WO2021163778A1 - Composição para bioresina nanoestruturada termoplástica biodegradável, bioresina obtida e artigo - Google Patents

Composição para bioresina nanoestruturada termoplástica biodegradável, bioresina obtida e artigo Download PDF

Info

Publication number
WO2021163778A1
WO2021163778A1 PCT/BR2021/050075 BR2021050075W WO2021163778A1 WO 2021163778 A1 WO2021163778 A1 WO 2021163778A1 BR 2021050075 W BR2021050075 W BR 2021050075W WO 2021163778 A1 WO2021163778 A1 WO 2021163778A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
composition
bioresin
sample
xanthan
Prior art date
Application number
PCT/BR2021/050075
Other languages
English (en)
French (fr)
Inventor
Claire TONDO VENDRUSCOLO
Cristiane MIOTTO BECKER
Gislene ZEHETMEYER
Vinicius Oliveira
Original Assignee
Biopolix Materiais Tecnológicos Ltda - Me
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biopolix Materiais Tecnológicos Ltda - Me filed Critical Biopolix Materiais Tecnológicos Ltda - Me
Priority to EP21757200.7A priority Critical patent/EP4108718A4/en
Publication of WO2021163778A1 publication Critical patent/WO2021163778A1/pt

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention belongs to the field of resins based on a polymer matrix from renewable sources to obtain a biodegradable nanostructured bioresin. More specifically, the invention relates to a composition based on a polymer matrix from a renewable source such as xanthan pruni, pure or mixed with commercial xanthans, a modified starch, a plasticizer and a nanofiller in proportions such that when extruded under extrusion conditions in a thermoplastic nanostructured bioresin in the form of pellets, the composition presents a Fluidity Index of at least 0.1g/10 min and up to 20g/10 min when tested under a load of 21.6kg to obtain thermoplastic nanostructured bioresins that when re-extruded produce flexible articles.
  • a renewable source such as xanthan pruni, pure or mixed with commercial xanthans, a modified starch, a plasticizer and a nanofiller in proportions
  • the composition presents a Fluidity Index of at least 0.1g/10 min
  • the Fluidity Index must be at least 70 g/10min under load also of 21.6kg to obtain a bioresin in the form of spaghetti/pellets that can be re-extruded into semi-rigid or rigid articles, which is achieved for reason in weight of nanofillers for the sum of xanthan and modified starch (polymer matrix) between 0.0001% and 10%.
  • Bioresins can be powdered for other uses.
  • Nanocomposites are multicomponent materials that consist of multiple phases, at least one of which is a continuous phase and one of the phases has at least one dimension in the order of nanometers (1 to 100 nm).
  • nanoparticles as fillers in polymeric matrices promotes changes in matrix properties, related to the specific chemical interaction between the fillers and the polymer, which can influence the molecular dynamics of the polymer, resulting in significant changes in its physical properties, particularly in its thermal and/or mechanical behavior, see Esteves, ACC - Polymeric matrix nanocomposites: hybrid materials synthesis strategies. Chem. Nova, vol.27, no.5. p.799, S ⁇ o Paulo Sept./Oct. 2004.
  • bioresins that combine biodegradability and sustainability, with the incorporation of nanofillers in biodegradable polymers, providing a material derived from renewable sources and with potential applications in the medical field, in agriculture and in the sector of packaging, among others.
  • biodegradable polymers are those where the main degradation mechanism is the action of microorganisms such as bacteria, fungi and algae.
  • Biodegradation is a natural process by which organic compounds from the environment are converted into simpler compounds, mineralized and redistributed through elementary cycles such as carbon, nitrogen and sulfur. See Chandra, R. and Rustgi, R. (1998) Biodegradable Polymers. Progress in Polymer Science, 23, 1273-1335.
  • biodegradable polymers can be didactically divided into four categories: a) Polymers produced by natural or genetically modified microorganisms such as bacterial biopolymers (eg, xanthan, dextran and welan gums) or polyhydroxyalkanoates (PHA, PHB) ; b) Polymers extracted directly from natural materials, mainly plants (eg starch, cellulose, gum arabic, guar and carrageenan; proteins such as casein and gluten); c) Polymers produced through classical chemical synthesis, from bioderivative monomers (eg, polylactate, PLA); and d) Polymers chemically modified by semi-synthesis, starting from existing polymers (eg chitin-chitosan, cellulose-carboxymethylcellulose).
  • natural or genetically modified microorganisms such as bacterial biopolymers (eg, xanthan, dextran and welan gums) or polyhydroxyalkanoates (PHA, PHB)
  • PHA polyhydroxyalkanoates
  • PHA
  • biodegradable polymeric matrix nanocomposites that use compositions with natural polymers described above in this report.
  • Natural polymers such as PHA, PHB and PLA are already thermoplastic.
  • biopolymers such as xanthan, cellulose, carboxymethylcellulose, starch and chitin-chitosan, even being molecules of high molecular mass, need the association of additives to make the same thermoplastics and improve the mechanical properties in order to become important raw materials for construction biomaterials that are processable by extrusion, more specifically extrusion in a single step and in the absence of added water.
  • WO2011080623A1 describes a formulation where most of the content is biodegradable, and can be employed to make thin cast films, including a plasticized natural polymer, such as a thermoplastic starch, thermoplastic vegetable protein, or polyester-polyhydroxyalkanoate microbial (PHA), a biodegradable polymer such as a copolyester (such as Ecoflex), a polyolefin (eg, polyethylene) and a compatibilizer that has a polar and a non-polar portion in the same polymer.
  • a plasticized natural polymer such as a thermoplastic starch, thermoplastic vegetable protein, or polyester-polyhydroxyalkanoate microbial (PHA)
  • a biodegradable polymer such as a copolyester (such as Ecoflex)
  • a polyolefin eg, polyethylene
  • compatibilizer that has a polar and a non-polar portion in the same polymer.
  • European patent document EP2794214 (US 2013154151A1) describes a method for forming a thermoplastic composition containing a combination of a renewable biopolymer, a polyolefin and a compatibilizer, the combination being directed to a feed section of an extruder, in which the compatibilizer it has a polar component and a non-polar component.
  • a liquid plasticizer is injected directly into the extruder so that the plasticizer mixes with the biopolymer, polyolefin and compatibilizer to form a blend.
  • the mixture is melt processed within the extruder to form the thermoplastic composition.
  • a film can also be obtained by processing the composition.
  • the composition described in the documents above includes at least one non-renewable component, polyolefin, which removes the condition of biodegradability. Furthermore, the composition does not contain any type of nanofiller.
  • thermoplastic mixture based on biopolymers for the production of biodegradable articles which includes: a) 100 parts by weight of one or more thermoplastically processable, biodegradable polymeric materials selected from the group consisting of polysaccharides and proteins, preferably at least one starch of any native type, chemically modified, fermentative, recombinant and/or prepared by biotransformation and/or derivatives of said starches; b) from 10 to 100 parts by weight of water; c) from 1 to 100 parts by weight of lignin; d) if desired, up to 50 parts by weight of at least one plasticizer; ee) if desired, up to 200 parts by weight, preferably not more than 100 parts by weight, of other conventional additives, where the components are thermoplasticized with introduction of thermal and mechanical energy into the mixture, preferably at an elevated temperature while shearing is exerted on the mixture.
  • the cited US patent document US 6,406,530 presents a composition based on starch and lignin, and which includes water ((component b) of the composition), in addition to a plasticizer. In processing, high temperature and shear are used.
  • the present composition includes a biodegradable polymer, is water-free and does not require shear, as the densities of the biopolymers are very similar.
  • the present composition does not use high temperatures because even with the use of nanofillers the melting point remains low (below 140oC).
  • xanthan gum an exopolysaccharide synthesized by bacteria of the Xanthomonas genus that stands out as one of the most important polysaccharides of bacterial origin produced on an industrial scale, see Swings; E.L. Civerolo (eds.), Xanthomonas. London, Chapman & Hall, p. 363-388, 1993.
  • This exopolysaccharide has the ability to form viscous solutions at low concentrations (0.05-1.0%), stability in wide ranges of pH and temperature, high pseudoplasticity and certain thixotropy. It is soluble in hot or cold water, in addition to being biocompatible and compatible with polysaccharides, proteins, lipids and salts.
  • PHAs Polyhydroxyalkanoates
  • PHBs Polyhydroxyalkanoates
  • PHBs Polyhydroxyalkanoates
  • PHB Poly-3-hydroxybutyrate
  • PHAs have high polymer chain regularity and high molar mass, enabling various industrial applications.
  • the main physical properties are high molar mass and melting temperature, crystallinity and resistance similar to polypropylene, which makes it possible to replace them with biodegradable ones in the construction of non-toxic and environmentally correct thermoplastics.
  • the interest in these biopolymers is due to the search for ideal substitutes for conventional plastics, obtained from petroleum, for applications in disposable products, as they require less time for degradation, contributing to the improvement of the environment.
  • biodegradable polymeric compositions that combine bacterial polymers and natural polymers are described in Chinese patent document CN109486140, which teaches a method for obtaining a biodegradable film from a composition comprising, by mass: 80-120 parts of biodegradable plastics PHA , 1-8 parts of chitosan, 8-15 parts of starch, 0.02-0.08 parts of a photosensitizer, 0.01-0.04 parts of acetyl tributyl citrate, 0.5-1.8 parts of acetic acid, 1-5 parts of propylene copolymer, 2-8 parts of silicone oil, 3-8 parts of furfural, 4-10 parts of fructose, 40-60 parts of distilled water, 1-3 parts of plasticizer , 0.5-1.5 parts of anti-foaming agent and 0.5-1.9 parts of a compatibilizer.
  • Document CN108948691 describes the process of preparing a biodegradable membrane of PHA based on starch modified by lignin which includes the steps of: (1) vacuum drying the particles of polyhydroxyalkanoate (PHA) based on starch and lignin respectively; (2) add the dry starch- and lignin-based polyhydroxyalkanoate (PHA) particles, a chain extender, an antioxidant, a plasticizer, a lubricant, and a heat stabilizer in a high-speed mixer, and mix uniformly; (3) granulating by extrusion the mixed material obtained in a twin-screw extruder; and (4) obtain film by blowing the composite plastic particles at a certain temperature to prepare the membrane material.
  • PHA polyhydroxyalkanoate
  • CN107417984 describes a biodegradable plastic composition
  • a biodegradable plastic composition comprising 30-45% of modified starch, 3.5-8% of cellulose, 1-5% of a photosensitizer, 2-10% of a PHA polymer, 5-10% of resin synthetic polyethylene (PE), 0.5-3% of a solubilizer and 2-5% of a coupling agent.
  • Canadian patent document CA2342174C deals with biodegradable heterophasic compositions comprising partially or completely destructured and/or complexed starch, a polysaccharide ester and a plasticizer for the polysaccharide ester.
  • the polysaccharide ester constitutes the matrix and the starch is the dispersed phase in the form of particles or domains with an average number size of less than 1 ⁇ m and preferably less than 0.5 ⁇ m for at least 80% of the particles.
  • the compositions also comprise an additive that can increase and maintain at values of 4 or more the pH of a solution obtained by placing the compositions in pellet form in contact with water at room temperature for 1 hour, using the pellet:water ratio. 1:10 by weight.
  • Chinese patent document CN109486140 refers to a process for obtaining a biodegradable film in which the bacterial biopolymer is PHA-polyester-polyhydroxyalkanoate.
  • PHA PHA-polyester-polyhydroxyalkanoate
  • xanthan are bacterial biopolymers obtained by fermentation, but they are totally different.
  • Xanthan is an extracellular biopolymer while PHA is an intracellular biopolymer.
  • the PHA extraction process needs to use toxic solvents, while xanthan is extracellular, in the extraction process it only needs to be insolubilized in ethyl alcohol, which is non-toxic.
  • the other non-bacterial natural biodegradable biopolymer is chitosan.
  • composition presented in this document differs in all constituents from those of the present composition, except starch and plasticizer.
  • Another differential of the process object of Chinese patent publication CN109486140 is the use of 40-60 parts of distilled water in the composition while the composition of the present application is free of added water.
  • Chinese patent document CN108948691 describes a biodegradable membrane of PHA based on modified starch and lignin, a chain extender, an antioxidant, a plasticizer, a lubricant and a heat stabilizer for obtaining film by extrusion.
  • the composition presented in patent document CN108948691 although it presents starch, the plasticizer, a lubricant and a stabilizer, differs from the bioresin of the invention in other fundamental constituents, mainly regarding the polymer matrix (lignin vs.xanthan pruni), in addition to not using of nanofiller.
  • the purpose of this application is to obtain nanostructured bioresin in the form of biopellets, but it can be transformed into biodegradable films, as will be shown throughout this descriptive report.
  • Cipheral patent document CN107417984 describes a biodegradable plastic composition comprising modified starch, cellulose, photosensitizer, PHA biopolymer, PE (synthetic resin from fossil source), solubilizer and a binding agent.
  • the composition presented in this document CN107417984 differs from the present application in all constituents, except starch and plasticizer.
  • the polymers used are PHA and modified starch, biodegradable biopolymers and PE a non-biodegradable synthetic resin.
  • Chinese patent document CN109401248 describes a non-toxic, degradable straw material with application for cold and hot liquids, and belongs to the technical field of high molecular weight polymeric materials.
  • the object of the invention is prepared from the raw materials: powdered hydroxyapatite, calcium phosphate, polylactic acid, polycyclohexyl carbonate, polyhydroxyalkanoate, sugarcane bagasse fibers or other vegetable materials, glycerin, bean starch, polyethylene glycol, polyvinyl pyrrolidone , xanthan gum, konjac glucomannan, a stabilizer, a modifier, sodium alginate and polyethylene oxide (POE).
  • the degradable straw material of the invention through modification by mixing and surface treatment, the straw exhibits certain characteristics of thermal resistance and aging resistance.
  • the Brazilian published application BR102014028009A1 describes a biodegradable plastic composition of a topical anesthetic bioadhesive used as a pre-anesthetic, with controlled release of the active principle.
  • the present application and Brazilian published application BR102014028009A1 are both directed towards compositions that lead to biodegradable materials, and both are based on a polymer matrix such as xanthan pruni, the object of both differs profoundly in that the present invention aims at a bioresin in the form of pellets for transformation into biodegradable articles or films.
  • the fundamental aspect is the nanofiller to polymeric matrix + starch ratio, which must be such as to ensure a Fluidity Index of at least 0.1g/10min and up to 20g/10min with 21.6kg in the extrusion for obtain nanostructured bioresins that, when re-extruded, lead to flexible articles, and of at least 70 g/10min with 21.6 kg in the extrusion of the composition to obtain a bioresin that can be re-extruded into semi-rigid or rigid articles.
  • composition of the Brazilian published application BR102014028009A1 comprises an important wet portion necessary for obtaining a bioadhesive.
  • the composition of the present invention is completely free from addition of water.
  • teachings of the Brazilian published application do not suggest or describe the development that led to the present application, directed towards a thermoplastic composition and bioresin that constitutes a nanocomposite.
  • US patent document US 6,811,599A describes a biodegradable thermoplastic material that includes a natural polymer, a plasticizer and an inorganic filler such as clay.
  • nanofillers are used only as fillers to ensure the properties of mechanical resistance, and the process for obtaining the polymeric composition has pre-mixing and addition of water, which must be removed at a later stage of the production process.
  • polymers are an excellent support for nanoparticles, protecting them from physical/chemical degradation and facilitating their handling/processing.
  • Nano-sized loads (1-100 nm) have a high surface area, promoting better dispersion in the polymer matrix and therefore an improvement in the physical properties of the composite, which depend on the homogeneity of the material.
  • the preparation of polymeric matrix nanocomposites allows, in many cases, to find a balance between low cost, due to the use of a smaller amount of filler, and a high level of performance, resulting from the synergy between the components.
  • the recommended Fluidity Indices are obtained: i) in the case of using nanofillers, when the weight ratio of said nanofiller to the sum of the matrix of xanthan and modified starch is between 0.0020 and 0.10 and ii) in the case of Using functionalized nanoparticles, the weight ratio of said functionalized nanoparticles is between 0.0001 and 0.0005 for the sum of the matrix of xanthan and modified starch. In other words, this proportion of functionalized nanoparticles is between 100 ppm and 500 ppm of particles for the polymeric matrix (isolated pruni xanthan and starch or mixtures of pruni xanthan with commercial xanthans and starch).
  • the proportions of nanofiller (or functionalized nanoparticle) to the weight ratio of the sum of the matrix of xanthan and modified starch determine the Fluidity Index required to obtain the desired thermoplastic products (or films).
  • the biodegradable thermoplastic nanostructured bioresin composition of the invention comprises: a) A polymeric matrix from a renewable source, consisting of i) between 10% and 80% by weight, preferably between 20% and 75% by weight, and more preferably between 30% and 70% by weight, relative to weight total composition, of a polymer from a renewable source comprising an exopolysaccharide produced by Xanthomonas arboricola pathovar pruni (xanthan pruni), and ii) between 10% and 80% by weight, preferably between 20% and 75% by weight, and more preferably, between 25% and 65% by weight, relative to the total weight of the composition, of modified starch; b) between 10% and 70% by weight, preferably between 15% and 65% by weight, and more preferably between 20% and 60% by weight, relative to the total weight of the composition, of a plasticizer selected from an alcohol polyhydroxy like glycerol; and c) nanofillers, the weight ratio of nanofillers to said polymeric matrix being from a renewable
  • the weight ratio of nanofillers to the polymeric matrix must be between 0.0020 and 0.10 of inorganic or organic nanofillers or between 0.0001 and 0.0005 of nanoparticles functionalized.
  • this represents between 100 and 500 ppm per kg of biopolymer matrix so that in the extrusion of the composition under extrusion conditions IF (Fluidity Index) of at least 0.1 g/10 min and up to 20 g is obtained /10 min for a 21.6 kg load.
  • IF Fluidity Index
  • the IF Fluidity Index
  • the biopolymer matrix can further include a mixture of xanthans, such as a mixture of xanthan pruni and commercial xanthans.
  • the ingredients intended for processing in an extruder under process conditions do not include water.
  • the xanthan(s) used, the modified starch and other components of the mixture to be processed constitute powders, it would not be expected that processing would be possible under conditions of obtaining bioresin pellets without the addition of water.
  • Bioresin is obtained in the form of biopellets and is between 95% and 100% biodegradable. Biopellets have a smooth and uniform appearance and can be compared to usual thermoplastic polymer pellets.
  • the bioresin of the invention is thermoplastic, in the form of threads/spaghetti or powder obtained by grinding the threads or spaghetti obtained.
  • the yarns or powders can be combined with other biodegradable materials to be processed for other uses.
  • Bioresin pellets undergo extrusion blow molding processes to manufacture biodegradable films.
  • the pellets are subjected to thermoforming to make molded articles for various purposes.
  • bioresin the biodegradable biopolymer matrix nanocomposite of the invention, here called bioresin, is a platform that allows the addition of numerous additives, enabling bioresins with different properties to be obtained to achieve the intended use.
  • these bioresins are processable and useful in blends of biodegradable materials for uses other than biodegradable plastics.
  • Figure 1A through Figure 1G show images of samples of a combination of 50% by weight of xanthan pruni and 50% by weight of glycerol and the same ratio by weight for mixture of xanthans (xanthan pruni/commercial xanthan) and glycerol during the determination of the Fluidity Index by extrusion after certain time intervals between cuts for each sample.
  • Figure 2 shows images of samples of a combination of (25% by weight xanthan pruni and 25% by weight starch) and 50% by weight glycerol during the determination of the Fluidity Index after certain time intervals between cuts for each sample.
  • Figure 2 shows the images of the samples during the determination of the Fluidity Index after certain time intervals between cuts for each sample A and B.
  • Figure 2A xanthan pruni and bean starch (extracted from carioca beans in the laboratory).
  • Figure 2B pruni xanthan and waxy corn starch (commercial) and Figure 2A, and Figure 2B samples are: (25%xanthan + 25% starch) and 50% glycerol.
  • Figure 2A is xanthan pruni + bean starch.
  • Figure 2B is xanthan pruni and waxy (commercial) cornstarch.
  • Figure 3A shows images of samples of a combination of 33 wt% xanthan pruni and 33 wt% waxy corn starch (commercial) and 34 wt% glycerol.
  • Figure 3B shows images of samples of a combination of 37.5% pruni xanthan by weight, 12.5% by weight waxy cornstarch (commercial) and 50% by weight glycerol. Images were obtained during the determination of the Fluidity Index after certain time intervals between sections for each sample.
  • the xanthan strain used in the sample combinations in Figure 3 is the same as that used in the sample combinations in Figure 2. It was then considered that from the choice of the basic formulation (pure pruni xanthan or xanthan mixture, plus corn starch modified plus glycerol) will be named sample 12.
  • the compositions of xanthan pruni plus modified corn starch plus glycerol plus nanofiller will be named 12.1, 12.2, 12.3 and 12.4 according to the nanofillers used.
  • Figure 4 shows the image of Sample 12.1 during the extrusion process of the nanostructured bioresin and its obtainment in the form of spaghetti.
  • Spaghetti has a smooth and uniform appearance and can be compared to ideal looking spaghetti.
  • FIG 5A shows the image of starch biopellets obtained in the same way as the sample of bioresin 12 or 12.1 (using the same processing operating conditions).
  • the formulation of these biopellets comprises 50% glycerol and 50% starch, according to the parameters presented for extrusion of the bioresin in a twin-screw extruder in a single, water-free processing
  • Figure 5B shows the bioresin biopellets from sample 12.1 obtained by the extrusion process in the form of nanostructured biopellets.
  • Biopellets have a smooth and uniform appearance and can be compared to usual thermoplastic polymer pellets obtained from non-renewable sources.
  • Figure 6A shows the image of Sample 12.1 in the bioresin extrusion process and its obtainment in the form of a film - Figure 6B. Obtaining the balloon film by blowing. Biofilms are thus prepared for the biodegradability test.
  • Figure 7 shows the image of the biofilm samples prepared for the biodegradability test.
  • Figure 7A is the starch biofilm and
  • Figure 7B is the biofilm from Sample 12.1 of the bioresin.
  • Figure 8 shows the graphical representation of the pH results monitored during the biodegradability test of starch biofilms and sample 12.1 bioresin biofilms, obtained using starch resin biopellets and sample 12.1 resin biopellets.
  • the reference material is TLC grade cellulose.
  • the Reference Sample is for starch films.
  • TLC grade cellulose reference material
  • another reference material used was the corn starch biofilm Amisol 3408 (commercial) produced in the same way and using the same extrusion parameters used to obtain of the nanostructured bioresin biofilms of the invention.
  • Figure 9 shows the graphical representation of the moisture results monitored during the biodegradability test of starch biofilms and Bioresin Biofilms Sample 12.1, obtained using the starch resin biopellets and the resin biopellets from Sample 12.1.
  • Figure 10 shows the results of the percentage of biodegradability during the test period of the starch biofilms and the sample 12.1 bioresin biofilms, obtained using the starch resin biopellets and the sample 12.1 resin biopellets.
  • Figure 11 schematically shows the twin-screw extruder used to obtain the nanostructured bioresin in the form of biopellets.
  • the mixture of dry components (powder) and the liquid(s) are added in doser 1 through a dosing pump in zone 2.
  • Figure 12A shows the results of the breakage analysis of the samples of bioresin films from Sample 12.1 after determining the physical properties under tension in the direction of film orientation in the Machine Direction (DM) and 12B in the direction of film orientation in the Transverse Direction (DT) ).
  • Figure 13A shows the results of the burst test analysis. Specimens of the Bioska+ sample (Finlandia origin) after the determination of the physical properties under traction direction of film orientation in Machine Direction (DM) and 13B direction of film orientation in Transverse Direction (DT). Determinations made for the purpose of comparing sample 12.1 with the Finlandia Bioska+ trademark.
  • Figure 14 shows the results of the biodegradability analysis, by respirometry, during the period of the starch bioresin biopellets and Sample 12.3 bioresin test period.
  • Figure 15 is a graph showing the mineralization of sample 12.3 and positive reference as a function of time.
  • Figure 16 shows the linear fit of the 12.3 biopolymer sample used for polymer prediction and degradation. Linear fit was used to predict the biodegradation of this sample, which was the only one that did not biodegrade in 180 days.
  • Figures 17, 18, 19 and 20 show the evolution of biofilm biodegradation of bioresin 12.1 over 70 days, compared to two reference samples. These Figures are examples in which, visually, the disappearance of the samples in the substrate by the action of biodegradation can be observed during the incubation time.
  • Figure 17 shows the visual follow-up of the degradation evolution of the Starch (starch 1) and cellulose (starch 2) biofilm reference sample inside the reactors and incubation at the beginning of the assay and after 10, 15, 20 and 30 days.
  • Figure 18 shows the visual follow-up of the degradation evolution of the Starch (starch 1) and cellulose (starch 2) biofilm reference sample inside the reactors and incubation at the beginning of the assay and after 40, 45, 50, and 60 days .
  • Figure 19 shows the visual follow-up of the degradation evolution of Samples 12.1 and 12.2 inside the incubation reactors at the beginning and after 10, 15, 20 and 30 days of the biodegradability test.
  • Figure 20 shows the visual monitoring of the degradation evolution of Sample 12.1 and 12.2 inside the incubation reactors during the 40, 45, 50 and 60 days of the biodegradability test.
  • Xanthan pruni is xanthan gum, an exopolysaccharide produced by Xanthomonas arboricola pathovar pruni.
  • the xanthan pruni (or xanthan pruni gum) useful for the purposes of the invention was the subject of the same Applicant's patents, PI0406309-0 and the patent of the divided application, BR122014030015.
  • “Commercial xanthan” is xanthan gum, an exopolysaccharide produced by Xanthomonas campestris pathovar campestris.
  • the polymeric matrix or biopolymeric matrix are interchangeable terms; the matrix consists of pure or combined xanthan pruni with commercial xanthans as defined above and modified starch.
  • Starch film is a film prepared with 50% starch amisol (commercial) and 50% glycerol without any other additive, using the same extrusion parameters used to obtain the biopellets.
  • Cellulose is the standard reference sample.
  • NPFs are a commercial product, consisting of chemical structures with predefined molecular arrangement, acting by molecular interaction. The action involves attacking oxygen from molecules such as xanthan, binding or cutting the structure's rings.
  • NPFs There are two types of NPFs: ZnO NanometallisRSol and SiO 2 Nanometallis RsolGel.
  • Single processing step means that for this extrusion the dry materials (powder) such as biopolymers and dry additives are all added directly into the extruder in the proportions by weight established in the composition and also the liquid materials established in the composition as plasticizers are added directly into the extruder through metering pump.
  • dry materials such as biopolymers and dry additives
  • Low temperature is used for extrusion, here considered a temperature below 140oC.
  • extrusion called dry or water-free means that there is no pre-preparation of solubilization of biopolymers as recommended in the literature. No water is added in any combination of the composition.
  • composition for biodegradable thermoplastic nanostructured bioresin comprises: a) A polymeric matrix from a renewable source, consisting of i) between 10% and 80% by weight, preferably between 20% and 75% by weight, and more preferably between 30% and 70% by weight, relative to weight total composition of a polymer from a renewable source comprising an exopolysaccharide produced by Xanthomonas arboreal pathovar pruni (xanthan pruni), and ii) between 10% and 80% by weight, preferably between 20% and 75% by weight, and more preferably between 25% and 65% by weight, relative to the total weight of the composition, of modified starch; b) between 10% and 70% by weight, preferably between 15% and 65% by weight, and more preferably between 20% and 60% by weight, relative to the total weight of the composition, of a plasticizer selected from an alcohol polyhydroxy like glycerol; and c) nanofillers, selected from Cloisite 30B organophilic clay, NCC
  • the polymeric matrix of the composition of the invention comprises isolated pruni xanthan and starch, plasticizer and nanofiller.
  • the polymeric matrix of the composition of the invention comprises a combination of pruni and commercial xanthan, and starch, in addition to the plasticizer and nanofiller.
  • Pellets obtained with these compositions and with these flow parameters can be re-extruded into articles such as biodegradable films for packaging or rigid or relatively rigid articles.
  • the present invention has for object a polymeric composition that is a nanocomposite obtained from materials from renewable sources. More specifically, the invention deals with a composition for obtaining thermoprocessable bioresin by extrusion comprising (a) a biodegradable polymeric matrix that includes at least one bacterial polymer and at least one natural biopolymer from a renewable source selected from modified starch; (b) a pure plasticizer or mixture of plasticizers; and (c) an organic, inorganic or functionalized nanofiller, and where the ratio of nanofiller to the sum of the polymer matrix of bacterial polymer and natural biopolymer such as starch is between 0.2% and 10% of inorganic or organic nanofillers so that the Fluidity Index of the bioresin obtained is at least 0.1 g/10 min to 20g/10 min for a load of 21.6 kg or even between 100ppm to 500ppm for each kilogram of biopolymer matrix, of functionalized nanoparticles so that the Index Fluidity of the bioresin obtained is at least 70 g/10 min
