WO2011161749A1 - Laser beam incident position display device - Google Patents

Laser beam incident position display device Download PDF

Info

Publication number
WO2011161749A1
WO2011161749A1 PCT/JP2010/060454 JP2010060454W WO2011161749A1 WO 2011161749 A1 WO2011161749 A1 WO 2011161749A1 JP 2010060454 W JP2010060454 W JP 2010060454W WO 2011161749 A1 WO2011161749 A1 WO 2011161749A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser beam
liquid crystal
incident position
light
incident
Prior art date
Application number
PCT/JP2010/060454
Other languages
French (fr)
Japanese (ja)
Inventor
潤一 内田
Original Assignee
Uchida Junichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uchida Junichi filed Critical Uchida Junichi
Priority to PCT/JP2010/060454 priority Critical patent/WO2011161749A1/en
Publication of WO2011161749A1 publication Critical patent/WO2011161749A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41JTARGETS; TARGET RANGES; BULLET CATCHERS
    • F41J5/00Target indicating systems; Target-hit or score detecting systems
    • F41J5/04Electric hit-indicating systems; Detecting hits by actuation of electric contacts or switches
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/02Shooting or hurling games
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63FCARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
    • A63F9/00Games not otherwise provided for
    • A63F9/02Shooting or hurling games
    • A63F9/0204Targets therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/2655Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile in which the light beam is sent from the weapon to the target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves

Definitions

  • the present invention relates to a laser beam incident position display device for displaying an incident position of a laser beam irradiated from a simulated gun.
  • one trainer wears a simulation device related to shooting, and a laser beam from a simulated gun held by another trainee (player) enters this light receiver.
  • a simulation device related to shooting
  • a laser beam from a simulated gun held by another trainee enters this light receiver.
  • a screen an image output means (such as a computer) that outputs an image including the target, an image projection means (projector) that projects an image output from the image output means onto the screen, and a visible light removal filter are used.
  • a shooting simulator CCD camera, video camera
  • JP 2008-20114 A Japanese Patent Laid-Open No. 2007-71403
  • an image output means (computer or the like) that outputs an image including a target, an image projection means (projector) that projects an image output from the image output means on a screen
  • the imaging means CCD camera, video camera
  • captures the image projection plane through the visible light removal filter and acquires the image data of the beam point generated on the image projection plane is an indispensable component, so the number of parts is In addition, the manufacturing cost is greatly increased. Further, if there is no space for arranging these components, it is impossible to execute a shooting simulation, and it is difficult to execute shooting training in a relatively small room.
  • an object of the present invention is to provide a laser beam incident position display device that can reduce the manufacturing cost and can execute shooting training even in a small space.
  • the present invention is a laser beam incident position display device for displaying an incident position where a laser beam irradiated from a simulated gun is incident, and the laser beam is incident and a voltage is applied to display the incident position of the laser beam.
  • Liquid crystal display means an optical sensor provided in the liquid crystal display means for detecting the laser beam incident on the liquid crystal display means, and the laser beam in the liquid crystal display means based on the detection result of the laser beam by the optical sensor.
  • Position specifying means for specifying the incident position; and display control means for causing the liquid crystal display means to display the incident position specified by the position specifying means by applying a voltage to the liquid crystal display means. It is characterized by that.
  • the laser beam emitted from the simulated gun enters the liquid crystal display means and is detected by the optical sensor. Based on the detection result of the laser beam by the optical sensor, the incident position of the laser beam in the liquid crystal display unit is specified by the position specifying unit.
  • the voltage application means applies a voltage to the liquid crystal display means, so that the incident position specified by the position specification means is displayed on the liquid crystal display means.
  • laser beam traces from the simulated gun can be displayed on the liquid crystal display means.
  • the laser beam incident position display device does not require a projector, a video camera (CCD camera), etc., and can be manufactured with a simple configuration and at a low cost.
  • the present invention it is possible to reduce the manufacturing cost with a simple configuration, and it is possible to execute a shooting training even in a relatively small space.
  • FIG. 1 is a front view of a laser beam incident position display device according to a first embodiment of the present invention. It is a block diagram which shows the control system of the laser beam incident position display apparatus which concerns on 1st Embodiment of this invention. It is explanatory drawing which showed the internal structure of the display member (single liquid crystal layer) of the laser beam incident position display apparatus which concerns on 1st Embodiment of this invention. It is explanatory drawing which showed the state in which light reflects with the display member (single liquid crystal layer) of the laser beam incident position display apparatus which concerns on 1st Embodiment of this invention.
  • laser beam means a laser beam emitted from a simulated gun
  • light is distinguished from a laser beam, such as sunlight (natural light), a fluorescent lamp, etc. Means light.
  • the principle of laser beam irradiation from the simulated gun 12 will be described.
  • an optical excitation device (not shown) and a pair of mirrors (not shown) are accommodated, energy is injected into the laser medium from outside to excite light, and this light is reciprocated by the mirror. .
  • light of the same phase is added, and the light is amplified while reciprocating through the mirror, so that a laser beam with reduced energy and directivity is generated.
  • the amplified laser light having the same phase is transmitted as a laser beam through the mirror, emitted from the simulated gun 12 to the outside, and irradiated toward the laser beam incident position display device 10 described later.
  • the laser beam incident position display device 10 includes a frame member 14.
  • a circular hole 16 is formed on one side surface of the frame member 14.
  • the circular hole 16 is provided with a display member (display means) 18 for displaying the incident position of the laser beam.
  • the frame member 14 is provided with a plurality of (two in this embodiment) speakers 20.
  • the shape is not limited to the circular hole 16, and may be other shapes such as a quadrangle and a triangle, and may be an outline such as a human shadow or an animal shadow.
  • a plurality of sensors for example, optical sensors 32 (laser light detection means, see FIGS. 3 and 4) for detecting a laser beam are provided inside the frame member 14 and on the back side of the display member 18. It has been.
  • the sensors 32 are provided so as to be uniform over the entire shooting area of the display member 18.
  • the display member 18 has a plurality of liquid crystal layers 36 (see FIG. 4) arranged on the same plane, and one sensor 32 corresponds to the back side of each liquid crystal layer 36 (one-to-one correspondence). Relationship).
  • the senor 32 has a property of detecting a laser beam, such as a material whose conductivity is changed by light, a device that generates an electromotive force by light, a device that detects light as heat, and a device that performs photoelectric conversion. is there. For this reason, when a laser beam is incident on any one of the shooting areas of the display member 18, the laser beam is detected by the sensor 32 corresponding to the liquid crystal layer 36 that is the incident position of the laser beam among the plurality of sensors 32.
  • photoconductive type photoconductive cell (element: CdS, PbS, Se)
  • photovoltaic type photovoltaic sensor
  • Examples include an internal amplification sensor (element: phototransistor, avalanche photodiode), area sensor (element: photodiode array, CCD image sensor, MOS image sensor), thermoelectric effect type (element: pyroelectric sensor), and the like.
  • a photoconductive type photoconductive element electrons that move freely in response to the energy of light are generated. It has a basic circuit in which the resistance increases when it is not exposed to light and decreases when it is exposed to light. By this change, a laser beam can be detected and a detection signal can be output.
  • a photovoltaic type photovoltaic element generates a potential difference inside when irradiated with light (photovoltaic effect).
  • photodiode when light is applied to the pn junction, electron-hole pairs are generated, which are collected in the n region and the p region, respectively, and a photocurrent is taken out through the electrode.
  • the phototransistor is a transistor having a photodiode structure and an element having an amplification function.
  • the avalanche photodiode electrons generated by light are accelerated in the electric field layer of the pn junction so as to have a large energy and emit electrons one after another to double. This makes it possible to detect weak light.
  • thermoelectric effect type pyroelectric element detects light energy once changed to heat. Inside this sensor element, positive and negative charges are arranged in a certain direction due to the polarization phenomenon, and the characteristics as a dielectric are exhibited. However, this polarization phenomenon is changed by heat, and charges are generated at both ends of the element (focus). Electric effect). Examples of the element exhibiting the pyroelectric effect include single crystal TGS, LiTaO 3 , and polymer film PVDF.
  • a control device 22 is provided inside the frame member 14.
  • the control device 22 includes a CPU (or CPU circuit) 24 (position specifying means) that specifies the incident position of the laser beam on the display member 18 based on detection signals from the plurality of sensors 32, and a display member that is the incident position of the laser beam.
  • a power supply circuit 26 (voltage applying means) for applying a predetermined voltage to 18 liquid crystal layers 36 (specifically, electrodes 50, 52, (62, 64), (74, 76) in FIG. 4), and a speaker.
  • a sound source circuit 28 that outputs a predetermined sound effect from 20, a correspondence (table) between a detection signal of the sensor 32 and an incident site (liquid crystal layer 36) of the display member 18, and a ROM 30 that stores sound effect data; It consists of In the configuration in which different types of detection signals are output for each sensor 32, the ROM 30 indicates correspondence relationships (tables) between different types of detection signals for each sensor 32 and the incident site (liquid crystal layer 36) of the display member 18. It may be memorized.
  • the CPU 24 specifies the incident position of the laser beam on the display member 18 based on the detection signals from the plurality of sensors 32. For example, when a laser beam is received by the sensor 32 disposed on the left side of the shooting region of the display member 18, a detection signal is output from the sensor 32 that has received the laser beam to the control device 22. Then, the CPU 24 recognizes the sensor 32 that has output this detection signal, refers to the table stored in the ROM 30, and specifies the incident position of the laser beam on the display member 18 (for example, the left liquid crystal layer 36). Alternatively, the CPU 24 may specify the sensor 32 according to the type of the detection signal, and thereby specify the incident position of the laser beam on the display member 18.
  • the power supply circuit 26 applies a predetermined voltage to the incident position of the laser beam on the display member 18 specified by the CPU 24. Specifically, a predetermined voltage is applied between the transparent electrodes 50, 52, (62, 64), (74, 76) of the liquid crystal layer 36 at which the laser beam is incident. As a result, the color of the incident part of the display member 18 on which the laser beam is incident changes.
  • the power supply circuit 26 is controlled by the CPU 24.
  • the sound source circuit 28 outputs a predetermined sound effect via the speaker 20 based on the sound data of the sound effect stored in the ROM 30 at the same time when the laser beam is detected by any one of the plurality of sensors 32. . For this reason, the player hears the sound effect at the moment when the laser beam reaches the shooting area of the display member 18.
  • the sound source circuit 28 is controlled by the CPU 24.
  • the sound source circuit 28 controls the output of sound effects from the speaker 20.
  • the display member 18 is composed of electronic paper 34 provided with a cholesteric liquid crystal material.
  • the electronic paper 34 is configured by arranging a plurality of liquid crystal layers 36 in a so-called matrix on the same plane. That is, one liquid crystal layer 36 is a cell.
  • the liquid crystal layers 36 adjacent on the same plane are fixed by an adhesive material such as an adhesive or a double-sided tape.
  • a transparent sheet member for example, a resin sheet
  • Each liquid crystal layer 36 is formed by stacking blue, green and red cholesteric liquid crystal materials in the thickness direction.
  • each liquid crystal layer 36 includes a blue cholesteric liquid crystal material layer 38 through which laser beams are transmitted, a green cholesteric liquid crystal material layer 40 through which laser beams are transmitted, a red cholesteric liquid crystal material layer 42 through which laser beams are transmitted, Are stacked in the thickness direction.
  • the cholesteric liquid crystal has a property of reflecting only a specific wavelength (light).
  • light such as sunlight or fluorescent light
  • a predetermined wavelength of blue, green, or red is reflected to display in full color.
  • light of all colors of blue, green, and red is reflected, it becomes the three primary colors of light and appears white with the naked eye.
  • the blue cholesteric liquid crystal material layer 38 includes a pair of transparent films 44 and 46 through which a laser beam and light are transmitted, a blue cholesteric liquid crystal material 48 interposed between the transparent films 44 and 46, and a pair of transparent films. And transparent electrodes 50 and 52 provided at the boundary between the surfaces of 44 and 46 and the blue cholesteric liquid crystal material 48.
  • the blue cholesteric liquid crystal material 48 of each liquid crystal layer 36 is sealed with a sealant 54.
  • the green cholesteric liquid crystal material layer 40 includes a pair of transparent films 56 and 58 through which a laser beam and light are transmitted, a green cholesteric liquid crystal material 60 interposed between the transparent films 56 and 58, and a pair of transparent films. And transparent electrodes 62 and 64 provided at the boundary between the surfaces of 56 and 58 and the green cholesteric liquid crystal material 60.
  • the green cholesteric liquid crystal material 60 of each liquid crystal layer 36 is sealed with a sealant 66.
  • the red cholesteric liquid crystal material layer 42 includes a pair of transparent films 68 and 70 through which laser light and light are transmitted, a red cholesteric liquid crystal material 72 interposed between the transparent films 68 and 70, and a pair of transparent films. And transparent electrodes 74 and 76 provided at the boundary between the surface of 68 and 70 and the red cholesteric liquid crystal material.
  • the red cholesteric liquid crystal material of each liquid crystal layer 36 is sealed with a sealant 78.
  • each liquid crystal layer 36 includes a blue cholesteric liquid crystal material layer 38 located on the most surface side, and a green cholesteric liquid crystal material layer 38 located on the back side (back side) of the blue cholesteric liquid crystal material layer 38.
  • the red cholesteric liquid crystal material layer 42 positioned on the back (back) side of the green cholesteric liquid crystal material layer 40 is overlapped in the thickness direction.
  • the display member 18 is configured by arranging a plurality of liquid crystal layers 36 having the above-described configuration on the same plane.
  • a plurality of liquid crystal molecules X are arranged in a twisted spiral in the cholesteric liquid crystal material of each liquid crystal material layer 38, 40, 42.
  • a plurality of liquid crystal molecules X are arranged in a vertical direction and reflect light such as sunlight or fluorescent lamps.
  • a low voltage is applied between the transparent electrodes 50, 52, (62, 64), (74, 76) in a portion where light such as a laser beam, sunlight, or a fluorescent lamp is desired to pass.
  • This is applied to make the spiral liquid crystal molecules X face sideways. Even when the application of this voltage is stopped (even when the power is turned off), the liquid crystal molecules X remain stable in the horizontal direction. Thereby, light, such as sunlight and a fluorescent lamp, passes through each liquid crystal material layer 38, 40, 42.
  • a high voltage is applied between the transparent electrodes 50, 52, (62, 64), (74, 76) in the portion where light such as laser light, sunlight or fluorescent light is to be reflected.
  • the spiral liquid crystal molecules X are stretched, and the voltage application is immediately stopped. Thereby, the liquid crystal molecules X are repelled and become a vertical spiral and are stabilized. Thereby, light, such as sunlight and a fluorescent lamp, reflects in this part.
  • the voltage application is controlled by the power supply circuit 26.
  • a voltage application signal is output from the power supply circuit 26 to the transparent electrodes 50, 52, (62, 64), (74, 76), and a voltage is applied based on this signal.
  • the electronic paper 34 for the display member 18, a polarizing plate, a reflector, a color filter, and a backlight become unnecessary. For this reason, the number of parts of the display member 18 can be reduced, and the manufacturing cost can be reduced. Further, by using the electronic paper 34, display can be performed with low power.
  • the present invention displays the incident position of the laser beam by utilizing the reflection principle of the electronic paper 34 as the display member.
  • the transparent electrodes 50, 52, (62, 64), (74) of all the liquid crystal material layers 38, 40, 42 of the liquid crystal layer 36 are used. 76), a relatively low voltage is applied. This is because the power supply circuit 26 controlled by the CPU 24 applies a predetermined voltage to the transparent electrodes 50, 52, (62, 64), (74, 76) between all the liquid crystal material layers 38, 40, 42. It can be executed by applying.
  • the liquid crystal molecules X are stable in the horizontal state shown in FIG. 7, and light such as laser light, sunlight, or fluorescent light passes through all the liquid crystal material layers 38, 40, 42. . At this time, the player visually recognizes black.
  • the game by the player is started.
  • a laser beam is irradiated from the player's simulated gun 12 and enters a part of the shooting region of the display member 18, the laser beam passes through all the liquid crystal material layers 38, 40, and 42, and enters one liquid crystal layer.
  • Light is received by a sensor 32 located on the back side of 36.
  • a laser beam detection signal is output from the sensor 32 receiving the laser beam to the control device 22.
  • the CPU 24 identifies the sensor 32 that has received the laser beam, and identifies one liquid crystal layer 36 corresponding to the sensor 32.
  • the specified one liquid crystal layer 36 changes its color as the position where the laser beam is incident.
  • the CPU 24 generates a control signal for applying a relatively high voltage between the transparent electrodes 50, 52, (62, 64), (74, 76) arranged in the specified liquid crystal layer 36.
  • the power supply circuit 26 receives a control signal from the CPU 24 and is relatively high with respect to the transparent electrodes 50, 52, (62, 64), (74, 76) of the specified one liquid crystal layer 36. Apply electrodes.
  • the liquid crystal molecules X in the liquid crystal material corresponding to the transparent electrodes 50, 52, (62, 64), (74, 76) to which a voltage is applied are in the vertically oriented state shown in FIG. And stable, and reflects light such as sunlight and fluorescent lamps.
  • the voltage application time between the transparent electrodes 50, 52, (62, 64), and (74, 76) at this time is a short time, and the voltage application is stopped immediately after the voltage is applied.
  • the liquid crystal layer 36 having the transparent electrodes 50, 52, (62, 64), (74, 76) to which a voltage is applied is changed to a property of reflecting light such as sunlight or fluorescent lamps.
  • the person recognizes the color change. Specifically, when a high voltage is applied between the transparent electrodes 50 and 52 of the blue cholesteric liquid crystal material layer 38, the incident position of the laser beam is displayed in blue, and the player can see that the blue portion is the laser beam. Recognized as an incident position. In addition, when a high voltage is applied between the transparent electrodes 62 and 64 of the green cholesteric liquid crystal material layer 40, the incident position of the laser beam is displayed in green, and the player determines that the green portion is the incident position of the laser beam. recognize. When a high voltage is applied between the transparent electrodes 74 and 76 of the red cholesteric liquid crystal material layer 42, the incident position of the laser beam is displayed in red, and the player recognizes the red portion as the incident position of the laser beam. .
  • the transparent electrodes 50, 52, (62, 64), (74, 76) of the cholesteric liquid crystal material layers 38, 40, 42 of the respective colors. Can be dealt with by appropriately changing the voltage application pattern. For example, a high voltage is applied between the transparent electrodes 50 and 52 (62 and 64) of the blue and green cholesteric liquid crystal material layers 38 and 40, and a voltage is applied between the transparent electrodes 74 and 76 of the red cholesteric liquid crystal material layer 42.
  • blue and green light can be reflected, and the incident position of the laser beam can be displayed in a mixed color of blue and green.
  • a high voltage is applied between the transparent electrodes 50 and 52 (74 and 76) of the blue and red cholesteric liquid crystal material layers 38 and 42, and a voltage is applied between the transparent electrodes 62 and 64 of the green cholesteric liquid crystal material layer 40.
  • blue and red light can be reflected, and the incident position of the laser beam can be displayed in a mixed color of blue and red.
  • a high voltage is applied between the transparent electrodes 62 and 64 (74 and 76) of the green and red cholesteric liquid crystal material layers 40 and 42, and a voltage is applied between the transparent electrodes 50 and 52 of the blue cholesteric liquid crystal material layer 38.
  • green and red light can be reflected, and the incident position of the laser beam can be displayed in a mixed color of green and red.
  • a high voltage to the transparent electrodes 50, 52, (62, 64), (74, 76) of the blue, green and red cholesteric liquid crystal material layers 38, 40, 42, blue, green and red
  • the light can be reflected, and the incident position of the laser beam can be displayed in a mixed color of blue, green and red.
  • the voltage application pattern application ON / OFF
  • the transparent electrodes 50, 52, (62, 64), (74, 76) of the cholesteric liquid crystal material layers 38, 40, and 42 of the respective colors is appropriately changed.
  • the incident position of the laser beam can be displayed in various colors, and a predetermined pattern can be displayed.
  • the CPU 24 when a laser beam is received by any one of the sensors, the CPU 24 outputs a control signal for outputting a predetermined sound effect to the sound source circuit 28.
  • the sound source circuit 28 receives a control signal from the CPU 24 and outputs a predetermined sound effect via each speaker 20 based on the sound effect data stored in the ROM 30.
  • the sound effect may be changed depending on the portion of the shooting area where the laser beam is incident. For example, when a laser beam is incident on the center of the shooting area, a large sound effect is output, and when a laser beam is incident on a part away from the center of the shooting area, a small sound effect is output. May be.
  • the laser beam incident position display device 10 of the first embodiment a projector, a video camera (CCD camera), and the like are no longer necessary, and can be manufactured with a simple configuration and low cost. Further, the laser beam incident position display device 10 can be installed and used even in a narrow space. Furthermore, by using the electronic paper 34 as the display member 18, the electronic paper 34 can be assembled using the flexibility of the electronic paper 34, and the laser beam incident position display device 10 can be reduced in size and weight. Can do.
  • the example comprised by the cholesteric liquid crystal material layer 38, 40, 42 of multiple colors (three colors) was shown as the display member 18, it is not restricted to this structure, A monochromatic (for example, red) cholesteric liquid crystal is shown.
  • the display member may be composed of only the material layer, or the display member may be composed of two colors (blue and red) of cholesteric liquid crystal material layers.
  • the laser beam incident position display device is different from the first embodiment in the configuration of the display member.
  • a microcapsule-type electrophoresis electronic paper 100 is used for the display member 18.
  • the electronic paper 100 is configured by arranging a plurality of electronic ink layers 102 in a so-called matrix on the same plane. That is, one electronic ink layer 102 is a cell. Note that the adjacent electronic ink layers 102 on the same plane are fixed by an adhesive material such as an adhesive or a double-sided tape.
  • a transparent sheet member for example, a resin sheet
  • each electronic ink layer 102 includes a transparent surface electrode (transparent electrode) 104 located on the front surface side (player side), a transparent back electrode (transparent electrode) 106 located on the back surface (back surface) side, A plurality of transparent microcapsules 108 interposed between the electrode 104 and the back electrode 106 are configured.
  • the power supply circuit 26 applies a predetermined voltage between the front electrode 104 and the back electrode 106.
  • the laser beam passes through the surface electrode 104, the microcapsule 108, and the back electrode 106.
  • a positively charged white pigment 110 particles
  • a negatively charged black pigment 112 particles
  • the positively charged white pigment 110 is attracted to the negatively charged electrode side
  • the negatively charged black pigment 112 is attracted to the positively charged electrode side.
  • the microcapsule 108 is provided over the entire area of the shooting area.
  • Each sensor 32 is provided on the back side of each microcapsule 108 so as to correspond to each microcapsule 108. For this reason, when the laser beam passes through the microcapsule 108 positioned in front, the sensor 32 positioned on the back side receives the laser beam.
  • a detection signal is output from the sensor 32 to the control device 22.
  • the CPU 24 receives the detection signal from the sensor 32, specifies the microcapsule 108 through which the laser beam has passed, and sends a control signal for applying a predetermined voltage between the specified electrodes 104, 106 to the power supply circuit 26. Output. At the same time, the CPU 24 outputs a control signal for outputting a predetermined sound effect to the sound source circuit 28.
  • the back electrode 106 side is positive (plus) and the front electrode 104 side is between the surface electrode 104 and the back electrode 106 corresponding to the microcapsule 108 through which the laser beam has passed. Apply voltage so that it is negative. As a result, an electric field is generated between the front electrode 104 and the back electrode 106. This electric field is directed from the back electrode 106 side to the surface electrode 104 side. Since the back electrode 106 side becomes positive (plus) and the front electrode 104 side becomes negative (minus), the positively charged white pigment 110 moves to the front electrode 104 side, and the negatively charged black pigment 112 becomes Then, it moves to the back electrode 106 side. As a result, the shooting area where the laser beam is incident is displayed in white, and the player recognizes the incident position of the laser beam on the shooting area.
  • the surface electrode 104 side is positive (plus) and the back electrode 106 side is negative with respect to the space between the surface electrode 104 and the back electrode 106 corresponding to the microcapsule 108 through which the laser beam has passed.
  • an electric field is generated between the front electrode 104 and the back electrode 106.
  • This electric field is directed from the surface electrode 104 side to the back electrode 106 side.
  • the positively charged white pigment 110 moves to the back electrode 106 side and negatively charged black pigment 112. Moves to the surface electrode 104 side.
  • the shooting area where the laser beam is incident is displayed in black, and the player recognizes the incident position of the laser beam on the shooting area.
  • a part on the surface electrode 104 side and a part on the back electrode 106 side are provided between the surface electrode 104 and the back electrode 106 corresponding to the microcapsule 108 through which the laser beam is transmitted.
  • a voltage may be applied so that the portion becomes positive (plus).
  • an electric field is generated between the front electrode 104 and the back electrode 106.
  • there are two types of electric fields that is, an electric field directed from the back electrode 106 side to the surface electrode 104 side and an electric field directed from the surface electrode 104 side to the back electrode 106 side.
  • a part on the back electrode 106 side is positive (plus), a part is negative (minus), a part on the surface electrode 104 side is positive (plus), and a part is negative (minus).
  • the surface electrode 104 side becomes positive (plus) and negative (minus), so that part of the positively charged white pigment 110 and part of the negatively charged black pigment 112 move to the surface electrode 104 side.
  • the back electrode 106 side is also positive (plus) and negative (minus)
  • a part of the positively charged white pigment 110 and a part of the negatively charged black pigment 112 are moved to the surface electrode 104 side. To do.
  • the shooting area where the laser beam is incident is displayed in a mixed color of black and white, and the player recognizes the incident position of the laser beam on the shooting area.
  • the incident position of the laser beam can be easily displayed even when the electronic paper 100 of the microcapsule electrophoresis system (electronic ink layer 102) is used as the display member 18.
  • the laser beam incident position display device is different from the first embodiment in the configuration of the display member.
  • an organic EL display 200 is used for the display member 18.
  • the organic EL display 200 includes a plurality of organic EL layers 202 arranged on the same plane. That is, one organic EL layer 202 is a cell.
  • the adjacent organic EL layers 202 on the same plane are fixed by an adhesive material such as an adhesive or a double-sided tape.
  • a transparent sheet member for example, a resin sheet
  • Each organic EL layer 202 includes a glass substrate 204 positioned on the player side, a transparent surface electrode (transparent electrode) 206, a transparent back electrode (transparent electrode) 208, and between the surface electrode 206 and the back electrode 208.
  • a positive charge transport layer 210 positioned adjacent to the front electrode 206, a negative charge transport layer 212 positioned between the front electrode 206 and the back electrode 208 and adjacent to the back electrode 208, and a positive charge transport layer 210
  • a light emitting layer 214 interposed between the negative charge transport layer 212 and the negative charge transport layer 212.
  • a predetermined voltage is applied between the surface electrode 206 and the back electrode 208 by the power supply circuit 26.
  • Each sensor 32 for detecting a laser beam is disposed on the back side of each organic EL layer 202 so as to correspond to each organic EL layer 202.
  • a predetermined voltage is applied between the surface electrode 206 and the back electrode 208 of the organic EL layer 202 located on the front side of the sensor 32 that has received the laser beam.
  • a predetermined voltage is applied between the front electrode 206 and the back electrode 208, positive charges (holes) in the positive charge transport layer 210 and negative charges (electrons) in the negative charge transport layer 212 are generated. It flows into the light emitting layer 214. Then, a positive charge and a negative charge are recombined in the light emitting layer 214 to generate an excited state of the organic molecule, and light is emitted when it returns to a stable state.
  • the organic EL layer 202 on which the laser beam is incident emits light, and the player recognizes the incident position of the laser beam.
  • the organic EL layer 202 on which no laser beam is incident does not emit light, and therefore is not recognized by the player.
  • the organic EL layer 202 on which the laser beam is incident emits light, so that the organic EL (incident position) on which the laser beam is incident becomes clear even if a plurality of organic EL layers 202 are present.
  • the organic EL display 200 can be assembled using the flexibility of the organic EL display 200, and the laser beam.
  • the incident position display device 10 can be reduced in size and weight.
  • a liquid crystal display 302 having a built-in optical sensor 302D is used as a display member of a laser beam incident position display device 300 according to the fourth embodiment. That is, the laser beam incident position display device 300 mainly includes a liquid crystal display 302 having a built-in optical sensor 302D and a control device 304 for displaying the incident position of the laser beam on the liquid crystal display 302. The liquid crystal display 302 and the control device 304 are attached to the frame member 14 (see FIG. 1).
  • the liquid crystal display 302 includes a polarizing filter (polarizing plate) 302A, a glass plate 302B, a sensor circuit 302C on which an optical sensor 302D is mounted, and a transparent electrode 302E in order from the front side to the back side.
  • the photosensors 302D are arranged in a matrix for each pixel.
  • the optical sensor 302D can use the thing of the specific example mentioned above, for example, is comprised by the photodiode etc.
  • the optical sensor 302D receives a laser beam, but is set so as to detect light with a large amount of light such as a laser beam from the simulated gun 12 (see FIG. 1) and not detect light with a small amount of light such as natural light. ing.
  • the optical sensor 302D When the optical sensor 302D receives a laser beam, it outputs a detection signal indicating that the laser beam has been received to the control device 304 (CPU 304A).
  • Such a setting can be realized by adjusting the sensitivity of the optical sensor 302D, and by setting the CPU 304A to ignore a detection signal of a predetermined light amount or less, it is determined whether or not a laser beam is received. can do.
  • the sensor circuit 302C is preferably a transparent circuit that transmits light such as a laser beam. If the purpose is only to receive a laser beam, only the optical sensor 302D provided with a function for outputting a detection signal may be provided, and the sensor circuit 302C may be omitted.
  • the transparent electrodes 302E and 302G are electrodes through which a laser beam and natural light are transmitted, and apply a voltage to the liquid crystal. Further, the pair of transparent electrodes 302E and 302G are provided separately for each pixel, and are configured so that a voltage can be applied to each of the transparent electrodes 302E and 302G corresponding to each pixel.
  • the polarization directions of the polarizing filter 302A and the polarizing filter 302I are set to be orthogonal to each other. For this reason, light is not transmitted through the portion of the liquid crystal to which a voltage is applied.
  • the control device 304 includes a CPU 304A, a ROM 304B, a power supply circuit 304C, and a sound source circuit 304D.
  • the CPU 304A specifies the incident position of the laser beam on the liquid crystal display 302 based on the detection signals from the plurality of optical sensors 302D arranged for each pixel. For example, when a laser beam is received by the optical sensor 302D disposed on the left side of the shooting area of the liquid crystal display 302, a detection signal is output to the control device 304 from the optical sensor 302D that receives the laser beam. Then, the CPU 304A recognizes the optical sensor 302D that has output this detection signal, refers to the table stored in the ROM 304B, and specifies the incident position of the laser beam on the liquid crystal display 302 (for example, the left liquid crystal layer 302F).
  • the CPU 304A may specify the optical sensor 302D according to the content or type of the detection signal, and thereby specify the incident position of the laser beam on the liquid crystal display 302.
  • the CPU 304A controls driving of the power supply circuit 304C and the sound source circuit 304D.
  • the ROM 304B stores the correspondence (table) between the detection signal of the optical sensor 302D and the incident site (liquid crystal layer 302F) of the liquid crystal display 302, and sound effect data.
  • the ROM 304B has a correspondence relationship (table) between different types of detection signals for each optical sensor 302D and the incident site (liquid crystal layer 302F) of the liquid crystal display 302. ) May be stored.
  • the power supply circuit 304C applies a predetermined voltage to the transparent electrodes 302E and 302G corresponding to the incident position of the laser beam on the liquid crystal display 302 specified by the CPU 304A based on the drive signal from the CPU 304A. Specifically, a predetermined voltage is applied between the transparent electrodes 302E and 302G of the liquid crystal layer 302F that is the incident position of the laser beam. When a voltage is applied to the liquid crystal layer 302F, the orientation (alignment) of the liquid crystal molecules in the liquid crystal layer 302F changes. As a result, a pattern or pattern is displayed at the incident site of the liquid crystal display 302 on which the laser beam is incident.
  • the sound source circuit 304D controls the output of the speaker 20 (see FIG. 1) based on the drive signal from the CPU 304A. Accordingly, the speaker 20 outputs a predetermined sound effect based on the sound data of the sound effect stored in the ROM 304B. For this reason, the player hears the sound effect at the moment when the laser beam reaches the shooting area of the liquid crystal display 302.
  • the backlight 302J that is a display light source emits light having amplitude components in various directions. Of the light from this light source, only light (polarized light) having an amplitude component in a specific direction can pass through the polarizing filter 302I on the back surface side. This light is usually linearly polarized light and is incident on the liquid crystal layer 302F. The incident light of linearly polarized light changes its polarization state according to the refractive index anisotropy (birefringence) of the liquid crystal while propagating through the liquid crystal layer 302F in the thickness direction.
  • polarized light polarized light
  • This light is usually linearly polarized light and is incident on the liquid crystal layer 302F.
  • the incident light of linearly polarized light changes its polarization state according to the refractive index anisotropy (birefringence) of the liquid crystal while propagating through the liquid crystal layer 302F in the thickness direction.
  • the liquid crystal alignment is changed by changing the liquid crystal alignment with a voltage.
  • the refractive index in each oscillation direction of the photoelectric field of the light propagating through the liquid crystal layer changes in accordance with the change in the liquid crystal alignment, the polarization state at the time of exiting the liquid crystal changes, and the brightness, that is, the liquid crystal layer
  • the entire transmittance including the polarizing filters 302A and 302I sandwiching 302F changes.
  • the liquid crystal layer 302F combined with the polarizing filters 302A and 302I operates as a simple optical shutter. That is, it operates so as to perform analog light transmittance control based on the voltage value, such as blocking or transmitting light, or partially transmitting light so as to have a halftone of the light.
  • liquid crystal layer 302F itself changes polarization, but does not emit light in energy and does not substantially absorb. Further, the display of light that has passed through the polarizing filters 302A and 302I reaches the player's eyes, and the light that reaches the human eyes from the liquid crystal display 302 is linearly polarized.
  • the color filter 302K is disposed between the front glass plate 302B and the front transparent electrode 302E, that is, between the front glass plate 302B and the sensor circuit 302C, or between the sensor circuit 302C and the transparent electrode 302E. Is arranged.
  • the laser beam incident position display device 300 when a player emits a laser beam from the simulated gun 12, the laser beam is incident on a predetermined position of the liquid crystal display 302.
  • the laser beam is received by the optical sensor 302D inside the liquid crystal display 302, and a detection signal is output from the received optical sensor 302D to the CPU 304A of the control device 304.
  • the CPU 304A determines which optical sensor 302D has received the laser beam, and specifies the incident position of the laser beam on the liquid crystal display 302.
  • the CPU 304A outputs a voltage application drive signal to the power supply circuit 304C.
  • the power supply circuit 304 ⁇ / b> C applies a predetermined voltage to the transparent electrodes 302 ⁇ / b> E and 302 ⁇ / b> G corresponding to the pixel at which the laser beam is incident on the liquid crystal display 302.
  • a predetermined mark pattern, pattern, color display
  • the player can recognize the incident position of the laser beam on the liquid crystal display 302.
  • the CPU 304A outputs a drive signal for outputting sound effects to the sound source circuit 304D. Accordingly, the speaker 20 outputs a predetermined sound effect based on the sound data of the sound effect stored in the ROM 304B. For this reason, the player hears the sound effect at the moment when the laser beam reaches the shooting area of the liquid crystal display 302.
  • the laser beam incident position display device 300 of the fourth embodiment a projector, a video camera (CCD camera), and the like are no longer necessary, and can be manufactured with a simple configuration and low cost. Further, the laser beam incident position display device 300 can be installed and used even in a narrow space. Furthermore, by using the liquid crystal display 302 as the display member 18, the laser beam incident position display device 300 can be realized with a simple configuration. Therefore, the laser beam incident position display device 300 can be reduced in size and weight. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Liquid Crystal (AREA)

