WO2018082622A1 - 一种预编码矩阵指示方法、装置和系统 - Google Patents

一种预编码矩阵指示方法、装置和系统 Download PDF

Info

Publication number
WO2018082622A1
WO2018082622A1 PCT/CN2017/109160 CN2017109160W WO2018082622A1 WO 2018082622 A1 WO2018082622 A1 WO 2018082622A1 CN 2017109160 W CN2017109160 W CN 2017109160W WO 2018082622 A1 WO2018082622 A1 WO 2018082622A1
Authority
WO
WIPO (PCT)
Prior art keywords
codebook
pmi
csi
user equipment
nth
Prior art date
Application number
PCT/CN2017/109160
Other languages
English (en)
French (fr)
Inventor
黄逸
任海豹
窦圣跃
李元杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710184915.6A external-priority patent/CN108023624B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019520732A priority Critical patent/JP2019537874A/ja
Priority to EP17866695.4A priority patent/EP3506522A4/en
Publication of WO2018082622A1 publication Critical patent/WO2018082622A1/zh
Priority to US16/401,427 priority patent/US10924174B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a precoding matrix indication method, apparatus, and system in a wireless communication system.
  • network devices In wireless networks, in order to cooperate with the application of Multiple Input Multiple Output (MIMO) technology, network devices usually need to precode the transmitted data to reduce different data streams of the same user or data streams of different users. Interference, which improves system performance.
  • the information required for the network device to perform precoding is generally based on measurement information of the downlink channel fed back by the user equipment.
  • the user equipment performs channel estimation according to the reference signal sent by the network device, and selects a most suitable precoding matrix in the codebook including multiple precoding matrices according to the channel estimation result, and adopts a Precoding Matrix Indicator (PMI). Feedback to the network device as a reference for the network device to perform downlink data precoding.
  • PMI Precoding Matrix Indicator
  • reference signal resource configuration is more flexible, such as supporting both periodic and aperiodic PMI reporting, while supporting non-precoded reference signals and precoded reference signals.
  • the reference signal resource includes an antenna port in the multi-panel antenna array and dynamic activation and deactivation resources.
  • the existing PMI feedback solution cannot satisfy the flexible PMI feedback in the wireless network. demand.
  • a precoding indication method is needed, which can flexibly adapt to different reference signal resource configurations, and simplify signaling and codebook design.
  • This paper describes a precoding indication method, apparatus and system, which aims to improve the flexibility of PMI feedback by using a combination of multi-level codebooks and corresponding PMI feedback methods to support more reference signal resource configuration scenarios. Reduce the signaling overhead for configuring the PMI feedback mode.
  • the present application provides a precoding matrix indication method, including: receiving, by a user equipment, indication information sent by a network device, where the indication information includes information of a codebook used for reporting a PMI, and the information indication of the codebook
  • the codebook used is at least two of the first codebook to the Nth codebook
  • the PMI includes at least two of the first PMI to the Nth PMI
  • the first PMI to the Nth PMI are respectively used for And indicating a precoding matrix in the first codebook to the Nth codebook
  • the user equipment sends the PMI according to the indication information; where N is an integer greater than or equal to 2.
  • the information-reference signal (CSI-RS) is different in resource configuration, and a combination of one or more codebooks in N codebooks is used to adapt to different requirements.
  • the network device only needs to indicate which codebooks or which PMIs need to be reported by the user equipment for a certain reference signal resource, and avoids the need for multiple signaling to indicate that the user equipment uses different codebooks and PMI feedback mechanisms, thereby reducing Signaling overhead, and in the case of dynamic changes of reference signal resources or other scenarios, only need to send the above indication information, and correspondingly indicate the change of the codebook used, without using multiple signaling for each change.
  • each codebook can use a simpler design for different considerations. Multiple codebooks can be provided in various combinations, so that more application scenarios can be adapted without having to separate for each scene. Designing a complex codebook simplifies the complexity of the codebook design.
  • the user equipment receives the indication information sent by the network device, where the indication information includes information about the codebook used by the PMI, where the information of the codebook indicates that the codebook used is the first codebook.
  • the indication information includes information about the codebook used by the PMI, where the information of the codebook indicates that the codebook used is the first codebook.
  • the PMI including at least two of the first PMI, the second PMI, and the third PMI, the first PMI, the second PMI, and the third PMI And respectively used to indicate a precoding matrix in the first codebook, the second codebook, and the third codebook; and send the PMI according to the indication information.
  • the present application provides a precoding matrix indication method, including: a network device sending indication information to a user equipment, where the indication information includes information about a codebook used by the user equipment to report a PMI, the codebook The information indicates that the codebook used is at least two of the first codebook to the Nth codebook, and the PMI includes at least two of the first PMI to the Nth PMI, the first PMI to the Nth PMI And respectively, used to indicate the precoding matrix in the first code to the Nth codebook; and receive the PMI sent by the user equipment; where N is an integer greater than or equal to 2.
  • the method further includes: the network device determining, for the user equipment, a codebook used to report the PMI.
  • the determining, by the network device, the codebook used by the PMI to report the PMI the network device determining, by the network device, whether the PMI is reported by the user equipment according to whether the reference signal is pre-coded and/or the distribution of the antenna port in the reference signal resource.
  • the network device sends the indication information to the user equipment, where the indication information includes information about the codebook used by the user equipment to report the PMI, where the information of the codebook indicates that the codebook used is the first At least two of a codebook, a second codebook, and a third codebook, the PMI including at least two of a first PMI, a second PMI, and a third PMI, the first PMI, the second PMI, and The third PMI is used to indicate a precoding matrix in the first codebook, the second codebook, and the third codebook, respectively, and receive the PMI sent by the user equipment.
  • the indication information may also include information about a PMI to be used, where the information of the PMI indicates that the PMI includes at least two of a first PMI to an Nth PMI, and the first PMI to the Nth The PMI is used to indicate a precoding matrix in the first codebook to the Nth codebook, respectively.
  • the indication information may include information about a codebook used by the PMI corresponding to the multiple reference signal resources, and the PMI corresponding to each reference signal resource may use a different codebook.
  • the reference signal resource refers to at least one antenna port and time-frequency domain resource for transmitting a reference signal, and one reference signal resource includes at least one antenna port.
  • the signaling device is used to notify the user equipment to report the codebook used by the PMI corresponding to multiple reference signal resources, which further reduces the signaling overhead.
  • the values of the first PMI to the Nth PMI respectively correspond to a codebook index in the first codebook to the Nth codebook.
  • Each codebook uses one PMI, and each PMI corresponds to a codebook index in the codebook.
  • the PMI can be reported by using a simpler cell, and the number of bits required by the cell is smaller, which simplifies the signaling overhead when reporting the PMI. .
  • the values of the first PMI, the second PMI, and the third PMI respectively correspond to the first codebook, A codebook index in the second codebook and the third codebook.
  • At least one of the first codebook, the second codebook, and the third codebook may further include at least two subcodebooks.
  • the further split design of the codebook can simplify the design complexity of each codebook, and can be combined with other codebooks more flexibly.
  • the first codebook includes a first subcodebook and/or a second subcodebook
  • the first PMI includes a first sub-PMI and/or a second sub-PMI.
  • the values of the first sub-PMI, the second sub-PMI, the second PMI, and the third PMI are respectively corresponding to the first sub-codebook, the second sub-codebook, the second codebook, and the third codebook.
  • a codebook index is respectively corresponding to the first sub-codebook, the second sub-codebook, the second codebook, and the third codebook.
  • the first codebook to the Nth codebook include at least one codebook for performing beam selection.
  • the precoding matrix in the codebook used for beam selection is a weighting matrix of C (C ⁇ 1) antenna ports constituting K (1 ⁇ K ⁇ C) beams.
  • K beams are a set of orthogonal or non-orthogonal bases in the beam domain.
  • the first codebook may be used for performing beam selection.
  • the first codebook to the Nth codebook include at least one codebook for performing beam basis vector selection.
  • the precoding matrix in the codebook for performing beam basis vector selection is a weighting matrix of C (C ⁇ 1) antenna ports constituting X (X ⁇ 1) beams, wherein X beams are at least one group in the beam domain Orthogonal or non-orthogonal basis.
  • the first subcodebook is used for performing beam basis vector selection
  • the second subcodebook is used for performing beam selection.
  • the precoding matrix in the second subcodebook is a selection matrix in which K (1 ⁇ K ⁇ C) beams are selected among X beams.
  • the first codebook to the Nth codebook include at least one codebook for beam combining.
  • the precoding matrix in the codebook used for beam combining is a weighting matrix that combines at least one beam, for example, a weighting matrix in which the above K beams are combined.
  • the second codebook is used for beam combining.
  • the first codebook to the Nth codebook include at least one codebook for performing amplitude and/or phase compensation between beams.
  • the precoding matrix in the codebook used to perform amplitude and/or phase compensation between beams is an amplitude and/or phase compensation matrix between different beams.
  • the amplitude and/or phase compensation between different beams includes: amplitude compensation between beams in different polarization directions, phase compensation between beams in different polarization directions, amplitude compensation between beams of different antenna panels, and At least one of phase compensation between beams of different antenna panels.
  • the codebook for performing amplitude and/or phase compensation between beams can support the application of a dual-polarized antenna array and/or a multi-panel antenna array, and only needs to use the codebook with other codes. This combination can support the application of dual-polarized antenna arrays and support the use of antenna ports or beams from different antenna panels, simplifying the complexity of the codebook design.
  • the third codebook is used to perform amplitude and/or phase compensation between beams.
  • the present application provides a precoding codebook for a network device to perform data precoding and/or a user equipment to report a PMI, where the precoding codebook includes an N-level codebook.
  • N is an integer greater than or equal to 2
  • each codebook in the N-level codebook may be used alone or in combination with other codebooks.
  • the N-level codebook includes: a codebook for performing beam base vector selection, a codebook for performing beam selection, a codebook for performing beam combining, and performing different poles. At least one of a codebook for inter-beam difference compensation in the direction of direction and a codebook for performing inter-panel difference compensation.
  • the precoding codebook includes a three-level codebook: a first codebook, a second codebook, and a third codebook.
  • the first codebook is used for performing beam selection.
  • the second codebook is used for beam combining.
  • the third codebook is used to perform amplitude and/or phase compensation between beams.
  • the precoding codebook includes a four-level codebook: a first subcodebook, a second subcodebook, a second codebook, and a third codebook.
  • the first subcodebook is used for performing beam basis vector selection
  • the second subcodebook is used for performing beam selection.
  • the second codebook is used for beam combining.
  • the third codebook is used for performing Amplitude and/or phase compensation between beams.
  • an embodiment of the present application provides a user equipment, where the user equipment has a function of realizing user equipment behavior in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present application provides a network device, where the network device has a function of implementing network device behavior in the foregoing method.
  • the functions may be implemented by hardware or by corresponding software implemented by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • an embodiment of the present application provides a user equipment, where a structure of a user equipment includes a receiver and a transmitter.
  • the receiver is configured to support the user equipment to receive information and/or data sent by the network device involved in the foregoing method, such as receiving indication information sent by the network device.
  • the transmitter is configured to support the user equipment to send information or data involved in the foregoing method to the network device, such as sending a PMI to the network device.
  • the user equipment may further include a processor.
  • the processor is configured to support a user device to perform a corresponding function in the above method.
  • the user equipment may also include a memory for coupling with the processor to store program instructions and data necessary for the user equipment.
  • the embodiment of the present application provides a network device, where the structure of the network device includes a transmitter and a receiver.
  • the transmitter and receiver are used to support communication between the network device and the user equipment.
  • the transmitter is configured to send information and/or data involved in the above method to the user equipment, for example, to send indication information.
  • the receiver is configured to support the network device to receive information and/or data sent by the user equipment involved in the foregoing method, for example, to receive a PMI sent by the user equipment.
  • the network device may further include a processor configured to support the network device to perform a corresponding function in the above method, for example, determining, for the user equipment, a codebook used to report the PMI.
  • the network device can also include a memory for coupling with the processor to hold program instructions and data necessary for the network device.
  • the network device may also include a communication unit for supporting communication with other network devices, such as communication with a core network node.
  • an embodiment of the present application provides a communication system, where the system includes the network device and the user equipment in the foregoing aspect.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the network device, which includes a program designed to perform the above aspects.
  • the embodiment of the present application provides a computer storage medium for storing computer software instructions used by the user equipment, which includes a program designed to perform the above aspects.
  • the present application provides a chip system including a processor for supporting a user equipment to implement the functions involved in the above aspects, such as, for example, generating or processing data involved in the above method and/or Or information.
  • the chip system further includes a memory for storing program instructions and data necessary for the user equipment.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application provides a chip system including a processor for supporting a network device to implement the functions involved in the above aspects, for example, receiving or processing data involved in the above method and/or Or information.
  • the chip system further includes a memory for storing necessary program instructions and data of the network device.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • the present application describes a precoding matrix indication method, apparatus and system, which aims to improve the flexibility of PMI feedback through the combined use of multi-level codebooks and corresponding PMI feedback methods, so as to support more.
  • a plurality of reference signal resource configuration scenarios, and the signaling overhead for configuring the PMI feedback mode is reduced.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present application
  • FIG. 2 is a schematic flowchart of a method for indicating a precoding matrix according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart diagram of a precoding method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of correspondence between a reference signal resource and a codebook according to an embodiment of the present application
  • FIG. 5 is a schematic diagram of correspondence between another reference signal resource and a codebook according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of still another correspondence relationship between a reference signal resource and a codebook according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of another method for indicating a precoding matrix according to an embodiment of the present disclosure.
  • the network architecture and the service scenario described in the embodiments of the present application are for the purpose of more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute a limitation of the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of the present application are equally applicable to similar technical problems.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present application.
  • a User Equipment (UE) accesses a network device through a wireless interface for communication, and can also communicate with another user device, such as Device to Device (D2D) or Machine to Machine (M2M). Communication under the scene.
  • the network device can communicate with the user device or with another network device, such as a communication between the macro base station and the access point.
  • D2D Device to Device
  • M2M Machine to Machine
  • the network device can communicate with the user device or with another network device, such as a communication between the macro base station and the access point.
  • the terms "network” and “system” are often used interchangeably, but those skilled in the art can understand the meaning.
  • the user equipment referred to in the present application may include various handheld devices having wireless communication functions, in-vehicle devices, wearable devices, computing devices, control devices, or other processing devices connected to the wireless modem, and various forms of UE, mobile Mobile station (MS), terminal (Terminal) or terminal equipment (Terminal Equipment), etc., are referred to as user equipment (UE) for convenience of description.
  • MS mobile Mobile station
  • Terminal Terminal
  • Terminal Equipment Terminal Equipment
  • the network device involved in the present application includes a base station (BS), a network controller, or a mobile switching center, etc., wherein the device that directly communicates with the user equipment through the wireless channel is usually a base station, and the base station may include various forms.
  • the macro base station, the micro base station, the relay station, the access point, or the remote radio unit (RRU), etc. of course, the wireless communication with the user equipment may also be other network equipments having wireless communication functions. This is not a sole limitation.
  • the name of a device with a base station function may be different, for example, in an LTE network, called an evolved NodeB (eNB or eNodeB), in the 3rd Generation (3G) In the network, it is called a Node B.
  • eNB evolved NodeB
  • 3G 3rd Generation
  • 5G Transmission Reception Point
  • TRP Transmission Reception Point
  • the technical solution provided by the present application can be applied between a network device and a user equipment, such as a base station and a user equipment.
  • a network device and a user equipment such as a base station and a user equipment.
  • the network device and the user equipment are used as an example in the description of the present application.
  • the antenna port described in this application is used to transmit a physical channel or signal, and the channel experienced by the symbol transmitted on one antenna port can be inferred by the channel experienced by other symbols transmitted on the same antenna port. obtain.
  • a beam as used in the present application refers to a radio wave having a certain direction and shape in a space formed when a wireless signal is transmitted or received by at least one antenna port.
  • the beam may be formed by weighting the amplitude and/or phase of the data transmitted or received by the at least one antenna port, or may be formed by other methods, such as adjusting the relevant parameters of the antenna unit.
  • the antenna panel (or simply “panel”) described in the present application refers to a device for carrying a physical antenna, and an antenna panel may carry an antenna array composed of multiple antenna units, or may be composed of multiple antenna panels. Multi-panel antenna array.
  • the reference signal resource in the present application refers to a time-frequency resource used on an antenna port and an antenna port for transmitting a reference signal, and a reference signal resource includes at least one antenna port and the at least one antenna port. Time-frequency resources.
  • a reference signal for performing channel state information measurement such as a Channel State Information-Reference Signal (CSI-RS)
  • CSI-RS Channel State Information-Reference Signal
  • the reference signal used for reporting the PMI is usually CSI-RS, but Other types of reference signals or other signals may also be used, which is not limited in this application.
  • CSI-RS Channel State Information-Reference Signal
  • the matrix or precoding matrix described in the present application includes a vector with a row number or a column number of 1.
  • FIG. 2 is a schematic flowchart diagram of a method for indicating a precoding matrix according to an embodiment of the present disclosure.
  • the user equipment receives the indication information sent by the network device, where the indication information includes information about the codebook used by the user equipment to report the PMI.
  • the indication information includes a PMI reporting manner corresponding to at least one reference signal resource.
  • the reporting manner may be: indicating a codebook used by the user equipment to report the PMI, or indicating which PMIs the user equipment needs to report.
  • the indication information may indicate that the user equipment needs to use the one or more codebooks in the first codebook to the Nth codebook to determine the PMI for a certain reference signal resource; the indication information may also indicate the user equipment, Which one of the first PMI to the Nth PMI is to be reported, and the first PMI to the Nth PMI are respectively used to indicate the first to the Nth codebooks. Precoding matrix.
  • the first codebook to the Nth codebook may be respectively designed for at least one of reference signal resources and/or channel information, for example, one codebook is used for beam selection, and one codebook is used for beam combining, some A codebook is used for inter-beam amplitude and/or phase compensation, and so on. In this way, in response to different scenarios, you can choose a combination of different codebooks.
  • each of the first codebook to the Nth codebook uses one PMI, and each of the first PMI to the Nth PMI has a value corresponding to the first codebook to the Nth.
  • a codebook index in the codebook For example, the value of the kth (1 ⁇ k ⁇ N) PMI may be equal to a codebook index i in the kth codebook (1 ⁇ i ⁇ I, I is the codebook of the kth codebook)
  • the index of the maximum value of the index, the kth PMI indicates the precoding matrix corresponding to the codebook index i in the kth codebook.
  • the indication information may be high layer signaling, such as radio resource control (RRC) signaling.
  • RRC radio resource control
  • the indication information may be sent when the user equipment accesses, or may be dynamically sent to the user equipment according to requirements, for example, changes in reference signal resource configuration.
  • different reference signal resources use the at least one codebook in the first codebook to the Nth codebook to perform PMI reporting.
  • only one codebook needs to be maintained, and different codebooks are used. Flexible combination of different reference signal resource configurations.
  • the user equipment reports the PMI according to the indication information.
  • the user equipment determines the codebook and the PMI to be used according to the PMI reporting manner indicated in the foregoing indication information, and performs reporting.
  • the network device indicates that the user equipment needs to use the first codebook and the second codebook for a certain reference signal resource, or needs to report the first PMI and the second PMI, and the user equipment uses the first codebook for the reference signal resource.
  • the second codebook determines and reports the first PMI and the second PMI.
  • FIG. 3 is a schematic flowchart of a precoding method according to an embodiment of the present application. It should be noted that the steps in FIG. 3 and the sequence between them are only examples. In a real system, some of them may be omitted. The steps or the order of the changes are not limited in this application.
  • the network device determines, for the user equipment, the CSI-RS resource and the codebook used by the user equipment to report the PMI for different CSI-RSs.
  • the network device may determine, for the user equipment, the codebook used for reporting the PMI according to whether the precoding of the CSI-RS is transmitted and/or the distribution of the antenna ports in the CSI-RS resource. For example, when a network device transmits a precoded CSI-RS, for example, a beamformed CSI-RS, the user equipment may be instructed to use a codebook for beam amplitude and/or phase compensation, and the user equipment may not Using a codebook for beamforming; for example, when the CSI-RS resource includes antenna ports on different panels, ie, the beams may come from different antenna panels, the network device may also indicate that the user equipment is used for inter-beam amplitude and/or Or a phase-compensated codebook to compensate for differences between beams of different panels.
  • the network device indicates the CSI-RS resource allocated by the user equipment.
  • the network device may allocate one or more CSI-RS resources to each user equipment, and each CSI-RS resource may correspond to a different PMI reporting manner.
  • the network device can dynamically notify the user equipment CSI-RS resource configuration.
  • one CSI-RS resource may include at least one antenna port and time-frequency domain resources used on the antenna port.
  • the antenna ports may be antenna ports of the same or different polarization directions, or may be distributed on the same or different antenna panels.
  • the network device sends a CSI-RS.
  • the user equipment can perform channel estimation and measurement according to the received CSI-RS.
  • the network device sends an indication message.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The description of the above section 201 is omitted here.
  • the user equipment combines the results of the channel estimation and measurement, and determines the PMI using the corresponding codebook according to the indication information.
  • the user equipment reports the PMI.
  • the embodiment of the body is the same as the description of the above part 202, and details are not described herein again.
  • the network device pre-codes the downlink data according to the PMI reported by the user equipment.
  • the network device sends the precoded downlink data.
  • FIG. 4 is a schematic diagram of a correspondence relationship between a reference signal resource and a codebook according to an embodiment of the present application.
  • the network device may pre-configure a set of antenna ports of the CSI-RS resource for the user equipment, where the antenna port set includes M (M ⁇ 1) antenna ports, and select C 1 (C 1 ⁇ 1) from the port set.
  • the antenna port constitutes CSI-RS resource 1, and C 2 (C 2 ⁇ 1) antenna ports are selected to constitute CSI-RS resource 2.
  • the first codebook is used for beam selection.
  • the precoding matrix in the first codebook is C (C ⁇ 1) antenna ports constituting K (1 ⁇ K ⁇ C) beams. Weighting matrix.
  • the precoding matrix in the first codebook may be an oversampled discrete Fourier transform (DFT) matrix, for example, may be a 3rd Generation Partnership Project (3GPP).
  • DFT discrete Fourier transform
  • 3GPP 3rd Generation Partnership Project
  • the user equipment may perform the selection of the precoding matrix in the first codebook according to the number of antenna ports of the CSI-RS resource and the number of beams to be selected.
  • the CSI-RS resource for 1 select a first codebook C 1 antenna ports constitute ports weighting matrix K ( ⁇ k ⁇ C) of the beams;
  • CSI-RS resource for 2 in a first In the codebook, C 2 antenna port ports are selected to form a weighting matrix of K (1 ⁇ K ⁇ C) beams.
  • the second codebook is used for beam combining, and the precoding matrix in the second codebook is a weighting matrix that combines at least one beam.
  • the second codebook may be a weighting matrix for combining the above K beams.
  • the precoding matrix in the second codebook may be a precoding matrix in a codebook used when the signaling eMIMO-type is configured as 'Class B' in 3GPP TS 36.211 V13.0.0, or may be a beam weighting matrix. Such as:
  • C is the number of antenna ports
  • L is an integer greater than or equal to 1, indicating the number of layers of data to be transmitted.
  • the user equipment according to the number of antenna ports CSI-RS resource, such as in the present embodiment the number of layers C 1 or C 2, and the transmission data is selected precoding matrix codebook in a second embodiment.
  • the network device determines a codebook used by each CSI-RS resource for the user equipment and notifies the user equipment by the indication information.
  • the network device may also indicate the used codebook in signaling (eg, RRC signaling) configuring the CSI-RS resource.
  • Each codebook only reports one PMI, which is used to indicate a precoding matrix in the codebook.
  • the non-precoded CSI-RS resource may report the PMI using only the first codebook, or may report the PMI using the first codebook and the second codebook at the same time.
  • the Beamformed CSI-RS resource can report the PMI using only the second codebook, or report the PMI to the first codebook and the second codebook.
  • the CSI-RS resource 1 is a non-precoded CSI-RS resource
  • the CSI-RS resource 2 is a beamformed CSI-RS resource.
  • the network device determines that the CSI-RS resource 1 reports the first PMI using the first codebook.
  • the CSI resource 2 reports the first PMI and the second PMI by using the first codebook and the second codebook.
  • the user equipment After the user equipment performs channel estimation according to the CSI-RS resource 1, it may determine which precoding matrix in the first codebook is used according to the signal to interference and noise ratio maximization criterion, and determine the value of the first PMI that needs to be reported.
  • the user equipment may determine which precoding matrix and the precoding matrix in the second codebook in the first codebook are used according to the signal to interference and noise ratio maximization criterion, and determine that the precoding matrix needs to be reported.
  • the value of the first PMI and the value of the second PMI may be determined according to the signal to interference and noise ratio maximization criterion.
  • the user equipment After determining the PMI to be reported by the CSI-RS resource 1 and the CSI-RS resource 2, the user equipment reports the determined PMI.
  • FIG. 5 is a schematic diagram of correspondence between another reference signal resource and a codebook according to an embodiment of the present application.
  • the network device may pre-configure a set of antenna ports of the CSI-RS resource for the user equipment, where the antenna port set includes M (M ⁇ 1) antenna ports, and select C 1 (C 1 ⁇ 1) from the port set.
  • the antenna port constitutes CSI-RS resource 1, selects C 2 (C 2 ⁇ 1) antenna ports to form CSI-RS resource 2, and selects C 3 (C 3 ⁇ 1) antenna ports to form CSI-RS resource 3.
  • beam selection is implemented by using a combination of the first subcodebook and the second subcodebook.
  • the first subcodebook is used for performing beam basis vector selection, and the precoding matrix in the first subcodebook is a weighting matrix of C (C ⁇ 1) antenna ports constituting X (1 ⁇ X) beams, wherein X beams Is at least one set of orthogonal or non-orthogonal bases in the beam domain.
  • the specific form of the first sub-codebook may be the same as the specific format of the first codebook in the foregoing embodiment, and details are not described herein.
  • the first sub-codebook may also be an orthogonal DFT matrix.
  • the method for using the first sub-codebook by the user equipment is the same as the first codebook in the foregoing embodiment, except that the first sub-codebook selects X beams.
  • the second subcodebook is used for beam selection, and the precoding matrix in the second subcodebook is a selection matrix in which K (1 ⁇ K ⁇ C) beams are selected among X beams.
  • the precoding matrix in the second subcodebook may be designed as an X ⁇ K matrix containing K non-zero elements for the purpose of selecting K beams among the X beams.
  • the user equipment may select a precoding matrix in the second subcodebook according to the beam that needs to be used by itself and the values of X and K.
  • the second codebook is used for beam combining, and the form of the precoding matrix in the second codebook and the manner of use are the same as the second codebook in the above embodiment.
  • the network device determines the codebook used by each CSI-RS resource for the user equipment and notifies the user equipment by using the indication information.
  • the network device determines the codebook used by each CSI-RS resource for the user equipment and notifies the user equipment by using the indication information.
  • the non-precoded CSI-RS resource may report the PMI using the first sub-codebook and the second sub-codebook, or may use the first sub-codebook and the second simultaneously.
  • the subcodebook and the second codebook are reported to the PMI.
  • the Beamformed CSI-RS resource can report the PMI using only the second codebook, or report the PMI to the first subcodebook, the second subcodebook, and the second codebook.
  • the CSI-RS resource 1 is a non-precoded CSI-RS resource
  • the CSI-RS resource 2 and the CSI-RS resource 3 are beamformed CSI-RS resources.
  • the network device determines that the CSI-RS resource 1 reports the first sub-PMI and the second sub-PMI by using the first sub-codebook and the second sub-codebook.
  • the CSI-RS resource 2 reports the first sub-PMI, the second sub-PMI, and the second PMI by using the first sub-codebook, the second sub-codebook, and the second codebook.
  • the CSI-RS resource 3 uses the second codebook to report the second PMI.
  • the user equipment uses different CSI-RS resources to perform channel estimation, and determines the precoding matrix to be used in the corresponding codebook according to the indication information.
  • the user equipment may also determine a precoding matrix to be specifically used according to the signal to interference and noise ratio maximization criterion when using the first subcodebook and the second subcodebook.
  • the user equipment determines a first sub-PMI and a second sub-PMI corresponding to the CSI-RS resource 1, and corresponds to the first sub-PMI, the second sub-PMI, and the second PMI of the CSI-RS resource 2, and corresponds to the second CSI-RS resource 3 PMI is reported to the network device.
  • FIG. 6 is a schematic diagram of a correspondence relationship between a reference signal resource and a codebook according to an embodiment of the present application.
  • the codebook corresponding to the CSI-RS resource 1 and the PMI determining process are the same as the CSI-RS resource 2 in FIG. 4.
  • the second codebook and the second PMI determining process corresponding to the CSI-RS resource 2 are the same as the CSI-RS resource 2 in FIG. 5.
  • the CSI-RS resource 2 also includes beams of different polarization directions, so the third codebook can also be used for feedback of the third PMI to compensate for amplitude and/or phase differences between beams of different polarization directions.
  • the antenna ports used in the CSI-RS resource 3 are distributed on different antenna panels, that is, the beams corresponding to the CSI-RS resources 3 are from different antenna panels, and the CSI-RS resources can be used in the third codebook. Feedback from the PMI to compensate for amplitude and/or phase differences between beams of different antenna panels.
  • the third codebook is used to perform amplitude and/or phase compensation between the beams.
  • the precoding matrix in the third codebook is an amplitude and/or phase compensation matrix between different beams.
  • the amplitude and/or phase compensation between different beams includes: amplitude compensation between beams in different polarization directions, phase compensation between beams in different polarization directions, amplitude compensation between beams of different antenna panels, and At least one of phase compensation between beams of different antenna panels.
  • the precoding matrix in the third codebook may be designed in the same form as the second codebook in the foregoing embodiment, except that elements in the precoding matrix in the third codebook are used for amplitude sum between beams.
  • each element can be an amplitude factor and / or a phase factor.
  • the third codebook may also be split into at least two subcodebooks.
  • the third codebook may include a third subcodebook and a fourth subcodebook, where the third subcodebook is used to perform Amplitude and/or phase compensation between beams of different polarization directions, the fourth subcodebook is used to perform amplitude and/or phase compensation between beams of different panels.
  • the precoding matrix in the third subcodebook and/or the fourth subcodebook may adopt a design similar to the third codebook described above.
  • the third sub-codebook and the fourth sub-codebook respectively correspond to the third sub-PMI and the fourth sub-PMI, and the specific indication manner may refer to the description of the other codebooks mentioned above.
  • the network device determines that the CSI-RS resource 1 needs to report the first PMI and the second PMI by using the first codebook and the second codebook; and the CSI-RS resource 2 needs to use the second codebook and the third codebook.
  • the second PMI and the third PMI are reported;
  • the CSI-RS resource 3 needs to report the first PMI, the second PMI, and the third PMI by using the first codebook, the second codebook, and the third codebook.
  • the use, design and use of the first codebook and the second codebook are the same as those of the embodiment of FIG.
  • the user equipment may determine, according to the signal to interference and noise ratio maximization criterion, which precoding matrix in the third codebook is used by the CSI-RS resource 2, and determine the value of the third PMI corresponding to the CSI-RS resource 2, and the CSI-RS.
  • the resource 3 uses which precoding matrix in the third codebook, and determines the value of the third PMI corresponding to the CSI-RS resource 3. Then, the PMI corresponding to the CSI-RS resource 1, the CSI-RS resource 2, and the CSI-RS resource 3 is reported.
  • the CSI-RS resource determination, the PMI determination, and the reporting may be referred to the embodiment corresponding to FIG. 4 or FIG. 5, and details are not described herein again.
  • any one or more codebooks in the first codebook to the Nth codebook in the foregoing embodiment may be further split into more subcodebooks, and each corresponding subcodebook corresponds to one subroutine.
  • PMI each sub-PMI corresponds to one precoding matrix index in each subcodebook.
  • the first codebook for beam selection in the foregoing embodiment may be split into the first subcodebook and the second subcodebook.
  • the third codebook in the foregoing embodiment may also be split into the first codebook.
  • the three subcodebook and the fourth subcode are originally implemented.
  • any two or more codebooks in the first to Nth codebooks in the foregoing embodiment may also be jointly designed to be combined into one codebook corresponding to one PMI, for example, in FIG. 6.
  • the second codebook and the third codebook may be jointly designed to implement beam combining and difference compensation between beams using one codebook; or the second codebook and the third subcodebook may also be combined.
  • the solution provided by the application may also be used in combination with the codebook and the PMI reporting method in the prior art.
  • the third codebook (the third subcodebook and/or the fourth subcodebook) in the foregoing embodiment is added, and the amplitude between the beams needs to be performed and/or Or when the phase is compensated, it is indicated by the indication information.
  • the user equipment reports the corresponding PMI using the third codebook.
  • the system can use the existing PMI to report the policy, and in the case of more scenarios, indicate which codebooks the user equipment needs to use for PMI reporting, so as to adapt to the current scenario.
  • FIG. 9 is a schematic flowchart of another method for indicating a precoding matrix according to an embodiment of the present disclosure.
