WO2021161755A1 - 電駆動システムの制御装置 - Google Patents

電駆動システムの制御装置 Download PDF

Info

Publication number
WO2021161755A1
WO2021161755A1 PCT/JP2021/002050 JP2021002050W WO2021161755A1 WO 2021161755 A1 WO2021161755 A1 WO 2021161755A1 JP 2021002050 W JP2021002050 W JP 2021002050W WO 2021161755 A1 WO2021161755 A1 WO 2021161755A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching element
abnormality
control device
temperature
motor
Prior art date
Application number
PCT/JP2021/002050
Other languages
English (en)
French (fr)
Inventor
友久 佐野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021161755A1 publication Critical patent/WO2021161755A1/ja
Priority to US17/883,865 priority Critical patent/US20220385224A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/25Devices for sensing temperature, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • H02P27/085Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation wherein the PWM mode is adapted on the running conditions of the motor, e.g. the switching frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • This disclosure relates to a control device for an electric drive system.
  • Patent Document 1 in a vehicle drive motor control device having a cooling function, when an abnormality such as a delay in the flow of a cooling medium occurs, the motor output (torque) is set so as to suppress an increase in its own temperature.
  • a motor control device for controlling is disclosed. In such a motor control device, when an abnormality is determined in the cooling function, a torque command value is obtained according to a correction estimated value obtained by adding a positive offset value to the estimated temperature of the cooling medium. As a result, the motor control device suppresses its own temperature rise.
  • an electric drive system having a motor and an inverter circuit is used for various purposes.
  • EDS Electric Drive System
  • electric drive to rotate the rotor blades of manned or unmanned electric aircraft called electric vertical take-off and landing aircraft (eVTOL), the screws of ships, and the wheels of vehicles and trains.
  • eVTOL electric vertical take-off and landing aircraft
  • the system is being used.
  • a moving body on the ground such as a vehicle or a train
  • the method of Patent Document 1 is applied to raise the temperature of the moving body on the premise of limiting the motor output. Can be suppressed.
  • the motor control device of Patent Document 1 consideration is not given to suppressing the temperature rise of the motor control device when the motor output cannot be limited in this way. Therefore, a technique capable of suppressing a temperature rise while suppressing a decrease in motor output is desired.
  • a control device having a motor for rotationally driving a rotary blade, an inverter circuit having a switching element and controlling the motor, and an electric drive system mounted on an air vehicle.
  • the control device detects an abnormality occurrence detection unit that detects the occurrence of a predetermined abnormality, which is at least one of a temperature abnormality of the switching element and an abnormality accompanied by the temperature abnormality, and the predetermined abnormality.
  • a switching element control unit that controls the switching element so as to reduce the loss of the switching element is provided.
  • an abnormality occurrence detection unit that detects the occurrence of a predetermined abnormality, which is at least one of a temperature abnormality of the switching element and an abnormality accompanied by the temperature abnormality, and a predetermined abnormality. Since it is provided with a switching element control unit that controls the switching element so as to reduce the loss of the switching element when detected, the loss of the switching element is reduced when a predetermined abnormality is detected, and the calorific value of the switching element is reduced. It can be reduced. Therefore, it is possible to suppress the temperature rise while suppressing the decrease in the motor output.
  • FIG. 1 is a schematic view showing a configuration of a control device, a battery, and an electric drive system according to an embodiment of the present disclosure.
  • FIG. 2 is a flowchart showing the procedure of the temperature control process.
  • FIG. 3 is an explanatory diagram showing an example of a temperature change of the switching element.
  • FIG. 4 is a schematic view showing the configuration of the control device, the battery, and the electric drive system of the second embodiment.
  • EDS Electric Drive System
  • the control device 10 acquires a temperature from a temperature sensor 42 attached to the switching element 43 included in the EDS 20, and controls the switching element 43 by using these acquired temperatures.
  • the control device 10, the battery 8, and the EDS 20 shown in FIG. 1 are referred to as an air vehicle, for example, an electric vertical take-off and landing aircraft (hereinafter, also referred to as an "eVTOL (electric Vertical Take-Off and Landing aircraft)". ) Is installed.
  • eVTOL is configured as a manned aircraft that is electrically driven and can take off and land vertically.
  • the EDS 20 has a motor 2 and an inverter circuit 4, and is used, for example, to rotationally drive the rotary blades of eVTOL.
  • the motor 2 is composed of a three-phase AC brushless motor, and outputs rotational motion according to the voltage and current supplied from the inverter circuit 4 described later.
  • the motor 2 is not limited to a brushless motor, and may be composed of any kind of motor such as an induction motor or a reluctance motor.
  • the term "motor” has a broad meaning including not only a so-called motor but also a motor generator.
  • the inverter circuit 4 drives the motor 2.
  • the inverter circuit 4 converts the DC voltage supplied from the battery 8 into a three-phase AC voltage and supplies it to the motor 2.
  • the inverter circuit 4 has a total of three legs provided in each of the U phase, the V phase, and the W phase. Each leg has two upper and lower switching circuits 41. That is, the inverter circuit 4 has a total of six switching circuits 41.
  • the DC voltage supplied from the battery 8 to the inverter circuit 4 is smoothed by the capacitor 6.
  • a plurality of switching elements 43 are mounted on the switching circuit 41.
  • a freewheeling diode is connected to each switching element 43.
