WO2021161638A1 - Camera system - Google Patents

Camera system Download PDF

Info

Publication number
WO2021161638A1
WO2021161638A1 PCT/JP2020/045927 JP2020045927W WO2021161638A1 WO 2021161638 A1 WO2021161638 A1 WO 2021161638A1 JP 2020045927 W JP2020045927 W JP 2020045927W WO 2021161638 A1 WO2021161638 A1 WO 2021161638A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
variable
brightness
camera
camera device
Prior art date
Application number
PCT/JP2020/045927
Other languages
French (fr)
Japanese (ja)
Inventor
持塚 多久男
Original Assignee
株式会社村上開明堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村上開明堂 filed Critical 株式会社村上開明堂
Publication of WO2021161638A1 publication Critical patent/WO2021161638A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B11/00Filters or other obturators specially adapted for photographic purposes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/75Circuitry for compensating brightness variation in the scene by influencing optical camera components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to a camera system equipped with a camera device equipped with an optical filter.
  • the spectrum camera control system includes a spectrum camera attached to the flying object.
  • a spectrum camera is a camera that photographs the ground surface and is attached to an air vehicle so as to face vertically downward.
  • the spectrum camera includes a lens group, a depolarizing plate, a liquid crystal wavelength tunable filter, and an image sensor.
  • the spectrum camera control system includes a liquid crystal wavelength tunable filter control circuit that controls a liquid crystal wavelength tunable filter and a spectrum camera control device.
  • the liquid crystal wavelength tunable filter has a configuration in which a plurality of plate-shaped liquid crystal elements and plate-shaped polarizing elements are superposed on each other. In each liquid crystal element, the orientation state is independently controlled by the applied voltage supplied from the liquid crystal wavelength tunable filter control circuit.
  • the liquid crystal wavelength tunable filter can transmit light of an arbitrary wavelength depending on the combination of the alignment state of the liquid crystal element and the polarizing element.
  • the liquid crystal wavelength variable filter control circuit receives the wavelength characteristic signal from the spectrum camera control device, the liquid crystal wavelength variable filter control circuit supplies an applied voltage corresponding to the wavelength specific signal to the liquid crystal element of the liquid crystal wavelength variable filter.
  • the liquid crystal tunable filter switches the transmission wavelength according to the input applied voltage.
  • a camera system attached to a moving body such as the spectrum camera control system described above is used for maintenance of a photovoltaic power generation panel or the like. Maintenance of the photovoltaic power generation panel is indispensable because the photovoltaic power generation panel is arranged outdoors and there are various factors that reduce the power generation efficiency. It is conceivable to inspect the photovoltaic power generation panel using a camera device mounted on a moving body such as a drone.
  • An object of the present disclosure is to provide a camera system capable of obtaining a highly accurate image by using a camera device mounted on a moving body.
  • the camera system includes a moving body and a camera device attached to the moving body.
  • the camera device controls the variable ND filter, the sensor that detects at least one of the brightness and temperature of the place where the variable ND filter is arranged, and the spectral characteristics of the variable ND filter, and the variable ND filter. It has a circuit.
  • the control circuit controls the variable ND filter according to at least one of the brightness, temperature, and spectral characteristics detected by the sensor.
  • This camera system is equipped with a camera device, and the camera device is equipped with a variable ND filter, a sensor, and a control circuit.
  • the camera system can also support the resolution of a 4K camera by providing a variable ND filter.
  • the sensor detects at least one of the brightness of the place where the variable ND filter is arranged, the temperature of the place where the variable ND filter is arranged, and the spectral characteristics of the variable ND filter.
  • the control circuit controls the variable ND filter according to at least one of the brightness, temperature and spectral characteristics detected by the sensor. Since the variable ND filter is controlled according to at least one of the brightness, temperature, and spectral characteristics of the shooting environment, it is possible to control according to the situation in which the variable ND filter is placed. Therefore, a highly accurate image can be obtained by controlling the variable ND filter according to at least one of the brightness, the temperature, and the spectral characteristics of the variable ND filter.
  • the above-mentioned mobile body may be a drone.
  • the above-mentioned camera device is attached to the drone, it is possible to acquire an image of a photovoltaic power generation panel or the like with high accuracy while flying the drone.
  • a high-precision image can be obtained by using a camera device mounted on a moving body.
  • FIG. 1 It is a perspective view which shows the example of the moving body of the camera system which concerns on embodiment.
  • FIG. It is a perspective view of the solar panel which is an example of the photographing object of the camera system of FIG.
  • FIG. 1 It is a figure which shows typically the camera apparatus of the camera system of FIG.
  • FIG. 1 It is a figure which shows typically the variable ND filter, the sensor and the control circuit of the camera apparatus of FIG.
  • FIG. 1 shows the example of the waveform information stored in the table of FIG.
  • FIG. 1 It is a side view which shows the example of the moving body which concerns on the modification.
  • FIG. 1 shows a drone 105 which is a moving body of the camera system 100 according to the present embodiment.
  • An exemplary camera system 100 includes a camera device 1 and a drone 105.
  • the drone 105 includes a main body portion 105b, an extending portion 101, a support portion 102, and a propeller portion 103.
  • the main body 105b is located in the center of the drone 105.
  • the plurality of extending portions 101 extend radially from the main body portion 105b.
  • the plurality of support portions 102 are located at the ends of the extending portion 101 on the opposite side of the main body portion 105b.
  • the plurality of propeller portions 103 are supported by the support portion 102.
  • the camera device 1 is mounted on the main body 105b of the drone 105, for example.
  • the drone 105 is, for example, a mobile body that can fly by remote control operation, and is used for inspection of the photovoltaic power generation panel P illustrated in FIG.
  • the photovoltaic power generation panel P is provided outdoors. Since the photovoltaic power generation panel P is easily affected by the external environment and has various factors that reduce the power generation efficiency, inspection and maintenance of the photovoltaic power generation panel P is indispensable.
  • the drone 105 equipped with the camera device 1 of the camera system 100 flies toward the photovoltaic power generation panel P, for example, in order to take a picture of the photovoltaic power generation panel P.
  • the camera device 1 takes a picture of the photovoltaic power generation panel P with high accuracy and acquires a high-precision image of the photovoltaic power generation panel P. As a result, a clearer image of the photovoltaic power generation panel P can be obtained, so that the photovoltaic power generation panel P can be inspected more accurately.
  • FIG. 3 is a diagram schematically showing the configuration of the camera device 1.
  • the camera device 1 includes a lens 2 that forms an image of incident light, a variable ND filter 10, an image sensor 3, a control circuit 4, a display unit 5, and a sensor 6.
  • the image pickup device 3 has a CCD (Charge-coupled device) that photoelectrically converts the light incident from the lens 2.
  • CCD Charge-coupled device
  • the camera device 1 may include a plurality of lenses 2.
  • the image pickup device 3 may be composed of, for example, a CCD element or a CMOS (Complementary Metal-Oxide Semiconductor) element.
  • the control circuit 4 constitutes a microcomputer having a CPU and a storage unit 4b including a ROM, RAM, and the like.
  • the control circuit 4 is electrically connected to the variable ND filter 10, and controls the variable ND filter 10 by outputting a control signal to the variable ND filter 10.
  • the variable ND filter 10 is provided between the lens 2 and the image sensor 3.
  • the variable ND filter 10 may include, for example, an infrared cut filter (IR cut filter) and a neutral density filter (ND filter).
  • the display unit 5 displays filter information indicating the state of the variable ND filter 10.
  • the "filter information” refers to information on the variable ND filter 10 itself such as light transmittance, brightness, exposure, or spectral characteristics of the variable ND filter 10.
  • the "filter information” may include environmental information of the place where the variable ND filter 10 is arranged, such as the temperature of the place where the variable ND filter 10 is arranged.
  • the sensor 6 detects the environmental information of the place where the variable ND filter 10 is arranged.
  • the "environmental information” includes brightness (brightness or illuminance), spectral characteristics, and temperature, and includes information that may affect the operation of the variable ND filter 10.
  • the "spectral characteristic” indicates the ratio of energy for each wavelength of light (also referred to as spectral distribution).
  • the sensor 6 includes, for example, a brightness detection sensor 6b for detecting brightness, a temperature detection sensor 6c for detecting temperature, and a spectral characteristic detection sensor 6d for detecting spectral characteristics.
  • FIG. 4 is a perspective view schematically showing an example of arrangement of each component inside the camera device 1.
  • a cell fixing frame 7 for fixing the variable ND filter 10 is provided inside the camera device 1.
  • the cell fixing frame 7 is made of metal.
  • the cell fixing frame 7 is made of aluminum and may be anodized.
  • the cell fixing frame 7 has a hole 7b to which the variable ND filter 10 is fixed.
  • the variable ND filter 10 is fixed to the cell fixing frame 7 so that the front and back surfaces of the variable ND filter 10 are exposed from the hole portion 7b.
  • the brightness detection sensor 6b is, for example, a photodiode.
  • the brightness detection sensor 6b photoelectrically converts the light L from the light source 8 provided inside the camera device 1 and outputs it to the control circuit 4.
  • the light source 8 is, for example, an LED.
  • the temperature detection sensor 6c is a non-contact type thermometer.
  • various thermometers can be used as the temperature detection sensor 6c.
  • the spectral characteristic detection sensor 6d is a sensor that measures the spectral characteristics of light passing through the variable ND filter 10. The spectral characteristic detection sensor 6d measures, for example, the amount of light for each wavelength of light passing through the variable ND filter 10, and outputs the measured result as a measurement signal to the control circuit 4.
  • FIG. 5 is a plan view showing an exemplary cell fixing frame 7.
  • the cell fixing frame 7 has a hole portion 7b to which the variable ND filter 10 is fixed, and a through hole 7c to which the brightness detection sensor 6b and the light source 8 are fixed.
  • the cell fixing frame 7 has a rectangular shape having a notch 7d at one corner.
  • a rectangular hole portion 7b is formed in a portion including the center of the cell fixing frame 7.
  • the through hole 7c is formed on one side (upper side) of the hole portion 7b in the vertical direction (longitudinal direction), and has, for example, a horizontally long rectangular shape.
  • the shape, size, and material of each part of the cell fixing frame 7 are not limited to the above-mentioned examples, and can be changed as appropriate.
  • FIG. 6 is a cross-sectional view showing a detailed example of the variable ND filter 10.
  • the variable ND filter 10 includes a pair of transparent electrodes 11 facing each other, a pair of transparent substrates 12, an electrolytic solution 13, and a sealing material 14.
  • the pair of transparent substrates 12 sandwich the pair of transparent electrodes 11, and the electrolytic solution 13 is housed in the gap between the pair of transparent electrodes 11.
  • the sealing material 14 seals the gap between the pair of transparent electrodes 11.
  • Each of the pair of transparent electrodes 11 is, for example, a transparent conductive film constituting the electrode pair. In this case, each transparent electrode 11 is formed into a film on each transparent substrate 12. The transparent electrode 11 may be sandwiched between the transparent substrate 12 by the clip electrode.
  • the transparent electrode 11 is composed of, for example, at least one of indium tin oxide (ITO: Indium Tin Oxide), tin oxide, and zinc oxide.
  • ITO Indium Tin Oxide
  • tin oxide Tin oxide
  • zinc oxide zinc oxide.
  • Each of the pair of transparent electrodes 11 is connected to a drive circuit 15 (electric circuit).
  • the transparent substrate 12 has, for example, a rectangular plate shape.
  • the transparent substrate 12 may be made of glass or resin.
  • the transparent substrate 12 has an inner surface 12b with which the transparent electrode 11 contacts, and an outer surface 12c facing the opposite side of the inner surface 12b.
  • each of the inner surface 12b and the outer surface 12c is a smooth surface.
  • An antireflection film may be provided on the outer surface 12c.
  • each transparent electrode 11 In order to connect each transparent electrode 11 to the drive circuit 15, the positions of the pair of transparent substrates 12 when viewed from the out-of-plane direction D1 of the inner surface 12b and the outer surface 12c are deviated from each other. As a result, a part of each transparent substrate 12 protrudes to the outside of the inner surface 12b and the outer surface 12c in the in-plane direction D2.
