WO2021161382A1 - Optical receiver - Google Patents

Optical receiver Download PDF

Info

Publication number
WO2021161382A1
WO2021161382A1 PCT/JP2020/005123 JP2020005123W WO2021161382A1 WO 2021161382 A1 WO2021161382 A1 WO 2021161382A1 JP 2020005123 W JP2020005123 W JP 2020005123W WO 2021161382 A1 WO2021161382 A1 WO 2021161382A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
light intensity
bias voltage
current
light
Prior art date
Application number
PCT/JP2020/005123
Other languages
French (fr)
Japanese (ja)
Inventor
祐太 石村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2020/005123 priority Critical patent/WO2021161382A1/en
Priority to JP2021577732A priority patent/JP7248154B2/en
Publication of WO2021161382A1 publication Critical patent/WO2021161382A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver

Definitions

  • the present disclosure relates to an optical receiver applied to a PON (Passive Optical Network) system, and in particular, an optical burst signal receiving circuit using a light receiving element APD (Avalanche Photo Diode) is configured. Regarding receivers.
  • PON Passive Optical Network
  • APD Anagonal Photo Diode
  • the PON system is an optical splitter that combines a station-side optical line terminal (OLT) installed on the station side and a subscriber-side optical line terminal (ONU: Optical Network Unit) installed in the subscriber's home. It is an optical communication system configured by connecting with an optical fiber via an optical fiber.
  • the PON system has a configuration in which a plurality of ONUs are connected to one OLT.
  • the uplink and downlink signals between the OLT and the ONU are transmitted by a single optical fiber by optical wavelength division multiplexing communication means.
  • the uplink signal from each ONU to the OLT is time-division-multiplexed in a burst-shaped packet signal transmitted individually for each user.
  • the signal is used.
  • the optical receiver on the OLT side receives the burst packet signal from each ONU.
  • an APD module having a light receiving element APD and a current-voltage conversion amplifier (TIA: Trans-Impedance Amplifier) in the subsequent stage of the light receiving element APD is known.
  • TIA Trans-Impedance Amplifier
  • the light receiving element APD causes an electron avalanche phenomenon when an optical signal is input, and generates an APD current according to a magnification depending on the bias voltage.
  • the APD current is converted from current to voltage by the current-voltage conversion amplifier TIA in the subsequent stage of the light receiving element APD, and is output as a voltage signal.
  • the bias voltage control circuit for controlling the bias voltage applied to the light receiving element APD changes the bias voltage according to the light intensity of the optical signal.
  • the weaker the light intensity of the optical signal the higher the bias voltage is controlled to increase the magnification of the light receiving element APD, and the stronger the light intensity of the optical signal, the lower the bias voltage is used to increase the magnification of the light receiving element APD. It is controlled to lower.
  • Patent Document 1 proposes a technique for controlling the magnification by changing the bias voltage applied to the light receiving element APD according to the light intensity information of the received optical signal.
  • the receiving circuit operates by adjusting the gain Gain of the current-voltage conversion amplifier TIA before the data (also called the payload), which is the stable main signal time.
  • An overhead also called a preamble, which is the time required for stabilization, is provided. In order to maintain stable reception sensitivity, it is necessary to converge the transient response of the bias voltage applied to the light receiving element APD in the overhead.
  • an optical signal is detected by a received light intensity detection unit, and the bias voltage is changed by an APD bias voltage control circuit according to the light intensity of the detected optical signal.
  • the transient response time of the bias voltage applied to the light receiving element APD in the overhead of the optical signal becomes long.
  • the excessive response of the bias voltage cannot be converged within the overhead, so that the bias The voltage-dependent change in magnification cannot be converged, and the APD current may not be stable.
  • the output voltage of the current-voltage conversion amplifier TIA in the subsequent stage of the light receiving element APD continues to change even in the data, and stable reception sensitivity cannot be maintained, so that it may not be possible to receive optical signals having different light intensities.
  • the present disclosure has been made to solve the above-mentioned problems, and the excessive response of the bias voltage applied to the light receiving element can be converged within the overhead according to the light intensity of the optical signal received by the APD module.
  • an optical receiver capable of improving the stability of the reception sensitivity of the APD module by controlling the above and shortening the change time of the magnification of the light receiving element depending on the bias voltage.
  • the optical receiver includes a light receiving element that generates a current corresponding to the light intensity of the received optical signal, a bias voltage boosting circuit that supplies a bias voltage to the light receiving element, and a current generated by the light receiving element.
  • the first path in which the current-voltage conversion amplifier that converts to Switch to the second path, which has a smaller impedance than the first path, and to the first path when the light intensity exceeds the preset light intensity threshold, and to the second path when the light intensity is less than or equal to the light intensity threshold.
  • a bias voltage control unit for controlling the bias voltage is provided.
  • the bias voltage applied to the light receiving element is controlled by switching the path based on a preset light intensity threshold value.
  • the response time of the bias voltage is controlled to be shortened, and the change time of the magnification of the light receiving element depending on the bias voltage is shortened.
  • the stability of the reception sensitivity of the APD module can be improved.
  • FIG. 1 is a configuration diagram of an optical receiver according to the first embodiment.
  • the optical receiver 100 composed of a burst signal receiving circuit includes a light receiving element 1 that generates a current corresponding to the light intensity of the received optical signal, a bias voltage boosting circuit 2 that supplies a bias voltage to the light receiving element 1, and a light receiving device.
  • the first path 16 or the second path 17 is switched depending on the light intensity of the optical signal and the second path 17, which is connected in parallel to the first path 16 and has an extremely small impedance as compared with the first path 16.
  • the first path 16 is provided with the first transistor 6 which is an open / close switch
  • the second path 17 is provided with the second transistor 7 which is an open / close switch.
  • the light receiving element 1 is an APD.
  • the bias voltage booster circuit 2 supplies the bias voltage applied to the light receiving element 1.
  • the light receiving element 1 receives an optical signal having a light intensity Pin while a bias voltage is applied, it generates an APD current Iapd according to a magnification M depending on the bias voltage.
  • the current-voltage conversion amplifier 3 multiplies the APD current Iapd generated by the light receiving element 1 by impedance, further converts it into a voltage, and outputs it as an output voltage signal Vout.
  • the light receiving element 1 and the current-voltage conversion amplifier 3 constitute an APD module.
  • the bias voltage control unit 11 has a first current mirror circuit 4 that generates a first monitor current Imon 1 that is proportional to the APD current Iapd generated by the light receiving element 1, and a first one.
  • the second current mirror circuit 5 that generates the second monitor current Imon2, which is a current proportional to the monitor current Imon1, and the first monitor current Imon1 and the second monitor current Imon2 are detected and converted into voltages, respectively, and the obtained 2 is obtained.
  • the first path is controlled by controlling the first transistor 6 which is an open / close switch provided in the first path 16 and the second transistor 7 which is an open / close switch provided in the second path 17 based on the potential difference between the two voltages. It has a current detection circuit 8 for switching between 16 and the second path 17.
  • the optical intensity threshold value Pmax of the optical signal is set in advance, and the voltage value corresponding to the optical intensity threshold value Pmax is set as the voltage threshold value Vmax.
  • the current detection circuit 8 in the bias voltage control unit 11 receives the optical signal, the current detection circuit 8 switches between the first path 16 and the second path 17 based on the voltage threshold value Vmax provided corresponding to the light intensity threshold value Pmax. ..
  • the current detection circuit 8 detects the first monitor current Imon 1 and the second monitor current Imon 2, and converts the first monitor current Imon 1 and the second monitor current Imon 2 into voltages by separate resistors or the like. The potential difference between the two converted voltages and the voltage threshold Vmax are compared.
  • the light receiving element 1 shows a high value of the APD current Iapd, and the first monitor current Imon1 proportional to the APD current Iapd and the second monitor current Imon1 proportional to the first monitor current Imon1.
  • the monitor current Imon2 also becomes a high value.
  • the current detection circuit 8 controls the first transistor 6 to be in the ON state, and switches the path of the bias voltage applied to the light receiving element 1 to the first path 16.
  • the self-bias resistor R and the inductor L in the first path 16 operate so as to reduce the bias voltage applied to the light receiving element 1.
  • the light intensity Pin of the received optical signal is equal to or less than the light intensity threshold Pmax (light). It is determined that the signal light intensity Pin ⁇ light intensity threshold Pmax).
  • the current detection circuit 8 controls the second transistor 7 to be in the ON state, and switches the path of the bias voltage applied to the light receiving element 1 to the second path 17.
  • the second path 17, whose impedance is extremely smaller than that of the first path 16, does not lower the bias voltage applied to the light receiving element 1 and maintains the magnification of the light receiving element 1.
  • the second path 17 is a path in which no resistor is inserted with respect to the first path 16 in which the self-bias resistor R and the inductor L are connected in parallel.
  • the self-bias resistor R is inserted to change the bias voltage applied to the light receiving element 1, and is applied to the light receiving element 1 when the light intensity Pin of the optical signal becomes excessive and exceeds the light intensity threshold Pmax. It has the effect of lowering the bias voltage.
  • the self-bias resistor is used for the purpose of shortening the response time for changing the bias voltage.
  • the R and the inductor L are connected in parallel. As a result, the response time of the bias voltage applied to the light receiving element 1 can be shortened, and it can be ensured that the bias voltage converges within the overhead.
  • FIG. 2 shows a timing chart in the operation of the burst signal receiving circuit of the optical receiver 100 according to the first embodiment.
  • the horizontal axis represents time t, and an example is shown in which the optical receiver 100 continuously receives optical signals having different light intensities.
  • FIG. 2A shows the light intensity Pin of each optical signal received by the light receiving element 1.
  • the light receiving element 1 receives the optical signal ONU1, the optical signal ONU2, the optical signal ONU3, the optical signal ONU4, and the optical signal ONU5 having different light intensities in this order.
  • the light intensity Pins of the optical signal ONU1 and the optical signal ONU3 are smaller than the light intensity threshold value Pmax, but the light intensity Pins of the optical signal ONU2, the optical signal ONU4 and the optical signal ONU5 are values exceeding the light intensity threshold value Pmax.
  • the voltage signal corresponding to the light intensity Pin of the optical signal ONU1 and the optical signal ONU3 becomes a value smaller than the predetermined voltage threshold value Vmax, and the voltage corresponding to the light intensity Pin of the optical signal ONU2, the optical signal ONU4 and the optical signal ONU5.
  • the signal has a value that exceeds a predetermined voltage threshold Vmax.
  • the light signal ONU2 having a light intensity stronger than the light intensity of the light signal ONU1 and exceeding the light intensity threshold value Pmax is received.
  • the light signal ONU3 which is weaker than the light intensity of the light signal ONU2 and has a light intensity equal to or less than the light intensity threshold value Pmax is received.
  • the light signal ONU4 having a stronger light intensity and a light intensity exceeding the light intensity threshold value Pmax is received.
  • the light signal ONU5 is received, which has a weaker light intensity but has a light intensity exceeding the light intensity threshold value Pmax.
  • FIG. 2A shows the data 102 of the optical signal ONU1, the overhead 201 and 202 of the optical signal ONU2, the overhead 301 and data 302 of the optical signal ONU3, and the overhead of the optical signal ONU4 in the traveling direction of time from left to right.
  • the overhead 501 and data 502 of 401 and data 402 and the optical signal ONU5 are shown.
  • X2 to Y2 are the times of the overhead 201 of the optical signal ONU2
  • X3 to Y3 are the times of the overhead 301 of the optical signal ONU3
  • X4 to Y4 are the times of the overhead 401 of the optical signal ONU4, and X5 to Y5.
  • the time of the overhead 101 of the optical signal ONU1 is not shown in the figure.
  • FIGS. 2 (b) and 2 (c) Changes in the multiplier M, the APD current Iapd, the TIA gain Gain of the current-voltage conversion amplifier 3, and the output voltage signal Vout are shown in FIGS. 2 (b) and 2 (c), respectively, according to changes in the light intensity of the received optical signal. , 2 (d) and 2 (e).
  • FIG. 3 is a part of FIG. 2, and is a diagram for explaining in detail the operation when the optical signal ONU1 and the optical signal ONU2 are continuously received in the timing chart shown in FIG. After receiving the optical signal ONU1, changes in the multiplier M, the APD current Iapd, the TIA gain Gain of the current-voltage conversion amplifier 3, and the output voltage signal Vout are shown in FIGS. 3 (b) and Vout, respectively, according to the light intensity of the optical signal ONU2. 3 (c), FIG. 3 (d) and FIG. 3 (e).
  • the operation of the burst signal receiving circuit of the optical receiver 100 will be described with reference to FIG.
  • the light receiving element 1 receives the light signal ONU1 having a light intensity equal to or lower than the light intensity threshold value Pmax
  • the light intensity of the light signal ONU1 is stronger and the light intensity exceeds the light intensity threshold value Pmax.
  • the APD current Iapd corresponding to the light intensity Pin of the optical signal ONU2 becomes high
  • the first monitor current Imon1 and the second monitor current Imon2 which are proportional to the APD current Iapd, also become high values.
  • the bias voltage booster circuit 2 applies a bias voltage to the light receiving element 1 from the first path 16 in which the self-bias resistor R and the inductor L are connected in parallel.
  • the inductor L tends to have a higher impedance than the self-bias resistor R with respect to a sudden increase in current from the time X2 when the optical signal ONU2 is received, the bias applied to the light receiving element 1 from the bias voltage booster circuit 2 The voltage is reduced by the self-bias resistor R. Since the impedance of the inductor L decreases with the passage of time, the bias voltage applied to the light receiving element 1 gradually transitions to the state immediately after receiving the optical signal ONU2. As the impedance of the inductor L becomes smaller than the self-bias resistor R, the bias voltage changes from a decrease to a rapid increase.
  • the magnification M depends on the bias voltage.
  • FIG. 3B shows the change in the magnification M.
  • the magnification M1 shown by the solid line is a response image of the magnification in which the change converges in the overhead 201 by the first path 16.
  • the multiplying factor M1 is once lowered by the decrease of the bias voltage.
  • the impedance of the inductor L decreases, and the magnification M1 changes from decreasing to increasing from Z2 in the overhead 201.
  • the magnification M1 decreases from X2 to Z2 of the overhead 201, and the magnification M1 increases from Z2 to Y2.
  • the magnification M1 becomes a stable value as before receiving the optical signal ONU2.
  • the magnification M1 decreases immediately after receiving the optical signal ONU2 with the change of the bias voltage, and has a characteristic of rapidly increasing from the decrease, and the change of the magnification M1 can be converged within the overhead 201.
  • the time point Z2 when the bias voltage reverses from the decrease to the increase is also the time point when the impedance of the inductor L and the self-bias resistance R become the same value.
  • the time position of Z2 at which the bias voltage reverses from a decrease to an increase is changed, and the response of the bias voltage is accelerated to ensure convergence in the overhead. ..
  • the magnification M2 shown by the broken line is a response image of the magnification by a method of inserting a self-bias resistor between the bias voltage booster circuit 2 and the light receiving element 1 to reduce the bias voltage. ..
  • the Magnification M2 decreases as the bias voltage decreases, but the change cannot converge within the overhead, and the change continues even at the head portion "A" of the data from Y2 to W2.
  • the alternate long and short dash line in the overhead 201 of FIG. 3B shows a response image of the multiplication factor M3 when the bias voltage booster circuit 2 and the light receiving element 1 are directly connected without inserting the self-bias resistor. Since the bias voltage is not controlled, the multiplying factor M3 does not change.
  • FIG. 3 (c) shows the change in the APD current Iapd.
  • the solid line APD current I1 is a response image of the APD current Iapd whose change converges in the overhead 201 by the first path 16.
  • the APD current I1 increases in response to the optical signal ONU2 having a light intensity exceeding the light intensity threshold value Pmax.
  • the APD current I1 does not increase sharply as the magnification M1 decreases, but gradually increases.
  • the APD current I1 exhibits a characteristic of rapidly increasing in the time zone from Z2 to Y2 of the overhead 201.
  • the change in the APD current I1 exhibits a characteristic of converging within the overhead 201.
  • the APD current I2 shown by the broken line is a response image of the APD current Iapd by a method of inserting a self-bias resistor between the bias voltage booster circuit 2 and the light receiving element 1 to lower the bias voltage. be.
  • the APD current I2 does not increase sharply as the magnification M2 decreases, but gradually increases, but the change cannot converge within the overhead and continues to change at the head "A" of the data from Y2 to W2. It will be.
  • the APD current I3 shown by the alternate long and short dash line is the response of the APD current Iapd when the bias voltage booster circuit 2 and the light receiving element 1 are directly connected without inserting the self-bias resistor. It is an image.
  • the APD current I3 increases sharply as the optical signal ONU2 is received.
  • the gain Gain of the current-voltage conversion amplifier 3 is adjusted based on the value of the APD current Iapd. As shown in FIG. 3D, in the overhead 201, the gain Gain shows a characteristic that gradually decreases as the APD current Iapd increases.
  • the output voltage signal Vout by the current-voltage conversion amplifier 3 changes depending on the APD current Iapd and the gain Gain of the current-voltage conversion amplifier 3.
  • the output voltage signal V1 shown by the solid line is a response image of the output voltage signal Vout that gradually increases and converges in the overhead 201 by the first path 16.
  • the output voltage signal V1 gradually increases from the time X2 when the optical signal ONU2 is received, as shown in FIG. 3 (e). do. Since the change in the APD current I1 converges in the overhead 201, the change in the output voltage signal V1 also converges in the overhead 201.
  • the output voltage signal V1 is The output does not suddenly become excessive.
  • the output voltage signal V2 shown by the broken line is the response of the output voltage signal Vout by a method of inserting a self-bias resistor between the bias voltage booster circuit 2 and the light receiving element 1 to lower the bias voltage. It is an image.
  • the output voltage signal V2 does not suddenly become an excessive output, but the change cannot converge in the overhead, and the change continues even at the head portion "A" of the data from Y2 to W2. Further, in the overhead 201 of FIG.
  • the output voltage signal V3 shown by the alternate long and short dash line is suddenly excessive when the bias voltage booster circuit 2 and the light receiving element 1 are directly connected without inserting the self-bias resistor. It is a response image of the output voltage signal Vout which becomes an output.
  • the response of the output voltage signal Vout is shown in the same results in FIGS. 2 and 3.
  • changes in the multiplication factor M, the APD current Iapd, and the output voltage signal Vout have a characteristic of converging within the overhead 201, and in the data 202 after the completion of the overhead 201, the multiplication factor M and the APD current Iapd, gain Gain, and output voltage signal Vout are stable values, respectively.
  • the potential difference between the two voltages converted from the first monitor current Imon1 and the second monitor current Imon2 is equal to or less than the voltage threshold Vmax corresponding to the light intensity threshold Pmax.
  • the current detection circuit 8 controls the second transistor 7 to be in the ON state, and switches to the second path 17, which has an extremely small impedance as compared with the first path 16.
  • the magnification M is also maintained without being lowered as shown in FIG. 2 (b).
  • the APD current Iapd receives a light signal ONU3 weaker than the light intensity of the light signal ONU2, and the APD current Iapd decreases according to the light intensity of the light signal ONU3 in the overhead 301.
  • the gain Gain of the current-voltage conversion amplifier 3 is adjusted based on the value of the APD current Iapd, the overhead 301 shows a characteristic of gradually increasing as the APD current Iapd decreases. ..
  • the output voltage signal Vout by the current-voltage conversion amplifier 3 changes depending on the APD current Iapd and the gain Gain of the current-voltage conversion amplifier 3. As shown in FIG. 2E, the output voltage signal Vout shows a characteristic of gradually decreasing in the overhead 301.
  • magnification M In the data 302 after the end of the overhead 301, the magnification M, the APD current Iapd, the gain Gain, and the output voltage signal Vout are stable values, respectively.
  • the light receiving element 1 receives the optical signal ONU4 having a stronger light intensity and a light intensity exceeding the light intensity threshold value Pmax.
  • the APD current Iapd corresponding to the light intensity of the optical signal ONU4 becomes high, and the first monitor current Imon1 and the second monitor current Imon2, which are proportional to the APD current Iapd, also become high values.
  • the potential difference between the two voltages converted from the first monitor current Imon1 and the second monitor current Imon2 exceeds the voltage threshold Vmax corresponding to the light intensity threshold Pmax.
  • the current detection circuit 8 controls the first transistor 6 to be in the ON state, and switches from the second path 17 to the first path 16.
  • the bias voltage booster circuit 2 applies a bias voltage to the light receiving element 1 from the first path 16 in which the self-bias resistor R and the inductor L are connected in parallel.
  • the bias voltage applied to the light receiving element 1 is initially lowered by the self-bias resistor R. Since the impedance of the inductor L decreases with the passage of time, the bias voltage applied to the light receiving element 1 gradually transitions to the state immediately after receiving the optical signal ONU4. As the impedance of the inductor L becomes smaller than the self-bias resistor R, the bias voltage changes from a decrease to a rapid increase.
  • the multiplying factor M changes with a change in the bias voltage.
  • the magnification M is once lowered by the decrease of the bias voltage.
  • the impedance of the inductor L decreases, and the magnification M changes from decreasing to increasing from Z4 in the overhead 401. That is, X4 to Z4 of the overhead 401 are in a state in which the magnification M is decreased, and Z4 to Y4 are in a state in which the magnification M is increased.
  • the APD current Iapd increases in response to the optical signal ONU4, but does not increase sharply as the magnification M decreases, but gradually increases. Shows the characteristics of As the impedance of the inductor L decreases with the passage of time, the APD current Iapd shows a characteristic of rapidly increasing from Z4 to Y4 of the overhead 401. The change in APD current Iapd shows the characteristic of converging in the overhead 401.
  • the gain Gain of the current-voltage conversion amplifier 3 is adjusted based on the value of the APD current Iapd. As shown in FIG. 2D, in the overhead 401, the gain Gain shows a characteristic that gradually decreases as the APD current Iapd increases.
  • the output voltage signal Vout by the current-voltage conversion amplifier 3 gradually increases from the time X4 when the optical signal ONU4 is received.
  • the change in the output voltage signal Vout shows the characteristic of converging in the overhead 401.
  • the magnification M, the APD current Iapd, the gain Gain, and the output voltage signal Vout are stable values, respectively.
  • the light receiving element 1 receives the optical signal ONU5 having a light intensity that is weaker but exceeds the light intensity threshold value Pmax.
  • the first monitor current Imon1 and the second monitor current Imon2 which are proportional to the APD current Iapd corresponding to the light intensity of the optical signal ONU5 are detected and converted into a voltage.
  • the potential difference between the two voltages converted from the first monitor current Imon1 and the second monitor current Imon2 exceeds the voltage threshold Vmax corresponding to the light intensity threshold Pmax.
  • the current detection circuit 8 controls the first transistor 6 in the ON state and the bias voltage booster circuit 2 remains connected to the first path 16, the bias voltage applied to the light receiving element 1 does not change.
  • the multiplying factor M does not change with the bias voltage.
  • the APD current Iapd gradually decreases from the time X5 when the optical signal ONU5 is received, in accordance with the light intensity of the optical signal ONU5.
  • the APD current Iapd does not increase sharply, and the change in the APD current Iapd can converge within the overhead 501.
  • the output voltage signal Vout by the current-voltage conversion amplifier 3 gradually decreases from the time X5 when the optical signal ONU5 is received, as the APD current Iapd changes.
  • the change in the output voltage signal Vout also shows the characteristic of converging within the overhead 501.
  • the magnification M, the APD current Iapd, the gain Gain, and the output voltage signal Vout are stable values, respectively.
  • the bias voltage applied to the light receiving element is controlled by switching the path based on a preset light intensity threshold value.
  • the response time of the bias voltage is controlled to be shortened, and the change time of the magnification of the light receiving element depending on the bias voltage is shortened.
  • the stability of the reception sensitivity of the APD module can be improved.
  • the bias voltage control unit can switch between the first path and the second path at high speed by the switch element according to the light intensity of the optical signal, the optical signal whose light intensity suddenly differs significantly. Since it is possible to ensure that the change in magnification depending on the bias voltage is converged within the overhead even when the light is continuously received, the stability of the reception sensitivity of the APD module can be improved.
  • Embodiment 2 In the second embodiment, the same reference numerals are used for the same components as those in the first embodiment of the present disclosure, and the description of the same or corresponding parts will be omitted.
  • the optical receiver 200 according to the second embodiment will be described with reference to the drawings.
  • FIG. 4 is a configuration diagram of the optical receiver 200 according to the second embodiment.
  • the optical receiver 200 configured by the burst signal receiving circuit has a light receiving element 1 that generates a current corresponding to the light intensity of the received optical signal and a bias that supplies a bias voltage to the light receiving element 1.
  • the voltage booster circuit 2, the current-voltage conversion amplifier 3 that converts the current generated by the light receiving element 1 into a voltage, the bias voltage booster circuit 2 and the light receiving element 1 are connected, and the self-bias resistor R and the inductor L are connected in parallel.
  • the connected first path 16 and the second path 17 which is connected in parallel to the first path 16 and whose impedance is extremely smaller than that of the first path 16 and the first path 16 according to the light intensity of the optical signal.
  • it has a bias voltage control unit 21 that controls the bias voltage by switching the second path 17.
  • first transistor 6 which is an open / close switch of the first path 16
  • second transistor 7 which is an open / close switch of the second path 17.
  • the optical intensity of an optical signal is determined by the distance between the station-side optical network unit (OLT) and the subscriber-side optical network unit (ONU). The shorter the distance between the OLT and the ONU, the stronger the light intensity of the optical signal transmitted from the ONU.
  • the bias voltage control unit 21 transfers the memory 9 in which the information regarding the optical intensity of the optical signal transmitted from each ONU to the OLT is stored, and the determined ONU to the OLT. Based on the transmission timing of the uplink signal, the information on the light intensity of the ONU stored in the memory 9 and the preset light intensity threshold value Pmax are compared with the first path 16 before the reception time of the OLT. It has a switching control unit 10 for switching the second path 17. Also in the optical receiver 200 according to the second embodiment, the second path 17 is a path in which no resistor is inserted with respect to the first path 16 in which the self-bias resistor R and the inductor L are connected in parallel.
  • the components other than the bias voltage control unit 21 of the optical receiver 200 according to the second embodiment are the same as those of the optical receiver 100 of the first embodiment.
  • the switching control unit 10 of the bias voltage control unit 21 switches the path of the bias voltage applied to the light receiving element 1 by comparing the light intensity Pin of the transmitted optical signal with the preset light intensity threshold value Pmax. When the light intensity Pin of the optical signal exceeds the light intensity threshold Pmax, it is connected to the first path 16, and when the light intensity Pin of the optical signal is equal to or less than the light intensity threshold Pmax, it is connected to the second path 17 to bias. Control the voltage. That is, in the first embodiment, the intensity of the light intensity is determined based on the voltage threshold value corresponding to the light intensity threshold value of the optical signal. On the other hand, in the second embodiment, the light intensity of the light signal for each ONU is stored and compared with the light intensity threshold value to determine the strength of the light intensity to be received.
  • the determined transmission timing of the uplink signal from the ONU to the OLT is also determined in advance and stored in the memory 9.
  • the switching control unit 10 compares the information on the light intensity of the ONU stored in the memory 9 with the light intensity threshold value Pmax before the reception time of the OLT based on the predetermined transmission timing from each ONU to the OLT. As a result, the switching control unit 10 controls to switch between the first path 16 and the second path 17.
  • the bias voltage control unit 21 sets the light intensity Pin in advance before the OLT reception time according to the change in the light intensity of the received optical signal.
  • the first path 16 and the second path are connected to the first path 16 when the set light intensity threshold value Pmax is exceeded, and connected to the second path 17 when the light intensity pin is equal to or less than the light intensity threshold value Pmax.
  • the bias voltage is controlled by switching between 17 and 17. Therefore, for example, when the optical signal ONU1, the optical signal ONU2, the optical signal ONU3, the optical signal ONU4, and the optical signal ONU5 shown in FIG.
  • the changes in the TIA gain Gain and the output voltage signal Vout of No. 3 are the same as the response images shown in FIGS.
  • the burst signal receiving circuit of the optical receiver 200 shortens the excessive response time of the bias voltage for each optical signal, and increases the magnification M and the APD current.
  • the changes in Iapd and the output voltage signal Vout can be converged within each overhead, and the data after the overhead ends have the characteristics of stable values.
  • the same effect as that of the first embodiment can be obtained. Since it is the same as the timing chart in the burst signal receiving circuit of the optical receiver according to the first embodiment, the description thereof will be omitted.
  • the bias voltage applied to the light receiving element is controlled by switching the path based on a preset light intensity threshold value.
  • the response time of the bias voltage is controlled to be shortened, and the change time of the magnification of the light receiving element depending on the bias voltage is shortened.
  • the stability of the reception sensitivity of the APD module can be improved.
  • the bias voltage control unit switches the first path or the second path before the reception time of the OLT based on the transmission timing of the uplink signal from the ONU to the OLT according to the light intensity of the optical signal. Even when optical signals with significantly different intensities are continuously received, it is possible to ensure that the change in magnification depending on the bias voltage is converged within the overhead, so that the stability of the reception sensitivity of the APD module can be improved. ..

Abstract

Provided is an optical receiver with which it is possible to increase the stability of reception sensitivity of an APD module by shortening the response time of bias voltage applied to a light-receiving element in accordance with the light intensity of a received optical signal. The optical receiver 100 according to the present disclosure comprises: a light-receiving element 1 that generates a current corresponding to the light intensity of the received optical signal; a bias voltage boost circuit 2 that supplies a bias voltage to the light-receiving element 1; a current/voltage conversion amplifier 3 that converts the current generated by the light-receiving element 1 to voltage; a first path 16 that connects the bias voltage boost circuit 2 and the light-receiving element 1, and is connected in parallel to its own bias resistor R and inductor L; a second path 17 connected in parallel to the first path 16 and having lower impedance than the first path 16; and a bias voltage control unit 11 that controls the bias voltage by switching to the first path 16 when the light intensity exceeds a preset light intensity threshold value, and switching to the second path 17 when the light intensity is less than or equal to the light intensity threshold value.

Description

光受信器Optical receiver
 本開示は、PON(Passive Optical Network)システムに適用される光受信器に関するものであり、特に、受光素子APD(Avalanche Photo Diode、アバランシェフォトダイオード)を用いた光バースト信号受信回路が構成された光受信器に関する。 The present disclosure relates to an optical receiver applied to a PON (Passive Optical Network) system, and in particular, an optical burst signal receiving circuit using a light receiving element APD (Avalanche Photo Diode) is configured. Regarding receivers.
 PONシステムは、局側に設置される局側光回線終端装置(OLT:Optical Line Terminal)と加入者宅内に設置される加入者側光回線終端装置(ONU:Optical Network Unit)とを、光スプリッタを介して光ファイバで接続することで構成される光通信システムである。PONシステムは、1台のOLTに対して複数のONUが接続される構成となる。
 OLTとONU間の上り信号・下り信号は光波長多重通信手段により一本の光ファイバで伝送される。OLTから各ONUへの下り方向の通信では、一般的な連続した信号が用いられるが,各ONUからOLTへの上り信号はユーザごとに個別に送信されるバースト状のパケット信号を時分割多重した信号が用いられる。また、OLTと各ONUの距離に差異があるため、OLTで受信する光信号の信号強度はONU毎に大きく変化する。
 PONシステムにおいて、OLT側の光受信器が各ONUからのバースト状のパケット信号を受信する。光受信器の光受信回路に用いられた光受信モジュールとして、受光素子APDおよび受光素子APD後段の電流電圧変換増幅器(TIA:Trans-Impedance Amplifier)を有するAPDモジュールが知られている。受光素子APDは、バイアス電圧を印加することで、光信号が入力された際に、電子雪崩現象が発生し、バイアス電圧に依存する増倍率に応じたAPD電流を生成する。APD電流は受光素子APD後段の電流電圧変換増幅器TIAによって、電流から電圧へ変換され、電圧信号として出力される。
The PON system is an optical splitter that combines a station-side optical line terminal (OLT) installed on the station side and a subscriber-side optical line terminal (ONU: Optical Network Unit) installed in the subscriber's home. It is an optical communication system configured by connecting with an optical fiber via an optical fiber. The PON system has a configuration in which a plurality of ONUs are connected to one OLT.
The uplink and downlink signals between the OLT and the ONU are transmitted by a single optical fiber by optical wavelength division multiplexing communication means. In the downlink communication from the OLT to each ONU, a general continuous signal is used, but the uplink signal from each ONU to the OLT is time-division-multiplexed in a burst-shaped packet signal transmitted individually for each user. The signal is used. Further, since there is a difference in the distance between the OLT and each ONU, the signal strength of the optical signal received by the OLT changes greatly for each ONU.
In the PON system, the optical receiver on the OLT side receives the burst packet signal from each ONU. As an optical receiving module used in an optical receiving circuit of an optical receiver, an APD module having a light receiving element APD and a current-voltage conversion amplifier (TIA: Trans-Impedance Amplifier) in the subsequent stage of the light receiving element APD is known. By applying a bias voltage, the light receiving element APD causes an electron avalanche phenomenon when an optical signal is input, and generates an APD current according to a magnification depending on the bias voltage. The APD current is converted from current to voltage by the current-voltage conversion amplifier TIA in the subsequent stage of the light receiving element APD, and is output as a voltage signal.
 APDモジュールでは、受信する光信号の光強度に応じて受光素子APDの増倍率を変化させる必要がある。増倍率はバイアス電圧に依存するため、受光素子APDに印加するバイアス電圧を制御するためのバイアス電圧制御回路では、光信号の光強度によってバイアス電圧を変化させる。光信号の光強度が弱い程、バイアス電圧を高くして受光素子APDの増倍率を上げるように制御し、光信号の光強度が強い程、バイアス電圧を低くして受光素子APDの増倍率を下げるように制御している。 In the APD module, it is necessary to change the magnification of the light receiving element APD according to the light intensity of the received optical signal. Since the multiplication factor depends on the bias voltage, the bias voltage control circuit for controlling the bias voltage applied to the light receiving element APD changes the bias voltage according to the light intensity of the optical signal. The weaker the light intensity of the optical signal, the higher the bias voltage is controlled to increase the magnification of the light receiving element APD, and the stronger the light intensity of the optical signal, the lower the bias voltage is used to increase the magnification of the light receiving element APD. It is controlled to lower.
 特許文献1では、受信する光信号の光強度情報に応じて受光素子APDに印加するバイアス電圧を変化させ、増倍率を制御する技術が提案されている。
 光受信器は光強度が異なる光信号を受信する際に、受信回路が動作安定した主信号時間であるデータ(ペイロードとも言う)の前に、電流電圧変換増幅器TIAの利得Gainを調整し、動作安定化に必要な時間であるオーバヘッド(プリアンブルとも言う)が設けられている。安定した受信感度を維持するためにはオーバヘッド内で受光素子APDに印加するバイアス電圧の過渡応答を収束させておく必要がある。
 特許文献1に係る技術では、受信光強度検出部にて光信号を検知し、検知された光信号の光強度に応じてAPDバイアス電圧制御回路にてバイアス電圧を変化させるが、高速通信の場合には光信号のオーバヘッド内に受光素子APDに印加するバイアス電圧の過渡応答時間が長くなることが懸念される。弱い光強度を持つ光信号から数ns~数10nsの短時間に強い光強度を持つ光信号へ急激に変化する光信号を受信した場合、バイアス電圧の過度応答がオーバヘッド内で収束できないため、バイアス電圧に依存する増倍率の変化も収束できず、APD電流も安定できない可能性がある。これにより、受光素子APD後段の電流電圧変換増幅器TIAによる出力電圧がデータ内においても変化し続け、安定した受信感度を維持できないため、光強度の異なる光信号を受信できない可能性がある。
Patent Document 1 proposes a technique for controlling the magnification by changing the bias voltage applied to the light receiving element APD according to the light intensity information of the received optical signal.
When the optical receiver receives optical signals with different optical intensities, the receiving circuit operates by adjusting the gain Gain of the current-voltage conversion amplifier TIA before the data (also called the payload), which is the stable main signal time. An overhead (also called a preamble), which is the time required for stabilization, is provided. In order to maintain stable reception sensitivity, it is necessary to converge the transient response of the bias voltage applied to the light receiving element APD in the overhead.
In the technique according to Patent Document 1, an optical signal is detected by a received light intensity detection unit, and the bias voltage is changed by an APD bias voltage control circuit according to the light intensity of the detected optical signal. However, in the case of high-speed communication. There is a concern that the transient response time of the bias voltage applied to the light receiving element APD in the overhead of the optical signal becomes long. When an optical signal that suddenly changes from a light signal with a weak light intensity to an optical signal with a strong light intensity in a short time of several ns to several tens of ns is received, the excessive response of the bias voltage cannot be converged within the overhead, so that the bias The voltage-dependent change in magnification cannot be converged, and the APD current may not be stable. As a result, the output voltage of the current-voltage conversion amplifier TIA in the subsequent stage of the light receiving element APD continues to change even in the data, and stable reception sensitivity cannot be maintained, so that it may not be possible to receive optical signals having different light intensities.
特開2005-45560号公報Japanese Unexamined Patent Publication No. 2005-45560
 本開示は、上記のような問題点を解決するためになされたもので、APDモジュールが受信した光信号の光強度に応じて、受光素子に印加するバイアス電圧の過度応答をオーバヘッド内に収束可能に制御し、バイアス電圧に依存する受光素子の増倍率の変化時間を短縮することによりAPDモジュールの受信感度の安定性を高めることができる光受信器を提供する。 The present disclosure has been made to solve the above-mentioned problems, and the excessive response of the bias voltage applied to the light receiving element can be converged within the overhead according to the light intensity of the optical signal received by the APD module. Provided is an optical receiver capable of improving the stability of the reception sensitivity of the APD module by controlling the above and shortening the change time of the magnification of the light receiving element depending on the bias voltage.
 本開示に係る光受信器は、受信した光信号の光強度に対応した電流を生成する受光素子と、受光素子にバイアス電圧を供給するバイアス電圧昇圧回路と、受光素子で生成された電流を電圧に変換する電流電圧変換増幅器と、バイアス電圧昇圧回路と受光素子とを接続し、自己バイアス抵抗RおよびインダクタLを並列に接続した第1経路と、第1経路に対して並列に接続され、第1経路に比べてインピーダンスが小さい第2経路と、光強度が予め設定された光強度閾値を超過する場合は第1経路に切り替え、光強度が光強度閾値以下の場合は第2経路に切り替えることにより、バイアス電圧を制御するバイアス電圧制御部とを備える。 The optical receiver according to the present disclosure includes a light receiving element that generates a current corresponding to the light intensity of the received optical signal, a bias voltage boosting circuit that supplies a bias voltage to the light receiving element, and a current generated by the light receiving element. The first path, in which the current-voltage conversion amplifier that converts to Switch to the second path, which has a smaller impedance than the first path, and to the first path when the light intensity exceeds the preset light intensity threshold, and to the second path when the light intensity is less than or equal to the light intensity threshold. A bias voltage control unit for controlling the bias voltage is provided.
 本開示に係る光受信器によれば、予め設定された光強度閾値に基づいて経路を切り替えることにより受光素子に印加するバイアス電圧を制御する。光強度閾値を超過する光強度を持つ光信号を受信した際に、バイアス電圧の応答時間を短くするように制御し、バイアス電圧に依存する受光素子の増倍率の変化時間を短縮させることにより、APDモジュールの受信感度の安定性を高めることができる。 According to the optical receiver according to the present disclosure, the bias voltage applied to the light receiving element is controlled by switching the path based on a preset light intensity threshold value. When an optical signal having a light intensity exceeding the light intensity threshold is received, the response time of the bias voltage is controlled to be shortened, and the change time of the magnification of the light receiving element depending on the bias voltage is shortened. The stability of the reception sensitivity of the APD module can be improved.
本開示の実施の形態1に係る光受信器のバースト信号受信回路の構成図である。It is a block diagram of the burst signal receiving circuit of the optical receiver which concerns on Embodiment 1 of this disclosure. 本開示に係る光受信器のバースト信号受信回路の動作を示すタイミングチャート図である。It is a timing chart diagram which shows the operation of the burst signal receiving circuit of the optical receiver which concerns on this disclosure. 本開示に係る光受信器のバースト信号受信回路の動作を示すタイミングチャート図である。It is a timing chart diagram which shows the operation of the burst signal receiving circuit of the optical receiver which concerns on this disclosure. 本開示の実施の形態2に係る光受信器のバースト信号受信回路の構成図である。It is a block diagram of the burst signal receiving circuit of the optical receiver which concerns on Embodiment 2 of this disclosure.
 以下、本開示に係る実施形態について図面を参照して説明する。なお、以下の各実施形態において、同様の構成要素については同一の符号を付している。 Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. In each of the following embodiments, the same reference numerals are given to the same components.
実施の形態1.
 図1は実施の形態1に係る光受信器の構成図である。バースト信号受信回路で構成された光受信器100は、受信した光信号の光強度に対応した電流を生成する受光素子1と、受光素子1にバイアス電圧を供給するバイアス電圧昇圧回路2と、受光素子1で生成された電流を電圧に変換する電流電圧変換増幅器3と、バイアス電圧昇圧回路2と受光素子1とを接続し、自己バイアス抵抗RおよびインダクタLを並列に接続した第1経路16と、第1経路16に対して並列に接続され、第1経路16に比べてインピーダンスが極めて小さい第2経路17と、光信号の光強度に応じて、第1経路16または第2経路17を切り替えることにより、バイアス電圧を制御するバイアス電圧制御部11と、を有する。
 また、第1経路16に開閉スイッチである第1トランジスタ6が設けられ、第2経路17に開閉スイッチである第2トランジスタ7が設けられる。スイッチ素子である第1トランジスタ6と第2トランジスタ7との開閉を制御することにより、第1経路16と第2経路17との切り替えを行うため、高速での切り替えが可能である。
Embodiment 1.
FIG. 1 is a configuration diagram of an optical receiver according to the first embodiment. The optical receiver 100 composed of a burst signal receiving circuit includes a light receiving element 1 that generates a current corresponding to the light intensity of the received optical signal, a bias voltage boosting circuit 2 that supplies a bias voltage to the light receiving element 1, and a light receiving device. A first path 16 in which a current-voltage conversion amplifier 3 that converts the current generated by the element 1 into a voltage, a bias voltage booster circuit 2 and a light receiving element 1 are connected, and a self-bias resistor R and an inductor L are connected in parallel. , The first path 16 or the second path 17 is switched depending on the light intensity of the optical signal and the second path 17, which is connected in parallel to the first path 16 and has an extremely small impedance as compared with the first path 16. This includes a bias voltage control unit 11 that controls the bias voltage.
