • SRS2 sounding reference signal 2
  • TRP performs channel measurement according to SRS to obtain the uplink channel status, and selects the appropriate precoder and rank number for sending PUSCH according to the channel conditions, and sends it to the UE through downlink control information (DCI) .
  • DCI downlink control information
  • SRS resource indicator SRS resource indicator, SRI
  • transmission rank indicator Transmission rank indicator, TRI
  • transmission precoding matrix indicator Transmission precoding matrix indicator, TPMI
  • SRI is carried by the SRI field in DCI
  • TRI is carried by the TRI field in DCI
  • TPMI is carried by the TPMI field in DCI;
  • TRI is used to notify the UE of the actual number of ranks for uplink transmission, that is, the actual number of ports (ports) sent by PUSCH.
  • TRP configures the maximum number of ranks for UE uplink transmission (maximum 4) through RRC signaling, and then The actual number of ranks selected is notified to the UE through the TRI in the DCI.
  • SRI is used to select a specific SRS resource from multiple SRS resources (SRS resources) in an SRS resource set.
  • the specific SRI indicates the index of the SRS resource.
  • the UE can be configured with a maximum of 2 SRS resources, at least being configured An SRS resource.
  • each SRS resource can be configured with 4 SRS ports at most, and the number of SRS ports is configured through RRC signaling nrofSRS-Ports;
  • TPMI is used to instruct the UE to select a precoder for transmitting PUSCH.
  • the UE obtains the PUSCH precoder and the actual transmitted uplink rank number to send uplink data.
  • the UE is based on:
  • the UE can determine a table, and the UE selects the information in the table according to the precoding information and the number of layers (Precoding information and number of layers) in the DCI One of the lines, the line will contain a TRI and TPMI. Then, the UE can determine a codebook according to the number of SRS ports and TRI, and then select a specific precoder from the codebook according to TPMI.
  • the dimension of the precoder is [the number of SRS ports in the SRS resource * the number of ranks indicated by TRI], and the UE performs PUSCH transmission according to the precoder.
  • the UE selects one SRS resource from multiple SRS resources according to the SRI, and then selects one SRS resource according to the TPMI Select a precoder from the codebook corresponding to the number of SRS ports contained in the resource and the actual rank number of TRI, and the UE uses the precoder for PUSCH transmission;
  • the UE selects a precoder from the codebook corresponding to the number of SRS ports contained in the SRS resource and the number of ranks indicated by TRI according to the TPMI, and the UE uses the precoder Perform PUSCH transmission.
  • the precoder used for PUSCH transmission is selected from the uplink codebook (codebook), and the dimension of the codebook is determined according to the number of SRS contained in the SRS resource and the number of ranks indicated by TRI (listed as the number of SRS, The behavior TRI indicates the rank number).
  • Codebooks are pre-defined and stored in the TRP and the terminal. In each codebook, some optional precoders are pre-defined according to the channel characteristics.
  • the UE uses Table 1, Table 2, and Table 3 as examples to illustrate how the UE determines the encoder.
  • TRP selects a TPMI and TRI based on the channel measured by the SRS ports in the SRS resource, and sends it to the UE through DCI;
  • the UE selects a codebook table according to the number of SRS ports in the SRS resource and the number of ranks indicated by TRI;
  • select table 2 corresponding to single-layer and two antenna ports
  • Table 2 Precoding matrix W (Precoding matrix W for single-layer transmission using two antenna ports.) for single-layer transmission using two antenna ports
  • the UE selects Table 3 corresponding to four-layer and two antenna ports according to the number of SRS ports as 2, and the number of layers as 4.
  • Table 3 Precoding matrix W (Precoding matrix W for four-layer transmission using four antenna ports with transform precoding disabled.) using four antenna ports without conversion precoding enabled for four-layer transmission
  • the non-codebook-based uplink transmission mode is also referred to as NCB uplink transmission mode or NCB mode for short later.
  • NCB uplink transmission mode As shown in Figure 5, taking a single-site scenario composed of TRP and UE as an example, the flow of the NCB uplink transmission mode is briefly described as follows:
  • TRP sends CSI-RS to the terminal;
  • the UE After receiving the CSI-RS, the UE performs channel measurement to obtain the downlink channel state, and then calculates the uplink channel state according to the channel disparity, and designs multiple SRS precoders for sending PUSCH according to the uplink channel conditions.
  • Each SRS precoder configures multiple SRS resources and sends SRS; specifically, the UE is configured with a maximum of 4 SRS resources, and each resource contains only one SRS port, and the UE sends SRS1, SRS2, SRS3, SRS4 on the 4 SRS resources ;
  • the TRP receives multiple SRSs, and then selects the appropriate precoder for PUSCH transmission according to the channel status on the multiple SRSs, and delivers them to the UE through DCI; specifically, the TRP sends one or more selected SRSs The index and the rank number used for PUSCH transmission are sent to the UE through DCI;
  • the UE receives the DCI issued by the TRP, and selects the corresponding precoder and rank number according to the SRI to send the PUSCH.
  • the bit value is mapped to the index of the SRS resource, that is, the number in each row represents the index of the SRS resource, and the number of SRIs in each row represents the rank of PUSCH
  • the NR uplink supports a slot aggregation transmission mode.
  • the time slot aggregation mainly affects the PUSCH transmission mode in the time domain, and does not affect the precoder and rank indication modes. That is, the aforementioned CB and NCB uplink transmission modes can be transmitted in the time slot aggregation mode.
  • the main principle of Slot aggregation is: repeat sending the same data in several consecutive slots or mini-slots, that is, each slot in several consecutive slots sends the same data, so the TRP will be in several consecutive slots or mini-slots.
  • the same data is received in the slot, combined or other processing is performed, thereby improving the reliability of uplink data transmission.
  • the current slot aggregation transmission mode in NR includes the following features:
  • Aggregated Slots are usually triggered by the DCI of the first slot, that is, the aggregated slots usually use the configuration indicated by the DCI of the first slot, such as the modulation reference signal (DMRS) port, precoder, and PUSCH time domain resources Configuration
  • DMRS modulation reference signal
  • Each slot sends the same transmission block (TB), that is, the aggregated slots all send the same data; here, the same transmission block is the PUSCH that is repeatedly sent.
  • the redundancy version (Redundancy version, RV) of the TB can be configured through RRC. Specifically, it can be configured as the same or different RV;
  • TRP can notify the UE whether it is a slot aggregation mode through RRC, which is notified through RRC signaling "Aggregation-Factor-UL".
  • Aggregation-Factor-UL ⁇ 1,2,4,8 ⁇ , where 2, 4, 8 represent consecutive 2, 4, 8 slots or mini-slots for aggregate transmission, and 1 represents no slot aggregation.
  • Aggregation-Factor-UL>1 the UE knows that this is the aggregation mode.
  • the PUSCH1, PUSCH2, PUSCH3, and PUSCH4 shown in the figure refer to the same PUSCH being repeatedly sent four times.
  • the embodiments of the present application also include other aggregation transmission schemes for aggregation of time-domain resource granularity, for example, mini-slot as the granularity for aggregation, or symbol as the granularity for aggregation, which is not limited in this application.
  • Time domain resources frequency domain resources, ports
  • the time domain resource may be one or more radio frames, one or more subframes, one or more time slots or time units (slot), one or more mini-slots,
  • One or more symbols may also be a time window formed by multiple frames or subframes, such as a system information (SI) window.
  • SI system information
  • the embodiment of the present application does not limit the time length of one symbol.
  • the length of a symbol can be different.
  • Symbols can include uplink symbols and downlink symbols.
  • the uplink symbols can be referred to as single carrier-frequency division multiple access (SC-FDMA) symbols or orthogonal frequency division multiple access (OFDM).
  • Symbol; the downlink symbol may be an OFDM symbol.
  • the frequency domain resource may be a resource block (Resource block, RB), or a resource block group (Resource block group, RBG), or a predefined subband (subband), or frequency band (band), or bandwidth Part (bandwidth part, BWP), or component carrier (CC), or cell (cell).
  • resource block Resource block
  • RBG resource block group
  • subband predefined subband
  • BWP bandwidth Part
  • CC component carrier
  • cell cell
  • a port refers to a transmitting antenna recognized by a receiving end device, or a transmitting antenna that can be distinguished in space.
  • One antenna port can be configured for each virtual antenna, each virtual antenna can be a weighted combination of multiple physical antennas, and each antenna port can correspond to a reference signal port, for example, an SRS port.
  • This application provides a variety of technical solutions for enhancing the reliability of uplink transmission. Specifically, for a single-site transmission scenario, that is, a scenario where the terminal communicates with a TRP, the terminal can use different precoders to send data when performing uplink transmission, so that the decoding performance of the transmission can be guaranteed when the channel conditions change. , Enhance the reliability of uplink transmission.
  • this application provides two different uplink transmission technical solutions: repeated transmission and joint reception, applying the technical solutions provided in the embodiments of this application , Can effectively improve the transmission reliability of PUSCH.
  • Embodiment 1 PUSCH transmission method in a single station transmission scenario
  • the PUSCH transmission method provided in this embodiment includes:
  • Step 100 The terminal receives indication information indicating multiple precoding precoders
  • the terminal receives indication information from the network device, the indication information may be DCI, and the DCI may directly or indirectly indicate multiple precoders through the SRI field and the TPMI field;
  • multiple precoders are indicated by an SRI domain, and the precoders are jointly indicated by one SRI in the SRI domain; or multiple precoders are independently indicated by multiple SRIs in the SRI domain.
  • the precoders are jointly indicated by one SRI in the SRI domain; or multiple precoders are independently indicated by multiple SRIs in the SRI domain.
  • each row indicates only one precoder, then multiple precoders can be independently indicated by multiple SRIs; if the bit value in the SRI field is 4 -13, each line can indicate multiple precoders, that is, multiple precoders can be jointly indicated by one SRI.
  • the specific implementation of using the SRI field to indicate multiple preoders can be multiple different SRI fields, new DCI fields, different bits of the SRI field, using a new SRI table, or using the reservation of the SRI table provided in the existing protocol Entry.
  • the specific implementation of using the SRI field to indicate multiple preoders can be multiple different SRI fields, new DCI fields, different bits of the SRI field, using a new SRI table, or using the reservation of the SRI table provided in the existing protocol Entry.
  • the UE supports up to rank-3 uplink transmission.
  • the index number of the fifth column is 4, and the corresponding content of the sixth column is: 0, x; 1, y, which means that when the UE supports rank-2 uplink transmission, it uses 2 SRS resources, namely 2
  • the SRS port that is, only one port can be used in each SRS resource
  • the index number of the fifth column is 10, and the content corresponding to the sixth column is: 0, x; 1, y; 2, z; its meaning is to support rank-3 uplink transmission, and the UE is using 3 SRS resources, namely 3
  • the order of the SRI value corresponding to the index is not limited.
  • each SRSresource is not limited. Only one port can be used in, that is, each SRSresource can support multiple ports (multi-rank transmission).
  • each SRSresource can support multiple ports (multi-rank transmission)
  • the specific number of ports used by each SRSresource can reuse the existing RRC signaling nrofSRS -Ports to indicate, or use new RRC signaling or DCI signaling to indicate the number of ports or port sequence numbers specifically used by each SRSresource.
  • the content corresponding to index 4 in the fifth column is 1, 3.
  • RRC signaling or DCI signaling is used to indicate the number of ports used by each SRSresource (for example, 2) or indicate the ports used by each SRSresource.
  • the sequence number (for example, 0, 1)
  • the UE uses precoder1 and precoder3 to repeatedly send PUSCHs
  • the PUSCHs are both rank2, and two SRSports are used.
  • the value of the SRI corresponding to the index number in Table 6 and the order of the value are only examples. In specific implementation, there are other values or other orders, as long as they meet the requirements of indicating PUSCH repetition through SRI
  • the different precoders to be transmitted are all within the coverage of the embodiments of the present application, and will not be repeated here.
  • the table of how to indicate multiple precoders through SRI can be This is designed, so I won’t repeat it here.
  • multiple precoders are respectively indicated by multiple TPMIs in the TPMI domain, where each TPMI corresponds to one precoder; or multiple precoders are respectively indicated by one TPMI in the TPMI domain, where each The TPMI corresponds to multiple precoders.
  • (1) It can indicate multiple TPMIs by increasing the number of TPMI bits: for example, as shown in Table 1, up to 4 bits (which can represent 16 entries) are required to indicate the number of layers and TPMI; however, due to the number of layers It can be determined by the first 4 bits. If layer 1, the candidate TPMI can only be 0-5, and the second TPMI field only needs to indicate TPMI.
  • Table 7 can exist independently or can be combined with Table 1, and this application does not limit its implementation form.
  • Another way to achieve this is to use the reserved entry in the existing TPMI table and enable it to indicate multiple TPMIs.
  • precoder the number of layers in the entry, such as 2layers in the table, the number of layers is 2) represents the sum of the number of layers corresponding to all TPMIs.
  • Step 101 The terminal determines, based on the indication information, that the multiple precoders are used to repeatedly transmit the PUSCH; wherein, at least two of the PUSCHs use different precoders.
  • the terminal uses the SRS resource index indicated by the SRI field in the DCI to look up TPMI Table 1 according to the TPMI field in the DCI to obtain multiple TPMI values, and then look up multiple TPMI values based on the specific multiple TPMI values as shown in the table 2 or the codebook table shown in Table 2 to obtain multiple corresponding precoders; the specific implementation process is similar to the process of obtaining the precoder in the CB mode described above. In this embodiment, multiple different precoders can be obtained based on this and used to repeatedly send PUSCH .
  • the terminal obtains the index of multiple SRS and the number of PUSCH transmission ranks indicated by the network device according to the SRI field in the DCI, and determines the PUSCH precoder; the specific implementation process is the same as the aforementioned NCB mode
  • the following process of obtaining a precoder is similar, and in this embodiment, multiple different precoders can be obtained based on this to repeatedly send the PUSCH.
  • the terminal repeatedly transmits the PUSCH on different time domain resources, and at least two PUSCHs use different precoders. For example, sending 8 PUSCH 1, PUSCH 3, PUSCH 5, and PUSCH 7 on 8 time units (taking slot as an example) uses precoder 1, while PUSCH 2, PUSCH 4, PUSCH 6, and PUSCH 8 use precoder 2 (the PUSCH 1 to 8 are all the same
  • the PUSCH here refers to the same PUSCH repeated 8 times
  • the terminal can adapt to the change of the channel , To ensure the decoding performance of transmission and enhance the reliability of uplink transmission.
  • the technical solution for PUSCH transmission in a single-site scenario provided by the embodiments of the present application can effectively improve the reliability of uplink transmission, enhance the decoding performance of network equipment, and improve uplink coverage.
  • the PUSCH repetition transmission scheme will be introduced. Specifically, the UE repeatedly transmits the PUSCH, and the network device combines the demodulated soft information after receiving the PUSCH to enhance the decoding performance.
  • the basic flow chart is as follows Shown in Figure 10.
  • Figure 10 is mainly divided into three parts: terminal (hereinafter referred to as UE), air interface channel, network equipment (for example, gNB), where the UE receives the indication information indicating the precoder, and based on the indication information, determines the precoder used to repeatedly send the PSUCH , Multiple PUSCHs arrive at the network device after being transmitted through different channels (two different channel matrices H1 and H2 in the figure).
  • the network device demodulates multiple PUSCHs to obtain multiple soft information corresponding to each PUSCH, and merges the Multiple soft information for decoding.
  • the network device receives multiple PUSCHs, that is, multiple uplink received signals (indicated by y1, y2 in the figure).
  • multiple TRPs of the network device will demodulate y1 and y2, and at the same time Obtain multiple demodulation soft information (Soft Information) (soft information corresponds to hard information, hard information refers to certain bits, such as [0,1...], and soft information refers to uncertain bits, such as 90% The probability of the decoding result is 1, and the probability of 10% is 0).
  • the network device will merge the received multiple soft information, that is, the soft information 1 and soft information 2 obtained from y1 and y2 respectively in the figure, and then The combined soft information is decoded to improve the decoding performance.
  • the network device can also decode the soft information received by different TRPs first, and then perform combined decoding if the decoding is wrong.
  • the precoders used by the terminal to send the PUSCH may be the same, or at least two PUSCHs may use different precoders.
  • the following will take the CB mode and the NCB mode as examples to specifically describe the implementation process of using different precoders for uplink transmission when the terminal repeatedly sends the PUSCH in a multi-station scenario.
  • TRP1 and TRP2 respectively send CSI-RS1 and CSI-RS2 to the UE, where the CSI-RS sent by different TRPs are configured with different QCL relationships; the sending mode of the above two CSI-RSs is not limited, For example, two CSI-RS can be sent in time sharing; use the same or different frequency domain resources/ports, etc.;
  • the UE obtains multiple channels based on multiple sets of CSI-RS and selects multiple sets of SRS precoders. Taking two TRPs as an example, the UE performs the respective procedures based on CSI-RS1 issued by TRP1 and CSI-RS2 issued by TRP2. Channel estimation obtains two channel matrices H1 and H2.
  • the UE needs to select SRS precoders according to the two channel matrices, that is, it needs to perform singular value decomposition (SVD) on H1 and H2 respectively to obtain eigenvectors: SVD( [H1]) Obtain feature vector V1, select SRSprecoder1 according to feature vector V1, SVD([H2]) obtain feature vector V2, select SRSprecoder2 according to feature vector V2; and configure two sets of SRSresource corresponding to SRSprecoder1 and SRSprecoder2
  • the multiple SRS resources configured may be multiple SRS resources in one SRS resource set, or multiple SRS resources in multiple SRS resource sets.
  • the UE can configure multiple SRS resource methods in multiple ways:
  • the UE can choose to configure M sets of SRS resource sets.
  • Each SRS resource set contains a maximum of 4 SRS resources, and each SRS resource contains X SRS ports.
  • M can be greater than 1, for example, equal to 2.
  • CSI-RS1 corresponds to the 4 SRS resources in SRS resource set1, which are SRS resources 1, 2, 3, 4
  • the UE configures 1 set of SRS resource set and keeps the total maximum 4 SRS resources unchanged.
  • the UE can choose to send SRS in time or use different ports to send SRS. For example, using the configuration method in (1) above, the UE can configure 2 SRS resource sets, corresponding to two respectively Channels measured by CSI-RS are sent in different time domain resources; or sent using different ports respectively;
  • step (c) the network equipment selects the appropriate precoder from multiple sets of SRS precoders and delivers them through SRI.
  • the network equipment selects the index numbers from SRS resource 1, 2 and SRS resource 3, 4 respectively as The SRS resource of 1, 3 is indicated to the UE through the SRI field to indirectly indicate the precoder used by the UE.
  • the multiple precoders are jointly indicated by one SRI in the SRI field; or the multiple precoders are indicated by the Multiple SRIs in the SRI domain are independently indicated.
  • SRI domain joint indication that is, one SRI indicates all precoders selected; multiple SRI independent indications, that is, different SRIs are used to indicate different precoders selected according to different CSI-RS, which can be multiple different SRI domains, new Different bits of the DCI field and the SRI field, use a new SRI table, or use the reserved entry of an existing SRI table; here, please refer to the description in the first embodiment and will not be repeated here.
  • step (d) the UE selects the precoder and rank according to the SRI, and sends the PUSCH. For example, if the SRI indicates SRS resource 1, 3, the UE uses the precoder corresponding to the SRS resource 1, 3 to send the PUSCH.
  • the process of determining the precoder according to the indication of the SRI is as described in the previous NCB mode.
  • the difference from the foregoing scenario where the single station repeatedly transmits the PUSCH is that in this embodiment, the SRI indicates multiple precoders, and the UE needs to determine the multiple according to the indication of the SRI domain.
  • a precoder is used to repeatedly send multiple PUSCHs.
  • the terminal can use precoder1 to send PUSCH 1, 3, 5, 7, and precoder2 to repeatedly send PUSCH 2, 4, 6, 8.
  • the PUSCH is sent, and different precoders are used for the PUSCH, thereby obtaining diversity gain, and when the terminal moves to a different cell coverage area, the decoding performance of the transmission can also be guaranteed, and the reliability of the uplink transmission is enhanced.
  • Step (a) the UE sends SRS to TRP1 and TRP2 respectively, for example, as shown in FIG. 12, there may be 2 SRSs, or it may be greater than 2, for example, 4 SRSs;
  • Step (b) TRP performs channel measurement according to SRS to obtain the uplink channel status, and selects the appropriate precoder and rank number according to the channel conditions, and sends it to the UE through DCI; that is, TRP sends an indication of multiple precoders to the UE through DCI information.
  • the indication information can be sent to the UE by TRP1 and TRP2 respectively.
  • the indication information sent by different TRPs is configured with different QCL relationships or different TCI states, that is, the different precoders correspond to different TRPs;
  • the indication information may also be sent to the UE by either TRP1 or TRP2; where the indication information is configured as a different QCL relationship or a different TCI state is determined by the other in the DCI where the indication information is located.
  • the domain configuration is realized by different QCL relationships or different TCI states; for example, the TCI domain of the DCI can be configured into multiple TCI states to indicate that different precoders indicated by the TPMI domain included in the DCI correspond to different TRPs.
  • H1 and H2 which can be implemented in the following ways:
  • TPMI can indicate multiple TPMIs by increasing the number of TPMI bits: for example, as shown in Table 1, up to 4 bits (which can represent 16 entries) are required to indicate the number of layers and TPMI; but because The number of layers can be determined by the first 4 bits.
  • Another way to achieve this is to use the reserved entry in the existing TPMI table and enable it to indicate multiple TPMIs.
  • precoder The number of layers in the entry in this embodiment, for example, 2layers in the table, the number of layers is 2, which represents the sum of the number of layers corresponding to all TPMIs, or the number of ranks corresponding to one TPMI. At this time, another TPMI The corresponding rank is also the number of the layer.
  • a new TPMI table can also be used, and the UE can use the new TMPI table to obtain multiple TPMIs, new table 9 and new table 10
  • Each entry contained in can indicate multiple TPMIs, and the description of the entry is the same as in (2).
  • Table 9 uses 5 bits to represent 32 entries, and the row corresponding to each entry (except reserved) contains a layer number and two TPMI numbers, and the layer number represents the number of layers corresponding to the two TPMIs.
  • Table 9 TPMI table (2port, maximum rank2)
  • Table 10 uses 5 bits to represent 32 entries, each entry (except reserved) contains a layer number and two TPMI numbers, and the layer number represents the layer corresponding to the two TPMIs. The sum of the numbers.
  • Table 10 TPMI table (2port, maximum rank2)
  • Step (c) the UE obtains the index of multiple precoders and the actual transmitted uplink rank number to send the PUSCH.
  • TPMI1 indicates precoder1
  • TPMI2 indicates precoder3 , That is, the UE uses precoder1 and precoder3 to transmit PUSCH.
  • the process of determining the precoder according to the SRI, TRI, and TPMI indications of the DCI is as described in the previous CB mode.
  • the difference from the foregoing is that in this embodiment, the TPMI indicates multiple precoders, and the UE needs to determine multiple precoders according to the indication of the TPMI domain. Used to repeatedly send multiple PUSCHs.
  • the UE when the network device instructs the UE with multiple precoders in the above-mentioned manner (multiple SRIs in NCB mode and multiple TPMIs in CB mode), the UE can be further enhanced by repeated PUSCH transmission. Transmission reliability. For repeated PUSCH transmission, the UE can choose multiple ways to transmit multiple PUSCHs, for example: using the same or different multiple ports, using the same or different time domain resources, or using the same or different frequency domain resources.
  • the following will take different ports, different time domain resources, and different frequency domain resources as examples. How the UE repeatedly sends multiple PUSCHs, using the same port, or the same time domain resources, or the same frequency domain resources to send PUSCH and The comparison is relatively simple, so I won't repeat it here.
  • port(s) can refer to the SRS port for sending SRS, or the port for sending PUSCH. This embodiment of the application There is no restriction on this.
  • PUSCH1 and PUSCH2 use exactly the same time domain resources and frequency domain resources, but use different transmission port(s). For example, if PUSCH1 and PUSCH2 are both rank1 transmissions (that is, both are used 1 port transmission), the UE can use port1 to send PUSCH1 and port2 to send PUSCH2; if PUSCH1 and PUSCH2 are both rank2 transmissions (that is, both use 2 ports for transmission), the UE can use ports1,2 to send PUSCH1, Use ports 3 and 4 to send PUSCH2.
  • the UE can also choose to use different time domain resources in multiple continuous or interval transmission time units to reuse the selected precoder for PUSCH repeated transmission.
  • the specific transmission mode is shown in Figure 14.
  • PUSCH1 and PUSCH2 use exactly the same frequency domain resources and transmission ports, but their time domain positions are different. Specifically, different PUSCH time domain positions may have the following situations:
  • PUSCH1 is located in slot1, PUSCH2 is located in slot2, and the specific PUSCH1 and PUSCH2 are located in the same or different symbols of slot1 and slot2 respectively; for example, slot1 and slot2 It includes 14 symbols respectively, PUSCH1 is located in slot1's symbols 4-6, PUSCH is located in slot2's symbols 4-6; or PUSCH1 is located in slot1's symbols 3-4, PUSCH2 is in slot2's symbols 5-6; and so on.
  • PUSCH is located in slot1
  • PUSCH2 is located in slot3
  • slot1 and slot3 are non-continuous. Due to the need to avoid downlink symbols, PUSCH1 and PUSCH2 may be located in the same or different symbols of slot1 and slot3.
  • PUSCH1 and PUSCH2 are located at different symbol positions in the same slot, and the different symbol positions are continuous.
  • PUSCH1 is located at symbols 3-4 of slot1
  • PUSCH2 is located at symbols 5-6 of slot1.
  • PUSCH1 and PUSCH2 may be located at different symbol positions in the same slot but not continuous due to the need to avoid downlink symbols in the slot; for example, PUSCH1 is located in the symbol 3-4 of slot1 , And PUSCH2 is located at symbols 7-8 of slot1.
  • the PUSCH may be divided into two PUSCHs.