  • the network device may configure at least two CSI-RS resources for the user equipment, and send information indicating that the user equipment uses the codebook used by the user equipment to report the PMI by using different CSI-RS resources, and the user equipment uses different information according to the indication information of the network device.
  • the CSI-RS resource and the corresponding codebook determine the PMI and report it to the network device.
  • the network device pre-codes the data according to the PMI reported by the user equipment.
  • the network device configures two CSI-RS resources for the user equipment as an example for description.
  • the network device includes N (N ⁇ 1) antenna panels, each antenna panel includes M (M ⁇ 1) CSI-RS antenna ports, and the M CSI-RS antenna ports may include cross polarization An antenna port and/or a single-polarized antenna port, wherein the CSI-RS antenna port refers to an antenna port that can be used to transmit a CSI-RS, and each antenna port can pass through one physical antenna unit or include at least two physical antenna units Antenna array implementation.
  • the network device determines the CSI-RS resource 1 and uses the CSI-RS resource 1 to report the first codebook C 1 used by the first PMI, and the CSI-RS resource 2 and the CSI-RS resource 2 report.
  • the second codebook used by the second PMI is C 2 .
  • the CSI-RS resource 1 may be a non-precoded CSI-RS resource, and the CSI-RS resource 1 may include M'(M' from an antenna panel. ⁇ M) CSI-RS antenna ports.
  • the first codebook C 1 used by the CSI-RS resource 1 to report the first PMI may be at least one of performing beam selection, beam combining, amplitude compensation between beams, and phase compensation between beams. Codebook.
  • W 1 may be an oversampled discrete Fourier transform (DFT) matrix, for example, may be in the 3rd Generation Partnership Project (3GPP) TS 36.213 V13.0.0.
  • DFT discrete Fourier transform
  • 3GPP 3rd Generation Partnership Project
  • W 2 may be in TS 36.213 V13.0.0, and when the signaling eMIMO-type is configured as 'Class B', the precoding matrix used by the PMI is determined.
  • the CSI-RS resource 1 may be a precoded CSI-RS resource, and the CSI-RS resource 1 may include M' from one antenna panel (M' ⁇ M ) CSI-RS antenna ports.
  • a CSI-RS resource reporting first PMI first codebook C may be used for implementing a combined beam, the codebook beam amplitude compensation between the at least one function of the phase compensation between the beam .
  • the CSI-RS resource 1 may include N′(N′ ⁇ N) CSI-RS resources, where the N′ CSI-RS resources include non-precoded CSI-RS resources and/or a precoded CSI-RS resource, where the N' CSI-RS resources respectively include CSI-RS antenna ports on the N' antenna panels, that is, one CSI-RS resource in the N' CSI-RS resources includes from one antenna M'(M' ⁇ M) CSI-RS antenna ports on the panel, CSI-RS antenna ports of different CSI-RS resources are from different antenna panels.
  • the user equipment uses the N' CSI-RS resources in the CSI-RS resource 1 to determine N' first PMIs in the first codebook C1, and the first code corresponding to different CSI-RS resources.
  • the selection and characteristics of the first codebook C 1 corresponding to different types of CSI-RS resources in the CSI-RS resource 1 may be referred to the description in the two specific examples above.
  • the CSI-RS resource 2 may be a precoded CSI-RS resource.
  • the CSI-RS resource 2 includes N'(N' ⁇ N) CSI-RS antenna ports, wherein different CSI-RS antenna ports are from different antenna panels, and the antenna unit or antenna port on the same antenna panel can A beam is formed corresponding to one CSI-RS antenna port in the CSI-RS resource 2.
  • the network device pre-codes the CSI-RS antenna ports on the N′ antenna panels according to the first PMI fed back by the user equipment, and obtains CSI-RSs sent on the CSI-RS resource 2.
  • the second codebook C 2 used by the CSI-RS resource 2 to feed back the second PMI may be used to implement inter-beam phase compensation, inter-beam amplitude compensation, phase compensation between beams from different antenna panels, and phase compensation of at least one function among a codebook different beam antenna panel, second codebook C 2 precoding matrix W 'satisfy the following form:
  • c 1 , . . . , c N′ may satisfy one of the following forms:
  • a 1 ,..., a N′ is an amplitude factor, and its value can be selected according to different quantization rules.
  • the value of a 1 , . . . , a N′ may be a value in the set ⁇ 0, 1 ⁇ , and a 1 , . . . , a N′ has one and only one, and the remaining elements are 0.
  • the value of ' can be the value in the set ⁇ 0.25, 0.5, 0.75, 1 ⁇ .
  • ⁇ 1 ,..., ⁇ N′-1 is a phase factor, and its value can be selected between [0, 2 ⁇ ] according to different quantization rules.
  • 2-bit quantization can be performed between [0, 2 ⁇ ], that is, ⁇ 1 , ..., ⁇ N'-1 can be an element in the set ⁇ 1, -1, +j, -j ⁇
  • 3-bit quantization can be performed between [0, 2 ⁇ ]
  • j is an imaginary unit.
  • the CSI-RS resource 2 may be a precoded CSI-RS resource.
  • the CSI-RS resource 2 includes 2N'(N' ⁇ N) CSI-RS antenna ports, wherein each two CSI-RS antenna ports are from the same antenna panel and are different from other CSI-RS antenna ports.
  • An antenna panel, an antenna unit or an antenna port of the same polarization direction on the same antenna panel may form one beam, corresponding to one CSI-RS antenna port in the CSI-RS resource 2, two on each antenna panel
  • the antenna unit or antenna port of the polarization direction may form two beams corresponding to two CSI-RS antenna ports from the same antenna panel in the CSI-RS resource 2.
  • the network device pre-codes the CSI-RS antenna ports on the N′ antenna panels according to the first PMI fed back by the user equipment, and obtains the CSI-RSs sent on the CSI-RS resource 2.
  • the second codebook C 2 used by the CSI-RS resource 2 to feed back the second PMI may be used to implement inter-beam phase compensation, inter-beam amplitude compensation, phase compensation between beams from different antenna panels, and phase compensation of at least one function among a codebook different beam antenna panel, second codebook C 2 precoding matrix W 'satisfy the following form:
  • the compensation coefficient corresponding to the CSI-RS antenna port may be in the same form as the above c 1 , . . . , c N′ , and details are not described herein again.
  • the first polarization direction and the second polarization direction may be the same polarization direction or different polarization directions.
  • the CSI-RS resource 2 may be a precoded CSI-RS resource.
  • the CSI-RS resource 2 includes the two types of CSI-RS antenna ports involved in the two specific examples of the CSI-RS resource 2, that is, the CSI-RS resource 2 includes one CSI-RS antenna port.
  • the CSI-RS antenna port is formed by M'(M' ⁇ M) CSI-RS antenna ports or antenna units on one antenna panel, and the CSI-RS antenna port and CSI-RS in other CSI-RS resources 2 The antenna ports are from different antenna panels.
  • CSI-RS resource 2 also includes two other CSI-RS antenna ports.
  • the two CSI-RS antenna ports are from another antenna panel and are compatible with other CSI-RS resources.
  • the CSI-RS antenna ports are from different antenna panels, and the antenna units or antenna ports of the same polarization direction on the other antenna panel may form one beam, constituting one of the two CSI-RS antenna ports.
  • the precoding matrix W' in the second codebook C2 may be a mixed form of W' in the above two examples, that is, a part of the elements in W' in the present example satisfies W' in the above one example.
  • the elemental form, another part of the element in W' in this example satisfies the elemental form of W' in the other example above.
  • each of a different precoding matrix may correspond to a different codebook index
  • codebook index number represents the precoding matrix in a codebook
  • the codebook index value is equal to the The value of the second PMI.
  • the first codebook C. 1 and / or the particular design of the second embodiment codebook C 2, also with reference to FIGS. 4 to 6 corresponding to the embodiment of FIG any one or more codebook design methods will not repeat them here.
  • the network device indicates configuration information of the CSI-RS resource of the user equipment.
  • the specific implementation manner of this part may refer to the description in section 302 above.
  • the network device indicates configuration information of the user equipment CSI-RS resource 1.
  • Specific features of the CSI-RS resource 1 can be referred to the specific example description of the CSI-RS resource 1 in the above section 901.
  • the user equipment receives the indication information sent by the network device, where the indication information includes information about the codebook used by the user equipment to report the PMI.
  • the specific implementation manner of this part may refer to the description in section 201 above.
  • the indication information includes information about the first codebook used by the first PMI according to the CSI-RS resource 1, where the CSI-RS resource 1 and the first codebook are specifically designed. Reference may be made to the specific example description of the CSI-RS resource 1 and the first codebook in the above section 901.
  • the network device sends a CSI-RS.
  • the network device transmits a CSI-RS on CSI-RS resource 1, and the user equipment can perform channel estimation and measurement according to the received CIS-RS.
  • the user equipment determines the first PMI in the first codebook by using the CSI-RS received on the CSI-RS resource 1 according to the indication information in section 903.
  • the user equipment may perform channel estimation according to the CSI-RS received on the CSI-RS resource 1, and determine which precoding matrix in the first codebook is used according to the signal to interference and noise ratio maximization criterion. And determining, according to the selected precoding matrix, the value of the first PMI that needs to be reported, for example, the value of the first PMI may be an index number of the selected precoding matrix.
  • the user equipment reports the PMI.
  • the specific implementation manner of this part may refer to the description in section 202 above.
  • the user equipment reports the first PMI determined in section 905 to the network device.
  • the network device indicates the configuration of the CSI-RS resource 2 of the user equipment, and sends the indication information to the user equipment, to instruct the user equipment to report the second codebook used by the second PMI by using the CSI-RS resource 2, and
  • the CSI-RS is transmitted on the CSI-RS resource 2.
  • the user equipment determines the second PMI by using the precoding matrix in the second codebook, and reports the second PMI to the network device by using the CSI-RS received on the CSI-RS resource 2 according to the indication in the indication information. .
  • the network device pre-codes the downlink data according to the first PMI and the second PMI reported by the user equipment.
  • the network device sends the pre-coded downlink data to the user equipment.
  • the present application does not limit the order of the various parts in the embodiment corresponding to FIG. 9, and some two or more parts may be combined into one part.
  • the 907 part can be performed before the 903 part, and the 907 part can also be combined with the 902 part to form a signaling, that is, the network device can indicate the configuration of the user equipment CSI-RS resource 1 and CSI-RS resource 2 in one signaling.
  • the configuration of the CSI-RS resource 1 and the CSI-RS resource 2 of the user equipment may also be respectively indicated in different signaling; for example, the 903 part may be combined with the 902 part, that is, the network device may indicate the user in one signaling.
  • the configuration of the device CSI-RS resource 1 and the information of the first codebook used by the first PMI according to the CSI-RS resource 1; for example, the 902, 903, 907, 908 parts may also be combined into one part, etc. .
  • the configuration parameters of the at least two CSI-RS resources may be independent of each other, but the user equipment is configured to use at least two CSI-RS resources.
  • the configuration parameters of the two CSI-RS resources may also be set to a certain relationship.
  • the measurement periods of the at least two CSI-RS resources may have a certain relationship.
  • the CSI-RS resource 1 and the CSI-RS resource 2 are used.
  • the measurement period of the CSI-RS resource 1 is T 1
  • the measurement period of the CSI-RS resource 2 is T 2
  • T 2 XT 1 (X ⁇ 1)
  • T 1 and T 2 can be embodied as one measurement.
  • the number of sub-frames included in the period can also be expressed as a specific length of time.
  • the second codebook is a code for achieving at least one of inter-beam phase compensation, inter-beam amplitude compensation, phase compensation between beams from different antenna panels, phase compensation between beams from different antenna panels, The change of the compensation amount is relatively slow, so the measurement period of the CSI-RS resource 2 may be greater than the measurement period of the CSI-RS resource 1.
  • the subframe offsets of the at least two CSI-RS resources may also have a certain relationship.
  • the CSI-RS resource 1 and the CSI-RS are used.
  • the resource 2 is at least one of the CSI-RS resource 1 and the CSI-RS resource 2
  • the subframe number where the CSI-RS resource 1 is located and the subframe number where the CSI-RS resource 2 is located may be set. There is a certain order relationship between them in order to achieve the order of measurement of different CSI-RS resources.
  • the network device may notify the user equipment of different CSI-RS resources by using signaling (for example, RRC signaling or CSI measurement configuration signaling, etc.). Usage or relationship between CSI-RS resources and CSI reporting, for example, the network device can notify the user equipment, CSI-RS resource 1 is used for feedback PMI, CSI-RS resource 2 user feedback PMI, and channel quality indicator (Channel Quality Indicator, CQI).
  • the network device and the user equipment may also pre-determine the specific use of the CSI-RS resource or the relationship between the CSI-RS resource and the CSI report.
  • the first CSI-RS resource is used to feed back the PMI
  • the second CSI-RS resource user feeds back the PMI and the CQI
  • the network device notifies the user equipment which CSI-RS resource is the first CSI-RS resource, and which CSI
  • the RS resource is a second CSI-RS resource
  • the user equipment uses different CSI-RS resources to perform PMI and/or CQI according to the specific use of the pre-agreed CSI-RS resource or the relationship between the CSI-RS resource and the CSI report. Reported.
  • the user equipment may perform channel quality measurement according to CSI-RS resource 2 and report the CQI.
  • the network device may determine the precoding matrix W used in the first codebook, and the network device may use the precoding matrix W to use the CSI-RS antenna port on each panel. Performing precoding to obtain CSI-RS resource 2, and then the user equipment performs channel measurement according to the CSI-RS received on the CSI-RS resource 2 and reports the CQI.
  • the pre-arrangement of the precoding matrix of the CQI by the user equipment is pre-agreed, that is, the precoding matrix W CQI used by the user equipment to obtain the CQI is pre-agreed.
  • W CQI can be assumed to satisfy at least one of the following forms:
  • W CQI can satisfy:
  • W CQI can satisfy:
  • K1 represents the number of CSI-RS antenna ports in a horizontal direction in one polarization direction of an antenna panel
  • K2 represents the number of CSI-RS antenna ports in a vertical direction in one polarization direction of an antenna panel.
  • W CQI can satisfy:
  • W CQI can satisfy:
  • K1 represents the number of CSI-RS antenna ports in a horizontal direction in one polarization direction of an antenna panel
  • K2 represents the number of CSI-RS antenna ports in a vertical direction in one polarization direction of an antenna panel.
  • W CQI can satisfy:
  • W CQI can satisfy:
  • K1 represents the number of CSI-RS antenna ports in a horizontal direction in one polarization direction of an antenna panel
  • K2 represents the number of CSI-RS antenna ports in a vertical direction in one polarization direction of an antenna panel.
  • the signaling or the indication information involved in the foregoing embodiment may be implemented by using the high layer signaling, for example, the RRC signaling, or the other signaling, such as the physical layer signaling, and the like.
  • the number of the codebook such as the "first codebook”, the “first subcodebook”, etc.
  • the codebooks of the same number are different.
  • the implementation may correspond to different roles; the same numbered codebook and subcodebook, such as the first codebook and the first subcodebook, do not have to have a affiliation or hierarchical relationship in logic and use, for example, the first
  • the subcodebook can also be defined as the fourth codebook and used independently. This application does not limit this.
  • FIG. 7 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • the receiver and transmitter are included in the structure of the user equipment.
  • the user equipment can also include a processor.
  • the user device may also include a memory.
  • the structure of a user equipment provided by the embodiment of the present application includes a transmitter 701, a receiver 702, a processor 703, and a memory 704.
  • data or information (e.g., PMI) to be transmitted is adjusted by the transmitter 701 to output samples and an uplink signal is generated, which is transmitted via an antenna to the network device described in the above embodiments.
  • the antenna receives the downlink signal (including the indication information and/or the reference signal) transmitted by the network device in the above embodiment, and the receiver 702 adjusts the signal received from the antenna and provides input samples.
  • the service data and the signaling message are processed, for example, the indication information is parsed, the channel estimation, the PMI is determined, and the like. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the processor 703 It is also used to perform control and management on the actions of the user equipment, and is used to perform the processing performed by the user equipment in the foregoing embodiment, for example, to control the user equipment to process the indication information, the codebook, the PMI, and/or describe the application. Other processes of technology.
  • the processor 703 is further configured to support the user equipment to perform the processing procedure involving the user equipment in FIG. 2-6.
  • Memory 704 is used to store program code and data for the user equipment.
  • FIG. 8 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the structure of the network device includes a transmitter and a receiver.
  • the network device can also include a processor.
  • the network device can also include a memory.
  • the network device can also include a communication unit for supporting communication with other network devices, such as with a core network node.
  • the structure of the network device involved in the present application includes a transmitter/receiver 801, a processor 802, a memory 803, and a communication unit 804.
  • the transmitter/receiver 801 is configured to support the transmission and reception of information between the network device and the user equipment in the foregoing embodiment, for example, sending the indication information related to the foregoing embodiment, and receiving the PMI involved.
  • the processor 802 performs various functions for communicating with user equipment.
  • the processor 802 also performs the processing involved in the network device of Figures 2-6, such as determining the codebook used by the PMI for reporting by the user.
  • the memory 803 is used to store program codes and data of the network device.
  • the communication unit 804 is configured to support communication between the network device and other network devices, such as communication with a core network node.
  • Figure 8 only shows a simplified design of the network device.
  • the network device may include any number of transmitters, receivers, processors, memories, etc., and all network devices that can implement the present application are within the scope of the present application.
  • the processor for performing the above user equipment and network equipment of the present application may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a field programmable gate array (FPGA). Or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, such as one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be implemented in a hardware or may be implemented by a processor executing software instructions.
  • the software instructions may be comprised of corresponding software modules that may be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage well known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in a network device and/or user equipment.
  • the processor and the storage medium may also reside as discrete components in network devices and/or user devices.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及无线通信技术领域,尤其涉及无线通信系统中的预编码矩阵指示方法、装置和系统。本申请提供了一种多级码本的组合使用以及相应的PMI反馈方法。用户设备接收网络设备发送的指示信息,所述指示信息中包含上报预编码矩阵指示(Precoding Matrix Indicator,PMI)所使用的码本的信息,所述码本的信息指示所使用的码本为第一码本至第N码本中的至少两个,所述PMI包括第一PMI至第N PMI中的至少两个,所述第一PMI至第N PMI分别用于指示所述第一码本至第N码本中的预编码矩阵;根据所述指示信息,发送所述PMI。