Abstract

Disclosed is a laser beam incident position display device that enables manufacturing costs to be reduced, and that enables shooting practice to be carried out even in a confined space. The laser beam incident position display device comprises: a liquid crystal display means (302) upon which a laser beam is incident, and which displays the incident position of the laser beam through the application of a voltage; an optical sensor (302D) which is provided to the liquid crystal display means (302), and which detects the laser beam that is incident on the liquid crystal display means (302); a position specification means (304A) which specifies the incident position of a laser beam on the liquid crystal display means (302) on the basis of the laser beam detection result according to the optical sensor (302D); and a display control means (304C) that displays the incident position specified by the position specification means (304A) by applying a voltage to the liquid crystal display means (302).

Description

レーザー光線入射位置表示装置Laser beam incident position display device
 本発明は、模擬銃から照射されたレーザー光線の入射位置を表示するレーザー光線入射位置表示装置に関する。 The present invention relates to a laser beam incident position display device for displaying an incident position of a laser beam irradiated from a simulated gun.
 従来から様々な射撃シミュレーション装置(射撃訓練装置)が提案されている。特に、レーザー光線を利用した模擬銃は、プラスチック弾などの物体を利用することがないため、安全に射撃シミュレーションを実行することができる。 Conventionally, various shooting simulation devices (shooting training devices) have been proposed. In particular, since a simulated gun using a laser beam does not use an object such as a plastic bullet, a shooting simulation can be executed safely.
 ここで、射撃シミュレーション装置の一例として、一の訓練者(遊技者)が射撃に関するシミュレーション装置を装着し、この受光器に、他の訓練者(遊技者)が保持する模擬銃からのレーザー光線が入射することにより、一の訓練者(遊技者)に刺激電流が流れ、筋肉を弛緩させるものがある(従来技術1、下記特許文献1参照)。 Here, as an example of a shooting simulation device, one trainer (player) wears a simulation device related to shooting, and a laser beam from a simulated gun held by another trainee (player) enters this light receiver. By doing so, there is one that causes a stimulation current to flow to one trainer (player) and relaxes the muscle (see Prior Art 1, Patent Document 1 below).
 しかしながら、上記従来技術1では、訓練者(遊技者)が複数人存在しないと、訓練することができなくなるため、単独で射撃訓練をすることはできない。 However, in the above-described conventional technique 1, if there are not a plurality of trainees (players), it is impossible to train, so it is not possible to perform a shooting training alone.
 そこで、スクリーンと、標的を含む画像を出力する画像出力手段(コンピュータなど)と、画像出力手段から出力された画像をスクリーンに対して投影する画像投影手段(プロジェクタ)と、可視光線除去フィルタを介して画像投影面を撮影し画像投影面に発生するビームポイントの画像データ取得する撮像手段(CCDカメラ、ビデオカメラ)と、を備えた射撃模擬装置が提案されている(従来技術2、下記特許文献2参照)。 Therefore, a screen, an image output means (such as a computer) that outputs an image including the target, an image projection means (projector) that projects an image output from the image output means onto the screen, and a visible light removal filter are used. And a shooting simulator (CCD camera, video camera) that captures image projection planes and acquires image data of beam points generated on the image projection planes. 2).
特開2008-20114号公報JP 2008-20114 A 特開2007-71403号公報Japanese Patent Laid-Open No. 2007-71403
 ところが、従来技術2の射撃模擬装置では、標的を含む画像を出力する画像出力手段(コンピュータなど)と、画像出力手段から出力された画像をスクリーンに対して投影する画像投影手段(プロジェクタ)と、可視光線除去フィルタを介して画像投影面を撮影し画像投影面に発生するビームポイントの画像データ取得する撮像手段(CCDカメラ、ビデオカメラ)と、が必要不可欠な構成部品であるため、部品点数が多くなり、また製造コストが大幅に増大する。また、これらの構成部品を配置するスペースがなければ、射撃シミュレーションを実行することができず、比較的狭い室内では、射撃訓練の実行が困難になる。 However, in the shooting simulation apparatus of Conventional Technique 2, an image output means (computer or the like) that outputs an image including a target, an image projection means (projector) that projects an image output from the image output means on a screen, The imaging means (CCD camera, video camera) that captures the image projection plane through the visible light removal filter and acquires the image data of the beam point generated on the image projection plane is an indispensable component, so the number of parts is In addition, the manufacturing cost is greatly increased. Further, if there is no space for arranging these components, it is impossible to execute a shooting simulation, and it is difficult to execute shooting training in a relatively small room.
 そこで、本発明は、製造コストを低減でき、小さなスペースでも、射撃訓練を実行することができるレーザー光線入射位置表示装置を提供することを目的とする。 Therefore, an object of the present invention is to provide a laser beam incident position display device that can reduce the manufacturing cost and can execute shooting training even in a small space.
 本発明は、模擬銃から照射されたレーザー光線が入射した入射位置を表示するレーザー光線入射位置表示装置であって、前記レーザー光線が入射するとともに、電圧が印加されることによって前記レーザー光線の前記入射位置を表示する液晶表示手段と、前記液晶表示手段に設けられ、前記液晶表示手段に入射した前記レーザー光線を検知する光センサと、前記光センサによる前記レーザー光線の検知結果に基づいて前記液晶表示手段における前記レーザー光線の前記入射位置を特定する位置特定手段と、前記液晶表示手段に対して電圧を印加することにより前記位置特定手段で特定された前記入射位置を前記液晶表示手段に表示させる表示制御手段と、を有することを特徴とする。 The present invention is a laser beam incident position display device for displaying an incident position where a laser beam irradiated from a simulated gun is incident, and the laser beam is incident and a voltage is applied to display the incident position of the laser beam. Liquid crystal display means, an optical sensor provided in the liquid crystal display means for detecting the laser beam incident on the liquid crystal display means, and the laser beam in the liquid crystal display means based on the detection result of the laser beam by the optical sensor. Position specifying means for specifying the incident position; and display control means for causing the liquid crystal display means to display the incident position specified by the position specifying means by applying a voltage to the liquid crystal display means. It is characterized by that.
 この構成によれば、模擬銃から照射されたレーザー光線は、液晶表示手段に入射して、光センサにより検知される。光センサによるレーザー光線の検知結果に基づいて、位置特定手段により液晶表示手段におけるレーザー光線の入射位置が特定される。そして、電圧印加手段により液晶表示手段に対して電圧が印加されることにより、位置特定手段で特定された入射位置が液晶表示手段上に表示される。この結果、液晶表示手段上に模擬銃からのレーザー光線痕を表示させることができる。このように、レーザー光線入射位置表示装置は、プロジェクタやビデオカメラ(CCDカメラ)などが不要になり、簡易な構成でかつ低コストで製造することができる。 According to this configuration, the laser beam emitted from the simulated gun enters the liquid crystal display means and is detected by the optical sensor. Based on the detection result of the laser beam by the optical sensor, the incident position of the laser beam in the liquid crystal display unit is specified by the position specifying unit. The voltage application means applies a voltage to the liquid crystal display means, so that the incident position specified by the position specification means is displayed on the liquid crystal display means. As a result, laser beam traces from the simulated gun can be displayed on the liquid crystal display means. Thus, the laser beam incident position display device does not require a projector, a video camera (CCD camera), etc., and can be manufactured with a simple configuration and at a low cost.
 本発明によれば、簡易な構成でかつ、製造コストを低減でき、比較的小さなスペースでも、射撃訓練を実行することができる。 According to the present invention, it is possible to reduce the manufacturing cost with a simple configuration, and it is possible to execute a shooting training even in a relatively small space.
本発明の第1実施形態に係るレーザー光線入射位置表示装置の説明図である。It is explanatory drawing of the laser beam incident position display apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るレーザー光線入射位置表示装置の正面図である。1 is a front view of a laser beam incident position display device according to a first embodiment of the present invention. 本発明の第1実施形態に係るレーザー光線入射位置表示装置の制御システムを示すブロック図である。It is a block diagram which shows the control system of the laser beam incident position display apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るレーザー光線入射位置表示装置の表示部材(単一の液晶層)の内部構成を示した説明図である。It is explanatory drawing which showed the internal structure of the display member (single liquid crystal layer) of the laser beam incident position display apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るレーザー光線入射位置表示装置の表示部材(単一の液晶層)で光が反射する状態を示した説明図である。It is explanatory drawing which showed the state in which light reflects with the display member (single liquid crystal layer) of the laser beam incident position display apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るレーザー光線入射位置表示装置の表示部材を構成する液晶材料に含まれる液晶分子の初期状態を示す概念図である。It is a conceptual diagram which shows the initial state of the liquid crystal molecule contained in the liquid-crystal material which comprises the display member of the laser beam incident position display apparatus which concerns on 1st Embodiment of this invention. 本発明の第1実施形態に係るレーザー光線入射位置表示装置の表示部材を構成する液晶材料に含まれる液晶分子が横向きで安定した状態を示す概念図である。It is a conceptual diagram which shows the state where the liquid crystal molecule contained in the liquid crystal material which comprises the display member of the laser beam incident position display apparatus which concerns on 1st Embodiment of this invention is horizontal, and was stable. 本発明の第1実施形態に係るレーザー光線入射位置表示装置の表示部材を構成する液晶材料に含まれる液晶分子が縦向きで安定した状態を示す概念図である。It is a conceptual diagram which shows the state with which the liquid crystal molecule contained in the liquid-crystal material which comprises the display member of the laser beam incident position display apparatus which concerns on 1st Embodiment of this invention was vertical and stabilized. 本発明の第2実施形態に係るレーザー光線入射位置表示装置の表示部材(単一の電子インク層)の構成を示した説明図である。It is explanatory drawing which showed the structure of the display member (single electronic ink layer) of the laser beam incident position display apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るレーザー光線入射位置表示装置の表示部材(単一の有機EL層)の構成を示した説明図である。It is explanatory drawing which showed the structure of the display member (single organic EL layer) of the laser beam incident position display apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係るレーザー光線入射位置表示装置の構成を示した図である。It is the figure which showed the structure of the laser beam incident position display apparatus which concerns on 4th Embodiment of this invention. 本発明の第4実施形態に係るレーザー光線入射位置表示装置の液晶表示手段が分解した状態の構成図である。It is a block diagram of the state by which the liquid crystal display means of the laser beam incident position display apparatus which concerns on 4th Embodiment of this invention was decomposed | disassembled. 本発明の第4実施形態に係るレーザー光線入射位置表示装置の液晶表示手段の変形例が分解した状態の構成図である。It is a block diagram of the state which the modification of the liquid crystal display means of the laser beam incident position display apparatus which concerns on 4th Embodiment of this invention decomposed | disassembled.
 次に、本発明の第1実施形態に係るレーザー光線入射位置表示装置について、図面を参照して説明する。なお、本明細書の「レーザー光線」とは、模擬銃から照射されるレーザービームを意味し、「光」とは、レーザー光線と区別されるものであり、例えば、太陽光(自然光)や蛍光灯などの光を意味する。 Next, the laser beam incident position display device according to the first embodiment of the present invention will be described with reference to the drawings. In this specification, “laser beam” means a laser beam emitted from a simulated gun, and “light” is distinguished from a laser beam, such as sunlight (natural light), a fluorescent lamp, etc. Means light.
 先ず、図1に示すように、模擬銃12からのレーザー光線の照射原理について説明する。模擬銃12の内部に、光励起装置(図示省略)と、一対のミラー(図示省略)と、を収容し、レーザー媒質に外部からエネルギーを注入して光を励起させ、この光をミラーで往復させる。この結果、同じ位相の光が付加され、光がミラーを往復しているうちに増幅されていき、エネルギーの大きな指向性の絞られたレーザー光が生成される。この位相が揃い増幅されたレーザー光がレーザー光線としてミラーを透過して模擬銃12から外部に放出され、後述のレーザー光線入射位置表示装置10に向かって照射される。 First, as shown in FIG. 1, the principle of laser beam irradiation from the simulated gun 12 will be described. Inside the simulated gun 12, an optical excitation device (not shown) and a pair of mirrors (not shown) are accommodated, energy is injected into the laser medium from outside to excite light, and this light is reciprocated by the mirror. . As a result, light of the same phase is added, and the light is amplified while reciprocating through the mirror, so that a laser beam with reduced energy and directivity is generated. The amplified laser light having the same phase is transmitted as a laser beam through the mirror, emitted from the simulated gun 12 to the outside, and irradiated toward the laser beam incident position display device 10 described later.
 図1及び図2に示すように、レーザー光線入射位置表示装置10は、枠部材14を備えている。この枠部材14の一方側側面には、円孔16が形成されている。この円孔16には、レーザー光線の入射位置を表示する表示部材(表示手段)18が設けられている。また、枠部材14には、複数(本実施形態では2個)のスピーカ20が設けられている。なお、円孔16に限られず、四角形、三角形などの他の形状でもよく、また、人影、動物の影などの外形でもよい。 1 and 2, the laser beam incident position display device 10 includes a frame member 14. A circular hole 16 is formed on one side surface of the frame member 14. The circular hole 16 is provided with a display member (display means) 18 for displaying the incident position of the laser beam. The frame member 14 is provided with a plurality of (two in this embodiment) speakers 20. The shape is not limited to the circular hole 16, and may be other shapes such as a quadrangle and a triangle, and may be an outline such as a human shadow or an animal shadow.
 また、枠部材14の内部であって表示部材18の背面側には、レーザー光線を検知するための複数のセンサ(例えば、光センサ)32(レーザー光検知手段、図3及び図4参照)が設けられている。センサ32は、表示部材18の全射撃領域にわたって均等となるように設けられている。具体的には、表示部材18には、同一平面上に複数の液晶層36(図4参照)が配置されており、各液晶層36の背面側に1つのセンサ32が対応(1対1の関係)するように配置されている。ここで、センサ32は、レーザー光線を検知する性質のものであり、光により導電率が変化するもの、光により起電力が発生するもの、光を熱として検知するもの、光電子変換するもの、などがある。このため、表示部材18の全射撃領域のいずれかにレーザー光線が入射した場合には、複数のセンサ32のうちレーザー光線の入射位置となる液晶層36に対応するセンサ32によりレーザー光線が検知される。 Further, a plurality of sensors (for example, optical sensors) 32 (laser light detection means, see FIGS. 3 and 4) for detecting a laser beam are provided inside the frame member 14 and on the back side of the display member 18. It has been. The sensors 32 are provided so as to be uniform over the entire shooting area of the display member 18. Specifically, the display member 18 has a plurality of liquid crystal layers 36 (see FIG. 4) arranged on the same plane, and one sensor 32 corresponds to the back side of each liquid crystal layer 36 (one-to-one correspondence). Relationship). Here, the sensor 32 has a property of detecting a laser beam, such as a material whose conductivity is changed by light, a device that generates an electromotive force by light, a device that detects light as heat, and a device that performs photoelectric conversion. is there. For this reason, when a laser beam is incident on any one of the shooting areas of the display member 18, the laser beam is detected by the sensor 32 corresponding to the liquid crystal layer 36 that is the incident position of the laser beam among the plurality of sensors 32.
 具体的には、光センサとして、光導電型(光導電セル(素子:CdS、PbS、Se))、光起電型(光起電力センサ(素子:フォトダイオード、Pinフォトダイオード、太陽電池)、内部増幅センサ(素子:フォトトランジスタ、アバランシュフォトダイオード)、領域センサ(素子:フォトダイオードアレイ、CCDイメージセンサ、MOSイメージセンサ)、熱電効果型(素子:焦電センサ))などが挙げられる。 Specifically, as a photosensor, photoconductive type (photoconductive cell (element: CdS, PbS, Se)), photovoltaic type (photovoltaic sensor (element: photodiode, Pin photodiode, solar cell), Examples include an internal amplification sensor (element: phototransistor, avalanche photodiode), area sensor (element: photodiode array, CCD image sensor, MOS image sensor), thermoelectric effect type (element: pyroelectric sensor), and the like.
 例えば、光導電型の光導電素子は、光のエネルギーを受けて内部に自由に動き回る電子が発生する。光が当っていないときは抵抗が増大し、光が当っているときは抵抗が小さくなる基本回路を有している。この変化により、レーザー光線を検知して、検知信号を出力することができる。 For example, in a photoconductive type photoconductive element, electrons that move freely in response to the energy of light are generated. It has a basic circuit in which the resistance increases when it is not exposed to light and decreases when it is exposed to light. By this change, a laser beam can be detected and a detection signal can be output.
 また、光起電型の光起電力素子は、光が照射したときに内部に電位差が発生する(光起電力効果)。フォトダイオードでは、pn接合部に光が照射されると電子と正孔の対が生じ、それぞれがn領域とp領域に集められ電極を通して光電流が取り出される。また、フォトトランジスタは、フォトダイオード構造をもつトランジスタで、増幅機能を有する素子である。また、アバランシュフォトダイオードは、光で生じた電子をpn接合の電界層中で加速して大きなエネルギーをもたせ次々と電子を放出させて倍増していくものである。これにより、微弱な光を検出することが可能となる。熱電効果型の焦電素子は、光のエネルギーをいったん熱に変えて検知するものである。このセンサ素子の内部には、プラスとマイナスの電荷が分極現象によってある方向に並んでおり誘電体としての特性を示すが、熱によってこの分極現象が変化し素子の両端に電荷が発生する(焦電効果)。焦電効果を示す素子として、単結晶のTGS、LiTaO、高分子膜のPVDFなどが挙げられる。 Further, a photovoltaic type photovoltaic element generates a potential difference inside when irradiated with light (photovoltaic effect). In the photodiode, when light is applied to the pn junction, electron-hole pairs are generated, which are collected in the n region and the p region, respectively, and a photocurrent is taken out through the electrode. The phototransistor is a transistor having a photodiode structure and an element having an amplification function. In the avalanche photodiode, electrons generated by light are accelerated in the electric field layer of the pn junction so as to have a large energy and emit electrons one after another to double. This makes it possible to detect weak light. The thermoelectric effect type pyroelectric element detects light energy once changed to heat. Inside this sensor element, positive and negative charges are arranged in a certain direction due to the polarization phenomenon, and the characteristics as a dielectric are exhibited. However, this polarization phenomenon is changed by heat, and charges are generated at both ends of the element (focus). Electric effect). Examples of the element exhibiting the pyroelectric effect include single crystal TGS, LiTaO 3 , and polymer film PVDF.
 以上のように、光センサとして、従来から種々の型のものが存在し、いずれのセンサも光を検知し、これを検知信号(電気信号)として後述の制御装置22(図3参照)に対して出力する。 As described above, various types of optical sensors have conventionally existed, and all the sensors detect light and use this as a detection signal (electrical signal) for a control device 22 (see FIG. 3) described later. Output.
 また、図3に示すように、枠部材14の内部には、制御装置22が設けられている。制御装置22は、複数のセンサ32からの検知信号に基づいて表示部材18上のレーザー光線の入射位置を特定するCPU(あるいはCPU回路)24(位置特定手段)と、レーザー光線の入射位置となる表示部材18の液晶層36(詳細には、図4の電極50、52、(62、64)、(74、76))に対して所定の電圧を印加する電源回路26(電圧印加手段)と、スピーカ20から所定の効果音を出力させる音源回路28と、センサ32の検知信号と表示部材18の入射部位(液晶層36)との対応関係(テーブル)、及び効果音のデータを記憶するROM30と、で構成されている。なお、センサ32毎に異なる種類の検知信号を出力する構成では、ROM30には、センサ32毎に異なる種類の検知信号と表示部材18の入射部位(液晶層36)との対応関係(テーブル)を記憶させておいてもよい。 Further, as shown in FIG. 3, a control device 22 is provided inside the frame member 14. The control device 22 includes a CPU (or CPU circuit) 24 (position specifying means) that specifies the incident position of the laser beam on the display member 18 based on detection signals from the plurality of sensors 32, and a display member that is the incident position of the laser beam. A power supply circuit 26 (voltage applying means) for applying a predetermined voltage to 18 liquid crystal layers 36 (specifically, electrodes 50, 52, (62, 64), (74, 76) in FIG. 4), and a speaker. A sound source circuit 28 that outputs a predetermined sound effect from 20, a correspondence (table) between a detection signal of the sensor 32 and an incident site (liquid crystal layer 36) of the display member 18, and a ROM 30 that stores sound effect data; It consists of In the configuration in which different types of detection signals are output for each sensor 32, the ROM 30 indicates correspondence relationships (tables) between different types of detection signals for each sensor 32 and the incident site (liquid crystal layer 36) of the display member 18. It may be memorized.
 CPU24は、複数のセンサ32からの検知信号に基づいて、表示部材18上のレーザー光線の入射位置を特定する。例えば、表示部材18の射撃領域の左側に配置されたセンサ32によりレーザー光線が受光された場合には、レーザー光線を受光したセンサ32から検知信号が制御装置22に対して出力される。そして、CPU24は、この検知信号を出力したセンサ32を認識して、ROM30に記憶したテーブルを参照し、表示部材18上のレーザー光線の入射位置(例えば、左側の液晶層36)を特定する。あるいは、CPU24は、検知信号の種類により、センサ32を特定し、これにより、表示部材18上のレーザー光線の入射位置を特定してもよい。 The CPU 24 specifies the incident position of the laser beam on the display member 18 based on the detection signals from the plurality of sensors 32. For example, when a laser beam is received by the sensor 32 disposed on the left side of the shooting region of the display member 18, a detection signal is output from the sensor 32 that has received the laser beam to the control device 22. Then, the CPU 24 recognizes the sensor 32 that has output this detection signal, refers to the table stored in the ROM 30, and specifies the incident position of the laser beam on the display member 18 (for example, the left liquid crystal layer 36). Alternatively, the CPU 24 may specify the sensor 32 according to the type of the detection signal, and thereby specify the incident position of the laser beam on the display member 18.
 電源回路26は、CPU24により特定された表示部材18上のレーザー光線の入射位置に対して所定の電圧を印加させるものである。具体的には、レーザー光線の入射位置となる液晶層36の透明電極50、52、(62、64)、(74、76)間に対して所定の電圧を印加する。この結果、レーザー光線が入射した表示部材18の入射部位の色が変化する。なお、電源回路26は、CPU24により制御される。 The power supply circuit 26 applies a predetermined voltage to the incident position of the laser beam on the display member 18 specified by the CPU 24. Specifically, a predetermined voltage is applied between the transparent electrodes 50, 52, (62, 64), (74, 76) of the liquid crystal layer 36 at which the laser beam is incident. As a result, the color of the incident part of the display member 18 on which the laser beam is incident changes. The power supply circuit 26 is controlled by the CPU 24.
 音源回路28は、複数のセンサ32のうちいずれかのセンサでレーザー光線が検知されたと同時にROM30に記憶された効果音の音データに基づいてスピーカ20を介して所定の効果音を出力するものである。このため、遊技者は、レーザー光線が表示部材18の射撃領域に到達した瞬間に、効果音を聞くことになる。なお、音源回路28は、CPU24により制御される。また、音源回路28は、スピーカ20からの効果音の出力を制御する。 The sound source circuit 28 outputs a predetermined sound effect via the speaker 20 based on the sound data of the sound effect stored in the ROM 30 at the same time when the laser beam is detected by any one of the plurality of sensors 32. . For this reason, the player hears the sound effect at the moment when the laser beam reaches the shooting area of the display member 18. The sound source circuit 28 is controlled by the CPU 24. The sound source circuit 28 controls the output of sound effects from the speaker 20.
 次に、表示部材18の構成について詳細に説明する。
 図4に示すように、表示部材18は、コレステリック液晶材料を備えた電子ペーパー34で構成されている。電子ペーパー34は、複数の液晶層36が同一平面上に所謂マトリックス状に並べられて構成されている。すなわち、一の液晶層36がセルとなっている。なお、同一平面上で隣接する液晶層36同士は、接着剤や両面テープなどの接着材料により固定されている。また、電子ペーパー34の前後両面側(複数の液晶層36の前後両面側)に、透明のシート部材(例えば、樹脂シート)を配置させ、全ての液晶層36を保持するようにしてもよい。
Next, the configuration of the display member 18 will be described in detail.
As shown in FIG. 4, the display member 18 is composed of electronic paper 34 provided with a cholesteric liquid crystal material. The electronic paper 34 is configured by arranging a plurality of liquid crystal layers 36 in a so-called matrix on the same plane. That is, one liquid crystal layer 36 is a cell. In addition, the liquid crystal layers 36 adjacent on the same plane are fixed by an adhesive material such as an adhesive or a double-sided tape. In addition, a transparent sheet member (for example, a resin sheet) may be disposed on both front and rear sides of the electronic paper 34 (front and rear sides of the plurality of liquid crystal layers 36) to hold all the liquid crystal layers 36.
 各液晶層36は、青・緑・赤の3色のコレステリック液晶材料を厚み方向に重ねられて設けられている。具体的には、各液晶層36は、レーザー光線が透過する青色のコレステリック液晶材料層38と、レーザー光線が透過する緑色のコレステリック液晶材料層40と、レーザー光線が透過する赤色のコレステリック液晶材料層42と、が厚み方向に重ねられて構成されている。 Each liquid crystal layer 36 is formed by stacking blue, green and red cholesteric liquid crystal materials in the thickness direction. Specifically, each liquid crystal layer 36 includes a blue cholesteric liquid crystal material layer 38 through which laser beams are transmitted, a green cholesteric liquid crystal material layer 40 through which laser beams are transmitted, a red cholesteric liquid crystal material layer 42 through which laser beams are transmitted, Are stacked in the thickness direction.
 ここで、コレステリック液晶は、特定の波長(光)のみを反射する性質がある。太陽光や蛍光灯などの光が液晶に入射すると、青色、緑色、赤色の決められた波長を反射して、フルカラーで表示することができる。なお、青色、緑色、赤色の全ての色の光が反射した場合には、光の3原色となり、肉眼で白色に見える。 Here, the cholesteric liquid crystal has a property of reflecting only a specific wavelength (light). When light such as sunlight or fluorescent light is incident on the liquid crystal, a predetermined wavelength of blue, green, or red is reflected to display in full color. When light of all colors of blue, green, and red is reflected, it becomes the three primary colors of light and appears white with the naked eye.
 青色のコレステリック液晶材料層38は、レーザー光線及び光が透過する1対の透明フィルム44、46と、各透明フィルム44、46の間に介在された青色のコレステリック液晶材料48と、1対の透明フィルム44、46の表面と青色のコレステリック液晶材料48との境界に設けられた透明電極50、52と、で構成されている。なお、各液晶層36の青色のコレステリック液晶材料48は、封止剤54により封入されている。 The blue cholesteric liquid crystal material layer 38 includes a pair of transparent films 44 and 46 through which a laser beam and light are transmitted, a blue cholesteric liquid crystal material 48 interposed between the transparent films 44 and 46, and a pair of transparent films. And transparent electrodes 50 and 52 provided at the boundary between the surfaces of 44 and 46 and the blue cholesteric liquid crystal material 48. The blue cholesteric liquid crystal material 48 of each liquid crystal layer 36 is sealed with a sealant 54.
 緑色のコレステリック液晶材料層40は、レーザー光線及び光が透過する1対の透明フィルム56、58と、各透明フィルム56、58の間に介在された緑色のコレステリック液晶材料60と、1対の透明フィルム56、58の表面と緑色のコレステリック液晶材料60との境界に設けられた透明電極62、64と、で構成されている。なお、各液晶層36の緑色のコレステリック液晶材料60は、封止剤66により封入されている。 The green cholesteric liquid crystal material layer 40 includes a pair of transparent films 56 and 58 through which a laser beam and light are transmitted, a green cholesteric liquid crystal material 60 interposed between the transparent films 56 and 58, and a pair of transparent films. And transparent electrodes 62 and 64 provided at the boundary between the surfaces of 56 and 58 and the green cholesteric liquid crystal material 60. The green cholesteric liquid crystal material 60 of each liquid crystal layer 36 is sealed with a sealant 66.
 赤色のコレステリック液晶材料層42は、レーザー光線及び光が透過する1対の透明フィルム68、70と、各透明フィルム68、70の間に介在された赤色のコレステリック液晶材料72と、1対の透明フィルム68、70の表面と赤色のコレステリック液晶材料との境界に設けられた透明電極74、76と、で構成されている。なお、各液晶層36の赤色のコレステリック液晶材料は、封止剤78により封入されている。 The red cholesteric liquid crystal material layer 42 includes a pair of transparent films 68 and 70 through which laser light and light are transmitted, a red cholesteric liquid crystal material 72 interposed between the transparent films 68 and 70, and a pair of transparent films. And transparent electrodes 74 and 76 provided at the boundary between the surface of 68 and 70 and the red cholesteric liquid crystal material. The red cholesteric liquid crystal material of each liquid crystal layer 36 is sealed with a sealant 78.
 以上のように、各液晶層36は、最も表面側に位置する青色のコレステリック液晶材料層38と、青色のコレステリック液晶材料層38の背面(裏面)側に位置する緑色のコレステリック液晶材料層38と、緑色のコレステリック液晶材料層40の背面(裏面)側に位置する赤色のコレステリック液晶材料層42と、がそれぞれ厚み方向に重なり合って構成されている。そして、表示部材18は、上記構成の複数の液晶層36が同一平面上に並べられて構成されている。 As described above, each liquid crystal layer 36 includes a blue cholesteric liquid crystal material layer 38 located on the most surface side, and a green cholesteric liquid crystal material layer 38 located on the back side (back side) of the blue cholesteric liquid crystal material layer 38. The red cholesteric liquid crystal material layer 42 positioned on the back (back) side of the green cholesteric liquid crystal material layer 40 is overlapped in the thickness direction. The display member 18 is configured by arranging a plurality of liquid crystal layers 36 having the above-described configuration on the same plane.
 次に、表示部材18における光の反射原理について説明する。 Next, the principle of light reflection on the display member 18 will be described.
 図5及び図6に示すように、各液晶材料層38、40、42のコレステリック液晶材料の中には、複数の液晶分子Xがねじれたらせんのように並んでいる。通常は、複数の液晶分子Xが縦向きに並んでおり、太陽光や蛍光灯などの光を反射する状態になっている。 As shown in FIGS. 5 and 6, a plurality of liquid crystal molecules X are arranged in a twisted spiral in the cholesteric liquid crystal material of each liquid crystal material layer 38, 40, 42. Usually, a plurality of liquid crystal molecules X are arranged in a vertical direction and reflect light such as sunlight or fluorescent lamps.
 そして、図5及び図7に示すように、レーザー光線、太陽光や蛍光灯などの光を通過させたい部分の透明電極50、52、(62、64)、(74、76)間に低い電圧を印加して、らせん状の液晶分子Xを横向きにする。なお、この電圧の印加を停止しても(電源を切っても)、液晶分子Xは、横向きのまま安定している。これにより、太陽光や蛍光灯などの光は、各液晶材料層38、40、42を通過する。 As shown in FIGS. 5 and 7, a low voltage is applied between the transparent electrodes 50, 52, (62, 64), (74, 76) in a portion where light such as a laser beam, sunlight, or a fluorescent lamp is desired to pass. This is applied to make the spiral liquid crystal molecules X face sideways. Even when the application of this voltage is stopped (even when the power is turned off), the liquid crystal molecules X remain stable in the horizontal direction. Thereby, light, such as sunlight and a fluorescent lamp, passes through each liquid crystal material layer 38, 40, 42.
 さらに、図5及び図8に示すように、レーザー光線、太陽光や蛍光灯などの光を反射させたい部分の透明電極50、52、(62、64)、(74、76)間に高い電圧を印加して、らせん状の液晶分子Xを伸ばし、すぐに電圧の印加を停止する。これにより、液晶分子Xは、反発して縦向きのらせん状になって安定する。これにより、太陽光や蛍光灯などの光は、この部位で反射する。 Further, as shown in FIG. 5 and FIG. 8, a high voltage is applied between the transparent electrodes 50, 52, (62, 64), (74, 76) in the portion where light such as laser light, sunlight or fluorescent light is to be reflected. When applied, the spiral liquid crystal molecules X are stretched, and the voltage application is immediately stopped. Thereby, the liquid crystal molecules X are repelled and become a vertical spiral and are stabilized. Thereby, light, such as sunlight and a fluorescent lamp, reflects in this part.
 ここで、電圧の印加は、電源回路26により制御される。電源回路26から各透明電極50、52、(62、64)、(74、76)間に対して電圧印加信号が出力され、これに基づいて電圧が印加される。 Here, the voltage application is controlled by the power supply circuit 26. A voltage application signal is output from the power supply circuit 26 to the transparent electrodes 50, 52, (62, 64), (74, 76), and a voltage is applied based on this signal.
 このように、表示部材18に電子ペーパー34を利用することにより、偏光板、反射板、カラーフィルタ、バックライトが不要になる。このため、表示部材18の部品点数を削減でき、製造コストを低減することができる。また、電子ペーパー34を利用することにより、低電力で表示することができる。 Thus, by using the electronic paper 34 for the display member 18, a polarizing plate, a reflector, a color filter, and a backlight become unnecessary. For this reason, the number of parts of the display member 18 can be reduced, and the manufacturing cost can be reduced. Further, by using the electronic paper 34, display can be performed with low power.
 次に、本発明の第1実施形態におけるレーザー光線入射位置表示装置10におけるレーザー光線入射位置表示方法について説明する。本発明は、上記した表示部材である電子ペーパー34の反射原理を利用して、レーザー光線の入射位置を表示するものである。 Next, a laser beam incident position display method in the laser beam incident position display device 10 according to the first embodiment of the present invention will be described. The present invention displays the incident position of the laser beam by utilizing the reflection principle of the electronic paper 34 as the display member.
 先ず、図4及び図5に示すように、表示部材18の初期状態として、全て液晶層36の全ての液晶材料層38、40、42の透明電極50、52、(62、64)、(74、76)に比較的低い電圧が印加されている。これは、CPU24により制御された電源回路26によって、全ての液晶材料層38、40、42の各透明電極間50、52、(62、64)、(74、76)に対して所定の電圧を印加することにより実行できる。この表示部材18の初期状態では、液晶分子Xが図7に示す横向き状態になって安定し、レーザー光線、太陽光や蛍光灯などの光が、全ての液晶材料層38、40、42を通過する。このとき、遊技者は、黒色を視認する。 First, as shown in FIGS. 4 and 5, as the initial state of the display member 18, the transparent electrodes 50, 52, (62, 64), (74) of all the liquid crystal material layers 38, 40, 42 of the liquid crystal layer 36 are used. 76), a relatively low voltage is applied. This is because the power supply circuit 26 controlled by the CPU 24 applies a predetermined voltage to the transparent electrodes 50, 52, (62, 64), (74, 76) between all the liquid crystal material layers 38, 40, 42. It can be executed by applying. In the initial state of the display member 18, the liquid crystal molecules X are stable in the horizontal state shown in FIG. 7, and light such as laser light, sunlight, or fluorescent light passes through all the liquid crystal material layers 38, 40, 42. . At this time, the player visually recognizes black.
 次に、遊技者による遊技が開始される。遊技者の模擬銃12からレーザー光線が照射されて、表示部材18の射撃領域の一部に入射すると、レーザー光線は、全ての液晶材料層38、40、42を通過して、入射した一の液晶層36の裏面側に位置するセンサ32で受光される。そして、レーザー光線を受光したセンサ32から制御装置22に対して、レーザー光線の検知信号が出力される。CPU24は、この検知信号を受けて、レーザー光線を受光したセンサ32を特定し、また、そのセンサ32に対応する一の液晶層36を特定する。後述するように、この特定された一の液晶層36が、レーザー光線が入射した位置として変色する。 Next, the game by the player is started. When a laser beam is irradiated from the player's simulated gun 12 and enters a part of the shooting region of the display member 18, the laser beam passes through all the liquid crystal material layers 38, 40, and 42, and enters one liquid crystal layer. Light is received by a sensor 32 located on the back side of 36. Then, a laser beam detection signal is output from the sensor 32 receiving the laser beam to the control device 22. In response to this detection signal, the CPU 24 identifies the sensor 32 that has received the laser beam, and identifies one liquid crystal layer 36 corresponding to the sensor 32. As will be described later, the specified one liquid crystal layer 36 changes its color as the position where the laser beam is incident.
 次に、CPU24は、特定された液晶層36に配置されている透明電極50、52、(62、64)、(74、76)間に対して比較的高い電圧を印加するための制御信号を電源回路26に出力する。このとき、電源回路26は、CPU24からの制御信号を受けて、特定された一の液晶層36の透明電極50、52、(62、64)、(74、76)間に対して比較的高い電極を印加する。 Next, the CPU 24 generates a control signal for applying a relatively high voltage between the transparent electrodes 50, 52, (62, 64), (74, 76) arranged in the specified liquid crystal layer 36. Output to the power supply circuit 26. At this time, the power supply circuit 26 receives a control signal from the CPU 24 and is relatively high with respect to the transparent electrodes 50, 52, (62, 64), (74, 76) of the specified one liquid crystal layer 36. Apply electrodes.
 これにより、電圧が印加された透明電極50、52、(62、64)、(74、76)に対応する液晶材料中の液晶分子Xは、上述した通り、図8に示す縦向き状態になって安定し、太陽光や蛍光灯などの光を反射する性質になる。なお、このときの透明電極50、52、(62、64)、(74、76)間に対する電圧印加時間は僅かな時間であり、電圧を印加した後、すぐに電圧印加が停止される。 As a result, the liquid crystal molecules X in the liquid crystal material corresponding to the transparent electrodes 50, 52, (62, 64), (74, 76) to which a voltage is applied are in the vertically oriented state shown in FIG. And stable, and reflects light such as sunlight and fluorescent lamps. In addition, the voltage application time between the transparent electrodes 50, 52, (62, 64), and (74, 76) at this time is a short time, and the voltage application is stopped immediately after the voltage is applied.
 この結果、電圧が印加された透明電極50、52、(62、64)、(74、76)を有する液晶層36では、太陽光や蛍光灯などの光を反射する性質に変化して、遊技者は、色の変化を認識する。具体的には、青色のコレステリック液晶材料層38の透明電極50、52間に高い電圧が印加された場合には、レーザー光線の入射位置が青色に表示され、遊技者は、青色の部位がレーザー光線の入射位置と認識する。また、緑色のコレステリック液晶材料層40の透明電極62、64間に高い電圧が印加された場合には、レーザー光線の入射位置が緑色に表示され、遊技者は、緑色の部位がレーザー光線の入射位置と認識する。赤色のコレステリック液晶材料層42の透明電極74、76間に高い電圧が印加された場合には、レーザー光線の入射位置が赤色に表示され、遊技者は、赤色の部位がレーザー光線の入射位置と認識する。 As a result, the liquid crystal layer 36 having the transparent electrodes 50, 52, (62, 64), (74, 76) to which a voltage is applied is changed to a property of reflecting light such as sunlight or fluorescent lamps, The person recognizes the color change. Specifically, when a high voltage is applied between the transparent electrodes 50 and 52 of the blue cholesteric liquid crystal material layer 38, the incident position of the laser beam is displayed in blue, and the player can see that the blue portion is the laser beam. Recognized as an incident position. In addition, when a high voltage is applied between the transparent electrodes 62 and 64 of the green cholesteric liquid crystal material layer 40, the incident position of the laser beam is displayed in green, and the player determines that the green portion is the incident position of the laser beam. recognize. When a high voltage is applied between the transparent electrodes 74 and 76 of the red cholesteric liquid crystal material layer 42, the incident position of the laser beam is displayed in red, and the player recognizes the red portion as the incident position of the laser beam. .
 より詳細には、レーザー光線の入射位置を青色に表示させる場合には、青色のコレステリック液晶材料層38の透明電極50、52間に高い電圧が印加され、緑色及び赤色のコレステリック液晶材料層40、42の透明電極62、64(74、76)間には電圧が印加されない。このため、青色のコレステリック液晶材料層38の液晶分子Xは、図8に示す縦向きの状態で安定するため光を反射し、緑色及び赤色のコレステリック液晶材料層40、42の液晶分子Xは、図7に示す横向きの状態で安定するため光を透過する。 More specifically, when the incident position of the laser beam is displayed in blue, a high voltage is applied between the transparent electrodes 50 and 52 of the blue cholesteric liquid crystal material layer 38, and the green and red cholesteric liquid crystal material layers 40 and 42 are displayed. No voltage is applied between the transparent electrodes 62 and 64 (74, 76). For this reason, the liquid crystal molecules X of the blue cholesteric liquid crystal material layer 38 reflect light because they are stable in the vertical orientation shown in FIG. 8, and the liquid crystal molecules X of the green and red cholesteric liquid crystal material layers 40 and 42 are Light is transmitted in order to stabilize in the horizontal state shown in FIG.
 また、レーザー光線の入射位置を緑色に表示させる場合には、緑色のコレステリック液晶材料層40の透明電極62、64間に高い電圧が印加され、青色及び赤色のコレステリック液晶材料層38、42の透明電極50、52(74、76)間には電圧が印加されない。このため、緑色のコレステリック液晶材料層40の液晶分子Xは、図8に示す縦向きの状態で安定するため光を反射し、青色及び赤色のコレステリック液晶材料層38、42の液晶分子Xは、図7に示す横向きの状態で安定するため光を透過する。 When the incident position of the laser beam is displayed in green, a high voltage is applied between the transparent electrodes 62 and 64 of the green cholesteric liquid crystal material layer 40, and the transparent electrodes of the blue and red cholesteric liquid crystal material layers 38 and 42 are displayed. A voltage is not applied between 50 and 52 (74, 76). For this reason, the liquid crystal molecules X of the green cholesteric liquid crystal material layer 40 reflect light in order to stabilize in the vertical orientation shown in FIG. 8, and the liquid crystal molecules X of the blue and red cholesteric liquid crystal material layers 38 and 42 are Light is transmitted in order to stabilize in the horizontal state shown in FIG.
 さらに、レーザー光線の入射位置を赤色に表示させる場合には、赤色のコレステリック液晶材料層42の透明電極74、76間に高い電圧が印加され、青色及び緑色のコレステリック液晶材料層38、40の透明電極50、52(62、64)間には電圧が印加されない。このため、赤色のコレステリック液晶材料層42の液晶分子Xは、図8に示す縦向きの状態で安定するため光を反射し、青色及び緑色のコレステリック液晶材料層38、40の液晶分子Xは、図7に示す横向きの状態で安定するため光を透過する。 Further, when the incident position of the laser beam is displayed in red, a high voltage is applied between the transparent electrodes 74 and 76 of the red cholesteric liquid crystal material layer 42, and the transparent electrodes of the blue and green cholesteric liquid crystal material layers 38 and 40 are displayed. A voltage is not applied between 50 and 52 (62, 64). Therefore, the liquid crystal molecules X of the red cholesteric liquid crystal material layer 42 are reflected in order to stabilize in the vertical orientation shown in FIG. 8, and the liquid crystal molecules X of the blue and green cholesteric liquid crystal material layers 38 and 40 are Light is transmitted in order to stabilize in the horizontal state shown in FIG.
 なお、レーザー光線の入射位置を青色、緑色及び赤色以外の色に表示させる場合には、各色のコレステリック液晶材料層38、40、42の透明電極50、52、(62、64)、(74、76)間に対する電圧印加のパターンを適宜変化させることにより対応できる。例えば、青色及び緑色のコレステリック液晶材料層38、40の透明電極50、52(62、64)間に高い電圧を印加し、赤色のコレステリック液晶材料層42の透明電極74、76間に電圧を印加しないことにより、青色と緑色の光を反射させることができ、レーザー光線の入射位置を青色と緑色とが混ざった色で表示できる。一方、青色及び赤色のコレステリック液晶材料層38、42の透明電極50、52(74、76)間に高い電圧を印加し、緑色のコレステリック液晶材料層40の透明電極62、64間に電圧を印加しないことにより、青色と赤色の光を反射させることができ、レーザー光線の入射位置を青色と赤色とが混ざった色で表示できる。また、緑色及び赤色のコレステリック液晶材料層40、42の透明電極62、64(74、76)間に高い電圧を印加し、青色のコレステリック液晶材料層38の透明電極50、52間に電圧を印加しないことにより、緑色と赤色の光を反射させることができ、レーザー光線の入射位置を緑色と赤色とが混ざった色で表示できる。さらに、青色、緑色及び赤色のコレステリック液晶材料層38、40、42の透明電極50、52、(62、64)、(74、76)に高い電圧を印加することにより、青色と緑色と赤色の光を反射させることができ、レーザー光線の入射位置を青色と緑色と赤色とが混ざった色で表示できる。このように、各色のコレステリック液晶材料層38、40、42の透明電極50、52、(62、64)、(74、76)間に対する電圧の印加パターン(印加のオン/オフ)を適宜変えることにより、レーザー光線の入射位置を様々な色で表示することができ、さらに、所定の模様を表示することも可能になる。 In addition, when displaying the incident position of a laser beam in colors other than blue, green, and red, the transparent electrodes 50, 52, (62, 64), (74, 76) of the cholesteric liquid crystal material layers 38, 40, 42 of the respective colors. ) Can be dealt with by appropriately changing the voltage application pattern. For example, a high voltage is applied between the transparent electrodes 50 and 52 (62 and 64) of the blue and green cholesteric liquid crystal material layers 38 and 40, and a voltage is applied between the transparent electrodes 74 and 76 of the red cholesteric liquid crystal material layer 42. By not, blue and green light can be reflected, and the incident position of the laser beam can be displayed in a mixed color of blue and green. On the other hand, a high voltage is applied between the transparent electrodes 50 and 52 (74 and 76) of the blue and red cholesteric liquid crystal material layers 38 and 42, and a voltage is applied between the transparent electrodes 62 and 64 of the green cholesteric liquid crystal material layer 40. By not doing so, blue and red light can be reflected, and the incident position of the laser beam can be displayed in a mixed color of blue and red. Further, a high voltage is applied between the transparent electrodes 62 and 64 (74 and 76) of the green and red cholesteric liquid crystal material layers 40 and 42, and a voltage is applied between the transparent electrodes 50 and 52 of the blue cholesteric liquid crystal material layer 38. By not doing so, green and red light can be reflected, and the incident position of the laser beam can be displayed in a mixed color of green and red. Further, by applying a high voltage to the transparent electrodes 50, 52, (62, 64), (74, 76) of the blue, green and red cholesteric liquid crystal material layers 38, 40, 42, blue, green and red The light can be reflected, and the incident position of the laser beam can be displayed in a mixed color of blue, green and red. In this manner, the voltage application pattern (application ON / OFF) between the transparent electrodes 50, 52, (62, 64), (74, 76) of the cholesteric liquid crystal material layers 38, 40, and 42 of the respective colors is appropriately changed. Thus, the incident position of the laser beam can be displayed in various colors, and a predetermined pattern can be displayed.
 また、同時に、いずれかのセンサでレーザー光線が受光されると、CPU24は、所定の効果音を出力するための制御信号を音源回路28に出力する。このとき、音源回路28は、CPU24からの制御信号を受けて、ROM30に記憶された効果音のデータに基づいて、各スピーカ20を介して所定の効果音を出力する。なお、レーザー光線が入射した射撃領域の部位によって、効果音を変化させるようにしてもよい。例えば、射撃領域の中心にレーザー光線が入射した場合には、大きな効果音が出力され、射撃領域の中心から離れた部位にレーザー光線が入射した場合には、小さな効果音が出力されるように設定してもよい。 At the same time, when a laser beam is received by any one of the sensors, the CPU 24 outputs a control signal for outputting a predetermined sound effect to the sound source circuit 28. At this time, the sound source circuit 28 receives a control signal from the CPU 24 and outputs a predetermined sound effect via each speaker 20 based on the sound effect data stored in the ROM 30. The sound effect may be changed depending on the portion of the shooting area where the laser beam is incident. For example, when a laser beam is incident on the center of the shooting area, a large sound effect is output, and when a laser beam is incident on a part away from the center of the shooting area, a small sound effect is output. May be.
 以上のように、第1実施形態のレーザー光線入射位置表示装置10によれば、プロジェクタやビデオカメラ(CCDカメラ)などが不要になり、簡易な構成でかつ低コストで製造することができる。また、狭いスペースでも、レーザー光線入射位置表示装置10を設置して使用することができる。さらに、表示部材18として、電子ペーパー34を利用することにより、電子ペーパー34の柔軟性を利用して電子ペーパー34を組み付けることができるとともに、レーザー光線入射位置表示装置10を小型化かつ軽量化することができる。 As described above, according to the laser beam incident position display device 10 of the first embodiment, a projector, a video camera (CCD camera), and the like are no longer necessary, and can be manufactured with a simple configuration and low cost. Further, the laser beam incident position display device 10 can be installed and used even in a narrow space. Furthermore, by using the electronic paper 34 as the display member 18, the electronic paper 34 can be assembled using the flexibility of the electronic paper 34, and the laser beam incident position display device 10 can be reduced in size and weight. Can do.
 なお、表示部材18として、複数色(3色)のコレステリック液晶材料層38、40、42で構成した例を示したが、この構成に限られるものではなく、単色(例えば、赤色)のコレステリック液晶材料層のみで表示部材を構成してもよく、また、2色(青色と赤色)のコレステリック液晶材料層で表示部材を構成してもよい。 In addition, although the example comprised by the cholesteric liquid crystal material layer 38, 40, 42 of multiple colors (three colors) was shown as the display member 18, it is not restricted to this structure, A monochromatic (for example, red) cholesteric liquid crystal is shown. The display member may be composed of only the material layer, or the display member may be composed of two colors (blue and red) of cholesteric liquid crystal material layers.
 次に、本発明の第2実施形態に係るレーザー光線入射位置表示装置について説明する。なお、第1実施形態に係るレーザー光線入射位置表示装置の構成と重複する構成には同符号を付し、その説明を適宜省略する。 Next, a laser beam incident position display device according to a second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the structure which overlaps with the structure of the laser beam incident position display apparatus which concerns on 1st Embodiment, and the description is abbreviate | omitted suitably.
 第2実施形態に係るレーザー光線入射位置表示装置は、第1実施形態と比較して、表示部材の構成が異なるものである。 The laser beam incident position display device according to the second embodiment is different from the first embodiment in the configuration of the display member.
 図9に示すように、表示部材18には、マイクロカプセル型電気泳動方式の電子ペーパー100が用いられる。電子ペーパー100は、複数の電子インク層102が同一平面上に所謂マトリックス状に並べられて構成されている。すなわち、一の電子インク層102がセルとなっている。なお、同一平面上で隣接する電子インク層102同士は、接着剤や両面テープなどの接着材料により固定されている。また、電子ペーパー100(電子インク層102)の前後両面側(複数の電子インク層102の前後両面側)に、透明のシート部材(例えば、樹脂シート)を配置させ、全ての電子インク層102を保持するようにしてもよい。 As shown in FIG. 9, a microcapsule-type electrophoresis electronic paper 100 is used for the display member 18. The electronic paper 100 is configured by arranging a plurality of electronic ink layers 102 in a so-called matrix on the same plane. That is, one electronic ink layer 102 is a cell. Note that the adjacent electronic ink layers 102 on the same plane are fixed by an adhesive material such as an adhesive or a double-sided tape. In addition, a transparent sheet member (for example, a resin sheet) is disposed on both front and rear sides of the electronic paper 100 (electronic ink layer 102) (front and rear sides of the plurality of electronic ink layers 102), and all the electronic ink layers 102 are disposed. You may make it hold | maintain.
 すなわち、各電子インク層102は、表面側(遊技者側)に位置する透明の表面電極(透明電極)104と、背面(裏面)側に位置する透明の背面電極(透明電極)106と、表面電極104と背面電極106との間に介在される複数の透明なマイクロカプセル108と、で構成されている。電源回路26は、表面電極104と背面電極106との間に所定の電圧を印加する。レーザー光線は、表面電極104、マイクロカプセル108及び背面電極106を通過する。 That is, each electronic ink layer 102 includes a transparent surface electrode (transparent electrode) 104 located on the front surface side (player side), a transparent back electrode (transparent electrode) 106 located on the back surface (back surface) side, A plurality of transparent microcapsules 108 interposed between the electrode 104 and the back electrode 106 are configured. The power supply circuit 26 applies a predetermined voltage between the front electrode 104 and the back electrode 106. The laser beam passes through the surface electrode 104, the microcapsule 108, and the back electrode 106.
 ここで、マイクロカプセル108の内部には、正に帯電した白い顔料110(粒子)と、負に帯電した黒い顔料112(粒子)と、が収容されている。正に帯電した白い顔料110は、負に帯びた電極側にひきつけられ、負に帯電した黒い顔料112は、正に帯びた電極側にひきつけられる。 Here, a positively charged white pigment 110 (particles) and a negatively charged black pigment 112 (particles) are accommodated in the microcapsule 108. The positively charged white pigment 110 is attracted to the negatively charged electrode side, and the negatively charged black pigment 112 is attracted to the positively charged electrode side.
 すなわち、図9(A)に示すように、背面電極106が正に帯電している場合には、背面電極106側に黒い顔料112が移動し、表面電極104側に白い顔料110が移動する。このため、遊技者は、白く認識する。また、図9(B)に示すように、背面電極106が負に帯電している場合には、背面電極106側に白い顔料110が移動し、表面電極104側に黒い顔料112が移動する。このため、遊技者は、黒く認識する。さらに、図9(C)に示すように、背面電極106が正と負に帯電している場合には、背面電極106側に黒い顔料112と白い顔料110が移動し、表面電極104側に白い顔料110と黒い顔料112が移動する。このため、遊技者は、黒と白の混色として認識する。 That is, as shown in FIG. 9A, when the back electrode 106 is positively charged, the black pigment 112 moves to the back electrode 106 side, and the white pigment 110 moves to the front electrode 104 side. For this reason, the player recognizes white. 9B, when the back electrode 106 is negatively charged, the white pigment 110 moves to the back electrode 106 side, and the black pigment 112 moves to the front electrode 104 side. For this reason, the player recognizes black. Further, as shown in FIG. 9C, when the back electrode 106 is positively and negatively charged, the black pigment 112 and the white pigment 110 move to the back electrode 106 side, and the white color to the front electrode 104 side. The pigment 110 and the black pigment 112 move. For this reason, the player recognizes it as a mixed color of black and white.
 上記マイクロカプセル108が射撃領域の全領域にわたって設けられている。また、各マイクロカプセル108の背面側には、各センサ32が各マイクロカプセル108と対応するように設けられている。このため、前方に位置するマイクロカプセル108をレーザー光線が透過すると、その背面側に位置するセンサ32がレーザー光線を受光する。センサ32がレーザー光線を受光すると、センサ32から検知信号が制御装置22に対して出力される。CPU24は、センサ32からの検知信号を受けて、レーザー光線が透過したマイクロカプセル108を特定し、その特定した電極104、106間に所定の電圧を印加するための制御信号を電源回路26に対して出力する。また同時に、CPU24は、音源回路28に対して所定の効果音を出力するための制御信号を出力する。 The microcapsule 108 is provided over the entire area of the shooting area. Each sensor 32 is provided on the back side of each microcapsule 108 so as to correspond to each microcapsule 108. For this reason, when the laser beam passes through the microcapsule 108 positioned in front, the sensor 32 positioned on the back side receives the laser beam. When the sensor 32 receives the laser beam, a detection signal is output from the sensor 32 to the control device 22. The CPU 24 receives the detection signal from the sensor 32, specifies the microcapsule 108 through which the laser beam has passed, and sends a control signal for applying a predetermined voltage between the specified electrodes 104, 106 to the power supply circuit 26. Output. At the same time, the CPU 24 outputs a control signal for outputting a predetermined sound effect to the sound source circuit 28.
 ここで、図9(A)に示すように、レーザー光線が透過したマイクロカプセル108に対応する表面電極104と背面電極106との間に対して、背面電極106側が正(プラス)、表面電極104側が負(マイナス)になるように電圧を印加する。これにより、表面電極104と背面電極106との間に電界が発生する。この電界は、背面電極106側から表面電極104側に向かう。そして、背面電極106側が正(プラス)になり、表面電極104側が負(マイナス)になるため、正に帯電した白い顔料110は、表面電極104側に移動し、負に帯電した黒い顔料112は、背面電極106側に移動する。この結果、レーザー光線が入射した射撃領域が白く色表示され、遊技者は、射撃領域上のレーザー光線の入射位置を認識する。 Here, as shown in FIG. 9A, the back electrode 106 side is positive (plus) and the front electrode 104 side is between the surface electrode 104 and the back electrode 106 corresponding to the microcapsule 108 through which the laser beam has passed. Apply voltage so that it is negative. As a result, an electric field is generated between the front electrode 104 and the back electrode 106. This electric field is directed from the back electrode 106 side to the surface electrode 104 side. Since the back electrode 106 side becomes positive (plus) and the front electrode 104 side becomes negative (minus), the positively charged white pigment 110 moves to the front electrode 104 side, and the negatively charged black pigment 112 becomes Then, it moves to the back electrode 106 side. As a result, the shooting area where the laser beam is incident is displayed in white, and the player recognizes the incident position of the laser beam on the shooting area.
 一方、図9(B)に示すように、レーザー光線が透過したマイクロカプセル108に対応する表面電極104と背面電極106との間に対して、表面電極104側が正(プラス)、背面電極106側が負(マイナス)になるように電圧を印加してもよい。これにより、表面電極104と背面電極106との間に電界が発生する。この電界は、表面電極104側から背面電極106側に向かう。このため、表面電極104側が正(プラス)になり、背面電極106側が負(マイナス)になるため、正に帯電した白い顔料110は、背面電極106側に移動し、負に帯電した黒い顔料112は、表面電極104側に移動する。この結果、レーザー光線が入射した射撃領域が黒く色表示され、遊技者は、射撃領域上のレーザー光線の入射位置を認識する。 On the other hand, as shown in FIG. 9B, the surface electrode 104 side is positive (plus) and the back electrode 106 side is negative with respect to the space between the surface electrode 104 and the back electrode 106 corresponding to the microcapsule 108 through which the laser beam has passed. You may apply a voltage so that it may become (minus). As a result, an electric field is generated between the front electrode 104 and the back electrode 106. This electric field is directed from the surface electrode 104 side to the back electrode 106 side. For this reason, since the front electrode 104 side becomes positive (plus) and the back electrode 106 side becomes negative (minus), the positively charged white pigment 110 moves to the back electrode 106 side and negatively charged black pigment 112. Moves to the surface electrode 104 side. As a result, the shooting area where the laser beam is incident is displayed in black, and the player recognizes the incident position of the laser beam on the shooting area.
 さらに、図9(C)に示すように、レーザー光線が透過したマイクロカプセル108に対応する表面電極104と背面電極106との間に対して、表面電極104側の一部と背面電極106側の一部が正(プラス)になるように電圧を印加してもよい。これにより、表面電極104と背面電極106との間に電界が発生する。この場合には、背面電極106側から表面電極104側に向かう電界と、表面電極104側から背面電極106側に向かう電界と、の2通りが存在する。このため、背面電極106側の一部が正(プラス)、一部が負(マイナス)になり、表面電極104側の一部が正(プラス)、一部が負(マイナス)になる。これにより、表面電極104側が正(プラス)と負(マイナス)になるため、正に帯電した白い顔料110の一部と負に帯電した黒い顔料112の一部は、表面電極104側に移動する。また同時に、背面電極106側も正(プラス)と負(マイナス)になるため、正に帯電した白い顔料110の一部と負に帯電した黒い顔料112の一部は、表面電極104側に移動する。この結果、この結果、レーザー光線が入射した射撃領域が黒と白の混色で表示され、遊技者は、射撃領域上のレーザー光線の入射位置を認識する。 Further, as shown in FIG. 9C, a part on the surface electrode 104 side and a part on the back electrode 106 side are provided between the surface electrode 104 and the back electrode 106 corresponding to the microcapsule 108 through which the laser beam is transmitted. A voltage may be applied so that the portion becomes positive (plus). As a result, an electric field is generated between the front electrode 104 and the back electrode 106. In this case, there are two types of electric fields, that is, an electric field directed from the back electrode 106 side to the surface electrode 104 side and an electric field directed from the surface electrode 104 side to the back electrode 106 side. Therefore, a part on the back electrode 106 side is positive (plus), a part is negative (minus), a part on the surface electrode 104 side is positive (plus), and a part is negative (minus). As a result, the surface electrode 104 side becomes positive (plus) and negative (minus), so that part of the positively charged white pigment 110 and part of the negatively charged black pigment 112 move to the surface electrode 104 side. . At the same time, since the back electrode 106 side is also positive (plus) and negative (minus), a part of the positively charged white pigment 110 and a part of the negatively charged black pigment 112 are moved to the surface electrode 104 side. To do. As a result, the shooting area where the laser beam is incident is displayed in a mixed color of black and white, and the player recognizes the incident position of the laser beam on the shooting area.
 第2実施形態によれば、表示部材18として、マイクロカプセル型電気泳動方式(電子インク層102)の電子ペーパー100を用いた場合でも、レーザー光線の入射位置を容易に表示することができる。 According to the second embodiment, the incident position of the laser beam can be easily displayed even when the electronic paper 100 of the microcapsule electrophoresis system (electronic ink layer 102) is used as the display member 18.
 次に、本発明の第3実施形態に係るレーザー光線入射位置表示装置について説明する。なお、第1実施形態に係るレーザー光線入射位置表示装置の構成と重複する構成には同符号を付し、その説明を適宜省略する。 Next, a laser beam incident position display device according to a third embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the structure which overlaps with the structure of the laser beam incident position display apparatus which concerns on 1st Embodiment, and the description is abbreviate | omitted suitably.
 第3実施形態に係るレーザー光線入射位置表示装置は、第1実施形態と比較して、表示部材の構成が異なるものである。 The laser beam incident position display device according to the third embodiment is different from the first embodiment in the configuration of the display member.
 図10に示すように、表示部材18には、有機ELディスプレイ200が用いられている。この有機ELディスプレイ200は、同一平面上に並べられた複数の有機EL層202で構成されている。すなわち、一の有機EL層202がセルとなっている。なお、同一平面上で隣接する有機EL層202同士は、接着剤や両面テープなどの接着材料により固定されている。また、有機ELディスプレイ200(有機EL層202)の前後両面側(複数の有機EL層202の前後両面側)に、透明のシート部材(例えば、樹脂シート)を配置させ、全ての有機EL層202を保持するようにしてもよい。 As shown in FIG. 10, an organic EL display 200 is used for the display member 18. The organic EL display 200 includes a plurality of organic EL layers 202 arranged on the same plane. That is, one organic EL layer 202 is a cell. The adjacent organic EL layers 202 on the same plane are fixed by an adhesive material such as an adhesive or a double-sided tape. In addition, a transparent sheet member (for example, a resin sheet) is disposed on both front and rear sides of the organic EL display 200 (organic EL layer 202) (front and rear sides of the plurality of organic EL layers 202), and all the organic EL layers 202 are disposed. May be held.
 各有機EL層202は、遊技者側に位置するガラス基板204と、透明の表面電極(透明電極)206と、透明の背面電極(透明電極)208と、表面電極206と背面電極208との間に位置して表面電極206に隣接する正電荷輸送層210と、表面電極206と背面電極208との間に位置して背面電極208に隣接する負電荷輸送層212と、正電荷輸送層210と負電荷輸送層212との間に介在する発光層214と、で構成されている。なお、電源回路26により、表面電極206と背面電極208との間に所定の電圧が印加されるようになっている。なお、各有機EL層202の背面側には、レーザー光線を検知する各センサ32が各有機EL層202と対応するように配置されている。 Each organic EL layer 202 includes a glass substrate 204 positioned on the player side, a transparent surface electrode (transparent electrode) 206, a transparent back electrode (transparent electrode) 208, and between the surface electrode 206 and the back electrode 208. A positive charge transport layer 210 positioned adjacent to the front electrode 206, a negative charge transport layer 212 positioned between the front electrode 206 and the back electrode 208 and adjacent to the back electrode 208, and a positive charge transport layer 210 And a light emitting layer 214 interposed between the negative charge transport layer 212 and the negative charge transport layer 212. A predetermined voltage is applied between the surface electrode 206 and the back electrode 208 by the power supply circuit 26. Each sensor 32 for detecting a laser beam is disposed on the back side of each organic EL layer 202 so as to correspond to each organic EL layer 202.
 第3実施形態によれば、レーザー光線を受光したセンサ32の前面側に位置する有機EL層202の表面電極206と背面電極208との間に、所定の電圧が印加される。表面電極206と背面電極208との間に所定の電圧が印加されると、正電荷輸送層210の正の電荷(正孔)と、負電荷輸送層212の負の電荷(電子)と、が発光層214に流れ込む。そして、正の電荷と負の電荷とが発光層214で再結合することにより、有機分子の励起状態を発生させ、それが安定な状態に戻るときに発光する。これにより、レーザー光線が入射した有機EL層202が発光して、遊技者はレーザー光線の入射位置を認識する。なお、レーザー光線が入射していない有機EL層202は、発光しないため、遊技者に認識されることはない。この結果、レーザー光線が入射した有機EL層202のみが発光するため、複数の有機EL層202が存在していても、レーザー光線が入射した有機EL(入射位置)が明確になる。 According to the third embodiment, a predetermined voltage is applied between the surface electrode 206 and the back electrode 208 of the organic EL layer 202 located on the front side of the sensor 32 that has received the laser beam. When a predetermined voltage is applied between the front electrode 206 and the back electrode 208, positive charges (holes) in the positive charge transport layer 210 and negative charges (electrons) in the negative charge transport layer 212 are generated. It flows into the light emitting layer 214. Then, a positive charge and a negative charge are recombined in the light emitting layer 214 to generate an excited state of the organic molecule, and light is emitted when it returns to a stable state. Thereby, the organic EL layer 202 on which the laser beam is incident emits light, and the player recognizes the incident position of the laser beam. Note that the organic EL layer 202 on which no laser beam is incident does not emit light, and therefore is not recognized by the player. As a result, only the organic EL layer 202 on which the laser beam is incident emits light, so that the organic EL (incident position) on which the laser beam is incident becomes clear even if a plurality of organic EL layers 202 are present.
 以上のように、レーザー光線の入射位置を表示する表示部材18に、有機ELディスプレイ200を利用することにより、有機ELディスプレイ200の柔軟性を利用して有機ELディスプレイ200を組み付けることができるとともに、レーザー光線入射位置表示装置10を小型化かつ軽量化することができる。 As described above, by using the organic EL display 200 for the display member 18 that displays the incident position of the laser beam, the organic EL display 200 can be assembled using the flexibility of the organic EL display 200, and the laser beam. The incident position display device 10 can be reduced in size and weight.
 次に、本発明の第4実施形態に係るレーザー光線入射位置表示装置について説明する。 Next, a laser beam incident position display device according to a fourth embodiment of the invention will be described.
 図11に示すように、第4実施形態に係るレーザー光線入射位置表示装置300の表示部材として、光センサ302Dを内蔵する液晶ディスプレイ302が用いられている。すなわち、レーザー光線入射位置表示装置300は、主として、光センサ302Dを内蔵する液晶ディスプレイ302と、レーザー光線の入射位置を液晶ディスプレイ302上に表示させるための制御装置304と、を有している。なお、液晶ディスプレイ302及び制御装置304は、枠部材14(図1参照)に取り付けられている。 As shown in FIG. 11, a liquid crystal display 302 having a built-in optical sensor 302D is used as a display member of a laser beam incident position display device 300 according to the fourth embodiment. That is, the laser beam incident position display device 300 mainly includes a liquid crystal display 302 having a built-in optical sensor 302D and a control device 304 for displaying the incident position of the laser beam on the liquid crystal display 302. The liquid crystal display 302 and the control device 304 are attached to the frame member 14 (see FIG. 1).
 図12に示すように、液晶ディスプレイ302は、表面側から裏面側に向って順に、偏光フィルタ(偏光板)302Aと、ガラス板302Bと、光センサ302Dを実装したセンサ回路302Cと、透明電極302Eと、液晶層302Fと、透明電極302Gと、ガラス板302Hと、偏光フィルタ(偏光板)302Iと、バックライト302Jと、で構成されている。なお、液晶ディスプレイ302が反射型液晶表示装置の場合には、バックライト302Jは不要となる。 As shown in FIG. 12, the liquid crystal display 302 includes a polarizing filter (polarizing plate) 302A, a glass plate 302B, a sensor circuit 302C on which an optical sensor 302D is mounted, and a transparent electrode 302E in order from the front side to the back side. A liquid crystal layer 302F, a transparent electrode 302G, a glass plate 302H, a polarizing filter (polarizing plate) 302I, and a backlight 302J. If the liquid crystal display 302 is a reflective liquid crystal display device, the backlight 302J is not necessary.
 光センサ302Dは、各画素毎に、1個ずつマトリックス状に配置されている。なお、光センサ302Dは、上述した具体例のものを使用でき、例えば、フォトダイオードなどで構成されている。光センサ302Dは、レーザー光線を受光するものであるが、模擬銃12(図1参照)からのレーザー光線のような光量の大きな光を検知し、自然光などの光量の小さな光は検知しないように設定されている。光センサ302Dがレーザー光線を受光した場合には、制御装置304(CPU304A)に対してレーザー光線を受光した旨を示す検知信号を出力する。このような設定は、光センサ302Dの感知度を調整して実現することができ、また、CPU304Aにおいて所定の光量以下の検知信号を無視するように設定することにより、レーザー光線の受光の有無を判別することができる。なお、センサ回路302Cは、レーザー光線などの光を透過する透明の回路であることが好ましい。また、レーザー光線の受光のみを目的とするものであれば、検知信号を出力するための機能を設けた光センサ302Dのみを配置して、センサ回路302Cを省略することも可能である。 The photosensors 302D are arranged in a matrix for each pixel. In addition, the optical sensor 302D can use the thing of the specific example mentioned above, for example, is comprised by the photodiode etc. The optical sensor 302D receives a laser beam, but is set so as to detect light with a large amount of light such as a laser beam from the simulated gun 12 (see FIG. 1) and not detect light with a small amount of light such as natural light. ing. When the optical sensor 302D receives a laser beam, it outputs a detection signal indicating that the laser beam has been received to the control device 304 (CPU 304A). Such a setting can be realized by adjusting the sensitivity of the optical sensor 302D, and by setting the CPU 304A to ignore a detection signal of a predetermined light amount or less, it is determined whether or not a laser beam is received. can do. Note that the sensor circuit 302C is preferably a transparent circuit that transmits light such as a laser beam. If the purpose is only to receive a laser beam, only the optical sensor 302D provided with a function for outputting a detection signal may be provided, and the sensor circuit 302C may be omitted.
 透明電極302E、302Gは、レーザー光線や自然光が透過する電極であり、液晶に電圧を印加するものである。また、一対の透明電極302E、302Gは、各画素毎に分割して設けられており、各画素に対応する透明電極302E、302G毎に電圧を印加できるように構成されている。 The transparent electrodes 302E and 302G are electrodes through which a laser beam and natural light are transmitted, and apply a voltage to the liquid crystal. Further, the pair of transparent electrodes 302E and 302G are provided separately for each pixel, and are configured so that a voltage can be applied to each of the transparent electrodes 302E and 302G corresponding to each pixel.
 偏光フィルタ302Aと偏光フィルタ302Iの偏光方向は、相互に直交するように設定されている。このため、電圧が印加されている液晶の部分は、光が透過しないようになる。 The polarization directions of the polarizing filter 302A and the polarizing filter 302I are set to be orthogonal to each other. For this reason, light is not transmitted through the portion of the liquid crystal to which a voltage is applied.
 制御装置304は、CPU304Aと、ROM304Bと、電源回路304Cと、音源回路304Dと、を有している。 The control device 304 includes a CPU 304A, a ROM 304B, a power supply circuit 304C, and a sound source circuit 304D.
 CPU304Aは、各画素毎に配置された複数の光センサ302Dからの検知信号に基づいて、液晶ディスプレイ302上のレーザー光線の入射位置を特定する。例えば、液晶ディスプレイ302の射撃領域の左側に配置された光センサ302Dによりレーザー光線が受光された場合には、レーザー光線を受光した光センサ302Dから検知信号が制御装置304に対して出力される。そして、CPU304Aは、この検知信号を出力した光センサ302Dを認識して、ROM304Bに記憶したテーブルを参照し、液晶ディスプレイ302上のレーザー光線の入射位置(例えば、左側の液晶層302F)を特定する。あるいは、CPU304Aは、検知信号の内容又は種類により、光センサ302Dを特定し、これにより、液晶ディスプレイ302上のレーザー光線の入射位置を特定してもよい。また、CPU304Aは、電源回路304C及び音源回路304Dの駆動を制御する。 The CPU 304A specifies the incident position of the laser beam on the liquid crystal display 302 based on the detection signals from the plurality of optical sensors 302D arranged for each pixel. For example, when a laser beam is received by the optical sensor 302D disposed on the left side of the shooting area of the liquid crystal display 302, a detection signal is output to the control device 304 from the optical sensor 302D that receives the laser beam. Then, the CPU 304A recognizes the optical sensor 302D that has output this detection signal, refers to the table stored in the ROM 304B, and specifies the incident position of the laser beam on the liquid crystal display 302 (for example, the left liquid crystal layer 302F). Alternatively, the CPU 304A may specify the optical sensor 302D according to the content or type of the detection signal, and thereby specify the incident position of the laser beam on the liquid crystal display 302. The CPU 304A controls driving of the power supply circuit 304C and the sound source circuit 304D.
 ROM304Bには、光センサ302Dの検知信号と液晶ディスプレイ302の入射部位(液晶層302F)との対応関係(テーブル)、及び効果音のデータが記憶されている。なお、光センサ302D毎に異なる種類の検知信号を出力する構成では、ROM304Bには、光センサ302D毎に異なる種類の検知信号と液晶ディスプレイ302の入射部位(液晶層302F)との対応関係(テーブル)を記憶させておいてもよい。 The ROM 304B stores the correspondence (table) between the detection signal of the optical sensor 302D and the incident site (liquid crystal layer 302F) of the liquid crystal display 302, and sound effect data. In the configuration in which different types of detection signals are output for each optical sensor 302D, the ROM 304B has a correspondence relationship (table) between different types of detection signals for each optical sensor 302D and the incident site (liquid crystal layer 302F) of the liquid crystal display 302. ) May be stored.
 電源回路304Cは、CPU304Aからの駆動信号に基づいて、CPU304Aにより特定された液晶ディスプレイ302上のレーザー光線の入射位置に対応する透明電極302E、302Gに対して所定の電圧を印加するものである。具体的には、レーザー光線の入射位置となる液晶層302Fの透明電極302E、302G間に対して所定の電圧を印加する。液晶層302Fに電圧が印加されると、その液晶層302Fの液晶分子の向き(配向)が変化する。この結果、レーザー光線が入射した液晶ディスプレイ302の入射部位に模様やパターンが表示される。 The power supply circuit 304C applies a predetermined voltage to the transparent electrodes 302E and 302G corresponding to the incident position of the laser beam on the liquid crystal display 302 specified by the CPU 304A based on the drive signal from the CPU 304A. Specifically, a predetermined voltage is applied between the transparent electrodes 302E and 302G of the liquid crystal layer 302F that is the incident position of the laser beam. When a voltage is applied to the liquid crystal layer 302F, the orientation (alignment) of the liquid crystal molecules in the liquid crystal layer 302F changes. As a result, a pattern or pattern is displayed at the incident site of the liquid crystal display 302 on which the laser beam is incident.
 音源回路304Dは、CPU304Aからの駆動信号に基づいて、スピーカ20(図1参照)の出力を制御する。これにより、スピーカ20は、ROM304Bに記憶された効果音の音データに基づいて所定の効果音を出力する。このため、遊技者は、レーザー光線が液晶ディスプレイ302の射撃領域に到達した瞬間に、効果音を聞くことになる。 The sound source circuit 304D controls the output of the speaker 20 (see FIG. 1) based on the drive signal from the CPU 304A. Accordingly, the speaker 20 outputs a predetermined sound effect based on the sound data of the sound effect stored in the ROM 304B. For this reason, the player hears the sound effect at the moment when the laser beam reaches the shooting area of the liquid crystal display 302.
 ここで、液晶ディスプレイ302での表示原理について概説する。
 表示光源であるバックライト302Jは、様々な方向に振幅成分を有する光を発する。この光源からの光のうち、特定の方向の振幅成分を持つ光(偏光)のみが裏面側の偏光フィルタ302Iを通過することができる。この光は、通常は直線偏光となっており、液晶層302Fに入射される。直線偏光の入射光は、液晶層302Fを厚み方向に伝播しながら、液晶のもつ屈折率異方性(複屈折)に応じて偏光状態を変化させて行く。液晶を出射した光は、偏光のうち、表面側の偏光フィルタ302Aが透過させる偏光だけが表示光として出射される。この表面側の偏光フィルタ302Aが透過させる特定方向の振幅成分が多い場合には、表示は明るく、少ない場合には、表示は暗くなる。表示を変化させるためには、液晶配向を電圧で変化させて液晶配向を変化させる。すると、液晶配向の変化に合わせて、液晶層を伝播する光の光電場の各振動方向における屈折率が変化し、液晶を出射する時点での偏光状態が変化し、明るさ、すなわち、液晶層302Fを挟んでいる偏光フィルタ302A、302Iを含めた全体の透過率が変化する。このように、偏光フィルタ302A、302Iと組み合わされた液晶層302Fは、単なる光シャッタとして動作している。つまり、光を遮ったり、透過させたり、それらの中間調となるように一部透過させたり、というアナログ的な光の透過率制御を電圧値により行うように動作する。なお、液晶層302F自体は、偏光を変化させるが、エネルギー的に発光はせず、吸収は実質的にない。また、偏光フィルタ302A、302Iを通過した光の表示が遊技者の目に到達し、液晶ディスプレイ302から人間の目に届く光は直線偏光している。
Here, the principle of display on the liquid crystal display 302 will be outlined.
The backlight 302J that is a display light source emits light having amplitude components in various directions. Of the light from this light source, only light (polarized light) having an amplitude component in a specific direction can pass through the polarizing filter 302I on the back surface side. This light is usually linearly polarized light and is incident on the liquid crystal layer 302F. The incident light of linearly polarized light changes its polarization state according to the refractive index anisotropy (birefringence) of the liquid crystal while propagating through the liquid crystal layer 302F in the thickness direction. Of the polarized light emitted from the liquid crystal, only polarized light that is transmitted by the surface-side polarizing filter 302A is emitted as display light. The display is bright when the amplitude component in a specific direction transmitted by the polarizing filter 302A on the surface side is large, and the display is dark when it is small. In order to change the display, the liquid crystal alignment is changed by changing the liquid crystal alignment with a voltage. Then, the refractive index in each oscillation direction of the photoelectric field of the light propagating through the liquid crystal layer changes in accordance with the change in the liquid crystal alignment, the polarization state at the time of exiting the liquid crystal changes, and the brightness, that is, the liquid crystal layer The entire transmittance including the polarizing filters 302A and 302I sandwiching 302F changes. As described above, the liquid crystal layer 302F combined with the polarizing filters 302A and 302I operates as a simple optical shutter. That is, it operates so as to perform analog light transmittance control based on the voltage value, such as blocking or transmitting light, or partially transmitting light so as to have a halftone of the light. Note that the liquid crystal layer 302F itself changes polarization, but does not emit light in energy and does not substantially absorb. Further, the display of light that has passed through the polarizing filters 302A and 302I reaches the player's eyes, and the light that reaches the human eyes from the liquid crystal display 302 is linearly polarized.
 ここで、液晶ディスプレイ302上にレーザー光線の入射位置にカラー表示する場合には、図13に示すように、カラーフィルタ302Kを設けることが好ましい。カラーフィルタ302Kは、表面側のガラス板302Bと表面側の透明電極302Eとの間、すなわち、表面側のガラス板302Bとセンサ回路302Cとの間、あるいは、センサ回路302Cと透明電極302Eとの間に配置されている。カラーフィルタ302Kは、画素に対応させて、赤色(R)・緑色(G)・青色(B)の光を透過させる着色層を配置したフィルタである。このカラーフィルタ302Kにより、各画素の通過光をR、G、Bに着色することができるため、カラー表示が実現できる。各画素の電圧を制御することで、表示画素の領域上の任意の一点で任意の発色が可能になる(非発色=黒も可能)。 Here, when color display is performed on the liquid crystal display 302 at the incident position of the laser beam, it is preferable to provide a color filter 302K as shown in FIG. The color filter 302K is disposed between the front glass plate 302B and the front transparent electrode 302E, that is, between the front glass plate 302B and the sensor circuit 302C, or between the sensor circuit 302C and the transparent electrode 302E. Is arranged. The color filter 302K is a filter in which a colored layer that transmits red (R), green (G), and blue (B) light is disposed in correspondence with the pixel. With this color filter 302K, the light passing through each pixel can be colored R, G, and B, so that color display can be realized. By controlling the voltage of each pixel, any color can be generated at any one point on the display pixel area (non-color development = black is also possible).
 第4実施形態に係るレーザー光線入射位置表示装置300によれば、遊技者が模擬銃12からレーザー光線を発射させると、液晶ディスプレイ302の所定の位置に入射する。レーザー光線は、液晶ディスプレイ302の内部の光センサ302Dで受光され、受光した光センサ302Dから検知信号が制御装置304のCPU304Aに対して出力される。CPU304Aは、検知信号を受光すると、どの光センサ302Dでレーザー光線が受光されたのかを判別し、液晶ディスプレイ302上のレーザー光線の入射位置を特定する。 According to the laser beam incident position display device 300 according to the fourth embodiment, when a player emits a laser beam from the simulated gun 12, the laser beam is incident on a predetermined position of the liquid crystal display 302. The laser beam is received by the optical sensor 302D inside the liquid crystal display 302, and a detection signal is output from the received optical sensor 302D to the CPU 304A of the control device 304. Upon receiving the detection signal, the CPU 304A determines which optical sensor 302D has received the laser beam, and specifies the incident position of the laser beam on the liquid crystal display 302.
 そして、CPU304Aは、電源回路304Cに対して、電圧印加の駆動信号を出力する。電源回路304Cは、液晶ディスプレイ302上のレーザー光線の入射位置となる画素に対応した透明電極302E、302Gに対して所定の電圧を印加する。これにより、液晶ディスプレイ302上のレーザー光線の入射位置に所定のマーク(模様、パターン、色表示)が表現される。このため、遊技者は、液晶ディスプレイ302上のレーザー光線の入射位置を認識することができる。 Then, the CPU 304A outputs a voltage application drive signal to the power supply circuit 304C. The power supply circuit 304 </ b> C applies a predetermined voltage to the transparent electrodes 302 </ b> E and 302 </ b> G corresponding to the pixel at which the laser beam is incident on the liquid crystal display 302. Thereby, a predetermined mark (pattern, pattern, color display) is expressed at the incident position of the laser beam on the liquid crystal display 302. For this reason, the player can recognize the incident position of the laser beam on the liquid crystal display 302.
 また同時に、CPU304Aは、音源回路304Dに対して、効果音を出力するための駆動信号を出力する。これにより、スピーカ20は、ROM304Bに記憶された効果音の音データに基づいて所定の効果音を出力する。このため、遊技者は、レーザー光線が液晶ディスプレイ302の射撃領域に到達した瞬間に、効果音を聞くことになる。 At the same time, the CPU 304A outputs a drive signal for outputting sound effects to the sound source circuit 304D. Accordingly, the speaker 20 outputs a predetermined sound effect based on the sound data of the sound effect stored in the ROM 304B. For this reason, the player hears the sound effect at the moment when the laser beam reaches the shooting area of the liquid crystal display 302.
 以上のように、第4実施形態のレーザー光線入射位置表示装置300によれば、プロジェクタやビデオカメラ(CCDカメラ)などが不要になり、簡易な構成でかつ低コストで製造することができる。また、狭いスペースでも、レーザー光線入射位置表示装置300を設置して使用することができる。さらに、表示部材18として、液晶ディスプレイ302を利用することにより、簡易な構成でレーザー光線入射位置表示装置300を実現することができるため、レーザー光線入射位置表示装置300を小型化かつ軽量化することができる。 As described above, according to the laser beam incident position display device 300 of the fourth embodiment, a projector, a video camera (CCD camera), and the like are no longer necessary, and can be manufactured with a simple configuration and low cost. Further, the laser beam incident position display device 300 can be installed and used even in a narrow space. Furthermore, by using the liquid crystal display 302 as the display member 18, the laser beam incident position display device 300 can be realized with a simple configuration. Therefore, the laser beam incident position display device 300 can be reduced in size and weight. .
300   レーザー光線入射位置表示装置
12    模擬銃
302   液晶ディスプレイ(液晶表示手段)
302D  光センサ
304A  CPU(位置特定手段)
304C  電源回路(表示制御手段)
300 Laser beam incident position display device 12 Simulated gun 302 Liquid crystal display (liquid crystal display means)
302D optical sensor 304A CPU (position specifying means)
304C power supply circuit (display control means)

Claims (1)

  1.  模擬銃から照射されたレーザー光線が入射した入射位置を表示するレーザー光線入射位置表示装置であって、
     前記レーザー光線が入射するとともに、電圧が印加されることによって前記レーザー光線の前記入射位置を表示する液晶表示手段と、
     前記液晶表示手段に設けられ、前記液晶表示手段に入射した前記レーザー光線を検知する光センサと、
     前記光センサによる前記レーザー光線の検知結果に基づいて前記液晶表示手段における前記レーザー光線の前記入射位置を特定する位置特定手段と、
     前記液晶表示手段に対して電圧を印加することにより前記位置特定手段で特定された前記入射位置を前記液晶表示手段に表示させる表示制御手段と、
     を有することを特徴とするレーザー光線入射位置表示装置。
    A laser beam incident position display device for displaying an incident position where a laser beam irradiated from a simulated gun is incident,
    Liquid crystal display means for displaying the incident position of the laser beam when the laser beam is incident and a voltage is applied;
    An optical sensor provided in the liquid crystal display means for detecting the laser beam incident on the liquid crystal display means;
    Position specifying means for specifying the incident position of the laser beam in the liquid crystal display means based on the detection result of the laser beam by the optical sensor;
    Display control means for causing the liquid crystal display means to display the incident position specified by the position specifying means by applying a voltage to the liquid crystal display means;
    A laser beam incident position display device comprising:
PCT/JP2010/060454 2010-06-21 2010-06-21 Laser beam incident position display device WO2011161749A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060454 WO2011161749A1 (en) 2010-06-21 2010-06-21 Laser beam incident position display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060454 WO2011161749A1 (en) 2010-06-21 2010-06-21 Laser beam incident position display device

Publications (1)

Publication Number Publication Date
WO2011161749A1 true WO2011161749A1 (en) 2011-12-29

Family

ID=45370963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060454 WO2011161749A1 (en) 2010-06-21 2010-06-21 Laser beam incident position display device

Country Status (1)

Country Link
WO (1) WO2011161749A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530911A (en) * 2012-08-27 2015-10-29 ホン インターナショナル コーポレーション Darts game device linked with external device
CN105548954A (en) * 2015-11-27 2016-05-04 长春理工大学 Laser beam paraxial positioning method for space communication
WO2016115417A1 (en) * 2015-01-15 2016-07-21 Haasnoot Philip I Adaptive target training system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085068A (en) * 2008-10-02 2010-04-15 Junichi Uchida Laser beam incident position display

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085068A (en) * 2008-10-02 2010-04-15 Junichi Uchida Laser beam incident position display

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015530911A (en) * 2012-08-27 2015-10-29 ホン インターナショナル コーポレーション Darts game device linked with external device
WO2016115417A1 (en) * 2015-01-15 2016-07-21 Haasnoot Philip I Adaptive target training system
CN105548954A (en) * 2015-11-27 2016-05-04 长春理工大学 Laser beam paraxial positioning method for space communication

Similar Documents

Publication Publication Date Title
CN109541849B (en) Backlight module, driving method and display panel
TWI502572B (en) Liquid crystal display device
TWI494607B (en) Liquid crystal display device, substrate for liquid crystal display device, and method for manufacturing substrate for liquid crystal display device
JP4508505B2 (en) Liquid crystal display
KR100863571B1 (en) Display pixel using electro active polymer and display employing the same
US9229269B2 (en) Display apparatus and display method
KR20120087858A (en) Apparatus and method for using an led for backlighting and ambient light sensing
RU2011131379A (en) SURFACE SENSOR AND LIQUID DISPLAY WITH SURFACE SENSOR
JP2010198575A (en) Image input device, image input-output device and electronic apparatus
KR20120139122A (en) Liquid micro shutter display device
CN201266272Y (en) Light intensity monitoring apparatus and head-mounted display with the device
WO2011161749A1 (en) Laser beam incident position display device
JP2012230384A (en) Liquid crystal display device with enhanced color
JP2010156516A (en) Laser beam incident position display device
TW201207810A (en) Polymer network liquid crystal driving apparatus and driving method, and polymer network liquid crystal panel
JP2010085068A (en) Laser beam incident position display
CN103309077A (en) Liquid crystal display
KR100645635B1 (en) Image pick-up module comprising an optical device
US5193016A (en) Non-linear device for amplifying the intensities of light rays that produce an image
JP5121434B2 (en) Electro-optic device
TWI605285B (en) Display device using micropillars and method therefor
JP2010019938A (en) Method for detecting intensity of external light in display device
CN102736380A (en) Optical engine for reflection-type micro projector
CN109271067A (en) A kind of detection circuit board, projection screen, projection device and optical projection system
JP7198115B2 (en) liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10853609

Country of ref document: EP

Kind code of ref document: A1