  • the nanocomposite of the invention can also be processed in admixture with biodegradable materials other than plastics.
  • the bacterial biopolymer is selected from pure pruni xanthan or mixed with commercial xanthans, with a molar mass between 5x10 5 to 1.3x 10 7 g.mol - 1 , which have melting and degradation temperatures similar to those of pruni xanthan or commercial xanthan that can be modified during the process of obtaining xanthan or by post-processing to facilitate the association of other additives.
  • bacterial biopolymers are associated with natural biopolymers such as chemically, physically or enzymatically modified starches.
  • Starches are also macromolecules with high molar mass, in the order of g/molx10 6 .
  • the starch is selected from rice starch, with an amylose content between 20% to 30% and/or 70% to 78% amylopectin; bean starch, with an amylose content between 15% to 20% and/or 20% to 27% amylopectin; corn starch, with an amylose content between 25% to 28% and/or 72% to 75% amylopectin; cassava starch, with an amylose content between 14% to 22% and/or 77% to 89% amylopectin.
  • Selected starches can be used chemically, physically or enzymatically modified.
  • the plasticizing agent comprises a plasticizer from a renewable source, pure or a mixture of plasticizers from renewable sources, selected from i) lipophilic agents, selected from edible oils and liquid lipids, vegetable oils from rice, soybean, sunflower, canola, peanut and corn , coconut, walnuts, almonds and edible walnuts, copaiba, caranauba oil, linseed, grape seed; and ii) hydrophilic agents selected from propylene glycol and polyethylene glycol, glycerin, glycerol, sorbitol, pure or combined, and will be present in proportions between 5% and 60% by weight of the bioresin.
  • a plasticizer from a renewable source pure or a mixture of plasticizers from renewable sources
  • lipophilic agents selected from edible oils and liquid lipids, vegetable oils from rice, soybean, sunflower, canola, peanut and corn , coconut, walnuts, almonds and edible walnuts, copaiba, caranauba oil, linseed, grape seed
  • hydrophilic agents selected
  • the plasticizing agent comprises a major portion of a plasticizer from a renewable source or a mixture of a renewable source with up to 5% of a plasticizer from a non-renewable source, selected from: Bis(2-ethylhexyl)phthalate (DEHP), Bis(2-ethylhexyl) adipate (DOA), epoxidized vegetable oils, phosphates, silicone oil (polydimethylsiloxane), Polybutadiene (PB), Alkyl citrates, Ethers/thio ethers.
  • DEHP Bis(2-ethylhexyl)phthalate
  • DOA Bis(2-ethylhexyl) adipate
  • epoxidized vegetable oils phosphates
  • silicone oil polydimethylsiloxane
  • PB Polybutadiene
  • Alkyl citrates Ethers/thio ethers.
  • the nanofiller is a renewable source when it comprises an organic nanofiller selected from crystalline nanocellulose, or inorganic when it comprises a mineral nanofiller selected from: Cloisite 30B, Cloisite 20A, Cloisite Na, Cloisite 93, kaolin and/or mineral nanofillers (nanofunctionalized particles SiO 2 or ZnO).
  • the proportion of nanofiller ranges from 0.0001% by weight to 10% by weight, preferably from 0.0001% to 8% by weight, and even more preferably from 0.0001% to 7% by weight, with respect to total weight of the composition.
  • nanoparticles are in solid form (powder) they are combined with biopolymers (powder) directly in the extruder without pre-preparation.
  • the nanoparticles in liquid form or in solution are mixed together with the plasticizer directly in the extruder without pre-preparation, such as through a metering pump.
  • the nanoparticles in solid form are mixed together with the biopolymers (powder) through pre-processing in a mixer with a shear speed of 300 rpm for 10 min and at a temperature between 35°C to 38°C to be later combined in the extruder where the liquids will also be added in the same process.
  • the nanoparticles in liquid form or in solution or gel are mixed together with plasticizers and other liquid additives through pre-processing by stirring at a shear speed of 100 to 200 rpm for 10 min and at a temperature between 25°C to 35oC to later be added to the extruder, directly or by pump dosing the mixture, at the same time the extruder receives the biopolymers.
  • compositions between 0.0% to 10% by weight of the composition are used for bioresin, solid dispersants or as anti-caking agents selected from mono, di or tribasic phosphates, titanium dioxide, calcium or magnesium carbonate and silicon dioxide .
  • nanofiller from a renewable source selected from crystalline nanocellulose, coconut fiber nanocellulose, sugarcane bagasse, rice husk nanocellulose, pure or a mixture of nanofillers is used in any proportion, in relation to the weight of the biopolymer matrix.
  • compatibilizers between 0.1% by weight to 15% by weight of compatibilizers, SEBS (non-reactive compatibilizing agents, co-polymers in or blocks or blocks of polymers called S polymers and blocks of polymers B) or others selected from among commercial compounds EL05, FS105, FS110; FS115, pure or combined in any proportion, in relation to the weight of the biopolymer matrix.
  • SEBS non-reactive compatibilizing agents, co-polymers in or blocks or blocks of polymers called S polymers and blocks of polymers B
  • others selected from among commercial compounds EL05, FS105, FS110; FS115, pure or combined in any proportion, in relation to the weight of the biopolymer matrix.
  • thermo stabilizers selected from Calcium Chloride, CaCl 2 and Zinc Chloride, ZnCl 2 , pure or combined in any proportion in relation to the weight of the matrix, is used biopolymer.
  • biopolymer in yet another modality, from 0.0% by weight to 5.0% by weight of dimensional stabilizers selected from those of calcium base and zinc base, pure or combined together in any proportion, in relation to the weight of the matrix, is used biopolymer.
  • antioxidants selected from: sulfites (thioesters and thiodiopropionic acid esters) and phosphites (phosphoric acid triesters), ascorbic acid, erythorbic acid and its pure or combined salts in any proportion, or those with dual action, antioxidants and preservatives selected from: primers and chelators, synergists such as butylhydroxytoluene (BHT) and butylhydroxyanisole (BHA), in relation to the weight of the biopolymer matrix .
  • BHT butylhydroxytoluene
  • BHA butylhydroxyanisole
  • preservatives selected from methyl and ethyl paraben, sorbic acid and sodium or potassium sorbate, pure or combined with each other in any proportion, in relation to the weight of the biopolymer matrix.
  • emulsifiers selected from compounds with a hydrophilic-lipophilic balance (HHL) between 0.0 and 5.0, preferably between 0.2 and 3.0, and more preferably between 0.5 and 1.5, selected from sorbitan trioleate (Span 85) and sorbitan tristearate (Span 65), pure or combined together in any proportion.
  • HHL hydrophilic-lipophilic balance
  • emulgents selected from polyoxyethylene esters (commercial products Tween 60 and Tween 80) and lecithin, are used.
  • antioxidants selected from primers and chelators, synergists such as butylhydroxytoluene (BHT) and butylhydroxyanisole (BHA), are used. ascorbic acid and erythorbic acid and their salts, respectively, combined or not.
  • BHT butylhydroxytoluene
  • BHA butylhydroxyanisole
  • salts mono or divalent, selected from: Sodium chloride, NaCl, Potassium chloride, KCl, MnO 2 , Mn 2 O, pure or combined in any proportion.
  • an anti-humectant selected from: silicon dioxide: SiO 2 , Calcium carbonate: CaCO 3 , talc: (Mg 3 ( Si 2 O 5 )2(OH) 2 or (3MgO. 4SiO 2 . H 2 O), Magnesium carbonate: MgCO 3 , Calcium silicate: CaSiO 3 , aluminum salts: aluminum silicate, aluminum sodium silicate: NaAl 2 Si 3 O 8 , tricalcium phosphate; magnesium oxide; potassium oxide, sodium oxide, ammonium salts of myristic, palmitic and stearic acids; Microcrystalline cellulose.
  • bioresin biopellets For the production of bioresin biopellets, the powder components combined in the proportions required for processing are pre-dried in an oven with forced air recirculation at 60°C, and then forwarded to a twin-screw extruder with a feed rate that can vary from 500 at 700g/h. Liquid plasticizers are added during processing. After processing, the bioresin biopellets according to the invention are recovered.
  • the processing of the composition of the invention into a biodegradable thermoplastic bioresin takes place in a twin-screw extruder.
  • the powder components polymer matrix, starch, nanofiller(s) and additives
  • the mixture of plasticizers is added via the Dosing Pump in Zone 2 of the twin-screw extruder.
  • experiments were initially carried out which demonstrate that only the combination of the components of the composition of the invention, in the indicated proportions, produces a biodegradable thermoplastic resin in the form of pellets or a film by blow extrusion.
  • the products obtained can be used in the form of biopellets or reprocessed into powder for other uses.
  • the bioresins obtained do not have the strength to allow re-extrusion to form films.
  • Figure 1 shows images of the samples during the determination of the Fluidity Index after certain time intervals between cuts for each sample:
  • Figure 1A Sample A, xanthan pruni 50% by weight + 50% by weight Glycerol;
  • Figure 1B Sample B, (xanthan pruni 25% by weight/commercial xanthane 25% by weight) + 50% by weight Glycerol;
  • Figure 1C Sample C, xanthan pruni 50 wt% + 50 wt% Glycerol
  • Figure 1D Sample D, (xanthan pruni 25 wt%/commercial xanthan 25 wt%) + 50 wt% Glycerol,
  • Figure 1E Sample E, xanthan pruni 50 wt% + 50 wt% Glycerol
  • Figure 1F Sample F (xanthan pruni 25 wt%/commercial xanthan 25 wt%) + 50 wt% Glycerol and
  • Figure 1G Sample Xanthan provides 50% by weight + 50% by weight of G
  • the pruni xanthans were produced in the laboratory in accordance with Brazilian patent PI04065309-0B1, of the principal inventor of the present application, and incorporated herein in its entirety by reference.
  • Sample H was produced with a strain of xanthan pruni that did not allow the measurement of the Fluidity Index.
  • Figure 2 shows the images of samples during the determination of the Fluidity Index after certain time intervals between cuts for each sample: Figure 2A and 2B.
  • Figure 2A refers to a biopolymer blend with 25% by weight of xanthan pruni + 25% by weight of starch extracted from red beans (Starch A), in the laboratory, combined with 50% by weight of glycerol.
  • Figure 2B refers to a biopolymer blend of 25% by weight of xanthan pruni + 25% by weight of waxy (commercial) corn starch (Starch B) combined with 50% by weight of glycerol. These samples were called Sample 12 and designate the samples obtained with a determined strain of xanthan pruni, suitable for extrusion.
  • Figure 3 shows the images of the samples during the determination of the Fluidity Index after certain time intervals between cuts for each sample:
  • Figure 3A is sample 12 composed of 33% by weight of xanthan pruni and 33% by weight of starch from waxy corn (commercial) and 34% by weight glycerol.
  • Figure 3B is sample 12 composed of 37.5% by weight of xanthan pruni and 12.5% by weight of waxy corn starch (commercial) and 50% by weight of glycerol.
  • the Fluidity Index of these samples is shown in Table 3. The load used was 21.6 kg.
  • FIG. 3 FORMULATION FLUIDITY INDEX (g/10 MIN) 3 A 33 wt% (xanthan pruni sample 12) + 33% corn starch + 34 wt% glycerol 0.35 3b 37.5% xanthan pruni XP +12.5% starch + 50% glycerol by weight 26.62
  • Sample 12 here named (2A and 2B) Table 2, showed low fluidity, even in the compositions with glycerol and starch. Through the results obtained for the compositions of Sample 12 samples (2A and 2B), it was also observed that the use of Starch B favors more fluidity increase in relation to Starch A.
  • Figures 3A and 3B xanthan pruni
  • corn starch varying the amount of plasticizer, glycerol.
  • the Fluidity Index was strongly influenced by the amount of glycerol.
  • Figure 3 allows visualizing the appearance of the bioresin obtained with different concentrations of glycerol.
  • Tables 1, 2 and 3 above in this report refer to exploratory experiments to prove that xanthan can be extruded, both of the xanthan pruni species and mixtures of xanthan pruni with commercial xanthan. Furthermore, the Tables show that it is also possible to extrude pure xanthan pruni or xanthan pruni in a mixture with commercial xanthan, starch and glycerol, obtaining extrudable products, but it is not possible to obtain, by extrusion, from these exploratory compositions, pellets that can be re-extruded into articles or made into films for packaging by blow extrusion. Such products - articles and films - are only possible to obtain through the composition of the invention, described above in this report.
  • the bioresin of the invention is obtained in the form of spaghetti (continuous filament), cut in the form of pellets (granules) or crushed in the form of a powder.
  • This bioresin or nanostructured resin was developed to be used as a raw material in plastic processing industries, flexible plastic packaging processors (balloon extrusion), semi-flexible (injection molding) or rigid plastic packaging, depending on the added additives.
  • a typical composition for preparing the bioresin is as in Table 4 below.
  • the polymer matrix consists only of pruni xanthan and modified starch, without the addition of any commercial xanthan.
  • Sample I relating to a bioresin processed from a composition according to the invention.
  • biodegradable bioresin Important parameters in the preparation of biodegradable bioresin are the use of biopolymers from renewable sources such as xanthans and starches and plasticizers also from renewable sources and 100% biodegradable.
  • a determining parameter in the preparation of bioresin is the type of nanofiller used, which influences the Fluidity Index.
  • the studies from the individual determination of the Fluidity Index of each of the constituents, the best associations of biopolymers (xanthans and starches) and ideal plasticizer allowed the construction of Tables 1, 2, 3, 4 and 5 detailed above in this report for the which were determined the extrusion operating conditions to obtain a dry bioresin, that is, an extruded bioresin with a moisture content in accordance with the accepted contents for similar products.
  • a reference thermoplastic resin sample has a moisture content between 12% and 15%.
  • compositions made with Sample 12 with Glycerol and Starch showed a fluidity closer to that of resins usually used for the process of obtaining films by blow extrusion (balloon). Furthermore, a more accentuated increase in fluidity was observed for compositions prepared with starch B (commercial corn starch) in relation to those prepared with starch A (carioca bean starch).
  • compositions of the invention achieve IF values suitable for extrusion for certain proportions of nanofillers in relation to the polymeric matrix (pure xanthan or combined with commercial xanthans and starch).
  • proportions were explained above in this report and comprise the nanofiller weight ratio to the sum of the xanthan matrix and modified starch (or polymeric matrix) between 0.0020 and 0.10 and comprise the weight ratio of the functionalized nanoparticles to the sum of xanthan matrix and modified starch between 0.0001 and 0.0005.
  • inorganic nanofillers - commercial Cloisite 30B
  • organic nanofillers organic nanofillers
  • crystalline nanocellulose commercial nanocellulose from CelluDorce NCV 100
  • functionalized nanoparticles NPsF - marketed by Nanometallis.
  • two types were used, namely: 1- ZnO functionalized nanoparticles (ZnO 80% solution and 20% water) and 2- SiO 2 functionalized nanoparticles (SolGel 7% SiO 2 and 93% water, gel presentation).
  • the Fluidity Index (FI) of the samples was obtained using a Melt Flow - Modular Line plastometer model CEAST (Instron, USA), at a temperature of 120oC.
  • the Fluidity Index (IF) was tested with loads of 5 kg, 15 kg and 21.6 kg in accordance with ASTM D1238-13.
  • the sample mass was collected and stored at each time interval (according to the fluidity behavior of each sample, at intervals of 30 seconds, 01 or 05 minutes) for subsequent weighing and recording.
  • the Fluidity Index of Sample 12 without nanoload was 12.8 g/10 min, which can be compared with a thermoplastic commonly used for extrusion of films obtained by blow extrusion or by extruding a tubular film or balloon.
  • Mineral nanofillers such as organophilic clay eg Cloisite 30B and natural nanofillers such as crystalline nanocellulose (CNC) are used in a weight ratio of between 0.0020 to 0.10 or 0.2% to 10% of the total weight of the composition.
  • Functionalized nanoparticles are used in the weight ratio between 0.0001 to 0.0005 or 100ppm to 500ppm per kilogram of biopolymer matrix. This indicates that amounts of functionalized nanoparticles between 500 and 1000 times smaller than other nanofillers present better results on the Fluidity Index, which greatly expands the use of these nanostructured bioresins, as can be seen from the results in Table 6 above.
  • Relative Humidity is an important parameter in thermoplastic extrusion and was measured for a series of samples of the invention.
  • the Relative Humidity (RH) of the samples shown in Table 7 was determined using a Sartorius Mark 3 humidity measuring device, at a temperature of 100°C, initial delay of 9s, holding temperature of 50°C, using approximately 2.0 g of sample. The results for the relative humidity of the samples are listed in Table 7 below.
  • the Reference sample is commercial corn starch, brand Amisol 3408; Sample B is waxy (commercial) corn starch; sample A is starch from the Rio de Janeiro variety (extracted in the laboratory by the Applicant).
  • All samples represent combinations of powdered ingredients (xanthans and starches and some inorganic nanofillers eg Cloisite 30B, Cloisite Na and organic nanofillers eg crystalline nanocellulose) and liquid ingredients like plasticizers and some nanofunctionalized particles eg. ZnO, for preparing the bioresin according to the invention.
  • powdered ingredients xanthans and starches and some inorganic nanofillers eg Cloisite 30B, Cloisite Na and organic nanofillers eg crystalline nanocellulose
  • liquid ingredients like plasticizers and some nanofunctionalized particles eg. ZnO, for preparing the bioresin according to the invention.
  • the xanthans and starches used had moisture relatively close to that of the reference sample, which was 12.46%U, the xanthans and starches had a similar percentage, ranging from 11%U to 14%U. Within this range, all samples are in the form of powders, both xanthans and starches and the reference sample. This is the product's intrinsic or inherent moisture.
  • an extrusion process with a double-screw extruder was used in a single step, without pre-preparation of raw materials, the process being free from the addition of water and at low temperature.
  • samples 1 and 12 were selected.
  • a twin-screw extruder was used with screw speed: 90-110 rpm; torque 20Nm to 35Nm; pressure: 35 to 45bar; feed rate: 0.5 to 1.0 kg/h; temperature profile ranging from 80 to 160°C, with the temperature profiles shown in Table 8 used for processing Sample 1 and Sample 12.
  • the temperature profile used to produce the bioresins from Samples 1 and 12 is listed in Table 8 below. This same profile was used for samples 12.1, 12.2, 12.3 and 12.4.
  • Sample preparation was performed in a single step.
  • the components were physically weighed and mixed and added to the automatic feeder for transfer to the extruder feeder.
  • Glycerol was automatically metered using a metering pump.
  • the extrusion was carried out at a feed rate of 700 g/h and in this way, batches of 250 g of each raw material were weighed.
  • biopolymers were previously dried in an oven with forced air recirculation at 60oC, for one night, being removed from the oven only at the time of extrusion.
  • Biopolymers with moisture between 10% and 17%U are considered dry and do not require this drying operation and can be used directly in the extrusion operation.
  • the extrusion produced biopellets that must undergo biodegradability tests.
  • Biodegradability was determined with bioresin biopellets and bioplastics (films) obtained with bioresin.
  • thermoplastic bioresin of the invention is 100% biodegradable . See Figures 8, 9 and 10 and Figures 17,18,19 and 20.
  • Figure 8 is a graph of the pH variation of samples among which one is a sample of the invention, with respect to the test period (estimated in days of incubation in the reactors).
  • “compost” is a sample of organic compost product; another sample is TLC-grade cellulose (reference material), the reference sample is amisole starch film obtained according to the parameters presented for extrusion of the bioresin in a double-screw extruder in single and water-free processing, and a biofilm of sample 12.1 according to Table 4, biofilms being prepared from biopellets. With degradation, the pH stabilizes for all samples. Therefore, Sample 12.1 of the invention exhibits pH evolution over time in a manner comparable to fully biodegradable products such as starch and cellulose.
  • Figure 9 is the graphical representation of the moisture results monitored during the biodegradability test of the starch biofilm and the bioresin biofilm sample 12.1 obtained using the starch resin biopellets and the resin biopellets from sample 12.1. The experiments were carried out for 70 days. The different samples tested are the same as in Figure 8. Therefore, Sample 12.1 of the invention shows moisture evolution over time in a manner comparable to fully biodegradable products such as starch and cellulose. The products tested were the same as in Figure 8.
  • Figure 10 shows the results of the percentage of biodegradability during the period of testing of starch biofilms and sample 12.1 bioresin biofilms, obtained using starch resin biopellets and Sample 12.1 resin biopellets.
  • the reference sample is amisol corn starch biofilm (commercial) prepared with 50% starch and 50% glycerol without any other additive, using the same extrusion parameters used to obtain the biopellets, according to the parameters presented for extrusion of the bioresin in twin-screw extruder in single, water-free processing.
  • the results of the analyzes show that the evaluated sample (Sample 12.1) showed biodegradability after 67 days of incubation, in a biodegradability chamber that simulates an intense aerobic composting process in the laboratory, under controlled conditions.
  • the reference material (amisol starch bioplastic) and standard reference (TLC cellulose), under the test conditions, showed 100% biodegradability after a period of 48 days.
  • Sample 12.1 showed approximately 66% biodegradability in the same period, and the starch sample showed 62% biodegradability in the same period.
  • DIN EN 13432:2000 the percentage of biodegradability of the sample must be at least 90% as well as the reference material, so that it is considered a biodegradable material. See Figure 10.
  • pellets to be characterized were produced according to the procedures described above, and are shown in Figure 5.
  • Extruded biofilms were also produced from the biopellets for further analysis of the material's biodegradation.
  • Sample 12.1 Balloon Film and “Reference Sample” showed three main stages of mass loss: the first related to the loss of bound and adsorbed water molecules, the second related to the degradation of the polymer chain under an inert atmosphere and the third also relative to the polymer chain under an oxidizing atmosphere.
  • Example 12.1 Balloon Film the degradation of the polymer chain, in an inert atmosphere, starts at 164°C with a mass loss of 69%.
  • the loss of mass in an oxidative atmosphere represents 13% and the residue represents 3%.
  • the degradation of the polymer chain, in an inert atmosphere starts at 200°C, with a mass loss of 82%.
  • the loss of mass in oxidative atmosphere represents 8% and did not present residues.
  • the residual mass comes from the non-degraded fraction under an atmosphere of synthetic air (oxidant), and it may come from the polymer chain or from inorganic components added in the formulation, for example, silica and metal oxides.
  • sample 12 Film Balloon did not total 100% in the sum of the mass losses due to the accentuated loss of mass at the beginning of the analysis. Based on the values in Table 9 it is possible to state that the samples have similar thermal stability, with the "Reference Sample” showing a degradation temperature only 26°C above the temperature of the "Sample 12 Film Balloon”.
  • Table 10 lists the maximum temperature values reached in the 1st loss, the 2nd loss and the 3rd loss, in °C.
  • sample 12 balloon film and “Sample Reference Balloon” presented similar results corresponding to the maximum loss of mass.
  • Both the “Reference Sample” and “Sample 12 Film Balloon” samples presented an endothermic event during the first heating, at 114°C and 127°C, respectively. These events are likely related to the evaporation of water from the samples. During the second heating, no thermal events were observed under the conditions and temperature range used.
  • the “Sample 12 Film Balloon” showed noise at baseline from 200°C, which is associated with sample degradation, taking into account the polymer chain degradation start temperature observed in the thermogravimetric analysis. This behavior in the “Reference Sample” is verified from 230°C.
  • the Fluidity Index of Sample 12 was 12.8 g/10 min, which can be compared with a thermoplastic commonly used for film extrusion.
  • the mechanical properties of polymeric samples can be influenced by the conditions of preparation and testing of the samples, the degree of crystallinity of this material, molecular weight, alignment of the polymeric chains and especially the degree of interaction between the components of the sample.
  • the physical properties of Sample 12.1 were determined using an Emic Universal Testing Machine. The sample was evaluated for the parameters Elastic Modulus (MPa), Maximum Tension (MPa) and Elongation at Break (%), and the values represent the average of the results obtained in relation to the number of specimens used in the test according to the ASTM D882 standard. Figure 12.
  • Table 11 shows the results of physical properties under traction of Sample 12.1 and commercial samples, acquired in Finland, Bioska+, Pikka and Bioska Kassi.
  • Elastic modulus is a mechanical parameter that provides information about solid material stiffness and influences the material's chemical composition, microstructure and defects.
  • Sample 12.1 showed an elastic modulus of 11.58 MPa and 13.02 MPa in the respective directions of film orientation, tested during the tensile test, and comparing this property with the small elongation at break of the material, it indicates an aspect of greater rigidity in this sample.
  • the molecular mobility of Sample 12.1 may have been restricted, when taking into account that the way to obtain the film may not have been appropriate, with regard to the equipment used and parameters such as orientation, elongation and stretching in the machine , to obtain the film and this may be the cause for the reduction in the mechanical strength of this film.
  • the formation of cracks in the film can be related to a possible lack of uniformity in the film structure, which may have affected the mechanical properties of the sample.
  • Table 12 shows the results of the physical properties under tensile film of sample 12.1.
  • sample 12.1 presents a behavior similar to a thermoplastic polymer, allowing it to be processed and reprocessed in thermoplastic transformation equipment, such as an extruder, for example.
  • thermoplastic transformation equipment such as an extruder
  • the biodegradation tests were carried out on a laboratory scale, following the ASTM 5988-12 standard, with some adaptations. Glass flasks with approximately 2 L of internal volume were used as bioreactors. The samples were evaluated for 180 days at 28°C, and the amount of carbon dioxide (CO 2 ) produced was quantified in an automatic respirometer (Micro-oxymax Respirometer System, Columbus Instruments). As inoculum for the test, 50% of a mixture of bovine manure and sugarcane bagasse was used, in the proportion of 1:2, and 50% of earthworm humus was also used. Inoculum moisture was adjusted to 60% as per standard.
  • Biodegradation studies are based on estimating the percentage of carbon mineralization, that is, the amount of carbon converted to CO 2 by the samples. Its calculation is performed using Equation 1 below:
  • Figure 15 shows the linear curve with the angular and linear coefficient data used for the prediction and degradation of biopellets.
  • Biopellets are biodegradable. The result showed that four samples biodegraded in 180 days. Only one sample at 12.3 did not degrade in 180 days and for this one, it was necessary to make a linear adjustment to predict the degradation of the biopellets, which by calculations would take 447 days. Evaluation of Biodegradation of Extruded Biofilms
  • Biofilms extruded from biopellets were evaluated for their biodegradability.
  • the pellets were produced according to the procedures described above, and the biofilm samples are shown in Figure 7A and 7B.
  • the biodegradability evaluation was carried out in the produced biopolymer sample and also in a reference sample, in a test that simulates an intense aerobic composting process in the laboratory, under controlled conditions.
  • the sample to be evaluated for biodegradability must be previously identified and characterized by qualification tests provided for in the Standards, including: information on the identification of the constituents of packaging materials (FTIR); determination of the presence of toxic substances (determination of metals by ICP-OES); Digestion and Determination of Fluorides by Colorimetry; determination of organic carbon content (TOC); determination of total dry solids and volatile solids. If these results are within the limits established in the Standard, the biodegradability test is continued.
  • the initial parameters, pH and moisture content of the organic compost must be measured before starting the biodegradability test for plastic materials, and are presented in Table 13 below.
  • the determination of total dry solids is a test based on DIN EN 13432:2000.
  • the percentage of total dry solids content is obtained through the loss of mass of the sample when subjected to drying at a temperature of 105 ⁇ 2 oC until constant weight.
  • the determination of volatile solids is a test performed based on DIN EN 13432:2000, where the percentage of volatile solids is determined by the difference between the total dry solids content and the ash content obtained after firing in a muffle at 550 ⁇ 50°C for 1 hour.
  • the metal determination test was performed based on USEPA Method 3052 (Rev. 0; 1996) and USEPA Method 3050B (Rev. 2; 1996) for sample preparation and USEPA Method 6010C (Rev. 3; 2007) and PRI 638/320 for sample analysis.
  • the principle of analysis consists of the acid digestion of the sample (migration) and subsequent analysis by Optical Emission Spectrometry with Inductively Coupled Plasma (ICP-OES).
  • the metals present in the organic compound from the content of total dry solids and volatile solids, were identified by ICP-OES and are shown in Table 15 below.
  • the determination of the biodegradability of plastic materials is carried out through a test that simulates an intense aerobic composting process in the laboratory, under controlled conditions.
  • the percentage of biodegradability was determined by converting the sample's organic carbon into carbon dioxide (CO 2 ) released during the test period, according to DIN EN 13432:2000, ISO 14855-1:2012 and ABNT NBR 15448-2 standards :2008.
  • the determination of the biodegradability of plastic materials is carried out through a test that simulates an intense aerobic composting process in the laboratory, under controlled conditions.
  • the percentage of biodegradability was determined by converting the sample's organic carbon into carbon dioxide (CO 2 ) released during the test period, according to DIN EN 13432:2000, ISO 14855-1:2012 and ABNT NBR 15448-2 standards :2008.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