Description

一种预编码矩阵指示方法、装置和系统 技术领域
本申请涉及无线通信技术领域,尤其涉及无线通信系统中的预编码矩阵指示方法、装置和系统。
背景技术
在无线网络中,为了配合多输入多输出(Multiple Input Multiple Output,MIMO)技术的应用,网络设备通常需要对发送的数据进行预编码,以减少同一用户的不同数据流或者不同用户的数据流之间的干扰,从而提高系统性能。网络设备进行预编码所需要的信息通常是基于用户设备反馈的下行信道的测量信息。用户设备根据网络设备发送的参考信号进行信道估计,并根据信道估计结果在包含多个预编码矩阵的码本中选择最适合的预编码矩阵,并通过预编码矩阵指示(Precoding Matrix Indicator,PMI)反馈给网络设备,作为网络设备进行下行数据预编码的参考。
现有技术中,根据PMI反馈机制或者参考信号发送方式不同等因素,通常在系统中预先规定多套码本,然后通过信令通知用户设备选用哪套码本进行PMI反馈。由于无线场景的不断发展,且每套码本都要综合考虑无线信道的各种因素,如波束合并权值、波束极化方向等,所以需要针对不同的场景,设计多套复杂的码本,码本中的每个预编码矩阵由一个或多个预编码矩阵索引共同决定。同时,现有系统中往往通过不同的高层信令相互配合才能确定反馈PMI所使用的码本。这样,针对不同的场景,就需要网络设备发送高层信令指示用户设备使用对应的码本,变化不够灵活,信令开销大,码本设计也十分繁琐。
在不断发展的无线网络中,例如新空口(New Radio,NR)技术中,参考信号资源配置会更加灵活,例如同时支持周期和非周期PMI上报,同时支持非预编码参考信号和预编码参考信号,参考信号资源包含多面板天线阵列(Multi-panel antenna array)中的天线端口(antenna port)以及动态激活和去激活资源等,现有的PMI反馈方案不能满足无线网络中灵活多变的PMI反馈需求。
所以,需要一种预编码指示方法,可以灵活的适应不同的参考信号资源配置,同时简化信令和码本设计。
发明内容
本文描述了一种预编码指示方法、装置和系统,旨在通过多级码本的组合使用以及相应的PMI反馈方法,提升PMI反馈的灵活性,以便支持更多的参考信号资源配置场景,同时减少用于配置PMI反馈方式的信令开销。
第一方面,本申请提供一种预编码矩阵指示方法,包括:用户设备接收网络设备发送的指示信息,所述指示信息中包含上报PMI所使用的码本的信息,所述码本的信息指示所使用的码本为第一码本至第N码本中的至少两个,所述PMI包括第一PMI至第N PMI中的至少两个,所述第一PMI至第N PMI分别用于指示所述第一码本至第N码本中的预编码矩阵;用户设备根据所述指示信息,发送所述PMI;其中N为大于等于2的整数。通过使用N个码本以及与其相对应的PMI,可以根据不同的场景需求,如信道状态信息参考信号(Channel State  Information-Reference Signal,CSI-RS)资源配置的不同,使用N个码本中的某一个或者多个码本的组合,以适配不同的需求。网络设备只需要指示用户设备对应某个参考信号资源需要使用哪些码本或者哪些PMI进行上报即可,避免了需要多个信令配合指示用户设备采用不同的码本以及PMI反馈机制,从而减少了信令开销,而且在参考信号资源或者其他场景动态变化的情况下,也只需要发送上述指示信息,相应的指示所使用的码本的变化即可,而无需每次变化都使用多个信令配合指示。同时,每个码本都可以针对不同的考虑因素使用较简单的设计,多个码本可以提供各种不同的组合使用方式,从而可以适配更多的应用场景,无需针对每个场景都单独设计一套复杂的码本,简化了码本设计的复杂度。
在一个可能的设计中,用户设备接收网络设备发送的指示信息,所述指示信息中包含上报PMI所使用的码本的信息,所述码本的信息指示所使用的码本为第一码本、第二码本和第三码本中的至少两个,所述PMI包括第一PMI、第二PMI和第三PMI中的至少两个,所述第一PMI、第二PMI和第三PMI分别用于指示所述第一码本、第二码本和第三码本中的预编码矩阵;根据所述指示信息,发送所述PMI。
第二方面,本申请提供一种预编码矩阵指示方法,包括:网络设备发送指示信息给用户设备,所述指示信息中包含所述用户设备上报PMI所使用的码本的信息,所述码本的信息指示所使用的码本为第一码本至第N码本中的至少两个,所述PMI包括第一PMI至第N PMI中的至少两个,所述第一PMI至第N PMI分别用于指示所述第一码本至第N码本中的预编码矩阵;接收用户设备发送的所述PMI;其中N为大于等于2的整数。
在一个可能的设计中,所述方法还包括:所述网络设备为用户设备确定上报所述PMI所使用的码本。可选的,所述网络设备为用户设备确定上报PMI所使用的码本,包括:网络设备根据参考信号是否经过预编码和/或参考信号资源中天线端口的分布情况为用户设备确定上报PMI所使用的码本。
在一个可能的设计中,网络设备发送指示信息给用户设备,所述指示信息中包含所述用户设备上报PMI所使用的码本的信息,所述码本的信息指示所使用的码本为第一码本、第二码本和第三码本中的至少两个,所述PMI包括第一PMI、第二PMI和第三PMI中的至少两个,所述第一PMI、第二PMI和第三PMI分别用于指示所述第一码本、第二码本和第三码本中的预编码矩阵;接收用户设备发送的所述PMI。
结合上述第一方面或第二方面或两个方面中任一种可能的实现方式,如下段落提供更多的可能的设计方式。
可选的,所述指示信息中也可以包含需要使用的PMI的信息,所述PMI的信息指示所述PMI包括第一PMI至第N PMI中的至少两个,所述第一PMI至第N PMI分别用于指示所述第一码本至第N码本中的预编码矩阵。
可选的,所述指示信息中可以包含上报多个参考信号资源所对应的PMI所使用的码本的信息,上报每个参考信号资源所对应的PMI可以使用不同的码本。所述参考信号资源是指用于发送参考信号的至少一个天线端口(antenna port)和时频域资源,一个参考信号资源中包含至少一个天线端口。使用一条信令通知用户设备上报多个参考信号资源所对应的PMI所使用的码本,进一步减小了信令开销。
在一个可能的设计中,所述第一PMI至第N PMI的取值分别对应所述第一码本至第N码本中的一个码本索引。每个码本使用一个PMI,每个PMI对应码本中的一个码本索引,可以使用更简洁的信元上报PMI,信元所需的比特数更少,简化了上报PMI时的信令开销。
在一个可能的设计中,所述第一PMI、第二PMI和第三PMI的取值分别对应第一码本、 第二码本和第三码本中的一个码本索引。
在一个可能的设计中,所述第一码本、第二码本和第三码本中的至少一个,可以进一步包括至少两个子码本。将码本进行进一步的拆分设计,可以简化每个码本的设计复杂度,也可以更加灵活的和其他码本进行组合使用。可选的,所述第一码本包括第一子码本和/或第二子码本,所述第一PMI包括第一子PMI和/或第二子PMI。可选的,所述第一子PMI、第二子PMI、第二PMI和第三PMI的取值分别对应第一子码本、第二子码本、第二码本和第三码本中的一个码本索引。
在一个可能的设计中,所述第一码本至第N码本中包含至少一个用于进行波束选择的码本。可选的,用于进行波束选择的码本中的预编码矩阵为C(C≥1)个天线端口构成K(1≤K≤C)个波束的加权矩阵。其中K个波束为波束域中的一组正交基或非正交基。通过该码本中不同预编码矩阵的选择,可以进行不同波束集合的选择,以便用户设备选择更适应自身信道的波束集合。可选的,所述第一码本可以用于进行波束选择。
在一个可能的设计中,所述第一码本至第N码本中包含至少一个用于进行波束基矢量选择的码本。用于进行波束基矢量选择的码本中的预编码矩阵为C(C≥1)个天线端口构成X(X≥1)个波束的加权矩阵,其中X个波束为波束域中的至少一组正交基或非正交基。可选的,所述第一子码本用于进行波束基矢量选择,所述第二子码本用于进行波束选择。第二子码本中的预编码矩阵为在X个波束中选择K(1≤K≤C)个波束的选择矩阵。
在一个可能的设计中,所述第一码本至第N码本中包含至少一个用于进行波束合并的码本。用于进行波束合并的码本中的预编码矩阵为将至少一个波束进行合并的加权矩阵,例如,将上述K个波束进行合并的加权矩阵。可选的,所述第二码本用于进行波束合并。
在一个可能的设计中,所述第一码本至第N码本中包含至少一个用于进行波束间的幅度和/或相位补偿的码本。用于进行波束间的幅度和/或相位补偿的码本中的预编码矩阵是不同波束之间的幅度和/或相位补偿矩阵。其中,不同波束之间的幅度和/或相位补偿包括:不同极化方向的波束之间的幅度补偿、不同极化方向的波束之间的相位补偿、不同天线面板的波束之间的幅度补偿以及不同天线面板的波束之间的相位补偿中的至少一个。所述用于进行波束间的幅度和/或相位补偿的码本可以支持双极化天线阵列和/或多面板天线阵列(Multi-panel antenna array)的应用,只需要将该码本与其他码本组合使用,便可以支持双极化天线阵列的应用,以及支持来自不同天线面板的天线端口或波束的使用,简化了码本设计的复杂度。可选的,所述第三码本用于进行波束间的幅度和/或相位补偿。
第三方面,本申请提供一种预编码码本设计方法,所述预编码码本用于网络设备进行数据预编码和/或用户设备上报PMI,所述预编码码本包括N级码本,其中N为大于等于2的整数,N级码本中的每个码本可以单独使用也可以与其他码本组合使用。
在一个可能的设计中,所述N级码本中包括:用于进行波束基矢量选择的码本、用于进行波束选择的码本、用于进行波束合并的码本、用于进行不同极化方向的波束间差异补偿的码本和用于进行面板间差异补偿的码本中的至少一个。
在一个可能的设计中,所述预编码码本包括三级码本:第一码本、第二码本和第三码本。可选的,所述第一码本用于进行波束选择。可选的,所述第二码本用于进行波束合并。可选的,所述第三码本用于进行波束间的幅度和/或相位补偿。
在一个可能的设计中,所述预编码码本包括四级码本:第一子码本、第二子码本、第二码本和第三码本。可选的,所述第一子码本用于进行波束基矢量选择,所述第二子码本用于进行波束选择。可选的,所述第二码本用于进行波束合并。可选的,所述第三码本用于进行 波束间的幅度和/或相位补偿。
第四方面,本申请实施例提供了一种用户设备,该用户设备具有实现上述方法实际中用户设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第五方面,本申请实施例提供了一种网络设备,该网络设备具有实现上述方法实际中网络设备行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
第六方面,本申请实施例提供了一种用户设备,用户设备的结构中包括接收器和发射器。所述接收器用于支持用户设备接收上述方法中所涉及的网络设备发送的信息和/或数据,如接收网络设备发送的指示信息。所述发射器用于支持用户设备向网络设备发送上述方法中所涉及的信息或者数据,如向网络设备发送PMI。在一个可能的实现方式中,用户设备还可以包括处理器。所述处理器被配置为支持用户设备执行上述方法中相应的功能。所述用户设备还可以包括存储器,所述存储器用于与处理器耦合,保存用户设备必要的程序指令和数据。
第七方面,本申请实施例提供了一种网络设备,网络设备的结构中包括发射器和接收器。所述发射器和接收器用于支持网络设备与用户设备之间的通信。所述发射器用于向用户设备发送上述方法中所涉及的信息和/或数据,例如,发送指示信息。所述接收器用于支持网络设备接收上述方法中所涉及的用户设备发送的信息和/或数据,例如接收用户设备发送的PMI。在一个可能的设计中,所述网络设备还可以包括处理器,所述处理器被配置为支持网络设备执行上述方法中相应的功能,例如,为用户设备确定上报PMI所使用的码本。在一个可能的设计中,所述网络设备还可以包括存储器,所述存储器用于与处理器耦合,保存网络设备必要的程序指令和数据。所述网络设备还可以包括通信单元,用于支持与其他网络设备之间的通信,如与核心网节点之间的通信。
第八方面,本申请实施例提供了一种通信系统,该系统包括上述方面所述的网络设备和用户设备。
第九方面,本申请实施例提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十方面,本申请实施例提供了一种计算机存储介质,用于储存为上述用户设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十一方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持用户设备实现上述方面中所涉及的功能,例如,例如生成或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存用户设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第十二方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于支持网络设备实现上述方面中所涉及的功能,例如,例如接收或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,所述芯片系统还包括存储器,所述存储器,用于保存网络设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
相较于现有技术,本申请描述了一种预编码矩阵指示方法、装置和系统,旨在通过多级码本的组合使用以及相应的PMI反馈方法,提升PMI反馈的灵活性,以便支持更多的参考信号资源配置场景,同时减少用于配置PMI反馈方式的信令开销。
附图说明
下面将参照所示附图对本申请实施例进行更详细的描述。
图1为本申请的一种可能的应用场景示意图;
图2为本申请实施例提供的一种预编码矩阵指示方法的流程示意图;
图3为本申请实施例提供的一种预编码方法的流程示意图;
图4为本申请实施例提供的一种参考信号资源和码本的对应关系示意图;
图5为本申请实施例提供的另一种参考信号资源和码本的对应关系示意图;
图6为本申请实施例提供的又一种参考信号资源和码本的对应关系示意图;
图7为本申请实施例提供的一种用户设备结构示意图;
图8为本申请实施例提供的一种网络设备结构示意图;
图9为本申请实施例提供的另一种预编码矩阵指示方法的流程示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请描述的技术可以适用于长期演进(Long Term Evolution,LTE)系统以及后续的演进系统如第五代移动通信(the 5th Generation mobile communication,5G)等,或其他需要使用预编码技术的无线通信系统,尤其适用于需要灵活的预编码矩阵指示(Precoding Matrix Indicator,PMI)上报的通信系统。如图1所示,是本申请的一种可能的应用场景示意图。用户设备(User Equipment,UE)通过无线接口接入网络设备进行通信,也可以与另一用户设备进行通信,如设备对设备(Device to Device,D2D)或机器对机器(Machine to Machine,M2M)场景下的通信。网络设备可以与用户设备通信,也可以与另一网络设备进行通信,如宏基站和接入点之间的通信。本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。
本申请所涉及到的用户设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备、控制设备或连接到无线调制解调器的其它处理设备,以及各种形式的UE、移动台(Mobile station,MS)、终端(Terminal)或终端设备(Terminal Equipment)等,为方便描述,统称为用户设备(UE)。
本申请所涉及到的网络设备包括基站(Base Station,BS)、网络控制器或移动交换中心等,其中通过无线信道与用户设备进行直接通信的装置通常是基站,所述基站可以包括各种形式的宏基站、微基站、中继站、接入点或射频拉远单元(Remote Radio Unit,RRU)等,当然,与用户设备进行无线通信的也可以是其他具有无线通信功能的网络设备,本申请对此不做唯一限定。在不同系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在第三代(the 3rd Generation,3G)网络中,称为节点B(Node B),在后续的演进系统如5G中,称为发送接收点(Transmission Reception Point,TRP)等。
本申请所提供的技术方案可以应用于网络设备和用户设备之间,例如基站和用户设备之 间,也可以应用于其他需要对传输数据进行预编码的通信设备之间,为描述方面,本申请实施例中以网络设备和用户设备为例进行描述。
下面对本申请实施例中所涉及到的一些通用概念或者定义做出解释,需要说明的是,本文中的一些英文简称为以LTE系统为例对本申请实施例进行的描述,其可能随着网络的演进发生变化,具体演进可以参考相应标准中的描述。
本申请中所述的天线端口(antenna port),用于发送物理信道或者信号,在一个天线端口上发送的符号所经历的信道,可以通过在同一个天线端口发送的其他符号所经历的信道推断获得。
本申请中所述的波束(beam),是指由至少一个天线端口发射或接收无线信号时,形成的空间中有一定方向和形状的无线电波。可以通过对至少一个天线端口所发射或者接收的数据进行幅度和/或相位的加权来构成波束,也可以通过其他方法,例如调整天线单元的相关参数,来构成波束。
本申请中所述的天线面板(或简称“面板”),是指用于承载物理天线的装置,一个天线面板上可以承载由多个天线单元构成的天线阵列,也可以由多个天线面板构成多面板天线阵列(Multi-panel antenna array)。
本申请中所述的参考信号资源,是指用于发送参考信号的天线端口和天线端口上所使用的时频资源,一个参考信号资源包括至少一个天线端口及所述至少一个天线端口上所使用的时频资源。通常,系统中会配置用于进行信道状态信息测量的参考信号,例如信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS),上报PMI所使用的参考信号通常为CSI-RS,但也可能是其他类型的参考信号或者其他信号,本申请对此不做限定。为描述方便,本申请的部分实施例中以CSI-RS以及CSI-RS资源为例进行描述。
本申请所述的矩阵或者预编码矩阵,包含行数或者列数为1的矢量。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面将结合附图,对本申请实施例所提供的方案进行更为详细的描述。
图2为本申请实施例提供的一种预编码矩阵指示方法的流程示意图。
201部分,用户设备接收网络设备发送的指示信息,所述指示信息中包含用户设备上报PMI所使用的码本的信息。
在一个示例中,所述指示信息中包含至少一个参考信号资源所对应的PMI上报方式。可选的,所述上报方式可以是指示用户设备上报PMI所使用的码本,也可以是指示用户设备具体需要上报哪些PMI。例如,指示信息中可以指示用户设备,针对某一个参考信号资源,需要使用第一码本至第N码本中的哪一个或者多个码本确定PMI;指示信息中也可以指示用户设备,针对某一个参考信号资源,需要上报第一PMI至第N PMI中的哪一个或者多个PMI,其中,第一PMI至第N PMI分别用于指示所述第一码本至第N码本中的预编码矩阵。
上述第一码本至第N码本可以分别针对参考信号资源和/或信道信息中的至少一个因素进行设计,例如,某一个码本用于波束选择,某一个码本用于波束合并,某一个码本用于波束间幅度和/或相位补偿,等等。这样,应对不同场景,就可以选择不同码本的组合使用。
在一个示例中,上述第一码本至第N码本中的每个码本均使用一个PMI,第一PMI至第N PMI中的每个PMI的取值分别对应第一码本至第N码本中的一个码本索引。例如,第k(1≤k≤N)PMI的取值可以等于第k码本中的某一个码本索引i(1≤i≤I,I为第k码本的码本 索引最大取值),则第k PMI指示第k码本中码本索引i对应的预编码矩阵。
在一个示例中,所述指示信息可以是高层信令,如无线资源控制(Radio resource control,RRC)信令。可选的,所述指示信息可以在用户设备接入的时候发送,也可以根据需要,例如参考信号资源配置的变化,动态的发送给用户设备。
在一个示例中,不同的参考信号资源,均使用上述第一码本至第N码本中的至少一个码本进行PMI的上报,系统中仅需维护一套码本,通过不同码本之间的灵活组合,使用不同的参考信号资源配置。
202部分,用户设备根据指示信息上报PMI。
用户设备根据上述指示信息中所指示的PMI上报方式,确定需要使用的码本和PMI,并进行上报。例如,网络设备指示用户设备针对某一个参考信号资源,需要使用第一码本和第二码本,或者需要上报第一PMI和第二PMI,则用户设备针对该参考信号资源使用第一码本和第二码本确定并上报第一PMI和第二PMI。
图3为本申请实施例提供的一种预编码方法的流程示意图,需要说明的是,图3中各个步骤以及相互之间的先后顺序仅作示例,在真实系统中,可能省略其中的某些步骤或变动先后顺序,本申请对此不做限定。
301部分,网络设备为用户设备确定CSI-RS资源以及用户设备针对不同CSI-RS上报PMI时所使用的码本。
在一个示例中,网络设备可以根据发送CSI-RS时是否经过预编码和/或CSI-RS资源中天线端口的分布情况为用户设备确定上报PMI所使用的码本。例如,网络设备在发送经过预编码的CSI-RS时,例如,经过波束成型的(beamformed)CSI-RS,可以指示用户设备使用用于波束幅度和/或相位补偿的码本,用户设备可以不使用用于波束成型的码本;再如,当CSI-RS资源包含不同面板上的天线端口,即波束可能来自不同的天线面板时,网络设备也可以指示用户设备使用用于波束间幅度和/或相位补偿的码本,以便进行不同面板的波束之间的差异补偿。
302部分,网络设备指示用户设备为其分配的CSI-RS资源。
在一个示例中,网络设备可以为每个用户设备分配一个或者多个CSI-RS资源,每个CSI-RS资源可以对应不同的PMI上报方式。网络设备可以动态的通知用户设备CSI-RS资源配置。
在一个示例中,一个CSI-RS资源可以包含至少一个天线端口及该天线端口上所使用的时频域资源。当一个CSI-RS资源包含多个天线端口的时候,这些天线端口可以是相同或不同极化方向的天线端口,也可以分布在相同或不同的天线面板上。
303部分,网络设备发送CSI-RS。用户设备可以根据接收到的CSI-RS进行信道估计和测量。
304部分,网络设备发送指示信息。具体实施方式同上述201部分的描述,此处不再赘述。
305部分,用户设备结合信道估计和测量的结果,根据指示信息使用相应的码本确定PMI。
306部分,用户设备上报PMI。体实施方式同上述202部分的描述,此处不再赘述。
307部分,网络设备根据用户设备上报的PMI对下行数据进行预编码。
308部分,网络设备发送经过预编码的下行数据。
结合图2或图3所对应的预编码矩阵指示方法,图4为本申请实施例提供的一种参考信号资源和码本的对应关系示意图。
在图4所对应的实施例中,以系统中包含第一码本和第二码本,即N=2为例,进行说明。
网络设备可以预先为用户设备配置一个CSI-RS资源的天线端口集合,该天线端口集合中包含M(M≥1)个天线端口,并从该端口集合中选择C1(C1≥1)个天线端口组成CSI-RS资源1,选择C2(C2≥1)个天线端口组成CSI-RS资源2。
在本实施例中,第一码本用于波束选择,可选的,第一码本中的预编码矩阵为C(C≥1)个天线端口构成K(1≤K≤C)个波束的加权矩阵。通过第一码本中不同预编码矩阵的选择,可以进行不同波束集合的选择,以便用户设备选择更适应自身信道的波束集合。可选的,第一码本中的预编码矩阵可以是过采样的离散傅里叶变换(discrete fourier transform,DFT)矩阵,例如,可以是第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)TS36.211V13.0.0中,信令eMIMO-type配置为‘Class A’时,第一PMI对应的预编码矩阵。用户设备可以根据CSI-RS资源的天线端口数以及需要选择的波束个数,在第一码本中进行预编码矩阵的选择。具体的,对于CSI-RS资源1,在第一码本中C1个天线端口端口构成K(1≤K≤C)个波束的加权矩阵中进行选择;对于CSI-RS资源2,在第一码本中C2个天线端口端口构成K(1≤K≤C)个波束的加权矩阵中进行选择。
第二码本用于波束合并,第二码本中的预编码矩阵为将至少一个波束进行合并的加权矩阵,例如,第二码本可以是为上述K个波束进行合并的加权矩阵可选的,第二码本中的预编码矩阵可以是3GPP TS 36.211 V13.0.0中,信令eMIMO-type配置为‘Class B’时所使用的码本中的预编码矩阵,也可以是波束加权矩阵,如:
W=[w1 w2 … wL],
其中,wi,i=1,...,L是C×1的列向量,表示加权因子,C为天线端口数,L为大于等于1的整数,表示传输数据的层数。用户设备可以根据CSI-RS资源的天线端口数,例如本实施例中的C1或C2,以及传输数据的层数在第二码本中进行预编码矩阵的选择。
网络设备为用户设备确定每个CSI-RS资源所使用的码本并通过指示信息通知用户设备。可选的,网络设备也可以在配置该CSI-RS资源的信令(例如,RRC信令)中同时指示所使用的码本。每个码本仅上报一个PMI,用于指示码本中一个预编码矩阵。
在一个具体的示例中,未经预编码的(non-precoded)CSI-RS资源,可以仅使用第一码本上报PMI,也可以同时使用第一码本和第二码本上报PMI。Beamformed CSI-RS资源,可以仅使用第二码本上报PMI,也可以同时使用第一码本和第二码本上报PMI。
在本实施例中,CSI-RS资源1是non-precoded CSI-RS资源,CSI-RS资源2是beamformed CSI-RS资源。网络设备确定CSI-RS资源1使用第一码本上报第一PMI。CSI资源2使用第一码本和第二码本,上报第一PMI和第二PMI。用户设备根据CSI-RS资源1进行信道估计后,可以根据信干噪比最大化准则确定使用第一码本中的哪个预编码矩阵,并确定需要上报的第一PMI的取值。用户设备根据CSI-RS资源2进行信道估计后,可以根据信干噪比最大化准则确定使用第一码本中的哪个预编码矩阵和第二码本中的哪个预编码矩阵,并确定需要上报的第一PMI的取值和第二PMI的取值。
用户设备确定CSI-RS资源1和CSI-RS资源2需要上报的PMI后,上报所确定的PMI。
结合图2或图3所对应的预编码矩阵指示方法,图5为本申请实施例提供的另一种参考信号资源和码本的对应关系示意图。
在图5所对应的实施例中,以系统中包含第一子码本、第二子码本和第二码本,即N=3为例,进行说明。
网络设备可以预先为用户设备配置一个CSI-RS资源的天线端口集合,该天线端口集合中 包含M(M≥1)个天线端口,并从该端口集合中选择C1(C1≥1)个天线端口组成CSI-RS资源1,选择C2(C2≥1)个天线端口组成CSI-RS资源2,选择C3(C3≥1)个天线端口组成CSI-RS资源3。
在本实施例中,波束选择通过第一子码本和第二子码本两个码本的组合使用来实现。第一子码本用于进行波束基矢量选择,第一子码本中的预编码矩阵为C(C≥1)个天线端口构成X(1≤X)个波束的加权矩阵,其中X个波束为波束域中的至少一组正交基或非正交基。可选的,第一子码本的具体形式可以与上述实施例中第一码本的具体形式相同,此处不再赘述,此外,第一子码本还可以是正交的DFT矩阵。用户设备对第一子码本的使用方法于上述实施例中第一码本相同,不同仅在于第一子码本选择的是X个波束。
第二子码本用于进行波束选择,第二子码本中的预编码矩阵为在X个波束中选择K(1≤K≤C)个波束的选择矩阵。可选的,第二子码本中的预编码矩阵可以设计为一个X×K的矩阵,其中包含K个非零元素,以实现在X个波束中选择K个波束的目的。用户设备可以根据自身需要使用的波束以及X和K的取值,在第二子码本中选择预编码矩阵。
第二码本用于波束合并,第二码本中的预编码矩阵的形式以及使用方式与上述实施例中的第二码本相同。
网络设备为用户设备确定每个CSI-RS资源所使用的码本并通过指示信息通知用户设备,具体实施方式可以参考图4实施例的描述。
在一个具体的示例中,未经预编码的(non-precoded)CSI-RS资源,可以使用第一子码本和第二子码本上报PMI,也可以同时使用第一子码本、第二子码本和第二码本上报PMI。Beamformed CSI-RS资源,可以仅使用第二码本上报PMI,也可以同时使用第一子码本、第二子码本和第二码本上报PMI。
在本实施例中,CSI-RS资源1是non-precoded CSI-RS资源,CSI-RS资源2和CSI-RS资源3是beamformed CSI-RS资源。网络设备确定CSI-RS资源1使用第一子码本和第二子码本上报第一子PMI和第二子PMI。CSI-RS资源2使用第一子码本、第二子码本和第二码本,上报第一子PMI、第二子PMI和第二PMI。CSI-RS资源3使用第二码本,上报第二PMI。用户设备分别使用不同的CSI-RS资源进行信道估计,并根据指示信息在相应的码本中确定所使用的预编码矩阵,具体实施方法可以参考图4所对应的实施例,本实施例中,用户设备在使用第一子码本和第二子码本时也可以根据信干噪比最大化准则确定具体需要使用的预编码矩阵。
用户设备确定对应CSI-RS资源1的第一子PMI和第二子PMI,对应CSI-RS资源2的第一子PMI、第二子PMI和第二PMI,对应CSI-RS资源3的第二PMI,并上报给网络设备。
结合图2或图3所对应的预编码矩阵指示方法,图6为本申请实施例提供的又一种参考信号资源和码本的对应关系示意图。
图6所对应的实施例中,以系统中包含第一码本、第二码本和第三码本,即N=3为例,进行说明。
其中,CSI-RS资源1对应的码本以及PMI确定过程与图4中的CSI-RS资源2相同。
本实施例中,CSI-RS资源2对应使用的的第二码本以及第二PMI确定过程与图5中的CSI-RS资源2相同。此外,CSI-RS资源2中还包括不同极化方向的波束,因此还可以使用第三码本进行第三PMI的反馈,以便补偿不同极化方向的波束之间的幅度和/或相位差异。
CSI-RS资源3所使用的天线端口分布在不同的天线面板上,即CSI-RS资源3所对应的波束会来自不同的天线面板,此类CSI-RS资源可以使用第三码本进行第三PMI的反馈,以便补偿不同天线面板的波束之间的幅度和/或相位差异。
第一码本和第二码本的作用和设计方式可以参考图4所对应的实施例。
第三码本用于进行波束间的幅度和/或相位补偿。第三码本中的预编码矩阵是不同波束之间的幅度和/或相位补偿矩阵。其中,不同波束之间的幅度和/或相位补偿包括:不同极化方向的波束之间的幅度补偿、不同极化方向的波束之间的相位补偿、不同天线面板的波束之间的幅度补偿以及不同天线面板的波束之间的相位补偿中的至少一个。可选的,第三码本中的预编码矩阵可以设计成与上述实施例中第二码本相同的形式,不同在于第三码本中的预编码矩阵中的元素用于波束间的幅度和/或相位补偿,每个元素可以是幅度因子和/或相位因子。可选的,第三码本中的预编码矩阵中的元素也可以具有线性递增相位特性,例如,在W=[w1 w2 … wL]中,满足:
Figure PCTCN2017109160-appb-000001
其中,各个变量的意义与图4实施例中相同。
可选的,第三码本也可以拆分成至少两个子码本来实现,例如,所述第三码本可以包括第三子码本和第四子码本,第三子码本用于进行不同极化方向的波束之间的幅度和/或相位补偿,第四子码本用于进行不同面板的波束之间的幅度和/或相位补偿。第三子码本和/或第四子码本中的预编码矩阵可以采用与上述第三码本类似的设计方式。第三子码本和第四子码本分别对应第三子PMI和第四子PMI,具体指示方式可以参考上述其他码本的描述。
在本实施例中,网络设备确定CSI-RS资源1需要使用第一码本和第二码本上报第一PMI和第二PMI;CSI-RS资源2需要使用第二码本和第三码本上报第二PMI和第三PMI;CSI-RS资源3需要使用第一码本、第二码本和第三码本上报第一PMI、第二PMI和第三PMI。其中第一码本和第二码本的用途、设计和使用方式与图4实施例相同。用户设备可以根据信干噪比最大化准则分别确定CSI-RS资源2使用第三码本中的哪个预编码矩阵,并确定CSI-RS资源2对应的第三PMI的取值,以及CSI-RS资源3使用第三码本中的哪个预编码矩阵,并确定CSI-RS资源3对应的第三PMI的取值。然后,上报CSI-RS资源1、CSI-RS资源2和CSI-RS资源3所对应的PMI。
本实施例中关于CSI-RS资源确定、PMI确定和上报的其他过程可以参考图4或图5对应的实施例,此处不再赘述。
可选的,上述实施例中的第一码本至第N码本中的任意一个或者多个码本都可以再拆分成更多的子码本来实现,相应的每个子码本对应一个子PMI,每个子PMI对应每个子码本中的一个预编码矩阵索引。例如,上述实施例中用于波束选择的第一码本可以拆分成第一子码本和第二子码本来实现;再如,上述实施例中的第三码本也可以拆分成第三子码本和第四子码本来实现。
可选的,上述实施例中的第一码本至第N码本中的任意两个或者两个以上的码本也可以进行联合设计,合并成一个码本对应一个PMI,例如,在图6所对应的实施例中,第二码本和第三码本可以进行联合设计,使用一个码本实现波束合并和波束间的差异补偿;或者第二码本和第三子码本也可以进行联合设计,使用一个码本实现波束合并和不同极化方向的波束间的差异补偿;类似的,第二码本也可以和第四子码本进行联合设计,使用一个码本实现波束合并和不同面板的波束间的差异补偿,等等。
可选的,本申请所提供的方案,也可以与现有技术中的码本以及PMI上报方式联合使用。例如,在现有LTE系统的PMI上报策略的基础上,增加上述实施例中的第三码本(第三子码本和/或第四子码本),在需要进行波束间的幅度和/或相位补偿的时候,通过指示信息指示用 户设备,使用第三码本上报相应的PMI。这样,系统可以在使用现有PMI上报策略的同时,针对更多的场景,指示用户设备需要补充使用哪些码本进行PMI上报,以便适应当前的场景。
图9为本申请实施例提供的另一种预编码矩阵指示方法的流程示意图。网络设备可以给用户设备配置至少两个CSI-RS资源,并发送指示信息指示用户设备利用不同CSI-RS资源上报PMI时所使用的码本的信息,用户设备根据网络设备的指示信息,利用不同的CSI-RS资源以及相对应的码本确定PMI,并上报给网络设备,网络设备根据用户设备上报的PMI对数据进行预编码。在图9所对应的实施例中,以网络设备给用户设备配置两个CSI-RS资源为例进行说明。同时,假设网络设备包含N(N≥1)个天线面板,每个天线面板上包含M(M≥1)个CSI-RS天线端口,所述M个CSI-RS天线端口中可以包括交叉极化天线端口和/或单极化天线端口,所述CSI-RS天线端口是指可以用于发送CSI-RS的天线端口,每个天线端口可以通过一个物理天线单元或者包含至少两个物理天线单元的天线阵列实现。
可选的,901部分,网络设备确定CSI-RS资源1及利用CSI-RS资源1上报第一PMI使用的第一码本C1,以及CSI-RS资源2及利用CSI-RS资源2上报第二PMI使用的第二码本C2。网络设备确定CSI-RS资源的具体方式,可以参照301部分的说明。
在一个具体的示例中,CSI-RS资源1可以是一个未经预编码的(non-precoded)CSI-RS资源,该CSI-RS资源1中可以包括来自一个天线面板上的M'(M'≤M)个CSI-RS天线端口。此时,利用CSI-RS资源1上报第一PMI所使用的第一码本C1可以是用于实现波束选择、波束合并、波束间的幅度补偿、波束间的相位补偿中的至少一种功能的码本。可选的,第一码本C1中的预编码矩阵W满足W=W1W2。可选的,W1可以是过采样的离散傅里叶变换(discrete fourier transform,DFT)矩阵,例如,可以是第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)TS 36.213 V13.0.0中,信令eMIMO-type配置为‘Class A’时,确定PMI所使用的预编码矩阵。可选的,W2可以是TS 36.213 V13.0.0中,信令eMIMO-type配置为‘Class B’时,确定PMI所使用的预编码矩阵。
在另一个具体的示例中,CSI-RS资源1可以是一个经过预编码的(precoded)CSI-RS资源,该CSI-RS资源1中可以包括来自一个天线面板上的M'(M'≤M)个CSI-RS天线端口。此时,利用CSI-RS资源1上报第一PMI所使用的第一码本C1可以是用于实现波束合并、波束间的幅度补偿、波束间的相位补偿中的至少一种功能的码本。可选的,第一码本C1中的预编码矩阵W满足W=WB,例如,WB可以是TS 36.213 V13.0.0中,信令eMIMO-type配置为‘Class B’时,确定PMI所使用的预编码矩阵。
在又一个具体的示例中,CSI-RS资源1可以包含N'(N'≤N)个CSI-RS资源,所述N'个CSI-RS资源中包括non-precoded CSI-RS资源和/或precoded CSI-RS资源,所述N'个CSI-RS资源分别包含N'个天线面板上的CSI-RS天线端口,即,N'个CSI-RS资源中的一个CSI-RS资源包含来自一个天线面板上的M'(M'≤M)个CSI-RS天线端口,不同的CSI-RS资源的CSI-RS天线端口来自不同的天线面板。此时,用户设备利用CSI-RS资源1中的N'个CSI-RS资源分别在第一码本C1中确定N'个第一PMI,且不同的CSI-RS资源所对应的第一码本可以不相同,CSI-RS资源1中的不同类型的CSI-RS资源所对应的第一码本C1的选择和特征可以参考上述两个具体示例中的描述。
