WO2021163455A1 - Technologie de revêtement de membrane cellulaire évolutive et facile à la fois pour des particules chargées positivement et négativement - Google Patents
Technologie de revêtement de membrane cellulaire évolutive et facile à la fois pour des particules chargées positivement et négativement Download PDFInfo
- Publication number
- WO2021163455A1 WO2021163455A1 PCT/US2021/017823 US2021017823W WO2021163455A1 WO 2021163455 A1 WO2021163455 A1 WO 2021163455A1 US 2021017823 W US2021017823 W US 2021017823W WO 2021163455 A1 WO2021163455 A1 WO 2021163455A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cell membrane
- core particle
- cpg
- msn
- fnc
- Prior art date
Links
- 238000000576 coating method Methods 0.000 title claims abstract description 84
- 239000011248 coating agent Substances 0.000 title claims abstract description 75
- 239000002245 particle Substances 0.000 title claims abstract description 50
- 238000005516 engineering process Methods 0.000 title description 4
- 210000000170 cell membrane Anatomy 0.000 claims abstract description 118
- 238000000034 method Methods 0.000 claims abstract description 83
- 239000002105 nanoparticle Substances 0.000 claims abstract description 62
- 210000004027 cell Anatomy 0.000 claims abstract description 53
- 238000002156 mixing Methods 0.000 claims abstract description 50
- 239000000463 material Substances 0.000 claims abstract description 43
- 239000007771 core particle Substances 0.000 claims description 32
- 206010028980 Neoplasm Diseases 0.000 claims description 27
- 239000012634 fragment Substances 0.000 claims description 24
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 18
- 230000003592 biomimetic effect Effects 0.000 claims description 14
- 239000000427 antigen Substances 0.000 claims description 11
- 102000036639 antigens Human genes 0.000 claims description 11
- 108091007433 antigens Proteins 0.000 claims description 11
- 229960005486 vaccine Drugs 0.000 claims description 11
- 239000002671 adjuvant Substances 0.000 claims description 10
- 201000011510 cancer Diseases 0.000 claims description 10
- 238000011068 loading method Methods 0.000 claims description 7
- 239000011859 microparticle Substances 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- 210000002865 immune cell Anatomy 0.000 claims description 5
- 125000003277 amino group Chemical group 0.000 claims description 3
- 102000053602 DNA Human genes 0.000 claims description 2
- 108020004414 DNA Proteins 0.000 claims description 2
- 229920002988 biodegradable polymer Polymers 0.000 claims description 2
- 239000004621 biodegradable polymer Substances 0.000 claims description 2
- 230000000973 chemotherapeutic effect Effects 0.000 claims description 2
- 239000002159 nanocrystal Substances 0.000 claims description 2
- 238000000527 sonication Methods 0.000 abstract description 44
- 230000002776 aggregation Effects 0.000 abstract description 7
- 238000004220 aggregation Methods 0.000 abstract description 7
- 238000001338 self-assembly Methods 0.000 abstract description 6
- 230000002194 synthesizing effect Effects 0.000 abstract description 6
- 239000012528 membrane Substances 0.000 description 45
- 210000001165 lymph node Anatomy 0.000 description 27
- 239000011162 core material Substances 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 13
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 11
- 239000000047 product Substances 0.000 description 10
- 230000035800 maturation Effects 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- 230000004083 survival effect Effects 0.000 description 9
- 125000002091 cationic group Chemical group 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 229940045513 CTLA4 antagonist Drugs 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 230000009881 electrostatic interaction Effects 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 201000001441 melanoma Diseases 0.000 description 7
- 230000028327 secretion Effects 0.000 description 7
- 230000001225 therapeutic effect Effects 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 6
- 229920002873 Polyethylenimine Polymers 0.000 description 6
- 210000000612 antigen-presenting cell Anatomy 0.000 description 6
- 238000002296 dynamic light scattering Methods 0.000 description 6
- 210000002540 macrophage Anatomy 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 230000008685 targeting Effects 0.000 description 6
- 230000004614 tumor growth Effects 0.000 description 6
- 101150013553 CD40 gene Proteins 0.000 description 5
- 102000004127 Cytokines Human genes 0.000 description 5
- 108090000695 Cytokines Proteins 0.000 description 5
- 101000914484 Homo sapiens T-lymphocyte activation antigen CD80 Proteins 0.000 description 5
- 102000013462 Interleukin-12 Human genes 0.000 description 5
- 108010065805 Interleukin-12 Proteins 0.000 description 5
- 102000004889 Interleukin-6 Human genes 0.000 description 5
- 108090001005 Interleukin-6 Proteins 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 210000001744 T-lymphocyte Anatomy 0.000 description 5
- 102100027222 T-lymphocyte activation antigen CD80 Human genes 0.000 description 5
- 102100040245 Tumor necrosis factor receptor superfamily member 5 Human genes 0.000 description 5
- 238000012512 characterization method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 230000000069 prophylactic effect Effects 0.000 description 5
- 238000013519 translation Methods 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 238000009566 cancer vaccine Methods 0.000 description 4
- 229940022399 cancer vaccine Drugs 0.000 description 4
- 210000004443 dendritic cell Anatomy 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000013230 female C57BL/6J mice Methods 0.000 description 4
- 239000012091 fetal bovine serum Substances 0.000 description 4
- 238000000799 fluorescence microscopy Methods 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 210000004124 hock Anatomy 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000011746 C57BL/6J (JAX™ mouse strain) Methods 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 3
- 108010052285 Membrane Proteins Proteins 0.000 description 3
- 102000018697 Membrane Proteins Human genes 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 108010004729 Phycoerythrin Proteins 0.000 description 3
- 238000003917 TEM image Methods 0.000 description 3
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Triethanolamine Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 102100040247 Tumor necrosis factor Human genes 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 210000001185 bone marrow Anatomy 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 230000005934 immune activation Effects 0.000 description 3
- 230000005746 immune checkpoint blockade Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 239000002609 medium Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 238000002255 vaccination Methods 0.000 description 3
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 2
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 231100000002 MTT assay Toxicity 0.000 description 2
- 238000000134 MTT assay Methods 0.000 description 2
- 229910008045 Si-Si Inorganic materials 0.000 description 2
- 229910006411 Si—Si Inorganic materials 0.000 description 2
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 230000030741 antigen processing and presentation Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000004700 cellular uptake Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008045 co-localization Effects 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 238000009795 derivation Methods 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 238000004945 emulsification Methods 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 239000012737 fresh medium Substances 0.000 description 2
- 238000011194 good manufacturing practice Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 239000002114 nanocomposite Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000003642 reactive oxygen metabolite Substances 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 229960005322 streptomycin Drugs 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- VTHOKNTVYKTUPI-UHFFFAOYSA-N triethoxy-[3-(3-triethoxysilylpropyltetrasulfanyl)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCSSSSCCC[Si](OCC)(OCC)OCC VTHOKNTVYKTUPI-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000001262 western blot Methods 0.000 description 2
- PRDFBSVERLRRMY-UHFFFAOYSA-N 2'-(4-ethoxyphenyl)-5-(4-methylpiperazin-1-yl)-2,5'-bibenzimidazole Chemical compound C1=CC(OCC)=CC=C1C1=NC2=CC=C(C=3NC4=CC(=CC=C4N=3)N3CCN(C)CC3)C=C2N1 PRDFBSVERLRRMY-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- OXYZDRAJMHGSMW-UHFFFAOYSA-N 3-chloropropyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)CCCCl OXYZDRAJMHGSMW-UHFFFAOYSA-N 0.000 description 1
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- 206010003497 Asphyxia Diseases 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Polymers C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- 238000009020 BCA Protein Assay Kit Methods 0.000 description 1
- 238000010152 Bonferroni least significant difference Methods 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 208000001333 Colorectal Neoplasms Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004457 Granulocyte-Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 108091008036 Immune checkpoint proteins Proteins 0.000 description 1
- 102000037982 Immune checkpoint proteins Human genes 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 241000452638 Parasaissetia nigra Species 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 230000006044 T cell activation Effects 0.000 description 1
- 230000005867 T cell response Effects 0.000 description 1
- COQLPRJCUIATTQ-UHFFFAOYSA-N Uranyl acetate Chemical compound O.O.O=[U]=O.CC(O)=O.CC(O)=O COQLPRJCUIATTQ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000001857 anti-mycotic effect Effects 0.000 description 1
- 239000002543 antimycotic Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 239000002977 biomimetic material Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000002619 cancer immunotherapy Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 210000002390 cell membrane structure Anatomy 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000000139 costimulatory effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 238000002784 cytotoxicity assay Methods 0.000 description 1
- 231100000263 cytotoxicity test Toxicity 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- XIMIGUBYDJDCKI-UHFFFAOYSA-N diselenium Chemical compound [Se]=[Se] XIMIGUBYDJDCKI-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000001476 gene delivery Methods 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- DCPMPXBYPZGNDC-UHFFFAOYSA-N hydron;methanediimine;chloride Chemical compound Cl.N=C=N DCPMPXBYPZGNDC-UHFFFAOYSA-N 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 230000001024 immunotherapeutic effect Effects 0.000 description 1
- 238000009169 immunotherapy Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 210000003292 kidney cell Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 201000007270 liver cancer Diseases 0.000 description 1
- 208000014018 liver neoplasm Diseases 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000000409 membrane extraction Methods 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- VMGAPWLDMVPYIA-HIDZBRGKSA-N n'-amino-n-iminomethanimidamide Chemical compound N\N=C\N=N VMGAPWLDMVPYIA-HIDZBRGKSA-N 0.000 description 1
- 239000002539 nanocarrier Substances 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000011275 oncology therapy Methods 0.000 description 1
- 238000001543 one-way ANOVA Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 229920000867 polyelectrolyte Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 235000019624 protein content Nutrition 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- BOLDJAUMGUJJKM-LSDHHAIUSA-N renifolin D Natural products CC(=C)[C@@H]1Cc2c(O)c(O)ccc2[C@H]1CC(=O)c3ccc(O)cc3O BOLDJAUMGUJJKM-LSDHHAIUSA-N 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000000822 sequential centrifugation Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000004988 splenocyte Anatomy 0.000 description 1
- 238000013097 stability assessment Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Natural products CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000037455 tumor specific immune response Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/5005—Wall or coating material
- A61K9/5063—Compounds of unknown constitution, e.g. material from plants or animals
- A61K9/5068—Cell membranes or bacterial membranes enclosing drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
- A61K39/0011—Cancer antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/461—Cellular immunotherapy characterised by the cell type used
- A61K39/4615—Dendritic cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/462—Cellular immunotherapy characterized by the effect or the function of the cells
- A61K39/4622—Antigen presenting cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/46—Cellular immunotherapy
- A61K39/464—Cellular immunotherapy characterised by the antigen targeted or presented
- A61K39/4643—Vertebrate antigens
- A61K39/4644—Cancer antigens
- A61K39/46449—Melanoma antigens
- A61K39/464492—Glycoprotein 100 [Gp100]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/54—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
- A61K47/549—Sugars, nucleosides, nucleotides or nucleic acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/69—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
- A61K47/6921—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
- A61K47/6923—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
- B01J13/06—Making microcapsules or microballoons by phase separation
- B01J13/10—Complex coacervation, i.e. interaction of oppositely charged particles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/60—Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
Definitions
- the present subject matter relates to a method for synthesizing cell membrane-biomimetic therapeutics, and particularly, to a method for synthesizing cell membrane-biomimetic therapeutics using flash nanocomplexation.
- Biomimetic strategies are useful for designing therapeutic delivery systems that can negotiate biological barriers. Size reduction, colloidal stability, particle protection, and enhanced permeability and retention (EPR) properties in one or more dimensions are practical considerations in preparing nanoparticles for efficient diagnostic and therapeutic applications.
- EPR enhanced permeability and retention
- Cell membrane-coating of therapeutic nanoparticles is a promising biomimetic strategy.
- Cell membrane coating technology integrates the biological features of cell membranes with the functional versatility of nanomaterials. Production involves coating synthetic nanoparticle backbone materials with a naturally-derived cell membrane layer to form a biomimicking ensemble.
- These nano therapeutics have shown advantageous physical properties such as improved stability and longer circulation times, and intrinsic functionalities inherited from the donor cell source such as toxin neutralization, homologous targeting, and immune invasion.
- producing regulatory agency-approved cell membrane-coated nanomaterials requires a high level of manufacturing sophistication.
- Conventional approaches to fabricating cell membrane-coated nanomaterials rely on two main strategies: extrusion and sonication.
- a method for synthesizing a cell membrane-loaded particle can include coating core paticles with cell membrane materials using flash nanocomplexation (FNC).
- FNC is a turbulent mixing and self-assembly method that can produce cell membrane-coated particles in a reproducible and scalable manner.
- the FNC-produced cell membrane-coated particles demonstrate lower aggregation, polydispersity, and zeta potential, than particles prepared by conventional coating methods, such as conventional bulk-sonication.
- the present method achieves more complete and homogeneous coating than conventional bulk-sonication methods.
- FNC cell membrane coating is effective even on cationic particles, which cannot be achieved using sonication methods.
- the FNC-fabricated nanovaccines demonstrate better performance on lymph node targeting, DC antigen presentation, T cell immune-activation, and prophylactic and therapeutic efficacy in melanoma when combined with anti-CTLA-4. Accordingly, FNC represents a universal, robust, and scalable tool that can be used for the manufacturing of cell membrane-based biomimetic nanomedicine.
- a method of using flash nanocomplexation to prepare a cell membrane- loaded particle can include loading a cell membrane material and a core particle into a confined mixing cavity and turbulent mixing of the cell membrane material and the core particle in the mixing cavity to provide the cell membrane-cloaked particles.
- the turbulent mixing achieves a turbulent intershearing flow in the confined cavity.
- the confined cavity includes a multi-inlet vortex mixer.
- a flow rate in the multi inlet vortex mixer ranges from about 5 mL/min to about 40 mL/min.
- Figs. 1A-1F depict A) a schematic illustration of FNC cell membrane coating; B) a comparison of FNC and bulk sonication methods on PDI and stability of membrane-coated nanoparticles; C) characterization of membrane-coated MSNs using different membrane-to-MSN ratios in terms of size and PDI; D) characterization of membrane-coated MSNs using different membrane-to-MSN ratios in terms of size Zeta potential; E) images of multi-inlet vortex mixer (MIVM) and vials containing total of 40 mF B16-F10 membrane-coated MSNs at 0.5 mg/mF as well as their lyophilized product; F) Total flow rate and production rate for cell membrane-coated MSN using FNC at different Reynolds numbers.
- MIVM multi-inlet vortex mixer
- Fig. 2 depicts SEM images of bare cores and cell membrane-coated particles produced using FNC.
- Fig. 3 depicts TEM images of bare cores and cell membrane-coated particles produced using FNC
- Figs. 4A-4D depict A) size and PDI of raw membrane-coated MSN-Se-Se NPs; B)size and PDI of of raw membrane-coated MSN-Se-Se-NFb NPs; C) size and Zeta of raw membrane-coated MSN-Se-Se NPs; and D) size and Zeta potential of raw membrane-coated MSN-Se-Se-NFb NPs, produced using bulk sonication or FNC methods.
- Figs. 5A-5D depict A) size and PDI of MCF membrane- coated PFGA NPs; B) size and PDI of HepG2 membrane-coated PEI-plasmid NPs, produced by bulk sonication or FNC methods; C) size and Zeta potential of MCF membrane- coated PFGA NPs; and D) Zeta potential of HepG2 membrane-coated PEI-plasmid NPs, produced by bulk sonication or FNC methods.
- Fig. 8 depicts SDS-PAGE protein analysis of MSN-CpG@CM produced using bulk sonication or FNC methods.
- Fig. 9 depicts CpG release behavior of MSN-CpG@CM produced using FNC in IX PBS or 5xl0 3 M GSH or lxlO 4 M H 2 0 2 for 48 h.
- MSN- CpG group Fluorescence imaging of popliteal lymph node at indicated time points after footpad injection of free CpG, naked MSN-CpG, or MSN-CpG@CM produced using bulk sonication or FNC methods; D) Quantitation of fluorescence intensity from Cy5.5-labeled CpG in the popliteal lymph node; and E) Uptake of Cy5.5-labeled MSN-CpG@CM by DCs and macrophages in the lymph node at 24 h after injection.
- Figs. 13A-13D relate to APCs were incubated with nanovaccines or various control formulations and depict A) Quantification of DC maturation markers CD40, CD80, CD86 in vitro;
- Data represent mean ⁇ SD ( /; ⁇ ().05 vs. CpG group, # p ⁇ 0.05 vs. MSN-CpG group, & p ⁇ 0.05 vs. bulk MSN-CpG@CM group).
- Figs. 15A-15B depict secretion of A) IL-6 in DCs isolated from popliteal lymph nodes after vaccination with nanovaccines or control formulations; and B) IL-12 in DCs isolated from popliteal lymph nodes after vaccination with nanovaccines or control formulations.
- a method for synthesizing cell membrane-cloaked particles can include coating core paticles with cell membrane materials using flash nanocomplexation (FNC).
- FNC is a turbulent mixing and self-assembly method that can produce cell membrane-coated nano therapeutics in a reproducible and scalable manner.
- FNC can induce electrostatic interactions which rapidly homogenize the charged core paticles with the negatively charged cell membrane materials to achieve a uniform coating of the core paticles.
- the turbulent mixing generally involves continuous rapid mixing in a confined space and can be associated with a Reynolds number that is larger than 1600. The continous mixing achieves homogeneity and consistency of the product particles.
- flash self-assembly provides better control of particle size and better reproducibility, scalability, and throughput capacity.
- FNC is a kinetically controlled mixing process which exploits polyelectrolyte complexation-induced phase separation.
- the nanocomposites can undergo self-assembly via physical interactions such as electrostatic interactions and hydrogen bonding, and are formed within milliseconds or microseconds in flash mixers.
- the fluid dynamics of the flash mixers can be turbulent. In other words, the interaction of the liquid solutions can be robust within the mixer for better flow convection, allowing rapid, homogenous, and effective mixing for reactions.
- the method can include loading a cell membrane material and a core particle into a confined mixing cavity and turbulent mixing of the cell membrane material and the core particle in the cavity to provide the cell membrane-cloaked particles.
- the turbulent mixing can achieve a turbulent intershearing flow in the confined cavity.
- Turbulent flow refers to a high dynamic flow (e.g., non-laminar flow) that renders a mixing profile with a high Reynold number.
- One of the characteristics of the turbulent flow is an intershearing flow or turbulent intershearing flow which facilitates efficient mixing and diffusion for achieving homogeneous mixing of materials.
- the method can provide coated particles having a coating thickness ranging from about 5 nm to about 20 nm.
- the present method can be used to coat positively charged nanoparticles.
- the flash-based cell membrane coating is a superior biomimetic preparation platform to standardize the membrane-coating protocol and to meet clinical translation requirements.
- the method can be used for synthesizing vaccines, drug and gene delivery, as well as a wide range of other applications.
- the core paticles can include at least one of nanoparticles and microparticles.
- the core paticles can include, for example, silica particles, biodegradable polymer particles, DNA-polymer polyplex particles, and chemotherapeutic nanocrystals.
- the polymer can include, for example, poly(lactic-co-glycolic acid) (PLGA) and polyethyleneimine (PEI)-plasmid.
- PLGA poly(lactic-co-glycolic acid)
- PEI polyethyleneimine
- the core particles range in size from about 50 nm to about 2 pm with surface charge of the core particles varying from about -50 mV to about +50 mV.
- the core particles can be loaded with an adjuvant.
- the cell membrane coating materials can be from any suitable cell line.
- the cell membrane coating materials can include cell membrane fragments obtained from cancer cells, non-immune cells, and immune cells.
- Exemplary cell lines from which the cell membrane fragments can be obtained include, for example, CaCo-2, HepG2, MCF-7, RAW 264.7, HEK, HeLa, HITC, B16- F10, RBC, MSC.
- the cell membrane material can include a tumor-associated antigen.
- An embodiment of the present teachings is directed to a biomimetic vaccine comprising the cell membrane-cloaked particles prepared according to the present methods.
- the biomimetic vaccine can including a core particle cloaked with a cell membrane material including a tumor- associated antigen.
- the core particle can be loaded with an adjuvant.
- the core particle comprises a mesoprous silica nanoparticle (MSN).
- the adjuvant is CpG.
- the cell membrane material and the core paticles can be loaded in a confined mixing cavity.
- the confined mixing cavity can include a multi-inlet vortex mixer (MIVM).
- the core paticles can be selected from mesoporous silica nanoparticles (MSNs) and silica dioxide microparticles.
- the MSNs can be modified with an amine group to endow the MSNs with a positive surface charge.
- the MIVM comprises 4 inlets. Turbulent mixing of the cell membrane material and the core paticles can be performed to achieve a flow rate in each inlet ranging from about 5 mL/min to about 40 mL/min.
- the mass ratio of the cell membrane to core particle can range from about 0.1 to about 100 for coating optimization.
- the cell membrane material and the core paticles can be mixed at a high Reynold number, e.g., typically larger than 1600, which constitutes highly turbulent mixing, in the confined mixing cavity at room temperature to achieve a well-controlled cell membrane cloaked particle or coated particle.
- the coated particle can have a coating thickness ranging from about 5 nm to about 20 nm, depending on the flow rate and mass ratio used, and the polydispersity can be lower than 0.2.
- the coated particles can have a relatively high colloidal stability.
- FNC exploits the dynamic mixing of nanocomposites that undergo self-assembly via physical forces such as electrostatic interactions, whereby charged nanomaterials assemble to form nanoparticles (NPs) or to modify a NP or microparticle surface.
- FNC can be used for mixing the cell membrane fragments and synthetic backbone materials for the robust and scalable production of cell membrane-coated paricles.
- Uniform coated nanoparticles can be fabricated using FNC by optimizing the cell membrane/NP mixing ratio, flow rate, and composition. For example, the flow rate and mass ratios of the different mixes can be varied.
- a significant driving force of the present method is the electrostatic interactions induced by FNC.
- the electrostatic interactions rapidly homogenize the negatively charged cell membrane with the disparate charged nanoparticle core. Coating of the particle core is achieved while the cell membrane fragments self-assemble and land onto the outer surface of the particle uniformly. It should be noted that homogeneous cell membrane coating on a positively charged nanoparticle surface has not previously been reported.
- the present method can standardize the otherwise unpredictable process of membrane coating of drug nanoparticles, increasing the reliability of cell-targeted drug delivery.
- the potency of flash-based membrane coating (FNC) method was compared with bulk sonication, a conventional method for cell membrane coating.
- the FNC- produced cell membrane-coated nanoparticles demonstrate lower aggregation, polydispersity, and zeta potential, than nanoparticles prepared by bulk-sonication.
- Mesoporous silica nanoparticles (MSN) were modified with an amine group to endow the MSNs a positive surface charge.
- FNC-based cell-membrane coating of positively charged MSNs has a wider coating ratio range (membrane to core) than the bulk-sonication method.
- the present method achieves more complete and homogeneous coating than conventional bulk-sonication methods.
- turbulent mixing of the cell membrane fragments and the core paticles can be conducted in a mixing microchamber or other confined cavity.
- a multi-inlet vortex mixer MIVM
- the inlet jets of the MIVM can produce kinetic energy which can transport cell membrane fragments and synthetic backbone materials into regions of small turbulent eddies and intershearing layers for better flow convection and hence faster coating.
- the mixing ratio and flow rate can then be optimized to produce a uniform coating.
- the turbulent mixing can have a Reynold number larger than 1600.
- the cell membrane fragments can be evenly distributed around the particle for homogeneous coating because the mixing time ( t mixing ), during which cell membrane fragments and core particles are mixed homogenously, can be much shorter than the interacting time (i coatin g) between the cell membrane fragments and the core particles. Since the cell membrane material and nanoparticles are introduced to the flow chamber by different FNC inlets, the cell membrane fragments can be distributed around the nanoparticle evenly before they electrostatically interact with the nanoparticle surface.
- the method can be used for coating a variety of core particles with cell membranes.
- the method can be used to coat cationic particles, for example.
- the method can be used to prepare nanovaccines.
- the method can produce cancer nanovaccines, such as B16-F10 cancer cell membrane-coated mesoporous silica nanoparticles (MSNs) loaded with the adjuvant CpG.
- MSNs cancer cell membrane-coated mesoporous silica nanoparticles
- the FNC cell membrane coating process relies on electrostatic interactions between cell membrane fragments and core materials to form “right- side-out” membrane-coated products.
- the “right- side-out” orientation refers to an orientation in which the membrane-bound proteins are still exposed on the outside after membrane coating.
- the mixing time ( ⁇ mixing ) within which cell membrane fragments and backbone materials are mixed homogenously, was much larger than the interacting time (i coatin g).
- Fig. 1A shows coating outcomes of both FNC and sonication approaches for coating nanoparticles using different nanoparticle core materials and cell membrane types.
- PLGA poly(lactic-co-glycolic acid)
- PEI polyethyleneimine
- silica particles were used to obtain the cell membrane coating materials.
- the core-shell structure of the resulting cell membrane-coated particles was confirmed using electron microscopy (Figs. 2 and 3). Increases in particle size and surface charge were measured using dynamic light scattering (DLS) (Figs. 4A-4D and 5A-5D).
- Fig. IB shows a plot of size change of various particles immediately after coating versus change at two weeks after coating and sitting in water. A remarkable difference in membrane coating homogeneity and in particle stability between the products of the two methods was demonstrated. Across a spectrum of NPs of cell membranes, FNC products showed a smaller size change and better particle colloidal stability than the bulk- sonication products. Specifically, for many of the MSN subtypes and PLGA nanoparticles, the aggregation seen at day 14 was significantly reduced. The lower polydispersity index (PDI) for FNC products immediately after coating demonstrated a more complete coating. In the sonication method, ultrasound wave-energy pulverizes the cell membrane structure, and membrane fragments re-assemble around the nanoparticle backbone.
- PDI polydispersity index
- Such coating protocol is not standardized for bulk containers because the sonication power-frequency is not balanced or optimized, and the quantity of cell membrane charge over the backbone surface is not well-controlled. While electrostatic interactions are the driving force in both approaches, the FNC method achieves ultra-fast and homogeneous coating by using turbulent mixing, including turbulent intershearing flow in the microchamber. This dynamic mixing is more effective than sonication in breaking cell membranes into small fragments and mixing the components to achieve even coating.
- FNC products showed excellent dispersion (low PDI) at nearly all membrane/MSN ratios (Fig. 1C), while sonication products showed significantly higher PDI values.
- FNC also yielded better nanoparticle charge conversion than sonication, which suggests a more complete cell- membrane coating (Fig. ID).
- the surface charge of a completely coated nanoparticle resembles the intrinsic charge of cell-membrane vesicles, whereas incomplete coating partially reveals the charge of nanoparticles and neutralizes the zeta potential.
- the membrane-coated MSNs ⁇ 200 nm diameter also showed better colloidal stability in serum-containing solutions when produced with FNC than with sonication (Figs. 6A-B).
- Cancer vaccines can be created by combining tumor-associated antigens and immune-activating adjuvants.
- the presentation of tumor-associated antigens on cancer cell membrane-coated backbone materials together with delivery of adjuvants such as CpG can generate tumor- specific immune responses and lymph node targeting.
- the present inventors previously fabricated multiple stimuli-responsive and biodegradable diselenide-bridged MSNs for efficient delivery of biomacromolecules for cancer therapy.
- a biomimetic vaccine (MSN-CpG@CM) was synthesized by coating large-pore MSNs loaded with the adjuvant CpG with cancer cell membrane fragments containing tumor- specific antigens (Fig.
- CpG 1826 was encapsulated in amine-modified MSNs (MSN-NFb) for maximum loading.
- MSN-NFb amine-modified MSNs
- B16-F10 mouse melanoma cell membranes were selected for the coating.
- the FNC and bulk mixing/sonication approaches were systematically compared to determine whether they were capable of scalable production of these biomimetic cancer vaccines, and their therapeutic efficacy was evaluated in vitro and in vivo.
- CpG-loaded MSNs were coated with B16-F10 cell membrane fragments using the FNC platform with a turbulent MIVM micromixer and using bulk sonication.
- a membrane-to-NP mass ratio of 2:1 was selected since this value is often reported as the optimal ratio for cell membrane coating.
- the surface morphologies of the CpG-loaded MSNs before coating (MSN-CpG) and after coating (MSN-CpG@CM) using the two methods are shown in TEM images (Fig. 7B).
- the tumor- associated antigen gplOO is specific for targeting melanoma in drug and vaccines.
- the presence of gplOO in the membrane coating of the MSN-CpG@CM particles was confirmed by Western blot (Fig. 7C).
- MSN-CpG@CM at ⁇ 50 pg/mL showed no significant cytotoxicity using two types of antigen-presenting cells (APCs) (Figs. 10A- 10B).
- a high degree of intracellular colocalization of CpG-loaded MSNs and cancer cell membrane proteins were observed in endosomes/lysosomes after 3 h of uptake (Figs. 11 A-l IE), further verifying the structural integrity and stability of the MSN-CpG@CM.
- the uptake of MSN-CpG@CM by bone marrow-derived dendritic cells (BMDCs) was then investigated (Fig. 11B).
- MSN-CpG@CM prepared using either FNC or bulk sonication
- MSN-CpG@CM were then injected into mice via the foot pad, and nanovaccines were observed in the popliteal lymph node after 1 h of administration.
- the fluorescence signal from dye-labelled CpG peaked at 12 h after injection, and started to decrease at 24 h (Fig. 11C). Quantification of mean fluorescence intensity of free CpG, naked MSN-CpG, and MSN-CpG@CM in the lymph node confirmed this observation (Fig. 11D).
- the immunostimulatory effect of MSN-CpG@CM was characterized by assessing DC maturation and the generation of antigen- specific T cells.
- DC maturation was assessed by measuring the expression of the costimulatory markers CD80, CD40, and CD86.
- the secretion of TNF-a, IL-6, and IL-12 from APCs were also determined in vitro (Figs. 13A-13D).
- CpG alone and MSN-CpG induced less potent DC maturation than MSN-CpG@CM (Fig. 14A).
- MSN-CpG@CM produced using FNC induced greater DC maturation and secretion of IL-6 and IL-12 than MSN-CpG@CM produced using sonication (Fig.
- APCs responses, specific immune activation, and prophylactic tumor growth inhibition in vivo were evaluated using a 16-F10 murine model (Figs. 14C-14D). Mice were vaccinated using different nanoformulations and tumor growth was monitored for up to 40 days. MSN-CpG and free CpG had no significant protective benefit, consistent with previous studies; both treatments showed a median survival of 29 d, similar to the median 26.5 d survival for the negative control. Both FNC- and sonication-produced MSN-CpG@CM groups showed tumor growth inhibition, but the FNC-produced vaccine had a much greater inhibitory effect and longer survival (Figs. 16A- 16B).
- Performance of the MSN-CpG@CM was assessd with and without the immune checkpoint blocking antibody anti-CTLA-4. Without anti-CTLA-4, the median survival was extended from 18 d for the blank control group to 34 d for the bulk sonication MSN-CpG@CM group and 38 d for the FNC MSN-CpG@CM group (Figs. 14C and 14E). With anti-CTLA-4, the median survival was over 150 days for both FNC and sonication MSN-CpG@CM groups, indicating that combined immunotherapy produced synergistic antitumor effects. The combined therapy using FNC- produced nanovaccines with anti-CTLA-4 had the strongest antitumor effect (Figs. 17A-17B).
- the present methods provide a nanoformulation platform for fabricating diverse cell membrane-based biomimetic NPs in a facile, reproducible, and scalable manner.
- the FNC platform leverages dynamic turbulent mixing to homogeneously blend and uniformly distribute cell membrane fragments around NP surfaces.
- FNC can be used to coat both negatively- and positively-charged particles with cell membranes.
- the FNC method may enable standardization of the cell-membrane coating process for clinical translation.
- FNC-produced MSNs loaded with CpG adjuvant and coated with a cancer cell membrane exhibited enhanced accumulation in lymph nodes and immune activation, and greater tumor growth inhibition alone and in combination treatment with the immune checkpoint-blocking antibody anti-CTLA-4 in an in vivo melanoma model.
- High-throughput manufacturing of nanomedicine can pose a challenge for clinical and industrial translation.
- the cell membrane-coating method described herein addresses this challenge.
- the advantages of FNC include (1) automation, using an easy-to-transfer protocol; (2) reproducibility, reducing batch-to- batch variation; (3) user-friendliness, obviating training requirement, and (4) scalable manufacturing, facilitating clinical and industrial translation.
- Tetraethyl orthosilicate TEOS
- BTESPT bis[3-(triethoxysilyl)propyl]tetrasulfide
- CP g- chloropropyl trimethoxysilane
- APTES 3-aminopropyltriethoxysilane
- CAT etyltrimethylammonium tosylate
- TEAH3 triethanolamine
- TAA triethanolamine
- FITC fluorescein isothiocyanate
- Hoechst 33343 bisbenzimide H-33343 trihydrochloride was purchased from VWR. LysoTracker Red DND-99 and Vybrant DiD Cell-Labeling Solution (V22887) were purchased from Thermo Fisher Scientific. ODN 1826-TLR9 ligand and ODN 1926 FITC were purchased from InvivoGen.
- Anionic and cationic MSN-Si with an average NP diameter of 80-100 nm
- anionic and cation MSN-Se with an average NP diameter of 80-100 nm
- S1O2 microparticles with sizes of 1 pm and 2 pm
- GFP plasmid-PEI NPs and PLGA NPs were selected for membrane coating. All types of MSN (e.g., Si-Si and Se-Se, disulfide and diselenide bridged MSN, respectively) with different pore sizes were synthesized in the lab using previously described methods.
- CpG-MSN solution was placed on a shaker with 200 rpm. At each timepoint, the solution was centrifuged and the supernatant was analyzed by UV- Vis.
- PLGA NPs were prepared by flash nanoprecipitation method as previously reported using a two-inlet confine impingement jet mixer (CIJ).
- GFP-PEI nano-polyplexes were fabricated as previously described.
- CIJ mixer was designed according to literature and fabricated in Columbia University Biomedical Engineering machine shop.
- a four-stream multi-inlet vortex mixer (MIVM) was manufactured according to the literature.
- FNC-based cell membrane coating was achieved in the manufactured four-stream MIVM.
- B16-F10 cell membrane to MSNs ratio of 0.5 and 1 were prepared.
- Cell membrane and CpG-MSN were introduced into the MIVM respectively.
- a total of 120 mF/min flow rate was applied to prepare membrane-coated nanoparticles.
- Infusion/withdrawal PHD UFTRA 4400 pumps were obtained from Harvard Apparatus.
- MIVM multi-inlet vortex mixer
- CaCo-2, HepG2, HEK 293 cell-membranes were exploited to coat MSNs (small pore), MSNs (big pore) and silica dioxide microparticles respectively, with the membrane/particle mass ratio of 1.
- CaCo-2 membrane was used to coat PEI-DNA nanocomplexes with the membrane/particle mass ratio of 1.
- RAW264.7 and B 16-F10 membrane were applied with different membrane/MSN mass ratios.
- Four different operators without sufficient training on cell-membrane coating performed the MSNs coating experiment comparing the FNC to the bulk sonication method.
- the flow rate in each inlet was maintained within a range of 5-40 mL/min.
- the mass ratio of the cell membrane to nanoparticle varied from 0.1 to 100 for coating optimization. Coating was achieved by mixing the membrane and “nano-core”under high fluidic dynamic profile in the confined mixing cavity at room temperature.
- the typical coating thickness ranged from 5 to 20 nm, depending on the flow rate and mass ratio used, and the polydispersity was basically lower than 0.2, suggesting relatively high colloidal stability.
- the resulting micelle was stable in the serum-containing environment, such as complete cell culture medium.
- B 16-F10 membrane was used for all in vitro and in vivo studies with the initial final-product concentration of 0.5 mg/mL. The efflux was collected and allowed to settle before further coating characterization.
- NPs coated using the bulk sonication method equal volumes of cell membrane vesicles and core paticles were mixed, pipetted, and sonicated in 15 mL Falcon tubes in a Branson Ultrasonic Bath sonicator at 42 kHz and 100 W for 2 min. The surface zeta potential of naked and membrane-coated particles was examined by DLS using a Malvern Zetasizer.
- PLGA NPs DLS was used to compare the size difference of bare PLGA NPs that were fabricated using double-emulsion method to the ones prepared using FNP
- the size and zeta potential of MCF membrane-coated PLGA NPs using bulk- sonication and FNC were also evaluated by DLS.
- To test the stability of naked and membrane-coated MSNs particles were stored for two weeks and measured by DLS every other day. Specifically, MSN-CpG@CM NPs were tested in 10% serum- containing media for the two-week stability assessment. The NPs solution concentration was 100 pg/mL.
- TEM characterization samples were prepared and dried onto a carbon-coated copper grid.
- Membrane-coated PLGA NPs were stained with uranyl acetate before TEM imaging. Identification of gplOO tumor antigen was performed by Western blotting.
- B16-F10 mouse melanoma cells (CRL-6457; American Type Culture Collection), RAW 264.7 mouse macrophage cells (TIB-711; American Type Culture Collection), HepG2 human liver cancer cells (HB-8065; American Type Culture Collection), Caco-2 human epithelial colorectal cancer cells (HTB-37; American Type Culture Collection), HCT-116 human colon cancer cells (CCL-247; American Type Culture Collection), and HEK 293 human embryonic 5 kidney cells (CRL-1573) were cultured for cell membrane derivation. Cells were cultured in DMEM media with 10% fetal bovine serum (Gibco) and 100 U penicillin-streptomycin.
- DMEM media 10% fetal bovine serum (Gibco) and 100 U penicillin-streptomycin.
- BMDCs BMDCs
- Healthy mice were euthanized using carbon dioxide asphyxiation followed by cervical dislocation. Both femurs were dissected, cleaned in 75% ethanol, and cut on both ends. Bone marrow was then flushed out of the bone with a 1 mL sterile syringe using warm DMEM media including 10% fetal bovine serum (Gibco) and 100 U penicillin- streptomycin.
- BMDC growth media including the basal media further supplemented with 20 ng/mL granulocyte/macrophage-colony stimulating factor (GM-CSF; Protech), to a concentration of lxlO 6 cells/mL, and plated into petri plates at 2xl0 6 cells per plate. Media were half-changed every two days.
- GM-CSF granulocyte/macrophage-colony stimulating factor
- the cytotoxicity of MSN, MSN-CpG and MSN-CpG@CMs in the RAW264.7 or BMDC were assessed using an MTT assay.
- BMDCs were collected on day 5 and plated into 24-well suspension plates. FAM-labeled CpG, MSN-CpG and MSN-CpG@CMs were added at an equivalent CpG concentration of 5 pg/mL. After 3 h incubation, the cells were washed and stained with DAPI and LysoTracker Red. 15 min later, cells were imaged by using a laser scanning confocal microscopy (CLSM). For flow cytometry, cells were collected, washed twice in PBS, and resuspended in 200 pF of 10% PBS. The cell suspension was analyzed using BD Accuri C6 plus flow cytometer. Collected data were analyzed by FlowJo software.
- CLSM laser scanning confocal microscopy
- BMDCs were collected on day 5, and 3xl0 6 BMDCs were plated into 6-well suspension plates in BMDC growth media. Cells were pulsed with materials for 12 h at 5 pg/mF CpG, then washed twice with fresh media. After an additional 48 h of culture, cell supernatants were collected and cytokine content was analyzed using IF-6 and IF- 12 EFISA kits. The cells were then collected and washed twice. Cells were stained with FITC-conjugated anti-mouse CD 11c and APC-conjugated anti-mouse CD40, CD80 or CD86.
- Appropriate dye-labeled antibody isotypes (Biolegend) were used for gating purposes with cells from an untreated lymph node. Data were collected using a BD FACSCelesta flow cytometer and analyzed using FlowJo software. RAW264.7 cells were plated into 6-well suspension plates at 5x10 s cells/well and pulsed with materials for 24 h at 5 pg/mL CpG, then cell supernatants were collected and cytokine content was analyzed using TNF-a ELISA kits.
- mice All animals received care in compliance with the guidelines outlined in the Guide for the Care and Use of Laboratory Animals, and the procedures were approved by the South China University of Technology Animal Care and Use Committee.
- Female C57BL/6J mice were obtained at 6-10 weeks old from Hunan SJA Laboratory Animal Co., LTD.
- Dendritic cell activation following immunization with CpG, MSN-CpG, and MSN- CpG@CMs was determined by testing DC maturation and lymph node cytokine secretion.
- 20 pL of each material was injected into the hock.
- the popliteal lymph nodes of all treated mice were collected into 500 pL dissociation buffer and manually dissociated.
- Cells were stained using PE antimouse CDllc with either APC-conjugated antimouse CD40 (124611; Biolegend), CD80 (104713; Biolegend), or CD86 (105011; Biolegend).
- lymph node-derived single cell suspensions were plated with 500 pL of BMDC growth media in 24-well tissue culture plates. After 48 h, supernatant was collected and analyzed for cytokine content using IL-6 and IL-12 ELISA kits.
- C57BL/6J mice were vaccinated subcutaneously with 20 pL of the different materials in each hock on days 0, 2, and 4. On day 10, spleens were collected and processed into single cell suspensions. After red blood cells lysis, 5xl0 6 splenocytes were plated into 6-well suspension plates and pulsed with 1 pg/mL of mouse gplOO peptide with sequence EGSRNQDWL in BMDC growth media. After 7 days, cells were collected, washed in PBS, and stained with APC-conjugated anti-mouse 8 CD8a and phycoerythrin (PE)- labeled H-2Db gplOO tetramer. Data were collected using a BD FACSCelesta flow cytometer and analyzed using FlowJo software.
- PE phycoerythrin
- mice were vaccinated with 100 pL of the different materials at 0.1 mg/mL of CpG or equivalent, on days -21, -14, and -7.
- the checkpoint blockade cocktail consisting of 100 pg anti-CTLA4 (BP0164; BioXCell) was administered intraperitoneally on the same days. Tumors were measured every other day and the experimental endpoint was defined as either death or tumor size greater than 2000 mm 2 .
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Cell Biology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Dispersion Chemistry (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Virology (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Botany (AREA)
- Biochemistry (AREA)
- Medicinal Preparation (AREA)
Abstract
L'invention concerne un procédé de synthèse de produits nanothérapeutiques biomimétiques de membrane cellulaire qui peut comprendre le revêtement de particules de noyau avec des matériaux de membrane cellulaire à l'aide de nanocomplexation flash (FNC). Le FNC est un procédé de mélange turbulent et d'auto-assemblage qui peut produire des produits nanothérapeutiques revêtus de membrane cellulaire d'une manière reproductible et évolutive. Les particules revêtues de membrane cellulaire produites par FNC démontrent une agrégation, une polydispersité et un potentiel zêta inférieurs à ceux des nanoparticules préparées par des procédés de revêtement classiques, tels que la sonication en masse classique. Ainsi, le présent procédé permet d'obtenir un revêtement plus complet, homogène et contrôlable que les procédés classiques de sonication en masse.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/887,341 US20220378888A1 (en) | 2020-02-14 | 2022-08-12 | Scalable and facile cell-membrane-coating technology for both positively and negatively charged particles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US202062976865P | 2020-02-14 | 2020-02-14 | |
US62/976,865 | 2020-02-14 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/887,341 Continuation US20220378888A1 (en) | 2020-02-14 | 2022-08-12 | Scalable and facile cell-membrane-coating technology for both positively and negatively charged particles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021163455A1 true WO2021163455A1 (fr) | 2021-08-19 |
Family
ID=77292701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2021/017823 WO2021163455A1 (fr) | 2020-02-14 | 2021-02-12 | Technologie de revêtement de membrane cellulaire évolutive et facile à la fois pour des particules chargées positivement et négativement |
Country Status (2)
Country | Link |
---|---|
US (1) | US20220378888A1 (fr) |
WO (1) | WO2021163455A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024137003A1 (fr) * | 2022-12-20 | 2024-06-27 | The Curators Of The University Of Missouri | Procédé évolutif et continu pour préparer des nanoparticules de médicament solide pour une thérapie de maladie oculaire |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060257485A1 (en) * | 2003-03-13 | 2006-11-16 | Eugenia Kumacheva | Method of producing hybrid polymer-inorganic materials |
US20130337066A1 (en) * | 2011-06-02 | 2013-12-19 | The Regents Of The University Of California | Membrane Encapsulated Nanoparticles and Method of Use |
US20180243229A1 (en) * | 2007-11-05 | 2018-08-30 | The Trustees Of Princeton University | Composite flash-precipitated nanoparticles |
-
2021
- 2021-02-12 WO PCT/US2021/017823 patent/WO2021163455A1/fr active Application Filing
-
2022
- 2022-08-12 US US17/887,341 patent/US20220378888A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060257485A1 (en) * | 2003-03-13 | 2006-11-16 | Eugenia Kumacheva | Method of producing hybrid polymer-inorganic materials |
US20180243229A1 (en) * | 2007-11-05 | 2018-08-30 | The Trustees Of Princeton University | Composite flash-precipitated nanoparticles |
US20130337066A1 (en) * | 2011-06-02 | 2013-12-19 | The Regents Of The University Of California | Membrane Encapsulated Nanoparticles and Method of Use |
Non-Patent Citations (1)
Title |
---|
HE ZHIYU, LIU ZHIJIA, TIAN HOUKUAN, HU YIZONG, LIU LIXIN, LEONG KAM W., MAO HAI-QUAN, CHEN YONGMING: "Scalable production of core-shell nanoparticles by flash nanocomplexation to enhance mucosal transport for oral delivery of insulin", NANOSCALE, vol. 10, no. 7, 25 January 2017 (2017-01-25), pages 3307 - 3319, XP055847190, ISSN: 2040-3364, DOI: 10.1039/C7NR08047F * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024137003A1 (fr) * | 2022-12-20 | 2024-06-27 | The Curators Of The University Of Missouri | Procédé évolutif et continu pour préparer des nanoparticules de médicament solide pour une thérapie de maladie oculaire |
Also Published As
Publication number | Publication date |
---|---|
US20220378888A1 (en) | 2022-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ke et al. | Physical and chemical profiles of nanoparticles for lymphatic targeting | |
Soltani et al. | Synthetic and biological vesicular nano-carriers designed for gene delivery | |
Xu et al. | Mannan-decorated pathogen-like polymeric nanoparticles as nanovaccine carriers for eliciting superior anticancer immunity | |
Hu et al. | A versatile and robust platform for the scalable manufacture of biomimetic nanovaccines | |
Li et al. | Redox-sensitive and intrinsically fluorescent photoclick hyaluronic acid nanogels for traceable and targeted delivery of cytochrome c to breast tumor in mice | |
Phua et al. | Messenger RNA (mRNA) nanoparticle tumour vaccination | |
Guo et al. | Engineering polymer nanoparticles using cell membrane coating technology and their application in cancer treatments: Opportunities and challenges | |
Li et al. | Nanovaccines integrating endogenous antigens and pathogenic adjuvants elicit potent antitumor immunity | |
Zoghi et al. | Process variables and design of experiments in liposome and nanoliposome research | |
Zhou et al. | Nano drug delivery system for tumor immunotherapy: next-generation therapeutics | |
Soprano et al. | Biomimetic cell-derived nanocarriers in cancer research | |
CN111346236B (zh) | 负载肿瘤抗原的聚多巴胺纳米粒子及其制备方法与应用 | |
Wang et al. | Lymph node-targeting nanovaccines for cancer immunotherapy | |
US20220378888A1 (en) | Scalable and facile cell-membrane-coating technology for both positively and negatively charged particles | |
Wang et al. | Delivery of nanoparticle antigens to antigen-presenting cells: from extracellular specific targeting to intracellular responsive presentation | |
Parupudi et al. | Nanoparticle technologies: Recent state of the art and emerging opportunities | |
Han et al. | Image-guided in situ cancer vaccination with combination of multi-functional nano-adjuvant and an irreversible electroporation technique | |
Wu et al. | Nanovaccines for cancer immunotherapy: current knowledge and future perspectives | |
Pishavar et al. | Aptamer-functionalized mesenchymal stem cells-derived exosomes for targeted delivery of SN38 to colon cancer cells | |
Desai et al. | Cancer nanovaccines: nanomaterials and clinical perspectives | |
Shah et al. | Lipid‐Based Nanoparticles | |
Yang et al. | Polyethyleneimine-based immunoadjuvants for designing cancer vaccines | |
Kesharwani et al. | Nanoparticle Therapeutics: Production Technologies, Types of Nanoparticles, and Regulatory Aspects | |
Jäger et al. | pH and ROS Responsiveness of Polymersome Nanovaccines for Antigen and Adjuvant Codelivery: An In Vitro and In Vivo Comparison | |
Chen et al. | Promoting inter-/intra-cellular process of nanomedicine through its physicochemical properties optimization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21753296 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21753296 Country of ref document: EP Kind code of ref document: A1 |