Further, the first path 16 is provided with the first transistor 6 which is an open / close switch, and the second path 17 is provided with the second transistor 7 which is an open / close switch. By controlling the opening and closing of the first transistor 6 and the second transistor 7, which are switch elements, the first path 16 and the second path 17 are switched, so that switching at high speed is possible.
 受光素子1はAPDである。バイアス電圧昇圧回路2は受光素子1に印加するバイアス電圧を供給する。受光素子1はバイアス電圧が印加された状態で光強度Pinの光信号を受信すると、バイアス電圧に依存する増倍率Mに応じたAPD電流Iapdを生成する。
 電流電圧変換増幅器3は、受光素子1で生成されたAPD電流Iapdをインピーダンスによって増倍し、さらに電圧に変換し、出力電圧信号Voutとして出力する。
 ここで、受光素子1と電流電圧変換増幅器3とがAPDモジュールを構成している。
The light receiving element 1 is an APD. The bias voltage booster circuit 2 supplies the bias voltage applied to the light receiving element 1. When the light receiving element 1 receives an optical signal having a light intensity Pin while a bias voltage is applied, it generates an APD current Iapd according to a magnification M depending on the bias voltage.
The current-voltage conversion amplifier 3 multiplies the APD current Iapd generated by the light receiving element 1 by impedance, further converts it into a voltage, and outputs it as an output voltage signal Vout.
Here, the light receiving element 1 and the current-voltage conversion amplifier 3 constitute an APD module.
 実施の形態1に係る光受信器100において、バイアス電圧制御部11は、受光素子1で生成されたAPD電流Iapdに比例する第1モニタ電流Imon1を生成する第1カレントミラー回路4と、第1モニタ電流Imon1に比例する電流である第2モニタ電流Imon2を生成する第2カレントミラー回路5と、第1モニタ電流Imon1および第2モニタ電流Imon2を検知してそれぞれ電圧に変換し、得られた2つの電圧間の電位差に基づいて、第1経路16に設けられた開閉スイッチである第1トランジスタ6および第2経路17に設けられた開閉スイッチである第2トランジスタ7を制御することにより第1経路16および第2経路17を切り替える電流検知回路8とを有する。 In the optical receiver 100 according to the first embodiment, the bias voltage control unit 11 has a first current mirror circuit 4 that generates a first monitor current Imon 1 that is proportional to the APD current Iapd generated by the light receiving element 1, and a first one. The second current mirror circuit 5 that generates the second monitor current Imon2, which is a current proportional to the monitor current Imon1, and the first monitor current Imon1 and the second monitor current Imon2 are detected and converted into voltages, respectively, and the obtained 2 is obtained. The first path is controlled by controlling the first transistor 6 which is an open / close switch provided in the first path 16 and the second transistor 7 which is an open / close switch provided in the second path 17 based on the potential difference between the two voltages. It has a current detection circuit 8 for switching between 16 and the second path 17.
 受信した光信号の強弱を判定するため、予め光信号の光強度閾値Pmaxを設定し、光強度閾値Pmaxに対応する電圧値を電圧閾値Vmaxとして設定する。バイアス電圧制御部11における電流検知回路8は、光信号を受信した際に、光強度閾値Pmaxに対応して設けられた電圧閾値Vmaxに基づいて、第1経路16と第2経路17とを切り替える。 In order to determine the strength of the received optical signal, the optical intensity threshold value Pmax of the optical signal is set in advance, and the voltage value corresponding to the optical intensity threshold value Pmax is set as the voltage threshold value Vmax. When the current detection circuit 8 in the bias voltage control unit 11 receives the optical signal, the current detection circuit 8 switches between the first path 16 and the second path 17 based on the voltage threshold value Vmax provided corresponding to the light intensity threshold value Pmax. ..
 具体的に、電流検知回路8は、第1モニタ電流Imon1と第2モニタ電流Imon2とを検知し、第1モニタ電流Imon1と第2モニタ電流Imon2とをそれぞれ別々の抵抗等で電圧に変換する。変換された2つの電圧の間の電位差と電圧閾値Vmaxとを比較する。
 受光素子1は受信する光信号の光強度Pinが過大になると、APD電流Iapdが高い値を示し、APD電流Iapdに比例する第1モニタ電流Imon1、および、第1モニタ電流Imon1に比例する第2モニタ電流Imon2も高い値になる。
 第1モニタ電流Imon1と第2モニタ電流Imon2で変換された2つの電圧間の電位差が予め決定された電圧閾値Vmaxを超過する場合に、受信した光信号の光強度Pinが光強度閾値Pmaxを超過する(光信号の光強度Pin>光強度閾値Pmax)ことと判断する。この場合、電流検知回路8は、第1トランジスタ6がON状態になるように制御し、受光素子1に印加するバイアス電圧の経路を第1経路16に切り替える。第1経路16における自己バイアス抵抗RとインダクタLにより受光素子1に印加するバイアス電圧を低下させるように動作する。
Specifically, the current detection circuit 8 detects the first monitor current Imon 1 and the second monitor current Imon 2, and converts the first monitor current Imon 1 and the second monitor current Imon 2 into voltages by separate resistors or the like. The potential difference between the two converted voltages and the voltage threshold Vmax are compared.
When the light intensity Pin of the received optical signal becomes excessive, the light receiving element 1 shows a high value of the APD current Iapd, and the first monitor current Imon1 proportional to the APD current Iapd and the second monitor current Imon1 proportional to the first monitor current Imon1. The monitor current Imon2 also becomes a high value.
When the potential difference between the two voltages converted by the first monitor current Imon1 and the second monitor current Imon2 exceeds a predetermined voltage threshold Vmax, the light intensity Pin of the received optical signal exceeds the light intensity threshold Pmax. (Light intensity Pin of optical signal> light intensity threshold Pmax). In this case, the current detection circuit 8 controls the first transistor 6 to be in the ON state, and switches the path of the bias voltage applied to the light receiving element 1 to the first path 16. The self-bias resistor R and the inductor L in the first path 16 operate so as to reduce the bias voltage applied to the light receiving element 1.
 第1モニタ電流Imon1と第2モニタ電流Imon2で変換された2つの電圧間の電位差が予め決定された電圧閾値Vmax以下の場合に、受信した光信号の光強度Pinが光強度閾値Pmax以下(光信号の光強度Pin≦光強度閾値Pmax)であると判断する。この場合、電流検知回路8は、第2トランジスタ7がON状態になるように制御し、受光素子1に印加するバイアス電圧の経路を第2経路17に切り替える。第1経路16に比べてインピーダンスが極めて小さい第2経路17により、受光素子1に印加するバイアス電圧を低下させず、受光素子1の増倍率を維持する。
 なお、実施の形態1に係る光受信器100において、自己バイアス抵抗RおよびインダクタLを並列に接続した第1経路16に対して、第2経路17は抵抗が挿入されていない経路となる。
When the potential difference between the two voltages converted by the first monitor current Imon1 and the second monitor current Imon2 is equal to or less than the predetermined voltage threshold Vmax, the light intensity Pin of the received optical signal is equal to or less than the light intensity threshold Pmax (light). It is determined that the signal light intensity Pin ≦ light intensity threshold Pmax). In this case, the current detection circuit 8 controls the second transistor 7 to be in the ON state, and switches the path of the bias voltage applied to the light receiving element 1 to the second path 17. The second path 17, whose impedance is extremely smaller than that of the first path 16, does not lower the bias voltage applied to the light receiving element 1 and maintains the magnification of the light receiving element 1.
In the optical receiver 100 according to the first embodiment, the second path 17 is a path in which no resistor is inserted with respect to the first path 16 in which the self-bias resistor R and the inductor L are connected in parallel.
 自己バイアス抵抗Rは、受光素子1に印加するバイアス電圧を変化させるために挿入されており、光信号の光強度Pinは過大になり、光強度閾値Pmaxを超過する場合に受光素子1に印加するバイアス電圧を低下させる効果を持っている。しかしながら、急激な電流変化に対しては寄生容量の影響を受けることで自己バイアス抵抗Rによるバイアス電圧を変化させる応答時間が長くなるため、バイアス電圧を変化させる応答時間を短縮させる目的で自己バイアス抵抗RとインダクタLを並列に接続するようにする。これにより、受光素子1に印加するバイアス電圧の応答時間を短くし、オーバヘッド内に収束させることが確保できる。 The self-bias resistor R is inserted to change the bias voltage applied to the light receiving element 1, and is applied to the light receiving element 1 when the light intensity Pin of the optical signal becomes excessive and exceeds the light intensity threshold Pmax. It has the effect of lowering the bias voltage. However, since the response time for changing the bias voltage due to the self-bias resistor R becomes longer due to the influence of the parasitic capacitance against a sudden current change, the self-bias resistor is used for the purpose of shortening the response time for changing the bias voltage. The R and the inductor L are connected in parallel. As a result, the response time of the bias voltage applied to the light receiving element 1 can be shortened, and it can be ensured that the bias voltage converges within the overhead.
 次に上記により構成される光受信器100のバースト信号受信回路の動作について説明する。
 図2に実施の形態1に係る光受信器100のバースト信号受信回路の動作におけるタイミングチャートを示す。図2において、横軸は時間tを示し、光受信器100が光強度の異なる光信号を続けて受信する例を示す。
Next, the operation of the burst signal receiving circuit of the optical receiver 100 configured as described above will be described.
FIG. 2 shows a timing chart in the operation of the burst signal receiving circuit of the optical receiver 100 according to the first embodiment. In FIG. 2, the horizontal axis represents time t, and an example is shown in which the optical receiver 100 continuously receives optical signals having different light intensities.
 図2(a)に受光素子1が受信した各光信号の光強度Pinを示す。受光素子1は、光強度がそれぞれ異なる光信号ONU1、光信号ONU2、光信号ONU3、光信号ONU4、および光信号ONU5を順に受信する。光信号ONU1と光信号ONU3の光強度Pinは光強度閾値Pmaxより小さい値であるが、光信号ONU2、光信号ONU4と光信号ONU5の光強度Pinは光強度閾値Pmaxを超過する値となる。すなわち、光信号ONU1と光信号ONU3の光強度Pinに対応する電圧信号は予め決定された電圧閾値Vmaxより小さい値となり、光信号ONU2、光信号ONU4と光信号ONU5の光強度Pinに対応する電圧信号は予め決定された電圧閾値Vmaxを超過する値となる。 FIG. 2A shows the light intensity Pin of each optical signal received by the light receiving element 1. The light receiving element 1 receives the optical signal ONU1, the optical signal ONU2, the optical signal ONU3, the optical signal ONU4, and the optical signal ONU5 having different light intensities in this order. The light intensity Pins of the optical signal ONU1 and the optical signal ONU3 are smaller than the light intensity threshold value Pmax, but the light intensity Pins of the optical signal ONU2, the optical signal ONU4 and the optical signal ONU5 are values exceeding the light intensity threshold value Pmax. That is, the voltage signal corresponding to the light intensity Pin of the optical signal ONU1 and the optical signal ONU3 becomes a value smaller than the predetermined voltage threshold value Vmax, and the voltage corresponding to the light intensity Pin of the optical signal ONU2, the optical signal ONU4 and the optical signal ONU5. The signal has a value that exceeds a predetermined voltage threshold Vmax.
 図2(a)に示すように、光信号ONU1の受光後に、光信号ONU1の光強度より強く、光強度閾値Pmaxを超過する光強度を有する光信号ONU2を受信する。光信号ONU2の受光後に、光信号ONU2の光強度より弱く、光強度閾値Pmax以下の光強度を有する光信号ONU3を受信する。光信号ONU3の受光後に、光信号ONU3の光強度がより強く、光強度閾値Pmaxを超過する光強度を有する光信号ONU4を受信する。光信号ONU4の受光後に、光信号ONU4の光強度がより弱いが、光強度閾値Pmaxを超過する光強度を有する光信号ONU5を受信する。 As shown in FIG. 2A, after receiving the light signal ONU1, the light signal ONU2 having a light intensity stronger than the light intensity of the light signal ONU1 and exceeding the light intensity threshold value Pmax is received. After receiving the light signal ONU2, the light signal ONU3 which is weaker than the light intensity of the light signal ONU2 and has a light intensity equal to or less than the light intensity threshold value Pmax is received. After receiving the light signal ONU3, the light signal ONU4 having a stronger light intensity and a light intensity exceeding the light intensity threshold value Pmax is received. After receiving the light signal ONU4, the light signal ONU5 is received, which has a weaker light intensity but has a light intensity exceeding the light intensity threshold value Pmax.
 各光信号を受信する際に、受信回路の動作安定した時間であるデータの前に、動作安定化に必要な時間であるオーバヘッドが設けられている。図2(a)に、左から右への時間の進行方向において、光信号ONU1のデータ102、光信号ONU2のオーバヘッド201とデータ202、光信号ONU3のオーバヘッド301とデータ302、光信号ONU4のオーバヘッド401とデータ402および光信号ONU5のオーバヘッド501とデータ502を示す。また、X2からY2は光信号ONU2のオーバヘッド201の時間であり、X3からY3は光信号ONU3のオーバヘッド301の時間であり、X4からY4は光信号ONU4のオーバヘッド401の時間であり、X5からY5は光信号ONU5のオーバヘッド501の時間である。なお、光信号ONU1のオーバヘッド101の時間については図に示していない。 When receiving each optical signal, an overhead, which is the time required for stable operation, is provided before the data, which is the time when the operation of the receiving circuit is stable. FIG. 2A shows the data 102 of the optical signal ONU1, the overhead 201 and 202 of the optical signal ONU2, the overhead 301 and data 302 of the optical signal ONU3, and the overhead of the optical signal ONU4 in the traveling direction of time from left to right. The overhead 501 and data 502 of 401 and data 402 and the optical signal ONU5 are shown. Further, X2 to Y2 are the times of the overhead 201 of the optical signal ONU2, X3 to Y3 are the times of the overhead 301 of the optical signal ONU3, X4 to Y4 are the times of the overhead 401 of the optical signal ONU4, and X5 to Y5. Is the time of the overhead 501 of the optical signal ONU5. The time of the overhead 101 of the optical signal ONU1 is not shown in the figure.
 受信した光信号の光強度の変化に応じて、増倍率M、APD電流Iapd、電流電圧変換増幅器3のTIA利得Gainおよび出力電圧信号Voutの変化をそれぞれ図2(b)、図2(c)、図2(d)および図2(e)に示す。
 図3は図2の一部であり、図2に示すタイミングチャートにおける光信号ONU1と光信号ONU2を続けて受信する場合の動作を詳細に説明するための図である。光信号ONU1の受光後に、光信号ONU2の光強度に応じて、増倍率M、APD電流Iapd、電流電圧変換増幅器3のTIA利得Gainおよび出力電圧信号Voutの変化をそれぞれ図3(b)、図3(c)、図3(d)および図3(e)に示す。
Changes in the multiplier M, the APD current Iapd, the TIA gain Gain of the current-voltage conversion amplifier 3, and the output voltage signal Vout are shown in FIGS. 2 (b) and 2 (c), respectively, according to changes in the light intensity of the received optical signal. , 2 (d) and 2 (e).
FIG. 3 is a part of FIG. 2, and is a diagram for explaining in detail the operation when the optical signal ONU1 and the optical signal ONU2 are continuously received in the timing chart shown in FIG. After receiving the optical signal ONU1, changes in the multiplier M, the APD current Iapd, the TIA gain Gain of the current-voltage conversion amplifier 3, and the output voltage signal Vout are shown in FIGS. 3 (b) and Vout, respectively, according to the light intensity of the optical signal ONU2. 3 (c), FIG. 3 (d) and FIG. 3 (e).
 まずは、図3を用いて、光受信器100のバースト信号受信回路の動作について説明する。
 図3に示すように、受光素子1が光強度閾値Pmax以下となる光強度を有する光信号ONU1を受信した後、光信号ONU1の光強度がより強く、光強度閾値Pmaxを超過する光強度を有する光信号ONU2を受信する。
 光信号ONU2を受信した際に、光信号ONU2の光強度Pinに対応するAPD電流Iapdが高くなり、APD電流Iapdに比例する第1モニタ電流Imon1、第2モニタ電流Imon2も高い値になる。第1モニタ電流Imon1、第2モニタ電流Imon2から変換された2つの電圧間の電位差は光強度閾値Pmaxに対応する電圧閾値Vmaxを超過することになる。光信号の光強度Pinが光強度閾値Pmaxを超過することと判断し、電流検知回路8は第1トランジスタ6がON状態になるように制御し、第2経路17から第1経路16に切り替える。バイアス電圧昇圧回路2は自己バイアス抵抗RおよびインダクタLを並列に接続した第1経路16から受光素子1にバイアス電圧を印加する。
First, the operation of the burst signal receiving circuit of the optical receiver 100 will be described with reference to FIG.
As shown in FIG. 3, after the light receiving element 1 receives the light signal ONU1 having a light intensity equal to or lower than the light intensity threshold value Pmax, the light intensity of the light signal ONU1 is stronger and the light intensity exceeds the light intensity threshold value Pmax. Receives the optical signal ONU2 to have.
When the optical signal ONU2 is received, the APD current Iapd corresponding to the light intensity Pin of the optical signal ONU2 becomes high, and the first monitor current Imon1 and the second monitor current Imon2, which are proportional to the APD current Iapd, also become high values. The potential difference between the two voltages converted from the first monitor current Imon1 and the second monitor current Imon2 exceeds the voltage threshold Vmax corresponding to the light intensity threshold Pmax. It is determined that the light intensity Pin of the light signal exceeds the light intensity threshold value Pmax, and the current detection circuit 8 controls the first transistor 6 to be in the ON state, and switches from the second path 17 to the first path 16. The bias voltage booster circuit 2 applies a bias voltage to the light receiving element 1 from the first path 16 in which the self-bias resistor R and the inductor L are connected in parallel.
 光信号ONU2を受信した時点X2から、急激な電流増加に対してインダクタLは自己バイアス抵抗Rに比べてインピーダンスが高くなる傾向を示すため、バイアス電圧昇圧回路2から受光素子1に印加されたバイアス電圧は自己バイアス抵抗Rによって低下する。時間経過と共にインダクタLのインピーダンスは小さくなるため、受光素子1に印加するバイアス電圧は徐々に光信号ONU2を受信した直後の状態に遷移する。インダクタLのインピーダンスが自己バイアス抵抗Rより小さくなるのに伴い、バイアス電圧が低下から急激に増加する方向へ変わる。 Since the inductor L tends to have a higher impedance than the self-bias resistor R with respect to a sudden increase in current from the time X2 when the optical signal ONU2 is received, the bias applied to the light receiving element 1 from the bias voltage booster circuit 2 The voltage is reduced by the self-bias resistor R. Since the impedance of the inductor L decreases with the passage of time, the bias voltage applied to the light receiving element 1 gradually transitions to the state immediately after receiving the optical signal ONU2. As the impedance of the inductor L becomes smaller than the self-bias resistor R, the bias voltage changes from a decrease to a rapid increase.
 増倍率Mはバイアス電圧に依存する。図3(b)に増倍率Mの変化を示す。図3(b)において、実線で示す増倍率M1は、第1経路16によりオーバヘッド201内において変化が収束する増倍率の応答イメージである。光信号ONU2を受信したX2から受信回路の動作安定したY2までのオーバヘッド201において、増倍率M1は、一旦バイアス電圧の低下によって低下する。時間経過と共にインダクタLのインピーダンスは小さくなり、オーバヘッド201内のZ2から増倍率M1が低下から増加する方向へ変わる。すなわち、オーバヘッド201のX2からZ2においては増倍率M1が低下する状態となり、Z2からY2においては増倍率M1が増加する状態となる。オーバヘッド201後のデータ202において、増倍率M1は、光信号ONU2を受信する前と同様に安定した値になる。このように、バイアス電圧の変化と共に増倍率M1は光信号ONU2を受信した直後に低下し、また低下から急激に増加する特性となり、増倍率M1の変化はオーバヘッド201内で収束できる。
 第1経路16の自己バイアス抵抗RとインダクタLを並列に接続することにより、バイアス電圧の応答時間を短くし、バイアス電圧に依存する増倍率の変化時間も短縮させることができる。
The magnification M depends on the bias voltage. FIG. 3B shows the change in the magnification M. In FIG. 3B, the magnification M1 shown by the solid line is a response image of the magnification in which the change converges in the overhead 201 by the first path 16. In the overhead 201 from X2 that received the optical signal ONU2 to Y2 that the operation of the receiving circuit is stable, the multiplying factor M1 is once lowered by the decrease of the bias voltage. With the passage of time, the impedance of the inductor L decreases, and the magnification M1 changes from decreasing to increasing from Z2 in the overhead 201. That is, the magnification M1 decreases from X2 to Z2 of the overhead 201, and the magnification M1 increases from Z2 to Y2. In the data 202 after the overhead 201, the magnification M1 becomes a stable value as before receiving the optical signal ONU2. As described above, the magnification M1 decreases immediately after receiving the optical signal ONU2 with the change of the bias voltage, and has a characteristic of rapidly increasing from the decrease, and the change of the magnification M1 can be converged within the overhead 201.
By connecting the self-bias resistor R of the first path 16 and the inductor L in parallel, the response time of the bias voltage can be shortened, and the change time of the multiplication factor depending on the bias voltage can also be shortened.
 オーバヘッド201内において、バイアス電圧が低下から増加へ逆転する時点Z2はインダクタLのインピーダンスと自己バイアス抵抗Rが同値になる時点でもある。インダクタLのインピーダンスと自己バイアス抵抗Rとの設定値によって、バイアス電圧が低下から増加へ逆転するZ2の時間位置を変動させ、バイアス電圧の応答を加速させることによりオーバヘッド内に収束させることが確保できる。 In the overhead 201, the time point Z2 when the bias voltage reverses from the decrease to the increase is also the time point when the impedance of the inductor L and the self-bias resistance R become the same value. Depending on the set values of the impedance of the inductor L and the self-bias resistor R, the time position of Z2 at which the bias voltage reverses from a decrease to an increase is changed, and the response of the bias voltage is accelerated to ensure convergence in the overhead. ..
 なお、図3(b)において、破線で示す増倍率M2は、バイアス電圧昇圧回路2と受光素子1と間に自己バイアス抵抗を挿入してバイアス電圧を低下させる方法による増倍率の応答イメージである。増倍率M2は、バイアス電圧の低下に伴って低下するが、オーバヘッド内において変化が収束できず、Y2からW2のデータの先頭部の「A」においても変化し続くことになる。
 また、図3(b)のオーバヘッド201内における一点鎖線は、自己バイアス抵抗を挿入せず、バイアス電圧昇圧回路2と受光素子1を直接接続した場合における増倍率M3の応答イメージを示す。バイアス電圧を制御しないため、増倍率M3が変化しない。
In FIG. 3B, the magnification M2 shown by the broken line is a response image of the magnification by a method of inserting a self-bias resistor between the bias voltage booster circuit 2 and the light receiving element 1 to reduce the bias voltage. .. The Magnification M2 decreases as the bias voltage decreases, but the change cannot converge within the overhead, and the change continues even at the head portion "A" of the data from Y2 to W2.
Further, the alternate long and short dash line in the overhead 201 of FIG. 3B shows a response image of the multiplication factor M3 when the bias voltage booster circuit 2 and the light receiving element 1 are directly connected without inserting the self-bias resistor. Since the bias voltage is not controlled, the multiplying factor M3 does not change.
 図3(c)にAPD電流Iapdの変化を示す。図3(c)において、実線で示すAPD電流I1は、第1経路16によりオーバヘッド201内において変化が収束するAPD電流Iapdの応答イメージである。
 図3(c)に示すように、光強度閾値Pmaxを超過する光強度を有する光信号ONU2に対応してAPD電流I1が増加する。オーバヘッド201のX2からZ2の時間帯において、増倍率M1の低下に伴ってAPD電流I1は急激に増加せず、徐々に増加する特性を示す。時間経過と共にインダクタLのインピーダンスが小さくなるのに伴って、オーバヘッド201のZ2からY2の時間帯においてAPD電流I1は急激に増加する特性を示す。APD電流I1の変化はオーバヘッド201内に収束する特性を示す。
 なお、図3(c)において、破線で示すAPD電流I2は、バイアス電圧昇圧回路2と受光素子1と間に自己バイアス抵抗を挿入してバイアス電圧を低下させる方法によるAPD電流Iapdの応答イメージである。APD電流I2は、増倍率M2の低下に伴って急激に増加せず、徐々に増えるが、オーバヘッド内において変化が収束できず、Y2からW2のデータの先頭部の「A」においても変化し続くことになる。
 また、図3(c)のオーバヘッド201内において、一点鎖線で示すAPD電流I3は、自己バイアス抵抗を挿入せず、バイアス電圧昇圧回路2と受光素子1を直接接続した場合におけるAPD電流Iapdの応答イメージである。APD電流I3は、光信号ONU2を受信すると伴に急激に増加する。
FIG. 3 (c) shows the change in the APD current Iapd. In FIG. 3C, the solid line APD current I1 is a response image of the APD current Iapd whose change converges in the overhead 201 by the first path 16.
As shown in FIG. 3C, the APD current I1 increases in response to the optical signal ONU2 having a light intensity exceeding the light intensity threshold value Pmax. In the time zone from X2 to Z2 of the overhead 201, the APD current I1 does not increase sharply as the magnification M1 decreases, but gradually increases. As the impedance of the inductor L decreases with the passage of time, the APD current I1 exhibits a characteristic of rapidly increasing in the time zone from Z2 to Y2 of the overhead 201. The change in the APD current I1 exhibits a characteristic of converging within the overhead 201.
In FIG. 3C, the APD current I2 shown by the broken line is a response image of the APD current Iapd by a method of inserting a self-bias resistor between the bias voltage booster circuit 2 and the light receiving element 1 to lower the bias voltage. be. The APD current I2 does not increase sharply as the magnification M2 decreases, but gradually increases, but the change cannot converge within the overhead and continues to change at the head "A" of the data from Y2 to W2. It will be.
Further, in the overhead 201 of FIG. 3C, the APD current I3 shown by the alternate long and short dash line is the response of the APD current Iapd when the bias voltage booster circuit 2 and the light receiving element 1 are directly connected without inserting the self-bias resistor. It is an image. The APD current I3 increases sharply as the optical signal ONU2 is received.
 電流電圧変換増幅器3の利得GainはAPD電流Iapdの値に基づいて調整される。図3(d)に示すように、オーバヘッド201内において、利得GainはAPD電流Iapdの増加に従って、徐々に低下する特性を示す。 The gain Gain of the current-voltage conversion amplifier 3 is adjusted based on the value of the APD current Iapd. As shown in FIG. 3D, in the overhead 201, the gain Gain shows a characteristic that gradually decreases as the APD current Iapd increases.
 電流電圧変換増幅器3による出力電圧信号VoutはAPD電流Iapdおよび電流電圧変換増幅器3の利得Gainによって変化する。図3(e)において、実線で示す出力電圧信号V1は、第1経路16によりオーバヘッド201内に徐々に増加して収束する出力電圧信号Voutの応答イメージである。
 受光素子1が光強度閾値Pmaxを超過する光強度を有する光信号ONU2を受信した場合、出力電圧信号V1は図3(e)に示すように、光信号ONU2を受信した時点X2から徐々に増加する。APD電流I1の変化はオーバヘッド201内に収束するため、出力電圧信号V1の変化もオーバヘッド201内に収束する特性を示す。光信号ONU2を受信した直後に、電流電圧変換増幅器3の利得Gainがまだ高い状態であるが、第1経路16によりAPD電流I1が急激に増加しないようになっているため、出力電圧信号V1は急激に過大な出力となることはない。
 なお、図3(e)において、破線で示す出力電圧信号V2は、バイアス電圧昇圧回路2と受光素子1と間に自己バイアス抵抗を挿入してバイアス電圧を低下させる方法による出力電圧信号Voutの応答イメージである。出力電圧信号V2は、急激に過大な出力とはならないが、オーバヘッド内において変化が収束できず、Y2からW2のデータの先頭部の「A」においても変化し続くことになる。
 また、図3(e)のオーバヘッド201内において、一点鎖線で示す出力電圧信号V3は、自己バイアス抵抗を挿入せず、バイアス電圧昇圧回路2と受光素子1を直接接続した場合における急激に過大な出力となる出力電圧信号Voutの応答イメージである。
The output voltage signal Vout by the current-voltage conversion amplifier 3 changes depending on the APD current Iapd and the gain Gain of the current-voltage conversion amplifier 3. In FIG. 3E, the output voltage signal V1 shown by the solid line is a response image of the output voltage signal Vout that gradually increases and converges in the overhead 201 by the first path 16.
When the light receiving element 1 receives the optical signal ONU2 having a light intensity exceeding the light intensity threshold value Pmax, the output voltage signal V1 gradually increases from the time X2 when the optical signal ONU2 is received, as shown in FIG. 3 (e). do. Since the change in the APD current I1 converges in the overhead 201, the change in the output voltage signal V1 also converges in the overhead 201. Immediately after receiving the optical signal ONU2, the gain Gain of the current-voltage conversion amplifier 3 is still high, but since the APD current I1 is not rapidly increased by the first path 16, the output voltage signal V1 is The output does not suddenly become excessive.
In FIG. 3E, the output voltage signal V2 shown by the broken line is the response of the output voltage signal Vout by a method of inserting a self-bias resistor between the bias voltage booster circuit 2 and the light receiving element 1 to lower the bias voltage. It is an image. The output voltage signal V2 does not suddenly become an excessive output, but the change cannot converge in the overhead, and the change continues even at the head portion "A" of the data from Y2 to W2.
Further, in the overhead 201 of FIG. 3 (e), the output voltage signal V3 shown by the alternate long and short dash line is suddenly excessive when the bias voltage booster circuit 2 and the light receiving element 1 are directly connected without inserting the self-bias resistor. It is a response image of the output voltage signal Vout which becomes an output.