结合上述901部分中的三个具体示例中的任意一个,在一个具体的示例中,所述CSI-RS资源2可以是一个precoded CSI-RS资源。该CSI-RS资源2中包含N'(N'≤N)个CSI-RS天线端口,其中不同的CSI-RS天线端口来自于不同的天线面板,同一个天线面板上的天线单元或天线端口可以形成一个波束,对应于所述CSI-RS资源2中的一个CSI-RS天线端口。可选 的,网络设备根据用户设备反馈的第一PMI,分别对N'个天线面板上的CSI-RS天线端口进行预编码,获得CSI-RS资源2上发送的CSI-RS。此时,利用CSI-RS资源2反馈第二PMI所使用的第二码本C2可以是用于实现波束间相位补偿、波束间幅度补偿、来自不同天线面板的波束之间的相位补偿、来自不同天线面板的波束之间的相位补偿中的至少一种功能的码本,第二码本C2中预编码矩阵W'可以满足如下形式:
Figure PCTCN2017109160-appb-000002
或者
Figure PCTCN2017109160-appb-000003
其中,c1,...,cN′可以满足如下形式中的一种:
Figure PCTCN2017109160-appb-000004
或者
Figure PCTCN2017109160-appb-000005
或者
Figure PCTCN2017109160-appb-000006
其中,a1,...,aN′是幅度因子,其取值可以根据不同的量化规则进行选取。例如,a1,...,aN′的取值可以是集合{0,1}中的值,且a1,...,aN′中有且只有一个1,其余元素为0。再如,a1,...,aN′的取值可以在[0,1]之间进行x(x≥1)比特量化,例如,x=2时a1,...,aN′的取值可以为集合{0.25,0.5,0.75,1}中的值。θ1,...,θN′-1是相位因子,其取值可以根据不同的量化规则在[0,2π]之间进行选取。例如,可以在[0,2π]之间进行2比特量化,即θ1,...,θN′-1的取值可以为集合{1,-1,+j,-j}中的元素,再如,可以在[0,2π]之间进行3比特量化,则θ1,...,θN′-1的取值可以为
Figure PCTCN2017109160-appb-000007
k=0,1,....,7,i=1,....,N′-1。其中,j为虚数单位。
结合上述901部分中的关于CSI-RS资源1的三个具体示例中的任意一个,在另一个具体的示例中,所述CSI-RS资源2可以是一个precoded CSI-RS资源。该CSI-RS资源2中包含2N'(N'≤N)个CSI-RS天线端口,其中每两个CSI-RS天线端口来自于相同的天线面板,且与其他CSI-RS天线端口来自不同的天线面板,同一个天线面板上的相同极化方向的天线单元或天线端口可以形成一个波束,对应于所述CSI-RS资源2中的一个CSI-RS天线端口,每个天线面板上的两个极化方向的天线单元或天线端口可以形成两个波束,对应于所述CSI-RS资源2中的来自相同天线面板的两个CSI-RS天线端口。可选的,网络设备根据用户设备反馈的第一PMI,分别对N'个天线面板上的CSI-RS天线端口进行预编码,获得CSI-RS资源2上发送的CSI-RS。此时,利用CSI-RS资源2反馈第二PMI所使用的第二码本C2可以是用于实现波束间相位补偿、波束间幅度补偿、来自不同天线面板的波束之间的相位补偿、来自不同天线面板的波束之间的相位补偿中的至少一种功能的码本,第二码本C2中预编码矩阵W'可以满足如下形式:
Figure PCTCN2017109160-appb-000008
或者
Figure PCTCN2017109160-appb-000009
其中,ci,1,i=1,...N′表示第i个天线面板上第1个极化方向的天线单元或天线端口形成的CSI-RS天线端口对应的补偿系数,其形式可以与上述c1,...,cN′的形式相同,ci,2,i=1,...N′表示第i个天线面板上第2个极化方向的天线单元或天线端口形成的CSI-RS天线端口对应的补偿系数,其形式可以与上述c1,...,cN′的形式相同,此处不再赘述。其中,所述第1个极化方向和所述第2个极化方向,可以是相同的极化方向,也可以是不同的极化方向。
结合上述901部分中的关于CSI-RS资源1的三个具体示例中的任意一个,在又一个具体的示例中,所述CSI-RS资源2可以是一个precoded CSI-RS资源。该CSI-RS资源2中包含上述关于CSI-RS资源2的两个具体示例中所涉及的两种类型的CSI-RS天线端口,即,CSI-RS资源2中包含一个CSI-RS天线端口,该CSI-RS天线端口由一个天线面板上的M'(M'≤M)个CSI-RS天线端口或天线单元形成,且该CSI-RS天线端口与其他CSI-RS资源2中的CSI-RS天线端口来自不同的天线面板,同时,CSI-RS资源2中还包含另外2个CSI-RS天线端口,这2个CSI-RS天线端口来自于另外一个天线面板,且与其他CSI-RS资源2中的CSI-RS天线端口来自不同的天线面板,所述另外一个天线面板上的相同极化方向的天线单元或天线端口可以形成一个波束,构成所述2个CSI-RS天线端口中的一个。在此种情况下,所述第二码本C2中预编码矩阵W'可以是上述两个示例中W'的混合形式,即本示例中W'中的一部分元素满足上述一个示例中的W'的元素形式,本示例中W'中的另一部分元素满足上述另一个示例中的W'的元素形式。
可选的,在码本C2中,每一个不同的预编码矩阵可以对应一个不同的码本索引,码本索引表示该预编码矩阵在码本中的序号,码本索引的值等于所述第二PMI的值。
可选的,上述第一码本C1和/或第二码本C2的具体设计方式,还可以参考图4至图6所对应的实施例中的任意一种或者多种码本设计方式,此处不再赘述。
902部分,网络设备指示用户设备CSI-RS资源的配置信息。可选的,此部分的具体实现方式可以参考上述302部分的描述。在一个具体的示例中,网络设备指示用户设备CSI-RS资源1的配置信息。CSI-RS资源1的具体特征可以参考上述901部分中关于CSI-RS资源1的具体示例描述。
903部分,用户设备接收网络设备发送的指示信息,所述指示信息中包含用户设备上报PMI所使用的码本的信息。可选的,此部分的具体实现方式可以参考上述201部分的描述。在一个具体的示例中,所述指示信息中包含根据CSI-RS资源1上报第一PMI所使用的第一码本的信息,其中所述CSI-RS资源1以及第一码本的具体设计方式,可以参考上述901部分中关于CSI-RS资源1以及第一码本的具体示例描述。
904部分,网络设备发送CSI-RS。在一个具体的示例中,网络设备在CSI-RS资源1上发送CSI-RS,用户设备可以根据接收到的CIS-RS进行信道估计和测量。
905部分,用户设备根据903部分中的指示信息,利用在CSI-RS资源1上接收到的CSI-RS,在第一码本中确定第一PMI。在一个具体的示例中,用户设备可以根据上述CSI-RS资源1上接收到的CSI-RS进行信道估计,再根据信干噪比最大化准则确定使用上述第一码本中的哪个预编码矩阵,并根据选定的预编码矩阵确定需要上报的上述第一PMI的取值,例如第一PMI的取值可以是选定的预编码矩阵的索引号。
906部分,用户设备上报PMI。可选的,该部分的具体实施方式可以参考上述202部分的描述。在一个具体的示例中,用户设备将在905部分中确定的第一PMI上报给网络设备。
907部分至911部分,网络设备指示用户设备CSI-RS资源2的配置,并发送指示信息给用户设备,以便指示用户设备利用CSI-RS资源2上报第二PMI所使用的第二码本,并在CSI-RS资源2上发送CSI-RS。用户设备根据指示信息中的指示,利用在CSI-RS资源2上接收到的CSI-RS,使用第二码本中的预编码矩阵确定第二PMI,并将所述第二PMI上报给网络设备。此部分的具体实现与902部分至906部分的描述类似,不同仅在于,907部分至911部分中所涉及的是CSI-RS资源2、第二码本以及第二PMI,其中,所述CSI-RS资源2以及第二码本的具体实现方式可以参考901部分中关于CSI-RS资源2以及第二码本的具体示例描述。
可选的,912部分,网络设备根据用户设备上报的第一PMI和第二PMI对下行数据进行预编码。
可选的,913部分,网络设备发送经过预编码的下行数据给用户设备。
可选的,本申请对图9所对应的实施例中各个部分的前后顺序并不做限定,其中的某两个或者更多部分也可以合并成一个部分进行。例如,907部分可以在903部分之前进行,907部分也可以与902部分合并成一条信令进行,即网络设备可以在一条信令中指示用户设备CSI-RS资源1和CSI-RS资源2的配置,也可以在不同的信令中分别指示用户设备CSI-RS资源1和CSI-RS资源2的配置;再如,903部分可以与902部分合并进行,即网络设备可以在一条信令中指示用户设备CSI-RS资源1的配置以及根据CSI-RS资源1上报第一PMI所使用的第一码本的信息;再如,902、903、907、908部分也可以合并成一个部分进行,等等。
可选的,当网络设备为用户设备配置至少两个CSI-RS资源时,所述至少两个CSI-RS资源的配置参数可以相互独立,但为了方便用户设备利用至少两个CSI-RS资源进行测量和PMI上报,所述两个CSI-RS资源的配置参数也可以设置一定的关系。在一个具体的示例中,所述至少两个CSI-RS资源的测量周期之间可以具有一定的关系,结合上述图9所对应的实施例,以CSI-RS资源1和CSI-RS资源2为例,所述CSI-RS资源1的测量周期是T1,CSI-RS资源2的测量周期是T2,其中T2=XT1(X≥1),T1和T2可以体现为一个测量周期内包含的子帧个数,也可以体现为具体的时间长度。因为第二码本是用于实现波束间相位补偿、波束间幅度补偿、来自不同天线面板的波束之间的相位补偿、来自不同天线面板的波束之间的相位补偿中的至少一种功能的码本,这些补偿量的变化相对比较缓慢,所以CSI-RS资源2的测量周期可以大于CSI-RS资源1的测量周期。在一个具体的示例中,所述至少两个CSI-RS资源的子帧偏移之间也可以具有一定的关系,结合上述图9所对应的实施例,以CSI-RS资源1和CSI-RS资源2为例,如果CSI-RS资源1和CSI-RS资源2中至少有一个是非周期的,则可以设置CSI-RS资源1所在的子帧号与CSI-RS资源2所在的子帧号之间具有一定的先后关系,以便实现不同CSI-RS资源测量的先后顺序。
当网络设备为用户设备配置至少两个CSI-RS资源时,可选的,网络设备可以通过信令(例如,RRC信令或者CSI测量配置信令等)通知用户设备不同CSI-RS资源的具体用途或CSI-RS资源和CSI上报之间的关系,例如,网络设备可以通知用户设备,CSI-RS资源1用于反馈PMI,CSI-RS资源2用户反馈PMI以及信道质量指示(Channel Quality Indicator,CQI)。可选的,网络设备和用户设备还可以预先约定CSI-RS资源的具体用途或者CSI-RS资源和CSI上报之间的关系。例如,预先约定第一CSI-RS资源用于反馈PMI,第二CSI-RS资源用户反馈PMI以及CQI,网络设备通过信令通知用户设备哪个CSI-RS资源为第一CSI-RS资源,哪个CSI-RS资源为第二CSI-RS资源,用户设备根据预先约定的CSI-RS资源的具体用途或者CSI-RS资源和CSI上报之间的关系,利用不同的CSI-RS资源进行PMI和/或CQI上报。在一个具体的示例中,结合图9所对应的实施例,用户设备可以根据CSI-RS资源2进行信道质量测量并上报CQI。可选的,网络设备接收到用户设备上报的第一PMI后,可以确定第一码本中所使用的预编码矩阵W,网络设备可以利用预编码矩阵W对各个面板上的CSI-RS天线端口进行预编码,得到CSI-RS资源2,然后用户设备根据CSI-RS资源2上接收到的CSI-RS进行信道测量并上报CQI。
当网络设备为用户设备配置至少两个CSI-RS资源时,可选的,也可以预先约定用户设备获取CQI的预编码矩阵假设,即预先约定用户设备获取CQI时所使用的预编码矩阵WCQI与利用所述至少两个CSI-RS资源确定的PMI之间的关系。在一个具体的示例中,结合图9所对应的 实施例,所述WCQI可以假设为满足如下形式中的至少一种:
1)当第一码本C1中的预编码矩阵W满足W=W1W2,第二码本C2中的预编码矩阵W'满足
Figure PCTCN2017109160-appb-000010
时,
WCQI可以满足:
Figure PCTCN2017109160-appb-000011
2)当第一码本C1中的预编码矩阵W满足W=W1W2,第二码本C2中预编码矩阵W'满足
Figure PCTCN2017109160-appb-000012
时,
WCQI可以满足:
Figure PCTCN2017109160-appb-000013
其中
Figure PCTCN2017109160-appb-000014
表示克罗内克积,K1表示一个天线面板内一个极化方向上水平方向的CSI-RS天线端口数,K2表示一个天线面板内一个极化方向上垂直方向的CSI-RS天线端口数。
3)当第一码本C1中的预编码矩阵W满足W=WB,第二码本C2中预编码矩阵W'满足
Figure PCTCN2017109160-appb-000015
时,
WCQI可以满足:
Figure PCTCN2017109160-appb-000016
4)当第一码本C1中的预编码矩阵W满足W=WB,第二码本C2中预编码矩阵W'满足
Figure PCTCN2017109160-appb-000017
时,
WCQI可以满足:
Figure PCTCN2017109160-appb-000018
其中
Figure PCTCN2017109160-appb-000019
表示克罗内克积,K1表示一个天线面板内一个极化方向上水平方向的CSI-RS天线端口数,K2表示一个天线面板内一个极化方向上垂直方向的CSI-RS天线端口数。
5)当CSI-RS资源1中包含N'个CSI-RS资源时,利用所述N'个CSI-RS资源确定的预编 码矩阵记为W(i),i=1,…,N',其中,W(i)满足W(i)=W1 (i)W2 (i)或者W(i)=WB (i)。当第二码本C2中预编码矩阵W'满足
Figure PCTCN2017109160-appb-000020
时,
WCQI可以满足:
Figure PCTCN2017109160-appb-000021
6)当CSI-RS资源1中包含N'个CSI-RS资源时,利用所述N'个CSI-RS资源确定的预编码矩阵记为W(i),i=1,…,N',其中,W(i)满足W(i)=W1 (i)W2 (i)或者W(i)=WB (i)。当第二码本C2中预编码矩阵W'满足
Figure PCTCN2017109160-appb-000022
时,
WCQI可以满足:
Figure PCTCN2017109160-appb-000023
其中
Figure PCTCN2017109160-appb-000024
表示克罗内克积,K1表示一个天线面板内一个极化方向上水平方向的CSI-RS天线端口数,K2表示一个天线面板内一个极化方向上垂直方向的CSI-RS天线端口数。
可选的,上述实施例中所涉及的信令或者指示信息,可以通过高层信令实现,例如RRC信令,也可以通过其他信令,例如物理层信令等实现,本申请不做限定。
需要说明的是,本申请实施例中对码本的编号,如“第一码本”,“第一子码本”等,并不构成对本申请实施例的限制,相同编号的码本在不同的实施方式中可以对应不同的作用;相同编号的码本和子码本,如第一码本和第一子码本,在逻辑上和使用上不是必须存在从属关系或者层次关系,例如,第一子码本也可以定义为第四码本并且独立使用,本申请对此不做限定。
图7为本申请实施例提供的一种用户设备结构示意图。
在一个示例中,用户设备的结构中包括接收器和发射器。在一个示例中,用户设备还可以包括处理器。在一个示例中,所述用户设备还可以包括存储器。在图7所对应的示例中,本申请实施例提供的一种用户设备的结构中包括发射器701,接收器702,处理器703和存储器704。
在上行链路上,待发送的数据或信息(例如PMI)经过发射器701调节输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的网络设备。在下行链路上,天线接收上述实施例中网络设备发送的下行链路信号(包括上述指示信息和/或参考信号),接收器702调节从天线接收的信号并提供输入采样。在处理器703中,对业务数据和信令消息进行处理,例如对指示信息进行解析、信道估计、确定PMI等。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。所述处理器703 还用于对用户设备的动作进行控制管理,用于执行上述实施例中由用户设备进行的处理,例如用于控制用户设备对指示信息、码本、PMI进行处理和/或进行本申请所描述的技术的其他过程。处理器703还用于支持用户设备执行图2-图6中涉及用户设备的处理过程。存储器704用于存储用于所述用户设备的程序代码和数据。
图8为本申请实施例提供的一种网络设备结构示意图。
在一个示例中,网络设备的结构中包括发射器和接收器。在一个示例中,所述网络设备还可以包括处理器。在一个示例中,所述网络设备还可以包括存储器。在一个示例中,所述网络设备还可以包括通信单元,用于支持与其他网络设备之间的通信,如与核心网节点之间的通信。在图8所对应的示例中,本申请所涉及的网络设备的结构中包括发射器/接收器801,处理器802,存储器803和通信单元804。
所述发射器/接收器801用于支持网络设备与上述实施例中的用户设备之间收发信息,例如发送上述实施例所涉及到的指示信息,接收上述所涉及到的PMI。所述处理器802执行各种用于与用户设备通信的功能。处理器802还执行图2-图6中涉及网络设备的处理过程,例如为用户确定上报PMI所使用的码本。存储器803用于存储网络设备的程序代码和数据。通信单元804,用于支持网络设备与其他网络设备之间的通信,如与核心网节点之间的通信。
可以理解的是,图8仅仅示出了所述网络设备的简化设计。在实际应用中,所述网络设备可以包含任意数量的发射器,接收器,处理器,存储器等,而所有可以实现本申请的网络设备都在本申请的保护范围之内。
用于执行本申请上述用户设备和网络设备的处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多于一个微处理器组合,DSP和微处理器的组合等等。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备和/或用户设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备和/或用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (18)