  • the switching element 43 is composed of a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), but is not limited to the MOSFET and is composed of a power element such as an IGBT (Insulated Gate Bipolar Transistor). May be good.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the control device 10 is composed of a microcomputer having a CPU, a ROM, and a RAM. Such a CPU functions as an abnormality occurrence detection unit 12 and a switching element control unit 14 by executing a control program stored in advance in the ROM. Further, the control device 10 includes a resistance adjusting unit 16.
  • the abnormality occurrence detection unit 12 detects the occurrence of a temperature abnormality in the switching element 43. As will be described later, the abnormality generation detection unit 12 acquires the temperature of the switching element 43 detected by the temperature sensor 42 attached to the switching element 43, and uses the temperature to detect the temperature abnormality of the switching element 43. Detect the occurrence.
  • the temperature sensor 42 includes a temperature sensitive diode. Further, as shown in FIG. 1, the temperature sensor 42 is attached to one of the two switching elements 43 in the V phase.
  • the switching element control unit 14 increases the switching speed of the switching element 43 when it is determined that the temperature of the switching element 43 is equal to or higher than a predetermined threshold value.
  • the switching element control unit 14 adjusts the resistance adjustment unit 16 to increase the switching speed.
  • the resistance adjusting unit 16 is composed of a variable resistor.
  • the resistance adjusting unit 16 is mounted on the control device 10. As shown in FIG. 1, the resistance adjusting unit 16 is connected to the gate electrode of each switching element 43.
  • the battery 8 is a secondary battery that is composed of a lithium ion battery and functions as one of the power sources in the electric drive system 20.
  • the battery 8 mainly supplies electric power to the drive unit of the inverter circuit 4 of the electric drive system 20 to drive the motor 2.
  • the lithium ion battery instead of the lithium ion battery, it may be composed of an arbitrary secondary battery such as a nickel hydrogen battery.
  • Switching element temperature control processing The flowchart shown in FIG. 2 is a process for controlling the temperature of the switching element 43, and is executed when the power of the control device 10 is turned on.
  • the abnormality occurrence detection unit 12 in the control device 10 acquires the temperature of the switching element 43 from the temperature sensor 42 (step S100).
  • the abnormality occurrence detection unit 12 determines whether or not the acquired temperature is equal to or higher than a predetermined threshold temperature (step S102).
  • the threshold temperature is set by being specified in advance by an experiment or the like as a temperature at which an abnormality requiring an emergency landing of eVTOL can be detected.
  • the temperature of the switching element 43 exceeds the threshold temperature, for example, when the pump for circulating the cooling medium fails in the cooling medium flow path (not shown) for cooling the switching circuit 41, or when the temperature sensor 42 Is assumed to be out of order.
  • step S102 determines that the acquired temperature is not equal to or higher than a predetermined threshold temperature
  • step S102: Yes the abnormality occurrence detection unit 12 determines that the acquired temperature is equal to or higher than a predetermined threshold temperature
  • step S104 the abnormality occurrence detection unit 12 sets a flag for abnormality detection.
  • the switching element control unit 14 increases the switching speed (step S106). Specifically, the switching element control unit 14 controls the resistance adjusting unit 16 so as to lower the resistance value. As the resistance value decreases, the amount of current flowing through the gate electrode of the switching element 43 increases. As a result, the switching speed of the switching element 43 increases.
  • the switching speed of the switching element 43 increases, the output current between the emitter and collector decreases. As a result, an increase in the loss (heat generation amount) of the switching element 43 can be suppressed.
  • the abnormality occurrence detection unit 12 determines whether or not the temperature of the switching element 43 is lower than a predetermined threshold temperature (step S108). When the abnormality occurrence detection unit 12 determines that the temperature of the switching element 43 is not lower than the predetermined threshold temperature (step S108: No), the process returns to step S102 described above. When the abnormality occurrence detection unit 12 determines that the temperature of the switching element 43 is lower than the predetermined threshold temperature (step S108: Yes), the process returns to step S100 described above.
  • the horizontal axis represents time and the vertical axis represents the temperature of the switching element 43.
  • the heat-resistant temperature Tl is the heat-resistant temperature of the switching element 43.
  • the temperature change L1 of the switching element 43 when the above-mentioned temperature control process is executed is shown by a thick solid line.
  • the temperature change L2 of the switching element 43 when the temperature control process described above is not executed is shown by a broken line.
  • a predetermined abnormality for example, a temperature abnormality of a switching element that requires an emergency landing of eVTOL occurs at time t 0 , and an abnormality is detected when the element temperature of the switching element 43 reaches the threshold value Tth. It is represented by the time t 1 as time was. That is, the time t 1 corresponds to the time when step S104 in FIG. 2 is executed.
  • an emergency landing requires a time from time t 1 to time t 2 .
  • the temperature change L1 and temperature changes L2 are the same as each other.
  • the temperature change L1 and the temperature change L2 are different from each other. Specifically, in the control device 10 of the present embodiment, the temperature rise rate of the switching element 43 is reduced by increasing the switching speed of the switching element 43. Therefore, the temperature change L1 does not exceed the heat resistant temperature Tl of the switching element 43, and the time required for emergency landing can be secured.
  • the temperature change L2 of the comparative example has a higher temperature rise rate than the temperature change L1 of the control device 10 in the present embodiment.
  • the time required for the emergency landing could not be secured, and the element temperature of the switching element 43 exceeded the heat resistant temperature Tl before the landing.