  • PUSCH2 is divided into PUSCH2 and PUSCH3 by the slot boundary.
  • PUSCH2 and PUSCH3 can use the same or different precoder, which is not limited in the embodiment of the present application.
  • the UE can also choose to use different frequency domain resources and reuse the selected precoder to perform PUSCH repeated transmission.
  • PUSCH1 and PUSCH2 use the same time domain resources, but they use different frequency domain resources (such as resource block (RB), physical resource group (PRG), etc.). For example, it may be a continuous frequency domain resource or a non-continuous frequency domain resource, which is not limited in the embodiment of the present application.
  • the UE sends PUSCHs (PUSCH1 and PUSCH2) with different precoders on different frequency domain resources.
  • the UE when the UE needs to use multiple precoders, for example, using a precoder 1 to send PUSCH1 and a precoder 3 to send PUSCH2, the UE can perform PUSCH repeated transmission according to a specific precoder pattern (the PUSCH1 ⁇ 4 are the same PUSCH, here it means that the same PUSCH is repeatedly sent 4 times), as shown in precoder ⁇ 1,3,1,3 ⁇ in Figure 21, you can also choose other different repetition methods, such as precoder ⁇ A,B ⁇ , precoder ⁇ A,B,A,B ⁇ , precoder ⁇ A,A,B,B ⁇ , etc.
  • the indication information sent by TRP to the UE through DCI is precoder ⁇ 1,3 ⁇ , and the UE is notified to use time-sharing transmission in 4 consecutive time units (slots) with ⁇ A,B,A,B ⁇
  • the PUSCH is repeatedly transmitted 4 times.
  • the precoder used to transmit PUSCH is ⁇ 1,3,1,3 ⁇ , where Precoder1 is used to send PUSCH1, Precoder3 is used to send PUSCH2, Precoder1 is used to send PUSCH3, and Precoder3 is used to send PUSCH4.
  • the schematic diagram of transmission is shown in Figure 21.
  • the TRP sends the indication information to the UE via DCI as precoder ⁇ 1,3 ⁇ , and informs the UE to use time-sharing transmission in 4 consecutive time units (slots) with ⁇ A, A, B ,B ⁇ repeatedly transmits PUSCH 4 times.
  • the precoder used to transmit PUSCH is ⁇ 1,1,3,3 ⁇ , where Precoder 1 is used to send PUSCH 1, Precoder 1 is used to send PUSCH 2, Precoder 3 is used to send PUSCH 3, and Precoder 3 is used to send PUSCH 4 ,
  • the schematic diagram of the transmission is shown in Fig.
  • the PUSCHs 1 to 4 are all the same PUSCH, which means that the same PUSCH is repeatedly sent 4 times.
  • the UE can repeatedly send multiple PUSCHs between slots and use different precoders. As long as it satisfies that at least two PUSCHs use different precoders, the purpose of enhancing PUSCH transmission reliability can be achieved, which will not be repeated here.
  • the network device may also instruct to use different precoders in the slot to perform the repeated transmission of the PUSCH.
  • PUSCH1 and PUSCH2 are repeatedly transmitted in slot1, PUSCH1 uses precoder1, and PUSCH2 uses precoder3 for repeated transmission (the PUSCH1 to 4 are all the same PUSCH, which means that the same PUSCH is repeatedly transmitted 4 times).
  • PUSCH3 and PUSCH4 may be repeatedly sent in slot2; PUSCH3 uses precoder1, and PUSCH4 uses precoder3 for repeated transmission.
  • PUSCH1 and PUSCH2 in slot1 use precoder1, and PUSCH3 and PUSCH4 in slot2 use precoder3 for repeated transmission.
  • the UE can repeatedly send multiple PUSCHs between slots and use different precoders. As long as it satisfies that at least two PUSCHs use different precoders, the purpose of enhancing PUSCH transmission reliability can be achieved, which will not be repeated here.
  • Embodiment 3 and Embodiment 4 enhance the existing CB and NCB transmission modes to achieve repeated uplink PUSCH transmission in a multi-station scenario, improve uplink decoding performance, and enhance transmission reliability.
  • the PUSCH joint receiving technology is mainly described.
  • the UE assumes that the transmission channel matrix of multiple TRPs can be combined into a larger-dimensional transmission channel matrix, similar to downlink distributed Multiple-input multiple-output (distributed multiple-input multiple-output, DMIMO), at this time, the network device directly merges the PUSCH instead of merging the soft information, and the merged PSUCH (the uplink received signal y1+y2 in the figure) ) Perform demodulation to obtain individual soft information and then perform subsequent decoding.
  • DMIMO distributed multiple-input multiple-output
  • the precoder used for detection in the uplink is determined by the joint channel matrix, that is, when the network device or UE selects the precoder, it is determined by the joint matrix of the two transmission channel matrices. of.
  • TRP1 and TRP2 respectively send CSI-RS1 and CSI-RS2 to the UE, where the CSI-RS sent by different TRPs are configured with different QCL relationships; there is no limitation on the sending modes of the above two CSI-RSs
  • two CSI-RSs can use the same or different time domain resources, and use the same or different frequency domain resources/ports, etc.;
  • the UE After the UE receives multiple CSI-RSs, it performs joint channel measurement on multiple CSI-RSs, that is, channels H1 and H2 are regarded as a joint channel matrix that can be combined Then right Perform singular value decomposition (SVD) to get the overall feature vector V: Then select SRSprecoder according to the feature vector V. Based on the selected SRS precoder, the terminal configures multiple SRS resources to send multiple SRSs. As shown in FIG. 25, the terminal configures 4 SRS recourses based on the SRS precoder to send sounding reference signals SRS1, SRS2, SRS3, and SRS4 respectively.
  • SRS1, SRS2, SRS3, and SRS4 sounding reference signals
  • the UE needs to perform SVD decomposition on two [4*2] channel matrices respectively, and then select two SRS precoders respectively, and In the sixth embodiment, SVD decomposition is directly performed on the joint channel matrix of [8*2] and SRS precoder is selected;
  • the UE can follow the existing protocol when configuring the SRS resource, that is, configure a set of SRS resource set, which contains up to 4 SRS resources; a new configuration method can also be used, for example: UE configures X sets of SRS resource set , Contains Y SRS resources at most, and each SRS resource contains Z SRS ports, and X/Y/Z is not limited, that is, the number of SRS resource set/SRS resource/SRS ports is not limited;
  • the UE In the multi-station scenario or in the case where the UE receives multiple CSI-RSs, that is, the UE indicates the current transmission scenario to be the multi-station uplink transmission mode in a specific manner, for example, according to specific parameters/dynamic signaling/semi-static signaling; Or when the UE receives multiple CSI-RSs, the UE will perform joint channel measurement based on all CSI-RSs to obtain an SRS precoder, and configure multiple SRS resources corresponding to the SRS precoder; that is, the multiple SRS resources are based on all the SRS resources.
  • the SRS precoders obtained by the multiple CSI-RS joint channel measurement are configured separately. For example: CSI-RS 1&CSI-RS 2... corresponds to SRS resource 1, 2, 3, 4.
  • the embodiment of the present application does not limit the manner in which the UE is indicated as a multi-station transmission scenario.
  • step (d) the UE uses the one or more precoders to transmit PUSCH based on the indication information.
  • the precoder and rank are selected according to the SRI, and the PUSCH is sent.
  • the SRI field indicates SRS resource 1, 3, and the UE uses the precoder 1 and the precoder 3 corresponding to the SRS resource 1, 3 to respectively send the PUSCH.
  • the SRI field indicates multiple precoders, including: the precoder is jointly indicated by one SRI in the SRI field or the precoder is independently indicated by multiple SRIs in the SRI field.
  • the specific implementation is as described in Embodiment 1, and will not be repeated here.
  • step (a) the UE sends SRS to TRP1 and TRP2 respectively, and multiple SRS resources can be used, for example, the 2 SRS shown in Figure 26, or more than 2, for example, 4 SRS;
  • the domain configuration is realized by different QCL relationships or different TCI states; for example, the TCI domain of the DCI can be configured into multiple TCI states to indicate that different precoders indicated by the TPMI domain included in the DCI correspond to different TRPs.
  • Step (c) according to the SRI, TRI, and TPMI in the DCI, the UE obtains the index of multiple precoders and the number of uplink rank actually transmitted to send the PUSCH.
  • TPMI1 indicates precoder1
  • TPMI2 indicates precoder3 , That is, the UE uses precoder1 and precoder3 to transmit PUSCH.
  • the network device determines the precoder through joint channel measurement, and realizes the PUSCH joint reception in the multi-station scenario. , Improve the uplink decoding performance through the combination of the uplink received signals and enhance the transmission reliability.
  • PUSCH repeated transmission and joint reception can be combined to further enhance the reliability of uplink transmission.
  • Embodiment 5 respectively introduce the technical solutions of joint reception.
  • it can be combined with the foregoing repeated transmission solution, that is, PUSCH is repeatedly transmitted in a joint reception scenario.
  • the UE can be configured as the CB uplink transmission mode or the NCB uplink transmission mode described in the above embodiment.
  • the RRC signaling received by the UE is "Codebook”, it is configured as CB Uplink transmission mode;
  • the RRC signaling received by the UE is “NonCodebook”, it is configured as the NCB uplink transmission mode;
  • the UE After the UE receives the RRC signaling, it can perform PUSCH joint reception in NCB mode according to the technical solution in the sixth embodiment above, or perform PUSCH joint reception in CB mode according to the technical solution in the seventh embodiment above; on this basis Above, the PUSCH sent by the UE to the TRP may be a repeatedly transmitted PUSCH. Specifically, after the UE selects a precoder according to the indication information, the precoder may be used to repeatedly transmit the PUSCH, where the PUSCH used for repeated transmission may adopt one precoder or multiple different precoders.
  • the UE uses a precoder to repeatedly transmit PUSCH, specifically: the UE uses one precoder to repeatedly send multiple PUSCHs on the same or different time domain resources, or the UE uses one precoder to send multiple PUSCHs on the same or different frequency domain resources, Or the UE uses one precoder to send multiple PUSCHs on the same or different ports.
  • the UE selects precoder1 (precoding 1 in the figure) and precoder3 (precoding 3 in the figure) according to the indication information, and then uses precoder1 to send PUSCH-A, using Precoder2 sends PUSCH-B.
  • the UE can choose to use a precoder for repeated transmission. For example, use precoder1 to repeatedly send PUSCH-A, and use precoder 3 to repeatedly send PUSCH-B. Therefore, on the basis of joint reception, the reliability of uplink transmission is enhanced.
  • the UE uses multiple different precoders to repeatedly transmit PUSCH, it is equivalent to combining the above-mentioned joint reception technical solution with the repeated transmission technical solution in the second to fourth embodiments of this application.
  • the UE selects precoder1 (precoding 1 in the figure) and precoder3 (precoding 3 in the figure) according to the instructions, and then uses precoder1 to send PUSCH-A and precoder2 to send PUSCH-B.
  • the UE can choose to use multiple precoders to repeatedly transmit PUSCH, such as using precoder1 and precoder3 to repeatedly transmit PUSCH-A, and using precoder1 and precoder3 to repeatedly transmit PUSCH-B.
  • the two precoders used for repeatedly transmitting PUSCH-A and the two precoders used for PUSCH-B may be different.
  • the UE will receive the instruction information indicating multiple precoders according to the technical solutions of repeated transmission in the second to fourth embodiments, and use multiple precoders.
  • Different precoders, and the multiple precoders are all selected through joint channel measurement, thereby obtaining diversity gain, and when the terminal moves to a different cell coverage area, the decoding performance of the transmission can also be guaranteed, and the uplink transmission is enhanced reliability.
  • the UE using the same or different multiple ports, using the same or different time domain resources, or using the same or different frequency domain resources to transmit PUSCH is the same as the third and fourth embodiments. I won't repeat them here.
  • the methods provided in the embodiments of the present application are respectively introduced from the perspective of network equipment, terminal equipment, and interaction between the network equipment and the terminal equipment.
  • the network device and the terminal device may include a hardware structure and a software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • One of the above-mentioned functions can be executed in a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 27 is a schematic structural diagram of an apparatus provided by an embodiment of the application.
  • the device can be used to implement the methods described in the first to eighth embodiments.
  • FIG. 27 is a schematic structural diagram of an apparatus provided by an embodiment of the application.
  • the device can be used to implement the methods described in the first to eighth embodiments.
  • the apparatus may include one or more processors 1601.
  • the processor 1601 may also be referred to as a processing unit, and may implement the functions of the network device or the terminal device in the method provided in the embodiment of the present application.
  • the processor 1601 may be a general-purpose processor or a special-purpose processor.
  • the processor 1601 may also store instructions and/or data 1603, and the instructions and/or data 1603 may be executed by the processor, so that the apparatus 1600 executes the above method embodiments. Described method.
  • the processor 1601 may include a communication unit for implementing receiving and sending functions.
  • the communication unit may be a communication interface, or a transceiver circuit, or an interface, or an interface circuit.
  • the processor 1601 can implement the method executed by the network device or the method executed by the terminal device in the method provided in the embodiments of the present application through the communication unit.
  • the device 1600 may include one or more memories 1602, on which instructions 1604 may be stored.
  • the instructions may be executed on the processor, so that the apparatus 1600 executes the methods described in the foregoing method embodiments.
  • data may also be stored in the memory.
  • instructions and/or data may also be stored in the processor.
  • the processor and the memory can be provided separately or integrated together.
  • the apparatus 1600 may further include a transceiver 1605 and an antenna 1606.
  • the processor 1601 may be referred to as a processing unit, and controls the device 1600.
  • the transceiver 1605 may be referred to as a communication interface, a communication unit, a transceiver, a transceiver circuit or a transceiver, etc., for implementing the transceiver function.
  • the device may be a terminal device or a component of a terminal device (for example, an integrated circuit, a chip, etc.).
  • a device 1600 for example, an integrated circuit, a wireless device, a circuit module, or a terminal device, etc.
  • a device 1600 may include:
  • the transceiver 1605 is configured to receive indication information indicating multiple precoders
  • the processor 1601 is configured to determine the multiple precoders based on the indication information
  • the transceiver 1605 is further configured to repeatedly send the PUSCH based on the precoder determined by the processor; wherein, at least two of the PUSCHs use different precoders.
  • the multiple SRS resources configured by the processor 1601 may be multiple SRS resources in one SRS resource set, or multiple SRS resources in multiple SRS resource sets.
  • the transceiver 1605 can use the same time domain resource to transmit PUSCH, or use different time domain resources to transmit PUSCH, that is, the transceiver can transmit at different time domain positions, and different time domain positions It can be different slots, continuous slots or different time domain symbols on the same slot;
  • the transceiver 1605 may use the same port to transmit PUSCH, or use different ports to transmit PUSCH, where the port may be an SRS port that transmits SRS or a port that transmits PUSCH;
  • the transceiver 1605 may use the same frequency domain resource to transmit the PUSCH, or use different frequency domain resources to transmit the PUSCH, and the frequency domain resources may be continuous or discontinuous.
  • the processor 1605 can also combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving the uplink Probability of correct decoding.
  • the apparatus 1600 provided in this embodiment can achieve the technical effects obtained by the method in any one of the foregoing Embodiments 1 to 4, as described in the foregoing Embodiments 1 to 4, and will not be repeated here.
  • a device 1600 for example, an integrated circuit, a wireless device, a circuit module, or a terminal device, etc.
  • a device 1600 may include:
  • the transceiver 1605 is used to receive multiple CSI-RS;
  • the processor 1601 is configured to perform joint channel measurement based on the received multiple CSI-RS to obtain an SRS precoder
  • the processor 1601 is further configured to configure multiple SRS resources based on the SRS precoder;
  • the transceiver 1605 is further configured to send multiple SRS on the multiple SRS resources;
  • the transceiver 1605 is further configured to receive indication information indicating one or more precoders
  • the processor 1601 is further configured to determine one or more precoders based on the indication information
  • the transceiver 1605 is further configured to send PUSCH based on the one or more precoders determined by the processor.
  • multiple CSI-RSs are configured with different QCL relationships, that is, multiple CSI-RSs are CSI-RSs from different network devices.
  • the processor 1601 configures the multiple SRS resources respectively according to one SRS precoder obtained by the multiple CSI-RS joint channel measurements, that is, the multiple SRS resources correspond to the multiple CSI-RSs respectively of.
  • the multiple SRS resources configured by the processor 1601 may be multiple SRS resources in one SRS resource set, or multiple SRS resources in multiple SRS resource sets.
  • at least two of the multiple precoders received by the transceiver 1605 are different; that is, the precoders used by the at least two PUSCHs sent by the transceiver 1605 are different.
  • the processor 1601 performs joint channel measurement on multiple CSI-RSs to obtain the SRS precoder, thereby providing conditions for the network device to receive multiple PUSCHs jointly, multiple different devices sent to different network devices PUSCH can use different precoders for repeated transmission, which can further enhance the reliability of uplink transmission.
  • the multiple precoders received by the transceiver 1605 are selected by the network device from multiple SRS precoders and indicated by the SRI field, where multiple precoders can be combined by one SRI in the SRI field. Indication, that is, all precoders selected are indicated by one SRI; it can also be independently indicated by multiple SRIs in the SRI field, that is, different precoders selected according to different CSI-RS are indicated by different SRIs.
  • the processor 1601 can also combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving the uplink Probability of correct decoding.
  • the apparatus 1600 provided in this embodiment can achieve the technical effects that can be obtained by the method in the sixth embodiment as described in the sixth embodiment, and will not be repeated here.
  • the apparatus 1600 may also be a network device, or a component of a network device (for example, an integrated circuit, a chip, etc.).
  • the device may also be another communication unit, which is used to implement the method in the embodiment of the present application.
  • a device 1600 for example, a network device, a base station, or a baseband chip
  • a device 1600 may include:
  • the transceiver 1605 is used to send multiple CSI-RS;
  • the transceiver 1605 is configured to receive multiple SRSs, and the multiple SRSs correspond to multiple SRS precoders obtained based on channel measurement of the CSI-RS; that is, the multiple SRSs and multiple SRS precoders Correspondingly, the multiple SRS are obtained based on channel measurement of the CSI-RS.
  • the processor 1601 is configured to select multiple precoders from the multiple SRS precoders based on the SRS;
  • the transceiver 1605 is configured to send indication information indicating multiple precoders.
  • multiple CSI-RSs are configured with different QCL relationships, that is, multiple CSI-RSs are CSI-RSs from different network devices.
  • the indication information that indicates multiple precoders issued by the transceiver 1605 is the SRI field, where multiple precoders can be jointly indicated by one SRI in the SRI field, that is, all selected precoders can be indicated by one SRI. precoder; it can also be independently indicated by multiple SRIs in the SRI field, that is, different precoders selected according to different CSI-RS are indicated by different SRIs.
  • the transceiver 1605 may also receive multiple repeatedly transmitted PUSCHs, where at least two PUSCHs use different precoders.
  • the processor 1601 can also combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving the uplink Probability of correct decoding.
  • the apparatus 1600 provided in this embodiment can achieve the technical effects that can be obtained by the method in the foregoing Embodiment 3 as described in the foregoing Embodiment 3, and will not be repeated here.
  • a device 1600 for example, a network device, a base station, or a baseband chip
  • a device 1600 may include:
  • the transceiver 1605 is used to receive multiple SRS;
  • the processor 1601 is configured to obtain an uplink channel state based on the received multiple SRS measurements, and to select multiple precoders based on the uplink channel state.
  • the transceiver 1605 is configured to send indication information indicating the multiple precoders.
  • the indication information configures different QCL relationships or different TCI states, that is, the different precoders correspond to different network devices.
  • the transceiver 1605 indicates that the indication information for multiple precoders is a TPMI field, and the TPMI field contains multiple TPMIs, where each TPMI corresponds to one precoder, or the multiple precoders are assigned to the TPMI field.
  • Each of the TPMIs is indicated separately, where each TPMI corresponds to multiple precoders; where, that is, the multiple precoders indicated by the TPMI domain are respectively determined according to different channel matrices.
  • the TPMI field includes multiple TPMI implementations, such as increasing the number of bits in the TPMI field so that it can indicate multiple TPMIs at the same time; or using the reserved index in the TPMI table and making it Multiple TPMIs can be indicated; or a new TPMI table can be used to include indexes that indicate multiple TPMIs.
  • the transceiver 1605 may also receive multiple repeatedly transmitted PUSCHs, where at least two PUSCHs use different precoders.
  • the processor 1601 combines the soft information of the multiple PUSCHs to simultaneously demodulate the multiple PUSCHs, and combine and decode the demodulated soft information, thereby improving uplink decoding. Probability of correctness.
  • the apparatus 1600 provided in this embodiment can achieve the technical effects that can be obtained by the method in the foregoing embodiment four as described in the foregoing embodiment four, and will not be repeated here.
  • a device 1600 for example, a network device, a base station, or a baseband chip
  • a device 1600 may include:
  • the transceiver 1605 is used to send CSI-RS;
  • the transceiver 1605 is configured to receive multiple SRSs, and the multiple SRSs correspond to an SRS precoder obtained based on joint channel measurement of the CSI-RS;
  • the processor 1601 is configured to select one or more precoders from the multiple SRS precoders based on the multiple SRS.
  • the transceiver 1605 is configured to send indication information indicating the one or more precoders.
  • multiple CSI-RSs are configured with different QCL relationships, indicating CSI-RSs from different network devices.
  • the indication information that indicates multiple precoders issued by the transceiver 1605 is an SRI field, where the multiple precoders may be jointly indicated by one SRI in the SRI field, that is, through one SRI field. Indicate all selected precoders; there may also be multiple SRI independent indications in the SRI field, that is, different SRIs are used to indicate different precoders selected according to different CSI-RSs.
  • At least two of the multiple precoders received by the transceiver 1605 are different; at least two PUSCHs sent by the transceiver 1605 use different precoders.
  • the transceiver 1605 may receive the PUSCH repeatedly transmitted using a precoder.
  • the processor 1601 can also combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving the uplink Probability of correct decoding.
  • the apparatus 1600 provided in this embodiment can achieve the technical effects that can be obtained by the methods in the sixth embodiment and the eighth embodiment as described in the sixth embodiment and the eighth embodiment, and will not be repeated here.
  • a device 1600 for example, a network device, a base station, or a baseband chip
  • a device 1600 may include:
  • the transceiver 1605 is used to receive multiple SRS;
  • the processor 1601 is configured to perform joint channel measurement based on the multiple SRS;
  • the processor 1601 is configured to select the one or more precoders based on the result of the joint channel measurement
  • the transceiver 1605 is configured to send indication information indicating the one or more precoders.
  • the processor 1601 performs joint channel measurement on the uplink based on multiple SRSs, selects a suitable precoder, and sends indication information to the terminal.
  • the indication information is configured with different QCL relationships or different QCL relationships.
  • the status of the TCI that is, the instruction information indicating multiple precoders can be delivered to the terminal through one interface, or can be delivered to the terminal separately through multiple interfaces.
  • At least two of the multiple precoders received by the transceiver 1605 are different.
  • the transceiver 1605 may receive the PUSCH repeatedly transmitted using a precoder.
  • the processor 1601 can also combine the soft information of the multiple PUSCHs, so as to demodulate multiple PUSCHs at the same time, and combine and decode the demodulated soft information, thereby improving the uplink Probability of correct decoding.
  • the apparatus 1600 provided in this embodiment can achieve the technical effects that can be obtained by the methods in the seventh embodiment and the eighth embodiment as described in the seventh embodiment and the eighth embodiment, and will not be repeated here.
  • Figure 28 provides a schematic structural diagram of a terminal device.
  • the terminal device can be applied to any scene shown in the embodiment of the present application.
  • FIG. 28 only shows the main components of the terminal device.
  • the terminal equipment includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, parse and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal to obtain a radio frequency signal and sends the radio frequency signal through the antenna in the form of electromagnetic waves. .
  • the radio frequency circuit receives the radio frequency signal through the antenna, the radio frequency signal is further converted into a baseband signal, and the baseband signal is output to the processor, and the processor converts the baseband signal into data and performs processing on the data. deal with.
  • FIG. 28 only shows a memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present invention.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and the various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and control circuit with the transceiver function may be regarded as the communication unit 1711 of the terminal device, and the processor with the processing function may be regarded as the processing unit 1712 of the terminal device.
  • the terminal device includes a communication unit 1711 and a processing unit 1712.
  • the communication unit may also be referred to as a transceiver, transceiver, transceiving device, and so on.
  • the device for implementing the receiving function in the communication unit 1711 can be regarded as the receiving unit, and the device for implementing the sending function in the communication unit 1711 as the sending unit, that is, the communication unit 1711 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the foregoing receiving unit and sending unit may be an integrated unit or multiple independent units.
  • the above-mentioned receiving unit and sending unit may be in one geographic location, or may be scattered in multiple geographic locations.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function for storing program instructions and/or data.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统。本申请中终端接收由多个网络设备的下发的指示信息,其中指示信息是用来指示多个预编码precoder的;终端根据指示信息来确定多个precoder,并使用该多个precoder重复发送物理上行共享信道PUSCH;其中,至少有两个PUSCH使用不同的precoder。本申请通过使用不同precoder重复发送PUSCH,保证了传输的解码性能,增强了上行传输的可靠性。本申请提供的上行数据重复传输技术,可以适用于单站传输或者多站传输场景,也适用于基于码本或基于非码本的上行传输模式。此外,本申请还提供了一种上行传输的联合接收技术,适用于基于码本或非码本的多站传输场景。本申请可适用于5G及未来的无线网络。