 ここで、実施の形態1に係る光受信器100のバースト信号受信回路により、光信号ONU1から光信号ONU2を受信する場合における増倍率M、APD電流Iapd、電流電圧変換増幅器3のTIA利得Gainおよび出力電圧信号Voutの応答について、図2と図3に同様な結果に示す。
 図2、図3に示すように、増倍率M、APD電流Iapd、および出力電圧信号Voutの変化はオーバヘッド201内に収束する特性となり、オーバヘッド201終了後のデータ202において、増倍率M、APD電流Iapd、利得Gainおよび出力電圧信号Voutはそれぞれ安定した値となる。
Here, the multiplication factor M, the APD current Iapd, the TIA gain Gain of the current-voltage conversion amplifier 3 and the TIA gain Gain when the optical signal ONU2 is received from the optical signal ONU1 by the burst signal receiving circuit of the optical receiver 100 according to the first embodiment. The response of the output voltage signal Vout is shown in the same results in FIGS. 2 and 3.
As shown in FIGS. 2 and 3, changes in the multiplication factor M, the APD current Iapd, and the output voltage signal Vout have a characteristic of converging within the overhead 201, and in the data 202 after the completion of the overhead 201, the multiplication factor M and the APD current Iapd, gain Gain, and output voltage signal Vout are stable values, respectively.
 次に、図2を用いて、光信号ONU2から光信号ONU5を受信する場合における増倍率M、APD電流Iapd、電流電圧変換増幅器3のTIA利得Gainおよび出力電圧信号Voutの変化を説明する。
 図2に示すように、受光素子1が光信号ONU2を受信した後、光信号ONU2の光強度がより弱く、光強度閾値Pmax以下となる光強度を有する光信号ONU3を受信する。光信号ONU3を受信した際に、光信号ONU2の受信した場合に比べて光信号ONU3の光強度に対応するAPD電流Iapdが低くなる。APD電流Iapdに比例する第1モニタ電流Imon1、第2モニタ電流Imon2も光信号ONU2の受信した場合に比べて低い値となる。第1モニタ電流Imon1、第2モニタ電流Imon2から変換された2つの電圧間の電位差は光強度閾値Pmaxに対応する電圧閾値Vmax以下になる。
 電流検知回路8は第2トランジスタ7がON状態になるように制御し、第1経路16に比べてインピーダンスが極めて小さい第2経路17に切り替える。
Next, with reference to FIG. 2, changes in the multiplication factor M, the APD current Iapd, the TIA gain Gain of the current-voltage conversion amplifier 3, and the output voltage signal Vout when the optical signal ONU5 is received from the optical signal ONU2 will be described.
As shown in FIG. 2, after the light receiving element 1 receives the light signal ONU2, the light intensity of the light signal ONU2 is weaker, and the light signal ONU3 having a light intensity equal to or lower than the light intensity threshold value Pmax is received. When the optical signal ONU3 is received, the APD current Iapd corresponding to the light intensity of the optical signal ONU3 is lower than that when the optical signal ONU2 is received. The first monitor current Imon1 and the second monitor current Imon2, which are proportional to the APD current Iapd, also have lower values than when the optical signal ONU2 is received. The potential difference between the two voltages converted from the first monitor current Imon1 and the second monitor current Imon2 is equal to or less than the voltage threshold Vmax corresponding to the light intensity threshold Pmax.
The current detection circuit 8 controls the second transistor 7 to be in the ON state, and switches to the second path 17, which has an extremely small impedance as compared with the first path 16.
 第2経路17を経過することにより、受光素子1に印加されたバイアス電圧を低下させないため、図2(b)に示すように増倍率Mも低下しないで維持される。
 図2(c)に示すように、光信号ONU2の光強度より弱い光信号ONU3を受光し、オーバヘッド301内において、APD電流Iapdは光信号ONU3の光強度に応じて低下する特性を示す。
 図2(d)に示すように、電流電圧変換増幅器3の利得GainはAPD電流Iapdの値に基づいて調整されるため、オーバヘッド301において、APD電流Iapdの低下に従って、徐々に増加する特性を示す。
 電流電圧変換増幅器3による出力電圧信号VoutはAPD電流Iapdと電流電圧変換増幅器3の利得Gainによって変化する。図2(e)に示すように、オーバヘッド301内において、出力電圧信号Voutは徐々に低下する特性を示す。
Since the bias voltage applied to the light receiving element 1 is not lowered by passing through the second path 17, the magnification M is also maintained without being lowered as shown in FIG. 2 (b).
As shown in FIG. 2C, the APD current Iapd receives a light signal ONU3 weaker than the light intensity of the light signal ONU2, and the APD current Iapd decreases according to the light intensity of the light signal ONU3 in the overhead 301.
As shown in FIG. 2D, since the gain Gain of the current-voltage conversion amplifier 3 is adjusted based on the value of the APD current Iapd, the overhead 301 shows a characteristic of gradually increasing as the APD current Iapd decreases. ..
The output voltage signal Vout by the current-voltage conversion amplifier 3 changes depending on the APD current Iapd and the gain Gain of the current-voltage conversion amplifier 3. As shown in FIG. 2E, the output voltage signal Vout shows a characteristic of gradually decreasing in the overhead 301.
 なお、オーバヘッド301終了後のデータ302において、増倍率M、APD電流Iapd、利得Gainおよび出力電圧信号Voutはそれぞれ安定した値となる。 In the data 302 after the end of the overhead 301, the magnification M, the APD current Iapd, the gain Gain, and the output voltage signal Vout are stable values, respectively.
 次に、受光素子1が光信号ONU3を受信した後、光信号ONU3の光強度がより強く、光強度閾値Pmaxを超過する光強度を有する光信号ONU4を受信する。
 光信号ONU4を受信した際に、光信号ONU4の光強度に対応するAPD電流Iapdが高くなり、APD電流Iapdに比例する第1モニタ電流Imon1、第2モニタ電流Imon2も高い値になる。第1モニタ電流Imon1、第2モニタ電流Imon2から変換された2つの電圧間の電位差は光強度閾値Pmaxに対応する電圧閾値Vmaxを超過することになる。
Next, after the light receiving element 1 receives the optical signal ONU3, the light receiving element 1 receives the optical signal ONU4 having a stronger light intensity and a light intensity exceeding the light intensity threshold value Pmax.
When the optical signal ONU4 is received, the APD current Iapd corresponding to the light intensity of the optical signal ONU4 becomes high, and the first monitor current Imon1 and the second monitor current Imon2, which are proportional to the APD current Iapd, also become high values. The potential difference between the two voltages converted from the first monitor current Imon1 and the second monitor current Imon2 exceeds the voltage threshold Vmax corresponding to the light intensity threshold Pmax.
 光信号ONU1から光信号ONU2を受信した場合と同様に、電流検知回路8は第1トランジスタ6がON状態になるように制御し、第2経路17から第1経路16に切り替える。
 バイアス電圧昇圧回路2は自己バイアス抵抗RおよびインダクタLを並列に接続した第1経路16から受光素子1にバイアス電圧を印加する。受光素子1に印加されたバイアス電圧は最初自己バイアス抵抗Rによって低下する。時間経過と共にインダクタLのインピーダンスは小さくなるため、受光素子1に印加するバイアス電圧は徐々に光信号ONU4を受信した直後の状態に遷移する。インダクタLのインピーダンスが自己バイアス抵抗Rより小さくなるのに伴い、バイアス電圧が低下から急激に増加する方向へ変わる。
Similar to the case where the optical signal ONU2 is received from the optical signal ONU1, the current detection circuit 8 controls the first transistor 6 to be in the ON state, and switches from the second path 17 to the first path 16.
The bias voltage booster circuit 2 applies a bias voltage to the light receiving element 1 from the first path 16 in which the self-bias resistor R and the inductor L are connected in parallel. The bias voltage applied to the light receiving element 1 is initially lowered by the self-bias resistor R. Since the impedance of the inductor L decreases with the passage of time, the bias voltage applied to the light receiving element 1 gradually transitions to the state immediately after receiving the optical signal ONU4. As the impedance of the inductor L becomes smaller than the self-bias resistor R, the bias voltage changes from a decrease to a rapid increase.
 増倍率Mはバイアス電圧の変化によって変化する。図2(b)に示すように、光信号ONU4を受信したX4から受信回路の動作安定したY4までのオーバヘッド401において、増倍率Mは、一旦バイアス電圧の低下によって低下する。時間経過と共にインダクタLのインピーダンスは小さくなり、オーバヘッド401内のZ4から増倍率Mが低下から増加する方向へ変わる。すなわち、オーバヘッド401のX4からZ4は増倍率Mが低下する状態となり、Z4からY4は増倍率Mが増加する状態となる。
 このように、第1経路16の自己バイアス抵抗RとインダクタLを並列に接続することにより、バイアス電圧を変化させる応答時間が短縮されるため、バイアス電圧の変化と共に増倍率Mの変化はオーバヘッド401内で収束することができる。
The multiplying factor M changes with a change in the bias voltage. As shown in FIG. 2B, in the overhead 401 from X4 which received the optical signal ONU4 to Y4 where the operation of the receiving circuit is stable, the magnification M is once lowered by the decrease of the bias voltage. With the passage of time, the impedance of the inductor L decreases, and the magnification M changes from decreasing to increasing from Z4 in the overhead 401. That is, X4 to Z4 of the overhead 401 are in a state in which the magnification M is decreased, and Z4 to Y4 are in a state in which the magnification M is increased.
By connecting the self-bias resistor R of the first path 16 and the inductor L in parallel in this way, the response time for changing the bias voltage is shortened, so that the change in the multiplication factor M changes with the change in the bias voltage overhead 401. Can converge within.
 図2(c)に示すように、オーバヘッド401のX4からZ4において、光信号ONU4に対応してAPD電流Iapdが増加するが、増倍率Mの低下に伴って急激に増加せず、徐々に増加する特性を示す。時間経過と共にインダクタLのインピーダンスが小さくなるのに伴って、オーバヘッド401のZ4からY4においてAPD電流Iapdは急激に増加する特性を示す。APD電流Iapdの変化はオーバヘッド401内に収束する特性を示す。 As shown in FIG. 2C, in X4 to Z4 of the overhead 401, the APD current Iapd increases in response to the optical signal ONU4, but does not increase sharply as the magnification M decreases, but gradually increases. Shows the characteristics of As the impedance of the inductor L decreases with the passage of time, the APD current Iapd shows a characteristic of rapidly increasing from Z4 to Y4 of the overhead 401. The change in APD current Iapd shows the characteristic of converging in the overhead 401.
 電流電圧変換増幅器3の利得GainはAPD電流Iapdの値に基づいて調整される。図2(d)に示すように、オーバヘッド401内において、利得GainはAPD電流Iapdの増加に従って、徐々に低下する特性を示す。 The gain Gain of the current-voltage conversion amplifier 3 is adjusted based on the value of the APD current Iapd. As shown in FIG. 2D, in the overhead 401, the gain Gain shows a characteristic that gradually decreases as the APD current Iapd increases.
 電流電圧変換増幅器3による出力電圧信号Voutは、図2(e)に示すように、光信号ONU4を受信した時点X4から徐々に増加する。出力電圧信号Voutの変化はオーバヘッド401内に収束する特性を示す。
 なお、オーバヘッド401終了後のデータ402において、増倍率M、APD電流Iapd、利得Gainおよび出力電圧信号Voutはそれぞれ安定した値となる。
As shown in FIG. 2E, the output voltage signal Vout by the current-voltage conversion amplifier 3 gradually increases from the time X4 when the optical signal ONU4 is received. The change in the output voltage signal Vout shows the characteristic of converging in the overhead 401.
In the data 402 after the end of the overhead 401, the magnification M, the APD current Iapd, the gain Gain, and the output voltage signal Vout are stable values, respectively.
 次に、受光素子1が光信号ONU4を受信した後、光信号ONU4の光強度がより弱いが、光強度閾値Pmaxを超過する光強度を有する光信号ONU5を受信する。
 光信号ONU5を受信した際に、光信号ONU5の光強度に対応するAPD電流Iapdに比例する第1モニタ電流Imon1、および第2モニタ電流Imon2を検知して電圧に変換する。第1モニタ電流Imon1、第2モニタ電流Imon2から変換された2つの電圧間の電位差は光強度閾値Pmaxに対応する電圧閾値Vmaxを超過することになる。
Next, after the light receiving element 1 receives the optical signal ONU4, the light receiving element 1 receives the optical signal ONU5 having a light intensity that is weaker but exceeds the light intensity threshold value Pmax.
When the optical signal ONU5 is received, the first monitor current Imon1 and the second monitor current Imon2, which are proportional to the APD current Iapd corresponding to the light intensity of the optical signal ONU5, are detected and converted into a voltage. The potential difference between the two voltages converted from the first monitor current Imon1 and the second monitor current Imon2 exceeds the voltage threshold Vmax corresponding to the light intensity threshold Pmax.
 電流検知回路8は第1トランジスタ6がON状態のままに制御し、バイアス電圧昇圧回路2は第1経路16に接続されたままとなるため、受光素子1に印加されたバイアス電圧は変化しない。
 図2(b)に示すように、光信号ONU5を受信したオーバヘッド501において、増倍率Mは、バイアス電圧とともに変化しない。
Since the current detection circuit 8 controls the first transistor 6 in the ON state and the bias voltage booster circuit 2 remains connected to the first path 16, the bias voltage applied to the light receiving element 1 does not change.
As shown in FIG. 2B, in the overhead 501 that received the optical signal ONU5, the multiplying factor M does not change with the bias voltage.
 APD電流Iapdは、図2(c)に示すように、光信号ONU5を受信した時点X5から光信号ONU5の光強度に対応して徐々に低下する。
 光強度閾値Pmaxを超過する光強度を有する光信号ONU4と光信号ONU5を受光し続けるため、図2(d)に示すように、前段の光信号ONU4の受光時に電流電圧変換増幅器3の利得Gainはすでに小さくなっているため、低い値で維持される特性を示す。したがって、APD電流Iapdが急激に増加せず、APD電流Iapdの変化もオーバヘッド501内に収束することが可能である。
As shown in FIG. 2C, the APD current Iapd gradually decreases from the time X5 when the optical signal ONU5 is received, in accordance with the light intensity of the optical signal ONU5.
In order to continue to receive the optical signal ONU4 and the optical signal ONU5 having the light intensity exceeding the light intensity threshold Pmax, as shown in FIG. Is already small, so it shows a characteristic that is maintained at a low value. Therefore, the APD current Iapd does not increase sharply, and the change in the APD current Iapd can converge within the overhead 501.
 また、図2(e)に示すように、APD電流Iapdの変化とともに、電流電圧変換増幅器3による出力電圧信号Voutは、光信号ONU5を受信した時点X5から徐々に低下する。出力電圧信号Voutの変化もオーバヘッド501内に収束する特性を示す。
 なお、オーバヘッド501終了後のデータ502において、増倍率M、APD電流Iapd、利得Gainおよび出力電圧信号Voutはそれぞれ安定した値となる。
Further, as shown in FIG. 2E, the output voltage signal Vout by the current-voltage conversion amplifier 3 gradually decreases from the time X5 when the optical signal ONU5 is received, as the APD current Iapd changes. The change in the output voltage signal Vout also shows the characteristic of converging within the overhead 501.
In the data 502 after the end of the overhead 501, the magnification M, the APD current Iapd, the gain Gain, and the output voltage signal Vout are stable values, respectively.
 実施の形態1に係る光受信器によれば、予め設定された光強度閾値に基づいて経路を切り替えることにより受光素子に印加するバイアス電圧を制御する。光強度閾値を超過する光強度を持つ光信号を受信した際に、バイアス電圧の応答時間を短くするように制御し、バイアス電圧に依存する受光素子の増倍率の変化時間を短縮させることにより、APDモジュールの受信感度の安定性を高めることができる。
 また、バイアス電圧制御部は光信号の光強度に応じて、スイッチ素子による第1経路と第2経路との切り替えを高速に行うことが可能であるため、急激に光強度が大幅に異なる光信号を続けて受信する際にも、バイアス電圧に依存する増倍率の変化をオーバヘッド内に収束させることが確保できるため、APDモジュールの受信感度の安定性を高めることができる。
According to the optical receiver according to the first embodiment, the bias voltage applied to the light receiving element is controlled by switching the path based on a preset light intensity threshold value. When an optical signal having a light intensity exceeding the light intensity threshold is received, the response time of the bias voltage is controlled to be shortened, and the change time of the magnification of the light receiving element depending on the bias voltage is shortened. The stability of the reception sensitivity of the APD module can be improved.
Further, since the bias voltage control unit can switch between the first path and the second path at high speed by the switch element according to the light intensity of the optical signal, the optical signal whose light intensity suddenly differs significantly. Since it is possible to ensure that the change in magnification depending on the bias voltage is converged within the overhead even when the light is continuously received, the stability of the reception sensitivity of the APD module can be improved.
実施の形態2.
 実施の形態2では、本開示の実施の形態1と同一の構成要素には同一の符号を使用し、同一または対応する部分についての説明は省略する。以下、図面を参照して、実施の形態2に係る光受信器200について説明する。
Embodiment 2.
In the second embodiment, the same reference numerals are used for the same components as those in the first embodiment of the present disclosure, and the description of the same or corresponding parts will be omitted. Hereinafter, the optical receiver 200 according to the second embodiment will be described with reference to the drawings.
 図4は実施の形態2に係る光受信器200の構成図である。図4に示すように、バースト信号受信回路で構成された光受信器200は、受信した光信号の光強度に対応した電流を生成する受光素子1と、受光素子1にバイアス電圧を供給するバイアス電圧昇圧回路2と、受光素子1で生成された電流を電圧に変換する電流電圧変換増幅器3と、バイアス電圧昇圧回路2と受光素子1とを接続し、自己バイアス抵抗RおよびインダクタLを並列に接続した第1経路16と、第1経路16に対して並列に接続され、第1経路16に比べてインピーダンスが極めて小さい第2経路17と、光信号の光強度に応じて、第1経路16または第2経路17を切り替えることにより、バイアス電圧を制御するバイアス電圧制御部21と、を有する。 FIG. 4 is a configuration diagram of the optical receiver 200 according to the second embodiment. As shown in FIG. 4, the optical receiver 200 configured by the burst signal receiving circuit has a light receiving element 1 that generates a current corresponding to the light intensity of the received optical signal and a bias that supplies a bias voltage to the light receiving element 1. The voltage booster circuit 2, the current-voltage conversion amplifier 3 that converts the current generated by the light receiving element 1 into a voltage, the bias voltage booster circuit 2 and the light receiving element 1 are connected, and the self-bias resistor R and the inductor L are connected in parallel. The connected first path 16 and the second path 17 which is connected in parallel to the first path 16 and whose impedance is extremely smaller than that of the first path 16 and the first path 16 according to the light intensity of the optical signal. Alternatively, it has a bias voltage control unit 21 that controls the bias voltage by switching the second path 17.
 また、第1経路16の開閉スイッチである第1トランジスタ6と、第2経路17の開閉スイッチである第2トランジスタ7とを有する。スイッチ素子である第1トランジスタ6と第2トランジスタ7との開閉を制御することにより、第1経路16と第2経路17との切り替えを行うため、高速での切り替えが可能である。 Further, it has a first transistor 6 which is an open / close switch of the first path 16 and a second transistor 7 which is an open / close switch of the second path 17. By controlling the opening and closing of the first transistor 6 and the second transistor 7, which are switch elements, the first path 16 and the second path 17 are switched, so that switching at high speed is possible.
 光信号の光強度は、局側光回線終端装置(OLT)と加入者側光回線終端装置(ONU)との間の距離により決定される。OLTとONUとの間の距離が短いほど、ONUから送信された光信号の光強度が強くなる。
 実施の形態2に係る光受信器200において、バイアス電圧制御部21は、ONU毎からOLTへ送信される光信号の光強度に関する情報が記憶されたメモリ9と、決定されたONUからOLTへの上り信号の送信タイミングに基づき、OLTの受信時間より前に、メモリ9に記憶された当該ONUの光強度に関する情報と予め設定された光強度閾値Pmaxとを比較することにより、第1経路16と第2経路17を切り替えるスイッチング制御部10とを有する。
 なお、実施の形態2に係る光受信器200においても、自己バイアス抵抗RおよびインダクタLを並列に接続した第1経路16に対して、第2経路17は抵抗が挿入されていない経路となる。
The optical intensity of an optical signal is determined by the distance between the station-side optical network unit (OLT) and the subscriber-side optical network unit (ONU). The shorter the distance between the OLT and the ONU, the stronger the light intensity of the optical signal transmitted from the ONU.
In the optical receiver 200 according to the second embodiment, the bias voltage control unit 21 transfers the memory 9 in which the information regarding the optical intensity of the optical signal transmitted from each ONU to the OLT is stored, and the determined ONU to the OLT. Based on the transmission timing of the uplink signal, the information on the light intensity of the ONU stored in the memory 9 and the preset light intensity threshold value Pmax are compared with the first path 16 before the reception time of the OLT. It has a switching control unit 10 for switching the second path 17.
Also in the optical receiver 200 according to the second embodiment, the second path 17 is a path in which no resistor is inserted with respect to the first path 16 in which the self-bias resistor R and the inductor L are connected in parallel.
 実施の形態2に係る光受信器200のバイアス電圧制御部21以外の構成要素は実施の形態1の光受信器100と同様である。
 バイアス電圧制御部21のスイッチング制御部10は、送信される光信号の光強度Pinと予め設定された光強度閾値Pmaxとを比較することにより、受光素子1に印加するバイアス電圧の経路を切り替える。光信号の光強度Pinが光強度閾値Pmaxを超過する場合は第1経路16に接続し、光信号の光強度Pinが光強度閾値Pmax以下の場合は第2経路17に接続することにより、バイアス電圧を制御する。
 すなわち、実施の形態1では、光信号の光強度閾値に対応する電圧閾値に基づいて、光強度の強弱を判定する。これに対して、実施の形態2では、ONU毎の光信号の光強度を記憶し、光強度閾値と比較することにより受信する予定の光強度の強弱を判定する。
The components other than the bias voltage control unit 21 of the optical receiver 200 according to the second embodiment are the same as those of the optical receiver 100 of the first embodiment.
The switching control unit 10 of the bias voltage control unit 21 switches the path of the bias voltage applied to the light receiving element 1 by comparing the light intensity Pin of the transmitted optical signal with the preset light intensity threshold value Pmax. When the light intensity Pin of the optical signal exceeds the light intensity threshold Pmax, it is connected to the first path 16, and when the light intensity Pin of the optical signal is equal to or less than the light intensity threshold Pmax, it is connected to the second path 17 to bias. Control the voltage.
That is, in the first embodiment, the intensity of the light intensity is determined based on the voltage threshold value corresponding to the light intensity threshold value of the optical signal. On the other hand, in the second embodiment, the light intensity of the light signal for each ONU is stored and compared with the light intensity threshold value to determine the strength of the light intensity to be received.
 また、実施の形態2に係る光受信器200では、決定されたONUからOLTへの上り信号の送信タイミングも予め決定されてメモリ9に記憶する。スイッチング制御部10は、ONU毎からOLTへの所定の送信タイミングに基づき、OLTの受信時間より前に、メモリ9に記憶された当該ONUの光強度に関する情報と光強度閾値Pmaxとを比較した結果により、スイッチング制御部10は第1経路16と第2経路17とを切り替えるように制御する。 Further, in the optical receiver 200 according to the second embodiment, the determined transmission timing of the uplink signal from the ONU to the OLT is also determined in advance and stored in the memory 9. The switching control unit 10 compares the information on the light intensity of the ONU stored in the memory 9 with the light intensity threshold value Pmax before the reception time of the OLT based on the predetermined transmission timing from each ONU to the OLT. As a result, the switching control unit 10 controls to switch between the first path 16 and the second path 17.
 実施の形態2に係る光受信器200のバースト信号受信回路では、バイアス電圧制御部21は、受信する光信号の光強度の変化に応じて、OLTの受信時間より前に、光強度Pinが予め設定された光強度閾値Pmaxを超過する場合は第1経路16に接続し、光強度Pinが光強度閾値Pmax以下の場合は第2経路17に接続するように、第1経路16と第2経路17とを切り替えることにより、バイアス電圧を制御する。
 このため、例えば、図2(a)に示す光信号ONU1、光信号ONU2、光信号ONU3、光信号ONU4および光信号ONU5を順に受信する際に、増倍率M、APD電流Iapd、電流電圧変換増幅器3のTIA利得Gainおよび出力電圧信号Voutの変化はそれぞれ図2(b)、図2(c)、図2(d)および図2(e)に示す応答イメージと同様になる。つまり、実施の形態2に係る光受信器200のバースト信号受信回路によって、図2と図3に示すように、各々の光信号に対するバイアス電圧の過度応答時間を短縮させ、増倍率M、APD電流Iapdおよび出力電圧信号Voutの変化は各々のオーバヘッド内に収束でき、オーバヘッド終了後のデータにおいてはそれぞれ安定した値となる特性となる。
In the burst signal receiving circuit of the optical receiver 200 according to the second embodiment, the bias voltage control unit 21 sets the light intensity Pin in advance before the OLT reception time according to the change in the light intensity of the received optical signal. The first path 16 and the second path are connected to the first path 16 when the set light intensity threshold value Pmax is exceeded, and connected to the second path 17 when the light intensity pin is equal to or less than the light intensity threshold value Pmax. The bias voltage is controlled by switching between 17 and 17.
Therefore, for example, when the optical signal ONU1, the optical signal ONU2, the optical signal ONU3, the optical signal ONU4, and the optical signal ONU5 shown in FIG. The changes in the TIA gain Gain and the output voltage signal Vout of No. 3 are the same as the response images shown in FIGS. 2 (b), 2 (c), 2 (d), and 2 (e), respectively. That is, as shown in FIGS. 2 and 3, the burst signal receiving circuit of the optical receiver 200 according to the second embodiment shortens the excessive response time of the bias voltage for each optical signal, and increases the magnification M and the APD current. The changes in Iapd and the output voltage signal Vout can be converged within each overhead, and the data after the overhead ends have the characteristics of stable values.
 実施の形態2に係る光受信器200のバースト信号受信回路では、実施の形態1と同様の効果を得ることができる。実施の形態1に係る光受信器のバースト信号受信回路におけるタイミングチャートと同様であるため、説明を省略する。 In the burst signal receiving circuit of the optical receiver 200 according to the second embodiment, the same effect as that of the first embodiment can be obtained. Since it is the same as the timing chart in the burst signal receiving circuit of the optical receiver according to the first embodiment, the description thereof will be omitted.
 実施の形態2に係る光受信器によれば、予め設定された光強度閾値に基づいて経路を切り替えることにより受光素子に印加するバイアス電圧を制御する。光強度閾値を超過する光強度を持つ光信号を受信した際に、バイアス電圧の応答時間を短くするように制御し、バイアス電圧に依存する受光素子の増倍率の変化時間を短縮させることにより、APDモジュールの受信感度の安定性を高めることができる。
 また、バイアス電圧制御部は光信号の光強度に応じて、ONUからOLTへの上り信号の送信タイミングに基づき、OLTの受信時間より前に、第1経路または第2経路を切り替えることにより、光強度が大幅に異なる光信号を続けて受信する際にも、バイアス電圧に依存する増倍率の変化をオーバヘッド内に収束させることが確保できるため、APDモジュールの受信感度の安定性を高めることができる。
According to the optical receiver according to the second embodiment, the bias voltage applied to the light receiving element is controlled by switching the path based on a preset light intensity threshold value. When an optical signal having a light intensity exceeding the light intensity threshold is received, the response time of the bias voltage is controlled to be shortened, and the change time of the magnification of the light receiving element depending on the bias voltage is shortened. The stability of the reception sensitivity of the APD module can be improved.
Further, the bias voltage control unit switches the first path or the second path before the reception time of the OLT based on the transmission timing of the uplink signal from the ONU to the OLT according to the light intensity of the optical signal. Even when optical signals with significantly different intensities are continuously received, it is possible to ensure that the change in magnification depending on the bias voltage is converged within the overhead, so that the stability of the reception sensitivity of the APD module can be improved. ..
 なお、以上の実施の形態に示した構成は、本開示の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本開示の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configuration shown in the above-described embodiment shows an example of the contents of the present disclosure, can be combined with another known technique, and is configured without departing from the gist of the present disclosure. It is also possible to omit or change a part of.
1 受光素子、2 バイアス電圧昇圧回路、3 電流電圧変換増幅器、4 第1カレントミラー回路、5 第2カレントミラー回路、6 第1トランジスタ、7 第2トランジスタ、8 電流検知回路、9 メモリ、10 スイッチング制御部、11、21 バイアス電圧制御部、16 第1経路、17 第2経路、100、200 光受信器 1 light receiving element, 2 bias voltage booster circuit, 3 current / voltage conversion amplifier, 4 1st current mirror circuit, 5 2nd current mirror circuit, 6 1st transistor, 7 2nd transistor, 8 current detection circuit, 9 memory, 10 switching Control unit, 11, 21 Bias voltage control unit, 16 1st path, 17 2nd path, 100, 200 Optical receiver

Claims (6)

  1.  受信した光信号の光強度に対応した電流を生成する受光素子と、
     前記受光素子にバイアス電圧を供給するバイアス電圧昇圧回路と、
     前記受光素子で生成された電流を電圧に変換する電流電圧変換増幅器と、
     前記バイアス電圧昇圧回路と前記受光素子とを接続し、自己バイアス抵抗RおよびインダクタLを並列に接続した第1経路と、
     前記第1経路に対して並列に接続され、前記第1経路に比べてインピーダンスが小さい第2経路と、
     前記光強度が予め設定された光強度閾値を超過する場合は前記第1経路に切り替え、前記光強度が前記光強度閾値以下の場合は前記第2経路に切り替えることにより、前記バイアス電圧を制御するバイアス電圧制御部と、
     を備える光受信器。
    A light receiving element that generates a current corresponding to the light intensity of the received light signal,
    A bias voltage booster circuit that supplies a bias voltage to the light receiving element,
    A current-voltage conversion amplifier that converts the current generated by the light-receiving element into a voltage,
    A first path in which the bias voltage booster circuit and the light receiving element are connected and the self-bias resistor R and the inductor L are connected in parallel.
    A second path, which is connected in parallel to the first path and has a lower impedance than the first path,
    The bias voltage is controlled by switching to the first path when the light intensity exceeds a preset light intensity threshold value, and switching to the second path when the light intensity is equal to or less than the light intensity threshold value. Bias voltage control unit and
    An optical receiver equipped with.
  2.  前記第1経路に開閉スイッチである第1トランジスタが設けられ、
     前記第2経路に開閉スイッチである第2トランジスタが設けられ、
     前記バイアス電圧制御部は、前記第1トランジスタと前記第2トランジスタとの開閉を制御することにより、前記第1経路と前記第2経路とを切り替えることを特徴とする請求項1に記載の光受信器。
    A first transistor, which is an open / close switch, is provided in the first path.
    A second transistor, which is an open / close switch, is provided in the second path.
    The optical reception according to claim 1, wherein the bias voltage control unit switches between the first path and the second path by controlling the opening and closing of the first transistor and the second transistor. vessel.
  3.  前記バイアス電圧制御部は、
     前記光強度閾値に対応して設けられた電圧閾値に基づいて、前記第1経路と前記第2経路とを切り替える電流検知回路を備えることを特徴とする請求項1または請求項2に記載の光受信器。
    The bias voltage control unit
    The light according to claim 1 or 2, wherein a current detection circuit for switching between the first path and the second path is provided based on a voltage threshold value provided corresponding to the light intensity threshold value. Receiver.
  4.  前記バイアス電圧制御部は、 
     前記光強度に応じて生成した電流に比例する第1モニタ電流を生成する第1カレントミラー回路と、
     前記第1モニタ電流に比例する電流である第2モニタ電流を生成する第2カレントミラー回路と、をさらに備え、
     前記電流検知回路は、前記第1モニタ電流および前記第2モニタ電流を検知してそれぞれ電圧に変換し、得られた2つの前記電圧の間の電位差と前記電圧閾値とを比較することにより、前記電位差が前記電圧閾値を超過する場合は、前記光強度が前記光強度閾値を超過することと判断して前記第1経路に切り替え、前記電位差が前記電圧閾値以下の場合は、前記光強度が前記光強度閾値以下であると判断して前記第2経路に切り替えることを特徴とする請求項3に記載の光受信器。
    The bias voltage control unit
    A first current mirror circuit that generates a first monitor current that is proportional to the current that is generated according to the light intensity, and
    A second current mirror circuit that generates a second monitor current, which is a current proportional to the first monitor current, is further provided.
    The current detection circuit detects the first monitor current and the second monitor current, converts them into voltages, respectively, and compares the potential difference between the two obtained voltages with the voltage threshold value. When the potential difference exceeds the voltage threshold, it is determined that the light intensity exceeds the light intensity threshold, and the path is switched to the first path. When the potential difference is equal to or less than the voltage threshold, the light intensity is said. The optical receiver according to claim 3, wherein the optical receiver is determined to be equal to or less than the light intensity threshold and switched to the second path.
  5.  前記バイアス電圧制御部は、
     加入者側光回線終端装置(ONU)毎から局側光回線終端装置(OLT)へ送信される光信号の光強度を記憶するメモリと、
     前記光強度と前記光強度閾値とを比較することにより前記第1経路と前記第2経路とを切り替えるスイッチング制御部と、
     を備えることを特徴とする請求項1または請求項2に記載の光受信器。
    The bias voltage control unit
    A memory that stores the optical intensity of the optical signal transmitted from each subscriber side optical network unit (ONU) to the station side optical network unit (OLT), and
    A switching control unit that switches between the first path and the second path by comparing the light intensity with the light intensity threshold value.
    The optical receiver according to claim 1 or 2, wherein the optical receiver comprises the above.
  6.  前記スイッチング制御部は、
     前記加入者側光回線終端装置(ONU)毎から前記局側光回線終端装置(OLT)への所定の送信タイミングに基づき、前記局側光回線終端装置(OLT)の受信時間より前に、前記メモリに記憶された前記光強度と前記光強度閾値とを比較することにより前記第1経路と前記第2経路とを切り替えることを特徴とする請求項5に記載の光受信器。
    The switching control unit
    Based on a predetermined transmission timing from each subscriber-side optical network unit (ONU) to the station-side optical network unit (OLT), the above is performed before the reception time of the station-side optical network unit (OLT). The optical receiver according to claim 5, wherein the first path and the second path are switched by comparing the light intensity stored in the memory with the light intensity threshold value.
PCT/JP2020/005123 2020-02-10 2020-02-10 Optical receiver WO2021161382A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/005123 WO2021161382A1 (en) 2020-02-10 2020-02-10 Optical receiver
JP2021577732A JP7248154B2 (en) 2020-02-10 2020-02-10 optical receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/005123 WO2021161382A1 (en) 2020-02-10 2020-02-10 Optical receiver

Publications (1)

Publication Number Publication Date
WO2021161382A1 true WO2021161382A1 (en) 2021-08-19

Family

ID=77292127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005123 WO2021161382A1 (en) 2020-02-10 2020-02-10 Optical receiver

Country Status (2)

Country Link
JP (1) JP7248154B2 (en)
WO (1) WO2021161382A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107794A (en) * 2012-11-29 2014-06-09 Mitsubishi Electric Corp Burst optical receiver
WO2014128986A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Burst-mode receiver, and method of bias voltage control for apd of burst-mode receiver
WO2017203620A1 (en) * 2016-05-25 2017-11-30 三菱電機株式会社 Burst light receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014107794A (en) * 2012-11-29 2014-06-09 Mitsubishi Electric Corp Burst optical receiver
WO2014128986A1 (en) * 2013-02-19 2014-08-28 三菱電機株式会社 Burst-mode receiver, and method of bias voltage control for apd of burst-mode receiver
WO2017203620A1 (en) * 2016-05-25 2017-11-30 三菱電機株式会社 Burst light receiver

Also Published As

Publication number Publication date
JP7248154B2 (en) 2023-03-29
JPWO2021161382A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
JP4935422B2 (en) Preamplifier and optical receiver using the same
US20100272448A1 (en) Optical burst signal receiving device
JP4969432B2 (en) PON system, optical signal receiving method, and OLT
JP2005006313A (en) Optical power equalizing apparatus for passive optical communication network
US7304543B2 (en) Burst-mode TIA (trans-impedance amplifier)
Nakamura et al. 1.25-Gb/s burst-mode receiver ICs with quick response for PON systems
US11750956B2 (en) Optical receiver
EP1355436B1 (en) Burst mode optical receiver generating a reset signal for an automatic threshold control device during inter-burst periods
Nishihara et al. A burst-mode 3R receiver for 10-Gbit/s PON systems with high sensitivity, wide dynamic range, and fast response
US9450542B2 (en) Preamplifier, optical receiver, optical termination device, and optical communication system
KR101519443B1 (en) Optical receiver
CN114175531B (en) Optical receiver and station-side device
WO2021161382A1 (en) Optical receiver
KR100547840B1 (en) Automatic Gain Control with Fast Settling Time
JP4809811B2 (en) Burst light receiving method and apparatus
Kimura 10-Gbit/s TDM-PON and over-40-Gbit/s WDM/TDM-PON systems with OPEX-effective burst-mode technologies
JP5588814B2 (en) Burst receiver, burst reception control method, and system
Nakamura et al. Burst-mode optical receiver ICs for broadband access networks
Nakanishi et al. High sensitivity APD burst-mode receiver for 10Gbit/s TDM-PON system
WO2019003491A1 (en) Home-side device, optical communication system, and method for adjusting transmission level of home-side device
WO2023169296A1 (en) Optical power control method and apparatus
Nakamura et al. 500-ps response AC-coupled burst-mode transmitter using baseline-wander common-mode-rejection technique for 10-Gbit/s-class PON systems
Breyne et al. 50G Burst-Mode Receiver Using Monolithic SOA-UTC and Burst-Mode TIA
CN116961777A (en) Optical receiver
Nakamura et al. A burst-mode optical receiver with high sensitivity using a PIN-PD for a 1.25 Gbit/s PON system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918230

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021577732

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918230

Country of ref document: EP

Kind code of ref document: A1