  • the abnormality occurrence detection unit 12 for detecting the occurrence of the temperature abnormality of the switching element 43 and the loss of the switching element 43 when the temperature abnormality is detected are reduced. Since the switching element control unit 14 for controlling the switching element 43 is provided, the loss of the switching element 43 can be reduced when a temperature abnormality is detected, and the calorific value of the switching element 43 can be reduced. Therefore, it is possible to suppress the temperature rise while suppressing the decrease in the motor output.
  • the switching element control unit 14 can reduce the amount of heat generated by the switching element 43 by increasing the switching speed of the switching element 43. Therefore, the device configuration for realizing the temperature control of the switching element 43 can be simplified.
  • the configuration of the control device 10 of the second embodiment is different from that of the control device 10 of the first embodiment in that the resistance adjusting unit 16 is not provided. Since the other configurations of the control device 10 of the second embodiment are the same as those of the control device 10 of the first embodiment, the same components are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the switching element control unit 14 reduces the heat generation amount of the switching element 43 by increasing the switching speed of the switching element 43, but in the second embodiment, the switching element control unit 14 By lowering the carrier frequency used in PWM control, the amount of heat generated by the switching element 43 is reduced.
  • the process for controlling the temperature of the switching element 43 in the second embodiment controls the temperature of the switching element 43 in the first embodiment in that the process in step S106 in FIG. 2 results in a “decrease in carrier frequency”. Different from the processing for. Since the other temperature control processes are the same as those of the control device 10 of the first embodiment, detailed description of the same processes will be omitted.
  • the frequency of switching ON and OFF of the switching element 43 is reduced due to the decrease in the carrier frequency due to the PWM control described above.
  • the loss of the switching element 43 is reduced, and the amount of heat generated by the switching element 43 can be reduced.
  • control device 10 of the second embodiment it has the same effect as the control device 10 of the first embodiment. Further, the switching element control unit 14 controls the switching element 43 by PWM control and lowers the carrier frequency to reduce the amount of heat generated by the switching element 43. Therefore, the device for realizing the temperature control of the switching element 43. The configuration can be made even simpler.
  • the abnormality occurrence detection unit 12 has detected the occurrence of a temperature abnormality of the switching element 43, but the control device 10 of the present embodiment is not limited to this.
  • the abnormality occurrence detection unit 12 in the control device 10 in the present embodiment may detect the occurrence of a predetermined abnormality accompanied by a temperature abnormality of the switching element 43.
  • the abnormality occurrence detection unit 12 may detect the failure of the pump that circulates the cooling medium or the occurrence of an abnormality of the temperature sensor 42. When the occurrence of such a predetermined abnormality is detected, the same effect as that of the first and second embodiments can be obtained by reducing the loss of the switching element 43 as in the first and second embodiments.
  • the abnormality occurrence detection unit 12 acquires the temperature of the switching element 43 from one temperature sensor 42 attached to the one switching element 43.
  • the control device 10 of the above is not limited to this.
  • the abnormality occurrence detection unit 12 in the control device 10 in the present embodiment may acquire the temperature of the switching element 43 from the six temperature sensors 42 attached to each switching element 43.
  • the switching element control unit 14 controls the switching element 43 so as to reduce the loss of the switching element 43. May be good.
  • the switching element control unit 14 may control the switching element 43 so as to reduce the loss of the switching element 43.
  • the abnormality occurrence detection unit 12 in the control device 10 of each embodiment may detect the temperature abnormality by comparing the six temperature sensors 42 prepared for each switching element 43. When the temperature of each temperature sensor 42 is significantly different, the abnormality occurrence detection unit 12 may detect the occurrence of an abnormality of the temperature sensor 42 accompanied by a temperature abnormality of the switching element 43.
  • the resistance adjusting unit 16 is composed of a variable resistor, but the control device 10 of the present embodiment is not limited to this.
  • the resistance adjusting unit 16 may include two resistors having different resistance values and being connected in parallel to each other, and a relay switch for switching.
  • the switching element control unit 14 can increase the switching speed by switching to a resistor having a smaller resistance value.
  • the resistance adjusting unit 16 has two resistors having the same resistance value and connected in parallel to each other, a relay switch for switching, and a speed-up capacitor connected in parallel to one of the resistors. You may have it.
  • the switching element control unit 14 can switch the speed-up capacitor to a resistor connected in parallel to increase the switching speed.
  • the switching element control unit 14 controls the switching element 43 so as to reduce the loss of the switching element 43.
  • the control device 10 of the present embodiment is not limited to this.
  • the switching element control unit 14 in the control device 10 in the present embodiment outputs the output required for landing from the detection of the abnormality to the landing.
  • the switching element 43 may be controlled so as to do so. In the case of an abnormality having such a landing, it is possible to continue to output the output required for the landing.
  • the present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the purpose.
  • the technical features in each embodiment corresponding to the technical features in the embodiments described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve part or all. Further, if the technical feature is not described as essential in the present specification, it can be deleted as appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

回転翼を回転駆動させるモータ(2)と、スイッチング素子(43)を有しモータを制御するインバータ回路(4)と、を有し飛行体に搭載される電駆動システム(20)を、制御する制御装置(10)は、スイッチング素子の温度異常と、温度異常を伴う異常と、のうちの少なくとも一方である予め定められた所定異常の発生を検出する異常発生検出部(12)と、所定異常が検出された場合に、スイッチング素子の損失を下げるようにスイッチング素子を制御するスイッチング素子制御部(14)と、を備える。

Description

電駆動システムの制御装置 関連出願の相互参照
 本出願は、2020年2月14日に出願された日本出願番号2020-023227号に基づくもので、ここにその記載内容を援用する。
 本開示は、電駆動システムの制御装置に関する。
 従来から、モータ制御装置の冷却機能に異常が生じた場合に、自身の温度上昇を抑制するモータ制御装置が提案されている。例えば、特許文献1には、冷却機能を有する車両駆動用モータ制御装置において、冷却媒体の流通が滞る等の異常が生じた場合に、自身の温度上昇を抑制するようにモータ出力(トルク)を制御するモータ制御装置が開示されている。かかるモータ制御装置では、冷却機能の異常判定をした場合に、冷却媒体の推定温度に正のオフセット値を加算した補正推定値に応じてトルク指令値を求める。これにより、かかるモータ制御装置は、自身の温度上昇を抑制する。
特開2010-51040号公報
移動体等の電動化に伴い、モータとインバータ回路とを有する電駆動システム(EDS:Electric Drive System)が、様々な用途で用いられている。例えば、電動垂直離着陸機(eVTOL:electric Vertical Take-Off and Landing aircraft)と呼ばれる有人または無人の電動航空機の回転翼や、船舶のスクリューや、車両や電車の車輪を回転駆動させるために、電駆動システムが用いられている。ここで、車両や電車など地上の移動体では、モータ制御装置の冷却機能に異常が生じた際に、特許文献1の方法を適用して、モータ出力の制限を前提として、自身の温度上昇を抑制できる。しかしながら、例えば、電動航空機では、飛行中のためにこのようなモータ出力を制限できない場合がある。特許文献1のモータ制御装置では、このようにモータ出力を制限できない場合における、モータ制御装置の温度上昇の抑制について考慮されていない。このため、モータ出力の低下を抑制しつつ、温度上昇を抑制可能な技術が望まれる。
 本開示は、以下の形態として実現することが可能である。
 本開示の一形態によれば、回転翼を回転駆動させるモータと、スイッチング素子を有し前記モータを制御するインバータ回路と、を有し飛行体に搭載される電駆動システムを、制御する制御装置が提供される。前記制御装置は、前記スイッチング素子の温度異常と、前記温度異常を伴う異常と、のうちの少なくとも一方である予め定められた所定異常の発生を検出する異常発生検出部と、前記所定異常が検出された場合に、前記スイッチング素子の損失を下げるように前記スイッチング素子を制御するスイッチング素子制御部と、を備える。
 この形態の制御装置によれば、スイッチング素子の温度異常と、温度異常を伴う異常と、のうちの少なくとも一方である予め定められた所定異常の発生を検出する異常発生検出部と、所定異常が検出された場合に、スイッチング素子の損失を下げるようにスイッチング素子を制御するスイッチング素子制御部とを備えるので、所定異常が検出された場合にスイッチング素子の損失を下げて、スイッチング素子の発熱量を低減させることができる。このため、モータ出力の低下を抑制しつつ、温度上昇を抑制できる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、本開示の一実施形態である制御装置と、バッテリと、電駆動システムの構成を示す概略図であり、 図2は、温度制御処理の手順を示すフローチャートであり、 図3は、スイッチング素子の温度変化の一例を示す説明図であり、 図4は、第2実施形態の制御装置と、バッテリと、電駆動システムの構成を示す概略図である。
A.第1実施形態:
A-1.システム構成:
 図1に示す本開示の一実施形態としての制御装置10は、電駆動システム20(以下、「EDS(Electric Drive System)20」とも呼ぶ)に電気的に接続され、EDS20の温度制御を実行する。制御装置10は、EDS20が備えるスイッチング素子43に取り付けられた温度センサ42から温度を取得し、取得したこれらの温度を利用してスイッチング素子43を制御する。本実施形態においては、図1に示す制御装置10と、バッテリ8と、EDS20とは、飛行体、例えば、電動垂直離着陸機(以下、「eVTOL(electric Vertical Take-Off and Landing aircraft)」とも呼ぶ)に搭載されている。eVTOLは、電気により駆動され、鉛直方向に離着陸可能な有人航空機として構成されている。
 本実施形態において、EDS20は、モータ2と、インバータ回路4とを有し、例えば、eVTOLの回転翼を回転駆動させるために用いられる。
 モータ2は、本実施形態において、三相交流ブラシレスモータにより構成され、後述するインバータ回路4から供給される電圧および電流に応じた回転運動を出力する。なお、モータ2は、ブラシレスモータに限らず、誘導モータやリラクタンスモータ等の任意の種類のモータにより構成されていてもよい。なお、本実施形態において、「モータ」とは、いわゆる電動機に限らず、電動発電機も含む広い意味を有する。
 インバータ回路4は、モータ2を駆動させる。インバータ回路4は、バッテリ8から供給される直流電圧を、三相交流電圧に変換してモータ2に供給する。インバータ回路4は、U相、V相、W相の各相に設けられた合計三つのレグを有する。各レグは上下二つのスイッチング回路41を有する。すなわち、インバータ回路4は、合計6個のスイッチング回路41を有している。なお、バッテリ8からインバータ回路4に供給される直流電圧は、コンデンサ6によって平滑化されている。
 スイッチング回路41には、複数のスイッチング素子43が搭載されている。各スイッチング素子43には、還流ダイオードが接続されている。本実施形態において、スイッチング素子43は、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)により構成されているが、MOSFETに限らず、IGBT(Insulated Gate Bipolar Transistor)等のパワー素子により構成されていてもよい。
 制御装置10は、本実施形態においては、CPU、ROM、RAMを有するマイクロコンピュータにより構成されている。かかるCPUは、ROMに予め記憶されている制御プログラムを実行することにより、異常発生検出部12と、スイッチング素子制御部14として機能する。また、制御装置10は、抵抗調整部16を備える。
 異常発生検出部12は、スイッチング素子43の温度異常の発生を検出する。後述するように、異常発生検出部12は、スイッチング素子43に取り付けられた温度センサ42において検出される、スイッチング素子43の温度を取得し、かかる温度を利用して、スイッチング素子43の温度異常の発生を検出する。本実施形態においては、温度センサ42は、感温ダイオードを備える。また、図1に示すように、温度センサ42は、V相における二つのスイッチング素子43のうちの一つに取り付けられている。
スイッチング素子制御部14は、スイッチング素子43の温度が予め定められた閾値以上であると判定された場合に、スイッチング素子43のスイッチング速度を増大させる。スイッチング素子制御部14は、抵抗調整部16を調整してスイッチング速度を増大させる。
 抵抗調整部16は、本実施形態においては、可変抵抗器により構成されている。抵抗調整部16は、制御装置10に搭載されている。抵抗調整部16は、図1に示すように、各スイッチング素子43のゲート電極に接続されている。
 バッテリ8は、リチウムイオン電池により構成され、電駆動システム20における電力源の1つとして機能する二次バッテリである。バッテリ8は、主に、電駆動システム20が有するインバータ回路4の駆動部へと電力を供給してモータ2を駆動させる。なお、リチウムイオン電池に代えて、ニッケル水素電池等の任意の二次電池により構成されていてもよい。
A-2.スイッチング素子の温度制御処理:
 図2に示すフローチャートは、スイッチング素子43の温度を制御するための処理であり、制御装置10の電源がオンすると実行される。
 制御装置10における異常発生検出部12は、温度センサ42からスイッチング素子43の温度を取得する(ステップS100)。
 異常発生検出部12は、取得された温度が予め定められた閾値温度以上であるかどうかを判定する(ステップS102)。ここで、閾値温度は、eVTOLの緊急着陸を要するような異常を検出可能な温度として予め実験等により特定されて設定されている。スイッチング素子43の温度が閾値温度を超えてしまう場合は、例えば、スイッチング回路41を冷却するための図示しない冷却媒体流路において、冷却媒体を循環させるためのポンプが故障した場合や、温度センサ42が故障している場合などが想定される。
異常発生検出部12は、取得された温度が予め定められた閾値温度以上でないと判定した場合(ステップS102:No)、処理は上述のステップS100に戻る。これに対して、異常発生検出部12は、取得された温度が予め定められた閾値温度以上であると判定した場合(ステップS102:Yes)、異常検出したことを特定する(ステップS104)。例えば、異常発生検出部12は、異常検出のフラグを立てる。
 スイッチング素子制御部14は、スイッチング速度を増大させる(ステップS106)。具体的には、スイッチング素子制御部14は、抵抗調整部16に対して抵抗値を下げるように制御する。抵抗値が下がることにより、スイッチング素子43のゲート電極に流れる電流量が増大する。これにより、スイッチング素子43のスイッチング速度が増大する。
 スイッチング素子43のスイッチング速度が増大することによって、エミッタ-コレクタ間の出力電流が減少する。この結果、スイッチング素子43の損失(発熱量)の増大を抑制できる。
異常発生検出部12は、スイッチング素子43の温度が予め定められた閾値温度より低温であるかどうかを判定する(ステップS108)。異常発生検出部12は、スイッチング素子43の温度が予め定められた閾値温度より低温でないと判定した場合(ステップS108:No)、処理は上述のステップS102に戻る。異常発生検出部12は、スイッチング素子43の温度が予め定められた閾値温度より低温であると判定した場合(ステップS108:Yes)、処理は上述のステップS100に戻る。
 図3において、横軸は時間を示し、縦軸はスイッチング素子43の温度を示す。耐熱温度Tlは、スイッチング素子43の耐熱温度である。図3では、上述した温度制御処理を実行する場合のスイッチング素子43の温度変化L1を太い実線で示す。上述した温度制御処理を実行しない場合のスイッチング素子43の温度変化L2を破線で示す。予め定められた所定異常、例えば、eVTOLの緊急着陸を要するようなスイッチング素子の温度異常が時間tで発生し、スイッチング素子43の素子温度が閾値Tthに達した時が異常の発生が検出された時として時間tで表されている。すなわち時間tは、図2におけるステップS104が実行される時点に相当する。
図3の例では、緊急着陸には、時間tから時間tまでの時間が必要である。緊急着陸を要するようなスイッチング素子43の温度異常の発生が検出される時間tまでは、温度変化L1と温度変化L2とは互いに同じである。他方、緊急着陸を要するようなスイッチング素子43の温度異常の発生が検出された時間tの後は、温度変化L1と、温度変化L2とは、互いに異なる。具体的には、本実施形態の制御装置10においては、スイッチング素子43のスイッチング速度を高めることにより、スイッチング素子43の温度上昇速度を低減させる。このため、温度変化L1は、スイッチング素子43の耐熱温度Tlを超えることなく、緊急着陸に必要な時間を確保できる。
 他方、比較例の温度変化L2は、本実施形態における制御装置10の温度変化L1よりも温度上昇速度が大きい。比較例においては、緊急着陸に必要な時間を確保できずに、着陸前においてスイッチング素子43の素子温度は、耐熱温度Tlを超えてしまっている。
 以上説明した第1実施形態の制御装置10によれば、スイッチング素子43の温度異常の発生を検出する異常発生検出部12と、温度異常が検出された場合に、スイッチング素子43の損失を下げるようにスイッチング素子43を制御するスイッチング素子制御部14とを備えるので、温度異常が検出された場合にスイッチング素子43の損失を下げて、スイッチング素子43の発熱量を低減させることができる。このため、モータ出力の低下を抑制しつつ、温度上昇を抑制できる。
 また、第1実施形態の制御装置10において、スイッチング素子制御部14は、スイッチング素子43のスイッチング速度を高めることにより、スイッチング素子43の発熱量を低減させることができる。このため、スイッチング素子43の温度制御を実現するための装置構成を簡易にできる。
B.第2実施形態:
 図4に示すように、第2実施形態の制御装置10の構成は、抵抗調整部16を備えていない点において第1実施形態の制御装置10と異なる。第2実施形態の制御装置10における他の構成は、第1実施形態の制御装置10と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。
第1実施形態では、スイッチング素子制御部14は、スイッチング素子43のスイッチング速度を増大させることにより、スイッチング素子43の発熱量を低減させていたが、第2実施形態では、スイッチング素子制御部14は、PWM制御において用いるキャリア周波数を低下させることにより、スイッチング素子43の発熱量を低減させる。
 第2実施形態におけるスイッチング素子43の温度を制御するための処理は、図2におけるステップS106の処理が「キャリア周波数の低下」となる点において、第1実施形態におけるスイッチング素子43の温度を制御するための処理と異なる。他の温度制御処理は、第1実施形態の制御装置10と同じであるので、同一の処理についてはその詳細な説明を省略する。
 第2実施形態の制御装置において、上述したPWM制御によるキャリア周波数の低下により、スイッチング素子43のスイッチングのONとOFFの切り替え頻度が減少する。この結果、スイッチング素子43の損失が下がり、スイッチング素子43の発熱量を低減させることができる。
 以上説明した第2実施形態の制御装置10によれば、第1実施形態の制御装置10と同様な効果を有する。また、スイッチング素子制御部14は、PWM制御によりスイッチング素子43を制御し、キャリア周波数を低下させることにより、スイッチング素子43の発熱量を低減させるので、スイッチング素子43の温度制御を実現するための装置構成を更に簡易にできる。
C.他の実施形態:
(C1)第1実施形態の制御装置10において、異常発生検出部12はスイッチング素子43の温度異常の発生を検出していたが、本実施形態の制御装置10はこれに限られない。本実施形態における制御装置10における異常発生検出部12は、スイッチング素子43の温度異常を伴う予め定められた所定異常の発生を検出してもよい。例えば、異常発生検出部12は、冷却媒体を循環させるポンプの故障や温度センサ42の異常の発生を検出してもよい。このような所定異常の発生を検出した場合に、第1および第2実施形態と同様に、スイッチング素子43の損失を下げることにより、第1および第2実施形態と同様な効果を奏し得る。
(C2)第1実施形態の制御装置10において、異常発生検出部12は、1つのスイッチング素子43に取り付けられた1つの温度センサ42からスイッチング素子43の温度を取得していたが、本実施形態の制御装置10はこれに限られない。本実施形態における制御装置10における異常発生検出部12は、各スイッチング素子43に取り付けられた6個の温度センサ42からスイッチング素子43の温度を取得してもよい。6個の温度センサ42のうちのいずれかの温度センサ42から取得された温度が閾値温度以上である場合、スイッチング素子制御部14はスイッチング素子43の損失を下げるようにスイッチング素子43を制御してもよい。また、6個の温度センサ42から取得された温度の平均値が閾値温度以上である場合、スイッチング素子制御部14はスイッチング素子43の損失を下げるようにスイッチング素子43を制御してもよい。また、各実施形態の制御装置10における異常発生検出部12は、各スイッチング素子43に対して用意された6個の温度センサ42を比較して温度異常を検出してもよい。異常発生検出部12は、各温度センサ42の温度が大きく異なる場合、スイッチング素子43の温度異常を伴う温度センサ42の異常の発生を検出してもよい。
(C3)第1実施形態の制御装置10において、抵抗調整部16は可変抵抗器により構成されていたが、本実施形態の制御装置10はこれに限られない。例えば、抵抗調整部16は、互いに異なる抵抗値を有し、互いに並列接続された2つの抵抗器と、切り替え用のリレースイッチとを備えていてもよい。これにより、スイッチング素子制御部14は、抵抗値のより小さい抵抗器に切り替えることにより、スイッチング速度を増大させることができる。また、例えば、抵抗調整部16は、互いに同じ抵抗値を有し、互いに並列接続された2つの抵抗器と、切り替え用のリレースイッチと、一方の抵抗器に並列接続されたスピードアップコンデンサとを備えていてもよい。これにより、スイッチング素子制御部14は、スピードアップコンデンサを並列接続された抵抗器に切り替えて、スイッチング速度を増大させることができる。
(C4)各実施形態の制御装置10において、スイッチング素子43の温度異常の発生が検出された場合に、スイッチング素子制御部14は、スイッチング素子43の損失を下げるようにスイッチング素子43を制御していたが、本実施形態の制御装置10はこれに限られない。これに加えて、本実施形態における制御装置10におけるスイッチング素子制御部14は、着陸を有する異常の場合、異常を検出してから着陸をするまでの間、着陸に必要な出力をモータ2が出力するように、スイッチング素子43を制御してもよい。このような着陸を有する異常の場合に、着陸に必要な出力を出し続けることができる。
 本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した形態中の技術的特徴に対応する各実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。

Claims (4)

  1.  回転翼を回転駆動させるモータ(2)と、スイッチング素子(43)を有し前記モータを制御するインバータ回路(4)と、を有し飛行体に搭載される電駆動システム(20)を、制御する制御装置(10)であって、
     前記スイッチング素子の温度異常と、前記温度異常を伴う異常と、のうちの少なくとも一方である予め定められた所定異常の発生を検出する異常発生検出部(12)と、
     前記所定異常が検出された場合に、前記スイッチング素子の損失を下げるように前記スイッチング素子を制御するスイッチング素子制御部(14)と、
     を備える、制御装置。
  2.  請求項1に記載の制御装置において、
     前記スイッチング素子制御部は、前記スイッチング素子のスイッチング速度を高めることにより、前記損失を下げる、制御装置。
  3.  請求項1または請求項2に記載の制御装置において、
     前記スイッチング素子制御部は、PWM制御により前記スイッチング素子を制御し、前記PWM制御において用いるキャリア周波数を低下させることにより、前記損失を下げる、制御装置。
  4.  請求項1に記載の制御装置において、
     前記スイッチング素子制御部は、前記所定異常が着陸を有する異常の場合、着陸をするまでの間、着陸に必要な出力を前記モータが出力するように、前記スイッチング素子を制御する、制御装置。
PCT/JP2021/002050 2020-02-14 2021-01-21 電駆動システムの制御装置 WO2021161755A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/883,865 US20220385224A1 (en) 2020-02-14 2022-08-09 Control device for electric drive system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020023227A JP7230848B2 (ja) 2020-02-14 2020-02-14 電駆動システムの制御装置
JP2020-023227 2020-02-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/883,865 Continuation US20220385224A1 (en) 2020-02-14 2022-08-09 Control device for electric drive system

Publications (1)

Publication Number Publication Date
WO2021161755A1 true WO2021161755A1 (ja) 2021-08-19

Family

ID=77293132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002050 WO2021161755A1 (ja) 2020-02-14 2021-01-21 電駆動システムの制御装置

Country Status (3)

Country Link
US (1) US20220385224A1 (ja)
JP (1) JP7230848B2 (ja)
WO (1) WO2021161755A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2602338B (en) * 2020-12-23 2023-03-15 Yasa Ltd A Method and Apparatus for Cooling One or More Power Devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096318A (ja) * 2002-08-30 2004-03-25 Mitsubishi Electric Corp 電力用半導体装置
WO2013145671A1 (ja) * 2012-03-26 2013-10-03 住友重機械工業株式会社 産業機械
JP2019161714A (ja) * 2018-03-08 2019-09-19 株式会社東芝 モータ制御装置およびプログラム
WO2020013264A1 (ja) * 2018-07-11 2020-01-16 株式会社ナイルワークス 飛行体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004096318A (ja) * 2002-08-30 2004-03-25 Mitsubishi Electric Corp 電力用半導体装置
WO2013145671A1 (ja) * 2012-03-26 2013-10-03 住友重機械工業株式会社 産業機械
JP2019161714A (ja) * 2018-03-08 2019-09-19 株式会社東芝 モータ制御装置およびプログラム
WO2020013264A1 (ja) * 2018-07-11 2020-01-16 株式会社ナイルワークス 飛行体

Also Published As

Publication number Publication date
US20220385224A1 (en) 2022-12-01
JP7230848B2 (ja) 2023-03-01
JP2021129436A (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
US9154051B2 (en) Operating state circuit for an inverter and method for setting operating states of an inverter
US9543880B2 (en) Rotary machine control apparatus
US10886867B2 (en) Inverter control device
EP2403128B1 (en) Wind power converter system with grid side reactive power control
US8354813B2 (en) Inverter device, electric automobile in which the inverter device is mounted, and hybrid automobile in which the inverter device is mounted
US8477518B2 (en) Device for driving inverter
US10924055B2 (en) Motor drive apparatus having input power supply voltage adjustment function
EP3002865B1 (en) Inverter control apparatus, power conversion apparatus, and electric vehicle
JP6443253B2 (ja) 電力変換器制御装置
US20130088096A1 (en) Short-circuit protection method
US20110215773A1 (en) Vehicle generator
WO2021161755A1 (ja) 電駆動システムの制御装置
EP2320555B1 (en) Motor control apparatus
WO2018155321A1 (ja) 制御装置およびこれを用いた電動パワーステアリング装置
US20230068986A1 (en) Control device
US7091627B2 (en) Controller for a power train
US20220418171A1 (en) Cooling system
US10864894B2 (en) Wiper device
US20220368216A1 (en) Electric-power conversion apparatus
US7843156B2 (en) Method and apparatus for active voltage control of electric motors
JP2010011687A (ja) 電動駆動制御装置、電動車両および過電圧防止方法
JP7421435B2 (ja) モータ制御装置およびモータ制御方法
JP7460508B2 (ja) 電力変換装置
Hilpert et al. Investigation of Novel Multi-Phase Field-Oriented Drive Inverter Control with Fail-Operational Capabilities for Aircraft Applications
JPH1056779A (ja) 電動コンプレッサの駆動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753552

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753552

Country of ref document: EP

Kind code of ref document: A1