Description

物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统 技术领域
本申请涉及通信技术领域,尤其涉及物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统。
背景技术
随着移动通信的快速发展,一些场景中,对通信可靠性提出了更高的要求,如超高可靠低时延通信(ultra-reliable low-latency communication,URLLC)技术对可靠性的需求达到了10^-5次方甚至更高的要求,其含义是在10^-5甚至更高量级的传输(比特)中最多只出现1次的错误。
目前的上行物理共享信道(physical uplink shared channel,PUSCH)传输中,终端最大可以传输4个数据流,并且支持两种类型的传输模式:基于码本(codebook based,CB)的上行传输模式(UL transmission scheme,)和基于非码本(non-codebook based,NCB)的上行传输模式(UL transmission scheme)。但是这两种上行传输模式如何增强可靠性,是亟待解决的技术问题。
另外,目前的新无线(New Radio,NR)中,为了提高上行覆盖,支持时隙聚合(slot aggregation)的传输方式。但是这种时隙聚合的传输方式必须保证所有的时隙(slot)中均使用相同的precoder,且无法进行slot内(即基于mini-slot)的传输,因此如果聚合的slot非常大,信道条件在聚合的多个slot内发生了变化或终端的位置发生了移动,那么配置的1个precoder在聚合的多个slot内可能不再一直适用,使得网络设备接收到的数据解译性能下降,从而无法保证终端的上行性能,尤其无法保证小区边缘终端的性能,无法提升上行覆盖。
综上,对于如何增强PUSCH可靠性问题亟待解决。
发明内容
本申请公开物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统。
第一方面,本申请提供了一种物理上行共享信道PUSCH传输数据的方法,包括:终端接收由多个网络设备的下发的指示信息,其中指示信息是用来指示多个预编码precoder的;终端根据指示信息来确定多个precoder,并使用该多个precoder重复发送PUSCH;其中,至少有两个PUSCH使用不同的precoder。
可见,第一方面提供的方法中,PUSCH传输数据可以使用不同的precoder。一种实施方式中,指示信息指示的多个precoder可以是一个网络设备下发给终端的,相比于始终使用一个precoder而言,终端可以在信道条件发生改变时,使用不同的precoder,保证传输的解码性能,增强了上行传输的可靠性。
又一种实施方式中,所述指示信息指示多个precoder,所述指示信息配置不同的准共位置(quasi-colocation,QCL)关系或不同的传输配置指示(Transmission Configuration Indication,TCI)状态,也即该不同的precoder是对应不同的网络设备的。该指示多个precoder的指示信息可以通过一个网络设备下发给终端,也可以通过多个网络设备分别下发给终端,如此,终端可以使用不同的precoder来向不同的网络设备重复发送PUSCH,实现了多站情景下的上行PUSCH重复传输,与现有的时隙聚合的传输方式中只能使用单个相同的precoder不同,多站情景下的PUSCH的重复传输可以使用不同的precoder,从而得到分集增益,并且在终端移动到不同的小区覆盖范围时,也可以保证传输的解码性能,增强了上行传输的可靠性。
在一种实施方式中,在终端接收到所述指示信息之前,还包括如下步骤:终端首先接收到由多个网络设备下发的多个信道状态参考信号(Channel State Information Reference Signal,CSI-RS)或一个网络设备下发的多个CSI-RS,然后终端对多个CSI-RS分别进行信道测量得到多个信道矩阵,此时终端需要根据多个信道矩阵分别选择探测参考信号预编码(Sounding reference signal precoder,SRS precoder),然后终端根据多个SRS precoder来配置多个探测参考信号资源(Sounding reference signal resource,SRS resource),然后发送探测参考信号(Sounding reference signal,SRS)。
相对于现有技术中,终端基于网络设备下发的CSI-RS进行测量,得到一个SRS precoder而言,本技术方案可以基于网络设备下发的多个CSI-RS进行信道测量,得到多个SRS precoder以供网络设备进行选择并下发给终端,从而为终端采用不同的precoder发送PUSCH提供了基础。
在一种实施方式中,终端是基于对多个CSI-RS进行信道测量来配置多个SRS resource的,即,多个SRS resource是多个CSI-RS分别对应的。
在一种实施方式中,终端接收到的多个precoder是网络设备从多个SRS precoder中选择并通过探测参考信号资源指示(Sounding reference signal resource indicator,SRI)域指示的,其中,多个precoder既可以由SRI域中的一个SRI联合指示,即通过一个SRI指示网络设备所选的多个precoder;也可以由SRI域中的多个SRI独立指示,即通过不同的SRI来指示不同precoder。
在一种实施方式中,终端接收到的多个precoder也可以由传输预编码矩阵指示(Transmission precoding matrix indicator,TPMI)域中的多个TPMI分别指示,其中,每个TPMI对应一个precoder;或者终端接收到的多个precoder也可以由TPMI域中的一个TPMI分别指示,每个所述TPMI对应多个precoder即所述TPMI域指示的多个precoder是根据不同的信道矩阵分别确定的。TPMI域包括多个TPMI的实现的方式有多种,例如增加TPMI域的比特数,使其可以同时指示多个TPMI;或者使用TPMI表(table)中的预留索引(index),并使其可以指示多个TPMI;或者使用新的TPMI table,使其包含指示多个TPMI的索引(index)。
在一种实施方式中,终端配置的多个SRS resource可以是一个探测参考信号资源集合(Sounding reference signal resource set,SRS resource set)中的多个SRS resource,也可以是多个SRS resource set中的多个SRS resource。
终端配置一个SRS resource set时,该一个SRS resource set的一部分SRS resource 可以对应终端接收到的一个CSI-RS;而另一部分SRS resource可以对应终端接收到的另一个CSI-RS;这种方式有利于最大限度的利用SRS resource资源。
终端配置多个SRS resource set时,其中的一个SRS resource set的所有SRS resource对应一个CSI-RS,另一个SRS resource set的所有SRS resource对应另一个CSI-RS;这种方式有利于与现有协议保持兼容;或者一个SRS resource set中的一部分SRS resource对应一个CSI-RS,而另外一部分SRS resource对应另一个CSI-RS。
在一种实施方式中,终端既可以使用相同的时域资源发送PUSCH,也可以使用不同的时域资源发送PUSCH,即终端可以在不同的时域位置发送,其中不同的时域位置可以为不同的slot、连续的slot或者是同一个slot上不同的时域符号;
在一种实施方式中,终端既可以使用相同的port发送PUSCH,也可以使用不同的port发送PUSCH,其中port可以为发送SRS的SRS port,也可以为发送PUSCH的port;
在一种实施方式中,终端既可以使用相同的频域资源发送PUSCH,也可以使用不同的频域资源发送PUSCH,且频域资源可以为连续的或者不连续的。第二方面,本申请还提供了一种物理上行共享信道PUSCH传输数据的方法,包括:
终端在接收到多个CSI-RS后,使用多个CSI-RS进行联合信道测量,得到SRS precoder;
终端对多个CSI-RS进行联合信道测量,即将多个信道矩阵看作是一个可以合并的联合信道矩阵,然后对所述联合信道矩阵进行奇异值分解(singular value decomposition,SVD),得到该联合矩阵的特征向量,终端根据所述特征向量选择多个候选的SRS precoder并配置多个SRS resource,然后将承载所述多个SRS precoder的SRS发送给网络设备;最后,终端根据网络设备下发的指示其中的一个或多个precoder的指示信息选择precoder来发送PUSCH。
其中,多个CSI-RS配置不同的QCL关系,也即多个CSI-RS是来自不同的网络设备的CSI-RS。
可见,第二方面提供的方法中,上行用于探测的SRS precoder是由联合信道矩阵决定的,即终端是基于多个传输信道的联合矩阵来选择SRS precoder的,基于上下行信道互易性,终端向网络设备发送SRS上承载的SRS precoder,对应终端根据联合信道测量得到的信道信息,相当于提升了接收天线数;与此同时,由于联合信道矩阵的低相关性,也减少了MIMO天线间的解调干扰,进一步保证了多天线的性能增益。
本方法实现了多站情景下的上行PUSCH联合接收,通过上行接收信号的合并提升了上行解码性能,增强传输可靠性。
在一种实施方式中,终端是根据所述多个CSI-RS联合信道测量得到的一个SRS precoder分别配置所述多个SRS resource,即,多个SRS resource是多个CSI-RS分别对应的。
在一种实施方式中,终端配置的多个SRS resource可以是一个SRS resource set中的多个SRS resource,也可以是多个SRS resource set中的多个SRS resource。
在一种实施方式中,终端可以重复发送PUSCH,在该情景下,终端接收到的多个 precoder中至少有两个precoder不同;也即,终端发送的至少两个PUSCH使用的precoder不同。
实施本技术方案,在终端对多个CSI-RS进行联合信道测量得到SRS precoder,从而为网络设备对多个PUSCH进行联合接收提供条件的基础上,多个发向不同网络设备的不同的PUSCH可以采用不同的precoder进行重复传输,可以进一步增强上行传输的可靠性。
在一种实施方式中,终端接收到的所述多个precoder是网络设备从多个SRS precoder中选择并通过SRI域指示的,其中,多个precoder既可以由SRI域中的一个SRI联合指示,即通过一个SRI指示所选的全部precoder;也可以由SRI域中的多个SRI独立指示,即通过不同的SRI来指示根据不同的CSI-RS所选的不同precoder。
在一种实施方式中,终端既可以使用相同的时域资源发送PUSCH,也可以使用不同的时域资源发送PUSCH,即终端可以在不同的时域位置发送,其中不同的时域位置可以为不同的slot、连续的slot或者是同一个slot上不同的时域符号;
在一种实施方式中,终端既可以使用相同的port发送PUSCH,也可以使用不同的port发送PUSCH,其中port可以为发送SRS的SRS port,也可以为发送PUSCH的port;
在一种实施方式中,终端既可以使用相同的频域资源发送PUSCH,也可以使用不同的频域资源发送PUSCH,且频域资源可以为连续的或者不连续的。
第三方面,本申请还提供了一种传输数据的方法,包括:
网络设备下发CSI-RS给终端,网络设备接收多个SRS,其中,发送所述多个SRS的多个SRS resource基于多个CSI-RS进行信道测量得到的多个SRS precoder对应,然后网络设备从多个SRS precoder中分别选择合适的precoder,最后发送指示多个precoder的指示信息。
在一种实施方式中,在单站场景中,该网络设备可以向终端发送多个CSI-RS,该多个CSI-RS配置为相同的QCL关系,且向终端发送的指示多个precoder的指示信息配置为相同的QCL关系或TCI状态,并且至少两个precoder不同,与现有的时隙聚合的传输方式中只能使用单个相同的precoder不同,单站情景下的PUSCH的重复传输也可以使用不同的precoder,从而在信道条件发生变化时,也可以保证传输的解码性能,增强了单站场景下上行传输的可靠性。
在一种实施方式中,该网络设备发送的CSI-RS与其他网络设备发送的CSI-RS被分别配置不同的QCL关系,也即终端接收到的多个CSI-RS是来自不同的网络设备的CSI-RS。
网络设备向终端发送指示多个precoder的指示信息,因此可以使得终端能够使用多个不同的precoder重复发送PUSCH,实现了多站情景下的上行PUSCH重复传输,与现有的时隙聚合的传输方式中只能使用单个相同的precoder不同,多站情景下的PUSCH的重复传输可以使用不同的precoder,从而在终端移动到不同的小区覆盖范围时,也可以保证传输的解码性能,增强了上行传输的可靠性。
在一种实现方式中,网络设备下发的指示多个precoder的指示信息为SRI域,其 中,多个precoder既可以由SRI域中的一个SRI联合指示,即通过一个SRI指示所选的全部precoder;也可以由SRI域中的多个SRI独立指示,即通过不同的SRI来指示根据不同的CSI-RS所选的不同precoder。
在一种实施方式中,网络设备还能合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
第四方面,本申请还提供一种数据传输的方法,包括:
网络设备接收由终端发送的多个SRS,并根据所述多个SRS测量到的上行信道状态,并根据信道状态选择多个precoder,并发送指示所述多个precoder的指示信息。
在第四方面提供的方法中,网络设备向终端发送指示多个precoder的指示信息,该指示信息配置不同的QCL关系或不同的TCI状态,即该不同的precoder是对应不同的网络设备的,因此可以使得终端能够使用多个不同的precoder向不同的网络设备重复发送PUSCH,实现了多站情景下的上行PUSCH重复传输,与现有的时隙聚合的传输方式中只能使用单个相同的precoder不同,从而保证了传输的解码性能,增强了上行传输的可靠性。
在一种实施方式中,网络设备下发指示多个precoder的指示信息为TPMI域,TPMI域中包含多个TPMI,其中,每个TPMI对应一个precoder,或者所述多个precoder由TPMI域中的一个TPMI分别指示,其中,每个所述TPMI对应多个precoder;其中,TPMI域指示的多个precoder是根据不同的信道矩阵分别确定。TPMI域包括多个TPMI的实现的方式有多种,例如增加TPMI域的比特数,使其可以同时指示多个TPMI;或者使用TPMI表(table)中的预留索引(index),并使其可以指示多个TPMI;或者使用新的TPMI table,使其包含指示多个TPMI的索引(index)。
在一种实现方式中,网络设备还可以接收多个重复发送的PUSCH,其中,至少两个所述PUSCH使用的precoder不同。
在一种实施方式中,网络设备合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
第五方面,本申请还提供一种传输数据的方法:网络设备向终端发送CSI-RS,其中,该网络设备发送的CSI-RS与其他网络设备发送的CSI-RS配置不同的QCL关系,表示来自不同网络设备的CSI-RS;网络设备接收多个SRS,发送该多个SRS的多个SRS resource与基于对所述CSI-RS进行联合测量得到的SRS precoder对应,然后网络设备根据终端发送的多个SRS,从SRS precoder中选择一个或多个precoder,然后向终端发送指示一个或多个precoder的指示信息。
可见,在第五方面提供的方法中,上行用于探测的SRS precoder是由联合信道矩阵决定的,即终端是基于多个传输信道的联合矩阵来选择SRS precoder的,基于上下行信道互易性,终端向网络设备发送SRS上承载的SRS precoder,对应终端根据联合 信道测量得到的信道信息,相当于提升了接收天线数;与此同时,由于联合信道矩阵的低相关性,也减少了MIMO天线间的解调干扰,进一步保证了多天线的性能增益。本方法实现了多站情景下的上行PUSCH联合接收,通过上行接收信号的合并提升了上行解码性能,增强传输可靠性。
在一种实现方式中,网络设备下发的指示多个precoder的指示信息为SRI域,其中,所述的多个precoder既可以由所述SRI域中的一个SRI联合指示,即通过一个SRI指示所选的全部precoder;也可以有所述SRI域中的多个SRI独立指示,即通过不同的SRI来指示根据不同的CSI-RS所选的不同precoder。
实施本技术方案,在终端对多个CSI-RS进行联合信道测量得到SRS precoder,从而为网络设备对多个PUSCH进行联合接收提供条件的基础上,多个发向不同网络设备的不同的PUSCH可以采用不同的precoder进行重复传输,可以进一步增强上行传输的可靠性。在一种实施方式中,网络设备既可以接收由终端使用相同的时域资源发送的PUSCH,也可以接收由终端使用不同的时域资源发送的PUSCH,即网络设备可以在不同的时域位置接收,其中不同的时域位置可以为不同的slot、连续的slot或者是同一个slot上不同的时域符号;
在一种实施方式中,网络设备既可以接收由终端使用相同的port发送的PUSCH,也可以接收由终端使用不同的port发送的PUSCH,其中port可以为发送SRS的SRS port,也可以为发送PUSCH的port;
在一种实施方式中,网络设备既可以接收由终端使用相同的频域资源发送的PUSCH,也可以接收由终端使用不同的频域资源发送的PUSCH,且频域资源可以为连续的或者不连续的。
在一种实施方式中,网络设备还合并接收到的多个PUSCH,并对合并后的PUSCH进行解调得到软信息以进行译码。
在一种实施方式中,网络设备接收到的多个PUSCH使用相同的precoder;
在一种实施方式中,所述指示信息指示的多个precoder中至少有两个precoder不同;所述网络设备接收到的至少两个PUSCH使用的precoder不同。
第六方面,本申请还提供了一种传输数据的方法,包括:网络设备接收由终端发送的多个SRS,并根据所述多个SRS进行联合信道测量,并选择合适的一个或多个precoder,然后再向终端发送指示一个或多个precoder的指示信息。
可见,在第六方面提供的方法中,网络设备是根据多个SRS进行联合信道测量得到上行联合信道状态,然后选择了合适的precoder,并向终端发送指示信息,该指示信息配置不同的QCL关系或者不同的TCI状态,即该指示多个precoder的指示信息可以通过一个网络设备下发给终端,也可以通过多个网络设备分别下发给终端。即实现了多站场景下的PUSCH联合接收,通过上行接收信号的合并提升了上行解码性能,增强传输可靠性。
在一种实施方式中,网络设备还用于合并接收到的多个PUSCH,并对合并后的PUSCH进行解调得到软信息以进行译码。
在一种实施方式中,网络设备接收到的多个PUSCH使用相同的precoder;
在一种实施方式中,所述指示信息指示的多个precoder中至少有两个precoder不同;所述网络设备接收到的至少两个PUSCH使用的precoder不同。
第七方面,本申请还提供一种终端,该终端具有实现上述第一方面所述的方法示例中终端的部分或全部功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该终端的结构中可包括处理单元和通信单元,所述处理单元被配置为支持终端执行上述方法中相应的功能。所述通信单元用于支持终端与其他设备之间的通信。所述终端还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存终端必要的程序指令和数据。
在一种实施方式中,所述终端包括:
通信单元,用于接收指示多个precoder的指示信息;
处理单元,用于基于所述指示信息确定所述多个precoder;
所述通信单元,还用于基于所述处理单元确定的precoder,重复发送PUSCH;
其中,至少两个所述PUSCH使用的precoder不同。
作为示例,处理单元可以为处理器,通信单元可以为收发器,存储单元可以为存储器。
在一种实施方式中,所述终端包括:
收发器,用于接收指示多个precoder的指示信息;
处理器,用于基于所述指示信息确定所述多个precoder;
所述收发器,还用于基于所述处理器确定的precoder,重复发送PUSCH;其中,至少两个所述PUSCH使用的precoder不同。
在一种实施方式中,所述指示信息指示多个precoder,所述指示信息配置不同的QCL关系或不同的TCI状态,也即该不同的precoder是对应不同的网络设备的。
在一种实施方式中,在收发器接收到所述指示信息之前,收发器首先接收到由多个网络设备下发的多个CSI-RS或一个网络设备下发的多个CSI-RS,然后处理器对多个CSI-RS分别进行信道测量得到多个信道矩阵,此时处理器需要根据多个信道矩阵分别选择SRS precoder,然后根据多个SRS precoder配置多个SRS resource并通过收发器发送多个SRS。
在一种实施方式中,所述多个SRS resource由所述处理器根据所述多个CSI-RS信道测量得到的SRS precoder分别配置,即,多个SRS resource是多个CSI-RS分别对应的。
在一种实施方式中,收发器接收到的多个precoder是网络设备从多个SRS precoder中选择并通过SRI域指示的,其中,多个precoder既可以由所述SRI域中的一个SRI联合指示,即通过一个SRI指示网络设备所选的全部多个precoder;也可以由SRI域中的多个SRI独立指示,即通过不同的SRI来指示不同precoder。
在一种实施方式中,收发器接收到的多个precoder也可以是由TPMI域中多个 TPMI分别指示,其中,每个TPMI对应一个precoder;或者,所述多个precoder由TPMI域中的一个TPMI分别指示,其中,每个所述TPMI对应多个precoder即所述TPMI域指示的多个precoder是根据不同的信道矩阵分别确定的。TPMI域包括多个TPMI的实现的方式有多种,例如增加TPMI域的比特数,使其可以同时指示多个TPMI;或者使用TPMI表(table)中的预留索引(index),并使其可以指示多个TPMI;或者使用新的TPMI table,使其包含指示多个TPMI的索引(index)。
在一种实施方式中,处理器配置的多个SRS resource可以是一个SRS resource set中的多个SRS resource,也可以是多个SRS resource set中的多个SRS resource。
在一种实施方式中,收发器既可以使用相同的时域资源发送PUSCH,也可以使用不同的时域资源发送PUSCH,即收发器可以在不同的时域位置发送,其中不同的时域位置可以为不同的slot、连续的slot或者是同一个slot上不同的时域符号;
在一种实施方法中,收发器既可以使用相同的port发送PUSCH,也可以使用不同的port发送PUSCH,其中port可以为发送SRS的SRS port,也可以为发送PUSCH的port;
在一种实施方法中,收发器既可以使用相同的频域资源发送PUSCH,也可以使用不同的频域资源发送PUSCH,且频域资源可以为连续的或者不连续的。
在一种实施方式中,处理器还能合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
第八方面,本申请还提供一种终端,该终端具有实现上述第二方面所述的方法示例中终端的部分或全部功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该终端的结构中可包括处理单元和通信单元,所述处理单元被配置为支持终端执行上述方法中相应的功能。所述通信单元用于支持终端与其他设备之间的通信。所述终端还可以包括存储单元,所述存储单元用于与处理单元和发送单元耦合,其保存终端必要的程序指令和数据。
在一种实施方式中,所述终端包括:
通信单元,用于接收多个CSI-RS;
处理单元,用于基于接收的多个CSI-RS进行联合信道测量,得到SRS precoder;
所述处理单元,还用于基于所述SRS precoder配置多个SRS resource;
所述通信单元,还用于在所述多个SRS resource上发送多个SRS;
所述通信单元,还用于接收指示一个或多个precoder的指示信息;
所述处理单元,还用于基于所述指示信息,确定一个或多个precoder;
所述通信单元,还用于基于所述处理单元确定的所述一个或多个precoder发送PUSCH。
作为示例,处理单元可以为处理器,通信单元可以为收发器,存储单元可以为存 储器。
在一种实施方式中,所述终端包括:
收发器,用于接收多个CSI-RS;
处理器,用于基于接收的多个CSI-RS进行联合信道测量,得到SRS precoder;
所述处理器,还用于基于所述SRS precoder配置多个SRS resource;
所述收发器,还用于在所述多个SRS resource上发送多个SRS;
所述收发器,还用于接收指示一个或多个precoder的指示信息;
所述处理器,还用于基于所述指示信息,确定一个或多个precoder;
所述收发器,还用于基于所述处理器确定的所述一个或多个precoder发送PUSCH。
其中,多个CSI-RS配置不同的QCL关系,也即多个CSI-RS是来自不同的网络设备的CSI-RS。
在一种实施方式中,处理器是根据所述多个CSI-RS联合信道测量得到的一个SRS precoder分别配置所述多个SRS resource,即,多个SRS resource是多个CSI-RS分别对应的。
在一种实施方式中,处理器配置的多个SRS resource可以是一个SRS resource set中的多个SRS resource,也可以是多个SRS resource set中的多个SRS resource。在一种实施方式中,收发器接收到的多个precoder中至少有两个precoder不同;也即,收发器发送的至少两个PUSCH使用的precoder不同。
实施本技术方案,在处理器对多个CSI-RS进行联合信道测量得到SRS precoder,从而为网络设备对多个PUSCH进行联合接收提供条件的基础上,多个发向不同网络设备的不同的PUSCH可以采用不同的precoder进行重复传输,可以进一步增强上行传输的可靠性。在一种实施方式中,收发器接收到的所述多个precoder是网络设备从多个SRS precoder中选择并通过SRI域指示的,其中,多个precoder既可以由SRI域中的一个SRI联合指示,即通过一个SRI指示所选的全部precoder;也可以由SRI域中的多个SRI独立指示,即通过不同的SRI来指示根据不同的CSI-RS所选的不同precoder。
在一种实施方式中,收发器既可以使用相同的时域资源发送PUSCH,也可以使用不同的时域资源发送PUSCH,即终端可以在不同的时域位置发送,其中不同的时域位置可以为不同的slot、连续的slot或者是同一个slot上不同的时域符号;
在一种实施方式中,收发器既可以使用相同的port发送PUSCH,也可以使用不同的port发送PUSCH,其中port可以为发送SRS的SRS port,也可以为发送PUSCH的port;
在一种实施方式中,收发器既可以使用相同的频域资源发送PUSCH,也可以使用不同的频域资源发送PUSCH,且频域资源可以为连续的或者不连续的。
在一种实施方式中,处理器还能合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
第九方面,本申请还提供一种网络设备。该网络设备具有实现上述第三方面所述的方法示例中网络设备的部分或全部功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该网络设备的结构中可包括处理单元和通信单元,所述通信单元被配置为支持网络设备执行上述方法中相应的功能。所述通信单元用于支持网络设备与其他设备之间的通信。所述网络设备还可以包括存储单元,所述存储单元用于与获取单元和发送单元耦合,其保存网络设备必要的程序指令和数据。
在一种实施方式中,所述网络设备包括:
通信单元,用于发送多个CSI-RS;
所述通信单元,用于接收多个SRS,所述多个SRS与基于对所述CSI-RS进行信道测量得到的多个SRS precoder对应;也即,所述多个SRS与多个SRS precoder对应,所述多个SRS是基于对所述CSI-RS进行信道测量得到的。
处理单元,用于基于所述SRS,从所述多个SRS precoder中选择多个precoder;
所述通信单元,用于发送指示多个所述precoder的指示信息。
作为示例,通信单元可以为收发器,存储单元可以为存储器,处理单元可以为处理器。一种实施方式中,所述网络设备包括:
收发器,用于发送多个CSI-RS;
所述收发器,用于接收多个SRS,所述多个SRS与基于对所述CSI-RS进行信道测量得到的多个SRS precoder对应;也即,所述多个SRS与多个SRS precoder对应,所述多个SRS是基于对所述CSI-RS进行信道测量得到的。处理器,用于基于所述SRS,从所述多个SRS precoder中选择多个precoder;
所述收发器,用于发送指示多个所述precoder的指示信息。
其中,多个CSI-RS配置不同的QCL关系,也即多个CSI-RS是来自不同的网络设备的CSI-RS。
在一种实现方式中,收发器下发的指示多个precoder的指示信息为SRI域,其中,多个precoder既可以由SRI域中的一个SRI联合指示,即通过一个SRI指示所选的全部precoder;也可以由SRI域中的多个SRI独立指示,即通过不同的SRI来指示根据不同的CSI-RS所选的不同precoder。
在一种实现方式中,收发器还可以接收多个重复发送的PUSCH,其中,至少两个所述PUSCH使用的precoder不同。
在一种实施方式中,处理器还用于合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
第十方面,本申请还提供一种网络设备。该网络设备具有实现上述第四方面所述的方法示例中网络设备的部分或全部功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该网络设备的结构中可包括处理单元和通信单元,所述通信单元被配置为支持网络设备执行上述方法中相应的功能。所述通信单元用于支持网络设备与其他设备之间的通信。所述网络设备还可以包括存储单元,所述存储单元用于与获取单元和发送单元耦合,其保存网络设备必要的程序指令和数据。
在一种实施方式中,所述网络设备包括:
通信单元,用于接收多个SRS;
处理单元,用于基于接收的所述多个SRS测量得到上行信道状态,以及用于基于所述上行信道状态选择多个precoder。
所述通信单元,用于发送指示所述多个precoder的指示信息。
作为示例,通信单元可以为收发器,存储单元可以为存储器,处理单元可以为处理器。
一种实施方式中,所述网络设备包括:
收发器,用于接收多个SRS;
处理器,用于基于接收的所述多个SRS测量得到上行信道状态,以及用于基于所述上行信道状态选择多个precoder。
所述收发器,用于发送指示所述多个precoder的指示信息。
在一种实施方式中,该网络设备发送的指示信息与其他网络设备发送的指示信息分别配置不同的QCL关系或不同的TCI状态,用于间接表示该不同的precoder是对应不同的网络设备的。
在一种实施方式中,收发器下发指示多个precoder的指示信息为TPMI域,TPMI域中包含多个TPMI,其中,每个TPMI对应一个precoder,或者所述多个precoder由TPMI域中的一个TPMI分别指示,其中,每个所述TPMI对应多个precoder;其中,即TPMI域指示的多个precoder是根据不同的信道矩阵分别确定的。TPMI域包括多个TPMI的实现的方式有多种,例如增加TPMI域的比特数,使其可以同时指示多个TPMI;或者使用TPMI表(table)中的预留索引(index),并使其可以指示多个TPMI;或者使用新的TPMI table,使其包含指示多个TPMI的索引(index)。在一种实现方式中,网络设备还可以接收多个重复发送的PUSCH,其中,至少两个所述PUSCH使用的precoder不同。
在一种实施方式中,处理器合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
第十一方面,本申请还提供一种网络设备。该网络设备具有实现上述第五方面所述的方法示例中网络设备的部分或全部功能。所述功能可以通过硬件实现,也可以通 过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该网络设备的结构中可包括处理单元和通信单元,所述通信单元被配置为支持网络设备执行上述方法中相应的功能。所述通信单元用于支持网络设备与其他设备之间的通信。所述网络设备还可以包括存储单元,所述存储单元用于与获取单元和发送单元耦合,其保存网络设备必要的程序指令和数据。
在一种实施方式中,所述网络设备包括:
通信单元,用于发送CSI-RS;
所述通信单元,用于接收多个SRS,所述多个SRS与对所述CSI-RS进行联合信道测量得到的SRS precoder对应;
处理单元,用于基于所述多个SRS,从多个SRS precoder中选择一个或多个SRS precoder;
所述通信单元,用于发送指示所述一个或多个SRS precoder的指示信息。
作为示例,通信单元可以为收发器,存储单元可以为存储器,处理单元可以为处理器。一种实施方式中,所述网络设备包括:
收发器,用于发送CSI-RS;
所述收发器,用于接收多个SRS,所述多个SRS与基于对所述CSI-RS进行联合信道测量得到的SRS precoder对应;
处理器,用于基于所述多个SRS,从所述多个SRS precoder中选择一个或多个precoder。
所述收发器,用于发送指示所述一个或多个precoder的指示信息。
其中,多个CSI-RS配置不同的QCL关系,表示来自不同网络设备的CSI-RS。