É descrita uma composição para bioresina nanoestruturada termoplástica biodegradável, a composição compreendendo de a) 10% a 80% em peso, em relação ao peso total da composição, de uma matriz polimérica de fonte renovável, compreendendo: i) um polímero de fonte renovável compreendendo um exopolissacarídeo produzido por Xanthomonas arboricola pathovar pruni (xantana pruni), dita xantana pruni sendo usada de modo isolado ou em combinação com xantanas comerciais compreendendo um exopolissacarídeo produzido por Xanthomonas campestris pv. Campestris, em proporção entre 2% a 50% em peso, em relação ao peso total da composição; e ii) entre 10% e 80% em peso, em relação ao peso total da composição, de amido modificado; b) entre 10% e 70% em peso, em relação ao peso total da composição, de um plastificante selecionado dentre um álcool polihidroxilado como glicerol; e c) nanocargas, selecionadas dentre argila organofílicaCloisite 30B, nanocelulose cristalina NCC, na razão em peso em relação à matriz biopolimérica entre 0,002 e 0,10, de nanocargas inorgânicas ou orgânicas, ounanopartículas funcionalizadas (NPF) ZnONanometallisRSol e SiO2 NanometallisRsolGel na razão em peso em relação à matriz biopolimérica de 0,0001 a 0,0005, de modo que na extrusão da composição sob condições de extrusão seja obtido IF para obtenção de artigos flexíveis de 0,1g/10min a 20g/10min para uma carga de 21,6k e para obtenção de artigos semirrígidos ou rígidos que o IF seja de pelo menos 70 g/10 min para carga de 21,6K. São igualmente descritos a bioresina obtida por extrusão da composição e os artigos manufaturados a partir da mesma, seja filmes ou artigos rígidos ou semi-rígidos.

Description

COMPOSIÇÃO PARA BIORESINA NANOESTRUTURADA TERMOPLÁSTICA BIODEGRADÁVEL, BIORESINA OBTIDA E ARTIGO Campo da invenção
A presente invenção pertence ao campo das resinas à base de uma matriz polimérica de fontes renováveis para obtenção de uma bioresina nanoestruturada biodegradável. Mais especificamente a invenção se refere a uma composição à base de uma matriz polimérica de fonte renovável como xantana pruni, pura ou em mistura com xantanas comerciais, um amido modificado, um plastificante e uma nanocarga em proporções tais que ao ser extrudada sob condições de extrusão em uma bioresina nanoestruturada termoplástica em forma de pellets, a composição apresenta Índice de Fluidez de pelo menos 0,1g/10 min e até 20g/10 min quando testada sob carga de 21,6kg para obter bioresinas nanoestruturadas termoplásticas que ao serem re-extrusadas produzam artigos flexíveis.
Já o Índice de Fluidez deve ser de pelo menos 70 g/10min sob carga também de 21,6kg para obter uma bioresina sob forma de espaguete/pellets que possa ser re-extrusada em artigos semirrígidos ou rígidos, o que é conseguido para razão em peso de nanocargas para a soma de xantana e amido modificado (matriz polimérica) entre 0,0001% e 10%.
As bioresinas podem ser transformadas em pó para outros usos.
Fundamentos da invenção
Os nanocompósitos são materiais multicomponentes que consistem de fases múltiplas sendo, no mínimo, uma delas, uma fase contínua e uma das fases possui pelo menos uma dimensão na ordem de nanômetros (1 a 100 nm).
A aplicação de nanopartículas como cargas em matrizes poliméricas promove alterações nas propriedades da matriz, relacionadas com a interação química específica entre as cargas e o polímero, que pode influenciar a dinâmica molecular do polímero, resultando em alterações significativas nas suas propriedades físicas, nomeadamente no seu comportamento térmico e/ou mecânico, vide Esteves, A.C.C. - Nanocompósitos de matriz polimérica: estratégias de síntese de materiais híbridos. Quím. Nova, vol.27, no.5. p.799, São Paulo Set./Out. 2004.
Em virtude das questões ambientais, há um grande interesse no desenvolvimento de bioresinas que combinem biodegradabilidade e sustentabilidade, com a incorporação de nanocargas em polímeros biodegradáveis, provendo um material derivado de fontes renováveis e com aplicações potenciais na área médica, na agricultura e no setor de embalagens, entre outros.
Segundo o Método ASTM D6400-99, polímeros biodegradáveis são aqueles onde o mecanismo principal de degradação é a ação de microrganismos como bactérias, fungos e algas. A biodegradação é um processo natural pelo qual compostos orgânicos do meio ambiente são convertidos em compostos mais simples, mineralizados e redistribuídos através de ciclos elementares como o do carbono, nitrogênio e enxofre. Vide Chandra, R. and Rustgi, R. (1998) Biodegradable Polymers. Progress in Polymer Science, 23, 1273-1335.
De acordo com o processo de produção, os polímeros biodegradáveis podem ser didaticamente divididos em quatro categorias: a) Polímeros produzidos por microrganismos naturais ou geneticamente modificados como biopolímeros bacterianos (ex., gomas xantana, dextrana e welana) ou polihidroxialcanoatos (PHA, PHB); b) Polímeros extraídos diretamente de materiais naturais, principalmente plantas (p. ex., amido, celulose, gomas arábica, guar e carragena; proteínas como caseína e glúten); c) Polímeros produzidos através da síntese química clássica, a partir de monômeros bioderivados (p. ex., polilactato, PLA); e d) Polímeros modificados quimicamente por semi-síntese, a partir de polímeros já existentes (por exemplo, quitina-quitosana, celulose-carboximetilcelulose).
O estado da técnica descreve nanocompósitos de matriz polimérica biodegradáveis que utilizam composições com polímeros naturais descritos acima no presente relatório. Os polímeros naturais como PHA, PHB e PLA já são termoplásticos. Entretanto os biopolímeros como a xantana, celulose, carboximetilcelulose, amido e quitina-quitosana mesmo sendo moléculas de massa molecular elevada necessitam da associação de aditivos para tornar os mesmos termoplásticos e melhorar as propriedades mecânicas a fim de se tornarem matérias-primas importantes para a construção de biomateriais que sejam processáveis por extrusão, mais especificamente extrusão em uma única etapa e em ausência de água adicionada.
O pedido de patente publicado internacional WO2011080623A1 descreve uma formulação onde a maioria do conteúdo é biodegradável, e pode ser empregada para fazer filmes fundidos finos, incluindo um polímero natural plastificado, tal como um amido termoplástico, proteína vegetal termoplástica, ou poliéster-poli-hidroxialcanoato (PHA) microbiano, um polímero biodegradável, tal como um copoliéster (como Ecoflex), uma poliolefina (por exemplo, polietileno) e um compatibilizador que possui uma porção polar e uma não polar no mesmo polímero.
O documento de patente européia EP2794214 (US 2013154151A1) descreve um método para formar uma composição termoplástica que contém uma combinação de um biopolímero renovável, uma poliolefina e um compatibilizador, a combinação sendo dirigida a uma seção de alimentação de uma extrusora, em que o compatibilizador possui um componente polar e um componente não polar. Um plastificante líquido é injetado diretamente na extrusora para que o plastificante se misture ao biopolímero, poliolefina e compatibilizador para formar uma mistura. A mistura é processada por fusão dentro da extrusora para formar a composição termoplástica. Um filme também pode ser obtido pelo processamento da composição. Diferentemente da presente invenção, a composição descrita nos documentos acima inclui pelo menos um componente não renovável, a poliolefina, o que retira da mesma a condição de biodegradabilidade. Além disso, a composição não contém nenhum tipo de nanocarga.
Ainda em relação às diferenças entre as duas tecnologias, aquela objeto do documento de patente européia EP2794214 e a presente invenção, esta é a primeira em que uma composição até 100% biodegradável, contendo componentes em pó altamente hidrossolúveis com ou sem aquecimento são submetidos a extrusão sem nenhuma adição de água e sem pré-preparo, isto é, sem etapa de solubilização, encapsulamento e extrusão, para que depois seus pellets sejam extrudados junto com poliolefinas.
O documento de patente norte-americano US 6.406.530 descreve uma mistura termoplástica à base de biopolímeros para produção de artigos biodegradáveis que inclui: a) 100 partes em peso de um ou mais materiais poliméricos processáveis termoplasticamente, biodegradáveis, selecionados dentre o grupo consistindo de polissacarídeos e proteínas, preferivelmente pelo menos um amido de qualquer tipo nativo, quimicamente modificado, fermentativo, recombinante e/ou preparado por biotransformação e/ou derivados dos amidos mencionados; b) de 10 a 100 partes em peso de água; c) de 1 a 100 partes em peso de lignina; d) se desejado, até 50 partes em peso de pelo menos um plastificante; e e) se desejado, até 200 partes em peso, preferivelmente não mais de 100 partes em peso, de outros aditivos convencionais, onde os componentes são termoplastificados com introdução de energia térmica e mecânica na mistura, preferivelmente a uma temperatura elevada enquanto é exercido cisalhamento sobre a mistura.
O citado documento de patente norte-americano US 6.406.530 apresenta uma composição à base de amido e lignina, e que inclui água ((componente b) da composição), além de plastificante. No processamento é utilizada temperatura elevada e cisalhamento. Já a presente composição inclui um polímero biodegradável, é isenta de água e não necessita cisalhamento, pois as densidades dos biopolimeros são muito semelhantes. A presente composição não faz uso de altas temperaturas porque mesmo com o uso das nanocargas o ponto de fusão continua baixo (inferior a 140ºC).
Dentre os polímeros bacterianos pode-se citar a goma xantana, um exopolissacarídeo sintetizado por bactérias do gênero Xanthomonas que se destaca como um dos mais importantes polissacarídeos de origem bacteriana produzidos em escala industrial, vide Swings; E.L. Civerolo (eds.), Xanthomonas. Londres, Chapman & Hall, p. 363-388, 1993. Esse exopolissacarídeo tem a capacidade de formar soluções viscosas a baixas concentrações (0,05-1,0%), estabilidade em amplas faixas de pH e temperatura, alta pseudoplasticidade e certa tixotropia. É soluvel em água quente ou fria, além de apresentar biocompatibilidade e compatibilidade com polissacarídeos, proteínas, lipídeos e sais.
Também classificados como polímeros bacterianos, os Polihidroxialcanoatos (PHAs) têm gerado interesse científico, tecnológico e industrial, em âmbito mundial, devido suas características termoplásticas e, principalmente, à biodegradabilidade e possibilidade de síntese a partir de matérias-primas renováveis; e o Poli-3-hidroxibutirato (PHB), um homopolímero composto de unidades monoméricas de 4 átomos de carbono, que possui massa molar, temperatura de fusão, cristalinidade e resistência à tração muito semelhantes ao polipropileno, com a vantagem de não ser tóxico, ser resistente à luz ultravioleta, conferir melhor barreira à gás, gordura e odor, além de ser completamente biodegradável.
Os PHAs possuem alta regularidade de cadeia polimérica e alta massa molar, possibilitando diversas aplicações industriais. As principais propriedades físicas são massa molar e temperatura de fusão elevadas, cristalinidade e resistência semelhantes ao polipropileno, o que possibilita a substituição desses pelos biodegradáveis na construção de termoplásticos atóxicos e ambientalmente corretos. O interesse nestes biopolímeros se deve à procura de substitutos ideais dos plásticos convencionais, obtidos a partir do petróleo, para aplicações em produtos descartáveis, pois demandam menos tempo para degradação, contribuindo para melhoria do meio ambiente.
Exemplos de composições poliméricas biodegradáveis que associam polímeros bacterianos e polímeros naturais são descritos no documento de patente chinesa CN109486140, que ensina um método de obtenção de um filme biodegradável a partir de uma composição que compreende, em massa: 80-120 partes de plásticos biodegradáveis PHA, 1-8 partes de quitosana, 8-15 partes de amido, 0,02-0,08 partes de um foto sensibilizador, 0,01-0,04 partes de citrato de acetil tributila, 0,5-1,8 partes de ácido acético, 1-5 partes de copolímero de propileno, 2-8 partes de óleo de silicone, 3-8 partes de furfural, 4-10 partes de fructose, 40-60 partes de água destilada, 1-3 partes de plastificante, 0,5-1,5 partes de agente anti-espumante e 0,5-1,9 partes de um compatibilizador.
O documento CN108948691 descreve o processo de preparação de uma membrana biodegradável de PHA à base de amido modificado por lignina que inclui as etapas de: (1) secar a vácuo as partículas de polihidroxialcanoato (PHA) à base de amido e lignina respectivamente; (2) adicionar as partículas secas de polihidroxialcanoato (PHA) à base de amido e lignina, um extensor de cadeia, um antioxidante, um plastificante, um lubrificante e um estabilizador térmico em um misturador de alta velocidade, e misturar de modo uniforme; (3) granular por extrusão o material misturado obtido em uma extrusora de parafuso duplo; e (4) obter filme por sopro das partículas de plástico compósito a certa temperatura para preparar o material em membrana.
O documento CN107417984 descreve uma composição plástica biodegradável que compreende 30-45% de amido modificado, 3,5-8% de celulose, 1-5% de um fotosensibilizador, 2-10% de um polímero PHA, 5-10% de resina sintética de polietileno (PE), 0,5-3% de um solubilizante e 2-5% de um agente de acoplamento.
O documento de patente canadense CA2342174C trata de composições heterofásicas biodegradáveis que compreendem amido parcial ou completamente desestruturado e/ou complexado, um éster de polissacarídeo e um plastificante para o éster de polissacarídeo. Nestas composições, o éster de polissacarídeo constitui a matriz e o amido é a fase dispersa em forma de partículas ou domínios de dimensão numérica média inferior a 1 µm e de preferência inferior a 0.5 µm para pelo menos 80% das partículas. As composições compreendem igualmente um aditivo que pode aumentar e manter em valores de 4 ou mais o pH de uma solução obtida colocando as composições em forma de pellet em contato com água à temperatura ambiente por 1 hora, com o uso da razão pellet:água de 1:10 em peso.
O documento de patente chinesa CN109486140 refere-se a um processo de obtenção de um filme biodegradável em que o biopolímero bacteriano é o PHA-poliéster-poli-hidroxialcanoato. O (PHA) e a xantana são biopolímeros bacterianos obtidos por fermentação, porém são totalmente diferentes. A xantana é um biopolímero extracelular enquanto o PHA é um biopolímero intracelular. O processo de extração do PHA precisa usar solventes tóxicos, já a xantana por ser extracelular, no processo de extração precisa somente ser insolubilizada em álcool etílico, que não é tóxico. O outro biopolímero natural biodegradável não bacteriano é a quitosana. A composição apresentada neste documento difere em todos os constituintes daqueles da presente composição, exceto o amido e o plastificante. Outro diferencial do processo objeto da publicação de patente chinesa CN109486140 é o uso de 40-60 partes de água destilada na composição enquanto a composição do presente pedido é isenta de água adicionada.
O documento de patente chinesa CN108948691 descreve uma membrana biodegradável de PHA à base de amido modificado e lignina, um extensor de cadeia, um antioxidante, um plastificante, um lubrificante e um estabilizador de calor para obtenção de filme por extrusão. A composição apresentada no documento de patente CN108948691, embora apresente amido, o plastificante, um lubrificante e um estabilizador difere da bioresina da invenção em outros constituintes fundamentais, principalmente quanto à matriz polimérica, (lignina vs.xantana pruni), além de não fazer uso de nanocarga. O propósito do presente pedido é a obtenção de bioresina nanoestruturada na forma de biopellets, mas poderá ser transformada em filmes biodegradáveis tal como será comprovado ao longo do presente relatório descritivo.
O documento de patente chinesa CN107417984 descreve uma composição plástica biodegradável que compreende amido modificado, celulose, fotossensibilizador, biopolímero PHA, PE (resina sintética de fonte fóssil), solubilizador e um agente de ligação. A composição apresentada neste documento CN107417984 difere do presente pedido em todos os constituintes, exceto o amido e o plastificante. Os polímeros utilizados são PHA e o amido modificado, biopolímeros biodegradáveis e o PE uma resina sintética não biodegradável.
O documento de patente chinesa CN109401248 descreve um material para canudo não tóxico, degradável, com aplicação para líquidos frios e quentes, e pertence ao campo técnico dos materiais poliméricos de alto peso molecular. O objeto da invenção é preparado a partir das matérias primas: hidroxiapatita em pó, fosfato de cálcio, ácido poliláctico, carbonato de policiclohexila, polihidroxialcanoato, fibras de bagaço de cana ou outros materiais vegetais, glicerina, amido de feijão, glicol polietilênico, polivinil pirrolidona, goma xantana, glucomanana konjac, um estabilizante, um modificador, alginato de sódio e polióxido de etileno (POE). Conforme o material degradável para canudo da invenção através da modificação por mistura e tratamento superficial, o canudo apresenta certas características de resistência térmica e resistência ao envelhecimento.
O pedido publicado brasileiro BR102014028009A1, da Requerente, descreve uma composição plástica biodegradável de um bioadesivo anestésico tópico usado como pré-anestésico, com liberação controlada do principio ativo. Embora o presente pedido e o pedido publicado brasileiro BR102014028009A1 sejam ambos dirigidos para composições que levam a materiais biodegradáveis, e ambos sejam à base de uma matriz polimérica como xantana pruni, o objeto de ambos difere profundamente no sentido de que a presente invenção objetiva uma bioresina em forma de pellets para transformação em artigos ou filmes biodegradáveis. Na composição da presente invenção, o aspecto fundamental é a razão nanocarga para matriz polimérica + amido, que deve ser tal a assegurar um Índice de Fluidez de pelo menos 0,1g/10min e até 20g/10 min com 21,6kg na extrusão para obter bioresinas nanoestruturadas que ao serem re-extrusadas levam a artigos flexíveis, e de pelo menos 70 g/10min com 21,6kg na extrusão da composição para obter a bioresina que possa ser re-extrusada em artigos semirrígidos ou rígidos.
Outro aspecto fundamental é que a composição do pedido publicado brasileiro BR102014028009A1 compreende uma porção úmida importante e necessária para a obtenção de um bioadesivo. Já a composição da presente invenção é totalmente isenta de adição de água. Assim, os ensinamentos do pedido publicado brasileiro não sugerem nem descrevem o desenvolvimento que levou ao presente pedido, dirigido para uma composição e bioresina termoplástica que constitui um nanocompósito.
O documento de patente norte-americano US 6.811.599A descreve um material termoplástico biodegradável que inclui um polímero natural, um plastificante e uma carga inorgânica, tal como argila.
Em que pese o estado da técnica descrever composições poliméricas biodegradáveis, o que se verifica é que as nanocargas são utilizadas unicamente como cargas de enchimento para garantir as propriedades de resistência mecânica, e o processo de obtenção da composição polimérica apresenta etapas de pré-mistura e adição de água, que necessariamente deverá ser retirada em uma etapa posterior do processo produtivo.
Em nanocompósitos de matriz polimérica de fontes renováveis, os polímeros constituem um excelente suporte para nanopartículas, protegendo-as da degradação física/química e facilitando a sua manipulação/processamento. As cargas de dimensões nanométricas (1-100 nm) apresentam uma área de superfície elevada, promovendo melhor dispersão na matriz polimérica e por isso uma melhoria das propriedades físicas do compósito que dependem da homogeneidade do material. Adicionalmente, a preparação de nanocompósitos de matriz polimérica permite, em muitos casos, encontrar um equilíbrio entre baixo custo, devido à utilização de menor quantidade de carga, e elevado nível de desempenho, resultado da sinergia entre os componentes.
Os documentos da literatura de patentes mostram que o estado da técnica não apresenta nem sugere nenhuma tecnologia de produção de materiais termoplásticos extrusáveis biodegradáveis à base de composições de matrizes biopoliméricas, amido e nanocargas em forma de pellets ou filmes, que obedeçam aos critérios de valor de Índice de Fluidez expressos no presente pedido, qual sejam, de pelo menos 0,1g/10min e até 20g/10 min com 21,6kg na extrusão para obter bioresinas nanoestruturadas que ao serem re-extrusadas levam a artigos flexíveis, e de pelo menos 70 g/10min com 21,6kg na extrusão da composição para obter a bioresina que possa ser re-extrusada em artigos semirrígidos ou rígidos. Os Índices de Fluidez preconizados são obtidos: i) no caso de uso de nanocargas, quando a razão em peso da dita nanocarga para a soma da matriz de xantana e amido modificado está entre 0,0020 e 0,10 e ii) no caso de uso de nanopartículas funcionalizadas, a razão em peso das ditas nanopartículas funcionalizadas está entre 0,0001 e 0,0005 para a soma da matriz de xantana e amido modificado. Dito de outra forma, esta proporção de nanopartículas funcionalizadas está entre 100 ppm e 500 ppm de partículas para a matriz polimérica (xantana pruni isolada e amido ou misturas de xantana pruni com xantanas comerciais e amido). Assim, as proporções de nanocarga (ou nanopartícula funcionalizada) para a razão em peso da soma da matriz de xantana e amido modificado determinam o Índice de Fluidez requerido para a obtenção dos produtos termoplásticos (ou filmes) desejados.
Sumário da invenção
De modo amplo, a composição para bioresina nanoestruturada termoplástica biodegradável da invenção compreende:
a) Uma matriz polimérica de fonte renovável, consistindo de i) entre 10% e 80% em peso, de preferência entre 20% e 75% em peso, e mais preferencialmente, entre 30% e 70% em peso, em relação ao peso total da composição, de um polímero de fonte renovável compreendendo um exopolissacarídeo produzido por Xanthomonas arboricola pathovar pruni (xantana pruni), e de ii) entre 10% e 80% em peso, de preferência entre 20% e 75% em peso, e mais preferencialmente, entre 25% e 65% em peso, em relação ao peso total da composição, de amido modificado;
b) entre 10% e 70% em peso, de preferência entre 15% e 65% em peso, e mais preferencialmente, entre 20% e 60% em peso, em relação ao peso total da composição, de um plastificante selecionado dentre um álcool polihidroxilado como glicerol; e
c) nanocargas, a razão em peso de nanocargas em relação à dita matriz polimérica sendo de 0,0020 a 0,10, de preferência entre 0,0020 a 0,080, e mais preferencialmente entre 0,0020 a 0,070 no caso de nanocargas inorgânicas ou orgânicas e de 0,0001 a 0,0005 em peso, em relação à dita matriz polimérica, de nanopartículas funcionalizadas.
A fim de obter a resina termoplástica sob forma de pellets, a razão em peso de nanocargas para a matriz polimérica deve estar compreendida entre 0,0020 e 0,10 de nanocargas inorgânicas ou orgânicas ou ainda entre 0,0001 a 0,0005 de nanopartículas funcionalizadas. Para as nanopartículas funcionalizadas, isto representa entre 100 e 500 ppm por kg de matriz biopolimérica de modo que na extrusão da composição sob condições de extrusão seja obtido IF (Índice de Fluidez) de pelo menos de 0,1g/10 min e até 20 g/10 min para carga de 21,6 kg. Esses pellets obtidos podem ser re-extrudados em artigos que podem ser embalagens relativamente flexíveis ou filmes biodegradáveis ou retransformadas em pó para outros usos. O IF (Índice de Fluidez) de pelo menos 70 g/10 min para carga de 21,6 kg para a extrusão da composição permite a obtenção de pellets que ao serem re-extrudados levam a artigos que podem ser embalagens relativamente rígidas ou semi-flexíveis ou retransformadas em pó para outros usos.
A matriz biopolimérica pode incluir ainda uma mistura de xantanas, como uma mistura de xantana pruni e xantanas comerciais.
De modo inovador e não descrito nem sugerido na técnica para a obtenção de resinas sob forma de pellets, na invenção os ingredientes destinados ao processamento em extrusora sob condições de processo não incluem água. Considerando que a ou as xantanas utilizadas, o amido modificado e outros componentes da mistura a ser processada constituem pós, não seria esperado que fosse possível o processamento em condições de obtenção de pellets de bioresina sem a adição de água.
O processo de mistura dos ingredientes para produzir a bioresina ou nanocompósito ocorre por cisalhamento em extrusora, sob condições de processo e, também de modo inovador em uma única etapa. A bioresina é obtida sob forma de biopellets e é entre 95% e 100% biodegradável. Os biopellets têm aspecto liso e uniforme, podendo ser comparados a pellets de polímeros termoplásticos usuais.
A bioresina da invenção é termoplástica, na forma de fios/espaguetes ou pó obtido por trituração dos fios ou espaguetes obtidos. Os fios ou pós podem ser associados a outros materiais biodegradáveis para serem processados para outros usos.
Os pellets de bioresina são submetidos a processos de moldagem de extrusão por sopro para manufatura de filmes biodegradáveis.
Alternativamente os pellets são submetidos a termoformagem para confecção de artigos moldados para diversos fins.
O avanço ao estado da técnica é dado pelo uso de biopolímeros bacterianos extracelulares, tais como a xantana pruni, que por sua massa molar elevada e sua composição química permite uma associação com biopolímeros naturais como os amidos e outros aditivos para a formação da bioresina biodegradável.
Importante avanço ao estado da técnica é também conferido pelo uso de nanocarga orgânica (nanocelulose) e inorgânica (nanocargas minerais cloisites), ou ainda nanopartículas funcionalizadas para facilitar o processamento, melhorar o Índice de Fluidez e as propriedades mecânicas; aumentar a resistência térmica e melhorar propriedades de barreira do biomaterial bioresina.
Outro avanço ao estado da técnica é verificado ou confirmado pela obtenção dessas bioresinas em um único processamento adicionando diretamente todos os componentes na extrusora em processo sem pré-preparo e isento de água.
Em adição, um dos maiores avanços é que o nanocompósito de matriz biopolimérica biodegradável da invenção, aqui chamado de bioresina, é uma plataforma que permite adicionar inúmeros aditivos possibilitando obter bioresinas com diferentes propriedades para atingir o uso a que se propõe. Assim, essas bioresinas são processáveis e úteis em misturas de materiais biodegradáveis para outros usos que não os plásticos biodegradáveis.
Ainda outro avanço ao estado da técnica é proveniente da própria molécula do biopolímero bacteriano como a xantana pruni que tem uma constituição única e que permite ainda que sejam feitas modificações químicas que possibilitam novas combinações. E estas podem ser feitas durante o processo de obtenção ou no pós-processamento para que se obtenham as propriedades térmicas para o uso final desejado.
É característica da invenção que o plástico obtido com o uso dessas bioresinas será totalmente biodegradável. Os testes da comprovação da biodegradabilidade do produto final estão mostrados no teste de biodegradação por respirometria conforme as normas DIN EN 13432:2000, ISO 14855-1:2012 e ABNT NBR 15448-2:2008. Vide também a Figura 13.
Breve descrição dos desenhos
A Figura 1A até Figura 1G apresenta imagens de amostras de uma combinação de 50% em peso de xantana pruni e 50% em peso de glicerol e a mesma proporção em peso para mistura de xantanas (xantana pruni/xantana comercial) e glicerol durante a determinação do Índice de Fluidez por extrusão após determinados intervalos de tempo entre cortes para cada amostra.
A Figura 2 mostra imagens de amostras de uma combinação de (25% em peso de xantana pruni e 25% em peso de amido) e 50% em peso de glicerol durante a determinação do Índice de Fluidez após determinados intervalos de tempo entre cortes para cada amostra. A Figura 2 apresenta as imagens das amostras durante a determinação do Índice de Fluidez após determinados intervalos de tempo entre cortes para cada amostra A e B. A Figura 2A, xantana pruni e amido de feijão (extraído de feijão carioca em laboratório). Figura 2B xantana pruni e amido de milho waxy (comercial) e as amostras Figura 2A, e Figura 2B são: (25%xantana + 25% amido) e glicerol 50%. A Figura 2A é xantana pruni + amido de feijão. A Figura 2B é xantana pruni e amido de milho waxy (comercial).
A Figura 3A mostra imagens de amostras de uma combinação de 33% em peso de xantana pruni e 33 % em peso de amido de milho waxy (comercial) e 34% em peso de glicerol. A Figura 3B mostra imagens de amostras de uma combinação de 37,5% de xantana pruni em peso, 12,5% em peso de amido de milho waxy (comercial) e 50% em peso de glicerol. As imagens foram obtidas durante a determinação do Índice de Fluidez após determinados intervalos de tempo entre cortes para cada amostra. A cepa de xantana utilizada nas combinações das amostras da Figura 3 é a mesma daquela utilizada nas combinações das amostras da Figura 2. Na sequência foi considerado que a partir da escolha da formulação básica (xantana pruni pura ou mistura de xantana, mais amido de milho modificado mais glicerol) será denominada amostra 12. As composições de xantana pruni mais amido de milho modificado mais glicerol mais nanocarga serão denominadas 12.1, 12.2, 12.3 e 12.4 de acordo com as nanocargas utilizadas.
A Figura 4 apresenta a imagem da Amostra 12.1 durante o processo de extrusão da bioresina nanoestruturada e a obtenção desta na forma de espaguete. O espaguete tem aspecto liso e uniforme, podendo ser comparado aos espaguetes de aspecto ideal.
A Figura 5A apresenta a imagem de biopellets de amido obtidos da mesma forma que a amostra da bioresina 12 ou 12.1 (utilizando as mesmas condições operacionais de processamento). A formulação destes biopellets compreende 50% glicerol e 50% amido, conforme parâmetros apresentados para extrusão da bioresina em extrusora dupla-rosca em processamento único e isento de água, e a Figura 5B apresenta biopellets da bioresina da amostra 12.1 obtidos por processo de extrusão na forma de biopellets nanoestruturados. Os biopellets apresentam aspecto liso e uniforme, podendo ser comparados a pellets de polímeros termoplásticos usuais obtidos de fontes não renováveis.
A Figura 6A apresenta a imagem da Amostra 12.1 no processo de extrusão da bioresina e a obtenção desta na forma de filme - Figura 6B. Obtenção do filme balão por sopro. Os biofilmes são assim preparados para o ensaio de biodegradabilidade.
A Figura 7 apresenta a imagem das amostras dos biofilmes preparados para o ensaio de biodegradabilidade. A Figura 7A é o biofilme de amido e a Figura 7B é o biofilme da Amostra 12.1 da bioresina.
A Figura 8 apresenta a representação gráfica dos resultados de pH monitorados durante o ensaio de biodegradabilidade dos biofilmes de amido e dos biofilmes da bioresina Amostra 12.1, obtidos com uso dos biopellets das resinas de amido e dos biopellets das resinas da amostra 12.1. O material de referência é celulose grau TLC. A Amostra Referência é de filmes de amido. Para os testes de biodegradabilidade é recomendado o uso de celulose grau TLC (material de referência), outro material de referência utilizado foi o biofilme de amido de milho Amisol 3408 (comercial) produzido da mesma forma e utilizando os mesmos parâmetros de extrusão usados para obtenção dos biofilmes de bioresina nanoestruturada da invenção.
A Figura 9 apresenta a representação gráfica dos resultados de umidade monitorados durante o ensaio de biodegradabilidade dos biofilmes de amido e dos biofilmes da bioresina Amostra 12.1, obtidos com uso dos biopellets das resinas de amido e dos biopellets das resinas da amostra 12.1.
A Figura 10 apresenta resultados do percentual de biodegradabilidade durante o período de ensaio dos biofilmes de amido e os biofilmes da bioresina Amostra 12.1, obtidos com uso dos biopellets das resinas de amido e dos biopellets das resinas da Amostra 12.1.
A Figura 11 apresenta de forma esquemática a extrusora dupla-rosca usada para obtenção da bioresina nanoestruturada na forma de biopellets. São adicionados no dosador 1 a mistura dos componentes secos (pó) e o (s) líquido (s) são adicionados através de bomba dosadora na zona 2.
A Figura 12A apresenta resultados da análise de rompimento das amostras dos filmes da bioresina da Amostra 12.1 após a determinação das propriedades físicas sob tração sentido de orientação do filme na Direção da Máquina (DM) e 12B sentido de orientação do filme na Direção Transversal (DT).
A Figura 13A mostra resultados da análise do teste de rompimento. Corpos de prova da amostra Bioska+(procedência Finlandia) após a determinação das propriedades físicas sob tração sentido de orientação do filme na Direção da Máquina (DM) e 13B sentido de orientação do filme na Direção Transversal (DT). Determinações efetuadas para efeito de comparação da amostra 12.1 com a marca comercial Finlandia Bioska+.
A Figura 14 apresenta resultados da análise da biodegradabilidade, por respirometria, durante o período do ensaio dos biopellets da bioresina de amido e da bioresina da Amostra 12.3.
A Figura 15 é um gráfico que mostra a mineralização da amostra 12.3 e referência positiva em função do tempo.
A Figura 16 mostra o ajuste linear da amostra 12.3 biopolimérica usada para a previsão e degradação do polímero. O ajuste linear foi usado para prever a biodegradação dessa amostra que foi a única que não biodegradou em 180 dias.
As Figuras 17, 18, 19 e 20 apresentam a evolução da biodegradação dos biofilmes da bioresina 12.1 durante 70 dias, comparadas com duas amostras de referência. Estas Figuras são exemplos em que de forma visual observa-se o desaparecimento das amostras em meio a substrato pela ação da biodegradação no decorrer do tempo de incubação.
A Figura 17 mostra o acompanhamento visual da evolução da degradação da Amostra de referência de biofilme de Amido (amido 1) e celulose (amido 2) no interior dos reatores e incubação no início do ensaio e após 10, 15, 20 e 30 dias.
A Figura 18 mostra o acompanhamento visual da evolução da degradação da Amostra de referência de biofilme de Amido (amido 1) e celulose (amido 2) no interior dos reatores e incubação no início do ensaio e após 40, 45, 50, e 60 dias.
A Figura 19 mostra o acompanhamento visual da evolução da degradação das Amostras 12.1 e 12.2 no interior dos reatores de incubação no início e após 10, 15, 20 e 30 dias de ensaio de biodegradabilidade.
A Figura 20 mostra o acompanhamento visual da evolução da degradação da Amostra 12.1 e 12.2 no interior dos reatores de incubação no decorrer de 40, 45, 50 e 60 dias de ensaio de biodegradabilidade.
Descrição detalhada da invenção
Conforme a invenção, os seguintes termos têm o seguinte significado:
“Xantana pruni” é a goma xantana, um exopolissacarídeo produzido por Xanthomonas arboricola pathovar pruni. A xantana pruni (ou goma xantana pruni) útil para os propósitos da invenção foi objeto das patentes da mesma Requerente, PI0406309-0 e a patente do pedido dividido, BR122014030015.
“Xantana comercial” é a goma xantana, um exopolissacarídeo produzido por Xanthomonas campestris pathovar campestris.
A Matriz polimérica ou matriz biopolimérica são termos intercambiáveis; a matriz é constituída de xantana pruni pura ou combinada com xantanas comerciais, tal como definido acima, e amido modificado.
Nas Figuras 8, 9 e 10 a Amostra de referência é o filme de amido. Filme de amido é um filme preparado com 50% amido amisol (comercial) e 50% de glicerol sem nenhum outro aditivo, utilizando os mesmos parâmetros de extrusão utilizados na obtenção dos biopellets.
A celulose é a amostra referência padrão.
As nanopartículas funcionalizadas ou NPFs são um produto comercial, sendo constituídas de estruturas químicas com arranjo molecular pré-definido, atuando por interação molecular. A atuação envolve atacar o oxigênio de moléculas como a xantana, ligando ou cortando os anéis da estrutura. Há dois tipos de NPFs: ZnO NanometallisRSol e SiO2 Nanometallis RsolGel.
Etapa única de processamento significa que para essa extrusão os materiais secos (pó) como biopolímeros e aditivos secos são todos adicionados diretamente na extrusora nas proporções em peso estabelecidas na composição e também os materiais líquidos estabelecidos na composição como plastificantes são adicionados diretamente na extrusora através de bomba dosadora.
Baixa temperatura é usada para extrusão, aqui considerada temperatura inferior a 140ºC.
No presente relatório, extrusão denominada seca ou isenta de água significa que não é feito pré-preparo de solubilização dos biopolímeros como preconizado na literatura. Não é adicionada água em nenhuma combinação da composição.
A composição para bioresina nanoestruturada termoplástica biodegradável, objeto da presente patente de invenção, compreende:
a) Uma matriz polimérica de fonte renovável, consistindo de i) entre 10% e 80% em peso, de preferência entre 20% e 75% em peso, e mais preferencialmente, entre 30% e 70% em peso, em relação ao peso total da composição, de um polímero de fonte renovável compreendendo um exopolissacarídeo produzido por Xanthomonas arboricola pathovar pruni (xantana pruni), e de ii) entre 10% e 80% em peso, de preferência entre 20% e 75% em peso, e mais preferencialmente, entre 25% e 65% em peso, em relação ao peso total da composição, de amido modificado;
b) entre 10% e 70% em peso, de preferência entre 15% e 65% em peso, e mais preferencialmente, entre 20% e 60% em peso, em relação ao peso total da composição, de um plastificante selecionado dentre um álcool polihidroxilado como glicerol; e
c) nanocargas, selecionadas dentre argila organofílica Cloisite 30B, nanocellulose cristalina NCC, na razão em peso em relação à matriz biopolimérica entre 0,002 e 0,10, de preferência entre 0,002 e 0,08, mais preferencialmente, entre 0,002 e 0,07 de nanocargas inorgânicas ou orgânicas, ou nanopartículas funcionalizadas (NPF) ZnO NanometallisRSol e SiO2 Nanometallis RsolGel na razão em peso em relação à matriz biopolimérica de 0,0001 a 0,0005, de modo que na extrusão da composição sob condições de extrusão seja obtido IF (Índice de Fluidez) para obtenção de artigos flexíveis seja de 0,1g/10min a 20g/10min para uma carga de 21,6 kg e para obtenção de artigos semirrígidos ou rígidos que o IF seja de pelo menos 70 g/10 min para carga de 21,6 kg.
Assim, em uma modalidade, a matriz polimérica da composição da invenção compreende xantana pruni isolada e amido, plastificante e nanocarga.
Em outra modalidade, a matriz polimérica da composição da invenção compreende uma combinação de xantana pruni e xantana comercial, e amido, além do plastificante e nanocarga.
Os pellets obtidos com essas composições e com esses parâmetros de fluidez, podem ser re-extrudados em artigos como filmes biodegradáveis para embalagens ou artigos rígidos ou relativamente rígidos.
A presente invenção tem por objeto uma composição polimérica que é um nanocompósito obtido a partir de materiais de fontes renováveis. Mais especificamente, a invenção trata de uma composição para obtenção de bioresina termoprocessável por extrusão que compreende (a) uma matriz polimérica biodegradável que inclui pelo menos um polímero bacteriano e pelo menos um biopolímero natural de fonte renovável selecionado dentre amido modificado; (b) um plastificante puro ou mistura de plastificantes; e (c) uma nanocarga orgânica, inorgânica ou funcionalizada, e onde a proporção de nanocarga para a soma da matriz polimérica de polímero bacteriano e biopolímero natural como amido está entre 0,2% e 10% de nanocargas inorgânicas ou orgânicas de modo que o Índice de Fluidez da bioresina obtida seja de pelo menos 0,1 g/10 min a 20g/10 min para carga de 21,6 kg ou ainda entre 100ppm a 500ppm para cada kilograma de matriz biopolimérica, de nanopartículas funcionalizadas de modo que o Índice de Fluidez da bioresina obtida seja de pelo menos 70 g/10 min para carga de 21,6 kg.
O nanocompósito da invenção também pode ser processado em mistura com outros materiais biodegradáveis que não plásticos.
De acordo com a invenção, o biopolímero bacteriano é selecionado dentre xantana pruni pura ou em mistura com xantanas comerciais, de massa molar entre 5x105 a 1,3x 107 g.mol- 1, que apresentem temperatura de fusão e de degradação semelhantes à xantana pruni ou xantana comercial que possam ser modificadas durante o processo de obtenção da xantana ou por pós-processamento para facilitar a associação de outros aditivos.
Conforme a invenção, os biopolímeros bacterianos são associados a biopolímeros naturais como amidos modificados química, física ou enzimaticamente. Também os amidos são macromoléculas de elevada massa molar, da ordem de g/molx106.
O amido é selecionado dentre amido de arroz, de teor de amilose entre 20% a 30% e/ou 70% a 78% de amilopectina; amido de feijão, de teor de amilose entre 15% a 20% e/ou 20% a 27% de amilopectina; amido de milho, de teor de amilose entre 25% a 28% e/ou 72% a 75% de amilopectina; amido de mandioca, de teor de amilose entre 14% a 22% e/ou 77% a 89% de amilopectina. Os amidos selecionados podem ser utilizados modificados quimicamente, fisicamente ou enzimaticamente.
O agente plastificante compreende um plastificante de fonte renovável, puro ou uma mistura de plastificantes de fontes renováveis, selecionados dentre i) os agentes lipofílicos, selecionados entre óleos comestíveis e lipídios líquidos, óleos vegetais de arroz, soja, girassol, canola, amendoim e milho, coco, nozes, amêndoas e nozes comestíveis, copaíba, óleo de caranaúba, linhaça, semente de uva; e ii) agentes hidrofílicos selecionados entre propileno glicol e polietileno glicol, glicerina, glicerol, sorbitol, puros ou combinados, e estarão presentes em proporções entre 5% e 60% em peso da bioresina.
Alternativamente, o agente plastificante compreende uma porção majoritária de plastificante de fonte renovável ou mistura de fonte renovável com até 5% de plastificante de fonte não renovável, selecionado dentre: Bis(2-etilhexil)ftalato (DEHP), Bis(2-etilhexil)adipato (DOA), óleos vegetais epoxizados, fosfatos, óleo de silicone (polidimetilsiloxano), Polibutadieno (PB), Citratos de alquila, Éteres/tio éteres.
A nanocarga é de fonte renovável quando compreende uma nanocarga orgânica selecionada dentre nanocelulose cristalina, ou inorgânica quando compreende uma nanocarga mineral selecionada dentre: Cloisite 30B, Cloisite 20A, Cloisite Na, Cloisite 93, caulim e/ou nanocargas minerais (partículas nanofuncionalizadas SiO2 ou ZnO). A proporção de nanocarga vai desde 0,0001% em peso até 10% em peso, de preferência desde 0,0001% até 8% em peso, e ainda mais preferencialmente, desde 0,0001% até 7% em peso, em relação ao peso total da composição.
Em uma modalidade, desde que as nanopartículas estejam na forma sólida (pó) as mesmas são combinadas aos biopolímeros (pó) diretamente na extrusora sem pré-preparo.
Em outra modalidade, estando as nanopartículas na forma líquida ou em solução, as mesmas são misturadas juntamente com o plastificante diretamente na extrusora sem pré-preparo, como por através de bomba dosadora.
Em outra modalidade as nanopartículas na forma sólida (pó) são misturadas juntamente aos biopolímeros (pó) através de pré-processamento em misturador com velocidade de cisalhamento de 300 rpm por 10 min e em temperatura entre 35°C a 38ºC para posteriormente serem combinadas na extrusora onde também serão adicionados os líquidos no mesmo processamento.
Em outra modalidade, as nanopartículas na forma líquida ou em solução ou gel são misturadas juntamente aos plastificantes e demais aditivos líquidos através de pré-processamento por agitação com velocidade de cisalhamento de 100 a 200 rpm por 10 min e em temperatura entre 25°C a 35ºC para posteriormente serem adicionadas na extrusora, diretamente ou por bomba dosadora da mistura, no mesmo momento em que a extrusora recebe os biopolímeros.
Em outra modalidade, são utilizados entre 0,0% a 10% em peso da composição para bioresina, de dispersantes sólidos ou como agentes antiaglomerantes selecionados dentre fosfatos mono, di ou tribásico, dióxido de titânio, carbonato de cálcio ou magnésio e dióxido de silício.
Em outra modalidade é utilizado entre 0,1% em peso a 10% em peso de nanocarga de fonte renovável selecionada dentre nanocelulose cristalina, nanocelulose de fibra de coco, nanocelulose de bagaço de cana, de casca de arroz, pura ou uma mistura de nanocargas em qualquer proporção, em relação ao peso da matriz biopolimérica.
Em outra modalidade é utilizado entre 0,1% em peso a 15% em peso de compatibilizantes, SEBS (agentes compatibilizantes não reativos, co-polímeros em ou blocos ou blocos de polímeros denominados polímeros S e blocos de polímeros B) ou outros selecionados dentre os compostos comerciais EL05, FS105, FS110; FS115, puros ou combinados em qualquer proporção, em relação ao peso da matriz biopolimérica.
Em ainda outra modalidade, é utilizado desde 0,0% em peso a 10% em peso de estabilizantes térmicos selecionados dentre Cloreto de Cálcio, CaCl2 e Cloreto de Zinco, ZnCl2, puros ou combinados em qualquer proporção em relação ao peso da matriz biopolimérica.
Em ainda outra modalidade é utilizado desde 0,0% em peso a 5,0% em peso de estabilizantes dimensionais selecionados dentre os de base de cálcio e base de zinco, puros ou combinados entre si em qualquer proporção, em relação ao peso da matriz biopolimérica.
Em outra modalidade é utilizado de 0,0% em peso a 10,0% em peso de antioxidantes, selecionados dentre: sulfitos (tioésteres e ésteres do ácido tiodiopropiônico) e fosfitos (triésteres de ácido fosfórico), ácido ascórbico, ácido eritórbico e seus sais puros ou combinados entre si em qualquer proporção, ou ainda os de dupla ação, antioxidantes e conservantes selecionados entre: primários e quelantes, sinergistas como butil-hidroxitolueno (BHT) e butil-hidroxianisol (BHA), em relação ao peso da matriz biopolimérica.
Em outra modalidade são utilizados de 0,1% a 5,0% em peso de conservantes, selecionados dentre metil e etil parabeno, ácido sórbico e sorbato de sódio ou potássio, puros ou combinados entre si em qualquer proporção, em relação ao peso da matriz biopolimérica.
Em outra modalidade são utilizados de 0,0% a 5,0% em peso, em relação ao peso da matriz biopolimérica, de emulsificantes selecionados dentre compostos de balanço hidrofílico-lipofílico (BHL) entre 0,0 e 5,0, de preferência entre 0,2 e 3,0, e mais preferencialmente entre 0,5 e 1,5, selecionados dentre trioleato de sorbitano (Span 85) e triestearato de sorbitano (Span 65), puros ou combinados entre si em qualquer proporção.
Em outra modalidade, são utilizados entre 0,0% e 5,0% em peso, em relação ao peso da composição, de emulgentes, selecionados dentre ésteres de polioxietileno (produtos comerciais Tween 60 e Tween 80) e lecitina.
Em outra modalidade são utilizados de 0,0% a 5,0% em peso em relação ao peso total da composição, de antioxidantes, selecionados entre primários e quelantes, sinergistas como butil-hidroxitolueno (BHT) e butil-hidroxianisol (BHA), ácido ascórbico e ácido eritórbico e seus sais, respectivamente, combinados ou não.
Em outra modalidade são utilizados de 0,0% a 10,0% em peso em relação ao peso total da composição, de sais, mono ou divalentes, selecionados dentre: Cloreto de sódio, NaCl, Cloreto de potássio, KCl, MnO2, Mn2O, puros ou combinados entre si em qualquer proporção.
Em outra modalidade é utilizado de 0,0% a 10,0% em peso em relação ao peso da matriz biopolimérica, de um álcool de baixo peso molecular em C1-C3 selecionado dentre álcool etílico.
Em outra modalidade é utilizado de 0,0% a 10,0% em peso em relação ao peso da matriz biopolimérica de um antiumectante selecionado dentre: dióxido de silício: SiO2, Carbonato de cálcio: CaCO3, talco: (Mg3(Si2O5)2(OH)2 ou (3MgO. 4SiO2. H2O), Carbonato de magnésio: MgCO3, Silicato de cálcio: CaSiO3, sais de alumínio: silicato de alumínio, alumínio silicato de sódio: NaAl2Si3O8, fosfatotricálcico; óxido de magnésio; óxido de potássio, óxido de sódio, sais de amônio dos ácidos mirístico, palmítico e esteárico; Celulose microcristalina.
Para a produção dos biopellets da bioresina, os componentes em pó combinados nas proporções requeridas para processamento são previamente secos em estufa com recirculação forçada de ar a 60ºC, sendo a seguir encaminhados para uma extrusora dupla-rosca com taxa de alimentação que pode variar de 500 a 700g/h. Os plastificantes líquidos são adicionados durante o processamento. Após o processamento são recuperados os biopellets da bioresina conforme a invenção.
De modo geral, o processamento da composição da invenção em uma bioresina termoplástica biodegradável ocorre em uma extrusora dupla-rosca. Nesta extrusora, no Dosador 1 são adicionados os componentes em pó (matriz polimérica, amido, nanocarga(s) e aditivos) enquanto a mistura de plastificantes é adicionada via a Bomba Dosadora da Zona 2 da extrusora dupla-rosca. Vide Figura 11. Conforme a invenção, foram inicialmente desenvolvidos experimentos que demonstram que somente a combinação dos componentes da composição da invenção, nas proporções indicadas, produz uma resina termoplástica biodegradável em forma de pellets ou um filme por extrusão por sopro. Assim, inicialmente foram preparadas combinações 50%/50% em peso de xantana pruni com glicerol ou (xantana pruni/xantana comercial 25% em peso/25% em peso) e glicerol 50% em peso. Como previsto, não foi possível formar uma resina com boas condições de extrusão, tal como medido pelo Índice de Fluidez. No entanto, esses experimentos demonstram que é possível extrudar composições à base de xantana, seja a xantana pruni isolada ou combinada com xantanas comerciais.
Assim, foram efetuadas misturas de xantanas e plastificante, em proporções variadas, sem nanocarga e sem amido e medido o seu Índice de Fluidez (IF), que é o parâmetro indicativo da extrudabilidade de uma mistura de componentes em uma resina auto-sustentável.
Os produtos obtidos podem ser usados na forma de biopellets ou retransformados em pó para outros usos. As bioresinas obtidas não apresentam resistência para permitir uma re-extrusão para formar filmes.
A invenção será descrita a seguir por referência às Figuras anexas, que não devem ser consideradas limitativas da invenção, muitas variações podendo ser efetuadas na presente composição, as mesmas estando integralmente compreendidas no escopo da invenção.
A Figura 1 apresenta imagens das amostras durante a determinação do Índice de Fluidez após determinados intervalos de tempo entre cortes para cada amostra: Figura 1A: Amostra A, xantana pruni 50% em peso+ 50% em peso de Glicerol; Figura 1B: Amostra B, (xantana pruni 25% em peso /xantana comercial 25% em peso) + 50% em peso de Glicerol; Figura 1C: Amostra C, xantana pruni 50% em peso + 50% em peso de Glicerol, Figura 1D: Amostra D, (xantana pruni 25% em peso /xantana comercial 25% em peso) + 50% em peso de Glicerol, Figura 1E Amostra E, xantana pruni 50% em peso + 50% em peso de Glicerol, Figura 1F: Amostra F(xantana pruni 25% em peso /xantana comercial 25% em peso) + 50% em peso de Glicerol e Figura 1G, Amostra G xantana pruni 50% em peso + 50% em peso de Glicerol.
Na Figura 1, a título ilustrativo, os extrudados obtidos apresentaram rugosidade e elevado inchamento (relação entre o orifício da matriz e o diâmetro do extrudado) o que configura aspecto indesejado para uma bioresina.
Na Figura 2, a título ilustrativo, é possível observar a bioresina lisa que configura aspecto desejado para uma bioresina.
O Índice de Fluidez das amostras ilustradas na Figura 1 está apresentado na Tabela 1. A Amostra H da Tabela 1 não fluiu (sem Índice de Fluidez), por isto não está representada na Figura 1.
As xantanas pruni foram produzidas em laboratório de acordo com a patente brasileira PI04065309-0B1, do inventor principal do presente pedido, e aqui integralmente incorporada como referência.
A Tabela 1 a seguir lista os Resultados do Índice de Fluidez para as amostras da Figura 1. Em todos os casos a carga utilizada na extrusão foi de 21,6 kg.
[Tabela 1]
Amostra FORMULAÇÃO ÍNDICE DE FLUIDEZ (g/10 min)
A xantana pruni 50% em peso+50% em peso de Glicerol 0,02
B (xantana pruni 25% em peso:xantana comercial 25% em peso) +50% em peso de Glicerol 0,08
C xantana pruni 50% em peso + 50% em peso de Glicerol 0,44
D (xantana pruni 25% em peso:xantana comercial 25% em peso) + 50% em peso de Glicerol 2,34
E xantana pruni 50% em peso + 50% em peso de Glicerol 2,72
F xantana pruni 25%em peso+ 25% em peso xantana commercial 50% de Glicerol 16,26
G xantana pruni 50% em peso + 50% em peso de Glicerol 1,15
H xantana pruni 50% em peso+ 50% em peso de Glicerol S/F
As amostras A, C, E, G e H da Tabela 1 acima foram processadas com xantanas de diferentes cepas de Xanthomonas arborícola pv pruni ou diferentes condições de processamento, o que resultou em diferentes valores de Índice de Fluidez. A variação dos valores de Índice de Fluidez demonstra que a escolha da cepa de xantana bem como das condições de processamento são determinantes na obtenção dos valores de Índice de Fluidez.
A amostra H foi produzida com uma cepa de xantana pruni que não permitiu a medida de Índice de Fluidez.
Os resultados listados na Tabela 1 acima para as misturas de xantana pruni pura ou em mistura de outras xantanas, adicionada de 50% de plastificante, apresentaram Índice de Fluidez muito baixo, entre 0,02 (g/10 min) a 16,26 (g/10 min) para carga de 21,6 kg, impossibilitando o uso de extrusão para formação de bioresina com resistência para re-extrusão.
Com o objetivo de melhorar a fluidez das amostras, foram adicionados diferentes amidos à amostra. Conforme resultados do Índice de Fluidez das composições, foram fixadas as proporções de xantana, de amido e glicerol, vide Tabela 2. Não houve adição de nanocarga nestas composições.
A Figura 2 apresenta as imagens de amostras durante a determinação do Índice de Fluidez após determinados intervalos de tempo entre cortes para cada amostra: Figura 2A e 2B. A Figura 2A refere-se a uma mistura de biopolímeros com 25% em peso de xantana pruni +25% em peso de amido extraído de feijão carioca (Amido A), em laboratório, combinada a 50% em peso de glicerol. A Figura 2B refere-se a uma mistura de biopolímeros de 25% em peso de xantana pruni +25% em peso de amido de milho waxy (comercial) (Amido B) combinada a 50% em peso de glicerol. Estas amostras foram denominadas de Amostra 12 e designam as amostras obtidas com uma cepa determinada de xantana pruni, adequada para extrusão.
O Índice de Fluidez das amostras representadas na Figura 2 está apresentado na Tabela 2. Estes valores de Índice de Fluidez foram obtidos com uma composição contendo xantana pruni, Amostra 12, que também foi utilizada nos experimentos da Figura 3.
[Tabela 2]
AMOSTRA FIG. 2 FORMULAÇÃO ÍNDICE DE FLUIDEZ (g/10 MIN) CARGA (KG)
A 50% em peso (Xantana pruni + amido (A)) + glicerol 50% em peso 8,64 21,6
B 50% em peso (xantana pruni + amido (B) + glicerol 50% em peso 57,23 15,0
Os dados da Tabela 2 demonstram a importância da adição de amido para a obtenção de valores de Índice de Fluidez adequados para extrusão de uma bioresina, bem como a influência dos diferentes tipos de amido.
Verifica-se, pelos dados da Tabela 2 acima, que o valor do Índice de Fluidez foi fortemente influenciado pelo tipo de amido utilizado, sendo que para o amido de feijão carioca (amido A) o Índice de Fluidez foi de 8,64 (g/10 min) para carga 21,6 kg, e para o amido de milho waxy (amido B) (modificado) foi de 57,23 (g/10 min) para carga 15,0 Kg. A Figura 2A e 2B, a título ilustrativo, permite a visualização da bioresina obtida com amido de feijão e amido de milho.
A Figura 3 apresenta as imagens das amostras durante a determinação do Índice de Fluidez após determinados intervalos de tempo entre cortes para cada amostra: A Figura 3A é a amostra 12 composta por 33% em peso de xantana pruni e 33% em peso de amido de milho waxy (comercial) e 34% em peso de glicerol. A Figura 3B é a amostra 12 composta por 37,5% em peso de xantana pruni e 12,5 % em peso de amido de milho waxy (comercial) e 50 % em peso de glicerol. O Índice de Fluidez destas amostras está apresentado na Tabela 3. A carga usada foi de 21,6 kg.
[Tabela 3]
AMOSTRA FIG. 3 FORMULAÇÃO ÍNDICE DE FLUIDEZ (g/10 MIN)
3 A 33 %em peso (xantana pruni amostra 12) + 33%amido de milho + 34% em peso de glicerol 0,35
3 B 37,5% xantana pruni XP +12,5% amido + 50% em peso de glicerol 26,62
Conforme apresentado na Figura 3A e 3B, as amostras contendo proporcionalmente menor quantidade de glicerol apresentaram maior tamanho de extrudado, evidenciando sua maior fluidez. Também foi observado que os extrudados apresentaram rugosidade e inchamento elevado, mesmo com a presença de amido na composição.
A Amostra 12 aqui denominada (2A e 2B) Tabela 2, apresentou fluidez baixa, mesmo nas composições com gliceriol e amido. Através dos resultados obtidos para as composições da Amostra 12 amostras (2A e 2B), também foi observado que a utilização do Amido B favorece mais o aumento da fluidez em relação ao Amido A.
No Exemplo da Tabela 3 foram usados para a amostra 12 aqui denominadas Figuras 3A e 3B (xantana pruni) e amido de milho variando a quantidade de plastificante, glicerol. O Índice de Fluidez foi fortemente influenciado pela quantidade de glicerol. A Figura 3 permite visualizar a aparência da bioresina obtida com as diferentes concentrações de glicerol.
As Tabelas 1, 2 e 3 acima no presente relatório se referem a experimentos exploratórios para comprovar que se pode extrusar xantana, tanto da espécie xantana pruni como misturas de xantana pruni com xantana comecial. Ainda, as Tabelas mostram que também se pode extrusar xantana pruni pura ou xantana pruni em mistura com xantana comercial, amido e glicerol, obtendo produtos extrusáveis, porém não é possível obter por extrusão, a partir dessas composições exploratórias, pellets que podem ser reextrusados em artigos ou transformados em filmes para embalagens por extrusão por sopro. Tais produtos - artigos e filmes - somente são possíveis de obter através da composição da invenção, descrita acima no presente relatório.
A bioresina da invenção é obtida na forma de espaguete (filamento contínuo), cortada na forma de pellet (grânulos) ou triturada na forma de pó. Essa bioresina ou resina nanoestruturada foi desenvolvida para ser usada como matéria prima nas indústrias transformadoras de plástico, processadoras de embalagens plásticas flexíveis (extrusão balão), semiflexíveis (injetora) ou rígidos conforme os aditivos adicionados.
Em uma modalidade, uma composição típica para o preparo da bioresina é como na Tabela 4 a seguir. Nesta modalidade a matriz polimérica é constituída somente de xantana pruni e amido modificado, sem adição de nenhuma xantana comercial.
Esta Tabela diz respeito a uma amostra típica denominada Amostra I relativa a uma bioresina processada a partir de uma composição de acordo com a invenção.
[Tabela 4]
Xantana pruni (em peso) Outras xantanas Amido modificado (em peso) Plastificantes Nanocargas (em peso)
10% a 80% ---- 10% a 80% 10% a 70% 0,0001% a 10%
20% a 75% ---- 20% a 75% 15% a 65% 0,0001% a 8%
30% a 70% ---- 25% a 65% 20% a 60% 0,0001% a 7%
Já a composição típica da Amostra II, onde o componente xantana da matriz polimérica compreende uma mistura de xantanas, está listada na Tabela 5 a seguir.
[Tabela 5]
Xantana pruni (em peso) Outras xantanas (em peso) Amido modificado (em peso) Plastificantes (em peso) Nanocargas (em peso)
10% a 80% 2% a 50% 10% a 80% 10% a 70% 0,0001% a 10%
20% a 75% 5% a 35% 20% a 75% 15% a 65% 0,0001% a 8%
30% a 70% 5% a 30% 25% a 65% 20% a 60% 0,0001% a 7%
São parâmetros importantes no preparo da bioresina biodegradável o uso de biopolímeros de fontes renováveis como as xantanas e os amidos e plastificantes também de fontes renováveis e 100% biodegradáveis.
Um parâmetro determinante no preparo da bioresina é o tipo de nanocarga utilizada, que influencia no Índice de Fluidez. Os estudos desde a determinação individual do Índice de Fluidez de cada um dos constituintes, das melhores associações dos biopolímeros (xantanas e amidos) e plastificante ideal permitiu a construção das Tabelas 1, 2, 3, 4 e 5 detalhadas acima no presente relatório para as quais foram determinadas as condições operacionais de extrusão para obtenção de uma bioresina seca, ou seja, uma bioresina extrudada com teor de umidade em conformidade com os teores aceitos para produtos similares.
A obtenção das bioresinas nanoestruturadas, termoplásticas e biodegradáveis da invenção resultou da adição, nas proporções citadas acima no presente relatório, de diferentes nanocargas na matriz biopolimérica, seguida de extrusão.
A umidade é um parâmetro importante na extrusão. Assim, uma amostra de resina termoplástica de referência apresenta umidade entre 12% e 15%. Já as amostras apresentadas nas Tabelas 2 a 5 apresentaram um percentual de umidade variando de 11% a 14%, o que indica conformidade da bioresina da invenção com os valores recomendados para umidade desses produtos.
Os resultados de IF das composições realizadas com Amostra 12 com Glicerol e Amido apresentaram fluidez mais próxima de resinas usualmente utilizadas para o processo de obtenção de filmes por extrusão por sopro (balão). Ainda, foi observado um incremento mais acentuado da fluidez para composições preparadas com amido B (amido de milho comercial) em relação às preparadas com amido A (amido de feijão carioca).
As composições da invenção atingem os valores de IF adequados para extrusão para certas proporções de nanocargas em relação à matriz polimérica (xantana pruni pura ou combinada com xantanas comerciais e amido). Tais proporções foram explicitadas acima no presente relatório e compreendem razão em peso de nanocarga para a soma da matriz de xantana e amido modificado (ou matriz polimérica) entre 0,0020 e 0,10 e compreendem razão em peso para as nanoparticulas funcionalizadas para a soma da matriz de xantana e amido modificado entre 0,0001 e 0,0005.
Úteis para as finalidades da invenção são as nanocargas inorgânicas (minerais) - comerciais Cloisite 30B, nanocargas orgânicas, Nanonocelulose cristalina, nanocelulose comercial da CelluDorce NCV 100 e nanopartículas funcionalizadas NPsF - comercializada pela Nanometallis. Destas foram usados dois tipos, a saber: 1- Nanopartículas funcionalizadas ZnO (solução ZnO 80% e 20% água) e 2- Nanopartículas funcionalizadas SiO2 (SolGel 7% SiO2 e 93% água, apresentação de gel).
Ainda, tendo em vista a importância primordial do parâmetro Índice de Fluidez na extrusão de resinas termoplásticas, foi investigada a influência de diferentes nanocargas sobre este parâmetro, ou seja, sobre a termoplasticidade da bioresina. Para tal foram preparadas amostras com diferentes nanocargas e uma amostra de referência, Amostra 12, sem nanocarga. Os resultados se encontram listados na Tabela 6 a seguir.
O Índice de Fluidez das Amostras 12, 12.1, 12.2, 12.3 e 12.4 com as diferentes nanocargas na composição da Amostra 12 (xantana pruni, amido modificado, plastificante), agora denominadas 12, 12.1, 12.2, 12.3 e 12.4 de acordo com a nanocarga adicionada; permitiu um aumento no Índice de Fluidez que possibilita por extrusão a obtenção de diferentes bioresinas nanoestruturadas, termoplásticas e biodegradáveis.
Os valores de Índice de Fluidez utilizando carga de 21,6 kg estão listados na Tabela 6 a seguir.
[Tabela 6]
Amostra Tipos de nanocargas Índice de Fluidez (g/10min)
Amostra 12 Sem nanocarga 12,8
Amostra 12.1 Nanocarga - argila organofílica Cloisite 30B 77,26
Amostra 12.2 Nanocelulose cristalina (CNC) 65,18
Amostra 12.3 Nanopartícula funcionalizada - ZnO NanoMetallisR Sol 84,17
Amostra 12.4 Nanopartícula funcionalizada SiO2 NanoMetallis R SolGel 156,08
O Índice de Fluidez (IF) das amostras foi obtido utilizando-se um plastômetro Melt Flow - Modular Line modelo CEAST (Instron, USA), a uma temperatura de 120ºC. O Índice de Fluidez (IF) foi testado com carga de 5 kg, 15 kg e 21,6 kg de acordo com a norma ASTM D1238-13. A massa da amostra foi recolhida e armazenada a cada intervalo de tempo (de acordo com o comportamento de fluidez de cada amostra, em intervalos de 30 segundos, 01 ou 05 minutos) para posterior pesagem e registro.
Índice de Fluidez (IF)
O Índice de Fluidez da Amostra 12, sem nanocarga, foi de 12,8 g/10 min, podendo ser comparado com um termoplástico comumente utilizado para extrusão de filmes obtidos por extrusão por sopro ou extrusora de filme tubular ou balão.
As nanocargas minerais como argila organofílica p.ex. Cloisite 30B e as nanocargas naturais como Nanocelulose cristalina (CNC) são utilizadas em razão em peso entre 0,0020 a 0,10 ou 0,2% a 10% do peso total da composição. Já as nanopartículas funcionalizadas são utilizadas na razão em peso entre 0,0001 a 0,0005 ou 100ppm a 500ppm por quilograma de matriz biopolimérica. Isso indica que quantidades de nanopartículas funcionalizadas entre 500 até 1000 vezes menores que as outras nanocargas apresentam resultados melhores sobre o Índice de Fluidez, o que amplia largamente o uso dessas bioresinas nanoestruturadas, como pode ser visto através dos resultados da Tabela 6 acima.
A Umidade Relativa é um parâmetro importante na extrusão de termoplásticos e foi medida para uma série de amostras da invenção. Assim, a Umidade Relativa (UR) das amostras apresentadas na Tabela 7 foi determinada utilizando um equipamento determinador de umidade Sartorius Mark 3, a uma temperatura de 100ºC, atraso inicial de 9s, temperatura de espera de 50ºC, utilizando aproximadamente 2,0 g de amostra. Os resultados da umidade relativa das amostras se encontram listados na Tabela 7 a seguir.
[Tabela 7]
AMOSTRA UMIDADE RELATIVA (%U)
Referência 12,46
01 11,57
12 14,26
02 11,57
03 12,15
06 13,55
07 14,34
09 14,55
10 14,37
A 14,57
B 13,48
A amostra de Referência é o amido de milho comercial, marca Amisol 3408; a Amostra B é amido milho waxy (comercial); a amostra A é amido de feijão variedade carioca (extraído em laboratório, pela Requerente).
Todas as amostras representam combinações de ingredientes em pó (xantanas e amidos e algumas nanocargas inorgânicas ex. Cloisite 30B, Cloisite Na e nanocargas orgânicas ex. Nanocelulose cristalina) e ingredientes líquidos como os plastificantes e algumas partículas nanofuncionalizadas ex. ZnO, para preparo da bioresina de acordo com a invenção.
Conforme resultados de caracterização as xantanas e os amidos utilizados apresentaram umidade relativamente próxima à da amostra referência que foi de 12,46%U, as xantanas e os amidos, apresentaram um percentual parecido, variando de 11%U a 14%U. Dentro desta faixa todas as amostras se apresentam na forma de pós tanto as xantanas como os amidos e a amostra referência. Esta é a umidade intrinseca ou inerente ao produto.
Para a manufatura dos biopellets a partir das composições da invenção foi utilizado processo de extrusão com extrusora dupla-rosca em uma única etapa, sem pré-preparo das matérias primas, o processo sendo isento da adição de água e a baixa temperatura.
A parametrização do processo de peletização da bioresina em extrusora dupla rosca foi desenvolvido a partir de uma série de testes.
Para esses testes, foram selecionadas as amostras 1 e 12. Para a produção dos biopellets da bioresina foi utilizada uma extrusora dupla-rosca com velocidade da rosca: 90-110 rpm; torque 20Nm a 35Nm; pressão: 35 a 45bar; taxa de alimentação: 0,5 a 1,0 kg/h; perfil de temperatura variando de 80 a 160ºC, com os perfis de temperatura mostrados na Tabela 8 utilizados para processamento da amostra 1 e da Amostra 12.
O perfil de temperatura utilizado para produção das bioresinas a partir das Amostras 1 e 12 está listado na Tabela 8 a seguir. Esse mesmo perfil foi utilizado para amostras 12.1, 12.2, 12.3 e 12.4.
[Tabela 8]
Identificação do Perfil Perfil de Temperatura (ºC)
Zona 1 Zona 2 Zona 3 Zona 4 Zona 5 Zona 6
115°C/120°C 115 115 115 120 120 120
80°C/125°C 80 100 110 115 120 125
110°C/120°C 110 110 115 115 120 120
O preparo das amostras foi realizado em uma única etapa. Os componentes foram pesados e misturados fisicamente, sendo adicionados no dosador automático para transferência para o alimentador da extrusora. O glicerol foi dosado automaticamente utilizando bomba dosadora. A extrusão foi realizada com taxa de alimentação de 700 g/h e desta maneira, foram pesadas bateladas de 250 g de cada matéria-prima.
Os biopolímeros foram previamente secos em estufa com recirculação forçada de ar a 60ºC, durante uma noite, sendo retirados da estufa somente no momento da extrusão. Os biopolímeros com umidade entre 10% e 17%U são considerados secos e não necessitam desta operação de secagem e podem ser usados diretamente na operação de extrusão.
A extrusão produziu biopellets que devem ser submetidos a testes de biodegradabilidade.
A biodegradabilidade foi determinada com os biopellets da bioresina e com os bioplásticos (filmes) obtidos com a bioresina.
O teste de biodegradação efetuado sobre os bioplásticos obtidos com os biopellets da bioresina amostra 12.1 e 12.2 durante 70 dias conforme as normas internacionais, para determinar o tempo necessário para atingir o patamar de degradação, comprovou que a bioresina nanoestruturada termoplástica da invenção é 100% biodegradável. Ver Figuras 8, 9 e 10 e Figuras 17,18,19 e 20.
A Figura 8 é um gráfico da variação do pH das amostras entre as quais uma é uma amostra da invenção, com relação ao período de ensaio (estimado em dias de incubação nos reatores). No gráfico da Figura 8, “composto” é uma amostra de produto de compostagem orgânica; outra amostra é celulose grau TLC (material de referência), a amostra de referência é filme de amido amisol obtido conforme parâmetros apresentados para extrusão da bioresina em extrusora dupla-rosca em processamento único e isento de água, e um biofilme da amostra 12.1 conforme a Tabela 4, os biofilmes sendo preparados a partir de biopellets. Com a degradação, o pH se estabiliza para todas as amostras. Portanto, a Amostra 12.1 da invenção apresenta evolução do pH com o tempo de modo comparável a produtos totalmente biodegradáveis como amido e celulose.
A Figura 9 é a representação gráfica dos resultados de umidade monitorados durante o ensaio de biodegradabilidade do biofilme de amido e do biofilme da bioresina amostra 12.1 obtidos com uso dos biopellets das resinas de amido e dos biopellets das resinas da amostra 12.1. Os experimentos foram conduzidos durante 70 dias. As diversas amostras testadas são as mesmas da Figura 8. Portanto, a Amostra 12.1 da invenção apresenta evolução da umidade com o tempo de modo comparável a produtos totalmente biodegradáveis como amido e celulose. Os produtos ensaiados foram os mesmos da Figura 8.
A Figura 10 apresenta resultados do percentual de biodegradabilidade durante o período do ensaio dos biofilmes de amido e os biofilmes da bioresina Amostra 12.1, obtidos com uso dos biopellets das resinas de amido e dos biopellets das resinas da Amostra 12.1. A amostra de referência é o biofilme de amido de milho amisol (comercial) preparado com 50% amido e 50% de glicerol sem nenhum outro aditivo, utilizando os mesmos parâmetros de extrusão utilizados na obtenção dos biopellets, conforme parâmetros apresentados para extrusão da bioresina em extrusora dupla-rosca em processamento único e isento de água.
Ainda em relação às Figuras 8 e 9, estas apresentam os valores de pH e umidade monitorados durante a realização do ensaio de biodegradabilidade da amostra de referência amido e da amostra 12.1, totalizando 67 dias de ensaio. Durante todo o período do ensaio de biodegradabilidade, a amostra 12.1 manteve o pH estável e a umidade se manteve controlada, permanecendo próximo a 90%. A temperatura da câmara de biodegradabilidade foi mantida em 60ºC±2ºC durante todo o período do ensaio, conforme estabelecido na Norma, além disso, a umidade e o pH foram controlados, realizando análises de acompanhamento a cada 7 dias, todos os resultados tendo sido devidamente registrados.
A partir dos dados obtidos de dióxido de carbono (CO2) liberado em cada reator de incubação, foi elaborado o gráfico que relaciona o percentual de biodegradabilidade das amostras e do material de referência (celulose), durante o período do ensaio, 0 a 67 dias (realizados de 05/02/2019 a 12/04/2019) conforme pode ser visualizado na Figura 10.
Logo após os primeiros 10 dias de ensaio, já foi observado um forte odor nos frascos de incubação, o que indica o início do processo de degradação das amostras. No decorrer de 15 dias, foi observada a degradação das amostras formando um filme com aspecto mais gelatinoso, não sendo mais identificado o formato das amostras iniciais (filmes com diâmetro 2 x 2 cm). Após 30 dias foi possível observar que as amostras reduziram, em tamanho e apresentavam aspecto quebradiço (pequenos pedaços de amostra). Após 45 dias, quase não é mais possível observar amostras nos reatores de incubação, no entanto, o ensaio continuou até as amostras atingirem no mínimo 90% do carbono orgânico convertido a dióxido de carbono, demonstrado pela velocidade e nível de biodegradação expressos pela razão de conversão de dióxido de carbono teórico.
Os resultados das análises mostram que a amostra avaliada (Amostra 12.1) apresentou biodegradabilidade após 67 dias de incubação, em câmara de biodegradabilidade que simula um processo de compostagem aeróbico intenso em laboratório, sob condições controladas.
O material de referência (bioplástico de amido amisol) e referência padrão (celulose TLC), nas condições do ensaio, apresentou 100% de biodegradabilidade após o período de 48 dias. A amostra 12.1 apresentou aproximadamente 66% de biodegradabilidade neste mesmo período, e a amostra de amido apresentou 62% de biodegradabilidade neste mesmo período. Segundo a norma DIN EN 13432:2000 a porcentagem de biodegradabilidade da amostra deve ser de pelo menos 90% assim como do material de referência, para que este seja considerado um material biodegradável. Vide Figura 10.
Teste de filme balão por sopro na extrusora
Para testar a condição de processamento da Amostra 12.1 e 12.4 foram utilizadas as mesmas condições de trabalho citadas acima no presente relatório trocando somente a matriz da extrusora para obtenção do filme balão por sopro.
Para testar a condição de processamento da Amostra de amido, ou amostra de referência, foram utilizadas as mesmas condições de trabalho citadas em acima no presente relatório trocando somente a matriz da extrusora para obtenção do filme balão por sopro.
Os testes de transformação dos pellets de bioresinas em filmes foram utilizados para obter-se material adequado para o teste de biodegradação conforme as normas DIN EN 13432:2000, ISO 14855-1:2012 e ABNT NBR 15448-2:2008.
A seguir serão descritos os ensaios de caracterização efetuados sobre os biofilmes obtidos.
Os pellets a serem caracterizados foram produzidos conforme procedimentos descritos anteriormente, sendo apresentados na Figura 5.
Também foram produzidos biofilmes extrudados a partir dos biopellets para posterior análise de biodegradação do material.
Ambas as amostras, Amostra Referência (Amido Amisol) e Amostra 12.1 quando extrusada em Filme Balão, apresentaram absorções similares referentes a ligações C-H (carbono-hidrogênio) de hidrocarbonetos alifáticos, ligações C-O (carbono-oxigênio), ligação O-H (hidroxila) e ligação C=O (carbonila) em menor proporção. As absorções presentes nas duas amostras são correspondentes às absorções apresentadas por polissacarídeos.
Análise Termogravimétrica
As amostras “Amostra 12.1 Filme Balão” e “Amostra Referência” apresentaram três estágios de perda de massa principais: o primeiro relacionado à perda de moléculas de água ligada e adsorvida, o segundo relativo à degradação da cadeia polimérica sob atmosfera inerte e o terceiro também relativo à cadeia polimérica sob atmosfera oxidante.
Para a “Amostra 12.1 Filme Balão”, a degradação da cadeia polimérica, em atmosfera inerte, inicia em 164°C com uma perda de massa de 69%. A perda de massa em atmosfera oxidativa representa 13% e o resíduo representa 3%.
Para a “Amostra Referência”, a degradação da cadeia polimérica, em atmosfera inerte, inicia em 200°C, com uma perda de massa de 82%. A perda de massa em atmosfera oxidativa representa 8% e não apresentou resíduo. A massa residual é proveniente da fração não degradada sob atmosfera de ar sintético (oxidante), podendo ser proveniente da cadeia polimérica ou de componentes inorgânicos adicionados na formulação, por exemplo, sílica e óxidos metálicos.
Os valores percentuais das 1ª, 2ª e 3ª perdas de massa apresentadas na análise termogravimétrica estão listados na Tabela 9 a seguir.
[Tabela 9]
Amostra % da 1ª perda de massa % da 2ª perda de massa % da 3ª perda de massa % de Resíduos Somatório
Amostra 12 Filme Balão 15,1 69,4 12,6 2,8 99,9
Amostra Referência (Amido) 10,3 82,0 7,5 0,2 100
A “Amostra 12 Filme Balão” não totalizou 100% no somatório das perdas de massa devido à perda de massa acentuada no início da análise. Com base nos valores da Tabela 9 é possível afirmar que as amostras possuem estabilidade térmica semelhante, sendo que a “Amostra Referência” apresentou temperatura de degradação apenas 26°C acima da temperatura da “Amostra 12 Filme Balão”.
A Tabela 10 a seguir lista os valores de temperaturas máximas atingidas na 1ª perda, na 2ª perda e na 3ª perda, em °C.
[Tabela 10]
Amostra T . máx. Na 1ª perda (ºC) T. máx. Na 2ª perda (ºC) T. máx. Na 3ª perda (ºC)
Amostra 12 Filme Balão 87 296 814
Amostra Referência (Amido) 127 322 812
A “Amostra 12 filme balão” e “Amostra Referência Balão” apresentaram resultados semelhantes para correspondente ao máximo de perda de massa.
Calorimetria Exploratória Diferencial (DSC)
Ambas as amostras “Amostra Referência” e “Amostra 12 Filme Balão” apresentaram um evento endotérmico durante o primeiro aquecimento, em 114°C e 127°C, respectivamente. Esses eventos provavelmente são referentes à evaporação de água das amostras. Durante o segundo aquecimento não foram observados eventos térmicos nas condições e faixa de temperatura utilizada. A “Amostra 12 Filme Balão” apresentou ruído na linha de base a partir de 200°C, que está associado com a degradação da amostra, levando em consideração a temperatura de início de degradação da cadeia polimérica observada na análise termogravimétrica. Esse comportamento na “Amostra Referência” é verificado a partir de 230°C.
Índice de Fluidez (IF)
O Índice de Fluidez da Amostra 12 foi de 12,8 g/10 min, podendo ser comparado com um termoplástico comumente utilizado para extrusão de filmes.
Determinação da Resistência à Tração
As propriedades mecânicas de amostras poliméricas podem ser influenciadas pelas condições de preparação e ensaio das amostras, o grau de cristalinidade deste material, massa molecular, alinhamento das cadeias poliméricas e especialmente o grau de interação entre os componentes da amostra. As propriedades físicas da Amostra 12.1 foram determinadas utilizando uma Máquina Universal de Ensaios Emic. A amostra foi avaliada quanto aos parâmetros Módulo Elástico (MPa), Tensão Máxima (MPa) e Alongamento na Ruptura (%), e os valores representam a média dos resultados obtidos em relação ao número de corpos de prova utilizados no ensaio de acordo com a norma ASTM D882. Figura 12.
Na Tabela 11 a seguir estão representados os resultados das propriedades físicas sob tração da Amostra 12.1 e amostras comerciais, adquiridas na Finlandia, Bioska+, Pikka e Bioska Kassi.
Obs. Não foi utilizado nenhum processo de estiramento na obtenção dos filmes da Amostra 12.1 (o que melhora as propriedades físicas). Em vista disso, os resultados dos ensaios de tração não deveriam ser comparados aos de filmes estirados, mas foram realizados para mero efeito de comparação.
[Tabela 11]
Amostras Alongamento na ruptura % Tensão máxima (Mpa) Módulo Elástico (Mpa)
Bioska+ -DM 42,52 13,51 54,94
Bioska+ -DT 25,59 8,59 58,29
Pikka -DM 91,53 18,70 130,4
Pikka -DT 21,96 11,87 95,45
Bioska Kassi- DM 118,1 14,92 112,7
Bioska Kassi- DT 19,80 11,06 100,03
Os resultados da determinação de resistência à tração para a amostra do filme avaliado nesta etapa do trabalho, nos dois sentidos de orientação do filme, na Direção da Máquina (DM) e na Direção Transversal (DT), podem ser observados na Tabela 11. O alongamento na ruptura do filme da Amostra 12.1 no sentido da máquina (DM) foi de 63,74%, enquanto no sentido transversal (DT) foi de 42,05%, a amostra não apresentou um alongamento muito significativo.
O módulo elástico é um parâmetro mecânico que fornece informações sobre a rigidez do material sólido e tem influência com a composição química, microestrutura e defeitos do material.
A amostra 12.1 apresentou módulo elástico de 11,58 MPa e 13,02 MPa nos respectivos sentidos de orientação do filme, testados durante o ensaio de tração, e comparando esta propriedade com o pequeno alongamento na ruptura do material, indica um aspecto de maior rigidez nesta amostra. Neste sentido, a mobilidade molecular da Amostra 12.1 pode ter sido restringida, quando se leva em consideração que a forma de obtenção do filme pode não ter sido apropriada, no que diz respeito ao equipamento utilizado e parâmetros como a orientação, elongação e estiramento na máquina, para obtenção do filme e isto pode ser a causa para a redução na resistência mecânica deste filme. A formação de fissuras no filme pode ser relacionada com a possível falta de uniformidade na estrutura do filme, o que pode ter afetado as propriedades mecânicas da amostra.
A Tabela 12 abaixo mostra os resultados das propriedades físicas sob tração do filme da amostra 12.1.
[Tabela 12]
Amostras Alongamento na Ruptura (%) Tensão Máxima ( Mpa ) Módulo Elástico ( Mpa )
Amostra 12.1 - DM 63,74 2,36 11,58
Amostra 12.1 - DT 42,05 3,22 13,02
Os resultados das análises evidenciam que a amostra avaliada (Amostra 12.1) apresenta um comportamento similar a um polímero termoplástico, permitindo ser processada e reprocessada em equipamentos de transformação de termoplásticos, como extrusora, por exemplo.
Avaliação da Biodegradação dos biopellets de bioresina nanoestruturada termoplástica 12, 12.1, 12.2, 12.3 e 12.4.
Os testes de biodegradação foram realizados em escala de laboratório, seguindo a norma ASTM 5988-12, com algumas adaptações. Foram utilizados frascos de vidro com aproximadamente 2 L de volume interno como biorreatores. As amostras foram avaliadas durante 180 dias a 28°C, e a quantidade de gás carbônico (CO2) produzido foi quantificada em respirômetro automático (Micro-oxymax Respirometer System, Columbus Instruments). Como inóculo para o teste utilizou-se 50% de uma mistura de composto de esterco bovino e bagaço de cana, na proporção de 1:2, e 50% de húmus de minhoca foi também utilizado. A umidade do inóculo foi ajustada para 60% de acordo com a norma.
As amostras de polímero com massa definida foram trituradas em moinho e em seguida misturadas vagarosamente ao inóculo. Frascos do tipo Falcon contendo água foram também adicionados aos biorreatores para manter a umidade do meio. Utilizou-se amido como referência positiva nos testes de biodegradação. Os testes foram realizados em duplicata.
Mineralização
Estudos de biodegradação são baseados na estimativa da porcentagem de mineralização do carbono, ou seja, a quantidade de carbono convertida em CO2 pelas amostras. Seu cálculo é realizado através da Equação 1 a seguir:
Figure pctxmlib-appb-M000001
Onde:
Figure pctxmlib-appb-M000002
: massa de
Figure pctxmlib-appb-M000003
produzida (mg)
Figure pctxmlib-appb-M000004
: massa de
Figure pctxmlib-appb-M000005
teórica (mg)
O teste de biodegradação por respirometria foi efetuado com os biopellets da bioresina amostras 12, 12.1, 12.2, 12.3, 12.4 durante 180 dias, conforme as normas internacionais. Este é o tempo considerado necessário para atingir o patamar de degradação. O resultado comprovou que a bioresina nanoestruturada, termoplástica amostras 12, 12.1, 12.2, e 12.4 são 100% biodegradáveis. Apenas a amostra 12.3 não degradou totalmente, e para esta utilizou-se o ajuste linear da amostra biopolimérica para a previsão de degradação total do biopolímero, para a qual o resultado de biodegradação total seria 447 dias. As Figuras 13, 14 e 15 mostram os resultados da biodegradação da amostra 12.3. A Figura 15 mostra o ajuste linear da amostra biopolimérica usada para a previsão e degradação do polímero. Na análise realizada no respirômetro é medido o volume de CO2 produzido em função do tempo. Estes resultados indicam uma efetiva ação dos microorganismos durante a degradação, uma vez que proporcionam uma alta produção de CO2 para a referência positiva.
Uma medida adicional é a mineralização versus o tempo, determinada a partir da equação 1 acima. As medidas de mineralização são fundamentais para validar os testes de biodegradação, de acordo com a ASTM; ou seja, o teste é validado quando a referência positiva, no caso amido, alcançar 70% de degradação em 180 dias. Para a conversão de volume de CO2, utiliza-se a equação de Cleyperon (PV=nRT). Vide Figura 14. Durante as medidas de CO2, o equipamento também mede a pressão e temperatura dentro do frasco; desta forma, é possível converter o volume de CO2 em massa.
Na Figura 15 é apresentada a curva linear com os dados de coeficiente angular e linear usada para a previsão e degradação do biopellets.
Os biopellets são biodegradáveis. O resultado mostrou que quatro amostras biodegradaram em 180 dias. Apenas uma amostra a 12.3, não degradou em 180 dias e para esta, foi preciso fazer ajuste linear para a previsão de degradação do biopellets, que pelos cálculos levariam 447 dias.
Avaliação da Biodegradação dos biofilmes extrudados
Os biofilmes extrudados a partir dos biopellets foram avaliados quanto a sua biodegradabilidade. Os pellets foram produzidos conforme procedimentos descritos anteriormente, sendo as amostras dos biofilmes apresentadas na Figura 7A e 7B.
Foi realizada a avaliação da biodegradabilidade na amostra do biopolímero produzido e também de uma amostra referência, em um teste que simula um processo de compostagem aeróbico intenso em laboratório, sob condições controladas. A amostra a ser avaliada quanto à biodegradabilidade deve ser previamente identificada e caracterizada pelos testes de qualificação previstos nas Normas, incluindo: informação sobre a identificação dos constituintes dos materiais de embalagem (FTIR); determinação da presença de substâncias tóxicas (determinação de metais por ICP-OES); digestão e determinação de Fluoretos por Colorimetria; determinação do teor de carbono orgânico (TOC); determinação de sólidos secos totais e de sólidos voláteis. Se estes resultados estiverem dentro dos limites estabelecidos na Norma, prossegue-se com o ensaio de biodegradabilidade. Os parâmetros iniciais, pH e o teor de umidade do composto orgânico devem ser mensurados antes do início do ensaio de biodegradabilidade de materiais plásticos, e são apresentados na Tabela 13 a seguir.
[Tabela 13]
Parâmetros Composto Orgânico
pH (>5,0) 8,94
Teor de umidade (%) 89,5
Determinação de Sólidos Secos Totais e Sólidos Voláteis
A determinação de sólidos secos totais é um ensaio realizado com base na norma DIN EN 13432:2000. O percentual do teor de sólidos secos totais é obtido através da perda de massa da amostra quando submetida à secagem a temperatura de 105 ± 2 ºC até peso constante.
A determinação de sólidos voláteis é um ensaio realizado com base na norma DIN EN 13432:2000, onde o percentual de sólidos voláteis é determinado através da diferença entre o teor de sólidos secos totais e o teor de cinzas obtido após queima em mufla a 550 ± 50 ºC por 1 hora.
Os resultados do teor de sólidos secos totais e sólidos voláteis para o composto orgânico estão apresentados na Tabela 14.
[Tabela 14]
Parâmetro Resultados
Teor de Sólidos Secos Totais (%) 86,78
Teor de Sólidos Voláteis (%) 21,52
Determinação do teor de Metais Totais por digestão do composto orgânico
O ensaio para determinação de metais foi realizado com base nas normas USEPA Method 3052 (Rev. 0; 1996) e USEPA Method 3050B (Rev. 2; 1996) para preparação da amostra e USEPA Method 6010C (Rev. 3; 2007) e PRI 638/320 para análise da amostra. O princípio da análise consiste na digestão ácida da amostra (migração) e posterior análise por Espectrometria de Emissão Ótica com Plasma Indutivamente Acoplado (ICP-OES).
Os metais presentes no composto orgânico, a partir do teor de sólidos secos totais e sólidos voláteis foram identificados por ICP-OES e estão apresentados na Tabela 15 a seguir.
[Tabela 15]
Metal Resultado (mg/kg)
Alumínio 2839,42
Antimônio < LQ
Arsênio < LQ
Bário 91,61
Berílio < LQ
Bismuto < LQ
Boro < LQ
Cádmio < LQ
Cálcio 13336,15
Chumbo 6,96
Cobalto < LQ
Cobre 21,84
Cromo 5,72
Estanho < LQ
Estrôncio 51,53
Ferro 978,08
Fósforo 1452,88
Germânio < LQ
Lítio < LQ
Magnésio 2639,75
Manganês 190,82
Mercúrio < LQ
Molibdênio 1,01
Níquel < LQ
Potássio 3931,49
Prata 19,83
Selênio < LQ
Silício 129,57
Sódio 73,63
Tálio < LQ
Titânio 789,55
Vanádio 13,41
Zinco 77,50
Zircônio 17,54
Onde: mg/kg = 0,0001% (percentual em massa do metal na amostra); <LQ = abaixo do Limite de Quantificação do método.
Avaliação da Biodegradabilidade de Materiais Plásticos
A determinação da biodegradabilidade de materiais plásticos é realizada através de um teste que simula um processo de compostagem aeróbico intenso em laboratório, sob condições controladas. O percentual de biodegradabilidade foi determinado através da conversão do carbono orgânico da amostra em dióxido de carbono (CO2) liberado durante o período de teste, conforme as normas DIN EN 13432:2000, ISO 14855-1:2012 e ABNT NBR 15448-2:2008.
Os dados referentes às massas utilizadas de amostra, do composto orgânico e de celulose grau TLC (material de referência) e a descrição das mesmas em cada reator de incubação são apresentados na Tabela 16 a seguir. O ensaio foi realizado em duplicata para as amostras e em triplicata para cada condição avaliada (composto orgânico e celulose). Na Tabela 16 a seguir são listados os parâmetros iniciais do ensaio de biodegradabilidade para a amostra de referência (amido) e amostra 12.1.
[Tabela 16]
Paramêtro Reator de incubação
1 2 3 4 5 6 7 8 9 10
Massa da amostra referência amido(g) 50,04 50,01 - - - - - - - -
Massa da amostra 12 (g) - - 50,03 50,02 - - - - - -
Massa de celulose¹ (g) - - - - 50,01 50,00 50,03 - - -
Massa do composto orgânico (g) 300,2 301,00 300,3 300,4 301,00 300,2 300,1 300,05 300,1 300,4
Nota: Reatores de incubação 1, 2, 3 e 4 = amostras;
Reatores de incubação 5, 6 e 7 = material de referência;
¹Referência = celulose grau TLC
A determinação da biodegradabilidade de materiais plásticos é realizada através de um teste que simula um processo de compostagem aeróbico intenso em laboratório, sob condições controladas. O percentual de biodegradabilidade foi determinado através da conversão do carbono orgânico da amostra em dióxido de carbono (CO2) liberado durante o período de teste, conforme as normas DIN EN 13432:2000, ISO 14855-1:2012 e ABNT NBR 15448-2:2008.

Claims (14)

  1. Composição para bioresina nanoestruturada termoplástica biodegradável, dita composição sendo caracterizada por compreender:
    a) Uma matriz polimérica de fonte renovável, consistindo de i) entre 10% e 80% em peso, de preferência entre 20% e 75% em peso, e mais preferencialmente, entre 30% e 70% em peso, em relação ao peso total da composição, de um polímero de fonte renovável compreendendo um exopolissacarídeo produzido por Xanthomonas arboricola pathovar pruni (xantana pruni), e de ii) entre 10% e 80% em peso, de preferência entre 20% e 75% em peso, e mais preferencialmente, entre 25% e 65% em peso, em relação ao peso total da composição, de amido modificado;
    b) entre 10% e 70% em peso, de preferência entre 15% e 65% em peso, e mais preferencialmente, entre 20% e 60% em peso, em relação ao peso total da composição, de um agente plastificante; e
    c) nanocargas, selecionadas dentre argila organofílica Cloisite 30B, nanocelulose cristalina NCC, na razão em peso em relação à matriz biopolimérica entre 0,002 e 0,10, de preferência entre 0,002 e 0,08, mais preferencialmente, entre 0,002 e 0,07 de nanocargas inorgânicas ou orgânicas, ou nanopartículas funcionalizadas (NPF) ZnONanometallisRSol e SiO2 NanometallisRsolGel na razão em peso em relação à matriz biopolimérica de 0,0001 a 0,0005, de modo que na extrusão da composição sob condições de extrusão seja obtido IF (Índice de Fluidez) para obtenção de artigos flexíveis seja de 0,1g/10min a 20g/10min para uma carga de 21,6k e para obtenção de artigos semirrígidos ou rígidos que o IF seja de pelo menos 70 g/10 min para carga de 21,6K.
  2. Composição de acordo com a reivindicação 1, caracterizada por a dita matriz polimérica compreender adicionalmente um exopolissacarídeo compreendendo xantanas comerciais produzidas por Xanthomonas campestris pv. Campestris, em proporção entre 2% a 50% em peso, de preferência entre 5% e 35% em peso, e mais preferencialmente, entre 5% e 30% em peso, em relação ao peso total da composição.
  3. Composição de acordo com a reivindicação 1, caracterizada por ser isenta de água adicionada.
  4. Composição de acordo com a reivindicação 1, caracterizada por a massa molar da xantana pruni pura ou da mistura de xantana pruni com xantanas comerciais estar entre 5x105 a 1,3x 107 g.mol-1.
  5. Composição de acordo com a reivindicação 1, caracterizada por o agente plastificante compreender agentes lipofílicos, selecionados entre óleos comestíveis e lipídios líquidos, óleos vegetais de arroz, soja, girassol, canola, amendoim e milho, coco, nozes, amêndoas e nozes comestíveis, copaíba, óleo de carnaúba, linhaça, semente de uva; e ii) agentes hidrofílicos selecionados entre propileno glicol e polietileno glicol, glicerol e sorbitol, puros ou combinados.
  6. Composição de acordo com a reivindicação 5, caracterizada por o plastificante compreender glicerol.
  7. Composição de acordo com a reivindicação 1, caracterizada por compreender adicionalmente:
    a) de 0,0% a 10% em peso da composição para bioresina, de dispersantes sólidos ou como agentes antiaglomerantes selecionados dentre fosfatos mono, di ou tribásico, dióxido de titânio, carbonato de cálcio ou magnésio e dióxido de silício, em relação ao peso da matriz biopolimérica;
    b) de 0,1% em peso a 15% em peso de compatibilizantes SEBS selecionados dentre EL05, FS115, FS105, FS110, puros ou combinados em qualquer proporção, em relação ao peso da matriz biopolimérica;
    c) de 0,0% em peso a 10% em peso de estabilizantes térmicos selecionados dentre Cloreto de Cálcio, CaCl2 e Cloreto de Zinco, ZnCl2, puros ou combinados em qualquer proporção em relação ao peso da matriz biopolimérica;
    d) de 0,0% em peso a 5,0% em peso de estabilizantes dimensionais selecionados dentre os de base de cálcio e base de zinco, puros ou combinados entre si em qualquer proporção, em relação ao peso da matriz biopolimérica;
    e) 0,0% em peso a 10,0% em peso de antioxidantes, selecionados dentre: sulfitos (tioésteres e ésteres do ácido tiodiopropiônico) e fosfitos (triésteres de ácido fosfórico), ácido ascórbico, ácido eritórbico e seus sais puros ou combinados entre si em qualquer proporção, ou ainda os de dupla ação, antioxidantes e conservantes selecionados entre: primários e quelantes, sinergistas como butil-hidroxitolueno (BHT) e butil-hidroxianisol (BHA), em relação ao peso da matriz biopolimérica;
    f) de 0,1% a 5,0% em peso de conservantes, selecionados dentre metil e etil parabeno, ácido sórbico e sorbato de sódio ou potássio; puros ou combinados entre si em qualquer proporção, em relação ao peso da matriz biopolimérica;
    g) de 0,0% a 5,0% em peso, em relação ao peso da matriz biopolimérica, de emulsificantes selecionados dentre compostos de balanço hidrofílico-lipofílico (BHL) entre 0,0 e 5,0, de preferência entre 0,2 e 3,0, e mais preferencialmente entre 0,5 e 1,5, selecionados dentre trioleato de sorbitano e triestearato de sorbitano, puros ou combinados entre si em qualquer proporção;
    h) de 0,0% e 5,0% em peso, em relação ao peso da matriz biopolimérica, de emulgentes, selecionados dentre ésteres de polioxietileno e lecitina;
    i) de 0,0% a 5,0% em peso em relação ao peso total da composição, de antioxidantes, selecionados entre: primários e quelantes, sinergistas como butil-hidroxitolueno (BHT) e butil-hidroxianisol (BHA) e ácido ascórbico e ácido eritórbico e seus sais, respectivamente, combinados ou não;
    j) de 0,0% a 10,0% em peso em relação ao peso total da composição, de sais, mono- ou divalentes, selecionados dentre: Cloreto de sódio, NaCl, Cloreto de potássio, KCl, MnO2, Mn2O, puros ou combinados entre si em qualquer proporção;
    k) de 0,0% a 10,0% em peso em relação ao peso da matriz biopolimérica, de um álcool em C1-C3 selecionado dentre álcool etílico; e
    l) de 0,0% a 10,0% em peso em relação ao peso da matriz biopolimérica de um antiumectante selecionado dentre: dióxido de silício: SiO2, Carbonato de cálcio: CaCO3, talco: (Mg3(Si2O5)2(OH)2 ou (3MgO. 4SiO2. H2O), Carbonato de magnésio: MgCO3, Silicato de cálcio: CaSiO3, sais de alumínio: silicato de alumínio, alumínio silicato de sódio: NaAl2Si3O8, fosfato tricálcico; óxido de magnésio; óxido de potássio, óxido de sódio, sais de amônio dos ácidos mirístico, palmítico e esteárico; Celulose microcristalina.
  8. Bioresina nanoestruturada termoplástica biodegradável obtida a partir da composição de acordo com a reivindicação 1, dita bioresina sendo caracterizada por compreender processar por extrusão sob condições de extrusão, incluindo temperatura inferior a 140ºC, os componentes da dita composição.
  9. Bioresina de acordo com a reivindicação 8, caracterizada por a extrusão ser efetuada em uma única etapa.
  10. Bioresina de acordo com a reivindicação 8, caracterizada por a extrusão ser efetuada sem pré-preparo.
  11. Bioresina de acordo com a reivindicação 8, caracterizada por ser obtida em forma de espaguete/biopélete.
  12. Bioresina de acordo com a reivindicação 11, caracterizada por o espaguete/biopélete ser triturado para obter um pó.
  13. Artigo obtido a partir da bioresina de acordo com a reivindicação 8, caracterizado por dito artigo ser extrudado sob condições de extrusão em extrusora balão para formar filmes flexíveis para embalagens.
  14. Artigo obtido a partir da bioresina de acordo com a reivindicação 8, caracterizado por dito artigo ser injetado sob condições de injeção para obter artigos rígidos ou semi-rígidos.
PCT/BR2021/050075 2020-02-18 2021-02-18 Composição para bioresina nanoestruturada termoplástica biodegradável, bioresina obtida e artigo WO2021163778A1 (pt)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21757200.7A EP4108718A4 (en) 2020-02-18 2021-02-18 COMPOSITIONCOMPOSITION FOR BIODEGRADABLE THERMOPLASTIC NANOSTRUCTURED BIORESIN, BIORESIN OBTAINED AND ARTICLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BR102020003370-0A BR102020003370A2 (pt) 2020-02-18 2020-02-18 Composição para bioresina nanoestruturada termoplástica biodegradável, bioresina obtida e artigo
BRBR102020003370-0 2020-02-18

Publications (1)

Publication Number Publication Date
WO2021163778A1 true WO2021163778A1 (pt) 2021-08-26

Family

ID=77390259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050075 WO2021163778A1 (pt) 2020-02-18 2021-02-18 Composição para bioresina nanoestruturada termoplástica biodegradável, bioresina obtida e artigo

Country Status (3)

Country Link
EP (1) EP4108718A4 (pt)
BR (1) BR102020003370A2 (pt)
WO (1) WO2021163778A1 (pt)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406530B1 (en) 1997-07-09 2002-06-18 Aventis Research & Technologies Gmbh & Co Kg Biopolymer-based thermoplastic mixture for producing biodegradable shaped bodies
US6811599B2 (en) 2000-03-13 2004-11-02 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Biodegradable thermoplastic material
BRPI0406530A (pt) 2003-01-31 2005-12-13 Montan Tech Gmbh Vedações para portas de fornos alimentados por coque e sua utilização
BRPI0406309A (pt) 2004-11-05 2006-06-13 Univ Fed Pelotas processo de produção de biopolìmero tipo xantana, biopolìmero obtido, seus usos; meio de cultura para crescimento de xanthomonas e uso da mesma para produção de biopolìmero
CA2342174C (en) 1998-09-01 2008-12-09 Novamont S.P.A. Biodegradable compositions comprising starch and polysaccharide esters
WO2011080623A2 (en) 2009-12-31 2011-07-07 Kimberly-Clark Worldwide, Inc. Natural biopolymer thermoplastic films
US20130154151A1 (en) 2011-12-20 2013-06-20 Kimberly-Clark Worldwide, Inc. Method for Forming a Thermoplastic Composition that Contains a Renewable Biopolymer
BR102014028009A2 (pt) 2014-11-10 2016-05-31 Univ Fed Pelotas composições filmogênicas para bioadesivos anestésicos tópicos (bats) para liberação controlada de princípios ativos e bioadesivos anestésicos tópicos
BR122014030015B1 (pt) 2004-11-05 2017-05-02 Empresa Brasileira De Pesquisa Agropecuária - Embrapa meio de cultura para crescimento de xanthomonas
CN107417984A (zh) 2017-06-27 2017-12-01 太仓市晨洲塑业有限公司 一种可降解环保塑料
BR112014029845A2 (pt) * 2012-06-06 2018-05-15 Universidade Federal De Pelotas composição e métodos de produção de materiais biopoliméricos de rápida biodegradação, flexíveis e rígidos, com uso do bioplástico xantana compondo a matriz biopolimérica e opcionalmente cargas e/ou nanocargas e outros constituintes; produtos obtidos e seus usos
CN108948691A (zh) 2017-05-18 2018-12-07 济宁明升新材料有限公司 一种木质素改性淀粉基pha生物降解膜材料及其制备方法
CN109401248A (zh) 2018-11-02 2019-03-01 许五妮 一种可降解无毒冷热用吸管材料
CN109486140A (zh) 2018-12-05 2019-03-19 嘉兴市竹林塑料泡沫有限公司 一种环保可分解保鲜膜及其制备方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406530B1 (en) 1997-07-09 2002-06-18 Aventis Research & Technologies Gmbh & Co Kg Biopolymer-based thermoplastic mixture for producing biodegradable shaped bodies
CA2342174C (en) 1998-09-01 2008-12-09 Novamont S.P.A. Biodegradable compositions comprising starch and polysaccharide esters
US6811599B2 (en) 2000-03-13 2004-11-02 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Biodegradable thermoplastic material
BRPI0406530A (pt) 2003-01-31 2005-12-13 Montan Tech Gmbh Vedações para portas de fornos alimentados por coque e sua utilização
BR122014030015B1 (pt) 2004-11-05 2017-05-02 Empresa Brasileira De Pesquisa Agropecuária - Embrapa meio de cultura para crescimento de xanthomonas
BRPI0406309A (pt) 2004-11-05 2006-06-13 Univ Fed Pelotas processo de produção de biopolìmero tipo xantana, biopolìmero obtido, seus usos; meio de cultura para crescimento de xanthomonas e uso da mesma para produção de biopolìmero
WO2011080623A2 (en) 2009-12-31 2011-07-07 Kimberly-Clark Worldwide, Inc. Natural biopolymer thermoplastic films
US20130154151A1 (en) 2011-12-20 2013-06-20 Kimberly-Clark Worldwide, Inc. Method for Forming a Thermoplastic Composition that Contains a Renewable Biopolymer
EP2794214A1 (en) 2011-12-20 2014-10-29 Kimberly-Clark Worldwide, Inc. Method for forming a thermoplastic composition that contains a renewable biopolymer
BR112014029845A2 (pt) * 2012-06-06 2018-05-15 Universidade Federal De Pelotas composição e métodos de produção de materiais biopoliméricos de rápida biodegradação, flexíveis e rígidos, com uso do bioplástico xantana compondo a matriz biopolimérica e opcionalmente cargas e/ou nanocargas e outros constituintes; produtos obtidos e seus usos
BR102014028009A2 (pt) 2014-11-10 2016-05-31 Univ Fed Pelotas composições filmogênicas para bioadesivos anestésicos tópicos (bats) para liberação controlada de princípios ativos e bioadesivos anestésicos tópicos
CN108948691A (zh) 2017-05-18 2018-12-07 济宁明升新材料有限公司 一种木质素改性淀粉基pha生物降解膜材料及其制备方法
CN107417984A (zh) 2017-06-27 2017-12-01 太仓市晨洲塑业有限公司 一种可降解环保塑料
CN109401248A (zh) 2018-11-02 2019-03-01 许五妮 一种可降解无毒冷热用吸管材料
CN109486140A (zh) 2018-12-05 2019-03-19 嘉兴市竹林塑料泡沫有限公司 一种环保可分解保鲜膜及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Xanthomonas", 1993, CHAPMAN & HALL, pages: 363 - 388
CHANDRA, R.RUSTGI, R.: "Biodegradable Polymers", PROGRESS IN POLYMER SCIENCE, vol. 23, 1998, pages 1273 - 1335, XP055844750
ESTEVES: "A.C.C. - Nanocompositos de matriz polimerica: estrategias de sintese de materiais hibridos", QUIM. NOVA, vol. 27, no. 5, September 2004 (2004-09-01), pages 799
See also references of EP4108718A4

Also Published As

Publication number Publication date
BR102020003370A2 (pt) 2021-08-31
EP4108718A1 (en) 2022-12-28
EP4108718A4 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
Lendvai et al. Characterization of layered silicate-reinforced blends of thermoplastic starch (TPS) and poly (butylene adipate-co-terephthalate)
Chen et al. Preparation and performance of thermoplastic starch and microcrystalline cellulose for packaging composites: Extrusion and hot pressing
Sun et al. Effects of various cross-linking agents on the physicochemical properties of starch/PHA composite films produced by extrusion blowing
Sessini et al. Thermal and composting degradation of EVA/Thermoplastic starch blends and their nanocomposites
Wongphan et al. Effect of different modified starches on physical, morphological, thermomechanical, barrier and biodegradation properties of cassava starch and polybutylene adipate terephthalate blend film
Domene-López et al. Comparative study on properties of starch films obtained from potato, corn and wheat using 1-ethyl-3-methylimidazolium acetate as plasticizer
Chivrac et al. Progress in nano-biocomposites based on polysaccharides and nanoclays
Luo et al. Effect of gelatinization and additives on morphology and thermal behavior of corn starch/PVA blend films
Gonzalez et al. Improving mechanical and barrier properties of thermoplastic starch and polysaccharide nanocrystals nanocomposites
Ozkoc et al. Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA
Souza et al. Cassava starch biodegradable films: Influence of glycerol and clay nanoparticles content on tensile and barrier properties and glass transition temperature
Machado et al. Study of interactions between cassava starch and peanut skin on biodegradable foams
Sabetzadeh et al. Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films
Fortunati et al. Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites
Quiroz-Castillo et al. Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride
Dang et al. Thermoplastic starch blown films with improved mechanical and barrier properties
Yun et al. Effect of amylose contents of starches on physical properties and biodegradability of starch/PVA-blended films
Hernández-García et al. Thermoprocessed starch-polyester bilayer films as affected by the addition of gellan or xanthan gum
BRPI0715054A2 (pt) mÉtodo para preparar uma composiÇço de polÍmero biodegradÁvel, mistura padrço, mÉtodo para preparar a mesma, e, composiÇço de polÍmero biodegradÁvel
Corrêa et al. Elaboration and characterization of nano-biocomposites based on plasticized poly (hydroxybutyrate-co-hydroxyvalerate) with organo-modified montmorillonite
Bocchini et al. Poly (butylensuccinate co-adipate)-thermoplastic starch nanocomposite blends
Xie et al. Thermoplastic starch
Zuo et al. Effect of starch/polylactic acid ratio on the interdependence of two-phase and the properties of composites
Llanos et al. New strategies to fabricate starch/chitosan-based composites by extrusion
Chai et al. Effects of modified starch and different molecular weight polyvinyl alcohols on biodegradable characteristics of polyvinyl alcohol/starch blends

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21757200

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021757200

Country of ref document: EP

Effective date: 20220919