  • the sealing material 14 surrounds between the pair of transparent electrodes 11.
  • the electrolytic solution 13 housed in the region surrounded by the pair of transparent substrates 12, the pair of transparent electrodes 11, and the sealing material 14 constitutes the light transmission region of the variable ND filter 10.
  • the electrolytic solution 13 is, for example, a liquid in which at least one of silver ions and copper ions is contained in a solvent containing methanol.
  • the electrolytic solution 13 is an electrolytic solution containing propylene carbonate and methanol as solvents and AgNO 3 (silver nitrate), CuCl 2 (copper chloride) and LiBr (lithium bromide) as solutes.
  • the weight of silver nitrate contained in the electrolytic solution 13 is larger than the weight of cupric chloride contained in the electrolytic solution 13.
  • a thickener may be added to the electrolytic solution 13.
  • the thickener may be composed of a polymer such as polypropylene, polyvinyl butyral or polymethylmethacrylate, for example.
  • the drive circuit 15 includes a first lead wire 15b, a second lead wire 15c, and a switch circuit 15d.
  • the first lead wire 15b is electrically connected to one of the pair of transparent electrodes 11, and the second lead wire 15c is electrically connected to the other of the pair of transparent electrodes 11.
  • the switch circuit 15d is provided on the opposite side of each of the transparent electrodes 11 of the first lead wire 15b and the second lead wire 15c.
  • the switch circuit 15d includes a DC power supply 15f, a first switch 15g connected in series with the DC power supply 15f, and a second switch 15h connected in parallel with the first switch 15g.
  • the first switch 15g and the second switch 15h may be switched on / off in reverse with each other, for example, in conjunction with each other.
  • the second switch 15h may be turned off when the first switch 15g is ON, and the second switch 15h may be turned ON when the first switch 15g is OFF. Both the first switch 15g and the second switch 15h may be turned off. As described above, the mode of the switch constituting the switch circuit 15d can be changed as appropriate.
  • the first switch 15g when the first switch 15g is OFF, no current flows through the first lead wire 15b and the second lead wire 15c, and no voltage is generated between the pair of transparent electrodes 11. That is, since between the pair of transparent electrodes 11 are potential-free (floating potential), metal cations in the electrolyte solution 13 (e.g. Ag +, Cu 2+) and anion (e.g. NO 3 -, Cl -) were dispersed It is in a state.
  • metal cations in the electrolyte solution 13 e.g. Ag +, Cu 2+
  • anion e.g. NO 3 -, Cl -
  • the electrolytic solution 13 is almost colorless and transparent.
  • the entire thickness direction of the variable ND filter 10 extends from one transparent substrate 12 and the transparent electrode 11 to the other transparent electrode 11 and the transparent substrate 12 including the electrolytic solution 13. It becomes almost colorless and transparent. That is, when the voltage between the pair of transparent electrodes 11 is in an open state (a state in which no voltage is applied), the variable ND filter 10 has uniform optical characteristics in the light transmission region.
  • an electric field E is generated from the transparent electrode 11 set as the positive electrode toward the transparent electrode 11 set as the negative electrode.
  • the direction of the electric field E substantially coincides with the thickness direction of the variable ND filter 10.
  • variable ND filter 10 can be in the same state as without the filter.
  • the transparent electrode 11 is formed with a low transmittance surface, the function as the variable ND filter 10 can be exhibited.
  • the switch circuit 15d is connected to the control circuit 4. By controlling the switch circuit 15d by the control circuit 4, the voltage applied between the pair of transparent electrodes 11 is variable. Since the voltage applied between the pair of transparent electrodes 11 is variable, the light transmittance, brightness, color and spectral characteristics of the variable ND filter 10 are adjusted.
  • the variable ND filter 10 is driven by a voltage to adjust, for example, light transmittance, brightness, color, and spectral characteristics.
  • the storage unit 4b of the control circuit 4 has a table B in which waveform information W1 to W36 of the voltage applied to the variable ND filter 10 is stored in advance.
  • the control circuit 4 selects waveform information W1 to W36 stored in the table B according to the environmental information (for example, brightness or temperature) of the variable ND filter 10 detected by the sensor 6, and the selected waveform information W1.
  • ⁇ W36 is output to the variable ND filter 10.
  • the control circuit 4 may select waveform information stored in the table according to brightness, temperature, and spectral information as environmental information of the variable ND filter 10 detected by the sensor 6. In this case, the control circuit 4 selects waveform information from a table having three axes of brightness, temperature, and spectral information.
  • the table B stores a plurality of waveform information W1 to W36 that are different from each other for each brightness and each temperature among the environmental information detected by the sensor 6.
  • the waveform information W1 to W36 are drive patterns prepared in advance, and are drive patterns of the variable ND filter 10 suitable for the detected environmental information.
  • each of the waveform information W1 to W36 includes waveform information which is, for example, a rectangular wave.
  • the table B stores waveform information W1 to W36 having different periods T, amplitude F, and duty ratio (D / T).
  • the waveform stored in the table B is not limited to the rectangular wave, and may be another waveform information such as a sine wave.
  • Table B may include waveform information in which the value of the amplitude F is zero (has no wave such as a substantial pulse).
  • the control circuit 4 selects the waveform information W17 from the table B.
  • the control circuit 4 selects the waveform information W32 from the table B.
  • the control circuit 4 outputs any of the selected waveform information W1 to W36 to the variable ND filter 10 to control the operation of the variable ND filter 10.
  • the camera system 100 includes a camera device 1, and the camera device 1 includes a variable ND filter 10, a sensor 6, and a control circuit 4.
  • the variable ND filter 10 By providing the variable ND filter 10 in the camera system 100, it is possible to support the resolution of a 4K camera.
  • the sensor 6 determines the variable ND filter 10 according to at least one of the brightness of the place where the variable ND filter 10 is arranged, the temperature of the place where the variable ND filter 10 is arranged, and the spectral characteristics of the variable ND filter 10. To control.
  • variable ND filter 10 Since the variable ND filter 10 is controlled according to at least one of the brightness, temperature, and spectral characteristics of the shooting environment, it is possible to control according to the situation in which the variable ND filter 10 is placed. Therefore, a highly accurate image can be obtained by controlling the variable ND filter 10 according to at least one of the brightness, the temperature, and the spectral characteristics of the variable ND filter 10.
  • the moving body on which the camera device 1 is mounted is the drone 105. Since the camera device 1 is attached to the drone 105, it is possible to acquire an image of the photovoltaic power generation panel P or the like with high accuracy while flying the drone 105. Even when the drone 105 flies over the photovoltaic power generation panel P and takes a picture of the photovoltaic power generation panel P, a high-precision image of the photovoltaic power generation panel P can be obtained without being affected by the external environment. Can be done.
  • waveform information W1 to W36 of the voltage for driving the variable ND filter 10 is stored in the storage unit 4b.
  • the sensor 6 detects the environmental information of the place where the variable ND filter 10 is arranged.
  • the control circuit 4 controls the variable ND filter 10 by selecting any of the waveform information W1 to W36 according to the detected environmental information.
  • the voltage waveform information W1 to W36 to the variable ND filter 10 can be selected according to the situation of the shooting environment, it is possible to speed up the response such as color change. As a result, the responsiveness can be accelerated. Since the camera device 1 can eliminate the need for a moving mechanism for moving the variable ND filter 10 and the like, it is possible to suppress the complexity of the device. Therefore, the configuration can be simple.
  • the sensor 6 may include a brightness detection sensor 6b that detects the brightness of the portion where the variable ND filter 10 is arranged.
  • the control circuit 4 may select waveform information W1 to W36 stored in the storage unit 4b according to the brightness detected by the brightness detection sensor 6b.
  • the brightness detection sensor 6b detects the brightness of the portion where the variable ND filter 10 is arranged, and the control circuit 4 selects waveform information W1 to W36 according to the detected brightness. Therefore, since the waveform information W1 to W36 of the voltage to the variable ND filter 10 can be selected according to the brightness of the shooting environment, the optimum waveform information W1 to W36 according to the environmental information such as the shooting environment including the brightness can be selected. can do.
  • the sensor 6 may include a spectral characteristic detection sensor 6d that detects the spectral characteristics of the variable ND filter 10.
  • the control circuit 4 may select the waveform information stored in the storage unit 4b according to the spectral characteristics detected by the spectral characteristic detection sensor 6d. In this case, since the waveform information of the voltage to the variable ND filter 10 can be selected according to the spectral characteristics of the variable ND filter 10, the spectral characteristics of the variable ND filter 10 can be fed back. Therefore, it is possible to avoid that the observed color is different from the intended color and to improve the responsiveness.
  • the camera device 1 may include a display unit 5 that displays filter information indicating the state of the variable ND filter 10.
  • the filter information such as the transmittance or the temperature of the variable ND filter 10 can be displayed on the display unit 5, the filter information such as the transmittance can be easily grasped.
  • the camera system according to the present disclosure has been described above.
  • the camera system according to the present disclosure is not limited to the above-described embodiment, and may be modified or applied to other objects without changing the gist described in each claim. .. That is, the configuration of each part of the camera system can be appropriately changed without changing the above gist.
  • FIG. 9 is a diagram showing a camera system 200 according to a modified example.
  • the camera system 200 according to the modified example is provided on the aerial work platform 210.
  • the camera system 200 includes a camera device 1 and an aerial work platform 210.
  • the aerial work platform 210 includes, for example, a telescopic boom 201, a hook 202, a swivel table 204, a vehicle body 203, and an outrigger 205.
  • the hook 202 moves up and down from the boom 201, and the swivel table 204 swivels the boom 201.
  • the vehicle body 203 supports the swivel base 204, and the outrigger 205 projects from the vehicle body 203 to the ground.
  • the camera device 1 is mounted on the tip portion 201b of the boom 201.
  • the camera device 1 makes it possible to photograph the construction site from the tip portion 201b.
  • the camera device 1 may be mounted in the vicinity of the hook 202. In this case, the suspended load of the hook 202 and the position of the hook 202 can be photographed with high accuracy by the camera device 1.
  • Examples of the moving body on which the camera device 1 is mounted include various types other than the drone 105 and the aerial work platform 210.
  • the moving body on which the camera device 1 is mounted may be a transportation device such as a vehicle, a ship, an aircraft, or a rocket, or a moving machine such as a blade of a generator.
  • control circuit 4 selects the waveform information W1 to W36 stored in the table B according to the brightness, temperature, or spectral characteristics (environmental information) of the variable ND filter 10 has been described.
  • the control circuit 4 may select waveform information according to the humidity of the place where the variable ND filter 10 is arranged, for example.
  • the environmental information may be information other than brightness, temperature or spectral characteristics.
  • a table B for storing waveform information W1 to W36 in advance is provided in the storage unit 4b has been described.
  • the number and types of waveform information stored in the table can be changed as appropriate.
  • the camera device 1 constituting the camera system 100 of the drone 105 has been described.
  • the camera device according to the present disclosure may be used for other purposes such as an in-vehicle camera module.
  • the configuration and function of each part of the camera device are not limited to the above-described embodiment, and can be appropriately changed.
  • DC power supply 15g, 15h ... Switch, 100, 200 ... Camera system, 101 ... Extension Current part, 102 ... Support part, 103 ... Propeller part, 105 ... Drone (moving body), 105b ... Main body part, 201 ... Boom, 201b ... Tip part, 202 ... Hook, 203 ... Body, 204 ... Swivel stand, 205 ... Outrigger, 210 ... High-altitude work vehicle (moving body), B ... Table, D1 ... Out-of-plane direction, D2 ... In-plane direction, E ... Electric field, F ... Amplitude, L ... Light, P ... Solar power generation panel, T ... Period, W1 to W36 ... Waveform information.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Blocking Light For Cameras (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Studio Devices (AREA)
  • Diaphragms For Cameras (AREA)
  • Accessories Of Cameras (AREA)

Abstract

A camera system 100 according to an embodiment is provided with a drone 105 and a camera device 1 mounted to the drone 105. The camera device 1 includes a variable ND filter, a sensor for detecting at least one of the brightness at a location where the variable ND filter is disposed, temperature, and the spectral characteristics of the variable ND filter; and a control circuit for controlling the variable ND filter. The control circuit controls the variable ND filter on the basis of at least one of the brightness, the temperature, and the spectral characteristics detected by the sensor.

Description

カメラシステムCamera system
 本開示は、光学フィルタを備えるカメラ装置が搭載されたカメラシステムに関する。 The present disclosure relates to a camera system equipped with a camera device equipped with an optical filter.
 国際公開第2017/179378号には、スペクトルカメラ制御システムが記載されている。スペクトルカメラ制御システムは、飛行体に取り付けられるスペクトルカメラを備える。スペクトルカメラは、地表面を撮影するカメラであって、鉛直下方を向くように飛行体に取り付けられている。スペクトルカメラは、レンズ群と、偏光解消板と、液晶波長可変フィルタと、イメージセンサとを有する。 International Publication No. 2017/179378 describes a spectrum camera control system. The spectrum camera control system includes a spectrum camera attached to the flying object. A spectrum camera is a camera that photographs the ground surface and is attached to an air vehicle so as to face vertically downward. The spectrum camera includes a lens group, a depolarizing plate, a liquid crystal wavelength tunable filter, and an image sensor.
 スペクトルカメラ制御システムは、液晶波長可変フィルタを制御する液晶波長可変フィルタ制御回路と、スペクトルカメラ制御装置とを有する。液晶波長可変フィルタは、板状の液晶素子と板状の偏光素子とが相互に複数枚重ね合わされた構成を有する。各液晶素子では、液晶波長可変フィルタ制御回路から供給される印加電圧によって配向状態が独立に制御される。 The spectrum camera control system includes a liquid crystal wavelength tunable filter control circuit that controls a liquid crystal wavelength tunable filter and a spectrum camera control device. The liquid crystal wavelength tunable filter has a configuration in which a plurality of plate-shaped liquid crystal elements and plate-shaped polarizing elements are superposed on each other. In each liquid crystal element, the orientation state is independently controlled by the applied voltage supplied from the liquid crystal wavelength tunable filter control circuit.
 このため、液晶波長可変フィルタは、液晶素子の配向状態と偏光素子との組み合わせにより、任意の波長の光を透過可能となっている。液晶波長可変フィルタ制御回路は、スペクトルカメラ制御装置から波長特性信号を受信すると、当該波長特定信号に応じた印加電圧を液晶波長可変フィルタの液晶素子に供給する。液晶波長可変フィルタは、入力された印加電圧に応じて透過波長を切り替える。 Therefore, the liquid crystal wavelength tunable filter can transmit light of an arbitrary wavelength depending on the combination of the alignment state of the liquid crystal element and the polarizing element. When the liquid crystal wavelength variable filter control circuit receives the wavelength characteristic signal from the spectrum camera control device, the liquid crystal wavelength variable filter control circuit supplies an applied voltage corresponding to the wavelength specific signal to the liquid crystal element of the liquid crystal wavelength variable filter. The liquid crystal tunable filter switches the transmission wavelength according to the input applied voltage.
国際公開第2017/179378号International Publication No. 2017/179378
 前述したスペクトルカメラ制御システムのように移動体に取り付けられるカメラシステムは、太陽光発電パネルの保守等に用いられる。太陽光発電パネルの保守は、太陽光発電パネルが屋外に配置されるものであって発電効率を低下させる種々の要因が存在するため必須である。ドローン等の移動体に搭載されたカメラ装置を用いて太陽光発電パネルの検査を行うことが考えられる。 A camera system attached to a moving body such as the spectrum camera control system described above is used for maintenance of a photovoltaic power generation panel or the like. Maintenance of the photovoltaic power generation panel is indispensable because the photovoltaic power generation panel is arranged outdoors and there are various factors that reduce the power generation efficiency. It is conceivable to inspect the photovoltaic power generation panel using a camera device mounted on a moving body such as a drone.
 太陽光発電パネルの検査では、パネル表面からの反射光によって外観検査が困難となる場合がある。この種の検査を行うカメラ装置では、局部的反射を抑えるため固定タイプのフィルタが用いられることがある。フィルタとしては、種々のものを採用することが考えられる。しかしながら、前述した液晶波長可変フィルタでは、所望の解像度が得られないという問題がある。例えば、液晶可変フィルタでは、原理的に4Kカメラの解像度が出ないという現状がある。従って、移動体に搭載されたカメラ装置から得られる画像の精度において改善の余地がある。 In the inspection of photovoltaic power generation panels, it may be difficult to inspect the appearance due to the reflected light from the panel surface. In camera devices that perform this type of inspection, fixed type filters may be used to suppress local reflections. It is conceivable to adopt various filters. However, the liquid crystal wavelength tunable filter described above has a problem that a desired resolution cannot be obtained. For example, with a liquid crystal variable filter, the resolution of a 4K camera cannot be obtained in principle. Therefore, there is room for improvement in the accuracy of the image obtained from the camera device mounted on the moving body.
 本開示は、移動体に搭載されたカメラ装置を用いて高精度な画像を得ることができるカメラシステムを提供することを目的とする。 An object of the present disclosure is to provide a camera system capable of obtaining a highly accurate image by using a camera device mounted on a moving body.
 本開示に係るカメラシステムは、移動体と、移動体に取り付けられるカメラ装置と、を備える。カメラ装置は、可変NDフィルタと、可変NDフィルタが配置されている箇所の明るさ、温度、及び、可変NDフィルタの分光特性、の少なくともいずれかを検出するセンサと、可変NDフィルタを制御する制御回路と、を有する。制御回路は、センサによって検出された明るさ、温度、及び分光特性の少なくともいずれかに応じて可変NDフィルタを制御する。 The camera system according to the present disclosure includes a moving body and a camera device attached to the moving body. The camera device controls the variable ND filter, the sensor that detects at least one of the brightness and temperature of the place where the variable ND filter is arranged, and the spectral characteristics of the variable ND filter, and the variable ND filter. It has a circuit. The control circuit controls the variable ND filter according to at least one of the brightness, temperature, and spectral characteristics detected by the sensor.
 このカメラシステムはカメラ装置を備え、カメラ装置は可変NDフィルタとセンサと制御回路とを備える。カメラシステムは、可変NDフィルタを備えることにより、4Kカメラの解像度にも対応することができる。センサは、可変NDフィルタが配置されている箇所の明るさ、可変NDフィルタが配置されている箇所の温度、及び可変NDフィルタの分光特性、の少なくともいずれかを検出する。制御回路は、センサによって検出された明るさ、温度及び分光特性の少なくともいずれかに応じて可変NDフィルタを制御する。撮影環境の明るさ、温度及び分光特性の少なくともいずれかに応じて可変NDフィルタを制御するので、可変NDフィルタが置かれた状況に応じた制御が可能となる。従って、明るさ、温度、及び、可変NDフィルタの分光特性の少なくともいずれかに応じて可変NDフィルタを制御することにより、高精度な画像を得ることができる。 This camera system is equipped with a camera device, and the camera device is equipped with a variable ND filter, a sensor, and a control circuit. The camera system can also support the resolution of a 4K camera by providing a variable ND filter. The sensor detects at least one of the brightness of the place where the variable ND filter is arranged, the temperature of the place where the variable ND filter is arranged, and the spectral characteristics of the variable ND filter. The control circuit controls the variable ND filter according to at least one of the brightness, temperature and spectral characteristics detected by the sensor. Since the variable ND filter is controlled according to at least one of the brightness, temperature, and spectral characteristics of the shooting environment, it is possible to control according to the situation in which the variable ND filter is placed. Therefore, a highly accurate image can be obtained by controlling the variable ND filter according to at least one of the brightness, the temperature, and the spectral characteristics of the variable ND filter.
 前述した移動体は、ドローンであってもよい。この場合、ドローンに前述のカメラ装置が取り付けられるので、ドローンを飛行させながら太陽光発電パネル等の画像を高精度に取得することができる。 The above-mentioned mobile body may be a drone. In this case, since the above-mentioned camera device is attached to the drone, it is possible to acquire an image of a photovoltaic power generation panel or the like with high accuracy while flying the drone.
 本開示によれば、移動体に搭載されたカメラ装置を用いて高精度な画像を得ることができる。 According to the present disclosure, a high-precision image can be obtained by using a camera device mounted on a moving body.
実施形態に係るカメラシステムの移動体の例を示す斜視図である。It is a perspective view which shows the example of the moving body of the camera system which concerns on embodiment. 図1のカメラシステムの撮影対象の例である太陽光パネルの斜視図である。It is a perspective view of the solar panel which is an example of the photographing object of the camera system of FIG. 図1のカメラシステムのカメラ装置を模式的に示す図である。It is a figure which shows typically the camera apparatus of the camera system of FIG. 図3のカメラ装置の可変NDフィルタ、センサ及び制御回路を模式的に示す図である。It is a figure which shows typically the variable ND filter, the sensor and the control circuit of the camera apparatus of FIG. 図4の可変NDフィルタのセル固定枠の例を示す正面図である。It is a front view which shows the example of the cell fixed frame of the variable ND filter of FIG. 図4の可変NDフィルタの断面を模式的に示す図である。It is a figure which shows typically the cross section of the variable ND filter of FIG. 図3のカメラ装置の記憶部に記憶されている波形情報のテーブルを模式的に示す図である。It is a figure which shows typically the table of the waveform information stored in the storage part of the camera apparatus of FIG. 図7のテーブルに記憶されている波形情報の例を示す図である。It is a figure which shows the example of the waveform information stored in the table of FIG. 変形例に係る移動体の例を示す側面図である。It is a side view which shows the example of the moving body which concerns on the modification.
 以下では、図面を参照しながら本開示に係るカメラシステムの実施形態について説明する。図面の説明について同一又は相当する要素には同一の符号を付し、重複する説明を適宜省略する。図面は、説明の容易のため、一部を簡略化又は誇張して描いている場合があり、寸法比率等は図面に記載のものに限定されない。 Hereinafter, embodiments of the camera system according to the present disclosure will be described with reference to the drawings. Regarding the description of the drawings, the same or corresponding elements are designated by the same reference numerals, and duplicate description will be omitted as appropriate. For ease of explanation, the drawings may be partially simplified or exaggerated, and the dimensional ratios and the like are not limited to those described in the drawings.
 図1は、本実施形態に係るカメラシステム100の移動体であるドローン105を示している。例示的なカメラシステム100は、カメラ装置1とドローン105とを備える。ドローン105は、本体部105bと、延在部101と、支持部102と、プロペラ部103とを備える。本体部105bはドローン105の中央に位置する。複数の延在部101は、本体部105bから放射状に延びている。複数の支持部102は、延在部101の本体部105bとの反対側の端部に位置する。複数のプロペラ部103は、支持部102に支持される。カメラ装置1は、例えば、ドローン105の本体部105bに搭載されている。 FIG. 1 shows a drone 105 which is a moving body of the camera system 100 according to the present embodiment. An exemplary camera system 100 includes a camera device 1 and a drone 105. The drone 105 includes a main body portion 105b, an extending portion 101, a support portion 102, and a propeller portion 103. The main body 105b is located in the center of the drone 105. The plurality of extending portions 101 extend radially from the main body portion 105b. The plurality of support portions 102 are located at the ends of the extending portion 101 on the opposite side of the main body portion 105b. The plurality of propeller portions 103 are supported by the support portion 102. The camera device 1 is mounted on the main body 105b of the drone 105, for example.
 ドローン105は、例えば、リモコン操作によって飛行可能な移動体であり、図2に例示される太陽光発電パネルPの検査のために用いられる。太陽光発電パネルPは、屋外に設けられる。太陽光発電パネルPは、外部環境の影響を受けやすく発電効率を低下させる種々の要因を有するため、太陽光発電パネルPの点検保守は必須である。 The drone 105 is, for example, a mobile body that can fly by remote control operation, and is used for inspection of the photovoltaic power generation panel P illustrated in FIG. The photovoltaic power generation panel P is provided outdoors. Since the photovoltaic power generation panel P is easily affected by the external environment and has various factors that reduce the power generation efficiency, inspection and maintenance of the photovoltaic power generation panel P is indispensable.
 カメラシステム100のカメラ装置1を搭載するドローン105は、例えば、太陽光発電パネルPの撮影を行うため、太陽光発電パネルPに向かって飛行する。カメラ装置1は、太陽光発電パネルPの撮影を高精度に行って太陽光発電パネルPの高精度な画像を取得する。これにより、太陽光発電パネルPのより鮮明な画像を得られるため、太陽光発電パネルPの点検をより的確に行うことができる。 The drone 105 equipped with the camera device 1 of the camera system 100 flies toward the photovoltaic power generation panel P, for example, in order to take a picture of the photovoltaic power generation panel P. The camera device 1 takes a picture of the photovoltaic power generation panel P with high accuracy and acquires a high-precision image of the photovoltaic power generation panel P. As a result, a clearer image of the photovoltaic power generation panel P can be obtained, so that the photovoltaic power generation panel P can be inspected more accurately.
 図3は、カメラ装置1の構成を模式的に示す図である。図3に示されるように、カメラ装置1は、入射光を結像するレンズ2と、可変NDフィルタ10と、撮像素子3と、制御回路4と、表示部5と、センサ6とを備える。撮像素子3は、レンズ2から入射した光を光電変換するCCD(Charge-coupled device)を有する。 FIG. 3 is a diagram schematically showing the configuration of the camera device 1. As shown in FIG. 3, the camera device 1 includes a lens 2 that forms an image of incident light, a variable ND filter 10, an image sensor 3, a control circuit 4, a display unit 5, and a sensor 6. The image pickup device 3 has a CCD (Charge-coupled device) that photoelectrically converts the light incident from the lens 2.
 レンズ2には光が入射し、レンズ2を透過した光は撮像素子3に結像される。図3では、1つのレンズ2を図示しているが、カメラ装置1は複数のレンズ2を備えていてもよい。撮像素子3は、例えば、CCD素子又はCMOS(Complementary Metal-Oxide Semiconductor)素子によって構成されていてもよい。 Light is incident on the lens 2, and the light transmitted through the lens 2 is imaged on the image sensor 3. Although one lens 2 is shown in FIG. 3, the camera device 1 may include a plurality of lenses 2. The image pickup device 3 may be composed of, for example, a CCD element or a CMOS (Complementary Metal-Oxide Semiconductor) element.
 制御回路4は、CPUと、ROM及びRAM等を含む記憶部4bとを有するマイクロコンピュータを構成している。制御回路4は、可変NDフィルタ10と電気的に接続されており、可変NDフィルタ10に制御信号を出力することによって可変NDフィルタ10を制御する。可変NDフィルタ10は、レンズ2と撮像素子3との間に設けられる。可変NDフィルタ10は、例えば、赤外線カットフィルタ(IRカットフィルタ)及び減光フィルタ(NDフィルタ)を含んでいてもよい。 The control circuit 4 constitutes a microcomputer having a CPU and a storage unit 4b including a ROM, RAM, and the like. The control circuit 4 is electrically connected to the variable ND filter 10, and controls the variable ND filter 10 by outputting a control signal to the variable ND filter 10. The variable ND filter 10 is provided between the lens 2 and the image sensor 3. The variable ND filter 10 may include, for example, an infrared cut filter (IR cut filter) and a neutral density filter (ND filter).
 表示部5は、可変NDフィルタ10の状態を示すフィルタ情報を表示する。本開示において、「フィルタ情報」とは、可変NDフィルタ10における光の透過率、明るさ、露出若しくは分光特性等の可変NDフィルタ10そのものの情報を示している。「フィルタ情報」は、可変NDフィルタ10が配置された箇所の温度等、可変NDフィルタ10が配置された箇所の環境情報を含んでいてもよい。カメラ装置1が表示部5を備えることにより、カメラ装置1のユーザー(カメラマン等)は可変NDフィルタ10のフィルタ情報を容易に把握することが可能となる。 The display unit 5 displays filter information indicating the state of the variable ND filter 10. In the present disclosure, the "filter information" refers to information on the variable ND filter 10 itself such as light transmittance, brightness, exposure, or spectral characteristics of the variable ND filter 10. The "filter information" may include environmental information of the place where the variable ND filter 10 is arranged, such as the temperature of the place where the variable ND filter 10 is arranged. When the camera device 1 includes the display unit 5, the user (cameraman or the like) of the camera device 1 can easily grasp the filter information of the variable ND filter 10.
 センサ6は、可変NDフィルタ10が配置されている箇所の環境情報を検出する。本開示において、「環境情報」とは、明るさ(明度又は照度)、分光特性及び温度を含んでおり、可変NDフィルタ10の動作に影響が及びうる情報を含んでいる。「分光特性」とは、光の波長ごとのエネルギーの割合(分光分布とも称される)を示している。センサ6は、例えば、明るさを検出する明るさ検出センサ6bと、温度を検出する温度検出センサ6cと、分光特性を検出する分光特性検出センサ6dとを含んでいる。 The sensor 6 detects the environmental information of the place where the variable ND filter 10 is arranged. In the present disclosure, the "environmental information" includes brightness (brightness or illuminance), spectral characteristics, and temperature, and includes information that may affect the operation of the variable ND filter 10. The "spectral characteristic" indicates the ratio of energy for each wavelength of light (also referred to as spectral distribution). The sensor 6 includes, for example, a brightness detection sensor 6b for detecting brightness, a temperature detection sensor 6c for detecting temperature, and a spectral characteristic detection sensor 6d for detecting spectral characteristics.
 図4は、カメラ装置1の内部における各部品の配置の例を模式的に示す斜視図である。図3及び図4に示されるように、カメラ装置1の内部には、可変NDフィルタ10を固定するセル固定枠7が設けられている。例えば、セル固定枠7は、金属製である。セル固定枠7は、一例として、アルミニウムによって構成されており、アルマイト処理が施されたものであってもよい。 FIG. 4 is a perspective view schematically showing an example of arrangement of each component inside the camera device 1. As shown in FIGS. 3 and 4, a cell fixing frame 7 for fixing the variable ND filter 10 is provided inside the camera device 1. For example, the cell fixing frame 7 is made of metal. As an example, the cell fixing frame 7 is made of aluminum and may be anodized.
 セル固定枠7は可変NDフィルタ10が固定される孔部7bを有する。可変NDフィルタ10の表裏が孔部7bから露出するように可変NDフィルタ10がセル固定枠7に固定される。明るさ検出センサ6bは、例えば、フォトダイオードである。明るさ検出センサ6bは、カメラ装置1の内部に設けられた光源8による光Lを光電変換して制御回路4に出力する。光源8は、一例として、LEDである。 The cell fixing frame 7 has a hole 7b to which the variable ND filter 10 is fixed. The variable ND filter 10 is fixed to the cell fixing frame 7 so that the front and back surfaces of the variable ND filter 10 are exposed from the hole portion 7b. The brightness detection sensor 6b is, for example, a photodiode. The brightness detection sensor 6b photoelectrically converts the light L from the light source 8 provided inside the camera device 1 and outputs it to the control circuit 4. The light source 8 is, for example, an LED.
 一例として、温度検出センサ6cは非接触式の温度計である。しかしながら、温度検出センサ6cとしては種々の温度計を用いることが可能である。分光特性検出センサ6dは、可変NDフィルタ10を通る光の分光特性を測定するセンサである。分光特性検出センサ6dは、例えば、可変NDフィルタ10を通る光の波長ごとの光量を測定し、測定した結果を測定信号として制御回路4に出力する。 As an example, the temperature detection sensor 6c is a non-contact type thermometer. However, various thermometers can be used as the temperature detection sensor 6c. The spectral characteristic detection sensor 6d is a sensor that measures the spectral characteristics of light passing through the variable ND filter 10. The spectral characteristic detection sensor 6d measures, for example, the amount of light for each wavelength of light passing through the variable ND filter 10, and outputs the measured result as a measurement signal to the control circuit 4.
 図5は、例示的なセル固定枠7を示す平面図である。図5に示されるように、セル固定枠7は、可変NDフィルタ10が固定される孔部7bと、明るさ検出センサ6b及び光源8が固定される貫通孔7cとを有する。一例として、セル固定枠7は1つの角部に切り欠き7dを有する長方形状とされている。セル固定枠7の中央を含む部分に長方形状の孔部7bが形成されている。 FIG. 5 is a plan view showing an exemplary cell fixing frame 7. As shown in FIG. 5, the cell fixing frame 7 has a hole portion 7b to which the variable ND filter 10 is fixed, and a through hole 7c to which the brightness detection sensor 6b and the light source 8 are fixed. As an example, the cell fixing frame 7 has a rectangular shape having a notch 7d at one corner. A rectangular hole portion 7b is formed in a portion including the center of the cell fixing frame 7.
 例えば、孔部7bの縦方向の長さをh、孔部7bの横方向の長さをwとすると、hの値は40mmであり、wの値は30mmである。貫通孔7cは、孔部7bの縦方向(長手方向)の一方側(上側)に形成されており、例えば、横長の長方形状とされている。但し、セル固定枠7の各部の形状、大きさ及び材料は、前述した例に限られず、適宜変更可能である。 For example, assuming that the length of the hole 7b in the vertical direction is h and the length of the hole 7b in the horizontal direction is w, the value of h is 40 mm and the value of w is 30 mm. The through hole 7c is formed on one side (upper side) of the hole portion 7b in the vertical direction (longitudinal direction), and has, for example, a horizontally long rectangular shape. However, the shape, size, and material of each part of the cell fixing frame 7 are not limited to the above-mentioned examples, and can be changed as appropriate.
 図6は、可変NDフィルタ10の詳細の例を示す断面図である。図6に示されるように、可変NDフィルタ10は、互いに対向する一対の透明電極11と、一対の透明基板12と、電解液13と、シール材14とを備える。一対の透明基板12は一対の透明電極11を挟み込み、一対の透明電極11の間隙に電解液13が収容される。シール材14は、一対の透明電極11の間隙を封止する。 FIG. 6 is a cross-sectional view showing a detailed example of the variable ND filter 10. As shown in FIG. 6, the variable ND filter 10 includes a pair of transparent electrodes 11 facing each other, a pair of transparent substrates 12, an electrolytic solution 13, and a sealing material 14. The pair of transparent substrates 12 sandwich the pair of transparent electrodes 11, and the electrolytic solution 13 is housed in the gap between the pair of transparent electrodes 11. The sealing material 14 seals the gap between the pair of transparent electrodes 11.
 一対の透明電極11のそれぞれは、例えば、電極対を構成する透明導電膜である。この場合、各透明電極11は各透明基板12に成膜形成されている。なお、透明電極11は、透明基板12にクリップ電極によって挟み込まれていてもよい。透明電極11は、例えば、酸化インジウムスズ(ITO:Indium Tin Oxide)、酸化スズ及び酸化亜鉛の少なくともいずれかによって構成されている。一対の透明電極11のそれぞれは、駆動回路15(電気回路)に接続されている。 Each of the pair of transparent electrodes 11 is, for example, a transparent conductive film constituting the electrode pair. In this case, each transparent electrode 11 is formed into a film on each transparent substrate 12. The transparent electrode 11 may be sandwiched between the transparent substrate 12 by the clip electrode. The transparent electrode 11 is composed of, for example, at least one of indium tin oxide (ITO: Indium Tin Oxide), tin oxide, and zinc oxide. Each of the pair of transparent electrodes 11 is connected to a drive circuit 15 (electric circuit).
 透明基板12は、例えば、矩形板状とされている。透明基板12は、ガラス製であってもよいし、樹脂製であってもよい。透明基板12は、透明電極11が接触する内面12bと、内面12bの反対側を向く外面12cとを有する。例えば、内面12b及び外面12cのそれぞれは平滑面とされている。なお、外面12cには反射防止膜が設けられていてもよい。 The transparent substrate 12 has, for example, a rectangular plate shape. The transparent substrate 12 may be made of glass or resin. The transparent substrate 12 has an inner surface 12b with which the transparent electrode 11 contacts, and an outer surface 12c facing the opposite side of the inner surface 12b. For example, each of the inner surface 12b and the outer surface 12c is a smooth surface. An antireflection film may be provided on the outer surface 12c.
 各透明電極11を駆動回路15に接続するために、内面12b及び外面12cの面外方向D1から見たときにおける一対の透明基板12の位置は、互いにずれている。これにより、各透明基板12の一部は、内面12b及び外面12cの面内方向D2の外側にはみ出している。シール材14は一対の透明電極11の間を囲んでいる。一対の透明基板12、一対の透明電極11及びシール材14に囲まれた領域に収容された電解液13が可変NDフィルタ10の光透過領域を構成する。 In order to connect each transparent electrode 11 to the drive circuit 15, the positions of the pair of transparent substrates 12 when viewed from the out-of-plane direction D1 of the inner surface 12b and the outer surface 12c are deviated from each other. As a result, a part of each transparent substrate 12 protrudes to the outside of the inner surface 12b and the outer surface 12c in the in-plane direction D2. The sealing material 14 surrounds between the pair of transparent electrodes 11. The electrolytic solution 13 housed in the region surrounded by the pair of transparent substrates 12, the pair of transparent electrodes 11, and the sealing material 14 constitutes the light transmission region of the variable ND filter 10.
 電解液13は、例えば、メタノールを含む溶媒に少なくとも銀イオン及び銅イオンのいずれかが含まれた液体である。一例として、電解液13は、炭酸プロピレン及びメタノールを溶媒として含むと共に、AgNO(硝酸銀)、CuCl(塩化第二銅)及びLiBr(臭化リチウム)を溶質として含む電解液である。 The electrolytic solution 13 is, for example, a liquid in which at least one of silver ions and copper ions is contained in a solvent containing methanol. As an example, the electrolytic solution 13 is an electrolytic solution containing propylene carbonate and methanol as solvents and AgNO 3 (silver nitrate), CuCl 2 (copper chloride) and LiBr (lithium bromide) as solutes.
 例えば、電解液13に含まれる硝酸銀の重量は電解液13に含まれる塩化第二銅の重量よりも大きい。電解液13には増粘剤が添加されていてもよい。増粘剤は、例えば、ポリプロピレン、ポリビニルブチラール又はポリメチルメタクリレート等のポリマーによって構成されていてもよい。 For example, the weight of silver nitrate contained in the electrolytic solution 13 is larger than the weight of cupric chloride contained in the electrolytic solution 13. A thickener may be added to the electrolytic solution 13. The thickener may be composed of a polymer such as polypropylene, polyvinyl butyral or polymethylmethacrylate, for example.
 駆動回路15は、第1のリード線15bと、第2のリード線15cと、スイッチ回路15dとを含む。第1のリード線15bは一対の透明電極11の一方に電気的に接続され、第2のリード線15cは一対の透明電極11の他方に電気的に接続される。スイッチ回路15dは、第1のリード線15b及び第2のリード線15cの各透明電極11との反対側に設けられる。 The drive circuit 15 includes a first lead wire 15b, a second lead wire 15c, and a switch circuit 15d. The first lead wire 15b is electrically connected to one of the pair of transparent electrodes 11, and the second lead wire 15c is electrically connected to the other of the pair of transparent electrodes 11. The switch circuit 15d is provided on the opposite side of each of the transparent electrodes 11 of the first lead wire 15b and the second lead wire 15c.
 スイッチ回路15dは、直流電源15fと、直流電源15fに直列に接続される第1のスイッチ15gと、第1のスイッチ15gに並列に接続される第2のスイッチ15hと、を有する。第1のスイッチ15g及び第2のスイッチ15hは、例えば、相互に連動して互いに逆にON/OFF切り替えされてもよい。 The switch circuit 15d includes a DC power supply 15f, a first switch 15g connected in series with the DC power supply 15f, and a second switch 15h connected in parallel with the first switch 15g. The first switch 15g and the second switch 15h may be switched on / off in reverse with each other, for example, in conjunction with each other.
 すなわち、第1のスイッチ15gがONのときに第2のスイッチ15hがOFFとなり、第1のスイッチ15gがOFFのときに第2のスイッチ15hがONとなってもよい。第1のスイッチ15g及び第2のスイッチ15hが共にOFFとなってもよい。このようにスイッチ回路15dを構成するスイッチの態様は適宜変更可能である。 That is, the second switch 15h may be turned off when the first switch 15g is ON, and the second switch 15h may be turned ON when the first switch 15g is OFF. Both the first switch 15g and the second switch 15h may be turned off. As described above, the mode of the switch constituting the switch circuit 15d can be changed as appropriate.
 例えば、第1のスイッチ15gがOFFとなっているときには、第1のリード線15b及び第2のリード線15cに電流が流れず、一対の透明電極11の間には電圧が生じない。すなわち、一対の透明電極11の間は無電位(フローティング電位)であるため、電解液13における金属陽イオン(例えばAg、Cu2+)及び陰イオン(例えばNO 、Cl)は分散した状態となっている。 For example, when the first switch 15g is OFF, no current flows through the first lead wire 15b and the second lead wire 15c, and no voltage is generated between the pair of transparent electrodes 11. That is, since between the pair of transparent electrodes 11 are potential-free (floating potential), metal cations in the electrolyte solution 13 (e.g. Ag +, Cu 2+) and anion (e.g. NO 3 -, Cl -) were dispersed It is in a state.
 従って、電解液13はほぼ無色透明である。可変NDフィルタ10の光透過領域では、一方の透明基板12及び透明電極11から電解液13を含めて他方の透明電極11及び透明基板12に至るまで、可変NDフィルタ10の厚さ方向の全体がほぼ無色透明となる。すなわち、一対の透明電極11の間の電圧が解放状態(電圧が印加されていない状態)にあるときは、可変NDフィルタ10の光透過領域において均一な光学特性を有する。 Therefore, the electrolytic solution 13 is almost colorless and transparent. In the light transmission region of the variable ND filter 10, the entire thickness direction of the variable ND filter 10 extends from one transparent substrate 12 and the transparent electrode 11 to the other transparent electrode 11 and the transparent substrate 12 including the electrolytic solution 13. It becomes almost colorless and transparent. That is, when the voltage between the pair of transparent electrodes 11 is in an open state (a state in which no voltage is applied), the variable ND filter 10 has uniform optical characteristics in the light transmission region.
 また、第2のスイッチ15hがOFFとなり第1のスイッチ15gがONとなっているときには、第1のリード線15b及び第2のリード線15cに電流が流れ、一対の透明電極11の間に電圧が生じる。このとき、一対の透明電極11の間に電圧が印加されて、一方の透明電極11が正電極に設定され、他方の透明電極11が負電極に設定される。 Further, when the second switch 15h is OFF and the first switch 15g is ON, a current flows through the first lead wire 15b and the second lead wire 15c, and a voltage is applied between the pair of transparent electrodes 11. Occurs. At this time, a voltage is applied between the pair of transparent electrodes 11, one transparent electrode 11 is set as a positive electrode, and the other transparent electrode 11 is set as a negative electrode.
 そして、正電極に設定された透明電極11から負電極に設定された透明電極11に向かって電場Eが生じる。電場Eの向きは、可変NDフィルタ10の厚さ方向に略一致する。この電場Eによって、電解液13の金属陽イオン(例えばAg、Cu2+)が負電極に設定された透明電極11に移動して還元される。 Then, an electric field E is generated from the transparent electrode 11 set as the positive electrode toward the transparent electrode 11 set as the negative electrode. The direction of the electric field E substantially coincides with the thickness direction of the variable ND filter 10. By this electric field E, the metal cations (for example, Ag + and Cu 2+ ) of the electrolytic solution 13 are moved to the transparent electrode 11 set as the negative electrode and reduced.
 その結果、当該透明電極11に、例えば、銀及び銅を含む析出層が形成されて光の透過率が低い低透過率面が形成される。透明電極11に低透過率面が形成されていないときに可変NDフィルタ10をフィルタ無しと同様の状態にできる。透明電極11に低透過率面が形成されているときに可変NDフィルタ10としての機能を発揮させることができる。 As a result, a precipitation layer containing, for example, silver and copper is formed on the transparent electrode 11, and a low transmittance surface having a low light transmittance is formed. When the low transmittance surface is not formed on the transparent electrode 11, the variable ND filter 10 can be in the same state as without the filter. When the transparent electrode 11 is formed with a low transmittance surface, the function as the variable ND filter 10 can be exhibited.
 スイッチ回路15dは制御回路4に接続されている。制御回路4がスイッチ回路15dを制御することにより、一対の透明電極11の間に印加される電圧が可変とされている。一対の透明電極11の間に印加される電圧が可変とされていることによって可変NDフィルタ10における光の透過率、明るさ、色彩及び分光特性が調整される。可変NDフィルタ10は、電圧によって駆動して、例えば、光の透過率、明るさ、色彩及び分光特性等の調整を行う。 The switch circuit 15d is connected to the control circuit 4. By controlling the switch circuit 15d by the control circuit 4, the voltage applied between the pair of transparent electrodes 11 is variable. Since the voltage applied between the pair of transparent electrodes 11 is variable, the light transmittance, brightness, color and spectral characteristics of the variable ND filter 10 are adjusted. The variable ND filter 10 is driven by a voltage to adjust, for example, light transmittance, brightness, color, and spectral characteristics.
 図7に示されるように、制御回路4の記憶部4bは、可変NDフィルタ10に印加する電圧の波形情報W1~W36が予め記憶されているテーブルBを有する。制御回路4は、センサ6によって検出された可変NDフィルタ10の環境情報(例えば、明るさ又は温度)に応じてテーブルBに記憶されている波形情報W1~W36を選択し、選択した波形情報W1~W36を可変NDフィルタ10に出力する。制御回路4は、センサ6によって検出された可変NDフィルタ10の環境情報として明るさ、温度及び分光情報に応じてテーブルに記憶されている波形情報を選択してもよい。この場合、制御回路4は、明るさ、温度及び分光情報の3軸を備えたテーブルから波形情報を選択する。 As shown in FIG. 7, the storage unit 4b of the control circuit 4 has a table B in which waveform information W1 to W36 of the voltage applied to the variable ND filter 10 is stored in advance. The control circuit 4 selects waveform information W1 to W36 stored in the table B according to the environmental information (for example, brightness or temperature) of the variable ND filter 10 detected by the sensor 6, and the selected waveform information W1. ~ W36 is output to the variable ND filter 10. The control circuit 4 may select waveform information stored in the table according to brightness, temperature, and spectral information as environmental information of the variable ND filter 10 detected by the sensor 6. In this case, the control circuit 4 selects waveform information from a table having three axes of brightness, temperature, and spectral information.
 例えば、テーブルBは、センサ6によって検出される環境情報のうち、明るさごと及び温度ごとに互いに異なる複数の波形情報W1~W36を記憶している。波形情報W1~W36は、予め用意されている駆動パターンであって、検出された環境情報に適した可変NDフィルタ10の駆動パターンである。 For example, the table B stores a plurality of waveform information W1 to W36 that are different from each other for each brightness and each temperature among the environmental information detected by the sensor 6. The waveform information W1 to W36 are drive patterns prepared in advance, and are drive patterns of the variable ND filter 10 suitable for the detected environmental information.
 図7及び図8に示されるように、波形情報W1~W36のそれぞれは、例えば、矩形波とされている波形情報を含んでいる。テーブルBには、周期T、振幅F及びデューティ比(D/T)が互いに異なる波形情報W1~W36が格納されている。テーブルBに格納されている波形は、矩形波に限られず、例えば正弦波等、別の波形情報であってもよい。テーブルBには、振幅Fの値がゼロである(実質パルス等の波を有しない)波形情報が含まれていてもよい。 As shown in FIGS. 7 and 8, each of the waveform information W1 to W36 includes waveform information which is, for example, a rectangular wave. The table B stores waveform information W1 to W36 having different periods T, amplitude F, and duty ratio (D / T). The waveform stored in the table B is not limited to the rectangular wave, and may be another waveform information such as a sine wave. Table B may include waveform information in which the value of the amplitude F is zero (has no wave such as a substantial pulse).
 一例として、環境情報のうち、明るさが6段階、温度が6段階に分かれる場合であって、センサ6の明るさ検出センサ6bが検出した明るさの段階が3、センサ6の温度検出センサ6cが検出した温度の段階が5、であるときには、制御回路4がテーブルBから波形情報W17を選択する。 As an example, in the environmental information, the brightness is divided into 6 stages and the temperature is divided into 6 stages, the brightness stage detected by the brightness detection sensor 6b of the sensor 6 is 3, and the temperature detection sensor 6c of the sensor 6 When the temperature step detected by is 5, the control circuit 4 selects the waveform information W17 from the table B.
 明るさ検出センサ6bが検出した明るさの段階が6、温度検出センサ6cが検出した温度の段階が2、であるときには、制御回路4がテーブルBから波形情報W32を選択する。制御回路4は、選択した波形情報W1~W36のいずれかを可変NDフィルタ10に出力して可変NDフィルタ10の動作を制御する。 When the brightness stage detected by the brightness detection sensor 6b is 6 and the temperature stage detected by the temperature detection sensor 6c is 2, the control circuit 4 selects the waveform information W32 from the table B. The control circuit 4 outputs any of the selected waveform information W1 to W36 to the variable ND filter 10 to control the operation of the variable ND filter 10.
 本実施形態に係るカメラシステム100から得られる作用効果について説明する。カメラシステム100はカメラ装置1を備え、カメラ装置1は可変NDフィルタ10とセンサ6と制御回路4とを備える。カメラシステム100が可変NDフィルタ10を備えることにより、4Kカメラの解像度にも対応することができる。センサ6は、可変NDフィルタ10が配置されている箇所の明るさ、可変NDフィルタ10が配置されている箇所の温度、及び可変NDフィルタ10の分光特性の少なくともいずれかに応じて可変NDフィルタ10を制御する。 The action and effect obtained from the camera system 100 according to the present embodiment will be described. The camera system 100 includes a camera device 1, and the camera device 1 includes a variable ND filter 10, a sensor 6, and a control circuit 4. By providing the variable ND filter 10 in the camera system 100, it is possible to support the resolution of a 4K camera. The sensor 6 determines the variable ND filter 10 according to at least one of the brightness of the place where the variable ND filter 10 is arranged, the temperature of the place where the variable ND filter 10 is arranged, and the spectral characteristics of the variable ND filter 10. To control.
 撮影環境の明るさ、温度及び分光特性の少なくともいずれかに応じて可変NDフィルタ10が制御されるので、可変NDフィルタ10が置かれた状況に応じた制御が可能となる。従って、明るさ、温度、及び可変NDフィルタ10の分光特性の少なくともいずれかに応じて可変NDフィルタ10を制御することにより、高精度な画像を得ることができる。 Since the variable ND filter 10 is controlled according to at least one of the brightness, temperature, and spectral characteristics of the shooting environment, it is possible to control according to the situation in which the variable ND filter 10 is placed. Therefore, a highly accurate image can be obtained by controlling the variable ND filter 10 according to at least one of the brightness, the temperature, and the spectral characteristics of the variable ND filter 10.
 本実施形態において、カメラ装置1が搭載される移動体はドローン105である。ドローン105にはカメラ装置1が取り付けられるので、ドローン105を飛行させながら太陽光発電パネルP等の画像を高精度に取得することができる。ドローン105が太陽光発電パネルPの上空を飛来して太陽光発電パネルPの撮影を行う場合であっても、外部環境の影響を受けることなく太陽光発電パネルPの高精度な画像を得ることができる。 In the present embodiment, the moving body on which the camera device 1 is mounted is the drone 105. Since the camera device 1 is attached to the drone 105, it is possible to acquire an image of the photovoltaic power generation panel P or the like with high accuracy while flying the drone 105. Even when the drone 105 flies over the photovoltaic power generation panel P and takes a picture of the photovoltaic power generation panel P, a high-precision image of the photovoltaic power generation panel P can be obtained without being affected by the external environment. Can be done.
 カメラ装置1では、可変NDフィルタ10を駆動する電圧の波形情報W1~W36が記憶部4bに記憶されている。センサ6は可変NDフィルタ10が配置されている箇所の環境情報を検出する。制御回路4は検出された環境情報に応じて波形情報W1~W36のいずれかを選択して可変NDフィルタ10を制御する。 In the camera device 1, waveform information W1 to W36 of the voltage for driving the variable ND filter 10 is stored in the storage unit 4b. The sensor 6 detects the environmental information of the place where the variable ND filter 10 is arranged. The control circuit 4 controls the variable ND filter 10 by selecting any of the waveform information W1 to W36 according to the detected environmental information.
 撮影環境の状況に合わせて可変NDフィルタ10への電圧の波形情報W1~W36を選択できるので、色彩変化等の応答を速くすることができる。その結果、応答性を速めることができる。カメラ装置1では、可変NDフィルタ10等を移動させる移動機構を不要とすることができるので、装置の複雑化を抑制することができる。従って、簡易な構成とすることができる。 Since the voltage waveform information W1 to W36 to the variable ND filter 10 can be selected according to the situation of the shooting environment, it is possible to speed up the response such as color change. As a result, the responsiveness can be accelerated. Since the camera device 1 can eliminate the need for a moving mechanism for moving the variable ND filter 10 and the like, it is possible to suppress the complexity of the device. Therefore, the configuration can be simple.
 センサ6は、可変NDフィルタ10が配置されている箇所の明るさを検出する明るさ検出センサ6bを含んでいてもよい。制御回路4は、明るさ検出センサ6bによって検出された明るさに応じて記憶部4bに記憶されている波形情報W1~W36を選択してもよい。この場合、可変NDフィルタ10が配置されている箇所の明るさを明るさ検出センサ6bが検出し、制御回路4は検出された明るさに応じて波形情報W1~W36を選択する。よって、撮影環境の明るさに合わせて可変NDフィルタ10への電圧の波形情報W1~W36を選択できるので、明るさを含む撮影環境等の環境情報に応じた最適な波形情報W1~W36を選択することができる。 The sensor 6 may include a brightness detection sensor 6b that detects the brightness of the portion where the variable ND filter 10 is arranged. The control circuit 4 may select waveform information W1 to W36 stored in the storage unit 4b according to the brightness detected by the brightness detection sensor 6b. In this case, the brightness detection sensor 6b detects the brightness of the portion where the variable ND filter 10 is arranged, and the control circuit 4 selects waveform information W1 to W36 according to the detected brightness. Therefore, since the waveform information W1 to W36 of the voltage to the variable ND filter 10 can be selected according to the brightness of the shooting environment, the optimum waveform information W1 to W36 according to the environmental information such as the shooting environment including the brightness can be selected. can do.
 センサ6は、可変NDフィルタ10の分光特性を検出する分光特性検出センサ6dを含んでもよい。制御回路4は、分光特性検出センサ6dによって検出された分光特性に応じて記憶部4bに記憶されている波形情報を選択してもよい。この場合、可変NDフィルタ10の分光特性に応じて可変NDフィルタ10への電圧の波形情報を選択できるので、可変NDフィルタ10の分光特性のフィードバックを行うことができる。従って、観察される色彩が意図した色彩と異なるということを回避できると共に応答性を高めることができる。 The sensor 6 may include a spectral characteristic detection sensor 6d that detects the spectral characteristics of the variable ND filter 10. The control circuit 4 may select the waveform information stored in the storage unit 4b according to the spectral characteristics detected by the spectral characteristic detection sensor 6d. In this case, since the waveform information of the voltage to the variable ND filter 10 can be selected according to the spectral characteristics of the variable ND filter 10, the spectral characteristics of the variable ND filter 10 can be fed back. Therefore, it is possible to avoid that the observed color is different from the intended color and to improve the responsiveness.
 本実施形態に係るカメラ装置1は、可変NDフィルタ10の状態を示すフィルタ情報を表示する表示部5を備えてもよい。この場合、可変NDフィルタ10の透過率又は温度等のフィルタ情報を表示部5に表示することができるので、透過率等のフィルタ情報を容易に把握することができる。 The camera device 1 according to the present embodiment may include a display unit 5 that displays filter information indicating the state of the variable ND filter 10. In this case, since the filter information such as the transmittance or the temperature of the variable ND filter 10 can be displayed on the display unit 5, the filter information such as the transmittance can be easily grasped.
 以上、本開示に係るカメラシステムの実施形態について説明した。しかしながら、本開示に係るカメラシステムは、前述の実施形態に限定されるものではなく、各請求項に記載した要旨を変更しない範囲において変形し、又は他のものに適用したものであってもよい。すなわち、カメラシステムの各部の構成は、上記の要旨を変更しない範囲において適宜変更可能である。 The embodiment of the camera system according to the present disclosure has been described above. However, the camera system according to the present disclosure is not limited to the above-described embodiment, and may be modified or applied to other objects without changing the gist described in each claim. .. That is, the configuration of each part of the camera system can be appropriately changed without changing the above gist.
 図9は、変形例に係るカメラシステム200を示す図である。図9に示されるように,変形例に係るカメラシステム200は高所作業車210に設けられる。カメラシステム200はカメラ装置1と高所作業車210とを備える。高所作業車210は、例えば、伸縮可能なブーム201と、フック202と、旋回台204と、車体203と、アウトリガ205とを備える。フック202はブーム201から上下移動し、旋回台204はブーム201を旋回させる。車体203は旋回台204を支持し、アウトリガ205は車体203から地面に張り出す。 FIG. 9 is a diagram showing a camera system 200 according to a modified example. As shown in FIG. 9, the camera system 200 according to the modified example is provided on the aerial work platform 210. The camera system 200 includes a camera device 1 and an aerial work platform 210. The aerial work platform 210 includes, for example, a telescopic boom 201, a hook 202, a swivel table 204, a vehicle body 203, and an outrigger 205. The hook 202 moves up and down from the boom 201, and the swivel table 204 swivels the boom 201. The vehicle body 203 supports the swivel base 204, and the outrigger 205 projects from the vehicle body 203 to the ground.
 一例として、ブーム201の先端部201bにカメラ装置1が搭載されている。この場合、例えば、カメラ装置1によって先端部201bから工事現場を撮影することが可能となる。カメラ装置1は、フック202の付近に搭載されていてもよい。この場合、フック202の吊り荷、及びフック202の位置をカメラ装置1によって高精度に撮影することができる。 As an example, the camera device 1 is mounted on the tip portion 201b of the boom 201. In this case, for example, the camera device 1 makes it possible to photograph the construction site from the tip portion 201b. The camera device 1 may be mounted in the vicinity of the hook 202. In this case, the suspended load of the hook 202 and the position of the hook 202 can be photographed with high accuracy by the camera device 1.
 変形例に係るカメラシステム200のように、カメラ装置1が搭載される移動体としては、ドローン105、又は高所作業車210の他にも種々のものが挙げられる。例えば、カメラ装置1が搭載される移動体は、車両、船舶、航空機及びロケット等の輸送機器であってもよいし、発電機の羽根等の移動機械であってもよい。 Examples of the moving body on which the camera device 1 is mounted, such as the camera system 200 according to the modified example, include various types other than the drone 105 and the aerial work platform 210. For example, the moving body on which the camera device 1 is mounted may be a transportation device such as a vehicle, a ship, an aircraft, or a rocket, or a moving machine such as a blade of a generator.
 前述の実施形態では、制御回路4が可変NDフィルタ10の明るさ、温度又は分光特性(環境情報)に応じてテーブルBに記憶されている波形情報W1~W36を選択する例について説明した。しかしながら、制御回路4は、例えば、可変NDフィルタ10が配置されている箇所の湿度に応じて波形情報を選択してもよい。環境情報は、明るさ、温度又は分光特性以外の情報であってもよい。更に、前述の実施形態では、波形情報W1~W36を予め記憶するテーブルBが記憶部4bに設けられる例について説明した。しかしながら、テーブルが記憶する波形情報の数及び種類は適宜変更可能である。 In the above-described embodiment, an example in which the control circuit 4 selects the waveform information W1 to W36 stored in the table B according to the brightness, temperature, or spectral characteristics (environmental information) of the variable ND filter 10 has been described. However, the control circuit 4 may select waveform information according to the humidity of the place where the variable ND filter 10 is arranged, for example. The environmental information may be information other than brightness, temperature or spectral characteristics. Further, in the above-described embodiment, an example in which a table B for storing waveform information W1 to W36 in advance is provided in the storage unit 4b has been described. However, the number and types of waveform information stored in the table can be changed as appropriate.
 前述の実施形態では、ドローン105のカメラシステム100を構成するカメラ装置1について説明した。しかしながら、本開示に係るカメラ装置は、例えば、車載のカメラモジュール等、他の用途で用いられるものであってもよい。更に、カメラ装置の各部の構成及び機能は前述した実施形態に限られず適宜変更可能である。 In the above-described embodiment, the camera device 1 constituting the camera system 100 of the drone 105 has been described. However, the camera device according to the present disclosure may be used for other purposes such as an in-vehicle camera module. Further, the configuration and function of each part of the camera device are not limited to the above-described embodiment, and can be appropriately changed.
1…カメラ装置、2…レンズ、3…撮像素子、4…制御回路、4b…記憶部、5…表示部、6…センサ、6b…明るさ検出センサ、6c…温度検出センサ、6d…分光特性検出センサ、7…セル固定枠、7b…孔部、7c…貫通孔、7d…切り欠き、8…光源、10…可変NDフィルタ、11…透明電極、12…透明基板、12b…内面、12c…外面、13…電解液、14…シール材、15…駆動回路、15b,15c…リード線、15d…スイッチ回路、15f…直流電源、15g,15h…スイッチ、100,200…カメラシステム、101…延在部、102…支持部、103…プロペラ部、105…ドローン(移動体)、105b…本体部、201…ブーム、201b…先端部、202…フック、203…車体、204…旋回台、205…アウトリガ、210…高所作業車(移動体)、B…テーブル、D1…面外方向、D2…面内方向、E…電場、F…振幅、L…光、P…太陽光発電パネル、T…周期、W1~W36…波形情報。 1 ... Camera device, 2 ... Lens, 3 ... Image sensor, 4 ... Control circuit, 4b ... Storage unit, 5 ... Display unit, 6 ... Sensor, 6b ... Brightness detection sensor, 6c ... Temperature detection sensor, 6d ... Spectral characteristics Detection sensor, 7 ... cell fixing frame, 7b ... hole, 7c ... through hole, 7d ... notch, 8 ... light source, 10 ... variable ND filter, 11 ... transparent electrode, 12 ... transparent substrate, 12b ... inner surface, 12c ... Outer surface, 13 ... Electrolyte, 14 ... Sealing material, 15 ... Drive circuit, 15b, 15c ... Lead wire, 15d ... Switch circuit, 15f ... DC power supply, 15g, 15h ... Switch, 100, 200 ... Camera system, 101 ... Extension Current part, 102 ... Support part, 103 ... Propeller part, 105 ... Drone (moving body), 105b ... Main body part, 201 ... Boom, 201b ... Tip part, 202 ... Hook, 203 ... Body, 204 ... Swivel stand, 205 ... Outrigger, 210 ... High-altitude work vehicle (moving body), B ... Table, D1 ... Out-of-plane direction, D2 ... In-plane direction, E ... Electric field, F ... Amplitude, L ... Light, P ... Solar power generation panel, T ... Period, W1 to W36 ... Waveform information.

Claims (2)

  1.  移動体と、
     前記移動体に取り付けられるカメラ装置と、
    を備え、
     前記カメラ装置は、
     可変NDフィルタと、
     前記可変NDフィルタが配置されている箇所の明るさ、温度、及び、前記可変NDフィルタの分光特性、の少なくともいずれかを検出するセンサと、
     前記可変NDフィルタを制御する制御回路と、
    を有し、
     前記制御回路は、前記センサによって検出された前記明るさ、前記温度、及び前記分光特性の少なくともいずれかに応じて前記可変NDフィルタを制御する、
    カメラシステム。
    With a mobile body
    A camera device attached to the moving body and
    With
    The camera device is
    Variable ND filter and
    A sensor that detects at least one of the brightness and temperature of the place where the variable ND filter is arranged and the spectral characteristics of the variable ND filter.
    A control circuit that controls the variable ND filter and
    Have,
    The control circuit controls the variable ND filter according to at least one of the brightness, the temperature, and the spectral characteristics detected by the sensor.
    Camera system.
  2.  前記移動体は、ドローンである、
    請求項1に記載のカメラシステム。
    The mobile is a drone,
    The camera system according to claim 1.
PCT/JP2020/045927 2020-02-13 2020-12-09 Camera system WO2021161638A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-022757 2020-02-13
JP2020022757A JP2023040311A (en) 2020-02-13 2020-02-13 camera system

Publications (1)

Publication Number Publication Date
WO2021161638A1 true WO2021161638A1 (en) 2021-08-19

Family

ID=77292307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/045927 WO2021161638A1 (en) 2020-02-13 2020-12-09 Camera system

Country Status (2)

Country Link
JP (1) JP2023040311A (en)
WO (1) WO2021161638A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163300A1 (en) * 2017-03-07 2018-09-13 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Control device, imaging device, imaging system, moving body, control method, and program
WO2019087929A1 (en) * 2017-10-31 2019-05-09 富士フイルム株式会社 Image capturing device, method for controlling display in finder of image capturing device, program for controlling display in finder of image capturing device, and viewfinder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018163300A1 (en) * 2017-03-07 2018-09-13 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド Control device, imaging device, imaging system, moving body, control method, and program
WO2019087929A1 (en) * 2017-10-31 2019-05-09 富士フイルム株式会社 Image capturing device, method for controlling display in finder of image capturing device, program for controlling display in finder of image capturing device, and viewfinder

Also Published As

Publication number Publication date
JP2023040311A (en) 2023-03-23

Similar Documents

Publication Publication Date Title
JP6479829B2 (en) Photo-activated power indicator
US10784295B2 (en) Image capturing apparatus and method for controlling temperature of a light transmitting element through controlling the optical element's exposure to and transmittance of light
US8017896B2 (en) Vehicle accessory having a rear light receiving sensor for measuring illumination intensity inside the vehicle
CN103562962A (en) Method and system for detecting and repairing defects in an electrochromic device using thermal imaging
CN109632102A (en) Infrared polarization image measuring device based on rotatory polarization piece
JP6800600B2 (en) Electrochromic element
US20230146459A1 (en) Photosensitive color-changing touch control display device
JPH03130756A (en) Camera
WO2021161638A1 (en) Camera system
CN102346991A (en) Display device with photographing function
TWI557489B (en) Display
CN201037891Y (en) Electronic variable lens
CN210181341U (en) Double-sided liquid crystal display of diversified adjustment
CN107734256A (en) A kind of formula dimmer arrangement with an automatic light meter and its application method
TW201621214A (en) Sunlight illuminating system
CN203251357U (en) Night vision device
WO2011161749A1 (en) Laser beam incident position display device
JP2021026100A (en) Camera device
JP2005250210A (en) Optical element varying optical density in response to electromagnetic wave
CN219533995U (en) Weak laser spot display screen device
CN210894915U (en) Annular liquid crystal dimming unit, aperture structure and electronic equipment
JPS602925A (en) Video camera
JP2010156516A (en) Laser beam incident position display device
GB2579029A (en) Improved display for mobile devices with a front facing camera
CN113075834B (en) Flash lamp, flash lamp control method and mobile device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP