WO2021160137A1 - 信道状态信息的测量方法和装置 - Google Patents
信道状态信息的测量方法和装置 Download PDFInfo
- Publication number
- WO2021160137A1 WO2021160137A1 PCT/CN2021/076389 CN2021076389W WO2021160137A1 WO 2021160137 A1 WO2021160137 A1 WO 2021160137A1 CN 2021076389 W CN2021076389 W CN 2021076389W WO 2021160137 A1 WO2021160137 A1 WO 2021160137A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- csi
- subset
- report
- communication device
- information
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
- H04B17/345—Interference values
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/382—Monitoring; Testing of propagation channels for resource allocation, admission control or handover
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0048—Allocation of pilot signals, i.e. of signals known to the receiver
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signaling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/12—Wireless traffic scheduling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/54—Allocation or scheduling criteria for wireless resources based on quality criteria
- H04W72/542—Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
Definitions
- the embodiments of the present application relate to the field of wireless communication, and in particular, to a method and device for measuring channel state information.
- Fifth Generation (5 th generation, 5G) as compared to a major feature of the fourth generation mobile communication system (4 th generation, 4G) mobile communication system is to increase the high-reliability and low-latency communication (ultra-reliable and low- latency communications, URLLC) business support.
- URLLC ultra-reliable and low- latency communications
- a feasible method is to improve the accuracy of channel measurement and interference measurement, so that network equipment can ensure the delay and reliability of data transmission. Under the premise of improving the data transmission efficiency, thereby increasing the system capacity.
- This application provides a method and device for CSI measurement, which can effectively reduce the number of configured ZP CSI-RS or NZP CSI-RS, and improve resource utilization.
- this application provides a method for CSI measurement.
- the terminal device receives the configuration information of the first CSI report from the network device.
- the first CSI report is associated with the first ZP CSI-RS subset.
- the first ZP CSI-RS subset includes Z1 ZP CSI-RS, and Z1 is greater than or equal to 2. Integer. Further, the terminal device measures the first CSI according to the first ZP CSI-RS subset and sends the first CSI to the network device.
- Z1 ZP CSI-RSs correspond to Z1 interferences on a one-to-one basis.
- the terminal device measures Z1 interferences according to Z1 ZP-CSI-RS, and calculates the second CSI according to Z1 interferences.
- this application provides a method for CSI measurement.
- the network device sends the configuration information of the first CSI report to the terminal device.
- the first CSI report is associated with the first ZP CSI-RS subset.
- the first ZP CSI-RS subset includes Z1 ZP CSI-RS, and Z1 is greater than or equal to 2. Integer.
- the network device receives the first CSI from the terminal device, where the first CSI is measured according to the first ZP CSI-RS subset.
- Z1 ZP CSI-RSs correspond to Z1 interferences on a one-to-one basis.
- this application provides a method for CSI measurement.
- the terminal device receives the ZP CSI-RS set information and the configuration information of the second CSI report from the network device. Further, the terminal device also receives second indication information from the network device, the second indication information is used to determine the second ZP CSI-RS subset in the ZP CSI-RS set, and the second ZP CSI-RS subset includes Z2 ZP CSI-RS, Z2 is a positive integer.
- the terminal device measures the second CSI according to the second ZP CSI-RS subset and sends the second CSI to the network device.
- Z2 ZP CSI-RSs correspond to Z2 interferences in a one-to-one correspondence.
- the terminal device measures Z2 interferences according to Z2 ZP-CSI-RS, and calculates the second CSI according to Z2 interferences.
- the terminal device sends the second CSI to the network device at time unit t1, where t1 is determined according to the offset value information in the configuration information of the second CSI report.
- the terminal device when the time interval between t1 and t2 is greater than or equal to the time threshold, the terminal device measures the second CSI according to the second ZP CSI-RS subset, where t1 is the terminal The time unit for the device to send the second CSI to the network device, and t2 is the time unit for the terminal device to receive the second indication information.
- this application provides a method for CSI measurement.
- the network device sends the ZP CSI-RS set information and the configuration information of the second CSI report to the terminal device, and further sends second indication information to the terminal device.
- the second indication information is used to determine the second in the ZP CSI-RS set ZP CSI-RS subset, the second ZP CSI-RS subset includes Z2 ZP CSI-RS, Z2 is a positive integer.
- the network device receives the second CSI from the terminal device, where the second CSI is measured according to the second ZP CSI-RS subset.
- Z2 ZP CSI-RSs correspond to Z2 interferences in a one-to-one correspondence.
- the network device receives the second CSI from the terminal device at time unit t1, where t1 is determined according to the offset value.
- the network device sends the offset value information to the terminal device through the configuration information reported by the second CSI.
- the second CSI is measured according to the second ZP CSI-RS subset, where t1 is The time unit at which the network device receives the second CSI, and t2 is the time unit at which the network device sends the second indication information.
- Z2 ZP CSI-RSs correspond to Z2 interferences in a one-to-one correspondence.
- the second indication information is carried in the DCI.
- the second indication information indicates the index of the second ZP CSI-RS subset in the ZP CSI-RS set.
- the second indication information indicates the index of each ZP CSI-RS in the ZP CSI-RS set in the second ZP CSI-RS subset.
- the second indication information indicates a sequence of interference patterns
- the sequence of interference patterns includes Q elements
- Q is a repetition period of the interference pattern
- Q is a positive integer.
- Each element in the interference pattern sequence corresponds to an interference pattern on a time unit.
- the ZP CSI-RS in the ZP CSI-RS subset can correspond to neighboring cells one-to-one, so the number of configured ZP CSI-RS can be greatly reduced , Improve the utilization of resources.
- this application provides a method for CSI measurement.
- the terminal device receives the configuration information of the third CSI report from the network device, and determines the first NZP CSI-RS subset according to the configuration information of the third CSI report, where the first NZP CSI-RS subset includes N NZP CSI-RS- RS, N is a positive integer. Further, the terminal device measures the third CSI according to the first NZP CSI-RS subset and sends the third CSI to the network device.
- N NZP CSI-RSs correspond to N interferences in a one-to-one correspondence.
- the terminal device measures the N interferences according to the N NZP-CSI-RSs, and calculates the third CSI according to the N interferences.
- this application provides a method for CSI measurement.
- the network device sends the configuration information of the third CSI report to the terminal device. Further, the network device receives the third CSI from the terminal device, the third CSI is measured according to the first NZP CSI-RS subset, and the first NZP CSI-RS subset is determined according to the configuration information of the third CSI report .
- the N NZP CSI-RSs correspond to the N interferences on a one-to-one basis.
- the third CSI report is associated with the first NZP CSI-RS subset and the first parameter, where the first parameter indicates whether the first NZP CSI-RS subset is It is only used to measure adjacent cell interference.
- the third CSI report is associated with the first NZP CSI-RS subset and the second NZP CSI-RS subset, where the first NZP CSI-RS subset It is only used to measure adjacent cell interference.
- the first NZP CSI-RS subset is a subset of the NZP CSI-RS set
- the third CSI report is associated with the NZP CSI-RS set
- Each NZP CSI-RS in the set is associated with a second parameter, and the second parameter indicates whether the corresponding NZP CSI-RS is only used for measuring adjacent cell interference.
- the NZP CSI-RS in the NZP CSI-RS subset can correspond to neighboring cells one-to-one. Therefore, the number of configured NZP CSI-RS can be greatly reduced, and the number of NZP CSI-RSs can be reduced. Resource overhead, more time-frequency resources can be used for data transmission, which improves the spectrum efficiency of the system.
- a communication device which includes functional modules for implementing the foregoing first aspect or any possible implementation of the first aspect; or including the foregoing third aspect or the third aspect.
- a communication device which includes a functional module used to implement the foregoing second aspect or any possible implementation of the second aspect; or includes a communication device used to implement the foregoing fourth aspect or fourth aspect.
- a communication device including a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
- the processor is used to implement the foregoing first aspect or any possible implementation method of the first aspect through a logic circuit or executing code instructions; or is used to implement the foregoing third aspect Or a method in any possible implementation manner of the third aspect; or a method used to implement the foregoing fifth aspect or any possible implementation manner of the fifth aspect.
- a communication device including a processor and an interface circuit, the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or transfer signals from the processor
- the processor is sent to another communication device other than the communication device, and the processor is used to implement the foregoing second aspect or the method in any possible implementation manner of the second aspect through a logic circuit or executing code instructions; or is used to implement the foregoing fourth aspect.
- a computer-readable storage medium stores a computer program or instruction.
- the computer program or instruction When executed, it implements the first aspect or any of the first aspects.
- a computer-readable storage medium stores a computer program or instruction.
- the computer program or instruction When executed, it implements the second aspect or any of the second aspects.
- the thirteenth aspect provides a computer program or computer program product containing instructions that, when the instructions are executed, implement the first aspect or any possible implementation of the first aspect; or implement the aforementioned third aspect Or the method in any possible implementation manner of the third aspect; or the method in any possible implementation manner of the foregoing fifth aspect or the fifth aspect.
- the fourteenth aspect provides a computer program or computer program product containing instructions that, when the instructions are executed, implement the second aspect or the method in any possible implementation manner of the second aspect; or implement the foregoing fourth aspect Or the method in any possible implementation manner of the fourth aspect; or the method in any possible implementation manner of the aforementioned sixth aspect or the sixth aspect.
- a communication system including the communication device of the seventh or ninth aspect, and the communication device of the eighth or tenth aspect.
- FIG. 1 is a schematic diagram of the architecture of a mobile communication system applied in an embodiment of this application;
- FIG. 2 is a schematic flowchart of a CSI measurement method provided by this application.
- FIG. 3 is a schematic flowchart of another CSI measurement method provided by this application.
- FIG. 4 is a schematic flowchart of a CSI measurement method provided by this application.
- FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the application.
- Fig. 6 is a schematic structural diagram of another communication device provided by an embodiment of the application.
- FIG. 1 is a schematic diagram of the architecture of a mobile communication system applied in an embodiment of the present application.
- the mobile communication system includes a core network device 110, a wireless access network device 120, and at least one terminal device (the terminal device 130 and the terminal device 140 in FIG. 1).
- the terminal device is connected to the wireless access network device in a wireless manner
- the wireless access network device is connected to the core network device in a wireless or wired manner.
- the core network device and the wireless access network device can be separate and different physical devices, or it can integrate the functions of the core network device and the logical function of the wireless access network device on the same physical device, or it can be a physical device. It integrates the functions of part of the core network equipment and part of the wireless access network equipment.
- the terminal device can be a fixed location, or it can be movable.
- Fig. 1 is only a schematic diagram.
- the communication system may also include other network equipment, such as wireless relay equipment and wireless backhaul equipment, which are not shown in Fig. 1.
- the embodiments of the present application do not limit the number of core network equipment, radio access network equipment, and terminal equipment included in the mobile communication system.
- the terminal equipment is connected to the wireless access network equipment in a wireless manner, thereby accessing the mobile communication system.
- the radio access network equipment can be a base station (base station), evolved base station (evolved NodeB, eNodeB), transmission reception point (TRP), next generation NodeB (gNB) in a 5G mobile communication system ,
- the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also be a module or unit that completes part of the functions of the base station, for example, it can be a centralized unit (CU) or a distributed unit (distributed unit, DU).
- the embodiment of the present application does not limit the specific technology and specific device form adopted by the radio access network device.
- wireless access network equipment is referred to as network equipment. Unless otherwise specified, network equipment refers to wireless access network equipment.
- the terminal device may also be called a terminal, user equipment (UE), mobile station, mobile terminal, and so on.
- Terminal equipment can be mobile phones, tablet computers, computers with wireless transceiver functions, virtual reality terminal equipment, augmented reality terminal equipment, wireless terminals in industrial control, wireless terminals in unmanned driving, wireless terminals in remote surgery, and smart grids Wireless terminals in the Internet, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and so on.
- the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
- Network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on airborne aircraft, balloons, and satellites.
- the embodiments of the present application do not limit the application scenarios of network equipment and terminal equipment.
- Network equipment and terminal equipment can communicate through licensed spectrum, or communicate through unlicensed spectrum, or communicate through licensed spectrum and unlicensed spectrum at the same time.
- Network equipment and terminal equipment can communicate through a frequency spectrum below 6 GHz (gigahertz, GHz), communicate through a frequency spectrum above 6 GHz, and communicate using a frequency spectrum below 6 GHz and a frequency spectrum above 6 GHz at the same time.
- the embodiment of the present application does not limit the spectrum resource used between the network device and the terminal device.
- the execution body may be a network device and a terminal device, and may also be a module (such as a chip) applied to a network device and a module (such as a chip) applied to a terminal device.
- this application uses a base station as an example of a network device and a UE as an example of a terminal device for description.
- the UE In order for the UE to communicate with the base station, it needs to establish a wireless connection with a cell controlled by the base station.
- the cell that has established a wireless connection with the UE is called the serving cell of the UE.
- the serving cell When the UE communicates with the serving cell, it will also be interfered by signals from neighboring cells.
- the neighboring cell interference In a general communication system, it is usually difficult to predict the neighboring cell interference during actual data transmission based on the measured neighboring cell interference, because the size of the neighboring cell interference is related to the traffic volume of the neighboring cell and the UE communicating with the neighboring cell. Channel quality is related. The traffic volume of the neighboring cell and the channel quality of the UE communicating with the neighboring cell are all time-varying, and it is difficult to accurately predict.
- a typical application scenario of URLLC business is used for automated control in the industrial control field.
- the environment is relatively closed, and the arrival of business data is periodic and definite. That is to say, when there is data to be transmitted in each cell, it is known to which UE it is to be transmitted. Using this prior information, a more accurate interference measurement and feedback mechanism can be designed.
- CSI-RS downlink channel state information-reference signal
- NZP non-zero-power
- ZP zero-power
- the base station When the NZP CSI-RS is used for channel measurement, the base station will notify the UE of the detailed configuration information of the NZP CSI-RS, so that the UE can measure the characteristics of the wireless channel experienced by the NZP CSI-RS.
- the base station When the ZP CSI-RS is used for interference measurement, the base station will notify the UE on which ZP CSI-RS to measure the neighboring cell interference, and the UE will assume that the serving cell does not send any signal on the time-frequency resource corresponding to this ZP CSI-RS. At this time, all the UE receives are interference.
- UE can first measure the interference between multi-user multiple-input multiple-output (MU-MIMO) paired UEs in the cell based on NZP CSI-RS , And then the UE subtracts the interference between the UEs from the total received power to obtain the interference between the cells.
- MU-MIMO multi-user multiple-input multiple-output
- CSI-RS transmission There are three modes of CSI-RS transmission: periodic transmission, semi-continuous transmission and aperiodic transmission.
- the base station sends the CSI-RS once every period T1.
- the base station After the base station configures relevant parameters for the UE, it can be notified through downlink control information (DCI) or medium access control control element (MAC CE)
- DCI downlink control information
- MAC CE medium access control control element
- the UE base station will send the CSI-RS for the first time, and the base station will send the CSI-RS once every period T1 after the CSI-RS is sent for the first time.
- the base station can notify the UE through DCI or MAC CE for every CSI-RS transmission.
- the unit of T1 can be a time domain symbol, a time slot, or other time units.
- CSI can have a variety of different report quantities (report quantity), for example, it can include channel quality indicator (CQI), precoding matrix indicator (precoding matrix indicator, PMI), and rank indicator (rank indicator, RI). at least one.
- report quantity can include channel quality indicator (CQI), precoding matrix indicator (precoding matrix indicator, PMI), and rank indicator (rank indicator, RI). at least one.
- the type of CSI report can also be called the CSI feedback mode, and there can be three different feedback modes: including periodic feedback, the corresponding CSI is called periodic CSI (P-CSI); semi-continuous feedback, the corresponding CSI is called Semi-persistent CSI (SP-CSI); aperiodic feedback, the corresponding CSI is called aperiodic CSI (A-CSI).
- P-CSI periodic CSI
- SP-CSI Semi-persistent CSI
- A-CSI aperiodic feedback
- the corresponding CSI is called aperiodic CSI
- P-CSI the UE feeds back once every period T2
- SP-CSI after the base station has configured relevant parameters, the base station can trigger CSI feedback through DCI or MAC CE, and the UE feeds back once every period T2; for A-CSI , Every CSI feedback can be triggered by the base station through DCI or MAC CE.
- the unit of T2 can be a time domain symbol, a time slot, or other time units.
- the time domain symbol may be an orthogonal frequency division multiplexing (OFDM) symbol, or may be a discrete Fourier transform spread-spectrum OFDM (Discrete Fourier Transform-spread-OFDM, DFT). -s-OFDM) symbol.
- OFDM orthogonal frequency division multiplexing
- DFT discrete Fourier Transform-spread-OFDM
- -s-OFDM discrete Fourier transform spread-spectrum OFDM
- FIG. 2 is a schematic flowchart of a CSI measurement method provided by this application.
- each ZP CSI-RS corresponds to one interference
- one interference corresponds to one interference source or a group of interference sources.
- each ZP CSI-RS corresponds to an interfering cell or a set of interfering cells.
- the number of ZP CSI-RS is proportional to the number of neighboring cells, thereby effectively reducing the number of ZP CSI-RS and improving resource utilization.
- the execution subject of the method may be the base station and the UE, and may also be a module (for example, a chip) applied to the base station or the UE.
- the base station sends configuration information of the first CSI report to the UE.
- the first CSI report is associated with a first ZP CSI-RS subset, and the first ZP CSI-RS subset includes Z1 ZP CSI-RS.
- Z1 is 1 or an integer greater than or equal to 2.
- the UE receives the configuration information of the first CSI report.
- the above-mentioned Z1 ZP CSI-RS and Z1 interference correspond one-to-one.
- Each of the interferences in Z1 can come from one interference source or from a group of interference sources.
- one ZP CSI-RS corresponds to one interference source or corresponds to a group of interference sources.
- the signal of the neighboring cell is a kind of interference. Therefore, the interference source here can be a neighboring cell, and a group of interference sources can be a group of neighboring cells.
- a ZP CSI-RS corresponds to a neighboring cell or corresponds to an interference signal from a neighboring cell as an example for description.
- the first ZP CSI-RS is a ZP CSI-RS in the first ZP CSI-RS subset.
- the serving cell of UE1 is cell 1
- the serving cell of UE2 is cell 2
- the serving cell of UE3 is cell 3, and the coverage areas of cell 1, cell 2, and cell 3 are adjacent.
- the first ZP CSI-RS corresponds to cell 2.
- the first ZP CSI-RS can also be understood as corresponding to the interference signal from cell 2.
- UE1 and UE3 can simultaneously measure the interference signal strength of cell 2 at the time-frequency position corresponding to the first ZP CSI-RS.
- the number of ZP CSI-RS in the system can be made equal to the number of cells in the system, and the number of ZP CSI-RS can be greatly reduced, thereby reducing the resources reserved for ZP CSI-RS and increasing The resource utilization of the system. If the cells are grouped, that is, one ZP CSI-RS corresponds to a group of cells, then the system's demand for ZP CSI-RS can be further reduced. Taking neighboring cell interference as an example, the Z1 neighboring cells corresponding to the Z1 ZP CSI-RS may be Z1 among the Z neighboring cells, and Z is an integer greater than or equal to Z1.
- the base station can determine the change of the interference mode on the time axis by predicting the arrival model of the neighboring cell service data, and configure multiple CSIs for the UE Report, each CSI report is associated with a ZP CSI-RS subset, corresponding to different time units. Since the interference is relatively fixed and predictable in the closed environment of industrial control, the interference pattern is likely to be periodic. For the periodic interference mode, the number of CSI reports configured by the base station for the UE is equal to the period of the interference mode. For example, if the interference pattern period is 4 time slots, the base station may configure 4 CSI reports for the UE, which correspond to the four ZP CSI-RS subsets one-to-one.
- the so-called interference mode refers to how many neighboring cells the UE in the cell will be interfered with in a certain time unit.
- S220 The UE measures the first CSI according to the first ZP CSI-RS subset.
- the UE may measure the Z1 interferences corresponding to the Z1 ZP CSI-RSs according to the Z1 ZP CSI-RSs in the first ZP CSI-RS subset, and then calculate the first CSI according to the measured Z1 interferences. For example, the CQI is calculated based on the sum of Z1 interferences.
- the UE in time unit 1, in addition to the serving cell, there are also Z1 neighboring cells (neighboring cell 1, neighboring cell 2... and neighboring cell Z1) that need to send data, then the UE can follow the configured Z1 ZP CSI -RS measures the interference levels of these Z1 neighboring cells respectively, so that CQI can be calculated based on these Z1 interferences and reported to the base station, assuming the value of CQI is CQI1.
- the interference scenario of time unit 2 after time unit 1 is the same as time unit 1, that is, in addition to the serving cell, there are also Z1 neighboring cells (neighboring cell 1, neighboring cell 2... and neighboring cell Z1) that have data to send, that is The interference pattern of time unit 2 is the same as that of time unit 1.
- the base station can schedule the data of the time unit 2 according to the CQI1 corresponding to the time unit 1, and select an appropriate transmission block size and modulation method for data transmission.
- the unit of the time unit can be a time domain symbol, a time slot (slot), or a sub-slot or mini-slot.
- the application is not limited.
- the UE sends the first CSI to the base station, which may also be referred to as the UE sending the first CSI report to the base station, or is referred to as the UE reporting the first CSI to the base station.
- the base station receives the first CSI, which may also be referred to as the base station receiving the first CSI report.
- CSI and CSI reports can generally be equivalent, for example, sending CSI and sending CSI reports can be equivalent.
- the CSI report and CSI appear in the same sentence, the CSI report can be understood as a signaling or message containing CSI.
- the configuration information of the first CSI report may include the type of the first CSI report.
- each ZP CSI-RS in the first ZP CSI-RS subset is sent periodically.
- each ZP CSI-RS in the first ZP CSI-RS subset may be sent periodically or semi-continuously.
- each ZP CSI-RS in the first ZP CSI-RS subset may be sent periodically, semi-continuously, or aperiodicly.
- the configuration information of the first CSI report may also include information about the period and offset value of the first CSI report. Specifically, for P-CSI and SP-CSI, the configuration information of the first CSI report may also include the period of the first CSI report. For SP-CSI and A-CSI, the configuration information of the first CSI report may also include offset value information. For SP-CSI, the offset value information can be used to determine the time domain position where the first CSI is sent for the first time; for A-CSI, the offset value information can be used to determine the time domain position where the first CSI is sent. The time domain position here may specifically be the number of a time slot or symbol, or an index of a time slot or symbol, or may be a time domain position counted in other time units.
- the configuration information of the first CSI report may also include the specific report amount included in the first CSI report, for example, reporting at least one of CQI, PMI, and RI.
- FIG. 3 is a schematic flowchart of another CSI measurement method provided by this application.
- the base station first configures the ZP CSI-RS set for the UE, and then indicates the second ZP CSI-RS subset in the ZP CSI-RS set through indication information, and the second ZP CSI-RS subset can be associated with multiple CSIs Report, and then the UE measures CSI according to the second ZP CSI-RS subset, and sends the measured CSI to the base station in the corresponding CSI report.
- each ZP CSI-RS in the second ZP CSI-RS subset corresponds to one interference
- one interference corresponds to one interference source or a group of interference sources.
- each ZP CSI-RS corresponds to one interference.
- the number of ZP CSI-RS is proportional to the number of neighboring cells, thereby effectively reducing the number of ZP CSI-RS and improving resource utilization.
- the base station sends ZP CSI-RS set information to the UE.
- the UE receives ZP CSI-RS set information from the base station.
- the ZP CSI-RS set may include Z ZP CSI-RS, and Z is 1 or an integer greater than or equal to 2.
- the base station may send the ZP CSI-RS set information to the UE through a broadcast message or a UE-specific radio resource control (radio resource control, RRC) message.
- RRC radio resource control
- the above-mentioned Z ZP CSI-RSs correspond to Z interferences in a one-to-one manner.
- Each of the Z interferences can come from one interference source or from a group of interference sources.
- one ZP CSI-RS corresponds to one interference source or corresponds to a group of interference sources.
- the signal of the neighboring cell is a kind of interference. Therefore, the interference source here can be a neighboring cell, and a group of interference sources can be a group of neighboring cells.
- the base station sends configuration information of the second CSI report to the UE.
- the UE receives the configuration information of the second CSI report from the base station.
- the configuration information of the second CSI report may include the type of the CSI report, the period of the CSI report, the offset value information, and the specific report amount.
- the configuration information of the first CSI report in FIG. 2 please refer to the related description of the configuration information of the first CSI report in FIG. 2.
- the base station may also configure multiple CSI reports to the UE at the same time, that is, the configuration information of the CSI report sent by the base station to the UE may include multiple CSI reports with different parameter values, for example, the type of CSI report is different, or the report amount of the CSI report Different, or the parameters measured by CSI are different, etc.
- the base station sends second indication information to the UE, where the second indication information is used to determine a second ZP CSI-RS subset in the ZP CSI-RS set, and the second ZP CSI-RS subset includes Z2 ZP CSI-RSs, Z2 is a positive integer. It is understandable that Z2 is less than or equal to Z.
- the UE receives the second indication information from the base station.
- the second indication information and the configuration information of the second CSI report or the information that triggers the CSI report may be different information.
- the second indication information may be carried in DCI or MAC CE.
- the second indication information is a field in DCI or MAC CE.
- the ZP CSI-RS set in S310 can be implemented in different ways.
- ZP CSI-RS set implementation method 1 The ZP CSI-RS set includes N ZP CSI-RS subsets, and each ZP CSI-RS subset corresponds to a number or index.
- Implementation of ZP CSI-RS set 2 The ZP CSI-RS set includes M ZP CSI-RSs, and each ZP CSI-RS corresponds to a number or index. In the various embodiments of the present application, the number and the index have the same function, and they can be used interchangeably.
- the second indication information may indicate the index of the second ZP CSI-RS subset in the ZP CSI-RS set.
- the second indication information may indicate the index of each ZP CSI-RS in the ZP CSI-RS set in the second ZP CSI-RS subset.
- the second indication information can also indicate which ZP CSI-RS in the ZP CSI-RS set constitutes the second ZP CSI-RS subset by means of a bitmap, for example, a bitmap Each bit in the ZP CSI-RS corresponds to a ZP CSI-RS in the ZP CSI-RS set, and indicates whether the ZP CSI-RS is a ZP CSI-RS in the second ZP CSI-RS subset.
- the value of the bit in the bitmap is 1, indicating that the ZP CSI-RS corresponding to the bit is the ZP CSI-RS in the second ZP CSI-RS subset; the value of the bit in the bitmap is 0, indicating that The ZP CSI-RS corresponding to the bit is not the ZP CSI-RS in the second ZP CSI-RS subset.
- the protocol may predefine a certain ZP CSI-RS subset in the ZP CSI-RS set As the second ZP CSI-RS subset.
- the ZP CSI-RS subset with index 0 in the ZP CSI-RS set may be used as the second ZP CSI-RS subset.
- the UE may measure the CSI according to the ZP CSI-RS configuration information indicated in the configuration information of the second CSI report. .
- the second ZP CSI-RS subset determined by the UE can be associated with one or more CSI reports configured in S320 at the same time, that is, the CSI in one or more CSI reports configured in S320 are all based on the second ZP CSI-RS subset Measured.
- S320 may be executed before S330, and S320 may also be executed after S330.
- the UE measures the second CSI according to the second ZP CSI-RS subset.
- the UE sends the second CSI to the base station.
- the base station receives the second CSI from the UE.
- the UE sends the second CSI to the base station at time unit t1.
- t1 is determined according to the offset value information in the configuration information of the second CSI report, or according to the offset value information in the configuration information of the second CSI report and triggering SP-CSI Or the indication information in the DCI of the A-CSI is jointly determined.
- the UE will also periodically send the second CSI in the time unit t1+n*T2, where n is a positive integer, and T2 is the reporting period in the configuration information of the second CSI report. It is understandable that the value of the second CSI sent in different time units may be different, because the corresponding interference magnitude may have changed, and the second CSI is obtained based on the latest measured interference.
- the UE needs a certain processing time from CSI measurement to CSI transmission.
- the time interval between the time unit t1 for sending the CSI and the time unit t2 for the UE to receive the second indication information is greater than or equal to the time threshold, the UE measures the second CS according to the second ZP CSI-RS subset.
- the time interval between the time unit t1 for sending the CSI and the time unit t2 for the UE to receive the second indication information is less than the time threshold, the UE ignores the second indication information.
- the UE measures CSI according to the third ZP CSI-RS subset, where the third ZP The CSI-RS subset is determined based on the previously received second indication information, or when there is no received second indication information before the time unit t2, the third ZP CSI-RS subset is the default ZP of the protocol The CSI-RS subset or the default ZP CSI-RS subset indicated in the configuration information of the second CSI report.
- the second indication information in S330 may not directly indicate the second ZP CSI-RS subset, but indirectly indicate the second ZP CSI-RS subset through a sequence indicating the interference mode.
- the interference pattern sequence includes Q elements, Q is the repetition period of the interference pattern, and Q is a positive integer. Each element in the interference pattern sequence corresponds to an interference pattern on a time unit. Since each interference corresponds to one ZP CSI-RS, the second ZP CSI-RS subset used for CSI measurement can be determined by the interference mode.
- the start time unit corresponding to the first element of the interference pattern sequence may be indicated by the second indication information, or may be predefined by the protocol.
- the start time unit corresponding to the first element of the interference pattern sequence determined by the UE is the time unit t0.
- the interfering cells are cell 0, cell 1, and cell 2; in time slot 1, the interfering cells are cell 1, cell 2, and cell 3; 2. Interfering cells are cell 2, cell 3, and cell 0; in time slot 3, the interfering cells are cell 3, cell 0, and cell 1; in time slot 4, the interfering cells are cell 0, cell 1, and cell 2.
- FIG. 4 is a schematic flowchart of a CSI measurement method provided by this application.
- the base station first configures the CSI report for the UE, the UE determines the first NZP CSI-RS subset according to the configuration information of the CSI report, and then the UE measures the CSI according to the first NZP CSI-RS subset, and the measured CSI Send to the base station.
- Each NZP CSI-RS in the first NZP CSI-RS subset corresponds to one interference, and one interference corresponds to one interference source or a group of interference sources.
- each NZP CSI-RS corresponds to an interfering cell or a set of interfering cells.
- the number of NZP CSI-RS is proportional to the number of neighboring cells, thereby effectively reducing the number of NZP CSI-RS and reducing the number of NZP CSI-RS Resource overhead, more time-frequency resources can be used for data transmission, which improves the spectrum efficiency of the system.
- the base station sends configuration information of the third CSI report to the UE.
- the UE receives the configuration information of the third CSI report from the base station.
- the configuration information of the third CSI report may include the type of the CSI report, the period of the CSI report, the offset value information, and the specific report amount.
- the configuration information of the first CSI report in FIG. 2 please refer to the related description of the configuration information of the first CSI report in FIG. 2.
- the base station may also configure multiple CSI reports to the UE at the same time, that is, the configuration information of the CSI report sent by the base station to the UE may include multiple CSI reports with different parameter values, for example, the type of CSI report is different, or the report amount of the CSI report Different, or the parameters measured by CSI are different, etc.
- the UE determines a first NZP CSI-RS subset according to the configuration information of the third CSI report, where the first NZP CSI-RS subset includes N NZP CSI-RS, and N is a positive integer.
- the aforementioned N NZP CSI-RSs correspond to N interferences in a one-to-one manner.
- Each of the N interferences may come from one interference source or a group of interference sources.
- one NZP CSI-RS corresponds to one interference source or corresponds to a group of interference sources.
- the signal of the neighboring cell is a kind of interference. Therefore, the interference source here can be a neighboring cell, and a group of interference sources can be a group of neighboring cells.
- the configuration information of the third CSI report has different implementation manners, so that the UE can determine the first NZP CSI-RS subset according to the configuration information of the third CSI report.
- the third CSI report is associated with the first NZP CSI-RS subset and the first parameter, where the first parameter indicates whether the first NZP CSI-RS subset is only used to measure neighboring cell interference. For example, when the first parameter takes the value of the first preset value, the first NZP CSI-RS subset is only used to measure the neighboring cell interference; when the first parameter takes the value of the second preset value, the first NZP CSI-RS -RS subset is used to measure interference between UEs in a cell and also to measure interference in neighboring cells.
- the presence of the first parameter indicates that the first NZP CSI-RS subset is only used to measure neighboring cell interference; the absence of the first parameter indicates that the first NZP CSI-RS subset is used to measure intra-cell interference between UEs and Measure interference in neighboring cells.
- the third CSI report is associated with the first NZP CSI-RS subset and the second NZP CSI-RS subset, where the first NZP CSI-RS subset is only used to measure neighboring cell interference.
- the second NZP CSI-RS subset is used to measure inter-UE interference in a cell and also to measure adjacent cell interference.
- the first NZP CSI-RS subset is a subset of the NZP CSI-RS set
- the third CSI report is associated with the NZP CSI-RS set
- each NZP CSI-RS in the NZP CSI-RS set is associated with a second Parameter
- the second parameter indicates whether the corresponding NZP CSI-RS is only used to measure neighboring cell interference.
- the NZP CSI-RS set includes a first NZP CSI-RS
- the first NZP CSI-RS is associated with a second parameter
- the second parameter indicates whether the first NZP CSI-RS is only used for measuring neighboring cell interference.
- the first NZP CSI-RS when the second parameter takes the value of the third preset value, the first NZP CSI-RS is only used to measure adjacent cell interference; when the second parameter takes the value of the fourth preset value, the first NZP CSI-RS It is used to measure interference between UEs in a cell and also to measure interference in neighboring cells. Or, the presence of the second parameter indicates that the first NZP CSI-RS is only used to measure neighboring cell interference; the absence of the second parameter indicates that the first NZP CSI-RS is used to measure both intra-cell UE interference and neighbor cell interference .
- the NZP CSI-RS set is only used to measure neighboring cell interference, and the NZP CSI-RS constitutes the first NZP CSI-RS subset.
- the UE may determine multiple NZP CSI-RS subsets according to the configuration information of the multiple CSI reports to measure different CSI.
- S430 The UE measures the third CSI according to the first NZP CSI-RS subset.
- the UE may measure N interferences corresponding to the N NZP CSI-RSs according to the N NZP CSI-RSs in the first NZP CSI-RS subset, and then calculate the third CSI according to the measured N interferences. For example, the CQI is calculated based on the sum of N interferences.
- the UE sends the third CSI to the base station.
- the base station receives the third CSI from the UE.
- the base station may send a DCI or MAC CE to trigger a CSI report to the UE, which may also be referred to as triggering CSI transmission or triggering CSI report transmission.
- the DCI or MAC CE may include first indication information, and the first indication information triggers the CSI report.
- the CSI report here may be the first CSI report, the second CSI report or the third CSI report, and the type of the CSI report may be SP-CSI or A-CSI.
- the network device and the terminal device include hardware structures and/or software modules corresponding to each function.
- the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application scenarios and design constraints of the technical solution.
- Figures 5 and 6 are schematic structural diagrams of possible communication devices provided by embodiments of this application. These communication devices can be used to implement the functions of the terminal device or the network device in the foregoing method embodiment, and therefore can also achieve the beneficial effects of the foregoing method embodiment.
- the communication device may be the terminal device 130 or the terminal device 140 shown in FIG. 1, or the wireless access network device 120 shown in FIG. 1, or it may be applied to the terminal device. Or a module of a network device (such as a chip).
- the communication device 500 includes a processing unit 510 and a transceiving unit 520.
- the communication device 500 is configured to implement the functions of the base station or the UE in the method embodiments shown in FIG. 2, FIG. 3, or FIG. 4 above.
- the transceiver unit 520 is used to receive the configuration information of the first CSI report from the base station, and the first CSI report is associated with the first ZP CSI-RS sub
- the first ZP CSI-RS subset includes Z1 ZP CSI-RS;
- the processing unit 510 is configured to measure the first CSI according to the first ZP CSI-RS subset;
- the transceiver unit 520 is also configured to send the first CSI to the base station.
- the transceiver unit 520 is further configured to receive first indication information from the base station through DCI or MAC CE, and the first indication information triggers the transmission of the first CSI.
- the transceiver unit 520 is used to send the configuration information of the first CSI report to the UE, and the first CSI report is associated with the first ZP CSI-RS subset
- the first ZP CSI-RS subset includes Z1 ZP CSI-RS
- the transceiver unit 520 is also configured to receive the first CSI from the UE, and the first CSI is measured according to the first ZP CSI-RS subset.
- the processing unit 510 is configured to perform downlink data scheduling according to the first CSI.
- the transceiver unit 520 is further configured to send first indication information to the UE through DCI or MAC CE, and the first indication information triggers the sending of the third CSI.
- the transceiving unit 520 is used to receive ZP CSI-RS set information from the base station; the transceiving unit 520 is also used to receive second information from the base station.
- the transceiver unit 520 is also used to receive second indication information from the base station, the second indication information is used to determine the second ZP CSI-RS subset in the ZP CSI-RS set, and the second ZP CSI-RS The subset includes Z2 ZP CSI-RS; the processing unit 510 is configured to measure the second CSI according to the second ZP CSI-RS subset; the transceiver unit 520 is also configured to send the second CSI to the base station.
- the transceiver unit 520 is further configured to receive the first indication information from the base station through DCI or MAC CE, and the first indication information triggers the transmission of the second CSI.
- the transceiver unit 520 is used to send ZP CSI-RS set information to the UE; the transceiver unit 520 is also used to send a second CSI report to the UE
- the transceiver unit 520 is also used to send second indication information to the UE, the second indication information is used to determine the second ZP CSI-RS subset in the ZP CSI-RS set, and the second ZP CSI-RS subset includes Z2 ZP CSI-RS; the transceiver unit 520 is also used to receive the second CSI from the UE, and the second CSI is measured according to the second ZP CSI-RS subset.
- the processing unit 510 is configured to perform downlink data scheduling according to the second CSI.
- the transceiver unit 520 is further configured to send first indication information to the UE through DCI or MAC CE, and the first indication information triggers the sending of the third CSI.
- the transceiving unit 520 is used to receive the configuration information of the third CSI report from the base station; the processing unit 510 is used to perform the configuration according to the third CSI report The information determines the first NZP CSI-RS subset, where the first NZP CSI-RS subset includes N NZP CSI-RS; the processing unit 510 is further configured to measure the third CSI according to the first NZP CSI-RS subset; The unit 520 is also used to send the third CSI to the base station.
- the transceiver unit 520 is further configured to receive first indication information from the base station through DCI or MAC CE, and the first indication information triggers the transmission of the third CSI.
- the transceiver unit 520 is used to send the configuration information of the third CSI report to the UE; the transceiver unit 520 is also used to receive the third CSI from the UE The third CSI is measured according to the first NZP CSI-RS subset, and the first NZP CSI-RS subset is determined according to the configuration information of the third CSI report.
- the processing unit 510 is configured to perform downlink data scheduling according to the first CSI.
- the transceiver unit 520 is further configured to send first indication information to the UE through DCI or MAC CE, and the first indication information triggers the sending of the third CSI.
- processing unit 510 and the transceiver unit 520 can be obtained directly with reference to the relevant descriptions in the method embodiments shown in FIG. 2, FIG. 3, or FIG. 4, and will not be repeated here.
- the communication device 600 includes a processor 610 and an interface circuit 620.
- the processor 610 and the interface circuit 620 are coupled to each other.
- the interface circuit 620 may be a transceiver or an input/output interface.
- the communication device 600 may further include a memory 630 for storing instructions executed by the processor 610 or storing input data required by the processor 610 to run the instructions or storing data generated after the processor 610 runs the instructions.
- the processor 610 is used to implement the function of the processing unit 510 in FIG. 5, and the interface circuit 620 is used to implement the transceiver unit 520 in FIG. Function.
- the terminal device chip When the foregoing communication device is a chip applied to a terminal device, the terminal device chip implements the function of the terminal device in the foregoing method embodiment.
- the terminal device chip receives information from other modules in the terminal device (such as a radio frequency module or antenna), and the information is sent by the network device to the terminal device; or, the terminal device chip sends information to other modules in the terminal device (such as a radio frequency module or antenna).
- the antenna sends information, which is sent by the terminal device to the network device.
- the network device chip implements the function of the network device in the foregoing method embodiment.
- the network device chip receives information from other modules in the network device (such as radio frequency modules or antennas), and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as radio frequency modules or antennas).
- the antenna sends information, which is sent by the network device to the terminal device.
- the processor in the embodiments of the present application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits. (Application Specific Integrated Circuit, ASIC), Field Programmable Gate Array (Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof.
- the general-purpose processor may be a microprocessor or any conventional processor.
- the method steps in the embodiments of the present application can be implemented by hardware, and can also be implemented by a processor executing software instructions.
- Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), and programmable read-only memory (Programmable ROM) , PROM), Erasable Programmable Read-Only Memory (Erasable PROM, EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or well-known in the art Any other form of storage medium.
- An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
- the storage medium may also be an integral part of the processor.
- the processor and the storage medium may be located in the ASIC.
- the ASIC can be located in a network device or a terminal device.
- the processor and the storage medium may also exist as discrete components in the network device or the terminal device.
- the computer program product includes one or more computer programs or instructions.
- the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
- the computer program or instruction may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
- the computer program or instruction may be downloaded from a website, computer, The server or data center transmits to another website site, computer, server or data center through wired or wireless means.
- the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that integrates one or more available media.
- the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a digital video disc (digital video disc, DVD); and it may also be a semiconductor medium, such as a solid state drive (solid state drive). , SSD).
- “at least one” refers to one or more, and “multiple” refers to two or more.
- “And/or” describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
- the character “/” generally indicates that the associated object before and after is an “or” relationship; in the formula of this application, the character “/” indicates that the associated object before and after is a kind of "division" Relationship.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Quality & Reliability (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请的实施例提供了一种CSI测量的方法和装置。在基站向UE发送CSI报告的配置信息,该CSI报告关联ZP CSI-RS子集,ZP CSI-RS子集中的每一个ZP CSI-RS对应一个邻区。UE确定ZP CSI-RS子集后,基于ZP CSI-RS子集中的每一个ZP CSI-RS测量邻区干扰,根据测量到的邻区干扰计算CSI,并将该CSI发送给基站。通过该CSI测量方法,可以有效减少配置的ZP CSI-RS的数量,提升资源的利用率。
Description
本申请实施例涉及无线通信领域,尤其涉及信道状态信息的测量方法和装置。
第五代(5
th generation,5G)移动通信系统与第四代(4
th generation,4G)移动通信系统相比的一大特征就是增加了对高可靠低时延通信(ultra-reliable and low-latency communications,URLLC)业务的支持。URLLC业务对低时延和高可靠的需求与系统的容量需求之间天然存在矛盾。低时延意味着重传机会少,因此URLLC业务数据需要采用相对鲁棒的传输方案(例如,更多的资源)来保证传输的可靠性,从而降低了系统容量。
为了缓解低时延高可靠的需求与系统的容量需求之间的矛盾,一种可行的方法是提高信道测量和干扰测量的准确度,从而使得网络设备可以在保证数据传输的时延和可靠性的前提下提高数据的传输效率,从而提高系统容量。
发明内容
本申请提供了一种CSI测量的方法和装置,可以有效减少配置的ZP CSI-RS或NZP CSI-RS的数量,提升资源的利用率。
第一方面,本申请提供了一种CSI测量的方法。终端设备接收来自网络设备的第一CSI报告的配置信息,第一CSI报告关联第一ZP CSI-RS子集,第一ZP CSI-RS子集包括Z1个ZP CSI-RS,Z1为大于等于2的整数。进一步的,终端设备根据第一ZP CSI-RS子集测量第一CSI并将第一CSI发送给网络设备。
在第一方面的一种可能的实现方式中,Z1个ZP CSI-RS与Z1个干扰一一对应。
在第一方面的一种可能的实现方式中,终端设备根据Z1个ZP-CSI-RS测量Z1个干扰,并根据Z1个干扰计算第二CSI。
第二方面,本申请提供了一种CSI测量的方法。网络设备向终端设备发送第一CSI报告的配置信息,第一CSI报告关联第一ZP CSI-RS子集,第一ZP CSI-RS子集包括Z1个ZP CSI-RS,Z1为大于等于2的整数。进一步的,网络设备接收来自终端设备的第一CSI,第一CSI是根据第一ZP CSI-RS子集测量得到的。
在第二方面的一种可能的实现方式中,Z1个ZP CSI-RS与Z1个干扰一一对应。
第三方面,本申请提供了一种CSI测量的方法。终端设备接收来自网络设备的ZP CSI-RS集合的信息和第二CSI报告的配置信息。进一步的,终端设备还接收来自网络设备的第二指示信息,第二指示信息用于确定ZP CSI-RS集合中的第二ZP CSI-RS子集,第二ZP CSI-RS子集包括Z2个ZP CSI-RS,Z2为正整数。终端设备根据第二ZP CSI-RS子集测量第二CSI并将第二CSI发送给网络设备。
在第三方面的一种可能的实现方式中,Z2个ZP CSI-RS与Z2个干扰一一对应。
在第三方面的一种可能的实现方式中,终端设备根据Z2个ZP-CSI-RS测量Z2个干扰,并根据Z2个干扰计算第二CSI。
在第三方面的一种可能的实现方式中,终端设备在时间单元t1向网络设备发送第二CSI, 其中t1是根据第二CSI报告的配置信息中的偏移值信息确定的。
在第三方面的一种可能的实现方式中,当t1和t2之间的时间间隔大于或等于时间阈值时,终端设备根据第二ZP CSI-RS子集测量第二CSI,其中,t1为终端设备向网络设备发送第二CSI的时间单元,t2为终端设备接收第二指示信息的时间单元。
第四方面,本申请提供了一种CSI测量的方法。网络设备向终端设备发送ZP CSI-RS集合的信息和第二CSI报告的配置信息,并进一步的向终端设备发送第二指示信息,第二指示信息用于确定ZP CSI-RS集合中的第二ZP CSI-RS子集,第二ZP CSI-RS子集包括Z2个ZP CSI-RS,Z2为正整数。网络设备接收来自终端设备的第二CSI,第二CSI是根据第二ZP CSI-RS子集测量得到的。
在第四方面的一种可能的实现方式中,Z2个ZP CSI-RS与Z2个干扰一一对应。
在第四方面的一种可能的实现方式中,网络设备在时间单元t1接收来自终端设备的第二CSI,其中t1是根据偏移值确定的。网络设备通过第二CSI报告的配置信息将该偏移值的信息发送给终端设备。
在第四方面的一种可能的实现方式中,当t1和t2之间的时间间隔大于或等于时间阈值时,第二CSI是根据第二ZP CSI-RS子集测量得到的,其中,t1为网络设备接收第二CSI的时间单元,t2为网络设备发送第二指示信息的时间单元。
在第三方面或第四方面的一种可能的实现方式中,Z2个ZP CSI-RS与Z2个干扰一一对应。
在第三方面或第四方面的一种可能的实现方式中,第二指示信息承载在DCI中。
在第三方面或第四方面的一种可能的实现方式中,第二指示信息指示第二ZP CSI-RS子集在ZP CSI-RS集合中的索引。
在第三方面或第四方面的一种可能的实现方式中,第二指示信息指示第二ZP CSI-RS子集中每一个ZP CSI-RS在ZP CSI-RS集合中的索引。
在第三方面或第四方面的一种可能的实现方式中,第二指示信息指示干扰模式的序列,该干扰模式序列包括Q个元素,Q为干扰模式的重复周期,Q为正整数。该干扰模式序列中的每个元素对应一个时间单元上的干扰模式。
在上述第一方面、第二方面、第三方面和第四方面中,ZP CSI-RS子集中的ZP CSI-RS可以与邻区一一对应,因此可以大大降低配置的ZP CSI-RS的数量,提升了资源的利用率。
第五方面,本申请提供了一种CSI测量的方法。终端设备接收来自网络设备的第三CSI报告的配置信息,并根据第三CSI报告的配置信息确定第一NZP CSI-RS子集,其中,第一NZP CSI-RS子集包括N个NZP CSI-RS,N为正整数。进一步的,终端设备根据第一NZP CSI-RS子集测量第三CSI并将第三CSI发送给网络设备。
在第五方面的一种可能的实现方式中,N个NZP CSI-RS与N个干扰一一对应。
在第五方面的一种可能的实现方式中,终端设备根据N个NZP-CSI-RS测量所述N个干扰,并根据N个干扰计算第三CSI。
第六方面,本申请提供了一种CSI测量的方法。网络设备向终端设备发送第三CSI报告的配置信息。进一步的,网络设备接收来自终端设备的第三CSI,第三CSI是根据第一NZP CSI-RS子集测量得到的,第一NZP CSI-RS子集是根据第三CSI报告的配置信息确定的。
在第六方面的一种可能的实现方式中,N个NZP CSI-RS与N个干扰一一对应。
在第五方面或第六方面的一种可能的实现方式中,第三CSI报告关联第一NZP CSI-RS 子集和第一参数,其中,第一参数指示第一NZP CSI-RS子集是否只用于测量邻区干扰。
在第五方面或第六方面的一种可能的实现方式中,第三CSI报告关联第一NZP CSI-RS子集和第二NZP CSI-RS子集,其中,第一NZP CSI-RS子集只用于测量邻区干扰。
在第五方面或第六方面的一种可能的实现方式中,第一NZP CSI-RS子集为NZP CSI-RS集合的子集,第三CSI报告关联NZP CSI-RS集合,NZP CSI-RS集合中的每一个NZP CSI-RS关联一个第二参数,该第二参数指示对应的NZP CSI-RS是否只用于测量邻区干扰。
在上述第五方面和第六方面中,NZP CSI-RS子集中的NZP CSI-RS可以与邻区一一对应,因此可以大大降低配置的NZP CSI-RS的数量,降低了NZP CSI-RS的资源开销,可以有更多的时频资源用于数据传输,提升了系统的频谱效率。
第七方面,提供了一种通信装置,包括用于实现前述第一方面或第一方面的任意可能的实现方式中的方法的功能模块;或者包括用于实现前述第三方面或第三方面的任意可能的实现方式中的方法的功能模块;或者包括用于实现前述第五方面或第五方面的任意可能的实现方式中的方法的功能模块。
第八方面,提供了一种通信装置,包括用于实现前述第二方面或第二方面的任意可能的实现方式中的方法的功能模块;或者包括用于实现前述第四方面或第四方面的任意可能的实现方式中的方法的功能模块;或者包括用于实现前述第六方面或第六方面的任意可能的实现方式中的方法的功能模块。
第九方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面或第一方面的任意可能的实现方式中的方法;或者用于实现前述第三方面或第三方面的任意可能的实现方式中的方法;或者用于实现前述第五方面或第五方面的任意可能的实现方式中的方法。
第十方面,提供了一种通信装置,包括处理器和接口电路,该接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面或第二方面的任意可能的实现方式中的方法;或者用于实现前述第四方面或第四方面的任意可能的实现方式中的方法;或者用于实现前述第六方面或第六方面的任意可能的实现方式中的方法。
第十一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现上述第一方面或第一方面的任意可能的实现方式中的方法;或者实现前述第三方面或第三方面的任意可能的实现方式中的方法;或者实现前述第五方面或第五方面的任意可能的实现方式中的方法。
第十二方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现上述第二方面或第二方面的任意可能的实现方式中的方法;或者实现前述第四方面或第四方面的任意可能的实现方式中的方法;或者实现前述第六方面或第六方面的任意可能的实现方式中的方法。
第十三方面,提供了一种包含指令的计算机程序或计算机程序产品,当该指令被运行时, 实现第一方面或第一方面的任意可能的实现方式中的方法;或者实现前述第三方面或第三方面的任意可能的实现方式中的方法;或者实现前述第五方面或第五方面的任意可能的实现方式中的方法。
第十四方面,提供了一种包含指令的计算机程序或计算机程序产品,当该指令被运行时,实现第二方面或第二方面的任意可能的实现方式中的方法;或者实现前述第四方面或第四方面的任意可能的实现方式中的方法;或者实现前述第六方面或第六方面的任意可能的实现方式中的方法。
第十五方面,提供了一种通信系统,包括如第七方面或第九方面的通信装置,和第八方面或第十方面的通信装置。
图1为本申请的实施例应用的移动通信系统的架构示意图;
图2为本申请提供的一种CSI测量的方法流程示意图;
图3为本申请提供的另一种CSI测量的方法流程示意图;
图4为本申请提供的一种CSI的测量方法流程示意图;
图5为本申请的实施例提供的通信装置的结构示意图;
图6为本申请的实施例提供的另一种通信装置的结构示意图。
图1是本申请的实施例应用的移动通信系统的架构示意图。如图1所示,该移动通信系统包括核心网设备110、无线接入网设备120和至少一个终端设备(如图1中的终端设备130和终端设备140)。终端设备通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网设备连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
终端设备通过无线方式与无线接入网设备相连,从而接入到该移动通信系统中。无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。在本申请中,无线接入网设备简称网络设备,如果无特殊说明,网络设备均指无线接入网设备。
终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、智能电网 中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、智慧家庭中的无线终端等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对网络设备和终端设备的应用场景不做限定。
网络设备和终端设备之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
在本申请的实施例中,执行主体可以是网络设备和终端设备,也可以是应用于网络设备的模块(如芯片)和应用于终端设备的模块(如芯片)。
为了便于描述,本申请以基站作为网络设备的例子,UE作为终端设备的例子进行描述。UE为了与基站进行通信,需要与基站控制的小区建立无线连接。与UE建立了无线连接的小区称为该UE的服务小区。当UE与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
在一般的通信系统中,通常很难根据测量到的邻区干扰去预测实际数据传输时的邻区干扰,因为邻区干扰的大小与邻区的业务量以及与该邻区进行通信的UE的信道质量有关。而邻区的业务量以及与该邻区进行通信的UE的信道质量都是时变的,而且很难精准预测。
URLLC业务的一个典型应用场景是在工业控制领域中用于自动化控制,在这种场景中环境相对封闭,而且业务数据的到达都是周期性且是确定的。也就是说每个小区什么时候有数据要传输,要给哪个UE传输都是已知的。利用这些先验信息,可以设计出更加精准的干扰测量与反馈机制。
在现有的5G新空口(new radio,NR)系统中,下行的信道状态信息参考信号(channel state information-reference signal,CSI-RS)中有两种CSI-RS可以用于测量信道和干扰,一个是非零功率(non-zero-power,NZP)CSI-RS,另一个是零功率(zero-power,ZP)CSI-RS。UE测量信道和干扰之后,可以将测量得到的信道状态信息(channel state information,CSI)反馈给基站。基站基于UE反馈的CSI可以进行数据调度,从而提高数据传输的效率。
当NZP CSI-RS用于信道测量时,基站会将该NZP CSI-RS的详细配置信息通知给UE,从而可以让UE测量出该NZP CSI-RS所经历的无线信道的特征。当ZP CSI-RS用于干扰测量时,基站会通知UE在哪个ZP CSI-RS上测量邻区干扰,UE会假设在这个ZP CSI-RS所对应的时频资源上服务小区没有发送任何信号,此时UE接收到的都是干扰。当NZP CSI-RS用于干扰测量时,UE可以先基于NZP CSI-RS测量出小区内多用户多输入多输出(multi-user multiple-input multiple-output,MU-MIMO)配对UE之间的干扰,然后UE将总接收功率减去UE之间的干扰可以得到小区之间的干扰。
CSI-RS的发送有三种模式:周期发送、半持续发送和非周期发送。对于周期发送的CSI-RS,基站每隔周期T1发送一次CSI-RS。对于半持续发送的CSI-RS,基站给UE配置了相关的参数之后,可以通过下行控制信息(downlink control information,DCI)或媒体接入控制的控制元素(medium access control control element,MAC CE)通知UE基站将首次发送CSI-RS,首次发送CSI-RS之后基站将每隔周期T1发送一次CSI-RS。对于非周期发送的CSI-RS,每一次CSI-RS的发送,基站可以通过DCI或MAC CE通知UE。T1的单位可以 是时域符号,也可以是时隙,还可以是其它时间单位。
CSI可以有多种不同的报告量(report quantity),例如可以包括信道质量指示(channel quality indicator,CQI)、预编码矩阵指示(precoding matrix indicator,PMI)和秩指示(rank indication,RI)中的至少一个。
CSI报告的类型也可以称为CSI的反馈模式,可以有三种不同的反馈模式:包括周期反馈,对应的CSI称为周期CSI(periodic CSI,P-CSI);半持续反馈,对应的CSI称为半持续CSI(semi-persistent CSI,SP-CSI);非周期反馈,对应的CSI称为非周期CSI(aperiodic CSI,A-CSI)。对于P-CSI,UE每隔周期T2反馈一次;对于SP-CSI,在基站配置了相关的参数之后,基站可以通过DCI或MAC CE触发CSI反馈,UE每隔周期T2反馈一次;对于A-CSI,每一次CSI反馈都可以由基站通过DCI或MAC CE触发。T2的单位可以是时域符号,也可以是时隙,还可以是其它时间单位。基站接收到CSI之后,可以根据最近一次接收到的CSI进行调度。
在本申请的实施例中,时域符号可以是正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是离散傅里叶变换扩频OFDM(Discrete Fourier Transform-spread-OFDM,DFT-s-OFDM)符号。如果没有特别说明,本申请实施例中的符号均指时域符号。
图2为本申请提供的一种CSI测量的方法流程示意图。在该方法中,每一个ZP CSI-RS对应一个干扰,一个干扰对应一个干扰源或一组干扰源,例如,每一个ZP CSI-RS对应一个干扰小区或一个干扰小区集合。在这种CSI的测量方法中,为了测量出邻区的干扰,ZP CSI-RS的数量与邻区的个数成正比,从而有效减少了ZP CSI-RS的数量,提升了资源的利用率。可以理解的是,本申请的各个实施例中,方法的执行主体可以是基站和UE,也可以是应用于基站或UE中的模块(例如,芯片)。
S210,基站向UE发送第一CSI报告的配置信息,第一CSI报告关联第一ZP CSI-RS子集,第一ZP CSI-RS子集包括Z1个ZP CSI-RS。其中,Z1为1或大于等于2的整数。对应的,UE接收该第一CSI报告的配置信息。
上述Z1个ZP CSI-RS与Z1个干扰一一对应。Z1个干扰中的每一个干扰可以是来自一个干扰源,也可以是来自一组干扰源。也可以理解为,一个ZP CSI-RS对应一个干扰源或对应一组干扰源。对服务小区来说,邻区的信号就是一种干扰。所以,这里的干扰源可以是一个邻区,一组干扰源可以是一组邻区。
下面以一个ZP CSI-RS对应一个邻区或对应来自一个邻区的干扰信号为例进行描述。假设第一ZP CSI-RS为第一ZP CSI-RS子集中的一个ZP CSI-RS。UE1的服务小区为小区1,UE2的服务小区为小区2,UE3的服务小区为小区3,小区1、小区2和小区3的覆盖区域相邻。第一ZP CSI-RS对应小区2,对于小区1和小区3来说,第一ZP CSI-RS也可以理解为是对应来自小区2的干扰信号。在第一ZP CSI-RS对应的时频位置上,只有小区2在发送CSI-RS,小区1和小区3在第一ZP CSI-RS对应的时频位置上不发送任何信号,因此,UE1和UE3可以在第一ZP CSI-RS对应的时频位置上同时测量出小区2的干扰信号强度。
采用这种配置方式,可以使得系统的ZP CSI-RS个数等于系统中的小区个数,可以大大减少ZP CSI-RS的个数,从而减少了为ZP CSI-RS预留的资源,提高了系统的资源利用率。如果对小区进行分组,即一个ZP CSI-RS对应一组小区,那么可以进一步降低系统对ZP CSI-RS的需求。以邻区干扰为例,这里的Z1个ZP CSI-RS对应的Z1个邻区可以是Z个邻 区中Z1个,Z为大于或等于Z1的整数。由于UE在不同的时间单元所受到的邻区干扰可能是变化的,因此,基站可以通过预测邻区业务数据的到达模型,确定干扰模式在时间轴上的变化情况,并为UE配置多个CSI报告,每一个CSI报告关联一个ZP CSI-RS子集,分别对应不同的时间单元。由于在工业控制的封闭环境中,干扰是相对固定的并且是可以预期的,所以干扰模式很可能是呈现周期性的。对于周期性的干扰模式,基站为UE配置的CSI报告的个数等于干扰模式的周期。例如,如果干扰模式周期为4个时隙,则基站可以为UE配置4个CSI报告,与四个ZP CSI-RS子集一一对应。所谓干扰模式,是指在某个时间单元上,该小区内的UE会受到哪几个邻区的干扰。
S220,UE根据第一ZP CSI-RS子集测量第一CSI。
具体的,UE可以根据第一ZP CSI-RS子集中的Z1个ZP CSI-RS测量与所述Z1个ZP CSI-RS对应的Z1个干扰,然后根据测量出的Z1个干扰计算第一CSI。例如,根据Z1个干扰的总和计算CQI。
例如,在时间单元1中,除了服务小区外,还有Z1个邻区(邻区1,邻区2……和邻区Z1)有数据需要发送,那么UE就可以根据配置的Z1个ZP CSI-RS分别测量出这Z1个邻区的干扰大小,从而可以根据这Z1个干扰计算出CQI并上报给基站,假设CQI取值为CQI1。如果在时间单元1之后的时间单元2的干扰场景与时间单元1相同,即除了服务小区外,也有Z1个邻区(邻区1,邻区2……和邻区Z1)有数据发送,即时间单元2的干扰模式与时间单元1的干扰模式相同。基站可以根据时间单元1对应的CQI1来对时间单元2的数据进行调度,选择合适的传输块大小和调制方式进行数据传输。
在本申请的各个实施例中,时间单元的单位可以是时域符号,也可以是时隙(slot),还可以是子时隙(sub-slot)或迷你时隙(mini-slot),本申请不做限定。
S230,UE向基站发送第一CSI,也可以称为UE向基站发送第一CSI报告,或者称为UE向基站报告第一CSI。对应的,基站接收第一CSI,也可以称为基站接收第一CSI报告。
在本申请中,CSI和CSI报告通常可以等同,例如,发送CSI和发送CSI报告可以等同。当CSI报告和CSI在同一句话中出现的时候,CSI报告可以理解为包含CSI的信令或消息。
第一CSI报告的配置信息可以包括第一CSI报告的类型。对于P-CSI,第一ZP CSI-RS子集中的每一个ZP CSI-RS都是周期发送的。对于SP-CSI,第一ZP CSI-RS子集中的每一个ZP CSI-RS可以是周期发送的,也可以是半持续发送的。对于A-CSI,第一ZP CSI-RS子集中的每一个ZP CSI-RS可以是周期发送的,也可以是半持续发送的,还可以是非周期发送的。
第一CSI报告的配置信息中还可以包括第一CSI报告的周期和偏移值信息。具体的,对于P-CSI和SP-CSI,第一CSI报告的配置信息中还可以包括第一CSI报告的周期。对于SP-CSI和A-CSI,第一CSI报告的配置信息中还可以包括偏移值信息。对于SP-CSI,偏移值信息可以用于确定首次发送第一CSI的时域位置;对于A-CSI,偏移值信息可以用于确定发送第一CSI的时域位置。这里的时域位置具体可以是时隙或符号的编号,也可以是时隙或符号的索引,还可以是以其它时间单位计数的时域位置。
第一CSI报告的配置信息还可以包括第一CSI报告所包括的具体的报告量,例如,上报CQI、PMI和RI中的至少一个。
图3为本申请提供的另一种CSI测量的方法流程示意图。在该方法中,基站先为UE配置ZP CSI-RS集合,然后通过指示信息指示ZP CSI-RS集合中的第二ZP CSI-RS子集,第二ZP CSI-RS子集可以关联多个CSI报告,然后UE根据第二ZP CSI-RS子集测量CSI,并在对 应的CSI报告中将测量得到的CSI发送给基站。与图2中的方法类似,第二ZP CSI-RS子集中的每一个ZP CSI-RS对应一个干扰,一个干扰对应一个干扰源或一组干扰源,例如,每一个ZP CSI-RS对应一个干扰小区或一个干扰小区集合。在这种CSI的测量方法中,为了测量出邻区的干扰,ZP CSI-RS的数量与邻区的个数成正比,从而有效减少了ZP CSI-RS的数量,提升了资源的利用率。
S310,基站向UE发送ZP CSI-RS集合的信息。对应的,UE接收来自基站的ZP CSI-RS集合的信息。ZP CSI-RS集合可以包括Z个ZP CSI-RS,Z为1或大于等于2的整数。
具体的,基站可以通过广播消息或UE特定的无线资源控制(radio resource control,RRC)消息向UE发送ZP CSI-RS集合的信息。
上述Z个ZP CSI-RS与Z个干扰一一对应。Z个干扰中的每一个干扰可以是来自一个干扰源,也可以是来自一组干扰源。也可以理解为,一个ZP CSI-RS对应一个干扰源或对应一组干扰源。对服务小区来说,邻区的信号就是一种干扰。所以,这里的干扰源可以是一个邻区,一组干扰源可以是一组邻区。
S320,基站向UE发送第二CSI报告的配置信息。对应的,UE接收来自基站的第二CSI报告的配置信息。
第二CSI报告的配置信息可以包括CSI报告的类型、CSI报告的周期、偏移值信息、具体的报告量,相关的详细描述可以参考图2中第一CSI报告的配置信息的相关描述。
基站也可以向UE同时配置多个CSI报告,即基站向UE发送CSI报告的配置信息中可以包括多个不同参数取值的CSI报告,例如,CSI报告的类型不同,或者,CSI报告的报告量不同,或者CSI测量的参数不同等等。
S330,基站向UE发送第二指示信息,第二指示信息用于确定ZP CSI-RS集合中的第二ZP CSI-RS子集,第二ZP CSI-RS子集包括Z2个ZP CSI-RS,Z2为正整数。可以理解的是,Z2小于等于Z。对应的,UE接收来自基站的第二指示信息。
具体的,第二指示信息与第二CSI报告的配置信息或者触发CSI报告的信息可以是不同的信息。第二指示信息可以承载在DCI或MAC CE中,例如,第二指示信息是DCI或MAC CE中的一个字段。
具体的,S310中的ZP CSI-RS集合可以有不同的实现方式。ZP CSI-RS集合实现方式1:ZP CSI-RS集合包括N个ZP CSI-RS子集,每个ZP CSI-RS子集对应一个编号或索引。ZP CSI-RS集合实现方式2:ZP CSI-RS集合包括M个ZP CSI-RS,每个ZP CSI-RS对应一个编号或索引。在本申请的各个实施例中,编号和索引的作用是相同的,相互可以替换使用。
对于ZP CSI-RS集合实现方式1,第二指示信息可以指示第二ZP CSI-RS子集在ZP CSI-RS集合中的索引。对于ZP CSI-RS集合实现方式2,第二指示信息可以指示第二ZP CSI-RS子集中每一个ZP CSI-RS在ZP CSI-RS集合中的索引。对于ZP CSI-RS集合实现方式2,第二指示信息也可以通过比特位图的方式指示ZP CSI-RS集合中的哪些ZP CSI-RS组成第二ZP CSI-RS子集,例如,比特位图中的每一个比特对应ZP CSI-RS集合中的一个ZP CSI-RS,指示该ZP CSI-RS是否为第二ZP CSI-RS子集中的ZP CSI-RS。例如,比特位图中的比特取值为1,表示该比特对应的ZP CSI-RS是第二ZP CSI-RS子集中的ZP CSI-RS;比特位图中的比特取值为0,表示该比特对应的ZP CSI-RS不是第二ZP CSI-RS子集中的ZP CSI-RS。
可选的,在基站还没有向UE发送第二指示信息之前,或者说UE还没成功接收到第二指示信息之前,协议可以预定义ZP CSI-RS集合中的某一个ZP CSI-RS子集作为第二ZP CSI-RS子集。例如,可以将ZP CSI-RS集合中索引为0的ZP CSI-RS子集作为第二ZP CSI-RS子集。 或者,在基站还没有向UE发送第二指示信息之前,或者说UE还没成功接收到第二指示信息之前,UE可以根据第二CSI报告的配置信息中指示的ZP CSI-RS配置信息测量CSI。
UE确定的第二ZP CSI-RS子集可以同时关联S320中配置的一个或多个CSI报告,即S320中配置的一个或多个CSI报告中的CSI都是基于第二ZP CSI-RS子集测量得到的。
可以理解的是,S320可以在S330之前执行,也S320也可以在S330之后执行。
S340,UE根据第二ZP CSI-RS子集测量第二CSI。
具体的,UE如何根据第二ZP CSI-RS子集测量第二CSI,可以参考S220中UE根据第一ZP CSI-RS子集测量第一CSI的相关描述。
S350,UE向基站发送第二CSI。对应的,基站接收来自UE的第二CSI。
具体的,UE在时间单元t1向基站发送第二CSI。对于SP-CSI或A-CSI,t1是根据第二CSI报告的配置信息中的偏移值信息确定的,或者,是根据第二CSI报告的配置信息中的偏移值信息和触发SP-CSI或A-CSI的DCI中指示信息联合确定的。对于SP-CSI,UE还会在时间单元t1+n*T2上周期发送第二CSI,其中,n为正整数,T2为第二CSI报告的配置信息中的报告周期。可理解的是,在不同的时间单元上发送的第二CSI的取值可能不同,因为对应的干扰大小可能发生了变化,第二CSI是根据最新测量到的干扰得到的。
考虑到UE从CSI测量到发送CSI需要一定的处理时间。当发送CSI的时间单元t1与UE接收第二指示信息的时间单元t2之间的时间间隔大于或等于时间阈值时,UE根据第二ZP CSI-RS子集测量第二CS。当发送CSI的时间单元t1与UE接收第二指示信息的时间单元t2之间的时间间隔小于时间阈值时,UE忽略第二指示信息。可选地,当发送CSI的时间单元t1与UE接收第二指示信息的时间单元t2之间的时间间隔小于时间阈值时,UE根据第三ZP CSI-RS子集测量CSI,其中,第三ZP CSI-RS子集是根据前一个接收到的第二指示信息确定的,或者,在时间单元t2之前不存在接收到的第二指示信息时,第三ZP CSI-RS子集是协议默认的ZP CSI-RS子集或第二CSI报告的配置信息中指示的缺省ZP CSI-RS子集。
可选的,S330中的第二指示信息还可以不直接指示第二ZP CSI-RS子集,而是通过指示干扰模式的序列来间接指示第二ZP CSI-RS子集。该干扰模式序列包括Q个元素,Q为干扰模式的重复周期,Q为正整数。该干扰模式序列中的每个元素对应一个时间单元上的干扰模式。由于每一个干扰对应一个ZP CSI-RS,因此可以通过干扰模式确定用于CSI测量的第二ZP CSI-RS子集。
干扰模式序列的第一个元素对应的起始时间单元可以通过第二指示信息来指示,也可以为协议预定义。例如,UE确定的干扰模式序列的第一个元素对应的起始时间单元为时间单元t0。
UE可以根据第二CSI的发送时间单元t1确定时间单元t1对应的干扰模式为干扰模式序列中的第q个元素对应的干扰模式。也可以理解为q是根据t1确定的。具体的,UE可以根据t1和t0确定q。例如,q=mod(D,Q)+1,其中,D为时间单元t1和时间单元t0之间的时间间隔,D和Q的时间粒度相同,例如,都为时隙,或都为迷你时隙。
以一个干扰的干扰源为一个邻区为例。假设,干扰模式的重复周期为4个时隙,在时隙0,干扰小区为小区0、小区1和小区2;在时隙1,干扰小区为小区1、小区2和小区3;在时隙2,干扰小区为小区2、小区3和小区0;在时隙3,干扰小区为小区3、小区0和小区1;在时隙4,干扰小区为小区0、小区1和小区2。
图4为本申请提供的一种CSI的测量方法流程示意图。在该方法中,基站先为UE配置CSI报告,UE根据CSI报告的配置信息确定第一NZP CSI-RS子集,然后UE根据第一NZP CSI-RS子集测量CSI,并将测量得到的CSI发送给基站。第一NZP CSI-RS子集中的每一个NZP CSI-RS对应一个干扰,一个干扰对应一个干扰源或一组干扰源,例如,每一个NZP CSI-RS对应一个干扰小区或一个干扰小区集合。在这种CSI的测量方法中,为了测量出邻区的干扰,NZP CSI-RS的数量与邻区的个数成正比,从而有效减少了NZP CSI-RS的数量,降低了NZP CSI-RS的资源开销,可以有更多的时频资源用于数据传输,提升了系统的频谱效率。
S410,基站向UE发送第三CSI报告的配置信息。对应的,UE接收来自基站的第三CSI报告的配置信息。
第三CSI报告的配置信息可以包括CSI报告的类型、CSI报告的周期、偏移值信息、具体的报告量,相关的详细描述可以参考图2中第一CSI报告的配置信息的相关描述。
基站也可以向UE同时配置多个CSI报告,即基站向UE发送CSI报告的配置信息中可以包括多个不同参数取值的CSI报告,例如,CSI报告的类型不同,或者,CSI报告的报告量不同,或者CSI测量的参数不同等等。
S420,UE根据第三CSI报告的配置信息确定第一NZP CSI-RS子集,其中,第一NZP CSI-RS子集包括N个NZP CSI-RS,N为正整数。
上述N个NZP CSI-RS与N个干扰一一对应。N个干扰中的每一个干扰可以是来自一个干扰源,也可以是来自一组干扰源。也可以理解为,一个NZP CSI-RS对应一个干扰源或对应一组干扰源。对服务小区来说,邻区的信号就是一种干扰。所以,这里的干扰源可以是一个邻区,一组干扰源可以是一组邻区。
具体的,第三CSI报告的配置信息有不同的实现方式,以便UE能够根据第三CSI报告的配置信息确定第一NZP CSI-RS子集。
实现方式一:第三CSI报告关联第一NZP CSI-RS子集和第一参数,其中,第一参数指示第一NZP CSI-RS子集是否只用于测量邻区干扰。例如,当第一参数取值为第一预设值时,第一NZP CSI-RS子集只用于测量邻区干扰;当第一参数取值为第二预设值时,第一NZP CSI-RS子集既用于测量小区内UE间干扰也用于测量邻区干扰。或者,第一参数存在表示第一NZP CSI-RS子集只用于测量邻区干扰;第一参数不存在,表示第一NZP CSI-RS子集既用于测量小区内UE间干扰也用于测量邻区干扰。
实现方式二:第三CSI报告关联第一NZP CSI-RS子集和第二NZP CSI-RS子集,其中,第一NZP CSI-RS子集只用于测量邻区干扰。第二NZP CSI-RS子集既用于测量小区内UE间干扰也用于测量邻区干扰。
实现方式三:第一NZP CSI-RS子集为NZP CSI-RS集合的子集,第三CSI报告关联NZP CSI-RS集合,NZP CSI-RS集合中的每一个NZP CSI-RS关联一个第二参数,该第二参数指示对应的NZP CSI-RS是否只用于测量邻区干扰。换句话说,NZP CSI-RS集合包括第一NZP CSI-RS,第一NZP CSI-RS关联第二参数,第二参数指示第一NZP CSI-RS是否只用于测量邻区干扰。例如,当第二参数取值为第三预设值时,第一NZP CSI-RS只用于测量邻区干扰;当第二参数取值为第四预设值时,第一NZP CSI-RS既用于测量小区内UE间干扰也用于测量邻区干扰。或者,第二参数存在表示第一NZP CSI-RS只用于测量邻区干扰;第二参数不存在,表示第一NZP CSI-RS既用于测量小区内UE间干扰也用于测量邻区干扰。NZP CSI-RS集合中只用于测量邻区干扰NZP CSI-RS组成了第一NZP CSI-RS子集。
可以理解的是,当基站给UE配置了多个CSI报告时,UE可以根据这多个CSI报告的配置信息确定多个NZP CSI-RS子集,用于测量不同的CSI。
S430,UE根据第一NZP CSI-RS子集测量第三CSI。
具体的,UE可以根据第一NZP CSI-RS子集中的N个NZP CSI-RS测量与所述N个NZP CSI-RS对应的N个干扰,然后根据测量出的N个干扰计算第三CSI。例如,根据N个干扰的总和计算CQI。
S440,UE向基站发送第三CSI。对应的,基站接收来自UE的第三CSI。
有关UE向基站发送第三CSI的具体描述,可以参考图2中的S230。
在上述图2、图3和图4的实施例中,基站可以向UE发送DCI或MAC CE触发CSI报告,也可以称为触发CSI的发送或触发CSI报告的发送。具体的,DCI或MAC CE中可以包括第一指示信息,第一指示信息触发CSI报告。这里的CSI报告可以是第一CSI报告、第二CSI报告或第三CSI报告,CSI报告的类型可以是SP-CSI或A-CSI。
可以理解的是,为了实现上述实施例中功能,网络设备和终端设备包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图5和图6为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端设备130或终端设备140,也可以是如图1所示的无线接入网设备120,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图5所示,通信装置500包括处理单元510和收发单元520。通信装置500用于实现上述图2、图3、或图4中所示的方法实施例中基站或UE的功能。
当通信装置500用于实现图2所示的方法实施例中UE的功能时:收发单元520用于接收来自基站的第一CSI报告的配置信息,第一CSI报告关联第一ZP CSI-RS子集,第一ZP CSI-RS子集包括Z1个ZP CSI-RS;处理单元510用于根据第一ZP CSI-RS子集测量第一CSI;收发单元520还用于向基站发送第一CSI。收发单元520还用于,通过DCI或MAC CE接收来自基站的第一指示信息,第一指示信息触发第一CSI的发送。
当通信装置500用于实现图2所示的方法实施例中基站的功能时:收发单元520用于向UE发送第一CSI报告的配置信息,第一CSI报告关联第一ZP CSI-RS子集,第一ZP CSI-RS子集包括Z1个ZP CSI-RS;收发单元520还用于接收来自UE的第一CSI,第一CSI是根据第一ZP CSI-RS子集测量得到的。可选的,处理单元510用于根据第一CSI进行下行数据调度。收发单元520还用于,通过DCI或MAC CE向UE发送第一指示信息,第一指示信息触发第三CSI的发送。
当通信装置500用于实现图3所示的方法实施例中UE的功能时:收发单元520用于接收来自基站的ZP CSI-RS集合的信息;收发单元520还用于接收来自基站的第二CSI报告的配置信息;收发单元520还用于接收来自基站的第二指示信息,第二指示信息用于确定ZP CSI-RS集合中的第二ZP CSI-RS子集,第二ZP CSI-RS子集包括Z2个ZP CSI-RS;处理单元510用于根据第二ZP CSI-RS子集测量第二CSI;收发单元520还用于向基站发送第二CSI。收发单元520还用于,通过DCI或MAC CE接收来自基站的第一指示信息,第一指示信息触发第二CSI的发送。
当通信装置500用于实现图3所示的方法实施例中基站的功能时:收发单元520用于向UE发送ZP CSI-RS集合的信息;收发单元520还用于向UE发送第二CSI报告的配置信息;收发单元520还用于向UE发送第二指示信息,第二指示信息用于确定ZP CSI-RS集合中的第二ZP CSI-RS子集,第二ZP CSI-RS子集包括Z2个ZP CSI-RS;收发单元520还用于接收来自UE的第二CSI,第二CSI是根据第二ZP CSI-RS子集测量得到的。可选的,处理单元510用于根据第二CSI进行下行数据调度。收发单元520还用于,通过DCI或MAC CE向UE发送第一指示信息,第一指示信息触发第三CSI的发送。
当通信装置500用于实现图4所示的方法实施例中UE的功能时:收发单元520用于接收来自基站的第三CSI报告的配置信息;处理单元510用于根据第三CSI报告的配置信息确定第一NZP CSI-RS子集,其中,第一NZP CSI-RS子集包括N个NZP CSI-RS;处理单元510还用于根据第一NZP CSI-RS子集测量第三CSI;收发单元520还用于向基站发送第三CSI。收发单元520还用于,通过DCI或MAC CE接收来自基站的第一指示信息,第一指示信息触发第三CSI的发送。
当通信装置500用于实现图4所示的方法实施例中基站的功能时:收发单元520用于向UE发送第三CSI报告的配置信息;收发单元520还用于接收来自UE的第三CSI,第三CSI是根据第一NZP CSI-RS子集测量得到的,第一NZP CSI-RS子集是根据第三CSI报告的配置信息确定的。可选的,处理单元510用于根据第一CSI进行下行数据调度。收发单元520还用于,通过DCI或MAC CE向UE发送第一指示信息,第一指示信息触发第三CSI的发送。
有关上述处理单元510和收发单元520更详细的描述可以直接参考图2、图3或图4所示的方法实施例中相关描述直接得到,这里不加赘述。
如图6所示,通信装置600包括处理器610和接口电路620。处理器610和接口电路620之间相互耦合。可以理解的是,接口电路620可以为收发器或输入输出接口。可选的,通信装置600还可以包括存储器630,用于存储处理器610执行的指令或存储处理器610运行指令所需要的输入数据或存储处理器610运行指令后产生的数据。
当通信装置600用于实现图2、图3或图4所示的方法时,处理器610用于实现图5中的处理单元510的功能,接口电路620用于实现图5中的收发单元520的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其它通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘(digital video disc,DVD);还可以是半导体介质,例如,固态硬盘(solid state drive,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。
Claims (21)
- 一种信道状态信息CSI的测量方法,其特征在于,包括:接收来自网络设备的第一CSI报告的配置信息,所述第一CSI报告关联第一零功率信道状态信息参考信号ZP CSI-RS子集,所述第一ZP CSI-RS子集包括Z1个ZP CSI-RS,Z1为大于等于2的整数;根据所述第一ZP CSI-RS子集测量第一CSI;向所述网络设备发送所述第一CSI。
- 根据权利要求1所述的方法,其特征在于,所述Z1个ZP CSI-RS与Z1个干扰一一对应。
- 根据权利要求2所述的方法,其特征在于,所述根据所述第一ZP CSI-RS子集测量第一CSI,具体包括:根据所述Z1个ZP CSI-RS测量所述Z1个干扰;根据所述Z1个干扰计算所述第一CSI。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一CSI报告的配置信息包括所述第一CSI报告的类型,当所述第一CSI报告的类型为周期反馈时,所述第一ZP CSI-RS子集中的每一个ZP CSI-RS都是周期发送的。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一CSI报告的配置信息包括第一CSI报告的类型,当所述第一CSI报告的类型为半持续反馈时,所述第一ZP CSI-RS子集中的每一个ZP CSI-RS都是周期发送的或半持续发送的。
- 根据权利要求5所述的方法,其特征在于,所述方法还包括:通过下行控制信息DCI或媒体接入控制控制元素MAC CE接收来自所述网络设备的第一指示信息,所述第一指示信息触发所述第一CSI的发送。
- 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一CSI报告的配置信息还包括偏移值信息,所述偏移值信息用于确定发送所述第一CSI的时域位置。
- 一种信道状态信息CSI的测量方法,其特征在于,包括:向终端设备发送第一CSI报告的配置信息,所述第一CSI报告关联第一零功率信道状态信息参考信号ZP CSI-RS子集,所述第一ZP CSI-RS子集包括Z1个ZP CSI-RS,Z1为大于等于2的整数;接收来自所述终端设备的第一CSI,所述第一CSI是根据所述第一ZP CSI-RS子集测量得到的。
- 根据权利要求8所述的方法,其特征在于,所述Z1个ZP CSI-RS与Z1个干扰一一对应。
- 根据权利要求9所述的方法,其特征在于,所述第一CSI是根据所述Z1个干扰计算得到的,所述Z1个干扰是根据所述Z1个ZP CSI-RS测量得到的。
- 根据权利要求8至10中任一项所述的方法,其特征在于,所述第一CSI报告的配置信息包括第一CSI报告的类型,当所述第一CSI报告的类型为周期反馈时,所述第一ZP CSI-RS子集中的每一个ZP CSI-RS都是周期发送的。
- 根据权利要求8至10中任一项所述的方法,其特征在于,所述第一CSI报告的配置信息包括第一CSI报告的类型,当所述第一CSI报告的类型为半持续反馈时,所述第一ZP CSI-RS子集中的每一个ZP CSI-RS都是周期发送的或半持续发送的。
- 根据权利要求12所述的方法,其特征在于,所述方法还包括:通过下行控制信息DCI或媒体接入控制控制元素MAC CE向所述终端设备发送第一指示信息,所述第一指示信息触发所述第一CSI的发送。
- 根据权利要求8至13中任一项所述的方法,其特征在于,所述第一CSI报告的配置信息还包括偏移值信息,所述偏移值信息用于确定发送所述第一CSI的时域位置。
- 一种通信装置,包括用于执行如权利要求1至7中的任一项所述方法的模块。
- 一种通信装置,包括用于执行如权利要求8至14中的任一项所述方法的模块。
- 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至7中任一项所述的方法。
- 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求8至14中任一项所述的方法。
- 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至14中任一项所述的方法。
- 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序被通信装置执行时,使得所述通信装置实现如权利要求1至14中任一项所述的方法。
- 一种通信系统,其特征在于,包括如权利要求15或17所述的通信装置;和如权利要求16或18所述的通信装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010093026.0 | 2020-02-14 | ||
CN202010093026.0A CN113271158A (zh) | 2020-02-14 | 2020-02-14 | 信道状态信息的测量方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021160137A1 true WO2021160137A1 (zh) | 2021-08-19 |
Family
ID=77227189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/076389 WO2021160137A1 (zh) | 2020-02-14 | 2021-02-09 | 信道状态信息的测量方法和装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113271158A (zh) |
WO (1) | WO2021160137A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024169869A1 (zh) * | 2023-02-17 | 2024-08-22 | 华为技术有限公司 | 信道测量方法及装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113747491A (zh) * | 2021-08-26 | 2021-12-03 | 上海擎昆信息科技有限公司 | 干扰上报方法和用户设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140073336A1 (en) * | 2012-09-07 | 2014-03-13 | Kt Corporation | Transmitting configuration information of interference measurement resource, and measuring interference |
CN104081813A (zh) * | 2012-01-30 | 2014-10-01 | 华为技术有限公司 | 无线通信测量和csi反馈的系统和方法 |
CN107888268A (zh) * | 2016-09-30 | 2018-04-06 | 华为技术有限公司 | Csi测量方法及装置 |
CN110383744A (zh) * | 2017-03-06 | 2019-10-25 | Lg电子株式会社 | 用于在无线通信系统中发送或接收下行链路信号的方法和用于其的设备 |
-
2020
- 2020-02-14 CN CN202010093026.0A patent/CN113271158A/zh active Pending
-
2021
- 2021-02-09 WO PCT/CN2021/076389 patent/WO2021160137A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104081813A (zh) * | 2012-01-30 | 2014-10-01 | 华为技术有限公司 | 无线通信测量和csi反馈的系统和方法 |
US20140073336A1 (en) * | 2012-09-07 | 2014-03-13 | Kt Corporation | Transmitting configuration information of interference measurement resource, and measuring interference |
CN107888268A (zh) * | 2016-09-30 | 2018-04-06 | 华为技术有限公司 | Csi测量方法及装置 |
CN110383744A (zh) * | 2017-03-06 | 2019-10-25 | Lg电子株式会社 | 用于在无线通信系统中发送或接收下行链路信号的方法和用于其的设备 |
Non-Patent Citations (2)
Title |
---|
HUAWEI ET AL: "On aperiodic CSI-RS triggering", 3GPP DRAFT; R1-1719813, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 1 December 2017 (2017-12-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 5, XP051369191 * |
HUAWEI ET AL: "Remaining issues for CSI framework", 3GPP DRAFT; R1-1719426, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 1 December 2017 (2017-12-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 8, XP051369128 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024169869A1 (zh) * | 2023-02-17 | 2024-08-22 | 华为技术有限公司 | 信道测量方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113271158A (zh) | 2021-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11140569B2 (en) | Method and radio node for handling CSI reporting | |
KR102697137B1 (ko) | 채널 상태 정보의 측정 목적을 표시하기 위한 방법 및 디바이스와 시스템 | |
US11277240B2 (en) | Enhanced sounding reference signal transmission | |
CN108933648B (zh) | 信道状态信息的处理方法及装置、终端、基站 | |
CN112672378B (zh) | 资源测量的方法和装置 | |
CN113348711B (zh) | 无线通信中的信道状态评估和上报方案 | |
WO2020029942A1 (zh) | 波束测量的方法和装置 | |
CN111432479A (zh) | 传输信道状态信息的方法和装置 | |
CN110535515A (zh) | 信道测量方法和装置 | |
CN111181704B (zh) | 信道状态信息的传输方法和装置 | |
CN114844596B (zh) | 侧行链路信道状态信息传输的方法和通信装置 | |
CA3004405A1 (en) | Methods and apparatuses for configuration of measurement restrictions | |
CN111510946B (zh) | 测量上报的方法与装置 | |
WO2021160137A1 (zh) | 信道状态信息的测量方法和装置 | |
CN115104263A (zh) | 通信方法和通信装置 | |
JP2022500892A (ja) | 情報の伝送方法、端末機器およびネットワーク機器 | |
WO2021062766A1 (zh) | 一种干扰测量上报的方法和通信装置 | |
CN106559167A (zh) | 一种链路自适应的方法及装置 | |
CN116325877A (zh) | 一种信道状态信息上报方法及装置 | |
WO2015022388A1 (en) | Method and apparatus for transmitting interference reference signals to assist channel quality measurements | |
WO2022082804A1 (zh) | 测量上报方法及装置 | |
WO2024067441A1 (zh) | 通信方法、装置和系统 | |
US20240235643A1 (en) | Channel state information reporting techniques | |
WO2024032327A1 (zh) | 信息传输方法、装置和系统 | |
US20230239909A1 (en) | Interference tracking method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21754325 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21754325 Country of ref document: EP Kind code of ref document: A1 |