在一种实现方式中,收发器下发的指示多个precoder的指示信息为SRI域,其中,所述的多个precoder既可以由所述SRI域中的一个SRI联合指示,即通过一个SRI指示所选的全部precoder;也可以有所述SRI域中的多个SRI独立指示,即通过不同的SRI来指示根据不同的CSI-RS所选的不同precoder。
在一种实施方式中,收发器接收到的多个precoder中至少有两个precoder不同;终端发送的至少两个PUSCH使用的precoder不同。
实施本技术方案,在处理器对多个CSI-RS进行联合信道测量得到SRS precoder,从而为处理器对多个PUSCH进行联合接收提供条件的基础上,多个发向不同处理器的不同的PUSCH可以采用不同的precoder进行重复传输,可以进一步增强上行传输的可靠性。
在一种实施方式中,收发器既可以接收由终端使用相同的时域资源发送的PUSCH,也可以接收由终端使用不同的时域资源发送的PUSCH,即收发器可以在不同的时域位置接收,其中不同的时域位置可以为不同的slot、连续的slot或者是同一个slot上不同的时域符号;
在一种实施方式中,收发器既可以接收由终端使用相同的port发送的PUSCH,也 可以接收由终端使用不同的port发送的PUSCH,其中port可以为发送SRS的SRS port,也可以为发送PUSCH的port;
在一种实施方式中,收发器既可以接收由终端使用相同的频域资源发送的PUSCH,也可以接收由终端使用不同的频域资源发送的PUSCH,且频域资源可以为连续的或者不连续的。
在一种实施方式中,收发器还合并接收到的多个PUSCH,并对合并后的PUSCH进行解调得到软信息以进行译码。
在一种实施方式中,收发器接收到的多个PUSCH使用相同的precoder;
在一种实施方式中,所述指示信息指示的多个precoder中至少有两个precoder不同;所述收发器接收到的至少两个PUSCH使用的precoder不同。
第十二方面,本申请还提供一种网络设备。该网络设备具有实现上述第六方面所述的方法示例中网络设备的部分或全部功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该网络设备的结构中可包括处理单元和通信单元,所述通信单元被配置为支持网络设备执行上述方法中相应的功能。所述通信单元用于支持网络设备与其他设备之间的通信。所述网络设备还可以包括存储单元,所述存储单元用于与获取单元和发送单元耦合,其保存网络设备必要的程序指令和数据。
在一种实施方式中,所述网络设备包括:
通信单元,用于接收多个SRS;
处理单元,用于基于所述多个SRS进行联合信道测量;
所述处理单元,用于基于所述联合信道测量结果,选择所述一个或多个precoder;
所述通信单元,用于发送指示所述一个或多个precoder的指示信息。
为示例,通信单元可以为收发器,存储单元可以为存储器,处理单元可以为处理器。一种实施方式中,所述网络设备包括:
收发器,用于接收多个SRS;
处理器,用于基于所述多个SRS进行联合信道测量;
所述处理器,用于基于所述进行联合信道测量的结果,选择所述一个或多个precoder;
所述收发器,用于发送指示所述一个或多个precoder的指示信息。
在一种实施方式中,处理器是根据多个SRS进行联合信道测量得到的上行联合信道状态,然后选择了合适的precoder,并向终端发送指示信息,该指示信息配置不同的QCL关系或者不同的TCI状态,即该指示多个precoder的指示信息可以通过一个接口下发给终端,也可以通过多个接口分别下发给终端。
在一种实施方式中,收发器接收到的多个precoder中至少有两个precoder不同。
在一种实施方式中,处理器还能合并所述多个PUSCH的软信息,以此来对多个 PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
第十三方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持终端实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。
在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
在一种实施方式中,所述芯片系统包括:至少一个处理器和接口;
接口,用于输入指示多个预编码precoder的指示信息;
处理器,用于基于所述指示信息确定所述多个precoder;
所述接口,还用于基于所述处理器确定的所述多个precoder,输出重复发送的物理上行共享信道PUSCH;其中,至少两个所述PUSCH使用的precoder不同。
一种实现方式中,所述指示信息指示多个precoder,所述指示信息配置不同的QCL关系或不同的TCI状态,也即该不同的precoder是对应不同的网络设备的。
在一种实施方式中,在接口输入所述指示信息之前,还包括如下步骤:接口首先输入由多个网络设备下发的多个CSI-RS或一个网络设备下发的多个CSI-RS,然后处理器对多个CSI-RS分别进行信道测量得到多个信道矩阵,此时处理器需要根据多个信道矩阵分别选择SRS precoder,然后处理器根据多个SRS precoder配置多个SRS resource并发送多个SRS。
在一种实施方式中,所述多个SRS resource由所述处理器根据所述多个CSI-RS信道测量得到的SRS precoder分别配置,即,多个SRS resource是多个CSI-RS分别对应的。
在一种实施方式中,从接口输入的多个precoder是网络设备从多个SRS precoder中选择并通过SRI域指示的,其中,多个precoder既可以由所述SRI域中的一个SRI联合指示,即通过一个SRI指示网络设备所选的全部多个precoder;也可以由SRI域中的多个SRI独立指示,即通过不同的SRI来指示不同precoder。
在一种实施方式中,从接口输入的多个precoder也可以是由TPMI域中多个TPMI分别指示,其中,每个TPMI对应一个precoder;或者,所述多个precoder由TPMI域中的一个TPMI分别指示,其中,每个所述TPMI对应多个precoder即所述TPMI域指示的多个precoder是根据不同的信道矩阵分别确定的。TPMI域包括多个TPMI的实现的方式有多种,例如增加TPMI域的比特数,使其可以同时指示多个TPMI;或者使用TPMI表(table)中的预留索引(index),并使其可以指示多个TPMI;或者使用新的TPMI table,使其包含指示多个TPMI的索引(index)。
在一种实施方式中,处理器配置的多个SRS resource可以是一个SRS resource set中的多个SRS resource,也可以是多个SRS resource set中的多个SRS resource。
在一种实施方式中,从接口输出的PUSCH既可以使用相同的时域资源发送,也 可以使用不同的时域资源发送,即可以在不同的时域位置发送,其中不同的时域位置可以为不同的slot、连续的slot或者是同一个slot上不同的时域符号;
在一种实施方法中,从接口输出的PUSCH既可以使用相同的port,也可以使用不同的port发送PUSCH,其中port可以为发送SRS的SRS port,也可以为发送PUSCH的port;
在一种实施方法中,从接口输出的PUSCH既可以使用相同的频域资源发送PUSCH,也可以使用不同的频域资源,且频域资源可以为连续的或者不连续的。
在一种实施方式中,处理器还能合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
第十四方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持终端实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存终端设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
在一种实施方式中,所述芯片系统包括:至少一个处理器和接口;
接口,用于输入多个信道状态参考信号CSI-RS;
处理器,用于基于输入的多个CSI-RS进行联合信道测量,得到探测参考信号预编码SRS precoder;
所述处理器,还用于基于所述SRS precoder配置多个探测参考信号资源SRS resource;
所述接口,还用于输出在所述多个SRS resource上发送的多个探测参考信号SRS;
所述接口,还用于输入指示一个或多个预编码precoder的指示信息;
所述处理器,还用于基于所述指示信息,确定一个或多个precoder;
所述接口,还用于输出基于所述处理器确定的所述一个或多个precoder发送的物理上行共享信道PUSCH。
其中,多个CSI-RS配置不同的QCL关系,也即多个CSI-RS是来自不同的网络设备的CSI-RS。
在一种实施方式中,处理器是根据所述多个CSI-RS联合信道测量得到的一个SRS precoder分别配置所述多个SRS resource,即,多个SRS resource是多个CSI-RS分别对应的。
在一种实施方式中,处理器配置的多个SRS resource可以是一个SRS resource set中的多个SRS resource,也可以是多个SRS resource set中的多个SRS resource。在一种实施方式中,从接口输入的多个precoder中至少有两个precoder不同;也即,终端发送的至少两个PUSCH使用的precoder不同。
实施本技术方案,在处理器对多个CSI-RS进行联合信道测量得到SRS precoder,从而为网络设备对多个PUSCH进行联合接收提供条件的基础上,多个发向不同网络设备的不同的PUSCH可以采用不同的precoder进行重复传输,可以进一步增强上行传输的可靠性。
在一种实施方式中,从接口输入的所述多个precoder是网络设备从多个SRS precoder中选择并通过SRI域指示的,其中,多个precoder既可以由SRI域中的一个SRI联合指示,即通过一个SRI指示所选的全部precoder;也可以由SRI域中的多个SRI独立指示,即通过不同的SRI来指示根据不同的CSI-RS所选的不同precoder。
在一种实施方式中,接口既可以使用相同的时域资源输出PUSCH,也可以使用不同的时域资源输出PUSCH,即接口可以在不同的时域位置输出,其中不同的时域位置可以为不同的slot、连续的slot或者是同一个slot上不同的时域符号;
在一种实施方式中,接口既可以使用相同的port输出PUSCH,也可以使用不同的port输出PUSCH,其中port可以为输出SRS的SRS port,也可以为输出PUSCH的port;
在一种实施方式中,接口既可以使用相同的频域资源输出PUSCH,也可以使用不同的频域资源输出PUSCH,且频域资源可以为连续的或者不连续的。
在一种实施方式中,处理器还能合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
第十五方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持网络设备实现第三方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
在一种实施方式中,所述芯片系统包括:至少一个处理器和接口;
接口,用于输出多个信道状态参考信号CSI-RS;
所述接口,用于输入多个探测参考信号SRS,发送所述多个SRS的探测参考信号资源SRS resource与基于对所述CSI-RS进行信道测量得到的多个探测参考信号预编码SRS precoder对应;
处理器,用于基于所述SRS,从所述多个SRS precoder中选择多个预编码precoder;
所述接口,用于输出指示多个所述SRS precoder的指示信息。
其中,多个CSI-RS配置不同的QCL关系,也即多个CSI-RS是来自不同的网络设备的CSI-RS。
在一种实现方式中,从接口输出的指示多个precoder的指示信息为SRI域,其中,多个precoder既可以由SRI域中的一个SRI联合指示,即通过一个SRI指示所选的全部precoder;也可以由SRI域中的多个SRI独立指示,即通过不同的SRI来指示根据 不同的CSI-RS所选的不同precoder。
在一种实现方式中,还可以从接口输入多个重复发送的PUSCH,其中,至少两个所述PUSCH使用的precoder不同。
在一种实施方式中,处理器还能合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
第十六方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持网络设备实现第四方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
在一种实施方式中,所述芯片系统包括:至少一个处理器和接口;
接口,用于输入多个SRS;
处理器,用于基于输入的所述多个SRS测量得到上行信道状态,以及用于基于所述上行信道状态选择多个precoder。
所述接口,用于输出指示所述多个precoder的指示信息。
在一种实施方式中,该指示信息配置不同的QCL关系或不同的TCI状态,即该不同的precoder是对应不同的网络设备的。
在一种实施方式中,从接口输出指示多个precoder的指示信息为TPMI域,TPMI域中包含多个TPMI,其中,每个TPMI对应一个precoder,或者所述多个precoder由TPMI域中的一个TPMI分别指示,其中,每个所述TPMI对应多个precoder;其中,即TPMI域指示的多个precoder是根据不同的信道矩阵分别确定的。TPMI域包括多个TPMI的实现的方式有多种,例如增加TPMI域的比特数,使其可以同时指示多个TPMI;或者使用TPMI表(table)中的预留索引(index),并使其可以指示多个TPMI;或者使用新的TPMI table,使其包含指示多个TPMI的索引(index)。在一种实现方式中,网络设备还可以接收多个重复发送的PUSCH,其中,至少两个所述PUSCH使用的precoder不同。
在一种实施方式中,处理器合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
第十七方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持网络设备实现第五方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
在一种实施方式中,所述芯片系统包括:至少一个处理器和接口;
接口,用于输出CSI-RS;
所述接口,用于输入多个SRS,所述多个SRS与基于对所述CSI-RS进行联合信道测量得到的SRS precoder对应;
处理器,用于基于所述多个SRS,从所述多个SRS precoder中选择一个或多个precoder。
所述接口,用于输出指示所述一个或多个precoder的指示信息。
其中,多个CSI-RS配置不同的QCL关系,表示来自不同网络设备的CSI-RS。
在一种实现方式中,从接口输出的指示多个precoder的指示信息为SRI域,其中,所述的多个precoder既可以由所述SRI域中的一个SRI联合指示,即通过一个SRI指示所选的全部precoder;也可以有所述SRI域中的多个SRI独立指示,即通过不同的SRI来指示根据不同的CSI-RS所选的不同precoder。
在一种实施方式中,从接口输入的多个precoder中至少有两个precoder不同;终端发送的至少两个PUSCH使用的precoder不同。
实施本技术方案,在处理器对多个CSI-RS进行联合信道测量得到SRS precoder,从而为处理器对多个PUSCH进行联合接收提供条件的基础上,多个发向不同处理器的不同的PUSCH可以采用不同的precoder进行重复传输,可以进一步增强上行传输的可靠性。
在一种实施方式中,接口既可以输入由终端使用相同的时域资源发送的PUSCH,也可以输入由终端使用不同的时域资源发送的PUSCH,即接口可以在不同的时域位置输入,其中不同的时域位置可以为不同的slot、连续的slot或者是同一个slot上不同的时域符号;
在一种实施方式中,接口既可以输入由终端使用相同的port发送的PUSCH,也可以输入由终端使用不同的port发送的PUSCH,其中port可以为发送SRS的SRS port,也可以为发送PUSCH的port;
在一种实施方式中,接口既可以输入由终端使用相同的频域资源发送的PUSCH,也可以输入由终端使用不同的频域资源发送的PUSCH,且频域资源可以为连续的或者不连续的。
在一种实施方式中,处理器还合并接收到的多个PUSCH,并对合并后的PUSCH进行解调得到软信息以进行译码。
在一种实施方式中,接口输入的多个PUSCH使用相同的precoder;
在一种实施方式中,所述指示信息指示的多个precoder中至少有两个precoder不同;所述接口输入的至少两个PUSCH使用的precoder不同。
第十八方面,本申请提供了一种芯片系统,该芯片系统包括处理器和接口,用于支持网络设备实现第六方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片系统还包括存储器,所述存 储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
在一种实施方式中,所述芯片系统包括:至少一个处理器和接口;
接口,用于输入多个SRS;
处理器,用于基于所述多个SRS进行联合信道测量;
所述处理器,用于基于所述联合信道测量的结果,选择所述一个或多个precoder;
所述接口,用于输出指示所述一个或多个precoder的指示信息。
在一种实施方式中,处理器是根据多个SRS进行联合信道测量得到的上行联合信道状态,然后选择了合适的precoder,并向终端发送指示信息,该指示信息配置不同的QCL关系或者不同的TCI状态,即该指示多个precoder的指示信息可以通过一个接口下发给终端,也可以通过多个接口分别下发给终端。
在一种实施方式中,从接口输入的多个precoder中至少有两个precoder不同。
在一种实施方式中,处理器还能合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
第十九方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述终端所用的计算机软件指令,其包括用于执行上述方法的第一方面或第二方面任一方面所涉及的程序。
第二十方面,本发明实施例提供了一种计算机可读存储介质,用于储存为上述网络设备所用的计算机软件指令,其包括用于执行上述方法的第三方面至第六方面任一方面所涉及的程序。
第二十一方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面或第二方面任一方面所述的方法。
第二十二方面,本申请还提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第三方面至第六方面任一方面所述的方法。
附图说明
图1是本申请实施例提供的一种无线通信系统的示意图;
图2是本申请实施例提供的一种V2X系统的示意图;
图3是本申请实施例提供的一种基于码本的上行传输模式的示意图;
图4是本申请实施例提供的一种基于码本的上行传输模式下终端得到预编码的过程示意图;
图5是本申请实施例提供的一种基于非码本的上行传输模式的示意图;
图6是本申请实施例提供的一种基于非码本的上行传输模式下终端得到预编码的过程示意图;
图7是本申请实施例提供的一种在4个时间单元上传输PSUCH的示意图;
图8是本申请实施例提供的一种单站传输场景下的PUSCH传输方法的示意图;
图9是本申请实施例提供的一种在8个时间单元上发送PSUCH的示意图;
图10是本申请实施例提供的一种PUSCH重复传输的示意图;
图11是本申请实施例提供的一种PUSCH重复传输在NCB模式下的示意图;
图12是本申请实施例提供的一种PUSCH重复传输在CB模式下的示意图;
图13是本申请实施例提供的一种PUSCH空分传输的示意图;
图14是本申请实施例提供的一种PUSCH时分传输的示意图;
图15是本申请实施例提供的一种不同的PUSCH时域位置分布的示意图;
图16是本申请实施例提供的另一种不同的PUSCH时域位置分布的示意图;
图17是本申请实施例提供的另一种不同的PUSCH时域位置分布的示意图;
图18是本申请实施例提供的另一种不同的PUSCH时域位置分布的示意图;
图19是本申请实施例提供的另一种不同的PUSCH时域位置分布的示意图;
图20是本申请实施例提供的一种PUSCH频分传输的示意图;
图21是本申请实施例提供的一种在4个时间单元上传输PSUCH的示意图;
图22是本申请实施例提供的一种在4个时间单元上传输PSUCH的示意图;
图23是本申请实施例提供的一种在时间单元内传输PSUCH的示意图;
图24是本申请实施例提供的一种PUSCH联合接收的示意图;
图25是本申请实施例提供的一种PUSCH联合接收在NCB模式下的示意图;
图26是本申请实施例提供的一种PUSCH联合接收在CB模式下的示意图;
图27是本申请实施例提供的一种装置的结构示意图;
图28是本申请实施例提供的一种终端设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例提供的技术方案可以应用于各种通信系统,例如,采用5G通信技术的新空口(new radio,NR)通信系统,未来演进系统或者多种通信融合系统等等。本申请提供的技术方案可以应用于多种应用场景,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动带宽(enhanced mobile broadband,eMBB)、uRLLC以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:通信设备与通信设备之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与通信设备之间的通信场景等。下文中均是以应用于网络设备和终端之间的通信场景中为例进行说明的。
图1给出了本申请提供的技术方案所适用的一种通信系统示意图,通信系统可以包括一个或多个网络设备(图1仅示出了两个)以及一个或多个终端(图1中仅示出一个)。其中,一个终端可以同时与多个网络设备进行通信;或者,一个终端与一个网络设备进行通信。图1仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
网络设备可以是无线通信的基站或基站控制器等。例如,所述基站可以包括各种类型的基站,例如:微基站(也称为小站),宏基站,中继站,接入点等,本申请实施例对此不作具体限定。在本申请实施例中,所述基站长期演进(long term evolution,LTE)中的演进型基站(evolutional node B,eNB或e-NodeB),物联网(internet of things, IoT)或者窄带物联网(narrow band-internet of things,NB-IoT)中的eNB,5G移动通信网络中的传输接收点(transmission reception point,TRP),TRP或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的基站,其中,TRP可以指各种类型基站或控制器,也可以是天线面板等等,本申请实施例对此不作任何限制,本申请实施例后续以网络设备或者TRP为例进行描述。
本申请所说的基站,通常包括基带单元(baseband unit,BBU)、射频拉远单元(remote radio unit,RRU)、天线、以及用于连接RRU和天线的馈线。其中,BBU用于负责信号调制。RRU用于负责射频处理。天线用于负责线缆上导行波和空气中空间波之间的转换。一方面,分布式基站大大缩短了RRU和天线之间馈线的长度,可以减少信号损耗,也可以降低馈线的成本。另一方面,RRU加天线比较小,可以随地安装,让网络规划更加灵活。除了RRU拉远之外,还可以把BBU全部都集中起来放置在中心机房(Central Office,CO),通过这种集中化的方式,可以极大减少基站机房数量,减少配套设备,特别是空调的能耗,可以减少大量的碳(CO 2)排放。此外,分散的BBU集中起来变成BBU基带池之后,可以统一管理和调度,资源调配更加灵活。这种模式下,所有的实体基站演变成了虚拟基站。所有的虚拟基站在BBU基带池中共享用户的数据收发、信道质量等信息,相互协作,使得联合调度得以实现。本申请实施例涉及的终端,用于向用户提供语音或数据连通性服务,或者提供语音和数据连通性服务。所述终端可以有不同的名称,例如用户设备(user equipment,UE)、接入终端、终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理或终端装置等。可选的,所述终端可以为各种具有通信功能的手持设备、车载设备、可穿戴设备、计算机,本申请实施例对此不作任何限定。例如,手持设备可以是智能手机。车载设备可以是车载导航系统。可穿戴设备可以是智能手环或者虚拟现实(virtual reality,VR)设备。计算机可以是个人数字助理(personal digital assistant,PDA)电脑、平板型电脑以及膝上型电脑(laptop computer)。
在第三代合作伙伴计划(the 3rd generation partnership project,3GPP)中,车与任何事物通信的车联网(vehicle to everything,V2X)技术(X代表任何事物)被提出。V2X系统中的通信方式统称为V2X通信。例如,该V2X通信包括:车辆与车辆(vehicle to vehicle,V2V)之间的通信,车辆与路边基础设施(vehicle to infrastructure,V2I)之间的通信、车辆与行人之间的通信(vehicle to pedestrian,V2P)或车辆与网络(vehicle to network,V2N)之间的通信等。V2X系统中所涉及的终端设备之间进行的通信被广泛称为侧行链路(slidelink,SL)通信。本申请的技术方案还可应用到车联网中,也就是说,本申请所述的终端也可以为车辆或应用于车辆中的车辆组件。
目前,车辆或车辆组件可以通过V2V、V2I、V2P或者V2N通信方式,及时获取路况信息或接收服务信息,这些通信方式可以统称为V2X通信。图2是现有技术中的V2X系统的示意图。该示意图包括V2V通信、V2P通信以及V2I/N通信。V2X通信针对以车辆为代表的高速设备,是未来对通信时延要求非常高的场景下应用的基础技术和关键技术,如智能汽车、自动驾驶、智能交通运输系统等场景。
如图2所示,车辆或车辆组件之间通过V2V通信。车辆或车辆组件可以将自身的车速、行驶方向、具体位置、是否踩了紧急刹车等信息广播给周围车辆,周围车辆的 驾驶员通过获取该类信息,可以更好的感知视距外的交通状况,从而对危险状况做出提前预判进而做出避让;车辆或车辆组件与路侧基础设施通过V2I通信,路边基础设施,可以为车辆或车辆组件提供各类服务信息和数据网络的接入。其中,不停车收费、车内娱乐等功能都极大的提高了交通智能化。路边基础设施,例如,路侧单元(road side unit,RSU)包括两种类型:一种是终端设备类型的RSU。由于RSU分布在路边,该终端设备类型的RSU处于非移动状态,不需要考虑移动性;另一种是网络设备类型的RSU。该网络设备类型的RSU可以给与网络设备通信的车辆或车辆组件提供定时同步及资源调度。车辆或车辆组件与人通过V2P通信;车辆或车辆组件与网络通过V2N通信,V2N可以与上述的V2I统称为V2I/N。
其中,本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
以下,本申请实施例将围绕包括多个设备、组件、模块等的系统来呈现本申请的各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
本申请实施例中,“的(of)”,“相应的(relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。本申请实施例中,至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
为便于理解,下面先对本文涉及的相关术语进行简单的介绍。
1、探测参考信号(SRS)、信道状态信息参考信号(CSI-RS)
探测参考信号(Sounding reference signal,SRS)在NR协议中有多种用途:上行波束管理,基于码本和非码本传输的信道测量,天线切换。在本申请实施例中,SRS主要用于基于码本和非码本传输的上行信道测量,基站可以利用SRS参考信号评估上行信道参数。
信道状态参考信号(Channel State Information Reference Signal,CSI-RS):在NR中,由于没有小区参考信号(Cell-specific reference signal,CRS),因此需要CSI-RS来对多天线端口信道(最多32个)状态反馈和时频域进行跟踪(Tracking),CSI-RS有多种类型:信道状态信息-干扰测量(Channel state information-interference measurement,CSI-IM)可以用于干扰测量,零功率信道状态参考信号(Zero power Channel State Information Reference Signal,ZP-CSI-RS)用于速率适配,NR中的非零功率信道状 态参考信号(Non-zero power Channel State Information Reference Signal,NZP-CSI-RS)还可以用于波束管理、移动性管理测量、时频跟踪和CSI-RS信道测量。在本申请中,CSI-RS主要用于基于非码本(Non-Codebook,NCB)传输中的下行信道测量。
2、基于码本的上行传输模式(Codebook based UL transmission scheme)
基于码本的上行传输模式,亦简称为CB上行传输模式或CB模式,如图3所示,由TRP和UE组成的单站场景中,CB上行传输模式下的流程简要描述如下:
(a)当RRC信令被配置为CB传输模式,终端(后续也简称为UE)接收到该RRC信令,根据RRC配置发送SRS给TRP;例如UE发送探测参考信号1(后续简称为SRS1)和探测参考信号2(后续简称为SRS2)给TRP;
(b)TRP根据SRS进行信道测量得到上行信道状态,并根据信道条件选择合适的用于发送PUSCH的precoder和秩(rank)数,通过下行控制信息(down link control information,DCI)下发给UE。具体的,通过SRS资源指示(SRS resource indicator,SRI),传输秩指示(Transmission rank indicator,TRI),传输预编码矩阵指示或发射预编码矩阵指示(Transmission precoding matrix indicator,TPMI)向UE指示用于发送PUSCH的precoder和rank数。其中,SRI由DCI中的SRI域承载,TRI由DCI中的TRI域承载,TPMI由DCI中的TPMI域承载;
本申请实施例中,SRI,TRI,TPMI的功能说明如下:
i)TRI用来通知UE上行传输的实际rank数,即PUSCH发送的实际端口(port)个数,具体的,TRP通过RRC信令配置给UE上行传输的最大rank数(最大为4),再选择实际rank数通过DCI中TRI通知给UE。
ii)SRI用来从一个SRS resource set里的多个SRS资源(SRS resource)中选择一个特定的SRS资源,具体SRI指示SRS资源的index,其中UE最大可以被配置2个SRS资源,至少被配置一个SRS资源。其中,每个SRS资源中最多可以被配置4个SRS ports,其中SRS port的个数通过RRC信令nrofSRS-Ports进行配置;
iii)TPMI用来指示UE选择发送PUSCH的precoder。例如,TRP可以将DCI中的SRI域赋值为指示SRI=2,用于指示索引号为2的SRS resource,将TRI域赋值为指示rank=1,用于指示实际上行传输的rank数为1,将TPMI域赋值为指示precoder1,用于指示采用索引为1的precoder,以发送PUSCH。
(c)UE根据DCI中的SRI,TRI,TPMI,获得发送PUSCH的precoder和实际传输的上行rank数,用以发送上行数据。
具体的,UE根据:
(1)被SRI指示的SRS资源中的SRS ports个数(等于antenna ports个数);
(2)RRC指示的上行最大传输rank(ULmaxRank)数;
(3)是否需要转换precoder(transform precoder);
(4)码本子集(codebookSubset)是不是相干的(coherent)等信息,UE可以确定一个表格,UE根据DCI中的预编码信息和层数(Precoding information and number of layers)域选择表格中的其中一行,该行会包含一个TRI和TPMI。然后,UE根据SRS port的个数和TRI可以确定一个码本(codebook),再根据TPMI从该codebook中选 择一个具体的precoder。该precoder的维度为[SRS资源中SRS ports个数*TRI指示的rank数],UE根据该precoder进行PUSCH传输。
具体实现中,如图4所示:
i)当UE被配置多个SRS资源(SRS resource)时(如图4所示的SRS resource1和SRS resource 2),UE根据SRI从多个SRS resource中选择一个SRS resource,然后根据TPMI从该SRS resource所包含的SRS port个数和TRI的实际rank数所对应的codebook中选择一个precoder,UE使用该precoder进行PUSCH传输;
ii)当UE被配置一个SRS资源时,此时没有SRI信息,UE根据TPMI从该SRS资源所包含的SRS port个数和TRI指示的rank数所对应的codebook中选择一个precoder,UE使用该precoder进行PUSCH传输。
需要说明的是,用于PUSCH传输的precoder是从上行码本(codebook)中选择的,码本的维度根据SRS resource中包含的SRS个数和TRI指示的rank数确定(列为SRS个数,行为TRI指示rank数)。Codebook会预定义并存储于TRP和终端,每个码本中根据信道特性预定义了一些可选的precoder。
下面以表1、表2、表3为例,说明UE如何确定precoder,具体流程如下:UE接收TRP向其发送的RRC信令,根据SRS resource中的SRS ports个数,以及RRC指示的上行最大传输rank数,从预存的多个TPMI配置信息表格中,选择一个TPMI table;例如,根据SRS ports个数为2,上行最大传输rank数为2,选择2antenna ports以及maxRank=2对应的表格2;
表1:转换预编码是非使能的且最大秩数为2,2个天线端口的预编码信息和层数(Precoding information and number of layers,for 2 antenna ports,if transform precoder is disabledand maxRank=2)
Figure PCTCN2020075772-appb-000001
TRP根据SRS resource中的SRS ports测得的信道,选择一个TPMI和TRI,通过DCI,下发给UE;
UE根据接收的DCI中的Precoding information and number of layers域,从选定的TPMI table中选择一行(表中的index),从而确定TRP下发的TRI和TPMI;例如,选择索引号为5对应的行,确定TRP下发的TRI为1layer(即rank=1),TPMI为4;
UE根据SRS resource中的SRS ports个数和TRI指示的rank数,选择一个codebook表;
例如,根据SRS ports个数为2,rank数(即layer数)为1,选择single-layer和two antenna ports对应的表2;
表2:使用两个天线端口进行单层传输的预编码矩阵W(Precoding matrix W for single-layer transmission using two antenna ports.)
Figure PCTCN2020075772-appb-000002
再如,UE根据SRS ports个数为2,layer数为4,选择four-layer及two antenna ports对应的表3。
表3:使用非使能转换预编码的四个天线端口进行四层传输的预编码矩阵W(Precoding matrix W for four-layer transmission using four antenna ports with transform precoding disabled.)
Figure PCTCN2020075772-appb-000003
最后,UE根据确定的TPMI在选定的coderbook表格中确定PUSCH的precoder(维度为SRS port个数*rank数)。例如,UE根据TPMI=4,在表2中确定对应的precoder为
Figure PCTCN2020075772-appb-000004
3、基于非码本的上行传输模式(Non-Codebook based UL transmission scheme)
基于非码本的上行传输模式,后续亦简称为NCB上行传输模式或NCB模式。如图5所示,以TRP和UE组成的单站场景为例,NCB上行传输模式的流程简要描述如下:
(a)当RRC信令被配置为NCB传输模式时,TRP向终端发送CSI-RS;
(b)UE收到CSI-RS后进行信道测量得到下行信道状态,然后,根据信道互异性计 算得到上行信道状态,根据上行信道条件设计多个用于发送PUSCH的多个SRS precoder,并根据多个SRS precoder配置多个SRS resource,并发送SRS;具体的,UE最多配置4个SRS resource,每个resource中仅仅包含一个SRS port,UE在该4个SRS resource上发送SRS1,SRS2,SRS3,SRS4;
(c)TRP接收到多个SRS,然后根据多个SRS上的信道状态选择合适的用于发送PUSCH的precoder,通过DCI下发给UE;具体的,TRP将一个或者多个选择出的SRS的索引(index)以及用以PUSCH传输的rank数通过DCI发送给UE;
(d)UE接收由TRP下发的DCI,根据其中SRI选择对应的precoder和rank数,用以发送PUSCH。
具体的,对于UE得到precoder的过程可以参照图6,UE接收DCI后,根据DCI中的SRI域获得TRP指示的SRS的index和用于PUSCH传输的rank数。其中,UE首先根据RRC配置的上行最大传输层数(1~4层)确定表格,如表4所示,L max=3代表最多支持rank-3的上行传输,即支持的最大rank数为3;然后UE根据SRS resource的个数(由RCC配置)选择表格中的某一列,例如:当UE被配置了4个SRS resource时,即选择表4中N SRS=4的一列;然后,UE根据SRI域的比特值,选择该列中的某一行,该比特值与SRS resource的index为映射关系,即每一行的数字代表了SRS resource的index,且每一行的SRI的个数代表PUSCH的rank数,例如表4中所示:假设选择了N SRS=4所在一列的第3行时,可以得到SRI=3,此时UE会获得PUSCH实际传输rank数为1,且发送PUSCH的precoder为SRS resource3上的precoder 3。
表4:基于非码本的物理上行共享信道的探测参考信号指示,L max=3(SRI indication for non-codebook based PUSCH transmission,L max=3)
Figure PCTCN2020075772-appb-000005
Figure PCTCN2020075772-appb-000006
4、时隙聚合传输方式
目前NR中,为了提高上行覆盖,提升小区边缘UE的性能或信道条件不好场景中的UE性能,NR上行支持时隙聚合(slot aggregation)的传输方式。具体的,时隙聚合主要影响到的是PUSCH在时域上的发送方式,不影响precoder和rank的指示方式,也即,前述的CB和NCB上行传输模式都可以使用时隙聚合方式发送。
Slot aggregation的主要原理是:将相同的数据在连续的几个slot或mini-slot内重复发送,也即连续的几个slot内每个slot都发送相同的数据,从而TRP会在连续的几个slot内收到相同的数据,进行合并或其他处理,从而提升上行数据传输的可靠性。
目前NR中的slot aggregation传输方式包含以下特点:
仅支持Rank-1的PUSCH传输;
聚合的Slots通常使用第一个slot的DCI触发,也即聚合的slot通常使用第一个slot的DCI所指示的配置,如调解参考信号(demodulation reference signal,DMRS)port,precoder,PUSCH时域资源配置;
每个Slot发送相同的传输块(transmission Block,TB),即聚合的slots都发送相同的数据;这里,相同的传输块即重复发送的PUSCH。
聚合的slot内,可以通过RRC配置TB的冗余版本(Redundancy version,RV),具体的,可以配置成相同的或者不同的RV;
TRP可以通过RRC通知UE是否为slot聚合方式,其中通过RRC信令“Aggregation-Factor-UL”通知。例如,Aggregation-Factor-UL={1,2,4,8},其中2、4、8代表连续的2、4、8个slots或mini-slots进行聚合发送,而1代表不进行slot聚合。具体的,当Aggregation-Factor-UL=1时,UE不适用slot聚合方式,当Aggregation-Factor-UL>1时,UE知道此时为聚合方式。
例如,图7为一个4个时间单元(例如4个slot)聚合的示意图,即Aggregation-Factor-UL=4。可以看到,聚合的4个slot内都发送相同的数据TB0,图中所示的PUSCH1、PUSCH2、PUSCH3、PUSCH4指的是重复发送相同的PUSCH四次。本申请实施例还包括其他的时域资源粒度进行聚合的聚合传输方案,例如以mini-slot为粒度进行聚合,或者以符号为粒度进行聚合,本申请不做限定。
5、时域资源、频域资源、端口
本申请实施例中,时域资源可以是一个或多个无线帧,一个或多个子帧,一个或多个时隙或者时间单元(slot),一个或多个微时隙(mini-slot),一个或多个符号,也可以是多个帧或子帧构成的时间窗口,例如系统信息(system information,SI)窗口。本申请实施例对一个符号的时间长度不做限制。针对不同的子载波间隔,一个符号的长度可以有所不同。符号可以包括上行符号和下行符号,其中,上行符号可以称为单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)符号或正交频分多址(orthogonal frequency division multiplexing,OFDM)符号;下行符号 可以为OFDM符号。
本申请实施例中,频域资源可以是资源块(Resource block,RB),或者资源块组(Resource block group,RBG),或者预定义的子带(subband),或者频带(band),或者带宽部分(bandwidth part,BWP),或者单元载波(component carrier,CC),或者小区(cell)。
本申请实施例中,端口(port)是指被接收端设备所识别的发射天线,或者在空间上可以区分的发射天线。针对每个虚拟天线可以配置一个天线端口,每个虚拟天线可以为多个物理天线的加权组合,每个天线端口可以与一个参考信号端口,例如以SRS port对应。
本申请提供多种增强上行传输的可靠性的技术方案。具体来讲,针对单站传输场景,即终端与一个TRP进行通信的场景,终端在进行上行传输时,可以采用不同的precoder发送数据,使得在信道条件发生改变时,也能保证传输的解码性能,增强上行传输的可靠性。
另外,针对多站传输场景,即终端与两个及以上的TRP进行通信的场景,本申请提供两种不同上行传输的技术方案:重复传输方案与联合接收,应用本申请实施例提供的技术方案,可以有效提升PUSCH的传输可靠性。
下面,将分别描述单站传输场景和多站传输场景下,本申请实施例提供的上行传输技术方案。
实施例一:单站传输场景下的PUSCH传输方法
参见图8,网络设备与终端之间进行无线通信,本实施例提供的PUSCH传输方法,包括:
步骤100,终端接收指示多个预编码precoder的指示信息;
具体的,终端接收来自网络设备的指示信息,该指示信息可以为DCI,该DCI可以通过SRI域、TPMI域直接或间接指示多个precoder;
一种实现方式中,多个precoder由SRI域指示,所述precoder由所述SRI域中的一个SRI联合指示;或者多个precoder由所述SRI域中的多个SRI独立指示。例如表4所示的NCB模式下,如果UE被配置4个SRS resource时,即选择N SRS=4的一列,然后UE根据SRI域中的比特值选择该列中的某一行,每一行中的数字代表了SRS resource的index,若SRI域中的比特值为0-3时,每一行分别只指示一个precoder,则多个precoder可以由多个SRI独立指示;若SRI域中的比特值为4-13时,每一行可指示多个precoder,也即多个precoder可以由一个SRI联合指示。
用SRI域指示多个preoder的具体实现方式可以是多个不同的SRI域、新的DCI域、SRI域的不同比特、使用新的SRI table、或者使用现有协议中提供的SRI table的预留条目(entry)。
用SRI域指示多个preoder的具体实现方式可以是多个不同的SRI域、新的DCI域、SRI域的不同比特、使用新的SRI table、或者使用现有协议中提供的SRI table的预留条目(entry)。
(1)设计新的SRI table,可以支持指示多个precoder。
该实现方式中,通过将SRI指示的一个precoder的值,扩充为两个或者以上的值,以在一个entry对应的SRI中指示两个或以上的precoder;该种方式中,每个SRSresource中只能使用一个port,即每个SRSresource仅支持一个port(rank=1传输)。
下面以UE支持的rank最大数为3(L max=3)基于NCB的PUSCH传输的SRI指示两个precoder为例进行说明。
如新表5所示,UE最多支持rank-3的上行传输,表格第二列是SRS resource的数目为2和L=1和L=2对应的precoder的index;第四列是SRS resource的数目为3对应的L=1和L=2的precoder的index;第六列是SRS resource的数目为4对应的L=1,L=2,L=3的precoder的index;其中,第五列索引号为0-3对应L=1(即rank-1);索引号为4-9对应L=2(rank-2);索引号为10-13对应L=3(rank=3)。
以第5列和第6列的内容为例,第5列的索引号为0,对应第6列的内容是:0,x,其含义是当UE支持rank-1的上行传输时,UE使用1个SRS resource,即1个SRS port重复发送PUSCH时,可以根据SRI=0和SRI=x对应的precoder重复发送PUSCH,具体的,一次传输中,UE可以根据SRI=0对应的precoder0发送PUSCH,在另一次传输中,UE可以根据SRI=x对应的precoder x发送PUSCH;其中x可以为1、2、3中任意一个数字,与0不同即可;
又如第5列索引号为4,对应的第6列的内容为:0,x;1,y,其含义是UE支持rank-2的上行传输时,在使用2个SRS resource,即2个SRS port(即每个SRS resource中只能使用一个port)重复发送PUSCH时,一次传输中,UE可以根据SRI=0,1对应的precoder0和precoder1发送PUSCH,在另一次传输中,UE可以根据SRI=x,y对应的precoder x和precoder y发送PUSCH,其中x可以为1,2,3中的任意一个数字,其中y可以为0、2、3中的任意一个数字;
又如第5列索引号为10,对应第6列的内容为:0,x;1,y;2,z;其含义是支持rank-3的上行传输,UE在使用3个SRSresource,即3个SRSport重复发送PUSCH时,一次传输中,UE可以根据SRI=0,1,2对应的precoder 0,precoder1,precoder2发送PUSCH,在另一次传输中,UE可以根据SRI=x,y,z对应的precoder x,precoder y,precoder z,发送PUSCH,其中x可以为1,2,3中的任意一个数字;其中y可以为0、2、3中的任意一个数字;其中z可以为0、1,3中的任意一个数字。
需要说明的是,x,y,z的值仅为举例,在具体实现时,可以进行适应性的设计。
需要说明的是,本申请中,索引对应的SRI的值,其顺序不做限定。
例如,第5列索引为4对应的内容为0,x;1,y,还可以表示为0,1;x,y;用于表示一次PUSCH重复传输使用SRI=0,1对应的precoder0和precoder1;另一次PUSCH重复传输使用SRI=x,y对应的precoder x和precoder y。
再如,第5列索引为10对应的内容为0,x;1,y;2,z,还可以表示为0,1,2;x,y,z;用于表示一次PUSCH重复传输使用SRI=0,1,2对应的precoder0,precoder1和precoder2;另一次PUSCH重复传输使用SRI=x,y,z对应的precoder x,precoder y和precoder z。
表5:SRI表,L max=3
Figure PCTCN2020075772-appb-000007
Figure PCTCN2020075772-appb-000008
(2)设计新的SRI table,可以支持指示多个precoder的另一种方式如下:
该实现方式中,通过将SRI指示UE进行PUSCH重复传输时采用两个或者以上的precoder值,以在一个entry对应的SRI中指示两个或以上的precoder;该种方式中,不限定每个SRSresource中只能使用一个port,即每个SRSresource均可支持多个port(多rank传输)。
下面以UE支持的rank最大数为3(L max=3)基于NCB的PUSCH传输的SRI指示两个precoder为例进行说明。
其中,第1,2列表示最多可以使用2个SRS resource,则UE最多支持rank=2;
第3,4列表示最多可以使用3个SRS resource,L max=3表示最多支持rank=3传输,则UE最多支持rank 3;
第5,6列表示最多可以使用4个SRS resource,L max=3表示最多支持rank=3传输,则UE最多支持rank=3;
此时新规则不限定每个SRSresource中只能使用一个port,即每个SRSresource均可支持多个port(多rank传输),每个SRSresource具体使用的port个数可以复用现有RRC信令nrofSRS-Ports进行指示,或者使用新的RRC信令或DCI信令指示每个SRSresource具体使用的port个数或port序号。例如,第5列索引为4对应的内容为1,3,此时通过RRC信令或DCI信令指示每个SRSresource具体使用的port个数(例如为2)或者指示每个SRSresource具体使用的port序号(例如为0,1),则UE分别使用precoder1,precoder3重复发送PUSCH,所述PUSCH均为rank2,使用2个SRSports。
需要说明的是,表6中的索引号对应的SRI的值,以及该值的顺序仅为举例,在具体实现中,还有其他的值,或者其他的顺序,只要其满足通过SRI指示PUSCH重复传输的不同的precoder,均在本申请的实施例覆盖范围之内,在此不再赘述。
以上仅以L max=3为例说明UE支持rank=3时,如何通过SRI指示多个precoder,对于UE支持rank=2或4或其他rank数时,通过SRI如何指示多个precoder的表格可以以此进行设计,在此不再赘述。
表6:SRI表,L max=3
Figure PCTCN2020075772-appb-000009
另一实现方式中,多个precoder由TPMI域中的多个TPMI分别指示,其中,每个所述TPMI对应一个precoder;或者多个precoder由TPMI域中的一个TPMI分别指示,其中,每个所述TPMI对应多个precoder。
由TPMI域中的多个TPMI分别指示的方式可以通过多种方式实现:
(1)可以通过增加TPMI的比特数来使其可以指示多个TPMI:例如表1所示,需要最多4个比特(可以表示16个条目(entry))指示layer数与TPMI;但是由于layer数通过前4比特已经可以确定,如layer=1,则候选TPMI只可能为0-5,则第二段TPMI域只需要指示TPMI即可,例如使用3个比特(0-8)指示TPMI 0-5即可;如表7所示:在原4个比特表示16个entry的TPMI表的基础上,再增加3比特表示8个entry(索引号为16-23),其中,codebookSubset=fullyAndPartialAndNonCoherent模式下,索引号为0-5分别用来指示TPMI=0,TPMI=1,TPMI=2,TPMI=3,TPMI=4,TPMI=5;对应的layer数由前4个比特获知,因此在索引号为0-5中不用再重复指示。例如,UE收到指示信息,前4个比特位为0111,查找表1,对应索引号为8,layer数为2layers,TPMI=2,同通过后3个比特位011,查找表5,对应索引号为3,对应的TPMI为3,layer数根据前4个比特已经确认为layer=2;因此,UE接收的指示信息指示的是2layers,TPMI=0,TPMI=3,其表示的含义是使用2 layers重复传输PUSCH 时,一次传输PSUCH使用TPMI=0对应的precoder,另一次传输PUSCH使用TPMI=3对应的precoder。
codebookSubset=NonCoherent模式下,用索引号为0-1,分别指示TPMI=0,TPMI=1。其含义不在赘述。
表7可以独立存在也可以和表1合并,本申请不限制其实现形式。
表7
Figure PCTCN2020075772-appb-000010
(2)另一种实现方式是通过使用现有TPMI table中的预留(reserved)条目(entry),并使其可以指示多个TPMI,例如表8,索引号为9的entry指示的内容为:1 layer,TPMI=1,TPMI=3,两个TPMI由两个SRS resource分别测量得到,分别指示不同的precoder;其表示的含义是使用1 layer重复传输PUSCH时,一次传输PSUCH使用TPMI=1对应的precoder,另一次传输PUSCH使用TPMI=3对应的precoder。
或者例如entry 10:2 layers,TPMI=0,TPMI=2,其表示的含义是使用2 layers重复传输PUSCH时,一次传输PSUCH使用TPMI=0对应的precoder,另一次传输PUSCH使用TPMI=2对应的precoder。本实施中,entry中的layer数,例如表格中的2layers,其layer数为2)表示的是所有TPMI对应的layer数之和。
表8
Figure PCTCN2020075772-appb-000011
步骤101,终端基于所述指示信息,确定所述多个precoder用以重复发送PUSCH;其中,至少两个所述PUSCH使用的precoder不同。
例如图3所示的CB模式下,终端通过DCI中的SRI域指示的SRS resource index,根据DCI中的TPMI域查找TPMI表1得到多个TPMI值,再根据具体的多个TPMI值查找如表2或表2所示的codebook表,得到对应的多个precoder;具体实现过程与前述的CB模式下获得precoder的过程类似,本实施例中可以据此获得多个不同的precoder用于重复发送PUSCH。
或者如图5所示的NCB模式下,终端根据DCI中的SRI域获得网络设备指示的多个SRS的index和PUSCH的传输rank个数,确定发送PUSCH的precoder;具体实现过程与前述的NCB模式下获得precoder的过程类似,本实施例中可以据此获得多个不同的precoder用于重复发送PUSCH。
举例来说,如图9所示,终端不同的时域资源上重复发送PUSCH,且至少两个PUSCH使用的precoder不同。例如在8个时间单元(以slot为例)上发送8个PUSCH 1、PUSCH 3、PUSCH 5、PUSCH 7使用precoder1,而PUSCH 2、PUSCH 4、PUSCH6、PUSCH8使用precoder2(该PUSCH1~8均为相同的PUSCH,这里指的是将相同的PUSCH重复发送8次),当信道条件在该8个slot内发生变化或者终端的位置发生了移动,由于使用两个不同的precoder,终端可以适应信道的变化,保证传输的解码性能,增强了上行传输的可靠性。相比而言,如果DCI只配置的1个precoder得技术方案而言,当聚合的8个slot内UE的位置发生了移动,那么8个slot内使用相同的precoder会不再适用,使得网络设备接收到的数据解译性能下降,从而无法保证UE 的上行性能,并且无法保证小区边缘UE的性能或无法提升上行覆盖。因此,本申请实施例提供的单站场景下进行PUSCH传输的技术方案,可以有效的提升上行传输的可靠性,增强网络设备的译码性能,提升上行覆盖。
下面将继续介绍在多站场景下,本申请提供的两种上行传输可靠性增强技术方案:PUSCH重复传输(PUSCH repetition transmission)与PUSCH联合接收(PUSCH joint reception)。
实施例二
本实施例中,PUSCH重复传输(PUSCH repetition transmission)方案将被介绍,具体的,UE重复传输PUSCH,网络设备接收PUSCH之后将解调软信息进行合并,从而增强译码性能,基本的流程图如图10所示。
图10中主要分为三个部分:终端(后续简称UE),空口信道,网络设备(例如,gNB),其中UE接收指示precoder的指示信息,并基于指示信息,确定用于重复发送PSUCH的precoder,多个PUSCH经过不同的信道(图中两个不同的信道矩阵H1与H2)传输之后到达网络设备,网络设备对多个PUSCH进行解调以得到各个PUSCH对应的多个软信息,合并所述多个软信息以进行译码。
具体的,此时相当于网络设备接收到多个PUSCH,也即多个上行接收信号(图中以y1,y2示意),此时网络设备的多个TRP会对y1与y2进行解调,同时得到多个解调软信息(Soft Information)(软信息与硬信息相对应,硬信息是指确定的比特,例如[0,1…],而软信息则是指不确定的比特,例如90%的概率解码结果为1,10%的概率为0),此时网络设备会对接收到的多个软信息进行合并,即图中由y1,y2分别得到的软信息1与软信息2,然后对合并之后的软信息进行译码,进而提升译码性能。
另一种实现方式中,网络设备也可以对不同TRP收到的软信息先进行译码,如果译码错误再进行合并译码。
在此重复传输场景下,终端发送PUSCH所使用的precoder可以是相同的,也可以是至少有两个PUSCH使用的precoder是不同的。
下面将以CB模式和NCB模式为例,具体说明在多站场景下,终端重复发送PUSCH时,使用不同的precoder进行上行传输的实现过程。
实施例三
本实施例三中,主要描述PUSCH重复传输在NCB模式下的主要流程如图11所示,具体实现步骤如下:
步骤(a),TRP1与TRP2分别向UE发送CSI-RS1与CSI-RS2,其中,不同TRP发送的CSI-RS配置不同的QCL关系;其中对上述2个CSI-RS的发送方式不做限定,例如2个CSI-RS可以分时发送;使用相同或不同的频域资源/端口等;
步骤(b),UE基于接收的多个CSI-RS进行信道测量,分别得到多个SRS precoder;UE基于多个SRS precoder,配置多个SRS resource并发送多个SRS;
具体的,UE基于根据多套CSI-RS分别测量得到多个信道并选择多套SRS precoder, 以2个TRP为例,UE根据TRP1下发的CSI-RS1和TRP2下发的CSI-RS2分别进行信道估计得到两个信道矩阵H1和H2,此时UE需要根据两个信道矩阵分别选择SRS precoder,即需要分别对H1和H2进行奇异值分解(singular value decomposition,SVD)各自得到特征向量:SVD([H1])得到特性向量V1,根据特征向量V1选择SRSprecoder 1,SVD([H2])得到特性向量V2,根据特征向量V2选择SRSprecoder 2;并配置两套与SRS precoder1和SRS precoder2对应的SRS resource,配置的多个SRS resource可以为一个SRS resource set中的多个SRS resource,或者为多个SRS resource set中的多个SRS resource。
具体实现中,UE配置多个SRS resource方法可以有多种:
(1)UE可以选择配置M套SRS resource sets,每套SRS resource set最大包含4个SRS resource,每个SRS resource包含X个SRS port,M可以大于1,例如等于2,此时若X=1,Y=2,则CSI-RS1对应SRS resource set1中的4个SRS resource,分别为SRS resource1,2,3,4;CSI-RS2对应SRS resource set2中的4个SRS resource,分别为SRS resource 5,6,7,8(也可以称为SRS resource set2中的SRS resource1,2,3,4);或者M=1,X=2,Y=4,每个SRS resource的2个SRS ports分别对应2个CSI-RS的测量结果;例如,SRS resource set1中的4个SRS resource1,2,3,4,其中每个SRS resource分别包含2个SRS ports,则4个SRS resource的SRS port 1对应CSI-RS1,4个SRS resource的SRS port2对应CSI-RS2。
(2)UE配置1套SRS resource set,保持总体最大4个SRS resource不变,UE根据每个CSI-RS测量得到4/N个SRS resource,例如UE收到N=2个CSI-RS时,仍旧最多发送4个SRS resource,但是每个CSI-RS对应2个SRS resource,即CSI-RS1对应SRS resource 1,2;CSI-RS2对应SRS resource 3,4;
(3)无论采取何种配置方法,UE均可以选择分时发送SRS或者使用不同的端口发送SRS,例如,使用上述(1)中配置方法,UE可以配置2个SRS resource sets,分别对应两个CSI-RS测量的信道并在不同的时域资源发送;或者分别使用不同的端口发送;
步骤(c),网络设备从多套SRS precoder中分别选择合适的precoder并通过SRI下发,例如图11所示,网络设备从SRS resource 1,2与SRS resource 3,4中分别选择索引号为1,3的SRS resource并通过SRI域指示给UE以间接指示UE使用的precoder,具体实现中所述多个precoder由所述SRI域中的一个SRI联合指示;或所述多个precoder由所述SRI域中的多个SRI独立指示。
SRI域联合指示,即通过一个SRI指示所选的全部precoder;多个SRI独立指示,即使用不同的SRI来指示根据不同CSI-RS所选的不同precoder,可以是多个不同的SRI域、新的DCI域、SRI域的不同比特、使用新的SRI table、或者使用现有SRI table的预留entry;此处可参照实施例一中的描述,不再赘述。
步骤(d),UE根据SRI选择precoder与rank,发送PUSCH,例如SRI指示SRS resource 1,3,则UE使用SRS resource 1,3所对应的precoder发送PUSCH。
根据SRI的指示确定precoder的过程如前NCB模式中描述,与前述单站重复传输 PUSCH的场景不同之处在于,本实施例中,SRI指示多个precoder,UE需要根据SRI域的指示,确定多个precoder用于重复发送多个PUSCH。
如图9所示,终端可以采用precoder1发送PUSCH1,3,5,7,采用precoder2重复发送PUSCH2,4,6,8,与单站重复传输PUSCH不同在于,多站场景中,UE向多个TRP发送PUSCH,且PUSCH采用不同的precoder,从而得到分集增益,并且在终端移动到不同的小区覆盖范围时,也可以保证传输的解码性能,增强了上行传输的可靠性。
实施例四
本实施例四中,主要描述PUSCH重复传输在CB模式下的主要流程如图12所示,具体实现步骤如下:
步骤(a),UE向TRP1和TRP2分别发送SRS,例如图12中所示可以是2个SRS,也可以大于2,例如为4个SRS;
步骤(b),TRP根据SRS进行信道测量得到上行信道状态,并根据信道条件选择合适的precoder和rank数,通过DCI下发给UE;也即,TRP通过DCI向UE发送指示多个precoder的指示信息。一种实现中,该指示信息可以是TRP1和TRP2分别向UE发送的,不同TRP发送的指示信息配置不同的QCL关系或不同的TCI状态,即该不同的precoder是对应不同的TRP的;在另一种实现中,该指示信息也可以是TRP1或TRP2中任一个TRP发送给UE的;其中,指示信息被配置为不同的QCL关系或不同的TCI状态是通过该指示信息所在的DCI中的其他域配置成为不同的QCL关系或不同的TCI状态实现的;例如DCI的TCI域可以配置成多个TCI状态,以表示该DCI所包括的TPMI域指示的不同的precoder是对应不同的TRP的。其中此时在多站状态下由于可能存在多个信道条件,故DCI中的TPMI域需要根据H1与H2分别确定,可以通过以下多种方式实现:
(1)可以通过增加TPMI的比特数来使其可以指示多个TPMI:例如表1所示的,需要最多4个比特(可以表示16个条目(entry)))指示layer数与TPMI;但是由于layer数通过前4比特已经可以确定,如layer=1,则候选TPMI只可能为0-5,则第二段TPMI域只需要指示TPMI即可,例如使用3个比特(0-8)指示TPMI 0-5即可;如表7所示:在原4个比特表示16个entry的TPMI表的基础上,再增加3比特表示8个entry(索引号为16-23),其中,codebookSubset=fullyAndPartialAndNonCoherent模式下,索引号为0-5分别用来指示TPMI=0,TPMI=1,TPMI=2,TPMI=3,TPMI=4,TPMI=5;对应的layer数由前4个比特获知,因此在索引号为0-5中不用再重复指示。例如,UE收到指示信息,前4个比特位为0111,查找表1,对应索引号为8,layer数为2layers,TPMI=2,同通过后3个比特位011,查找表5,对应索引号为3,对应的TPMI为3,layer数根据前4个比特已经确认为layer=2;因此,UE接收的指示信息指示的是2layers,TPMI=0,TPMI=3,其表示的含义是使用2 layers重复传输PUSCH时,一次传输PSUCH使用TPMI=0对应的precoder,另一次传输PUSCH使用TPMI=3对应的precoder。
codebookSubset=NonCoherent模式下,用索引号为0-1,分别指示TPMI=0,TPMI=1。 其含义不在赘述。
(2)另一种实现方式是通过使用现有TPMI table中的预留(reserved)条目(entry),并使其可以指示多个TPMI,例如表8,索引号为9的entry指示的内容为:1 layer,TPMI=1,TPMI=3,两个TPMI由两个SRS resource分别测量得到,分别指示不同的precoder;其表示的含义是使用1 layer重复传输PUSCH时,一次传输PSUCH使用TPMI=0对应的precoder,另一次传输PUSCH使用TPMI=3对应的precoder。
或者例如entry 10:2 layers,TPMI=0,TPMI=2,其表示的含义是使用2 layers重复传输PUSCH时,一次传输PUSCH使用TPMI=0对应的precoder,另一次传输PUSCH使用TPMI=3对应的precoder。本实施例entry中的layer数,例如表格中的2layers,其layer数为2,表示的是所有TPMI对应的layer数之和,也可以表示其中一个TPMI对应的rank数,此时,另一个TPMI对应的rank也为该layer数。
3)当网络设备通过特定方式指示给UE当前传输方式为多站上行传输时,还可以使用新的TPMI表,UE可以使用所述新的TMPI表得到多个TPMI,新表9和新表10中包含的每个entry都可以指示多个TPMI,所述entry的描述与(2)中相同。
例如,表9采用了5个比特表示32个entry,每个entry(除了reserved)对应的行中包含一个layer数和两个TPMI数,layer数表示的是该两个TPMI均对应的layer数。
例如,索引号为0的entry用于指示layer=1:TPMI=0和TPMI=1,其含义是UE根据该指示信息,使用一个layer重复传输PUSCH时,既可以使用TPMI=0对应的precoder,也可以使用TPMI=1对应的precoder;又如,索引号为15的entry用于指示2 layers:TPMI=0和TPMI=1,其含义是UE根据该指示信息,使用两个layer重复传输PUSCH,一次重复传输可以使用TPMI=0对应的precoder,另一次重复传输可以使用TPMI=1对应的precoder。
需要说明的是,非相干码本子集的索引号为1对应的2 layers:TPMI=0,表示UE使用2layers重复传输PUSCH时,使用相同的TPMI=0对应的precoder。
表9:TPMI表(2port,最大rank2)
Figure PCTCN2020075772-appb-000012
又例如,表10采用了5个比特表示32个entry,每个entry(除了reserved)之外的行中包含一个layer数和两个TPMI数,layer数表示的是该两个TPMI分别对应的layer数相加之和。
其中索引号为0的entry用于指示2 layers:TPMI=0,TPMI=1,其含义是UE根据其指示信息,重复发送PUSCH,一次可以使用TPMI=0对应的precoder并使用1个layer传输PUSCH,另一次可以使用TPMI=1对应的precoder并使用1个layer发送PUSCH,因此两个TPMI对应的layer数之和为1+1=2;又如,索引号为15的entry用于指示4layers:TPMI=0,TPMI=1,其含义是UE根据其指示信息,重复发送PUSCH,一次传输PUSCH时可以使用TPMI=0对应的precoder和2layers,另一次传输PUSCH时可以使用TPMI=1对应的precoder和2layers,因此两个TPPMI对应的layer数之和为2+2=4。
表10:TPMI表(2port,最大rank2)
Figure PCTCN2020075772-appb-000013
步骤(c),UE根据DCI中的SRI,TRI,TPMI,获得多个precoder的index和实际传输的上行rank数,用以发送PUSCH,例如图12中所示的,TPMI1指示precoder1,TPMI2指示precoder3,即UE使用precoder1和precoder3发送PUSCH。
根据DCI的SRI,TRI,TPMI指示确定precoder的过程如前CB模式中描述,与前述不同之处在于,本实施例中,TPMI指示多个precoder,UE需要根据TPMI域的指示,确定多个precoder用于重复发送多个PUSCH。
对于上述NCB和CB传输模式,在网络设备按照上述方式指示给UE多个precoder时(NCB模式下通过多个SRI,CB模式下通过多个TPMI),UE均可以通过PUSCH重复传输的方式进一步增强传输可靠性。对于PUSCH的重复传输,UE可以选择多种方式发送多个PUSCH,例如:使用相同或不同的多个端口(port),使用相同或不同的时域资源,或者使用相同或不同的频域资源。
以下将以不同的端口,不同的时域资源,不同的频域资源为例,UE如何重复发送多个PUSCH,使用相同的端口,或相同的时域资源,或相同的频域资源发送PUSCH与之相比较为简单,在此不再赘述。
i)使用不同的端口(PUSCH空分传输)
对于多个PUSCH,UE可以选择使用不同一个或多个的port(s)进行发送,本实施 例中,port(s)在可以指发送SRS的SRS port,或者发送PUSCH的port,本申请实施例对此不做限定。
具体发送方式如图13所示,PUSCH1和PUSCH2使用完全相同的时域资源与频域资源,但是使用不同的发送port(s),例如,如果PUSCH1,PUSCH2均为rank1传输(即二者均使用1个port传输),则UE可以使用port1发送PUSCH1,使用port2发送PUSCH2;如果PUSCH1,PUSCH2均为rank2传输(即二者均使用2个ports传输),则UE可以使用ports 1,2发送PUSCH1,使用ports 3,4发送PUSCH2。
ii)使用不同的时域资源(PUSCH时分传输)
对比于使用不同的port(s)的空分传输的SlotAggregration传输技术,UE也可以选择在多个连续或间隔的传输时间单元内使用不同的时域资源重复使用所选的precoder,进行PUSCH重复传输。具体发送方式如图14所示,PUSCH1和PUSCH2使用完全相同频域资源与发送port,但是二者的时域位置不同,具体来说,不同的PUSCH时域位置可能有以下几种情况:
如图15所示,不同的连续slot(如图中的时间单元),PUSCH1位于slot1,PUSCH2位于slot2,具体的PUSCH1与PUSCH2分别位于slot1和slot2的相同或者不同符号;举例来讲,slot1和slot2分别包括14个符号,PUSCH1位于slot1的符号4-6,PUSCH位于slot2的符号4-6;或者PUSCH1位于slot1的符号3-4,PUSCH2位于slot2的符号5-6;等等。
如图16所示,不同的非连续slot,例如PUSCH位于slot1,PUSCH2位于slot3,slot1与slot3之间是非连续的。由于需要避开下行符号,PUSCH1和PUSCH2可能位于slot1和slot3的相同或者不同符号。
如图17所示,不同的连续mini-slot,PUSCH1和PUSCH2位于同一个slot内的不同符号位置,该不同的符号位置是连续的。例如PUSCH1位于slot1的符号3-4,而PUSCH2位于slot1的符号5-6。
如图18所示,不同的非连续mini-slot,由于需要避开slot内的下行符号,PUSCH1和PUSCH2可能位于同一个slot内的不同符号位置但不连续;例如PUSCH1位于slot1的符号3-4,而PUSCH2位于slot1的符号7-8。
如图19所示,不同的非连续mini-slot,如果PUSCH跨slot边界,所述PUSCH可能被分割为两个PUSCH,如图19中的PUSCH2被slot边界分割为PUSCH2和PUSCH3,此时PUSCH2和PUSCH3可以使用相同或不同的precoder,本申请实施例对此不做限定。
iii)使用不同的频域资源(PUSCH频分传输)
除了上述两种重复传输方式,UE也可以选择使用不同的频域资源,重复使用所选的precoder,进行PUSCH重复传输。
如图20所示,PUSCH1和PUSCH2使用相同的时域资源,但是二者所使用的频域资源(如资源块(resource block,RB),物理资源组(Physical Resource Group,PRG)等)不同,例如可以是连续的频域资源或者非连续频域资源,本申请实施例对此不做限定。此时UE在不同的频域资源上发送带有不同的precoder的PUSCH(PUSCH1和PUSCH2)。
在上述多种重复传输的方式中,当UE需要使用多个precoder时,例如:使用precoder 1发送PUSCH1,precoder 3发送PUSCH2,则UE可以按照特定的precoder图样(pattern)进行PUSCH的重复传输(该PUSCH1~4均为相同的PUSCH,这里指的是将相同的PUSCH重复发送4次),如图21中的precoder{1,3,1,3},也可以选择其他不同的重复方式,如precoder{A,B},precoder{A,B,A,B},precoder{A,A,B,B}等方式。例如:TRP通过DCI发给UE的指示信息为precoder{1,3},并且通知UE采用分时传输的方式在4个连续的时间单元(slot)上以{A,B,A,B}的方式重复传输PUSCH 4次。则UE在接收到指示信息之后,传输PUSCH所用的precoder为{1,3,1,3},其中,使用Precoder 1发送PUSCH1,使用Precoder 3发送PUSCH2,使用Precoder 1发送PUSCH3,使用Precoder 3发送PUSCH4,传输的示意图如图21所示。
另一种实现中,TRP通过DCI发给UE的指示信息为precoder{1,3},并且通知UE采用分时传输的方式在4个连续的时间单元(slot)上以{A,A,B,B}的方式重复传输PUSCH 4次。则UE在接收到指示信息之后,传输PUSCH所用的precoder为{1,1,3,3},其中,使用Precoder 1发送PUSCH1,使用Precoder 1发送PUSCH2,使用Precoder 3发送PUSCH3,使用Precoder 3发送PUSCH4,传输的示意图如图22所示(该PUSCH1~4均为相同的PUSCH,这里指的是将相同的PUSCH重复发送4次)。UE在slot间重复发送多个PUSCH使用不同的precoder还有其他的方式,只要其满足至少两个PUSCH使用不同的precoder即可达到增强PUSCH传输可靠性的目的,在此不再赘述。
另外,对于时间单元(slot)内进行PUSCH重复传输的情况,即mini-slot级别的PUSCH重复传输,网络设备也可以指示在slot内使用不同的precoder进行PUSCH的重复传输。例如图23所示,在slot1内重复发送PUSCH1和PUSCH2,PUSCH1使用precoder1,PUSCH2使用precoder3进行重复传输(该PUSCH1~4均为相同的PUSCH,这里指的是将相同的PUSCH重复发送4次)。进一步的,还可以在slot2内重复发送PUSCH3,PUSCH4;PUSCH3使用precoder1,PUSCH4使用precoder3进行重复传输。或者在另一种实现方式中,slot1中的PUSCH1和PUSCH2使用precoder1,slot2中的PUSCH3和PUSCH4使用precoder3进行重复传输。
UE在slot间重复发送多个PUSCH使用不同的precoder还有其他的方式,只要其满足至少两个PUSCH使用不同的precoder即可达到增强PUSCH传输可靠性的目的,在此不再赘述。
前述实施例三和实施例四通过增强现有的CB与NCB传输模式,实现了多站情景下的上行PUSCH重复传输,提升了上行解码性能,增强了传输可靠性。
以下将介绍另一种上行传输可靠性增强的技术方案:PSUCH联合接收。
实施例五
本实施例五中,主要描述PUSCH联合接收技术,如图24所示,该技术方案中,UE假设多个TRP的传输信道矩阵可以合并为一个更大维度的传输信道矩阵,类似下行的分布式多入多出技术(distributed multiple-input multiple-output,DMIMO),此时网络设备直接对PUSCH进行合并而非对软信息进行合并,对合并之后的PSUCH(图示中的上行接收信号y1+y2)进行解调,得到单独的软信息之后进行后续的译码。
对于上行联合接收,与前述PUSCH重复传输的不同点在于:上行用于探测的precoder是由联合信道矩阵决定的,即网络设备或UE在选择precoder时,是由两个传输信道矩阵的联合矩阵决定的。
实施例六
本实施例六中,主要描述PUSCH联合接收在NCB模式下的主要流程,如图25所示:
步骤(a),TRP1与TRP2分别向UE发送CSI-RS1与CSI-RS2,其中,不同的TRP发送的CSI-RS配置不同的QCL关系;其中对上述2个CSI-RS的发送方式不做限定,例如2个CSI-RS可以使用相同或不同的时域资源,使用相同或不同的频域资源/端口等;
步骤(b),UE基于接收的多个信道状态参考信号CSI-RS进行联合信道测量,得到SRS precoder;
具体是,UE接收到多个CSI-RS后,会对多个CSI-RS进行联合信道测量,即将信道H1与H2看作一个可以合并的联合信道矩阵
Figure PCTCN2020075772-appb-000014
然后对
Figure PCTCN2020075772-appb-000015
进行奇异值分解(SVD)得到整体的特征向量V:
Figure PCTCN2020075772-appb-000016
然后根据特征向量V选择SRSprecoder。终端基于选择的SRS precoder,配置多个SRS resource以发送多个SRS,如图25所示,终端基于SRS precoder配置4个SRS recourse,分别发送探测参考信号SRS1,SRS2,SRS3,SRS4。
下面对上述步骤作几点说明:
(1)本实施例中的方法与前述PUSCH重复传输方式相比的区别在于,例如:
假设两个TRP分别为4个发射端口,UE为2个接收端口,则实施例三中UE需要分别对两个[4*2]信道矩阵进行SVD分解,进而分别选择得到两个SRS precoder,而本实施例六中直接对[8*2]的联合信道矩阵进行SVD分解并选择SRS precoder;
(2)本实施例中UE配置SRS resource时可以遵循现有协议,即配置一套SRS resource set,最多包含4个SRS resource;也可以使用新的配置方式,例如:UE配置X套SRS resource set,最多包含Y个SRS resource,每个SRS resource包含Z个SRS port,不限制X/Y/Z,即不限制SRS resource set/SRS resource/SRS port的数量;
(3)多站情景下或者UE接收多个CSI-RS的情况下,即:UE通过特定方式,例如根据特定参数/动态信令/半静态信令指示当前传输场景为至多站上行传输模式;或者UE接收多个CSI-RS时,UE会根据所有CSI-RS进行联合信道测量,进而得到SRS precoder,根据该SRS precoder配置对应的多个SRS resource;也即,所述多个SRS resource根据所述多个CSI-RS联合信道测量得到的SRS precoder分别配置。例如:CSI-RS 1&CSI-RS 2…对应SRS resource 1,2,3,4。本申请实施例对UE被指示为多站传输场景的方式不设限制。
步骤(c),TRP1或TRP2从SRS precoder中选择合适的precoder并通过指示信 息,例如SRI下发;如图25所示,其中,探测参考信号资源指示SRI={1,3}指示了与SRS resource1对应的预编1precoder1以及与SRS resource3对应的预编码3precoder3;
步骤(d),UE基于所述指示信息,使用所述一个或多个precoder用以发送PUSCH。
再如图25所示,根据SRI选择precoder与rank,发送PUSCH,例如SRI域指示SRS resource 1,3,则UE使用SRS resource 1,3所对应的precoder1和precoder3分别发送PUSCH。
其中,SRI域指示多个precoder,包括:所述precoder由所述SRI域中的一个SRI联合指示或者所述precoder由所述SRI域中的多个SRI独立指示。其具体的实现方式如实施例一中的描述,在此不再赘述。
实施例七
本实施例中,将主要描述PUSCH联合接收在CB模式下的主要流程,如图26所示:
步骤(a),UE向TRP1和TRP2分别发送SRS,可以使用多个SRS resource,例如图26中所示的2个SRS,也可以大于2,例如为4个SRS;
步骤(b),TRP根据SRS进行联合信道测量,并根据测量结果选择合适的precoder和rank数,通过DCI下发给UE;其中,TRP向UE发送指示多个precoder的指示信息,该指示信息被配置不同的QCL关系或不同的TCI状态,即该不同的precoder是对应不同的TRP的;其中,指示信息被配置为不同的QCL关系或不同的TCI状态是通过该指示信息所在的DCI中的其他域配置成为不同的QCL关系或不同的TCI状态实现的;例如DCI的TCI域可以配置成多个TCI状态,以表示该DCI所包括的TPMI域指示的不同的precoder是对应不同的TRP的。
步骤(c),UE根据DCI中的SRI,TRI,TPMI,获得多个precoder的index和实际传输的上行rank数,用以发送PUSCH,例如图26中所示的,TPMI1指示precoder1,TPMI2指示precoder3,即UE使用precoder1和precoder3发送PUSCH。
该实施例中假设多个上行传输信道矩阵可以合并为一个更大维度的上行传输信道矩阵,具体的,即网络设备是通过联合信道测量来确定precoder的,实现了多站情景下的PUSCH联合接收,通过上行接收信号的合并提升了上行解码性能,增强传输可靠性。
以上分别介绍了PUSCH重复传输和联合接收的实现过程,在某些场景下,PUSCH重复传输与联合接收可以结合,以进一步增强上行传输的可靠性。
实施例八
前述实施例五、实施例六和实施例七分别介绍了联合接收的技术方案,在此基础上,可以与前述的重复传输方案相结合,即在联合接收场景下对PUSCH进行重复传输。
首先通过RRC信令对UE进行配置,UE可以被配置为上述实施例所述的CB上行传输模式或者NCB上行传输模式,当UE收到的RRC信令为“Codebook”时,则被配置为CB上行传输模式;当UE收到的RRC信令为“NonCodebook”时,则被配 置为NCB上行传输模式;
UE收到RRC信令后,即可按照上述实施例六中的技术方案在NCB模式下进行PUSCH联合接收,或者按照上述实施例七中的技术方案在CB模式下进行PUSCH联合接收;在此基础上,UE向TRP发送的PUSCH可以是重复传输的PUSCH。具体的,UE根据指示信息选择precoder后,可以使用该precoder重复发送PUSCH,其中,用于重复传输的PUSCH可以采用一个precoder,也可以采用多个不同precoder。
当UE使用一个precoder重复传输PUSCH,具体为:UE在相同或者不同的时域资源上使用一个precoder重复发送多个PUSCH,或者UE在相同或者不同的频域资源使用一个precoder上发送多个PUSCH,或者UE在相同或者不同的端口上使用一个precoder发送多个PUSCH。具体以图25为例,在联合接收的NCB场景下,UE根据指示信息选择了precoder1(图中的预编码1)和precoder3(图中的预编码3),然后使用precoder1发送PUSCH-A,使用precoder2发送PUSCH-B,此时,UE可以选择使用一个precoder进行重复传输,如使用precoder1重复发送PUSCH-A,使用precoder 3重复发送PUSCH-B。因此,在联合接收的基础上进一步,从而增强了上行传输的可靠性。
当UE使用多个不同的precoder重复传输PUSCH时,相当于将上述联合接收的技术方案与本申请实施例二至实施例四中重复传输的技术方案相结合,仍然以图25为例,在联合接收的NCB场景下,UE根据指示信息选择了precoder1(图中的预编码1)和precoder3(图中的预编码3),然后使用precoder1发送PUSCH-A,使用precoder2发送PUSCH-B,此时,UE可以选择使用多个precoder重复发送PUSCH,如使用precoder1和precoder3重复发送PUSCH-A,使用precoder1和precoder3重复发送PUSCH-B。
当然,在另一种实现方式中,重复发送PUSCH-A采用的两个precoder和PUSCH-B采用的两个precoder可以是不同的。与现有的时隙聚合的传输方式中只能使用单个相同的precoder不同,此时UE会按照实施例二至实施例四中重复传输的技术方案接收指示多个precoder的指示信息,使用多个不同的precoder,而所述多个precoder均是通过联合信道测量所选择的,从而得到分集增益,并且在终端移动到不同的小区覆盖范围时,也可以保证传输的解码性能,增强了上行传输的可靠性。
本实施例中的UE使用相同或不同的多个端口(port),使用相同或不同的时域资源,或者使用相同或不同的频域资源发送PUSCH与实施例三和实施例四相同。在此不再赘述。
上述本申请提供的实施例中,分别从网络设备、终端设备、以及网络设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参阅图27,图27为本申请实施例提供的一种装置的结构示意图。该装置可用于实现上述实施例一至八中描述的方法,具体可以参见上述实施例一至八中的说明。
所述装置可以包括一个或多个处理器1601。所述处理器1601也可以称为处理单元,可以实现本申请实施例提供的方法中网络设备或终端设备的功能。所述处理器1601可以是通用处理器或者专用处理器等。
在一种可选的设计中,处理器1601也可以存有指令和/或数据1603,所述指令和/或数据1603可以被所述处理器运行,使得所述装置1600执行上述方法实施例中描述的方法。
在另一种可选的设计中,处理器1601中可以包括用于实现接收和发送功能的通信单元。例如,该通信单元可以是通信接口,或者收发电路,或者是接口,或者是接口电路。该处理器1601可通过该通信单元实现本申请实施例提供的方法中网络设备所执行的方法,或者终端设备所执行的方法。
可选的,所述装置1600中可以包括一个或多个存储器1602,其上可以存有指令1604。所述指令可在所述处理器上被运行,使得所述装置1600执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,所述装置1600还可以包括收发器1605、天线1606。所述处理器1601可以称为处理单元,对所述装置1600进行控制。所述收发器1605可以称为通信接口、通信单元、收发机、收发电路或者收发器等,用于实现收发功能。
该装置可以是终端设备,也可以是终端设备的部件(例如,集成电路,芯片等等)。
在一种可能的设计中,一种装置1600(例如,集成电路、无线设备、电路模块,或终端设备等),可包括:
收发器1605,用于接收指示多个precoder的指示信息;
处理器1601,用于基于所述指示信息确定所述多个precoder;
所述收发器1605,还用于基于所述处理器确定的precoder,重复发送PUSCH;其中,至少两个所述PUSCH使用的precoder不同。
在一种实施方式中,处理器1601配置的多个SRS resource可以是一个SRS resource set中的多个SRS resource,也可以是多个SRS resource set中的多个SRS resource。
在一种实施方式中,收发器1605既可以使用相同的时域资源发送PUSCH,也可以使用不同的时域资源发送PUSCH,即收发器可以在不同的时域位置发送,其中不同的时域位置可以为不同的slot、连续的slot或者是同一个slot上不同的时域符号;
在一种实施方式中,收发器1605既可以使用相同的port发送PUSCH,也可以使用不同的port发送PUSCH,其中port可以为发送SRS的SRS port,也可以为发送PUSCH的port;
在一种实施方式中,收发器1605既可以使用相同的频域资源发送PUSCH,也可以使用不同的频域资源发送PUSCH,且频域资源可以为连续的或者不连续的。
在一种实施方式中,处理器1605还能合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码 正确的概率。
本实施例提供的装置1600可以实现如前述实施例一至实施例四中任一实施例的方法所能得到的技术效果如前实施例一至实施例四所述,在此不再赘述。
在另一种可能的设计中,一种装置1600(例如,集成电路、无线设备、电路模块,或终端设备等)可包括:
收发器1605,用于接收多个CSI-RS;
处理器1601,用于基于接收的多个CSI-RS进行联合信道测量,得到SRS precoder;
所述处理器1601,还用于基于所述SRS precoder配置多个SRS resource;
所述收发器1605,还用于在所述多个SRS resource上发送多个SRS;
所述收发器1605,还用于接收指示一个或多个precoder的指示信息;
所述处理器1601,还用于基于所述指示信息,确定一个或多个precoder;
所述收发器1605,还用于基于所述处理器确定的所述一个或多个precoder发送PUSCH。
其中,多个CSI-RS配置不同的QCL关系,也即多个CSI-RS是来自不同的网络设备的CSI-RS。
在一种实施方式中,处理器1601是根据所述多个CSI-RS联合信道测量得到的一个SRS precoder分别配置所述多个SRS resource,即,多个SRS resource是多个CSI-RS分别对应的。
在一种实施方式中,处理器1601配置的多个SRS resource可以是一个SRS resource set中的多个SRS resource,也可以是多个SRS resource set中的多个SRS resource。在一种实施方式中,收发器1605接收到的多个precoder中至少有两个precoder不同;也即,收发器1605发送的至少两个PUSCH使用的precoder不同。
实施本技术方案,在处理器1601对多个CSI-RS进行联合信道测量得到SRS precoder,从而为网络设备对多个PUSCH进行联合接收提供条件的基础上,多个发向不同网络设备的不同的PUSCH可以采用不同的precoder进行重复传输,可以进一步增强上行传输的可靠性。
在一种实施方式中,收发器1605接收到的所述多个precoder是网络设备从多个SRS precoder中选择并通过SRI域指示的,其中,多个precoder既可以由SRI域中的一个SRI联合指示,即通过一个SRI指示所选的全部precoder;也可以由SRI域中的多个SRI独立指示,即通过不同的SRI来指示根据不同的CSI-RS所选的不同precoder。
在一种实施方式中,处理器1601还能合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
本实施例提供的装置1600可以实现如前述实施例六的方法所能得到的技术效果如前实施例六所述,在此不再赘述。
该装置1600还可以是网络设备,也可以是网络设备的部件(例如,集成电路,芯片等等)。该装置也可以是其他通信单元,用于实现本申请实施例中的方法。
在一种可能的设计中,一种装置1600(例如,网络设备、基站、或基带芯片),可包括:
收发器1605,用于发送多个CSI-RS;
所述收发器1605,用于接收多个SRS,所述多个SRS与基于对所述CSI-RS进行信道测量得到的多个SRS precoder对应;也即,所述多个SRS与多个SRS precoder对应,所述多个SRS是基于对所述CSI-RS进行信道测量得到的。
处理器1601,用于基于所述SRS,从所述多个SRS precoder中选择多个precoder;
所述收发器1605,用于发送指示多个所述precoder的指示信息。
其中,多个CSI-RS配置不同的QCL关系,也即多个CSI-RS是来自不同的网络设备的CSI-RS。
在一种实现方式中,收发器1605下发的指示多个precoder的指示信息为SRI域,其中,多个precoder既可以由SRI域中的一个SRI联合指示,即通过一个SRI指示所选的全部precoder;也可以由SRI域中的多个SRI独立指示,即通过不同的SRI来指示根据不同的CSI-RS所选的不同precoder。
在一种实现方式中,收发器1605还可以接收多个重复发送的PUSCH,其中,至少两个所述PUSCH使用的precoder不同。
在一种实施方式中,处理器1601还能合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
本实施例提供的装置1600可以实现如前述实施例三的方法所能得到的技术效果如前实施例三所述,在此不再赘述。
在另一种可能的设计中,一种装置1600(例如,网络设备、基站、或基带芯片),可包括:
收发器1605,用于接收多个SRS;
处理器1601,用于基于接收的所述多个SRS测量得到上行信道状态,以及用于基于所述上行信道状态选择多个precoder。
所述收发器1605,用于发送指示所述多个precoder的指示信息。
在一种实施方式中,该指示信息配置不同的QCL关系或不同的TCI状态,即该不同的precoder是对应不同的网络设备的。
在一种实施方式中,收发器1605下发指示多个precoder的指示信息为TPMI域,TPMI域中包含多个TPMI,其中,每个TPMI对应一个precoder,或者所述多个precoder由TPMI域中的一个TPMI分别指示,其中,每个所述TPMI对应多个precoder;其中, 即TPMI域指示的多个precoder是根据不同的信道矩阵分别确定的。TPMI域包括多个TPMI的实现的方式有多种,例如增加TPMI域的比特数,使其可以同时指示多个TPMI;或者使用TPMI表(table)中的预留索引(index),并使其可以指示多个TPMI;或者使用新的TPMI table,使其包含指示多个TPMI的索引(index)。在一种实现方式中,收发器1605还可以接收多个重复发送的PUSCH,其中,至少两个所述PUSCH使用的precoder不同。
在一种实施方式中,处理器1601合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
本实施例提供的装置1600可以实现如前述实施例四的方法所能得到的技术效果如前实施例四所述,在此不再赘述。
在一种可能的设计中,一种装置1600(例如,网络设备、基站、或基带芯片),可包括:
收发器1605,用于发送CSI-RS;
所述收发器1605,用于接收多个SRS,所述多个SRS与基于对所述CSI-RS进行联合信道测量得到的SRS precoder对应;
处理器1601,用于基于所述多个SRS,从所述多个SRS precoder中选择一个或多个precoder。
所述收发器1605,用于发送指示所述一个或多个precoder的指示信息。
其中,多个CSI-RS配置不同的QCL关系,表示来自不同网络设备的CSI-RS。
在一种实现方式中,收发器1605下发的指示多个precoder的指示信息为SRI域,其中,所述的多个precoder既可以由所述SRI域中的一个SRI联合指示,即通过一个SRI指示所选的全部precoder;也可以有所述SRI域中的多个SRI独立指示,即通过不同的SRI来指示根据不同的CSI-RS所选的不同precoder。
在一种实施方式中,收发器1605接收到的多个precoder中至少有两个precoder不同;收发器1605发送的至少两个PUSCH使用的precoder不同。
在一种实施方式中,收发器1605可以接收使用precoder重复发送的PUSCH。
实施本技术方案,在处理器1601对多个CSI-RS进行联合信道测量得到SRS precoder,从而为处理器1601对多个PUSCH进行联合接收提供条件的基础上,多个发向不同处理器1601的不同的PUSCH可以采用不同的precoder进行重复传输,可以进一步增强上行传输的可靠性。
在一种实施方式中,处理器1601还能合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
本实施例提供的装置1600可以实现如前述实施例六和实施例八的方法所能得到的技术效果如前实施例六和实施例八所述,在此不再赘述。
在又一种可能的设计中,一种装置1600(例如,网络设备、基站、或基带芯片)可包括:
收发器1605,用于接收多个SRS;
处理器1601,用于基于所述多个SRS进行联合信道测量;
所述处理器1601,用于基于所述联合信道测量的结果,选择所述一个或多个precoder;
所述收发器1605,用于发送指示所述一个或多个precoder的指示信息。
在一种实施方式中,处理器1601是根据多个SRS进行联合信道测量得到的上行联合信道状态,然后选择了合适的precoder,并向终端发送指示信息,该指示信息配置不同的QCL关系或者不同的TCI状态,即该指示多个precoder的指示信息可以通过一个接口下发给终端,也可以通过多个接口分别下发给终端。
在一种实施方式中,收发器1605接收到的多个precoder中至少有两个precoder不同。
在一种实施方式中,收发器1605可以接收使用precoder重复发送的PUSCH。
在一种实施方式中,处理器1601还能合并所述多个PUSCH的软信息,以此来对多个PUSCH同时进行解调,并将解调后的软信息进行合并译码,从而提高上行译码正确的概率。
本实施例提供的装置1600可以实现如前述实施例七和实施例八的方法所能得到的技术效果如前实施例七和实施例八所述,在此不再赘述。
图28提供了一种终端设备的结构示意图。该终端设备可适用于本申请实施例任意所示出的场景中。为了便于说明,图28仅示出了终端设备的主要部件。如图28所示,终端设备包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解析并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行处理后得到射频信号并将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,该射频信号被进一步转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
为了便于说明,图28仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施 例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备的通信单元1711,将具有处理功能的处理器视为终端设备的处理单元1712。如图28所示,终端设备包括通信单元1711和处理单元1712。通信单元也可以称为收发器、收发机、收发装置等。可选的,可以将通信单元1711中用于实现接收功能的器件视为接收单元,将通信单元1711中用于实现发送功能的器件视为发送单元,即通信单元1711包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。可选的,上述接收单元和发送单元可以是集成在一起的一个单元,也可以是各自独立的多个单元。上述接收单元和发送单元可以在一个地理位置,也可以分散在多个地理位置。
可以理解的是,本申请实施例中的一些可选的特征,在某些场景下,可以不依赖于其他特征,比如其当前所基于的方案,而独立实施,解决相应的技术问题,达到相应的效果,也可以在某些场景下,依据需求与其他特征进行结合。相应的,本申请实施例中给出的装置也可以相应的实现这些特征或功能,在此不予赘述。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (44)

  1. 一种物理上行共享信道PUSCH传输数据的方法,其特征在于,包括:
    终端接收指示多个预编码precoder的指示信息;
    所述终端基于所述指示信息,确定所述多个precoder用以重复发送PUSCH;
    至少两个所述PUSCH使用的precoder不同。
  2. 如权利要求1所述的方法,其特征在于,所述终端接收指示多个precoder的指示信息之前,还包括:
    所述终端基于接收的多个信道状态参考信号CSI-RS进行信道测量,分别得到多个探测参考信号预编码SRS precoder;
    所述终端基于所述多个SRS precoder配置多个探测参考信号资源SRS resource,并发送多个探测参考信号SRS。
  3. 如权利要求2所述的方法,其特征在于,所述多个SRS resource根据所述多个CSI-RS信道测量得到的SRS precoder分别配置。
  4. 如权利要求2所述的方法,其特征在于,所述多个precoder由探测参考信号资源指示SRI域指示,包括:
    所述多个precoder由所述SRI域中的一个SRI联合指示;
    或者
    所述多个precoder由所述SRI域中的多个SRI独立指示。
  5. 如权利要求1所述的方法,其特征在于,所述多个precoder由传输预编码矩阵指示TPMI域中的多个TPMI分别指示,其中,每个所述TPMI对应一个precoder;或者
    所述多个precoder由TPMI域中的一个TPMI分别指示,其中,每个所述TPMI对应多个precoder。
  6. 如权利要求2所述的方法,其特征在于,所述终端配置的所述多个SRS resource为一个探测参考信号资源集合SRS resource set中的多个SRS resource,或者为多个SRS resource set中的多个SRS resource。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,包括:
    所述终端使用相同或者不同的时域资源发送所述PUSCH;或
    所述终端使用相同或者不同的端口发送所述PUSCH;或
    所述终端使用相同或者不同的频域资源发送所述PUSCH。
  8. 一种物理上行共享信道PUSCH传输数据的方法,其特征在于,包括:
    终端基于接收的多个信道状态参考信号CSI-RS进行联合信道测量,得到探测参考信号预编码SRS precoder;
    所述终端根据所述SRS precoder,配置多个探测参考信号资源SRS resource并发送多个探测参考信号SRS;
    所述终端接收指示一个或多个precoder的指示信息;
    所述终端基于所述指示信息,使用所述一个或多个precoder用以发送PUSCH。
  9. 如权利要求8所述的方法,其特征在于,所述多个SRS resource根据所述多个CSI-RS联合信道测量得到的SRS precoder分别配置。
  10. 如权利要求8所述的方法,其特征在于,所述终端配置的所述多个SRSresource为一个探测参考信号资源集合SRS resource set中的多个SRS resource,或者为多个SRS resource set中的多个SRS resource。
  11. 如权利要求8所述的方法,其特征在于,所述PUSCH为重复发送的多个PUSCH,至少两个所述PUSCH所述用的所述precoder不同。
  12. 如权利要求8至11中任一项所述的方法,其特征在于,所述precoder由探测参考信号资源指示SRI域指示,包括:
    所述precoder由所述SRI域中的一个SRI联合指示;
    或者
    所述precoder由所述SRI域中的多个SRI独立指示。
  13. 一种传输数据的方法,其特征在于,包括:
    网络设备发送信道状态信息参考信号CSI-RS;
    所述网络设备接收多个探测参考信号SRS,发送所述多个SRS的多个探测参考信号资源SRS resource与基于对所述CSI-RS进行信道测量得到的多个探测参考信号预编码SRS precoder对应;
    所述网络设备基于所述SRS,从所述多个SRS precoder中选择多个预编码
    precoder,并通过指示信息下发。
  14. 一种传输数据的方法,其特征在于,包括:
    网络设备基于接收的多个探测参考信号SRS测量得到上行信道状态;
    所述网络设备基于所述上行信道状态选择多个预编码precoder;
    所述网络设备发送指示所述多个precoder的指示信息。
  15. 一种传输数据的方法,其特征在于,包括:
    网络设备发送信道状态参考信号CSI-RS;
    所述网络设备接收多个探测参考信号SRS,发送所述多个SRS的多个探测参考信号资源SRS resource与基于对所述CSI-RS进行联合信道测量得到的探测参考信号预编码SRS precoder对应;
    所述网络设备基于所述多个SRS,从多个SRS precoder中选择一个或多个precoder,并通过指示信息下发。
  16. 一种传输数据的方法,其特征在于,包括:
    网络设备基于多个探测参考信号SRS进行联合信道测量;
    所述网络设备基于所述联合信道测量结果,选择一个或多个预编码precoder;
    所述网络设备发送指示所述一个或多个precoder的指示信息。
  17. 一种终端,其特征在于,包括:
    收发器,用于接收指示多个预编码precoder的指示信息;
    处理器,用于基于所述指示信息确定所述多个precoder;
    所述收发器,还用于基于所述处理器确定的所述多个precoder重复发送物理上行共享信道PUSCH;其中,至少两个所述PUSCH使用的precoder不同。
  18. 如权利要求17所述的终端,其特征在于,包括:
    所述收发器,还用于接收多个CSI-RS;
    所述处理器,还用于基于接收的所述多个CSI-RS进行信道测量,分别得到多个SRS precoder;
    所述处理器,还用于基于所述多个SRS precoder配置多个SRS resource;
    所述收发器,还用于在所述多个SRS resource上发送多个SRS。
  19. 如权利要求18所述的终端,其特征在于,
    所述多个SRS resource由所述处理器根据所述多个CSI-RS信道测量得到的多个SRS precoder分别配置。
  20. 如权利要求17所述的终端,其特征在于,所述多个precoder由探测参考信号资源指示SRI域指示,包括:
    所述多个precoder由所述SRI域中的一个SRI联合指示;
    或者
    所述多个precoder由所述SRI域中的多个SRI独立指示。
  21. 如权利要求17所述的终端,其特征在于,所述多个precoder由传输预编码矩阵指示TPMI域中的多个TPMI分别指示,其中,每个所述TPMI对应一个precoder;
    或者
    所述多个precoder由TPMI域中的一个TPMI分别指示,其中,每个所述TPMI对应多个precoder。
  22. 如权利要求18所述的终端,其特征在于,
    所述处理器配置的所述多个SRS resource为一个SRS resource set中的多个SRS resource,或者为多个SRS resource set中的多个SRS resource。
  23. 如权利要求17至22中任一项所述的终端,其特征在于,包括:
    所述收发器使用相同或者不同的时域资源发送所述PUSCH;或
    所述收发器使用相同或者不同的端口发送所述PUSCH;或
    所述收发器使用相同或者不同的频域资源发送所述PUSCH。
  24. 一种终端,其特征在于,包括:
    收发器,用于接收多个信道状态参考信号CSI-RS;
    处理器,用于基于接收的多个CSI-RS进行联合信道测量,得到探测参考信号预编码SRS precoder;
    所述处理器,还用于基于所述SRS precoder配置多个探测参考信号资源SRS resource;
    所述收发器,还用于在所述多个SRS resource上发送多个探测参考信号SRS;
    所述收发器,还用于接收指示一个或多个precoder的指示信息;
    所述处理器,还用于基于所述指示信息,确定一个或多个precoder;
    所述收发器,还用于基于所述处理器确定的所述一个或多个precoder发送物理上行共享信道PUSCH。
  25. 如权利要求24所述的终端,其特征在于,
    所述处理器,用于根据所述多个CSI-RS联合信道测量得到的SRS precoder分别配置所述多个SRS resource。
  26. 如权利要求24所述的方法,其特征在于,所述处理器配置的所述多个SRS  resource为一个探测参考信号资源集合SRS resource set中的多个SRS resource,或者为多个SRS resource set中的多个SRS resource。
  27. 如权利要求24所述的终端,其特征在于,所述PUSCH为重复发送的多个PUSCH,至少两个所述PUSCH所述用的所述precoder不同。
  28. 如权利要求24至27中任一项所述的终端,其特征在于,所述precoder由探测参考信号资源指示SRI域指示,包括:
    所述precoder由所述SRI域中的一个SRI联合指示;
    或者
    所述precoder由所述SRI域中的多个SRI独立指示。
  29. 一种网络设备,其特征在于,包括:
    收发器,用于发送多个信道状态参考信号CSI-RS;
    所述收发器,用于接收多个探测参考信号SRS,发送所述多个SRS的探测参考信号资源SRS resource与基于对所述CSI-RS进行信道测量得到的多个探测参考信号预编码SRS precoder对应;
    处理器,用于基于所述SRS,从所述多个SRS precoder中选择多个precoder;
    所述收发器,用于发送指示多个所述precoder的指示信息。
  30. 如权利要求29所述的网络设备,其特征在于,
    所述收发器,还用于接收多个重复发送的物理上行共享信道PUSCH;
    至少两个所述PUSCH使用的precoder不同。
  31. 如权利要求30所述的网络设备,其特征在于,
    所述处理器,还用于对所述多个PUSCH进行解调以得到各个PUSCH对应的多个软信息,合并所述多个软信息,以对所述多个软信息进行译码。
  32. 一种网络设备,其特征在于,包括:
    收发器,用于接收多个探测参考信号SRS;
    处理器,用于基于接收的所述多个SRS测量得到上行信道状态,并基于所述上行信道状态选择多个预编码precoder。
    所述收发器,用于发送指示所述多个precoder的指示信息。
  33. 如权利要求32所述的网络设备,其特征在于,
    所述收发器,还用于接收多个重复发送的物理上行共享信道PUSCH;
    所述多个PUSCH使用的precoder相同,或者至少两个所述PUSCH使用的precoder不同。
  34. 如权利要求33所述的网络设备,其特征在于,
    所述处理器,还用于对所述多个PUSCH进行解调以得到各个PUSCH对应的多个软信息,合并所述多个软信息后进行译码。
  35. 一种网络设备,其特征在于,包括:
    收发器,用于发送信道状态参考信号CSI-RS;
    所述收发器,用于接收多个探测参考信号SRS,发送所述多个SRS的多个探测参考信号资源SRS resource与基于对所述CSI-RS进行联合信道测量得到的探测参考信号预编码SRS precoder对应;
    处理器,用于基于所述多个SRS,从多个SRS precoder中选择一个或多个precoder;
    所述收发器,用于发送指示所述一个或多个precoder的指示信息。
  36. 如权利要求35所述的网络设备,其特征在于,
    所述收发器,还用于接收多个物理上行共享信道PUSCH;
    所述处理器,还用于合并所述多个PUSCH,并对合并后的PUSCH进行解调得到软信息以进行译码。
  37. 一种网络设备,其特征在于,包括:
    收发器,用于接收多个探测参考信号SRS;
    处理器,用于基于所述多个SRS进行联合信道测量;
    所述处理器,还用于基于所述联合信道测量结果,选择一个或多个预编码precoder;
    所述收发器,还用于发送指示所述一个或多个precoder的指示信息。
  38. 如权利要求37所述的网络设备,其特征在于,
    所述收发器,还用于接收多个物理上行共享信道PUSCH;
    所述处理器,还用于合并所述多个PUSCH,并对合并后的PUSCH进行解调得到软信息以进行译码。
  39. 一种芯片系统,其特征在于,包括:至少一个处理器和接口;
    接口,用于接收指示多个预编码precoder的指示信息;
    处理器,用于基于所述指示信息确定所述多个precoder;
    所述接口,还用于基于所述处理器确定的所述多个precoder,重复发送物理上行 共享信道PUSCH;
    其中,至少两个所述PUSCH使用的precoder不同。
  40. 一种芯片系统,其特征在于,包括:至少一个处理器和接口;
    接口,用于接收多个信道状态参考信号CSI-RS;
    处理器,用于基于接收的多个CSI-RS进行联合信道测量,得到探测参考信号预编码SRS precoder;
    所述处理器,还用于基于所述SRS precoder配置多个探测参考信号资源SRS resource;
    所述接口,还用于在所述多个SRS resource上发送多个探测参考信号SRS;
    所述接口,还用于接收指示一个或多个预编码precoder的指示信息;
    所述处理器,还用于基于所述指示信息,确定一个或多个precoder;
    所述接口,还用于基于所述处理器确定的所述一个或多个precoder发送物理上行共享信道PUSCH。
  41. 一种芯片系统,其特征在于,包括:至少一个处理器和接口;
    接口,用于发送多个信道状态参考信号CSI-RS;
    所述接口,用于接收多个探测参考信号SRS,发送所述多个SRS的探测参考信号资源SRS resource与基于对所述CSI-RS进行信道测量得到的多个探测参考信号预编码SRS precoder对应;
    处理器,用于基于所述SRS,从所述多个SRS precoder中选择多个预编码precoder;
    所述接口,用于发送指示多个所述SRS precoder的指示信息。
  42. 一种芯片系统,其特征在于,包括:至少一个处理器和接口;
    接口,用于接收多个探测参考信号SRS;
    处理器,用于基于接收的所述多个SRS测量得到上行信道状态,以及用于基于所述上行信道状态选择多个预编码precoder;
    所述接口,用于发送指示所述多个precoder的指示信息。
  43. 一种芯片系统,其特征在于,包括:至少一个处理器和接口;
    接口,用于发送信道状态参考信号CSI-RS;
    所述接口,用于接收多个探测参考信号SRS,所述多个SRS与基于对所述CSI-RS进行联合信道测量得到的探测参考信号预编码SRS precoder对应;
    处理器,用于基于所述多个SRS,从多个SRS precoder中选择一个或多个预编码precoder;
    所述接口,用于发送指示所述一个或多个SRS precoder的指示信息。
  44. 一种芯片系统,其特征在于,包括:至少一个处理器和接口;
    接口,用于接收多个探测参考信号SRS;
    处理器,用于基于所述多个SRS进行联合信道测量;
    所述处理器,用于基于所述联合信道测量结果,选择所述一个或多个预编码precoder;
    所述接口,用于发送指示所述一个或多个precoder的指示信息。
PCT/CN2020/075772 2020-02-18 2020-02-18 物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统 WO2021163899A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20920381.9A EP4096111A4 (en) 2020-02-18 2020-02-18 METHOD FOR TRANSMISSION OF DATA VIA PHYSICAL UPLINK CHANNEL, METHOD FOR TRANSMISSION OF DATA, TERMINAL, NETWORK DEVICE AND CHIP SYSTEM
PCT/CN2020/075772 WO2021163899A1 (zh) 2020-02-18 2020-02-18 物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统
CN202080097051.4A CN115152158A (zh) 2020-02-18 2020-02-18 物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统
US17/889,674 US20220417965A1 (en) 2020-02-18 2022-08-17 Method for transmitting data on physical uplink shared channel, data transmission method, terminal, network device, and chip system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075772 WO2021163899A1 (zh) 2020-02-18 2020-02-18 物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/889,674 Continuation US20220417965A1 (en) 2020-02-18 2022-08-17 Method for transmitting data on physical uplink shared channel, data transmission method, terminal, network device, and chip system

Publications (1)

Publication Number Publication Date
WO2021163899A1 true WO2021163899A1 (zh) 2021-08-26

Family

ID=77391845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075772 WO2021163899A1 (zh) 2020-02-18 2020-02-18 物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统

Country Status (4)

Country Link
US (1) US20220417965A1 (zh)
EP (1) EP4096111A4 (zh)
CN (1) CN115152158A (zh)
WO (1) WO2021163899A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872650A (zh) * 2021-09-28 2021-12-31 京信网络系统股份有限公司 无线通信方法、装置、设备、系统和存储介质
WO2023125125A1 (zh) * 2021-12-30 2023-07-06 华为技术有限公司 一种通信方法及通信装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11917675B2 (en) * 2021-09-24 2024-02-27 Qualcomm Incorporated Techniques for channel aware rank adaptation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565311A (zh) * 2016-09-26 2019-04-02 Lg 电子株式会社 在无线通信系统中的上行链路发送/接收的方法及其装置
US20190140729A1 (en) * 2018-01-02 2019-05-09 Intel Corporation Phase tracking reference signal (pt-rs) power boosting
US20190280751A1 (en) * 2018-03-09 2019-09-12 Mediatek Inc. Frequency-Selective Precoding For Uplink Transmissions In Mobile Communications
CN110419188A (zh) * 2017-01-06 2019-11-05 株式会社Ntt都科摩 获取信道状态信息的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210306123A1 (en) * 2018-07-27 2021-09-30 Nec Corporation Uplink transmission

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109565311A (zh) * 2016-09-26 2019-04-02 Lg 电子株式会社 在无线通信系统中的上行链路发送/接收的方法及其装置
CN110419188A (zh) * 2017-01-06 2019-11-05 株式会社Ntt都科摩 获取信道状态信息的方法
US20190140729A1 (en) * 2018-01-02 2019-05-09 Intel Corporation Phase tracking reference signal (pt-rs) power boosting
US20190280751A1 (en) * 2018-03-09 2019-09-12 Mediatek Inc. Frequency-Selective Precoding For Uplink Transmissions In Mobile Communications

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "UL SRS design for CSI acquisition and beam management", 3GPP DRAFT; R1-1700074, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Spokane, USA; 20170116 - 20170120, 9 January 2017 (2017-01-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051202500 *
NTT DOCOMO, INC: "Enhancements on multi-TRP/panel transmission", 3GPP DRAFT; R1-1911184, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051789956 *
See also references of EP4096111A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113872650A (zh) * 2021-09-28 2021-12-31 京信网络系统股份有限公司 无线通信方法、装置、设备、系统和存储介质
WO2023125125A1 (zh) * 2021-12-30 2023-07-06 华为技术有限公司 一种通信方法及通信装置

Also Published As

Publication number Publication date
US20220417965A1 (en) 2022-12-29
EP4096111A4 (en) 2023-05-31
EP4096111A1 (en) 2022-11-30
CN115152158A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
JP7249334B2 (ja) アップリンク伝送方法および構成方法、端末ならびに基地局
CN113824481B (zh) 上行传输方法、装置、芯片系统及存储介质
WO2021163899A1 (zh) 物理上行共享信道传输数据的方法、传输数据的方法及终端、网络设备、芯片系统
WO2019029662A1 (zh) 信息传输的方法和通信装置
CN103795513A (zh) 一种下行控制信息的配置、获取方法、基站和终端
US10178012B2 (en) Systems and methods for a sounding frame in an IEEE 802.11ax compliant network
US20210250206A1 (en) Information Receiving Method and Apparatus and Information Sending Method and Apparatus
US20230024879A1 (en) Indication information transmission method and communication device
WO2022033577A1 (zh) 一种通信方法及装置
US20200106583A1 (en) Enhanced Sounding Reference Signal Scheme
CN113746606B (zh) 一种通信方法及装置
US11166301B2 (en) Methods and systems for resource configuration of grant-free (GF)transmissions using radio resource control (RRC) signal
WO2023060449A1 (zh) 无线通信的方法、终端设备和网络设备
CN112054831B (zh) 信道状态信息的反馈方法及装置
CN115190503A (zh) 一种通信方法及装置
WO2018082622A1 (zh) 一种预编码矩阵指示方法、装置和系统
WO2023151564A1 (zh) 通信方法、装置及系统
WO2023184451A1 (zh) 一种基于非码本的pusch发送、接收信息的方法及其装置
WO2023184450A1 (zh) 一种基于非码本的pusch接收/发送信息的方法及其装置
WO2024031718A1 (zh) 支持8Tx的基于非码本的PUSCH传输的预编码指示方法及装置
WO2023226833A1 (zh) 探测参考信号传输的方法和通信装置
WO2023030242A1 (zh) 电子设备、通信方法和计算机程序产品
WO2024065463A1 (en) Method, device and computer storage medium of communication
WO2024045031A1 (zh) 一种通信方法及装置
WO2021248449A1 (en) Methods and apparatus for configuring csi-rs resource for srs resource set

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20920381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020920381

Country of ref document: EP

Effective date: 20220825

NENP Non-entry into the national phase

Ref country code: DE