WO2021161695A1 - Denitration device and boiler - Google Patents

Denitration device and boiler Download PDF

Info

Publication number
WO2021161695A1
WO2021161695A1 PCT/JP2021/000446 JP2021000446W WO2021161695A1 WO 2021161695 A1 WO2021161695 A1 WO 2021161695A1 JP 2021000446 W JP2021000446 W JP 2021000446W WO 2021161695 A1 WO2021161695 A1 WO 2021161695A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reducing agent
flue
passage
exhaust gas
Prior art date
Application number
PCT/JP2021/000446
Other languages
French (fr)
Japanese (ja)
Inventor
幸宏 森本
心平 戸▲高▼
享平 櫻井
英雄 宮西
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Publication of WO2021161695A1 publication Critical patent/WO2021161695A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Treating Waste Gases (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A denitration device and a boiler, each of which is provided with: a selective-reduction-type catalyst which is arranged in a gas passage; a partitioning plate which is arranged on the upstream side of the gas flow direction relative to the selective-reduction-type catalyst in the gas passage and can partition the gas passage into a plurality of zones in the direction orthogonal to the gas flow direction; and a reducing agent supply device which is arranged on the upstream side of the gas flow direction relative to the selective-reduction-type catalyst and can supply a reducing agent in an amount according to the concentration of a nitrogen oxide in a gas flowing in the plurality of zones.

Description

脱硝装置およびボイラDenitration device and boiler
 本開示は、排ガスに含まれる窒素酸化物を除去する脱硝装置、脱硝装置を備えるボイラに関するものである。 The present disclosure relates to a denitration device for removing nitrogen oxides contained in exhaust gas and a boiler equipped with a denitration device.
 石炭焚きボイラなどの大型のボイラは、中空形状をなして鉛直方向に設置される火炉を有し、火炉壁に複数の燃焼バーナが火炉の周方向に沿って配設される。ボイラは、火炉の鉛直方向上方に煙道が連結され、煙道に蒸気を生成するための熱交換器が配置される。燃焼バーナが火炉内に燃料と空気(酸化性ガス)との混合気を噴射することで火炎が形成され、燃焼ガスが生成されて煙道に流れる。熱交換器は、多数の伝熱管により構成され、燃焼ガスが多数の伝熱管内を流れる水や蒸気を加熱して過熱蒸気が生成される。 Large boilers such as coal-fired boilers have a hollow furnace that is installed in the vertical direction, and a plurality of combustion burners are arranged along the circumferential direction of the furnace on the furnace wall. In the boiler, the flue is connected vertically above the furnace, and a heat exchanger for generating steam is placed in the flue. A combustion burner injects a mixture of fuel and air (oxidizing gas) into the furnace to form a flame, and combustion gas is generated and flows into the flue. The heat exchanger is composed of a large number of heat transfer tubes, and the combustion gas heats water or steam flowing in the large number of heat transfer tubes to generate superheated steam.
 煙道は、ガスダクトが連結され、ガスダクトに脱硝装置が設けられる。熱交換器で過熱蒸気を生成した排ガスは、脱硝装置により窒素酸化物が除去される。脱硝装置は、排ガスに対してアンモニアなどの還元剤を供給し、排ガスと還元剤が触媒を通過するときに、窒素酸化物と還元剤との反応が促進され、排ガス中の窒素酸化物を除去する。 A gas duct is connected to the flue, and a denitration device is installed in the gas duct. Nitrogen oxides are removed from the exhaust gas generated by superheated steam in the heat exchanger by the denitration device. The denitration device supplies a reducing agent such as ammonia to the exhaust gas, and when the exhaust gas and the reducing agent pass through the catalyst, the reaction between the nitrogen oxides and the reducing agent is promoted, and the nitrogen oxides in the exhaust gas are removed. do.
 このような脱硝装置としては、下記特許文献に記載されているものがある。特許文献1に記載された排煙脱硝装置は、触媒層の上流側に整流格子を設けることで、排ガスの流速部を均一にするものである。特許文献2に記載された脱硝装置は、アンモニア注入ノズルの上流側に整流板を設け、アンモニアを排ガス中に均一に分布させるものである。 As such a denitration device, there is one described in the following patent documents. The flue gas denitration device described in Patent Document 1 provides a rectifying grid on the upstream side of the catalyst layer to make the flow velocity portion of the exhaust gas uniform. The denitration device described in Patent Document 2 is provided with a straightening vane on the upstream side of the ammonia injection nozzle to uniformly distribute ammonia in the exhaust gas.
特開2004-255324号公報Japanese Unexamined Patent Publication No. 2004-255324 特開平09-024246号公報Japanese Unexamined Patent Publication No. 09-024246
 煙道を流れて脱硝装置に流入する排ガスは、含有する窒素酸化物の濃度にばらつきがある。燃焼バーナは、火炉内に燃料と空気との混合気を噴射することで燃焼し、上昇する燃焼ガス流を生成する。また、煙道は、ガス通路に熱交換器などがあり、また、途中で屈曲している。そのため、脱硝装置に流入する排ガスは、流入方向に直交する面内で窒素酸化物の濃度がばらつき、脱硝装置による脱硝性能に偏りが生じてしまう。従来、排ガスに含有する窒素酸化物の濃度に応じて還元剤の供給量を調整している。ところが、排ガスに含有する窒素酸化物の濃度は、流入方向に直交する面内でばらつくことから、排ガスに対する還元剤の供給量が少ない領域で、窒素酸化物を十分に除去することができない。一方で、排ガスに対する還元剤の供給量が多すぎる領域で、残留する還元剤が脱硝装置の下流側に流れ、硫黄酸化物と反応して硫安が生成され、排気ダクトを閉塞してしまうという課題がある。 The exhaust gas that flows through the flue and flows into the denitration device has variations in the concentration of nitrogen oxides contained in it. The combustion burner burns by injecting a mixture of fuel and air into the furnace to generate an ascending combustion gas flow. In addition, the flue has a heat exchanger in the gas passage and is bent in the middle. Therefore, the exhaust gas flowing into the denitration device has a variation in the concentration of nitrogen oxides in the plane orthogonal to the inflow direction, and the denitration performance by the denitration device is biased. Conventionally, the supply amount of the reducing agent is adjusted according to the concentration of nitrogen oxides contained in the exhaust gas. However, since the concentration of nitrogen oxides contained in the exhaust gas varies in the plane orthogonal to the inflow direction, the nitrogen oxides cannot be sufficiently removed in the region where the amount of the reducing agent supplied to the exhaust gas is small. On the other hand, in a region where the amount of the reducing agent supplied to the exhaust gas is too large, the remaining reducing agent flows to the downstream side of the denitration device and reacts with sulfur oxides to generate ammonium sulfate, which causes the exhaust duct to be blocked. There is.
 本開示は、上述した課題を解決するものであり、性能の向上を図る脱硝装置およびボイラを提供することを目的とする。 The present disclosure is to solve the above-mentioned problems, and an object of the present disclosure is to provide a denitration device and a boiler for improving performance.
 上記の目的を達成するための本開示の脱硝装置は、ガス通路に設けられる選択還元型触媒と、前記ガス通路における前記選択還元型触媒よりガス流れ方向の上流側に設けられて前記ガス通路をガス流れ方向に直交する方向の複数の領域に区画する仕切板と、前記選択還元型触媒よりガス流れ方向の上流側に設けられて前記複数の領域を流れるガスの窒素酸化物濃度に応じた量の還元剤を供給する還元剤供給装置と、を備える。 The denitration device of the present disclosure for achieving the above object is provided with a selective reduction catalyst provided in the gas passage and an upstream side of the selective reduction catalyst in the gas passage in the gas flow direction to provide the gas passage. A partition plate for partitioning into a plurality of regions in a direction orthogonal to the gas flow direction, and an amount provided on the upstream side of the selective reducing catalyst in the gas flow direction according to the nitrogen oxide concentration of the gas flowing through the plurality of regions. It is provided with a reducing agent supply device for supplying the reducing agent of the above.
 また、本開示のボイラは、鉛直方向に沿って設置される火炉と、前記火炉に配置される燃焼装置と、前記火炉における燃焼ガスの流れ方向の下流側に配置される煙道と、前記煙道に配置される熱交換器と、前記煙道における前記熱交換器より下流側に配置される前記脱硝装置と、を備える。 Further, the boiler of the present disclosure includes a furnace installed along the vertical direction, a combustion device arranged in the furnace, a flue arranged on the downstream side in the flow direction of combustion gas in the furnace, and the smoke. It includes a heat exchanger arranged on the road and a denitration device arranged on the downstream side of the heat exchanger in the flue.
 本開示の脱硝装置およびボイラによれば、性能の向上を図ることができる。 According to the denitration device and the boiler of the present disclosure, the performance can be improved.
図1は、第1実施形態のボイラを表す概略図である。FIG. 1 is a schematic view showing the boiler of the first embodiment. 図2は、第1実施形態の脱硝装置を表す概略構成図である。FIG. 2 is a schematic configuration diagram showing the denitration device of the first embodiment. 図3は、第1実施形態の脱硝装置の作用を表す概略図である。FIG. 3 is a schematic view showing the operation of the denitration device of the first embodiment. 図4は、第1仕切板の配置を表す斜視図である。FIG. 4 is a perspective view showing the arrangement of the first partition plate. 図5は、第2実施形態の脱硝装置を表す概略構成図である。FIG. 5 is a schematic configuration diagram showing the denitration device of the second embodiment. 図6は、第2実施形態の脱硝装置を表す概略平面図である。FIG. 6 is a schematic plan view showing the denitration device of the second embodiment. 図7は、第3実施形態の脱硝装置を表す概略正面図である。FIG. 7 is a schematic front view showing the denitration device of the third embodiment. 図8は、第3実施形態の脱硝装置を表す概略平面図である。FIG. 8 is a schematic plan view showing the denitration device of the third embodiment.
 以下に図面を参照して、本開示の好適な実施形態を詳細に説明する。なお、この実施形態により本開示が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。また、実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。 The preferred embodiments of the present disclosure will be described in detail with reference to the drawings below. It should be noted that the present disclosure is not limited by this embodiment, and when there are a plurality of embodiments, the present embodiment also includes a combination of the respective embodiments. In addition, the components in the embodiment include those that can be easily assumed by those skilled in the art, those that are substantially the same, that is, those in a so-called equal range.
[第1実施形態]
 図1は、第1実施形態のボイラを表す概略図である。
[First Embodiment]
FIG. 1 is a schematic view showing the boiler of the first embodiment.
[ボイラの構成]
 第1実施形態の石炭焚きボイラ10は、石炭(炭素含有固体燃料)を粉砕した微粉炭を微粉燃料として用い、微粉燃料を燃焼バーナにより燃焼させ、燃焼により発生した熱を給水や蒸気と熱交換して過熱蒸気を生成することが可能なボイラである。以降の説明で、上や上方とは鉛直方向上側を示し、下や下方とは鉛直方向下側を示す。
[Boiler configuration]
The coal-fired boiler 10 of the first embodiment uses pulverized coal obtained by crushing coal (carbon-containing solid fuel) as pulverized fuel, burns the pulverized fuel with a combustion burner, and exchanges heat generated by combustion with water supply or steam. It is a boiler that can generate superheated steam. In the following description, "upper" and "upper" mean the upper side in the vertical direction, and "lower" and "lower" mean the lower side in the vertical direction.
 第1実施形態において、図1に示すように、石炭焚きボイラ10は、火炉11と、燃焼装置12と、燃焼ガス通路13とを有する。火炉11は、四角筒の中空形状をなし、鉛直方向に沿って設置される。火炉11を構成する火炉壁(伝熱管)11aは、複数の蒸発管と、複数の蒸発管を接続するフィンとで構成され、微粉燃料の燃焼により発生した熱を給水や蒸気と熱交換することで、火炉壁の温度上昇を抑制する。 In the first embodiment, as shown in FIG. 1, the coal-fired boiler 10 has a furnace 11, a combustion device 12, and a combustion gas passage 13. The furnace 11 has a hollow shape of a square cylinder and is installed along the vertical direction. The furnace wall (heat transfer tube) 11a constituting the furnace 11 is composed of a plurality of evaporation pipes and fins connecting the plurality of evaporation pipes, and exchanges heat generated by combustion of pulverized fuel with water supply or steam. Therefore, the temperature rise of the furnace wall is suppressed.
 燃焼装置12は、火炉壁11aの下部側に設けられる。燃焼装置12は、火炉壁11aに装着された複数の燃焼バーナ21,22,23,24,25を有する。燃焼バーナ21,22,23,24,25は、火炉11の周方向に沿って任意の間隔で配設されたものが1セットとして、鉛直方向に沿って複数段(本実施形態では、5段)配置される。但し、火炉11の形状、一つの段における燃焼バーナの数、燃焼バーナの段数は、この構成に限定されるものではない。 The combustion device 12 is provided on the lower side of the furnace wall 11a. The combustion device 12 has a plurality of combustion burners 21, 22, 23, 24, 25 mounted on the furnace wall 11a. The combustion burners 21, 22, 23, 24, 25 are arranged at arbitrary intervals along the circumferential direction of the furnace 11 as one set, and have a plurality of stages along the vertical direction (five stages in the present embodiment). ) Placed. However, the shape of the furnace 11, the number of combustion burners in one stage, and the number of stages of combustion burners are not limited to this configuration.
 燃焼バーナ21,22,23,24,25は、微粉炭供給管26,27,28,29,30を介して複数の粉砕機(ミル)31,32,33,34,35に連結される。粉砕機31,32,33,34,35は、図示しないが、例えば、ハウジング内に回転テーブルが駆動回転可能に支持され、回転テーブルの上方に複数のローラが回転テーブルの回転に連動して回転可能に支持されて構成される。石炭が複数のローラと回転テーブルとの間に投入されると、ここで所定の微粉炭の大きさに粉砕され、搬送用ガス(一次空気、酸化性ガス)により分級機に搬送されて所定のサイズ範囲内に分級される。所定のサイズ範囲内に分級された微粉燃料が微粉炭供給管26,27,28,29,30から燃焼バーナ21,22,23,24,25に供給される。 The combustion burners 21, 22, 23, 24, 25 are connected to a plurality of crushers (mills) 31, 32, 33, 34, 35 via the pulverized coal supply pipes 26, 27, 28, 29, 30. Although not shown, the crushers 31, 32, 33, 34, and 35 are not shown, but for example, a rotary table is rotatably supported in a housing, and a plurality of rollers rotate in conjunction with the rotation of the rotary table above the rotary table. It is configured to be supported as possible. When coal is thrown between a plurality of rollers and a rotary table, it is crushed to a predetermined size of pulverized coal and transported to a classifier by a transport gas (primary air, oxidizing gas) to a predetermined size. Classified within the size range. The pulverized fuel classified within a predetermined size range is supplied from the pulverized coal supply pipes 26, 27, 28, 29, 30 to the combustion burners 21, 22, 23, 24, 25.
 火炉11は、燃焼バーナ21,22,23,24,25の装着位置に風箱36が設けられ、風箱36に空気ダクト(風道)37の一端部が連結される。空気ダクト37は、他端部に押込通風機(FDF:Forced Draft Fan)38が連結される。火炉11は、燃焼バーナ21,22,23,24,25の装着位置より上方にアディショナル空気ポート39が設けられる。アディショナル空気ポート39に空気ダクト37から分岐したアディショナル空気ダクト40の端部が連結される。 In the furnace 11, a wind box 36 is provided at the mounting position of the combustion burners 21, 22, 23, 24, 25, and one end of the air duct (air passage) 37 is connected to the wind box 36. A push-in ventilator (FDF: Forced Draft Fan) 38 is connected to the other end of the air duct 37. The furnace 11 is provided with an additional air port 39 above the mounting positions of the combustion burners 21, 22, 23, 24, 25. The end of the additional air duct 40 branched from the air duct 37 is connected to the additional air port 39.
 燃焼ガス通路13は、火炉11の鉛直方向の上部に連結される。燃焼ガス通路13は、燃焼ガスの熱を回収するための熱交換器として、過熱器51,52,53、再熱器54,55、節炭器56が設けられる。過熱器51,52,53、再熱器54,55、節炭器56は、火炉11での燃焼で発生した燃焼ガスと伝熱管を流通する給水や蒸気との間で熱交換を行う。 The combustion gas passage 13 is connected to the upper part of the furnace 11 in the vertical direction. The combustion gas passage 13 is provided with superheaters 51, 52, 53, reheaters 54, 55, and economizer 56 as heat exchangers for recovering the heat of the combustion gas. The superheaters 51, 52, 53, the reheaters 54, 55, and the economizer 56 exchange heat between the combustion gas generated by the combustion in the furnace 11 and the water supply or steam flowing through the heat transfer tube.
 燃焼ガス通路13は、下流側に熱交換を行った燃焼ガスが排出される煙道41が連結される。煙道41は、空気ダクト37との間にエアヒータ(空気予熱器)42が設けられる。空気ダクト37を流れる空気は、煙道41を流れる燃焼ガスとの間で熱交換を行い、燃焼バーナ21,22,23,24,25に供給する燃焼用空気を昇温する。 The combustion gas passage 13 is connected to the flue 41 from which the combustion gas that has undergone heat exchange is discharged on the downstream side. An air heater (air preheater) 42 is provided between the flue 41 and the air duct 37. The air flowing through the air duct 37 exchanges heat with the combustion gas flowing through the flue 41, and raises the temperature of the combustion air supplied to the combustion burners 21, 22, 23, 24, 25.
 煙道14は、エアヒータ42より上流側の位置に脱硝装置43が設けられる。脱硝装置43は、アンモニア、尿素水等の窒素酸化物(NOx)を還元する作用を有する還元剤を煙道41内に供給する。還元剤が供給された燃焼ガスは、窒素酸化物と還元剤との反応が促進され、燃焼ガス中の窒素酸化物が除去、低減される。煙道41は、下流側にガスダクト44が連結される。ガスダクト44は、エアヒータ42より下流側の位置に電気集塵機などの集塵装置45、誘引通風機(IDF:Induced Draft Fan)46、脱硫装置47などが設けられ、下流端部に煙突48が設けられる。 The flue 14 is provided with a denitration device 43 at a position upstream of the air heater 42. The denitration device 43 supplies a reducing agent having an action of reducing nitrogen oxides (NOx) such as ammonia and urea water into the flue 41. In the combustion gas to which the reducing agent is supplied, the reaction between the nitrogen oxides and the reducing agent is promoted, and the nitrogen oxides in the combustion gas are removed and reduced. A gas duct 44 is connected to the downstream side of the flue 41. The gas duct 44 is provided with a dust collector 45 such as an electric dust collector, an induction ventilator (IDF: Induced Draft Fan) 46, a desulfurization device 47, etc. at a position downstream of the air heater 42, and a chimney 48 is provided at the downstream end. ..
[ボイラの作用]
 複数の粉砕機31,32,33,34,35が駆動すると、生成された微粉燃料が搬送用ガス(一次空気、酸化性ガス)と共に微粉炭供給管26,27,28,29,30を通して燃焼バーナ21,22,23,24,25に供給される。また、煙道14から排出された排ガスとエアヒータ42で熱交換することで加熱された燃焼用空気(酸化性ガス)は、空気ダクト37から風箱36を介して各燃焼バーナ21,22,23,24,25に供給される。すると、燃焼バーナ21,22,23,24,25は、微粉燃料と搬送用ガスとが混合した微粉燃料混合気を火炉11に吹き込むと共に、燃焼用空気を火炉11に吹き込む。このとき、微粉燃料混合気が着火することで火炎が形成される。火炉11内の下部で火炎が生じ、高温の燃焼ガスが上昇し、燃焼ガス通路13に排出される。
[Boiler action]
When a plurality of crushers 31, 32, 33, 34, 35 are driven, the generated pulverized fuel is burned together with the transport gas (primary air, oxidizing gas) through the pulverized coal supply pipes 26, 27, 28, 29, 30. It is supplied to the burners 21, 22, 23, 24, 25. Further, the combustion air (oxidizing gas) heated by exchanging heat with the exhaust gas discharged from the flue 14 by the air heater 42 is sent from the air duct 37 through the air box 36 to each combustion burner 21, 22, 23. , 24, 25 are supplied. Then, the combustion burners 21, 22, 23, 24, 25 blow the pulverized fuel mixture, which is a mixture of the pulverized fuel and the transport gas, into the furnace 11, and also blow the combustion air into the furnace 11. At this time, a flame is formed by igniting the fine fuel mixture. A flame is generated in the lower part of the furnace 11, the high-temperature combustion gas rises, and is discharged to the combustion gas passage 13.
 火炉11は、下部の領域Aにて、微粉燃料混合気と燃焼用空気(二次空気、酸化性ガス)とが燃焼して火炎が生じる。火炉11は、領域Aで空気の供給量が微粉炭の供給量に対して理論空気量未満となるように設定されることで、内部が還元雰囲気に保持される。すなわち、微粉炭の燃焼により発生した窒素酸化物(NOx)が火炉11の領域Bで還元され、アディショナル空気ポート39からアディショナル空気が追加供給されることで微粉炭の酸化燃焼が完結され、微粉炭の燃焼によるNOxの発生量が低減される。 In the furnace 11, in the lower region A, the pulverized fuel mixture and the combustion air (secondary air, oxidizing gas) burn to generate a flame. The inside of the furnace 11 is maintained in a reducing atmosphere by setting the air supply amount to be less than the theoretical air amount with respect to the pulverized coal supply amount in the region A. That is, the nitrogen oxides (NOx) generated by the combustion of the pulverized coal are reduced in the region B of the furnace 11, and the additional air is additionally supplied from the additional air port 39 to complete the oxidative combustion of the pulverized coal. The amount of NOx generated by combustion is reduced.
 火炉11内を上昇した燃焼ガスは、燃焼ガス通路13に配置される第2過熱器52、第3過熱器53、第1過熱器51、第2再熱器55、第1再熱器54、節炭器56で熱交換する。その後、燃焼ガスは、脱硝装置43により窒素酸化物が還元除去され、ガスダクト44に配置された集塵装置45で粒子状物質が除去され、脱硫装置47にて硫黄酸化物が除去された後、煙突48から大気中に排出される。 The combustion gas that has risen in the furnace 11 is the second superheater 52, the third superheater 53, the first superheater 51, the second reheater 55, the first reheater 54, which are arranged in the combustion gas passage 13. Heat is exchanged with the economizer 56. After that, nitrogen oxides were reduced and removed from the combustion gas by the denitration device 43, particulate matter was removed by the dust collector 45 arranged in the gas duct 44, and sulfur oxides were removed by the desulfurization device 47. It is discharged into the atmosphere from the chimney 48.
[脱硝装置の構成]
 図2は、第1実施形態の脱硝装置を表す概略構成図、図3は、第1実施形態の脱硝装置の作用を表す概略図、図4は、第1仕切板の配置を表す斜視図である。
[Configuration of denitration device]
FIG. 2 is a schematic configuration diagram showing the denitration device of the first embodiment, FIG. 3 is a schematic view showing the operation of the denitration device of the first embodiment, and FIG. 4 is a perspective view showing the arrangement of the first partition plate. be.
 煙道(ガス通路)41は、第1水平煙道部41a、第1鉛直煙道部41b、第2水平煙道部41c、第2鉛直煙道部41d、第3水平煙道部(水平通路)41e、第3鉛直煙道部(鉛直通路)41fが連続して設けられて構成される。煙道41は、第1水平煙道部13aおよび第1鉛直煙道部13bに、過熱器51,52,53、再熱器54,55、節炭器56が配置される。また、煙道41は、第2鉛直煙道部41dから第3水平煙道部41eを介して第3鉛直煙道部41fにかけて脱硝装置43が配置される。 The flue (gas passage) 41 includes a first horizontal flue section 41a, a first vertical flue section 41b, a second horizontal flue section 41c, a second vertical flue section 41d, and a third horizontal flue section (horizontal passage). ) 41e and the third vertical flue section (vertical passage) 41f are continuously provided. In the flue 41, superheaters 51, 52, 53, reheaters 54, 55, and economizer 56 are arranged in the first horizontal flue portion 13a and the first vertical flue portion 13b. Further, in the flue 41, the denitration device 43 is arranged from the second vertical flue portion 41d to the third vertical flue portion 41f via the third horizontal flue portion 41e.
 脱硝装置43は、選択還元型触媒61と、複数(本実施形態では、3個)の第1仕切板62,63,64と、還元剤供給装置65とを備える。 The denitration device 43 includes a selective reduction catalyst 61, a plurality of (three in this embodiment) first partition plates 62, 63, 64, and a reducing agent supply device 65.
 図2から図4に示すように、選択還元型触媒61は、脱硝触媒であって、煙道41の第3鉛直煙道部41fに設けられる。選択還元型触媒61は、排ガスに対してアンモニアや尿素水などの還元剤が供給されることで、還元剤が供給された排ガスを窒素酸化物と還元剤との反応を促進させ、窒素酸化物を還元し、排ガス中の窒素酸化物を除去、低減する。 As shown in FIGS. 2 to 4, the selective reduction catalyst 61 is a denitration catalyst and is provided in the third vertical flue portion 41f of the flue 41. In the selective reduction catalyst 61, a reducing agent such as ammonia or urea water is supplied to the exhaust gas to promote the reaction between the nitrogen oxide and the reducing agent in the exhaust gas to which the reducing agent is supplied. To remove and reduce nitrogen oxides in exhaust gas.
 第1仕切板62,63,64は、煙道41の第2鉛直煙道部41dと第3水平煙道部41eと第3鉛直煙道部41fにまたがって設けられる。第1仕切板62,63,64は、煙道41における選択還元型触媒61よりガス流れ方向の上流側に設けられる。第1仕切板62,63,64は、煙道41のガス通路をガス流れ方向に直交する幅方向の複数(本実施形態では、4個)の混合通路(領域)70a,70b,70c,70dに区画する。 The first partition plates 62, 63, 64 are provided across the second vertical flue portion 41d, the third horizontal flue portion 41e, and the third vertical flue portion 41f of the flue 41. The first partition plates 62, 63, 64 are provided on the upstream side in the gas flow direction from the selective reduction catalyst 61 in the flue 41. The first partition plates 62, 63, 64 have a plurality of (four in this embodiment) mixed passages (regions) 70a, 70b, 70c, 70d in the width direction orthogonal to the gas flow direction in the gas passage of the flue 41. Partition into.
 混合通路70a,70b,70c,70dは、第2鉛直煙道部41dと第3水平煙道部41eと第3鉛直煙道部41fにて、ガス流れ方向に沿うと共に、幅方向に並行をなして配置される。ここで、幅方向とは、第3水平煙道部41eのガス流れ方向に直交する水平方向である。また、混合通路70a,70b,70c,70dは、ガス流れ方向の長さLが同じ寸法である。ここで、ガス流れ方向の長さLは、煙道41の中心の長さである。 The mixing passages 70a, 70b, 70c, 70d are parallel to the gas flow direction and parallel to the width direction at the second vertical flue section 41d, the third horizontal flue section 41e, and the third vertical flue section 41f. Is placed. Here, the width direction is a horizontal direction orthogonal to the gas flow direction of the third horizontal flue portion 41e. Further, the mixing passages 70a, 70b, 70c, and 70d have the same length L in the gas flow direction. Here, the length L in the gas flow direction is the length of the center of the flue 41.
 混合通路70a,70b,70c,70dは、ガス流れ方向に直交する幅方向の長さW1,W2,W3,W4が同じ寸法である。混合通路70a,70b,70c,70dは、ガス流れ方向にて、幅方向の長さW1,W2,W3,W4は一定である。なお、幅方向の長さW1,W2,W3,W4を異なる寸法としてもよい。排ガスが混合通路70a,70b,70c,70dに到達したとき、排ガスは、幅方向で窒素酸化物の濃度にばらつきがある。そのため、混合通路70a,70b,70c,70dにおける幅方向の長さW1,W2,W3,W4は、ガスの窒素酸化物の濃度分布や煙道41のレイアウトなどに応じて適宜設定することが好ましい。 The mixing passages 70a, 70b, 70c, and 70d have the same dimensions as the lengths W1, W2, W3, and W4 in the width direction orthogonal to the gas flow direction. The lengths W1, W2, W3, and W4 of the mixing passages 70a, 70b, 70c, and 70d in the width direction are constant in the gas flow direction. The lengths W1, W2, W3, and W4 in the width direction may have different dimensions. When the exhaust gas reaches the mixing passages 70a, 70b, 70c, 70d, the exhaust gas has a variation in the concentration of nitrogen oxides in the width direction. Therefore, it is preferable that the lengths W1, W2, W3, and W4 in the width direction in the mixing passages 70a, 70b, 70c, and 70d are appropriately set according to the concentration distribution of nitrogen oxides in the gas, the layout of the flue 41, and the like. ..
 また、混合通路70a,70b,70c,70dは、ガス流れ方向の長さLがガス流れ方向に直交する幅方向の長さW1,W2,W3,W4より長い寸法である。 Further, the mixing passages 70a, 70b, 70c, and 70d have dimensions longer than the lengths W1, W2, W3, and W4 in the width direction in which the length L in the gas flow direction is orthogonal to the gas flow direction.
 なお、第1仕切板62,63,64は、煙道41における第2鉛直煙道部41dと第3水平煙道部41eと第3鉛直煙道部41fの形状に合わせた形状としている。そのため、第2鉛直煙道部41dと第3水平煙道部41eと第3鉛直煙道部41fの形状が変われば、第1仕切板62,63,64形状も変わる。また、第1仕切板62,63,64は、第2鉛直煙道部41dと第3水平煙道部41eと第3鉛直煙道部41fにまたがっているが、第3鉛直煙道部41fだけに設けたり、第3水平煙道部41eと第3鉛直煙道部41fだけに設けたり、第3水平煙道部41eだけに設けたりしてもよい。更に、第1仕切板62,63,64の数は、3個に限らず、1個であったり、4個以上であったりしてもよい。 The first partition plates 62, 63, 64 have a shape that matches the shapes of the second vertical flue portion 41d, the third horizontal flue portion 41e, and the third vertical flue portion 41f in the flue 41. Therefore, if the shapes of the second vertical flue portion 41d, the third horizontal flue portion 41e, and the third vertical flue portion 41f change, the shapes of the first partition plates 62, 63, 64 also change. Further, the first partition plates 62, 63, 64 straddle the second vertical flue section 41d, the third horizontal flue section 41e, and the third vertical flue section 41f, but only the third vertical flue section 41f. It may be provided only in the third horizontal flue portion 41e and the third vertical flue portion 41f, or it may be provided only in the third horizontal flue portion 41e. Further, the number of the first partition plates 62, 63, 64 is not limited to three, and may be one or four or more.
 還元剤供給装置65は、煙道41の第3鉛直煙道部41fであって、第1仕切板62,63,64と選択還元型触媒61との間に設けられる。すなわち、還元剤供給装置65は、第1仕切板62,63,64より下流側で、選択還元型触媒61より上流側に配置される。還元剤供給装置65は、アンモニアや尿素水などの窒素酸化物を還元する作用を有する還元剤を第3鉛直煙道部41fに供給する。 The reducing agent supply device 65 is the third vertical flue portion 41f of the flue 41, and is provided between the first partition plates 62, 63, 64 and the selective reduction catalyst 61. That is, the reducing agent supply device 65 is arranged on the downstream side of the first partition plates 62, 63, 64 and on the upstream side of the selective reduction catalyst 61. The reducing agent supply device 65 supplies a reducing agent having an action of reducing nitrogen oxides such as ammonia and urea water to the third vertical flue portion 41f.
 還元剤供給装置65は、還元剤供給ポンプ71と、複数(本実施形態では、4個)の還元剤供給管72a,72b,72c,72dとを有する。還元剤供給管72a,72b,72c,72dは、第3鉛直煙道部41fに配置される。還元剤供給管72a,72b,72c,72dは、複数のノズル73a,73b,73c,73dが装着される。複数のノズル73a,73b,73c,73dは、ガス流れ方向の下流側に向けて配置するが、ガス流れ方向の上流側に向けて配置してもよい。還元剤供給管72a,72b,72c,72dは、端部に還元剤供給ポンプ71が連結される。 The reducing agent supply device 65 includes a reducing agent supply pump 71 and a plurality of (four in this embodiment) reducing agent supply pipes 72a, 72b, 72c, 72d. The reducing agent supply pipes 72a, 72b, 72c, 72d are arranged in the third vertical flue portion 41f. A plurality of nozzles 73a, 73b, 73c, 73d are mounted on the reducing agent supply pipes 72a, 72b, 72c, 72d. The plurality of nozzles 73a, 73b, 73c, 73d are arranged toward the downstream side in the gas flow direction, but may be arranged toward the upstream side in the gas flow direction. A reducing agent supply pump 71 is connected to the end of the reducing agent supply pipes 72a, 72b, 72c, 72d.
 還元剤供給管72a,72b,72c,72dおよびノズル73a,73b,73c,73dは、混合通路70a,70b,70c,70dに対応して配置される。還元剤供給装置65は、混合通路70a,70b,70c,70dの出口部に配置され、混合通路70a,70b,70c,70dから排出された排ガスに対して還元剤を供給し、選択還元型触媒61に流入する前の排ガスに還元剤を拡散させる。なお、還元剤としては、アンモニア水、気体のアンモニア、尿素水などを用いることができる。 The reducing agent supply pipes 72a, 72b, 72c, 72d and the nozzles 73a, 73b, 73c, 73d are arranged corresponding to the mixing passages 70a, 70b, 70c, 70d. The reducing agent supply device 65 is arranged at the outlet of the mixing passages 70a, 70b, 70c, 70d, supplies the reducing agent to the exhaust gas discharged from the mixing passages 70a, 70b, 70c, 70d, and selectively reduces the catalyst. The reducing agent is diffused in the exhaust gas before flowing into 61. As the reducing agent, aqueous ammonia, gaseous ammonia, urea water, or the like can be used.
 還元剤供給装置65は、制御装置66が接続される。制御装置66は、還元剤供給装置65を制御することで、混合通路70a,70b,70c,70dを流れる排ガスの窒素酸化物の濃度に応じた量の還元剤を供給する。この場合、混合通路70a,70b,70c,70dを流れる排ガスの窒素酸化物の濃度を、事前の実験、計測、推定などにより求めておくことが望ましい。また、混合通路70a,70b,70c,70dに排ガスの窒素酸化物の濃度を計測する計測器を設け、オンラインで窒素酸化物の濃度を計測してもよい。ここで、制御装置66は、要求される脱硝率に応じて、還元剤供給装置65が混合通路70a,70b,70c,70dに供給する還元剤の供給量を調整する。 A control device 66 is connected to the reducing agent supply device 65. By controlling the reducing agent supply device 65, the control device 66 supplies an amount of the reducing agent according to the concentration of nitrogen oxides in the exhaust gas flowing through the mixing passages 70a, 70b, 70c, and 70d. In this case, it is desirable to obtain the concentration of nitrogen oxides in the exhaust gas flowing through the mixing passages 70a, 70b, 70c, and 70d by prior experiments, measurements, and estimations. Further, a measuring instrument for measuring the concentration of nitrogen oxides in the exhaust gas may be provided in the mixing passages 70a, 70b, 70c, 70d, and the concentration of nitrogen oxides may be measured online. Here, the control device 66 adjusts the supply amount of the reducing agent supplied by the reducing agent supply device 65 to the mixing passages 70a, 70b, 70c, 70d according to the required denitration rate.
[脱硝装置の作用]
 脱硝装置43において、図2および図3に示すように、煙道41を流れる排ガスは、第2鉛直煙道部41dを上昇した後、第3水平煙道部41eを水平方向に流れ、第3鉛直煙道部41fを下降する。このとき、排ガスは、第1仕切板62,63,64により幅方向に区画された4個の混合通路70a,70b,70c,70dに分配され、混合通路70a,70b,70c,70dを所定の長さLだけ流れる。
[Action of denitration device]
In the denitration device 43, as shown in FIGS. 2 and 3, the exhaust gas flowing through the flue 41 rises through the second vertical flue section 41d and then flows horizontally through the third horizontal flue section 41e, and the third It descends the vertical flue section 41f. At this time, the exhaust gas is distributed to the four mixing passages 70a, 70b, 70c, 70d partitioned in the width direction by the first partition plates 62, 63, 64, and the mixing passages 70a, 70b, 70c, 70d are designated. Only the length L flows.
 煙道41を流れる排ガスは、燃焼ガス通路13で生成される燃焼ガス流の旋回流、煙道41に配置される熱交換器、煙道41の途中形状などにより、例えば、幅方向で排ガスに含有する窒素酸化物の濃度にばらつきがある。例えば、排ガスに含有する窒素酸化物の濃度C0(図3参照)は、混合通路70a,70b,70c,70dの上流側にて、幅方向における混合通路70a側で低く、混合通路70d側に行くほど高くなる。 The exhaust gas flowing through the flue 41 becomes exhaust gas in the width direction, for example, due to the swirling flow of the combustion gas flow generated in the combustion gas passage 13, the heat exchanger arranged in the flue 41, the intermediate shape of the flue 41, and the like. There are variations in the concentration of nitrogen oxides contained. For example, the concentration C0 of nitrogen oxides contained in the exhaust gas is lower on the upstream side of the mixing passages 70a, 70b, 70c, 70d, on the mixing passage 70a side in the width direction, and goes to the mixing passage 70d side. The higher it gets.
 煙道41の幅方向で窒素酸化物の濃度差がある排ガスは、混合通路70a,70b,70c,70dに流入し、混合通路70a,70b,70c,70dを所定の長さLだけ流れる間に混合される。そして、混合通路70a,70b,70c,70dを個別に流れた排ガスは、混合通路70a,70b,70c,70dの出口部で、窒素酸化物の濃度差がほぼ均一となる。すなわち、第1仕切板62,63,64が配置されていない幅の広い煙道では、排ガスが所定の長さLだけ流れても十分に混合されず、幅方向で窒素酸化物の濃度差が生じる。一方、第1仕切板62,63,64で区画された幅の狭い混合通路70a,70b,70c,70dでは、排ガスが所定の長さLだけ流れる間に十分に混合され、幅方向で窒素酸化物の濃度差が生じにくい。混合通路70a,70b,70c,70dをそれぞれ流れた排ガス同士を比較すると、排ガスに含有する窒素酸化物の濃度C1,C2,C3,C4(図3参照)に濃度差(C1<C2<C3<C4)がある。しかし、混合通路70a,70b,70c,70dを流れたそれぞれの排ガスだけを幅方向で比較すると、排ガスに含有する窒素酸化物の濃度C1,C2,C3,C4(図3参照)は、幅方向でほとんど濃度差がない。 Exhaust gas having a difference in nitrogen oxide concentration in the width direction of the flue 41 flows into the mixing passages 70a, 70b, 70c, 70d and flows through the mixing passages 70a, 70b, 70c, 70d by a predetermined length L. Be mixed. The exhaust gas that has individually flowed through the mixing passages 70a, 70b, 70c, and 70d has a substantially uniform nitrogen oxide concentration difference at the outlets of the mixing passages 70a, 70b, 70c, and 70d. That is, in a wide flue in which the first partition plates 62, 63, 64 are not arranged, the exhaust gas is not sufficiently mixed even if it flows by a predetermined length L, and the concentration difference of nitrogen oxides in the width direction is large. Occurs. On the other hand, in the narrow mixing passages 70a, 70b, 70c, 70d partitioned by the first partition plates 62, 63, 64, the exhaust gas is sufficiently mixed while flowing a predetermined length L, and nitrogen oxidation occurs in the width direction. Differences in the concentration of substances are unlikely to occur. Comparing the exhaust gases flowing through the mixing passages 70a, 70b, 70c, and 70d, the concentrations of nitrogen oxides contained in the exhaust gas are different from each other (see FIG. 3) (C1 <C2 <C3 <). There is C4). However, when only the exhaust gas flowing through the mixing passages 70a, 70b, 70c, and 70d is compared in the width direction, the concentrations of nitrogen oxides C1, C2, C3, and C4 (see FIG. 3) contained in the exhaust gas are in the width direction. There is almost no difference in concentration.
 混合通路70a,70b,70c,70dを流れる排ガスは、第3鉛直煙道部41fに排出されると、還元剤供給装置65から還元剤が供給される。このとき、制御装置66は、還元剤供給装置65を制御することで、混合通路70a,70b,70c,70dを流れる排ガスに対して、含有する窒素酸化物の濃度に応じた量の還元剤を供給する。すなわち、混合通路70a,70b,70c,70dから排出されて窒素酸化物の濃度C1,C2,C3,C4が異なる排ガスに対して、還元剤供給管72a,72b,72c,72dのノズル73a,73b,73c,73dから異なる量の還元剤を噴射する。具体的には、混合通路70aから排出されて窒素酸化物の濃度が低い排ガスに対して還元剤供給管72aのノズル73aから最小量の還元剤を噴射する。一方、混合通路70dから排出されて窒素酸化物の濃度が高い排ガスに対して還元剤供給管72dのノズル73dから最大量の還元剤を噴射する。 When the exhaust gas flowing through the mixing passages 70a, 70b, 70c, 70d is discharged to the third vertical flue portion 41f, the reducing agent is supplied from the reducing agent supply device 65. At this time, the control device 66 controls the reducing agent supply device 65 to apply an amount of the reducing agent to the exhaust gas flowing through the mixing passages 70a, 70b, 70c, 70d according to the concentration of the nitrogen oxide contained therein. Supply. That is, for exhaust gas discharged from the mixing passages 70a, 70b, 70c, 70d and having different nitrogen oxide concentrations C1, C2, C3, C4, the nozzles 73a, 73b of the reducing agent supply pipes 72a, 72b, 72c, 72d. , 73c, 73d are injected with different amounts of reducing agent. Specifically, the minimum amount of the reducing agent is injected from the nozzle 73a of the reducing agent supply pipe 72a to the exhaust gas discharged from the mixing passage 70a and having a low concentration of nitrogen oxides. On the other hand, the maximum amount of the reducing agent is injected from the nozzle 73d of the reducing agent supply pipe 72d to the exhaust gas discharged from the mixing passage 70d and having a high concentration of nitrogen oxides.
 排ガスに対して還元剤供給装置65から還元剤が供給されると、排ガスは、還元剤が混合された状態で選択還元型触媒61に流入する。選択還元型触媒61は、排ガスの窒素酸化物と還元剤との反応を促進させ、窒素酸化物を還元し、排ガス中の窒素酸化物を除去、低減する。このとき、濃度C1,C2,C3,C4が異なる排ガスに対して、窒素酸化物の含有量に応じた量の還元剤が供給されてから選択還元型触媒61に流入するため、選択還元型触媒61により窒素酸化物が効率良く還元除去される。すなわち、排ガスに対する還元剤の供給量が少なく、窒素酸化物の除去が不十分になることが抑制される。また、排ガスに対する還元剤の供給量が多く、残った還元剤が硫黄酸化物と反応して硫安が生成することが抑制される。 When the reducing agent is supplied to the exhaust gas from the reducing agent supply device 65, the exhaust gas flows into the selective reduction catalyst 61 in a state where the reducing agent is mixed. The selective reduction catalyst 61 promotes the reaction between the nitrogen oxides in the exhaust gas and the reducing agent, reduces the nitrogen oxides, and removes and reduces the nitrogen oxides in the exhaust gas. At this time, since the reducing agent in an amount corresponding to the content of nitrogen oxides is supplied to the exhaust gas having different concentrations C1, C2, C3, and C4 and then flows into the selective reducing catalyst 61, the selective reducing catalyst Nitrogen oxides are efficiently reduced and removed by 61. That is, the supply amount of the reducing agent to the exhaust gas is small, and it is suppressed that the removal of nitrogen oxides is insufficient. In addition, the amount of the reducing agent supplied to the exhaust gas is large, and it is suppressed that the remaining reducing agent reacts with the sulfur oxide to generate ammonium sulfate.
[第2実施形態]
 図5は、第2実施形態の脱硝装置を表す概略構成図、図6は、第2実施形態の脱硝装置を表す概略平面図である。なお、上述した第1実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Second Embodiment]
FIG. 5 is a schematic configuration diagram showing the denitration device of the second embodiment, and FIG. 6 is a schematic plan view showing the denitration device of the second embodiment. The members having the same functions as those of the first embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted.
 第2実施形態において、図5および図6に示すように、脱硝装置43Aは、選択還元型触媒61と、複数の第1仕切板62,63,64と、還元剤供給装置65と、混合促進装置81とを備える。ここで、選択還元型触媒61と第1仕切板62,63,64と還元剤供給装置65は、第1実施形態と同様であることから、詳細な説明は省略する。 In the second embodiment, as shown in FIGS. 5 and 6, the denitration device 43A promotes mixing of the selective reduction catalyst 61, the plurality of first partition plates 62, 63, 64, and the reducing agent supply device 65. The device 81 is provided. Here, since the selective reduction catalyst 61, the first partition plates 62, 63, 64 and the reducing agent supply device 65 are the same as those in the first embodiment, detailed description thereof will be omitted.
 選択還元型触媒61は、煙道41の第3鉛直煙道部41fに設けられる。第1仕切板62,63,64は、煙道41の第2鉛直煙道部41dと第3水平煙道部41eと第3鉛直煙道部41fにまたがって設けられる。第1仕切板62,63,64は、煙道41における選択還元型触媒61よりガス流れ方向の上流側に設けられる。第1仕切板62,63,64は、煙道41のガス通路をガス流れ方向に直交する幅方向の4個の混合通路70a,70b,70c,70dに区画する。還元剤供給装置65は、煙道41の第3鉛直煙道部41fであって、第1仕切板62,63,64と選択還元型触媒61との間に設けられる。 The selective reduction catalyst 61 is provided in the third vertical flue section 41f of the flue 41. The first partition plates 62, 63, 64 are provided so as to straddle the second vertical flue portion 41d, the third horizontal flue portion 41e, and the third vertical flue portion 41f of the flue 41. The first partition plates 62, 63, 64 are provided on the upstream side in the gas flow direction from the selective reduction catalyst 61 in the flue 41. The first partition plates 62, 63, 64 divide the gas passage of the flue 41 into four mixed passages 70a, 70b, 70c, 70d in the width direction orthogonal to the gas flow direction. The reducing agent supply device 65 is a third vertical flue portion 41f of the flue 41, and is provided between the first partition plates 62, 63, 64 and the selective reduction catalyst 61.
 混合促進装置81は、第1仕切板62,63,64により区画された4個の混合通路70a,70b,70c,70dにおけるガス流入部に設けられる。混合促進装置81は、複数(本実施例では、4個)の混合促進器81a,81b,81c,81dを有する。混合促進器81a,81b,81c,81dは、第1仕切板62,63,64により区画された4個の混合通路70a,70b,70c,70dにおけるガス流れ方向の上流側端部に配置される。つまり、混合促進器81a,81b,81c,81dは、第1仕切板62,63,64におけるガス流れ方向の上流側端部に挟まれた位置に配置される。 The mixing promotion device 81 is provided in the gas inflow portion in the four mixing passages 70a, 70b, 70c, 70d partitioned by the first partition plates 62, 63, 64. The mixing accelerator 81 has a plurality of (four in this embodiment) mixing accelerators 81a, 81b, 81c, 81d. The mixing accelerators 81a, 81b, 81c, 81d are arranged at the upstream end in the gas flow direction in the four mixing passages 70a, 70b, 70c, 70d partitioned by the first partition plates 62, 63, 64. .. That is, the mixing accelerators 81a, 81b, 81c, 81d are arranged at positions sandwiched between the upstream end portions in the gas flow direction of the first partition plates 62, 63, 64.
 混合促進装置81(混合促進器81a,81b,81c,81d)は、例えば、旋回流発生装置であり、混合通路70a,70b,70c,70dに流入した排ガスに旋回力を付与する。混合通路70a,70b,70c,70dに流入した排ガスは、旋回力が付与されることで混合が促進され、窒素酸化物の濃度差がなくなり、幅方向や高さ方向における窒素酸化物の濃度が均一になる。 The mixing accelerator 81 (mixing accelerator 81a, 81b, 81c, 81d) is, for example, a swirling flow generator, and applies a swirling force to the exhaust gas flowing into the mixing passages 70a, 70b, 70c, 70d. The exhaust gas flowing into the mixing passages 70a, 70b, 70c, and 70d is mixed by applying a swirling force, the nitrogen oxide concentration difference disappears, and the nitrogen oxide concentration in the width direction and the height direction increases. Become uniform.
 なお、混合促進装置81は、旋回流発生装置に限定されるものではない。例えば、排ガスが衝突する複数の抵抗板を設け、混合通路70a,70b,70c,70dに乱流を形成するものであってもよいし、その他の装置であってもよい。また、混合促進器81a,81b,81c,81dを混合通路70a,70b,70c,70dの上流側端部に配置したが、混合通路70a,70b,70c,70d内ではなく、混合通路70a,70b,70c,70dの直上流側に配置してもよい。 The mixing promotion device 81 is not limited to the swirling flow generator. For example, a plurality of resistance plates with which the exhaust gas collides may be provided to form a turbulent flow in the mixing passages 70a, 70b, 70c, 70d, or other devices may be used. Further, the mixing accelerators 81a, 81b, 81c, 81d were arranged at the upstream end of the mixing passages 70a, 70b, 70c, 70d, but not in the mixing passages 70a, 70b, 70c, 70d, but in the mixing passages 70a, 70b. , 70c, 70d may be arranged immediately upstream.
 そのため、脱硝装置43Aにおいて、煙道41を流れる排ガスは、第2鉛直煙道部41dを上昇した後、第3水平煙道部41eを水平方向に流れ、第3鉛直煙道部41fを下降する。このとき、排ガスは、第1仕切板62,63,64により幅方向に区画された4個の混合通路70a,70b,70c,70dに分配される。そして、排ガスは、混合通路70a,70b,70c,70dに流入するとき、混合促進器81a,81b,81c,81dにより旋回力が付与されることで混合が促進され、混合通路70a,70b,70c,70dで窒素酸化物の濃度差が低減される。そして、混合通路70a,70b,70c,70dを所定の長さLだけ流れた排ガスは、混合通路70a,70b,70c,70dの出口部で、窒素酸化物の濃度差がほぼ均一となる。 Therefore, in the denitration device 43A, the exhaust gas flowing through the flue 41 rises in the second vertical flue section 41d, then flows horizontally in the third horizontal flue section 41e, and descends in the third vertical flue section 41f. .. At this time, the exhaust gas is distributed to the four mixing passages 70a, 70b, 70c, 70d partitioned in the width direction by the first partition plates 62, 63, 64. Then, when the exhaust gas flows into the mixing passages 70a, 70b, 70c, 70d, the mixing is promoted by applying a turning force by the mixing accelerators 81a, 81b, 81c, 81d, and the mixing passages 70a, 70b, 70c. At 70d, the difference in nitrogen oxide concentration is reduced. The exhaust gas that has flowed through the mixing passages 70a, 70b, 70c, and 70d by a predetermined length L has a substantially uniform nitrogen oxide concentration difference at the outlets of the mixing passages 70a, 70b, 70c, and 70d.
 混合通路70a,70b,70c,70dから第3鉛直煙道部41fに排出された排ガスに対して、還元剤供給装置65から還元剤が供給される。このとき、制御装置66は、還元剤供給装置65を制御することで、混合通路70a,70b,70c,70dを流れる排ガスに対して、含有する窒素酸化物の濃度に応じた量の還元剤を供給する。すると、排ガスは、還元剤が混合された状態で選択還元型触媒61に流入する。選択還元型触媒61は、排ガスの窒素酸化物と還元剤との反応を促進させ、窒素酸化物を還元し、排ガス中の窒素酸化物を除去、低減する。このとき、濃度が異なる排ガスに対して、窒素酸化物の含有量に応じた量の還元剤が供給されてから選択還元型触媒61に流入するため、選択還元型触媒61により窒素酸化物が効率良く還元除去される。 The reducing agent is supplied from the reducing agent supply device 65 to the exhaust gas discharged from the mixing passages 70a, 70b, 70c, 70d to the third vertical flue portion 41f. At this time, the control device 66 controls the reducing agent supply device 65 to apply an amount of the reducing agent to the exhaust gas flowing through the mixing passages 70a, 70b, 70c, 70d according to the concentration of the nitrogen oxide contained therein. Supply. Then, the exhaust gas flows into the selective reduction catalyst 61 in a state where the reducing agent is mixed. The selective reduction catalyst 61 promotes the reaction between the nitrogen oxides in the exhaust gas and the reducing agent, reduces the nitrogen oxides, and removes and reduces the nitrogen oxides in the exhaust gas. At this time, since the reducing agent in an amount corresponding to the content of the nitrogen oxide is supplied to the exhaust gas having different concentrations and then flows into the selective reduction type catalyst 61, the nitrogen oxide is efficiently produced by the selective reduction type catalyst 61. It is often reduced and removed.
[第3実施形態]
 図7は、第3実施形態の脱硝装置を表す概略正面図、図8は、第3実施形態の脱硝装置を表す概略平面図である。なお、上述した第1実施形態と同様の機能を有する部材には、同一の符号を付して詳細な説明は省略する。
[Third Embodiment]
FIG. 7 is a schematic front view showing the denitration device of the third embodiment, and FIG. 8 is a schematic plan view showing the denitration device of the third embodiment. The members having the same functions as those of the first embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted.
 第3実施形態において、図7および図8に示すように、脱硝装置43Bは、選択還元型触媒61と、複数(本実施形態では、3個)の第2仕切板91,92,93と、還元剤供給装置65とを備える。ここで、選択還元型触媒61と還元剤供給装置65は、第1実施形態と同様であることから、詳細な説明は省略する。 In the third embodiment, as shown in FIGS. 7 and 8, the denitration device 43B includes the selective reducing catalyst 61 and a plurality of (three in this embodiment) second partition plates 91, 92, 93. A reducing agent supply device 65 is provided. Here, since the selective reduction catalyst 61 and the reducing agent supply device 65 are the same as those in the first embodiment, detailed description thereof will be omitted.
 選択還元型触媒61は、脱硝触媒であって、煙道41の第3鉛直煙道部41fに設けられる。 The selective reduction catalyst 61 is a denitration catalyst and is provided in the third vertical flue portion 41f of the flue 41.
 第2仕切板91,92,93は、煙道41の第3鉛直煙道部41fに設けられる。第2仕切板91,92,93は、煙道41における選択還元型触媒61よりガス流れ方向の上流側に設けられる。第2仕切板91,92,93は、煙道41のガス通路をガス流れ方向に直交する奥行方向の複数(本実施形態では、4個)の混合通路(領域)94a,94b,94c,94dに区画する。 The second partition plates 91, 92, 93 are provided in the third vertical flue portion 41f of the flue 41. The second partition plates 91, 92, and 93 are provided on the upstream side in the gas flow direction from the selective reduction catalyst 61 in the flue 41. The second partition plates 91, 92, 93 have a plurality of (four in this embodiment) mixed passages (regions) 94a, 94b, 94c, 94d in the depth direction orthogonal to the gas flow direction in the gas passage of the flue 41. Partition into.
 混合通路94a,94b,94c,94dは、第3鉛直煙道部41fにて、ガス流れ方向に沿うと共に、奥行方向に並行をなして配置される。ここで、奥行方向とは、第3鉛直煙道部41fのガス流れ方向および幅方向に直交する水平方向(図7の左右方向)である。また、混合通路94a,94bは、ガス流れ方向の長さが同じ寸法であり、混合通路94c,94dにおけるガス流れ方向の長さ(鉛直方向の長さ)は、第3鉛直煙道部41fの天井部が傾斜によらず、煙道41のレイアウト、脱硝効率、要求性能などを考慮した適切な長さでよい。 The mixing passages 94a, 94b, 94c, 94d are arranged along the gas flow direction and in parallel in the depth direction at the third vertical flue portion 41f. Here, the depth direction is a horizontal direction (horizontal direction in FIG. 7) orthogonal to the gas flow direction and the width direction of the third vertical flue portion 41f. Further, the mixing passages 94a and 94b have the same length in the gas flow direction, and the length in the gas flow direction (length in the vertical direction) in the mixing passages 94c and 94d is the length of the third vertical flue portion 41f. The ceiling portion may have an appropriate length in consideration of the layout of the flue 41, denitration efficiency, required performance, etc., regardless of the inclination.
 なお、第2仕切板91,92,93を煙道41における第3鉛直煙道部41fに設けたが、第2鉛直煙道部41dや第3水平煙道部41eに設けてもよい。 Although the second partition plates 91, 92, and 93 are provided in the third vertical flue portion 41f in the flue 41, they may be provided in the second vertical flue portion 41d and the third horizontal flue portion 41e.
 還元剤供給装置65は、煙道41の第3鉛直煙道部41fであって、仕切板91,92,93と選択還元型触媒61との間に設けられる。すなわち、還元剤供給装置65は、仕切板91,92,93より下流側で、選択還元型触媒61より上流側である。還元剤供給装置65は、アンモニアや尿素水などの窒素酸化物を還元する作用を有する還元剤を第3鉛直煙道部41fに供給する。 The reducing agent supply device 65 is the third vertical flue portion 41f of the flue 41, and is provided between the partition plates 91, 92, 93 and the selective reduction catalyst 61. That is, the reducing agent supply device 65 is on the downstream side of the partition plates 91, 92, 93 and on the upstream side of the selective reduction catalyst 61. The reducing agent supply device 65 supplies a reducing agent having an action of reducing nitrogen oxides such as ammonia and urea water to the third vertical flue portion 41f.
 還元剤供給管72a,72b,72c,72dおよびノズル73a,73b,73c,73dは、混合通路94a,94b,94c,94dに対応して配置される。還元剤供給装置65は、混合通路94a,94b,94c,94dの出口部に配置され、混合通路94a,94b,94c,94dから排出された排ガスに対して還元剤を供給し、選択還元型触媒61に流入する前の排ガスに還元剤を拡散させる。 The reducing agent supply pipes 72a, 72b, 72c, 72d and the nozzles 73a, 73b, 73c, 73d are arranged corresponding to the mixing passages 94a, 94b, 94c, 94d. The reducing agent supply device 65 is arranged at the outlet of the mixing passages 94a, 94b, 94c, 94d, supplies the reducing agent to the exhaust gas discharged from the mixing passages 94a, 94b, 94c, 94d, and selectively reduces the catalyst. The reducing agent is diffused in the exhaust gas before flowing into 61.
 還元剤供給装置65は、制御装置66が接続される。制御装置66は、還元剤供給装置65を制御することで、混合通路94a,94b,94c,94dを流れる排ガスの窒素酸化物の濃度に応じた量の還元剤を供給する。ここで、制御装置66は、要求される脱硝率に応じて、還元剤供給装置65が混合通路70a,70b,70c,70dに供給する還元剤の供給量を調整する。 A control device 66 is connected to the reducing agent supply device 65. By controlling the reducing agent supply device 65, the control device 66 supplies an amount of the reducing agent according to the concentration of nitrogen oxides in the exhaust gas flowing through the mixing passages 94a, 94b, 94c, 94d. Here, the control device 66 adjusts the supply amount of the reducing agent supplied by the reducing agent supply device 65 to the mixing passages 70a, 70b, 70c, 70d according to the required denitration rate.
 そのため、脱硝装置43Bにおいて、煙道41を流れる排ガスは、第3鉛直煙道部41fを下降し、第2仕切板91,92,93により奥行方向に区画された4個の混合通路94a,94b,94c,94dに分配され、混合通路94a,94b,94c,94dを所定の長さだけ流れる。 Therefore, in the denitration device 43B, the exhaust gas flowing through the flue 41 descends from the third vertical flue portion 41f, and is divided in the depth direction by the second partition plates 91, 92, 93. , 94c, 94d, and flows through the mixing passages 94a, 94b, 94c, 94d for a predetermined length.
 煙道41の高さ(奥行)方向で窒素酸化物の濃度差がある排ガスは、混合通路94a,94b,94c,94dに流入し、混合通路94a,94b,94c,94dを所定の長さだけ流れる間に混合される。そして、混合通路94a,94b,94c,94dを個別に流れた排ガスは、混合通路94a,94b,94c,94dの出口部で、窒素酸化物の濃度差がほぼ均一となる。すなわち、混合通路94a,94b,94c,94dをそれぞれ流れた排ガス同士を比較すると、排ガスに含有する窒素酸化物の濃度に差がある。しかし、混合通路94a,94b,94c,94dを流れたそれぞれの排ガスだけを幅方向で比較すると、排ガスに含有する窒素酸化物の濃度は、奥行方向でほとんど濃度差がない。 Exhaust gas having a difference in nitrogen oxide concentration in the height (depth) direction of the flue 41 flows into the mixing passages 94a, 94b, 94c, 94d, and flows through the mixing passages 94a, 94b, 94c, 94d by a predetermined length. Mixed while flowing. The exhaust gas that has individually flowed through the mixing passages 94a, 94b, 94c, 94d has a substantially uniform nitrogen oxide concentration difference at the outlets of the mixing passages 94a, 94b, 94c, 94d. That is, when the exhaust gases flowing through the mixing passages 94a, 94b, 94c, and 94d are compared with each other, there is a difference in the concentration of nitrogen oxides contained in the exhaust gas. However, when only the exhaust gases flowing through the mixing passages 94a, 94b, 94c, and 94d are compared in the width direction, the concentrations of nitrogen oxides contained in the exhaust gas have almost no difference in the depth direction.
 混合通路94a,94b,94c,94dを流れる排ガスは、第3鉛直煙道部41fに排出されると、還元剤供給装置65から還元剤が供給される。このとき、制御装置66は、還元剤供給装置65を制御することで、混合通路94a,94b,94c,94dを流れる排ガスに対して、含有する窒素酸化物の濃度に応じた量の還元剤を供給する。すなわち、混合通路94a,94b,94c,94dから排出されて窒素酸化物の濃度が異なる排ガスに対して、還元剤供給管72a,72b,72c,72dのノズル73a,73b,73c,73dから異なる量の還元剤を噴射する。具体的には、混合通路94aから排出されて窒素酸化物の濃度が低い排ガスに対して還元剤供給管72aのノズル73aから最小量の還元剤を噴射する。一方、混合通路70dから排出されて窒素酸化物の濃度が高い排ガスに対して還元剤供給管72dのノズル73dから最大量の還元剤を噴射する。 When the exhaust gas flowing through the mixing passages 94a, 94b, 94c, 94d is discharged to the third vertical flue portion 41f, the reducing agent is supplied from the reducing agent supply device 65. At this time, the control device 66 controls the reducing agent supply device 65 to apply an amount of the reducing agent to the exhaust gas flowing through the mixing passages 94a, 94b, 94c, 94d according to the concentration of the nitrogen oxide contained therein. Supply. That is, different amounts from the nozzles 73a, 73b, 73c, 73d of the reducing agent supply pipes 72a, 72b, 72c, 72d with respect to the exhaust gas discharged from the mixing passages 94a, 94b, 94c, 94d and having different concentrations of nitrogen oxides. Inject the reducing agent. Specifically, the minimum amount of the reducing agent is injected from the nozzle 73a of the reducing agent supply pipe 72a to the exhaust gas discharged from the mixing passage 94a and having a low concentration of nitrogen oxides. On the other hand, the maximum amount of the reducing agent is injected from the nozzle 73d of the reducing agent supply pipe 72d to the exhaust gas discharged from the mixing passage 70d and having a high concentration of nitrogen oxides.
 排ガスに対して還元剤供給装置65から還元剤が供給されると、排ガスは、還元剤が混合された状態で選択還元型触媒61に流入する。選択還元型触媒61は、排ガスの窒素酸化物と還元剤との反応を促進させ、窒素酸化物を還元し、排ガス中の窒素酸化物を除去、低減する。このとき、濃度が異なる排ガスに対して、窒素酸化物の含有量に応じた量の還元剤が供給されてから選択還元型触媒61に流入するため、選択還元型触媒61により窒素酸化物が効率良く還元除去される。 When the reducing agent is supplied to the exhaust gas from the reducing agent supply device 65, the exhaust gas flows into the selective reduction catalyst 61 in a state where the reducing agent is mixed. The selective reduction catalyst 61 promotes the reaction between the nitrogen oxides in the exhaust gas and the reducing agent, reduces the nitrogen oxides, and removes and reduces the nitrogen oxides in the exhaust gas. At this time, since the reducing agent in an amount corresponding to the content of the nitrogen oxide is supplied to the exhaust gas having different concentrations and then flows into the selective reduction type catalyst 61, the nitrogen oxide is efficiently produced by the selective reduction type catalyst 61. It is often reduced and removed.
[本実施形態の作用効果]
 第1の態様に係る脱硝装置は、煙道(ガス通路)41に設けられる選択還元型触媒61と、煙道41における選択還元型触媒61よりガス流れ方向の上流側に設けられて煙道41をガス流れ方向に直交する方向の複数の混合通路(領域)70a,70b,70c,70d,94a,94b,94c,94dに区画する仕切板62,63,64,91,92,93と、選択還元型触媒61よりガス流れ方向の上流側に設けられて複数の混合通路70a,70b,70c,70d,94a,94b,94c,94dを流れるガスの窒素酸化物濃度に応じた量の還元剤を供給する還元剤供給装置65とを備える。
[Action and effect of this embodiment]
The denitration device according to the first aspect is provided with a selective reduction catalyst 61 provided in the flue (gas passage) 41 and an upstream side of the selective reduction catalyst 61 in the flue 41 in the gas flow direction. Is selected as a partition plate 62, 63, 64, 91, 92, 93 that divides the gas into a plurality of mixing passages (regions) 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d in the direction orthogonal to the gas flow direction. An amount of reducing agent provided on the upstream side in the gas flow direction from the reduction catalyst 61 according to the nitrogen oxide concentration of the gas flowing through the plurality of mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d. A reducing agent supply device 65 for supplying is provided.
 第1の態様に係る脱硝装置は、煙道41に流れる排ガスは、仕切板62,63,64,91,92,93により区画された複数の混合通路70a,70b,70c,70d,94a,94b,94c,94dを流れた後、還元剤供給装置65により混合通路70a,70b,70c,70d,94a,94b,94c,94dを流れるガスの窒素酸化物濃度に応じた量の還元剤が供給される。そのため、窒素酸化物濃度の高い排ガスに対しては、多量の還元剤が供給され、窒素酸化物濃度の低い排ガスに対しては、小量の還元剤が供給されることとなり、選択還元型触媒61は、排ガス中の窒素酸化物を効率良く還元除去することができ、性能の向上を図ることができる。すなわち、窒素酸化物濃度に応じた適量の還元剤を排ガスに供給するため、窒素酸化物を還元した後に残った還元剤が硫黄酸化物と反応して硫安が生成することが抑制される。そのため、硫安の除去作業などが不要となり、メンテナンスコストの増大を抑制することができる。 In the denitration device according to the first aspect, the exhaust gas flowing through the flue 41 is a plurality of mixed passages 70a, 70b, 70c, 70d, 94a, 94b partitioned by partition plates 62, 63, 64, 91, 92, 93. , 94c, 94d, and then the reducing agent supply device 65 supplies an amount of the reducing agent according to the nitrogen oxide concentration of the gas flowing through the mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d. NS. Therefore, a large amount of reducing agent is supplied to the exhaust gas having a high nitrogen oxide concentration, and a small amount of the reducing agent is supplied to the exhaust gas having a low nitrogen oxide concentration. No. 61 can efficiently reduce and remove nitrogen oxides in the exhaust gas, and can improve the performance. That is, since an appropriate amount of the reducing agent corresponding to the nitrogen oxide concentration is supplied to the exhaust gas, it is suppressed that the reducing agent remaining after the nitrogen oxide is reduced reacts with the sulfur oxide to generate ammonium sulfate. Therefore, the work of removing ammonium sulfate is not required, and an increase in maintenance cost can be suppressed.
 第2の態様に係る脱硝装置は、仕切板は、煙道41を幅方向の複数の混合通路70a,70b,70c,70dに区画する第1仕切板62,63,64を有する。これにより、幅方向に窒素酸化物に濃度差がある排ガスを混合通路70a,70b,70c,70dごとに窒素酸化物に濃度を均一化することができる。 In the denitration device according to the second aspect, the partition plate has first partition plates 62, 63, 64 that partition the flue 41 into a plurality of mixing passages 70a, 70b, 70c, 70d in the width direction. As a result, the exhaust gas having a concentration difference in nitrogen oxides in the width direction can be made uniform in concentration to nitrogen oxides in each of the mixing passages 70a, 70b, 70c, and 70d.
 第3の態様に係る脱硝装置は、複数の混合通路70a,70b,70c,70d,94a,94b,94c,94dは、ガス流れ方向の長さがガス流れ方向に直交する方向の長さより長い。これにより、窒素酸化物に濃度差がある排ガスを均一に混合するために、十分な長さの流路幅または流路面積に対する流路長さを十分に確保することができる混合通路70a,70b,70c,70d,94a,94b,94c,94dを確保することができる。 In the denitration device according to the third aspect, the length of the plurality of mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d in the gas flow direction is longer than the length in the direction orthogonal to the gas flow direction. As a result, the mixing passages 70a and 70b can sufficiently secure a sufficient length of the flow path width or the flow path length with respect to the flow path area in order to uniformly mix the exhaust gas having a concentration difference in the nitrogen oxides. , 70c, 70d, 94a, 94b, 94c, 94d can be secured.
 第4の態様に係る脱硝装置は、複数の混合通路70a,70b,70c,70d,94a,94b,94c,94dにおけるガス流入部に混合促進装置81が設けられる。これにより、混合促進装置81が混合通路70a,70b,70c,70d,94a,94b,94c,94dに流入した排ガスを混合することで、混合通路70a,70b,70c,70d,94a,94b,94c,94dを流れる排ガスの混合を促進し、窒素酸化物の濃度を適正に均一化することができる。 In the denitration device according to the fourth aspect, the mixing promotion device 81 is provided in the gas inflow section in the plurality of mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d. As a result, the mixing accelerator 81 mixes the exhaust gas that has flowed into the mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d, thereby mixing the mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c. , 94d can be promoted to mix the exhaust gas, and the concentration of nitrogen oxides can be appropriately made uniform.
 第5の態様に係る脱硝装置は、複数の混合通路70a,70b,70c,70d,94a,94b,94c,94dが隣接する方向の混合通路70a,70b,70c,70d,94a,94b,94c,94dの長さは、流れる排ガスの窒素酸化物の濃度分布に応じて設定される。これにより、排ガスの窒素酸化物の濃度分布に応じて十分な長さの混合通路70a,70b,70c,70d,94a,94b,94c,94dを設けることができ、複数の混合通路70a,70b,70c,70d,94a,94b,94c,94dを流れる排ガスを適正に混合することができる。 The denitration device according to the fifth aspect has the mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, in the direction in which the plurality of mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d are adjacent to each other. The length of 94d is set according to the concentration distribution of nitrogen oxides in the flowing exhaust gas. Thereby, mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d having a sufficient length can be provided according to the concentration distribution of nitrogen oxides in the exhaust gas, and a plurality of mixing passages 70a, 70b, Exhaust gas flowing through 70c, 70d, 94a, 94b, 94c, 94d can be appropriately mixed.
 第6の態様に係る脱硝装置は、仕切板は、煙道41を奥行方向の複数の混合通路94a,94b,94c,94dに区画する第2仕切板91,92,93を有する。これにより、奥行方向に窒素酸化物に濃度差がある排ガスを混合通路70a,70b,70c,70dごとに窒素酸化物に濃度を均一化することができる。 In the denitration device according to the sixth aspect, the partition plate has second partition plates 91, 92, 93 that partition the flue 41 into a plurality of mixing passages 94a, 94b, 94c, 94d in the depth direction. As a result, the exhaust gas having a concentration difference in nitrogen oxides in the depth direction can be made uniform in concentration to nitrogen oxides in each of the mixing passages 70a, 70b, 70c, and 70d.
 第7の態様に係る脱硝装置は、煙道41は、第3水平煙道部(水平通路)41eと第3鉛直煙道部(鉛直通路)41fとを有し、選択還元型触媒61は、第3鉛直煙道部(鉛直通路)41fに設けられ、仕切板62,63,64,91,92,93は、少なくとも第3鉛直煙道部(鉛直通路)41fに設けられる。これにより、複数の混合通路70a,70b,70c,70d,94a,94b,94c,94dを流れる排ガスにおける窒素酸化物濃度の均一化を図ることができると共に、仕切板62,63,64,91,92,93の簡素化を図ることができる。 In the denitration device according to the seventh aspect, the flue 41 has a third horizontal flue portion (horizontal passage) 41e and a third vertical flue portion (vertical passage) 41f, and the selective reduction catalyst 61 is a selective reduction catalyst 61. The third vertical flue section (vertical passage) 41f is provided, and the partition plates 62, 63, 64, 91, 92, 93 are provided at least in the third vertical flue section (vertical passage) 41f. As a result, the nitrogen oxide concentration in the exhaust gas flowing through the plurality of mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d can be made uniform, and the partition plates 62, 63, 64, 91, It is possible to simplify 92 and 93.
 第8の態様に係る脱硝装置は、仕切板62,63,64,91,92,93は、第3水平煙道部41eと第3鉛直煙道部41fにまたがって設けられる。これにより、複数の混合通路70a,70b,70c,70d,94a,94b,94c,94dの流路長さを長く確保することができ、複数の混合通路70a,70b,70c,70d,94a,94b,94c,94dを流れる排ガスの混合を促進することができる。 In the denitration device according to the eighth aspect, the partition plates 62, 63, 64, 91, 92, 93 are provided so as to straddle the third horizontal flue portion 41e and the third vertical flue portion 41f. As a result, it is possible to secure a long flow path length of the plurality of mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d, and the plurality of mixing passages 70a, 70b, 70c, 70d, 94a, 94b. , 94c, 94d can promote the mixing of exhaust gas.
 第9の態様に係るボイラは、鉛直方向に沿って設置される火炉11と、火炉11に配置される燃焼装置12と、火炉11における燃焼ガスの流れ方向の下流側に配置される煙道41と、煙道41に配置される熱交換器としての過熱器51,52,53、再熱器54,55、節炭器56と、煙道41における熱交換器より下流側に配置される脱硝装置43,43A,43Bとを備える。これにより、脱硝装置43,43A,43Bにて、窒素酸化物濃度に応じた適量の還元剤を排ガスに供給することとなり、選択還元型触媒61は、排ガス中の窒素酸化物を効率良く還元除去することができ、性能の向上を図ることができる。そして、窒素酸化物を還元した後に残った還元剤が硫黄酸化物と反応して硫安が生成することが抑制され、硫安の除去作業などが不要となり、メンテナンスコストの増大を抑制することができると共に、石炭焚きボイラ10の稼働効率の低下を抑制することができる。 The boiler according to the ninth aspect includes a furnace 11 installed along the vertical direction, a combustion device 12 arranged in the furnace 11, and a flue 41 arranged on the downstream side in the flow direction of combustion gas in the furnace 11. And the boilers 51, 52, 53 as heat exchangers arranged in the flue 41, the reheaters 54, 55, the economizer 56, and the denitration arranged downstream from the heat exchanger in the flue 41. It includes devices 43, 43A, 43B. As a result, the denitration devices 43, 43A, and 43B supply an appropriate amount of reducing agent to the exhaust gas according to the nitrogen oxide concentration, and the selective reduction catalyst 61 efficiently reduces and removes the nitrogen oxides in the exhaust gas. It is possible to improve the performance. Then, the reducing agent remaining after the reduction of the nitrogen oxide is suppressed from reacting with the sulfur oxide to generate ammonium sulfate, the work of removing the ammonium sulfate is not required, and the increase in maintenance cost can be suppressed. , It is possible to suppress a decrease in the operating efficiency of the coal-fired boiler 10.
 なお、上述した実施形態では、仕切板62,63,64,91,92,93(混合通路70a,70b,70c,70d,94a,94b,94c,94d)と選択還元型触媒61との間に還元剤供給装置65を設けたが、この構成に限定されるものではない。例えば、混合通路70a,70b,70c,70d,94a,94b,94c,94dにおけるガス流れ方向の下流側端部(仕切板62,63,64,91,92,93におけるガス流れ方向の下流側端部で挟まれた位置)に還元剤供給装置65を設けてもよい。また、仕切板62,63,64,91,92,93(混合通路70a,70b,70c,70d,94a,94b,94c,94d)におけるガス流れ方向の下流側端部を選択還元型触媒61の流入部まで延出し、混合通路70a,70b,70c,70d,94a,94b,94c,94dにおけるガス流れ方向の下流側端部に還元剤供給装置65を設けてもよい。 In the above-described embodiment, between the partition plates 62, 63, 64, 91, 92, 93 (mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d) and the selective reduction catalyst 61. Although the reducing agent supply device 65 is provided, the present invention is not limited to this configuration. For example, the downstream end in the gas flow direction in the mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d (the downstream end in the gas flow direction in the partition plates 62, 63, 64, 91, 92, 93). A reducing agent supply device 65 may be provided at a position (position sandwiched between the portions). Further, the downstream end in the gas flow direction in the partition plates 62, 63, 64, 91, 92, 93 (mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d) is selected as the reducing catalyst 61. A reducing agent supply device 65 may be provided at the downstream end in the gas flow direction in the mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d so as to extend to the inflow portion.
 また、上述した実施形態にて、仕切板62,63,64,91,92,93および混合通路70a,70b,70c,70d,94a,94b,94c,94dの数は、実施形態に限定されるものではなく、火炉11や煙道41などの形状や大きさなどにより適宜設定すればよいものである。 Further, in the above-described embodiment, the number of partition plates 62, 63, 64, 91, 92, 93 and the mixing passages 70a, 70b, 70c, 70d, 94a, 94b, 94c, 94d is limited to the embodiment. It is not a thing, but may be appropriately set according to the shape and size of the furnace 11 and the flue 41.
 また、上述した第1実施形態では、第1仕切板62,63,64により混合通路70a,70b,70c,70dを設け、第3実施形態では、第2仕切板91,92,93により混合通路94a,94b,94c,94dを設けたが、第1仕切板62,63,64と第2仕切板91,92,93により格子状の混合通路を設けてもよい。また、第1仕切板62,63,64や第2仕切板91,92,93の長さは、それぞれ異なる長さであってもよく、さらに、枚数は1枚ではなく、複数枚に分割して構成してもよい。 Further, in the first embodiment described above, the mixing passages 70a, 70b, 70c, 70d are provided by the first partition plates 62, 63, 64, and in the third embodiment, the mixing passages are provided by the second partition plates 91, 92, 93. Although 94a, 94b, 94c, 94d are provided, a grid-like mixing passage may be provided by the first partition plates 62, 63, 64 and the second partition plates 91, 92, 93. Further, the lengths of the first partition plates 62, 63, 64 and the second partition plates 91, 92, 93 may be different from each other, and the number of sheets is not one but divided into a plurality of sheets. May be configured.
 10 石炭焚きボイラ(ボイラ)
 11 火炉
 12 燃焼装置
 13 燃焼ガス通路
 21,22,23,24,25 燃焼バーナ
 41 煙道(ガス通路)
 41a 第1水平煙道部
 41b 第1鉛直煙道部
 41c 第2水平煙道部
 41d 第2鉛直煙道部
 41e 第3水平煙道部(水平通路)
 41f 第3鉛直煙道部(鉛直通路)
 42 エアヒータ
 43,43A,43B 脱硝装置
 44 ガスダクト
 51,52,53 過熱器
 54,55 再熱器
 56 節炭器
 61 選択還元型触媒(脱硝触媒)
 62,63,64 第1仕切板(仕切板)
 65 還元剤供給装置
 66 制御装置
 70a,70b,70c,70d 混合通路(領域)
 71 還元剤供給ポンプ
 72a,72b,72c,72d 還元剤供給管
 73a,73b,73c,73d ノズル
 81 混合促進装置
 81a,81b,81c,81d 混合促進器
 91,92,93 第2仕切板(仕切板)
 94a,94b,94c,94d 混合通路(領域)
10 Coal-fired boiler (boiler)
11 Furnace 12 Combustion device 13 Combustion gas passage 21, 22, 23, 24, 25 Combustion burner 41 Flue (gas passage)
41a 1st horizontal flue section 41b 1st vertical flue section 41c 2nd horizontal flue section 41d 2nd vertical flue section 41e 3rd horizontal flue section (horizontal passage)
41f 3rd vertical flue (vertical passage)
42 Air heater 43, 43A, 43B Denitration device 44 Gas duct 51, 52, 53 Superheater 54, 55 Reheater 56 Economizer 61 Selective reduction catalyst (denitration catalyst)
62, 63, 64 1st partition plate (partition plate)
65 Reducing agent supply device 66 Control device 70a, 70b, 70c, 70d Mixing passage (region)
71 Reducing agent supply pump 72a, 72b, 72c, 72d Reducing agent supply pipe 73a, 73b, 73c, 73d Nozzle 81 Mixing accelerator 81a, 81b, 81c, 81d Mixing accelerator 91, 92, 93 Second partition plate (partition plate) )
94a, 94b, 94c, 94d mixed passage (region)

Claims (9)

  1.  ガス通路に設けられる選択還元型触媒と、
     前記ガス通路における前記選択還元型触媒よりガス流れ方向の上流側に設けられて前記ガス通路をガス流れ方向に直交する方向の複数の領域に区画する仕切板と、
     前記選択還元型触媒よりガス流れ方向の上流側に設けられて前記複数の領域を流れるガスの窒素酸化物濃度に応じた量の還元剤を供給する還元剤供給装置と、
     を備える脱硝装置。
    Selective reduction catalyst provided in the gas passage and
    A partition plate provided on the upstream side of the selective reduction catalyst in the gas passage in the gas flow direction and partitioning the gas passage into a plurality of regions in the direction orthogonal to the gas flow direction.
    A reducing agent supply device provided on the upstream side in the gas flow direction from the selective reduction catalyst and supplying a reducing agent in an amount corresponding to the nitrogen oxide concentration of the gas flowing through the plurality of regions.
    Denitration device equipped with.
  2.  前記仕切板は、前記ガス通路を幅方向の複数の領域に区画する第1仕切板を有する、
     請求項1に記載の脱硝装置。
    The partition plate has a first partition plate that partitions the gas passage into a plurality of regions in the width direction.
    The denitration device according to claim 1.
  3.  前記複数の領域は、ガス流れ方向の長さがガス流れ方向に直交する方向の長さより長い、
     請求項1または請求項2に記載の脱硝装置。
    In the plurality of regions, the length in the gas flow direction is longer than the length in the direction orthogonal to the gas flow direction.
    The denitration device according to claim 1 or 2.
  4.  前記複数の領域におけるガス流入部に混合促進装置が設けられる、
     請求項1から請求項3のいずれか一項に記載の脱硝装置。
    Mixing promotion devices are provided in the gas inflow portions in the plurality of regions.
    The denitration device according to any one of claims 1 to 3.
  5.  前記複数の領域が隣接する方向の前記領域の長さは、流れるガスの窒素酸化物の濃度分布に応じて設定される、
     請求項1から請求項4のいずれか一項に記載の脱硝装置。
    The length of the region in the direction in which the plurality of regions are adjacent to each other is set according to the concentration distribution of nitrogen oxides in the flowing gas.
    The denitration device according to any one of claims 1 to 4.
  6.  前記仕切板は、前記ガス通路を奥行方向の複数の領域に区画するする第2仕切板を有する、
     請求項1から請求項5のいずれか一項に記載の脱硝装置。
    The partition plate has a second partition plate that partitions the gas passage into a plurality of regions in the depth direction.
    The denitration device according to any one of claims 1 to 5.
  7.  前記ガス通路は、水平通路と、前記水平通路におけるガス流れ方向の下流側に連続する鉛直通路とを有し、前記選択還元型触媒は、前記鉛直通路に設けられ、前記仕切板は、少なくとも前記鉛直通路に設けられる、
     請求項1から請求項6のいずれか一項に記載の脱硝装置。
    The gas passage has a horizontal passage and a vertical passage continuous to the downstream side in the gas flow direction in the horizontal passage, the selective reduction catalyst is provided in the vertical passage, and the partition plate is at least said. Provided in the vertical passage,
    The denitration device according to any one of claims 1 to 6.
  8.  前記仕切板は、前記水平通路と前記鉛直通路にまたがって設けられる、
     請求項7に記載の脱硝装置。
    The partition plate is provided so as to straddle the horizontal passage and the vertical passage.
    The denitration device according to claim 7.
  9.  鉛直方向に沿って設置される火炉と、
     前記火炉に配置される燃焼装置と、
     前記火炉における燃焼ガスの流れ方向の下流側に配置される煙道と、
     前記煙道に配置される熱交換器と、
     前記煙道における前記熱交換器より下流側に配置される請求項1から請求項8のいずれか一項に記載の脱硝装置と、
     を備えるボイラ。
    A furnace installed along the vertical direction,
    The combustion device placed in the furnace and
    The flue arranged on the downstream side in the flow direction of the combustion gas in the furnace, and
    The heat exchanger placed in the flue and
    The denitration device according to any one of claims 1 to 8, which is arranged on the downstream side of the heat exchanger in the flue.
    Boiler with.
PCT/JP2021/000446 2020-02-13 2021-01-08 Denitration device and boiler WO2021161695A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020022814A JP2021126619A (en) 2020-02-13 2020-02-13 Denitration device and boiler
JP2020-022814 2020-02-13

Publications (1)

Publication Number Publication Date
WO2021161695A1 true WO2021161695A1 (en) 2021-08-19

Family

ID=77292155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000446 WO2021161695A1 (en) 2020-02-13 2021-01-08 Denitration device and boiler

Country Status (3)

Country Link
JP (1) JP2021126619A (en)
TW (1) TWI778501B (en)
WO (1) WO2021161695A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116006973A (en) * 2023-01-10 2023-04-25 浙江合泰热电有限公司 High-calcium industrial solid waste incineration treatment process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0924246A (en) * 1995-07-13 1997-01-28 Mitsubishi Heavy Ind Ltd Ammonia injection device in denitration device
JP2009228918A (en) * 2008-03-19 2009-10-08 Hitachi Ltd Control device and control method of boiler
JP2010048537A (en) * 2008-08-25 2010-03-04 Babcock Hitachi Kk Flue-gas nox removal device
JP2014094355A (en) * 2012-11-09 2014-05-22 Mitsubishi Heavy Ind Ltd Exhaust gas denitrification system, and regeneration method and catalyst replacement method in exhaust gas denitrification device
CN106984191A (en) * 2017-03-29 2017-07-28 华电电力科学研究院 A kind of efficient hybrid system of reducing agent ammonia and its method of work for SCR denitrating flue gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210021746U (en) * 2019-05-28 2020-02-07 中国大唐集团科学技术研究院有限公司华中电力试验研究院 Boiler SCR reactor inlet guiding device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0924246A (en) * 1995-07-13 1997-01-28 Mitsubishi Heavy Ind Ltd Ammonia injection device in denitration device
JP2009228918A (en) * 2008-03-19 2009-10-08 Hitachi Ltd Control device and control method of boiler
JP2010048537A (en) * 2008-08-25 2010-03-04 Babcock Hitachi Kk Flue-gas nox removal device
JP2014094355A (en) * 2012-11-09 2014-05-22 Mitsubishi Heavy Ind Ltd Exhaust gas denitrification system, and regeneration method and catalyst replacement method in exhaust gas denitrification device
CN106984191A (en) * 2017-03-29 2017-07-28 华电电力科学研究院 A kind of efficient hybrid system of reducing agent ammonia and its method of work for SCR denitrating flue gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116006973A (en) * 2023-01-10 2023-04-25 浙江合泰热电有限公司 High-calcium industrial solid waste incineration treatment process

Also Published As

Publication number Publication date
TW202133921A (en) 2021-09-16
JP2021126619A (en) 2021-09-02
TWI778501B (en) 2022-09-21

Similar Documents

Publication Publication Date Title
TWI605225B (en) Steam boiler
US8961170B2 (en) Dust coal boiler, dust coal combustion method, dust coal fuel thermal power generation system, and waste gas purification system for dust coal boiler
JP5806550B2 (en) Gas burner
WO2021161695A1 (en) Denitration device and boiler
JP5854620B2 (en) Boiler and boiler operation method
JP2016156530A (en) Combustion burner, boiler, and combustion method of fuel gas
JP6879771B2 (en) Combustion burner and boiler equipped with it
JP6246709B2 (en) Combustion burner and boiler
JP7139095B2 (en) boiler
JP6925811B2 (en) Combustion burner, boiler equipped with it, and combustion method
WO2019168059A1 (en) Exhaust gas treatment device
JP6804318B2 (en) Combustion burner and boiler equipped with it
JP2016156529A (en) Combustion burner, boiler, combustion method of fuel gas
WO2023120404A1 (en) Ammonia fuel boiler system
JP2006052917A (en) Pulverized coal burner and boiler
JP4069882B2 (en) boiler
KR20240011777A (en) burners, and boilers
WO2023120397A1 (en) Ammonia fuel boiler system
JP5144447B2 (en) Boiler equipment
WO2023140164A1 (en) Burner, boiler, and method for operating burner
WO2020166305A1 (en) Overfire air port and combustion device equipped with same
TW202336384A (en) Burner, boiler equipped with same, and method for operating burner
TW202334583A (en) Burner and boiler equipped with same, and burner operation method
KR20230170050A (en) Operation methods of ammonia burning burners, boilers and boilers
JP2023094322A (en) Ammonia combustion burner and boiler

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21752959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21752959

Country of ref document: EP

Kind code of ref document: A1