  1. 一种预编码矩阵指示方法,其特征在于,包括:
    用户设备接收网络设备发送的指示信息,所述指示信息中包含上报预编码矩阵指示(Precoding Matrix Indicator,PMI)所使用的码本的信息,所述码本的信息指示所使用的码本为第一码本至第N码本中的至少两个,所述PMI包括第一PMI至第N PMI中的至少两个,所述第一PMI至第N PMI分别用于指示所述第一码本至第N码本中的预编码矩阵,其中N为大于等于2的整数;
    所述用户设备根据所述指示信息,发送所述PMI。
  2. 如权利要求1所述的方法,其特征在于,所述第一PMI至第N PMI的取值分别对应所述第一码本至第N码本中的一个码本索引。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一码本至第N码本中包含至少一个用于进行波束选择的码本。
  4. 如权利要求1至3任一项所述的方法,其特征在于,所述第一码本至第N码本中包含至少一个用于进行波束基矢量选择的码本。
  5. 如权利要求1至4任一项所述的方法,其特征在于,所述第一码本至第N码本中包含至少一个用于进行波束合并的码本。
  6. 如权利要求1至5任一项所述的方法,其特征在于,所述第一码本至第N码本中包含至少一个用于进行波束间的幅度和/或相位补偿的码本。
  7. 一种预编码矩阵指示方法,其特征在于,包括:
    网络设备发送指示信息给用户设备,所述指示信息中包含所述用户设备上报预编码矩阵指示(Precoding Matrix Indicator,PMI)所使用的码本的信息,所述码本的信息指示所使用的码本为第一码本至第N码本中的至少两个,所述PMI包括第一PMI至第N PMI中的至少两个,所述第一PMI至第N PMI分别用于指示所述第一码本至第N码本中的预编码矩阵,其中N为大于等于2的整数;
    所述网络设备接收用户设备发送的所述PMI。
  8. 如权利要求7所述的方法,其特征在于,所述第一PMI至第N PMI的取值分别对应第一码本至第N码本中的一个码本索引。
  9. 一种用户设备,其特征在于,包括:
    接收器,用于接收网络设备发送的指示信息,所述指示信息中包含上报预编码矩阵指示(Precoding Matrix Indicator,PMI)所使用的码本的信息,所述码本的信息指示所使用的码本为第一码本至第N码本中的至少两个,所述PMI包括第一PMI至第N PMI中的至少两个,所述第一PMI至第N PMI分别用于指示所述第一码本至第N码本中的预编码矩阵,其中N为大于等于2的整数;
    发射器,用于根据所述指示信息发送所述PMI。
  10. 如权利要求9所述的用户设备,其特征在于,所述第一PMI至第N PMI的取值分别对应所述第一码本至第N码本中的一个码本索引。
  11. 如权利要求9或10所述的用户设备,其特征在于,所述第一码本至第N码本中包含至少一个用于进行波束选择的码本。
  12. 如权利要求9至11任一项所述的用户设备,其特征在于,所述第一码本至第N码本 中包含至少一个用于进行波束基矢量选择的码本。
  13. 如权利要求9至12任一项所述的用户设备,其特征在于,所述第一码本至第N码本中包含至少一个用于进行波束合并的码本。
  14. 如权利要求9至13任一项所述的用户设备,其特征在于,所述第一码本至第N码本中包含至少一个用于进行波束间的幅度和/或相位补偿的码本。
  15. 一种网络设备,其特征在于,包括:
    发射器,用于发送指示信息给所述用户设备,所述指示信息中包含所述用户设备上报预编码矩阵指示(Precoding Matrix Indicator,PMI)所使用的码本的信息,所述码本的信息指示所使用的码本为第一码本至第N码本中的至少两个,所述PMI包括第一PMI至第N PMI中的至少两个,所述第一PMI至第N PMI分别用于指示所述第一码本至第N码本中的预编码矩阵,其中N为大于等于2的整数;
    接收器,用于接收用户设备发送的所述PMI。
  16. 如权利要求15所述的网络设备,其特征在于,还包括:
    处理器,用于为用户设备确定所述上报PMI所使用的码本。
  17. 如权利要求15或16所述的网络设备,其特征在于,所述第一PMI至第N PMI的取值分别对应第一码本至第N码本中的一个码本索引。
  18. 一种网络系统,其特征在于,包括如权利要求9-14任一项所述的用户设备和如权利要求15-17任一项所述的网络设备。
PCT/CN2017/109160 2016-11-03 2017-11-02 一种预编码矩阵指示方法、装置和系统 WO2018082622A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019520732A JP2019537874A (ja) 2016-11-03 2017-11-02 プリコーディング行列指示方法、装置、及びシステム
EP17866695.4A EP3506522A4 (en) 2016-11-03 2017-11-02 METHOD, DEVICE AND SYSTEM FOR DISPLAYING A PRE-CODING MATRIX
US16/401,427 US10924174B2 (en) 2016-11-03 2019-05-02 Precoding matrix indication method, apparatus, and system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610974387 2016-11-03
CN201610974387.X 2016-11-03
CN201710184915.6A CN108023624B (zh) 2016-11-03 2017-03-24 一种预编码矩阵指示方法、装置和系统
CN201710184915.6 2017-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/401,427 Continuation US10924174B2 (en) 2016-11-03 2019-05-02 Precoding matrix indication method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2018082622A1 true WO2018082622A1 (zh) 2018-05-11

Family

ID=62075750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/109160 WO2018082622A1 (zh) 2016-11-03 2017-11-02 一种预编码矩阵指示方法、装置和系统

Country Status (1)

Country Link
WO (1) WO2018082622A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368948A (zh) * 2018-07-06 2021-02-12 日本电气株式会社 多trp码本

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103039018A (zh) * 2010-07-05 2013-04-10 株式会社泛泰 传送设备及其通信方法、以及接收设备及其通信方法
CN105024743A (zh) * 2010-06-24 2015-11-04 高通股份有限公司 结构化的mimo码本
CN105306174A (zh) * 2014-06-20 2016-02-03 中兴通讯股份有限公司 一种基于码本设计和选择的干扰对齐实现方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105024743A (zh) * 2010-06-24 2015-11-04 高通股份有限公司 结构化的mimo码本
CN103039018A (zh) * 2010-07-05 2013-04-10 株式会社泛泰 传送设备及其通信方法、以及接收设备及其通信方法
CN105306174A (zh) * 2014-06-20 2016-02-03 中兴通讯股份有限公司 一种基于码本设计和选择的干扰对齐实现方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3506522A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368948A (zh) * 2018-07-06 2021-02-12 日本电气株式会社 多trp码本
CN112368948B (zh) * 2018-07-06 2023-06-23 日本电气株式会社 用于通信的方法、终端设备和计算机可读介质

Similar Documents

Publication Publication Date Title
JP7469844B2 (ja) 4TxMIMOのためのPUCCHでのCSIフィードバックのためのコードブックサブサンプリング
CN108023624B (zh) 一种预编码矩阵指示方法、装置和系统
JP7121408B2 (ja) Lteにおける4txコードブックエンハンスメント
KR102401001B1 (ko) 부분 프리코딩 csi-rs 및 csi 피드백을 위한 다운링크 시그널링 방법 및 장치
RU2537273C2 (ru) Разработка и структура кодовой книги для многогранулярной обратной связи
CN107872261B (zh) 一种报告信道状态信息的方法、用户设备和基站
AU2015406856B2 (en) Precoding information sending and feedback method and apparatus
CN113630162A (zh) 用于操作mimo测量参考信号和反馈的方法和装置
TW201001950A (en) Method and apparatus for performing multiple-input multiple-output wireless communications
WO2017167156A1 (zh) Dmrs的发送方法及装置
KR20180129875A (ko) 업링크 mimo를 가능하게 하기 위한 방법 및 장치
WO2018024157A1 (zh) 信道状态信息的发送方法、接收方法、装置和系统
WO2016026507A1 (en) Periodical feedback design for three-dimensional multiple-input multiple-output (3d-mimo)
CN111757382A (zh) 指示信道状态信息的方法以及通信装置
WO2018023735A1 (zh) 一种终端、基站和获得信道信息的方法
WO2018082622A1 (zh) 一种预编码矩阵指示方法、装置和系统
CN111756422A (zh) 指示信道状态信息的方法以及通信装置
CN110380767B (zh) 一种预编码矩阵确定方法及装置
US20200119786A1 (en) Enhanced sounding reference symbol sounding technique for uplink codebook-based transmission
KR20110112054A (ko) 이동통신 시스템에서 코드북을 이용한 피엠아이 제한을 위한 장치 및 방법
CN117678163A (zh) 用于端口选择码本增强的方法和装置
CN117203905A (zh) 为端口选择码本增强配置W1、W2和Wf的方法和装置
CN117178495A (zh) 端口选择码本增强

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17866695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017866695

Country of ref document: EP

Effective date: 20190327

ENP Entry into the national phase

Ref document number: 2019520732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE