WO2021160082A1 - 光学元件面形的瞬态数字莫尔移相干涉测量装置和方法 - Google Patents

光学元件面形的瞬态数字莫尔移相干涉测量装置和方法 Download PDF

Info

Publication number
WO2021160082A1
WO2021160082A1 PCT/CN2021/075983 CN2021075983W WO2021160082A1 WO 2021160082 A1 WO2021160082 A1 WO 2021160082A1 CN 2021075983 W CN2021075983 W CN 2021075983W WO 2021160082 A1 WO2021160082 A1 WO 2021160082A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarization grating
objective lens
optical element
imaging objective
Prior art date
Application number
PCT/CN2021/075983
Other languages
English (en)
French (fr)
Inventor
郝群
胡摇
王臻
王劭溥
Original Assignee
北京理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京理工大学 filed Critical 北京理工大学
Priority to US17/617,315 priority Critical patent/US12018930B2/en
Publication of WO2021160082A1 publication Critical patent/WO2021160082A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02038Shaping the wavefront, e.g. generating a spherical wavefront
    • G01B9/02039Shaping the wavefront, e.g. generating a spherical wavefront by matching the wavefront with a particular object surface shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02041Interferometers characterised by particular imaging or detection techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Definitions

  • the present invention relates to the technical field of photoelectric detection, in particular to a transient digital moiré phase-shifting interferometry device with the surface shape of an optical element, and a transient digital moiré phase-shifting interferometry device with the surface shape of the optical element. method.
  • the digital moiré phase-shifting interferometry method is a kind of aspheric surface detection method, which belongs to a kind of partial compensation interferometry. It is an instantaneous anti-vibration interferometry method, which can achieve high-precision measurement without a phase-shifting mechanism.
  • the digital moiré phase-shifting interferometry method requires low-pass filtering, the residual wavefront is large, or the carrier frequency is large, and the spectrum aliasing will occur, resulting in the phenomenon of solving the wrong area in the digital moiré phase-shifting interferometry method , And the location of the solution error area is related to the size of the space carrier loaded. This leads to the limitation of the remaining wavefront bandwidth when using the digital moiré phase-shifting interferometry method. As a result, the residual wavefront bandwidth of the digital moiré phase-shifting interferometry method is only 0.707 of that of the traditional multi-step phase-shifting interferometry method.
  • Patent No. 201810067710.4 Title of Invention: Digital Moiré Phase-shifting Interferometry Method Based on Two-Step Carrier Splicing Method proposes a two-step carrier splicing method based on the digital Moiré Phase-shifting interferometry method.
  • the interferogram of the carrier two surface errors with different solution error regions are solved. After that, the correct areas of the two surface shape errors are extracted for splicing, and the complete surface shape error is finally obtained.
  • the two-step carrier splicing method expands the measurement range of the traditional digital moiré phase-shifting method and eliminates the remaining wavefront bandwidth limitation of the traditional digital moiré phase-shifting method, making the remaining wavefront bandwidth of the digital moiré phase-shifting interferometric method equal to
  • the traditional phase-shifting interference method is equivalent, but the existing two-step carrier splicing method needs to sequentially load the space carrier f R1 , collect the corresponding interferogram I, load the space carrier f R2 , and collect the corresponding interferogram II, that is, two interferograms.
  • the acquisition requires a period of time, which means that the two-step carrier splicing method loses the instantaneous anti-vibration characteristics of the digital moiré phase-shifting method.
  • Polarization grating is a diffractive optical element that realizes selective light splitting based on the polarization state of incident light.
  • the diffraction angle depends on the spatial period of the grating.
  • the incident light of the polarization grating is linearly polarized light, its outgoing light is +1-order diffracted light and -1 order diffracted light, among which the +1-order diffracted light is left-handed circularly polarized light, and -1 is right-handed circularly polarized light;
  • the incident light of the polarization grating is right-handed circularly polarized light, the outgoing light is +1-order diffracted light, and the polarization state of the diffracted light is left-handed circularly polarized light;
  • the incident light of the polarization grating is left-handed circularly polarized light, its outgoing light It is the -1st order diffracted light, and the polarization state of the diffracted light is right-handed circularly polarized light.
  • the technical problem to be solved by the present invention is to provide a transient digital moiré phase-shifting interferometry device with the surface shape of the optical element, which solves the need to sacrifice the instantaneous impedance when the two-step carrier splicing method is used.
  • the vibration property is exchanged for the defect of the measurement range, which expands the measurement range of the traditional digital moiré phase-shifting method, while retaining the instantaneous anti-vibration characteristics of the digital moiré phase-shifting method.
  • the transient digital Moiré phase-shifting interferometry device with the surface shape of the optical element includes: a light source (1), a beam splitter (2), a reference mirror (3), and a first polarization grating ( 4)
  • the light source emits monochromatic linearly polarized light, after being split by the beam splitter, part of it is reflected to the surface of the reference mirror, and part of it is transmitted to the first polarization grating.
  • the monochromatic linearly polarized light incident on the surface of the reference mirror is reflected by the reference mirror and then passes through the beam splitter.
  • the monochromatic linearly polarized light incident on the first polarization grating is divided by the light splitting performance of the first polarization grating into +1 order left-handed circularly polarized diffracted light as the first beam and -1 order right-handed circularly polarized diffracted light as the second light beam.
  • the beam of light and the incident light form two angles of equal magnitude and opposite directions.
  • the different spatial carriers with frequencies f R1 and f R2 they enter the surface of the measured mirror and are reflected back to the first polarization grating after passing through the first polarization grating.
  • the first light beam becomes right-handed circularly polarized light
  • the second light beam becomes left-handed circularly polarized light, both of which return to the beam splitter, and are reflected by the beam splitter and then reflected by the reference mirror before passing through the beam splitter.
  • the monochromatic linearly polarized light produces interference, where the first light beam and the right-handed circularly polarized component of the linearly polarized light produce the first interference light, and the second light beam and the left-handed circularly polarized component of the linearly polarized light produce the second interference light.
  • An interference light exits to the first imaging objective lens after passing through the second polarization grating, and enters the first camera after being condensed by the first imaging objective lens to obtain a first interference pattern.
  • the second interference light exits to the second imaging objective lens after passing through the second polarization grating , After being converged by the second imaging objective lens, it enters the second camera to obtain the second interferogram.
  • the monochromatic linearly polarized light incident on the first polarization grating of the present invention is divided into +1 order left-handed circularly polarized diffracted light as the first light beam and -1 order right-handed circularly polarized diffracted light as the second light beam by the light splitting performance of the first polarization grating.
  • the two beams of light and the incident light respectively form two angles of equal magnitude and opposite directions.
  • the different spatial carriers with frequencies f R1 and f R2 respectively, they enter the surface of the measured mirror and are reflected back to the first polarization grating. After passing through the first polarization grating, the first light beam becomes right-handed circularly polarized light, and the second light beam becomes left-handed circularly polarized light.
  • the monochromatic linearly polarized light of the light mirror interferes, where the first light beam and the right-handed circularly polarized component in the linearly polarized light produce the first interference light, and the second light beam and the left-handed circularly polarized component of the linearly polarized light produce the second interference light ,
  • the first interference light exits to the first imaging objective lens after passing through the second polarization grating, and enters the first camera after being condensed by the first imaging objective lens to obtain the first interference pattern.
  • the second interference light exits to the second imaging objective lens after passing through the second polarization grating.
  • the imaging objective lens enters the second camera after being converged by the second imaging objective lens to obtain the second interferogram.
  • a transient digital moiré phase-shifting interferometry method for the surface shape of an optical element is also provided, which includes the following steps:
  • a polarization grating with a large spatial period is used for light splitting, and the +1-th order diffracted light is used as the first beam and the -1st-order diffracted light is used as the second light beam, respectively, as the frequencies f R1 and f
  • Different space carriers of R2 and then use another polarization grating with a smaller space period to separate the two overlapping interferograms, and collect two interferograms at one time;
  • the interferogram obtained by loading the space carrier f R1 is defined as the first interferogram
  • the interferogram obtained by loading the space carrier f R2 is defined as the second interferogram;
  • the digital moiré phase-shifting interferometry method based on the two-step carrier splicing method is used to solve the complete and error-free surface shape of the measured surface and realize the measurement of the measured surface shape.
  • Fig. 1 is a schematic structural diagram of a transient digital Moiré phase-shifting interferometry device with an optical element surface shape according to the present invention.
  • Fig. 2 is a flow chart of the transient digital Moiré phase-shifting interferometry method for the surface shape of the optical element according to the present invention.
  • 1-light source 2-beam splitter, 3-reference mirror, 4-first polarization grating, 5-tested lens, 6-second polarization grating, 7-first imaging objective lens, 8-first camera, 9 -Second imaging objective lens, 10-Second camera.
  • the transient digital Moiré phase-shifting interferometry device with the surface shape of the optical element includes: a light source 1, a beam splitter 2, a reference mirror 3, a first polarization grating 4, a tested mirror 5, and a second A two-polarization grating 6, a first imaging objective lens 7, a first camera 8, a second imaging objective lens 9 and a second camera 10;
  • the light source emits monochromatic linearly polarized light, after being split by the beam splitter, part of it is reflected to the surface of the reference mirror, and part of it is transmitted to the first polarization grating.
  • the monochromatic linearly polarized light incident on the surface of the reference mirror is reflected by the reference mirror and then passes through the beam splitter.
  • the monochromatic linearly polarized light incident on the first polarization grating is divided by the light splitting performance of the first polarization grating into +1 order left-handed circularly polarized diffracted light as the first beam and -1 order right-handed circularly polarized diffracted light as the second light beam.
  • the beam of light and the incident light form two angles of equal magnitude and opposite directions.
  • the different spatial carriers with frequencies f R1 and f R2 they enter the surface of the measured mirror and are reflected back to the first polarization grating after passing through the first polarization grating.
  • the first light beam becomes right-handed circularly polarized light
  • the second light beam becomes left-handed circularly polarized light, both of which return to the beam splitter, and are reflected by the beam splitter and then reflected by the reference mirror before passing through the beam splitter.
  • the monochromatic linearly polarized light produces interference, where the first light beam and the right-handed circularly polarized component of the linearly polarized light produce the first interference light, and the second light beam and the left-handed circularly polarized component of the linearly polarized light produce the second interference light.
  • An interference light exits to the first imaging objective lens after passing through the second polarization grating, and enters the first camera after being condensed by the first imaging objective lens to obtain a first interference pattern.
  • the second interference light exits to the second imaging objective lens after passing through the second polarization grating , After being converged by the second imaging objective lens, it enters the second camera to obtain the second interferogram.
  • the monochromatic linearly polarized light incident on the first polarization grating of the present invention is divided into +1 order left-handed circularly polarized diffracted light as the first light beam and -1 order right-handed circularly polarized diffracted light as the second light beam by the light splitting performance of the first polarization grating.
  • the two beams of light and the incident light respectively form two angles of equal magnitude and opposite directions.
  • the different spatial carriers with frequencies of f R1 and f R2 respectively, they enter the surface of the measured mirror and are reflected back to the first polarization grating. After passing through the first polarization grating, the first light beam becomes right-handed circularly polarized light, and the second light beam becomes left-handed circularly polarized light.
  • the monochromatic linearly polarized light of the light mirror interferes, where the first light beam and the right-handed circularly polarized component in the linearly polarized light produce the first interference light, and the second light beam and the left-handed circularly polarized component of the linearly polarized light produce the second interference light ,
  • the first interference light exits to the first imaging objective lens after passing through the second polarization grating, and enters the first camera after being condensed by the first imaging objective lens to obtain the first interference pattern.
  • the second interference light exits to the second imaging objective lens after passing through the second polarization grating.
  • the imaging objective lens enters the second camera after being converged by the second imaging objective lens to obtain the second interferogram.
  • the light source emits monochromatic linearly polarized light, the specific polarization direction and wavelength are determined according to actual measurement conditions, and the beam diameter is not less than the diameter of the measured range on the measured surface.
  • the beam splitter is a non-polarizing beam splitter, the working wavelength range of which is selected according to the light source, and the aperture of the light beam is not smaller than the aperture of the range to be measured on the tested surface.
  • the specific surface shape and surface flatness of the reference mirror are determined according to actual measurement conditions, and the diameter of the reference mirror is not less than the diameter of the measured range on the measured surface.
  • the first polarization grating has a larger spatial period, and the angle between the two diffracted beams obtained by splitting after linearly polarized light is incident is smaller, so that the size of the carrier can ensure that the remaining wavefront bandwidth is within a limited range; its operation
  • the wavelength is selected according to the light source, and its aperture is not less than the aperture of the measured range on the measured surface.
  • the tested lens may be a flat surface, a spherical surface or an aspheric surface.
  • the second polarization grating has a small spatial period so as to completely separate the two interfering lights within the allowable distance range, and its working wavelength is selected according to the light source, and its aperture is not smaller than the aperture of the measured range on the measured surface.
  • the first imaging objective lens and the second imaging objective lens have the same parameters and indicators, the focal length is selected according to the allowable distance range, the imaging quality comprehensive measurement accuracy requirements and the camera parameters are selected, and the working wavelength is selected according to the light source, The aperture is selected according to the exit light aperture of the second polarization grating.
  • the first camera and the second camera have the same parameters and indicators, their performance is selected according to the measurement accuracy requirements, their working wavelength range is selected according to the light source, and the image surface size is integrated with the exit light aperture and the second polarization grating The imaging objective parameters are selected.
  • a transient digital Moiré phase-shifting interferometry method for the surface shape of an optical element includes the following steps:
  • a polarization grating with a large spatial period is used for light splitting, and the +1-th order diffracted light is used as the first beam and the -1st-order diffracted light is used as the second light beam, respectively, as the frequencies f R1 and f
  • Different space carriers of R2 and then use another polarization grating with a smaller space period to separate the two overlapping interferograms, and collect two interferograms at one time;
  • the interferogram obtained by loading the space carrier f R1 is defined as the first interferogram
  • the interferogram obtained by loading the space carrier f R2 is defined as the second interferogram;
  • the digital moiré phase-shifting interferometry method based on the two-step carrier splicing method is used to solve the complete and error-free shape of the measured surface and realize the measurement of the measured surface.
  • the instantaneous digital moiré phase-shifting interferometry method based on the two-step carrier splicing method is used to measure the surface error of the plane mirror.
  • the measuring device is a transient digital moiré phase-shifting interferometry device based on the two-step carrier splicing method, as shown in Figure 2. , Including 1-light source, 2-splitter, 3-reference mirror, 4-first polarization grating, 5-under-test lens, 6-second polarization grating, 7-first imaging objective, 8-first camera, 9 -Second imaging objective lens, 10-Second camera.
  • a polarization grating is a diffractive optical element that achieves selective light splitting based on the polarization state of the incident light, and the diffraction angle depends on the number of grating lines.
  • the polarization grating can control the energy distribution between the positive first order and the negative first order.
  • Polarization gratings have ultra-high diffraction efficiency compared with traditional gratings, and can be used in various applications such as spectrum correlation, beam selection and wavelength selection. It can also be used to achieve non-mechanical large-angle beam deflection, compared with traditional mechanical deflection devices , The required space is small, and the added system weight can be ignored.
  • Polarization grating applications include augmented reality (AR) systems (such as AR head-mounted devices), telecommunications equipment, and beam deflection in optical systems.
  • AR augmented reality
  • Some mainstream manufacturers provide standard polarization gratings with a period of 5 ⁇ m and working wavelengths of 520nm, 650nm, 780nm, 850nm, 940nm.
  • standard polarization gratings some manufacturers also provide a variety of customized services, including customized special sizes and design wavelengths. , Grating period, diffraction angle and other indicators.
  • the test range is a circular area with a diameter of 23 mm.
  • the light source emits monochromatic linearly polarized light with a center wavelength of 632.8nm, and the beam diameter is 30mm.
  • the beam aperture of the beam splitter is 25.4mm.
  • the reference mirror is a standard flat mirror with a surface flatness of ⁇ /10 and an aperture of 25.4mm.
  • the first polarization grating has a spatial period of 363 ⁇ m, an operating wavelength of 633nm, a first-order diffraction angle of about 0.1°, and an aperture of 25.4mm.
  • the second polarization grating has a spatial period of 5 ⁇ m, an operating wavelength of 633 nm, and an aperture of 25.4 mm, which can completely separate the two interfering lights after about 10 cm.
  • the focal length of the first imaging objective lens and the second imaging objective lens is 50mm, the working wavelength is 350nm-700nm, and the aperture is 25mm.
  • the resolution of the first camera and the second camera is 1024 ⁇ 1024, and the pixel size is 5 ⁇ m.
  • the measurement steps are as follows:
  • the interferogram obtained by loading the spatial carrier f R1 is defined as interferogram I
  • the interferogram obtained by loading the spatial carrier f R2 is defined as interferogram II.
  • two-step carrier splicing is used to solve the complete and error-free shape of the measured surface and realize the measurement of the measured surface shape.
  • Steps 3 to 7 of the method proposed in the patent 201810067710.4 are as follows:
  • Step 3 Use digital moiré phase-shifting interferometry to solve interferogram I and interferogram II respectively: use digital moiré phase-shifting interferometry to solve the measured surface shape SFE1 when carrier fR1 is loaded; adopt digital moiré phase-shifting interference Method to solve the measured surface shape SFE2 when the carrier fR2 is loaded;
  • Step 4 Pre-mark the error area and compare whether the error area overlaps
  • Step 4.1 Take the measured surface shape SFE1 obtained in step 3 as the base, and use the space carrier fR1 to pre-mark the solution error area ⁇ 1, ⁇ 1 ⁇ SFE1 of the measured surface shape SFE1;
  • Step 4.2 Take the measured surface shape SFE2 solved in step 3 as the base and use the space carrier fR2 pre-marking to solve the error area of the measured surface shape SFE2 ⁇ 2, ⁇ 2 ⁇ SFE2;
  • Step 4.3 Check whether the error area ⁇ 1 and the error area ⁇ 2 are completely separated and do not overlap. If there is an overlap area, you need to change the carrier loaded in step 2;
  • Step 5 According to the solution error area ⁇ 1 of the measured surface shape SFE1 solved in step 4.1, extract the solved area SFE2' of the measured surface shape SFE2 without error at ⁇ 1;
  • Step 7 Use the splicing vector ⁇ to adjust the relative position and tilt of the error-free surface shape SFE2' obtained in step 5; and replace the solution in the measured surface shape SFE1 with the solution-free area SFE2' Error area ⁇ 1, the final complete error-free measured surface shape SFE is obtained, and the phase of the solved error-free measured surface shape SFE is defined as Then there is
  • Obtaining the final complete error-free SFE of the measured surface is to solve the problem of solving errors in the large residual wavefront using the digital moiré phase-shifting interference method, and then expand the measurement range of the traditional digital moiré phase-shifting method and eliminate the traditional
  • the remaining wavefront bandwidth limitation of the digital moiré phase-shifting method makes the remaining wavefront bandwidth of the digital moiré phase-shifting interferometric method equivalent to that of the traditional phase-shifting interferometry; that is, the measurement of the measured surface shape is realized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

光学元件面形的瞬态数字莫尔移相干涉测量装置及方法,其解决了使用两步载波拼接法时需要牺牲瞬时抗振性换取测量范围的缺陷,扩展了传统的数字莫尔移相方法的测量范围,同时也保留了数字莫尔移相方法的瞬时抗振特性。装置包括:光源(1)、分光镜(2)、参考镜(3)、第一偏振光栅(4)、被测镜(5)、第二偏振光栅(6)、第一成像物镜(7)、第一相机(8)、第二成像物镜(9)和第二相机(10);通过偏振光栅的分光性能加载不同载波,使用偏振光栅将两束干涉光分离,同时获取两幅实际干涉图。

Description

光学元件面形的瞬态数字莫尔移相干涉测量装置和方法 技术领域
本发明涉及光电检测的技术领域,尤其涉及一种光学元件面形的瞬态数字莫尔移相干涉测量装置,以及这种光学元件面形的瞬态数字莫尔移相干涉测量装置所采用的方法。
背景技术
数字莫尔移相干涉测量方法是一种非球面检测方法,属于部分补偿干涉法的一种,是一种瞬时抗振的干涉测量方法,无需移相机构便可实现高精度的测量。
由于数字莫尔移相干涉测量方法需要进行低通滤波,因此剩余波前较大,或载波较大时会出现频谱混叠的情况,导致数字莫尔移相干涉测量方法出现求解错误区域的现象,且求解错误区域的位置与加载的空间载波大小有关。这导致使用数字莫尔移相干涉测量方法时,剩余波前带宽受限。造成使用数字莫尔移相干涉测量方法的剩余波前带宽只有传统多步移相干涉方法的剩余波前带宽的0.707。
由于在频谱混叠情况下,数字莫尔移相干涉测量方法求解错误区域的位置与加载的空间载波大小有关,为解决数字莫尔移相干涉测量方法剩余波前带宽受限的问题,申请人的专利(专利号201810067710.4,发明名称:基于两步载波拼接法的数字莫尔移相干 涉测量方法)提出了基于数字莫尔移相干涉测量方法的两步载波拼接法,通过采集两幅加入不同载波的干涉图,解得两个带有不同求解错误区域的面形误差。之后再提取两个面形误差的正确区域进行拼接,最终得到完整的面形误差。
两步载波拼接法扩展了传统的数字莫尔移相方法的测量范围,消除传统的数字莫尔移相方法的剩余波前带宽限制,使得数字莫尔移相干涉测量方法的剩余波前带宽与传统的移相干涉方法相当,但是现有的两步载波拼接法需要依次加载空间载波f R1、采集相应的干涉图I、加载空间载波f R2、采集相应的干涉图II,即两幅干涉图的采集需要间隔一段时间,这意味着两步载波拼接法丧失了数字莫尔移相方法的瞬时抗振特性。
偏振光栅是一种基于入射光的偏振态实现选择性分光的衍射光学元件,衍射角度取决于光栅空间周期。当偏振光栅的入射光为线偏振光时,其出射光为+1级衍射光及-1级衍射光,其中+1级衍射光为左旋圆偏振光,-1级为右旋圆偏振光;当偏振光栅的入射光为右旋圆偏振光时,其出射光为+1级衍射光,衍射光偏振态为左旋圆偏振光;当偏振光栅的入射光为左旋圆偏振光时,其出射光为-1级衍射光,衍射光偏振态为右旋圆偏振光。
发明内容
为克服现有技术的缺陷,本发明要解决的技术问题是提供了一种光学元件面形的瞬态数字莫尔移相干涉测量装置,其解决了使用两步 载波拼接法时需要牺牲瞬时抗振性换取测量范围的缺陷,扩展了传统的数字莫尔移相方法的测量范围,同时也保留了数字莫尔移相方法的瞬时抗振特性。
本发明的技术方案是:这种光学元件面形的瞬态数字莫尔移相干涉测量装置,其包括:光源(1)、分光镜(2)、参考镜(3)、第一偏振光栅(4)、被测镜(5)、第二偏振光栅(6)、第一成像物镜(7)、第一相机(8)、第二成像物镜(9)和第二相机(10);
光源出射单色线偏振光,经过分光镜分光后,一部分被反射至参考镜表面,一部分透射至第一偏振光栅,入射参考镜表面的单色线偏振光经参考镜反射后透过分光镜,入射第一偏振光栅的单色线偏振光被第一偏振光栅的分光性能分为+1级左旋圆偏振衍射光作为第一光束和-1级右旋圆偏振衍射光作为第二光束,这两束光分别与入射光成大小相等方向相反的两个夹角,作为所述频率分别为f R1、f R2的不同空间载波入射被测镜表面,并被其反射回第一偏振光栅,经过第一偏振光栅后,第一光束变为右旋圆偏振光,第二光束变为左旋圆偏振光,两者均返回分光镜,经分光镜反射后分别与上述经参考镜反射后透过分光镜的单色线偏振光产生干涉,其中第一光束与线偏振光中的右旋圆偏振成分产生第一干涉光,第二光束与线偏振光中的左旋圆偏振成分产生第二干涉光,第一干涉光经过第二偏振光栅后出射至第一成像物镜,经第一成像物镜会聚后进入第一相机,得到第一干涉图,第二干涉光经过第二偏振光栅后出射至第二成像物镜,经第二成像物镜会聚后进入第二相机,得到第二干涉图。
本发明入射第一偏振光栅的单色线偏振光被第一偏振光栅的分光性能分为+1级左旋圆偏振衍射光作为第一光束和-1级右旋圆偏振衍射光作为第二光束,这两束光分别与入射光成大小相等方向相反的两个夹角,作为所述频率分别为f R1、f R2的不同空间载波入射被测镜表面,并被其反射回第一偏振光栅,经过第一偏振光栅后,第一光束变为右旋圆偏振光,第二光束变为左旋圆偏振光,两者均返回分光镜,经分光镜反射后分别与上述经参考镜反射后透过分光镜的单色线偏振光产生干涉,其中第一光束与线偏振光中的右旋圆偏振成分产生第一干涉光,第二光束与线偏振光中的左旋圆偏振成分产生第二干涉光,第一干涉光经过第二偏振光栅后出射至第一成像物镜,经第一成像物镜会聚后进入第一相机,得到第一干涉图,第二干涉光经过第二偏振光栅后出射至第二成像物镜,经第二成像物镜会聚后进入第二相机,得到第二干涉图,因此可以以同时向被测面加载两个不同的载波,从而缩短测量过程,节约测量时间,使测量具有瞬时抗振特性,在向被测面加载波时无需移动测量装置中任何元件,只需在构建测量装置时装调到位即可,从而避免了现有两步载波拼接法中,加载波时移动元件带来的调整误差,减少误差源,提高测量精度,从而解决了使用两步载波拼接法时需要牺牲瞬时抗振性换取测量范围的缺陷,扩展了传统的数字莫尔移相方法的测量范围,同时也保留了数字莫尔移相方法的瞬时抗振特性。
还提供了一种光学元件面形的瞬态数字莫尔移相干涉测量方法,其包括以下步骤:
(1)构建虚拟干涉测量装置,在像面上得到理想系统剩余波前
Figure PCTCN2021075983-appb-000001
(2)根据虚拟干涉测量装置构建实际干涉测量装置;
(3)通过偏振光栅的分光性能,使用空间周期较大的偏振光栅进行分光,将+1级衍射光作为第一光束和-1级衍射光作为第二光束,分别作为频率为f R1、f R2的不同空间载波,再使用空间周期较小的另一个偏振光栅将两束重叠的干涉光分离,一次性采集获得两幅干涉图;加载空间载波f R1获得的干涉图定义为第一干涉图,加载空间载波f R2获得的干涉图定义为第二干涉图;
采用基于两步载波拼接法的数字莫尔移相干涉测量方法,求解完整的无错误的被测面形,实现对被测面形的测量。
附图说明
图1是根据本发明的光学元件面形的瞬态数字莫尔移相干涉测量装置的结构示意图。
图2是根据本发明的光学元件面形的瞬态数字莫尔移相干涉测量方法的流程图。
其中:1-光源,2-分光镜,3-参考镜,4-第一偏振光栅,5-被测镜,6-第二偏振光栅,7-第一成像物镜,8-第一相机,9-第二成像物镜,10-第二相机。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“包括”以及任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、装置、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其他步骤或单元。
如图1所示,这种光学元件面形的瞬态数字莫尔移相干涉测量装置,其包括:光源1、分光镜2、参考镜3、第一偏振光栅4、被测镜5、第二偏振光栅6、第一成像物镜7、第一相机8、第二成像物镜9和第二相机10;
光源出射单色线偏振光,经过分光镜分光后,一部分被反射至参考镜表面,一部分透射至第一偏振光栅,入射参考镜表面的单色线偏振光经参考镜反射后透过分光镜,入射第一偏振光栅的单色线偏振光被第一偏振光栅的分光性能分为+1级左旋圆偏振衍射光作为第一光束和-1级右旋圆偏振衍射光作为第二光束,这两束光分别与入射光成大小相等方向相反的两个夹角,作为所述频率分别为f R1、f R2的不同空间载波入射被测镜表面,并被其反射回第一偏振光栅,经过第一偏振 光栅后,第一光束变为右旋圆偏振光,第二光束变为左旋圆偏振光,两者均返回分光镜,经分光镜反射后分别与上述经参考镜反射后透过分光镜的单色线偏振光产生干涉,其中第一光束与线偏振光中的右旋圆偏振成分产生第一干涉光,第二光束与线偏振光中的左旋圆偏振成分产生第二干涉光,第一干涉光经过第二偏振光栅后出射至第一成像物镜,经第一成像物镜会聚后进入第一相机,得到第一干涉图,第二干涉光经过第二偏振光栅后出射至第二成像物镜,经第二成像物镜会聚后进入第二相机,得到第二干涉图。
本发明入射第一偏振光栅的单色线偏振光被第一偏振光栅的分光性能分为+1级左旋圆偏振衍射光作为第一光束和-1级右旋圆偏振衍射光作为第二光束,这两束光分别与入射光成大小相等方向相反的两个夹角,作为所述频率分别为f R1、f R2的不同空间载波入射被测镜表面,并被其反射回第一偏振光栅,经过第一偏振光栅后,第一光束变为右旋圆偏振光,第二光束变为左旋圆偏振光,两者均返回分光镜,经分光镜反射后分别与上述经参考镜反射后透过分光镜的单色线偏振光产生干涉,其中第一光束与线偏振光中的右旋圆偏振成分产生第一干涉光,第二光束与线偏振光中的左旋圆偏振成分产生第二干涉光,第一干涉光经过第二偏振光栅后出射至第一成像物镜,经第一成像物镜会聚后进入第一相机,得到第一干涉图,第二干涉光经过第二偏振光栅后出射至第二成像物镜,经第二成像物镜会聚后进入第二相机,得到第二干涉图,因此可以以同时向被测面加载两个不同的载波,从而缩短测量过程,节约测量时间,使测量具有瞬时抗振特性,在向被测面 加载波时无需移动测量装置中任何元件,只需在构建测量装置时装调到位即可,从而避免了现有两步载波拼接法中,加载波时移动元件带来的调整误差,减少误差源,提高测量精度,从而解决了使用两步载波拼接法时需要牺牲瞬时抗振性换取测量范围的缺陷,扩展了传统的数字莫尔移相方法的测量范围,同时也保留了数字莫尔移相方法的瞬时抗振特性。
优选地,所述光源出射单色线偏振光,具体偏振方向及波长根据实际测量情况决定,光束口径不小于被测面上被测范围口径。
优选地,所述分光镜为非偏振分光镜,其工作波长范围根据光源进行选择,其通光口径不小于被测面上被测范围口径。
优选地,所述参考镜具体面形及表面平整度根据实际测量情况决定,其口径不小于被测面上被测范围口径。
优选地,所述第一偏振光栅空间周期较大,线偏振光入射后分光得到的两束衍射光间夹角较小,使其载波大小能保证剩余波前带宽在限制范围之内;其工作波长根据光源进行选择,其口径不小于被测面上被测范围口径。
优选地,所述被测镜可为平面、球面或非球面。
优选地,所述第二偏振光栅空间周期较小,以便将两束干涉光在允许距离范围内完全分离,其工作波长根据光源进行选择,其口径不小于被测面上被测范围口径。
优选地,所述第一成像物镜及第二成像物镜具有相同的参数及指标,其焦距根据允许距离范围选择,其成像质量综合测量精度要求及 相机参数进行选择,其工作波长根据光源进行选择,其口径根据第二偏振光栅的出射光口径进行选择。
优选地,所述第一相机及第二相机具有相同参数及指标,其性能根据测量精度要求进行选择,其工作波长范围根据光源进行选择,其像面尺寸综合第二偏振光栅的出射光口径及成像物镜参数进行选择。
如图2所示,一种光学元件面形的瞬态数字莫尔移相干涉测量方法,其包括以下步骤:
(1)构建虚拟干涉测量装置,在像面上得到理想系统剩余波前
Figure PCTCN2021075983-appb-000002
(2)根据虚拟干涉测量装置构建实际干涉测量装置;
(3)通过偏振光栅的分光性能,使用空间周期较大的偏振光栅进行分光,将+1级衍射光作为第一光束和-1级衍射光作为第二光束,分别作为频率为f R1、f R2的不同空间载波,再使用空间周期较小的另一个偏振光栅将两束重叠的干涉光分离,一次性采集获得两幅干涉图;加载空间载波f R1获得的干涉图定义为第一干涉图,加载空间载波f R2获得的干涉图定义为第二干涉图;
(4)采用基于两步载波拼接法的数字莫尔移相干涉测量方法,求解完整的无错误的被测面形,实现对被测面形的测量。
以下详细说明本发明的具体实施例。
采用基于两步载波拼接法的瞬时数字莫尔移相干涉测量方法测量平面镜的面型误差,测量装置为基于两步载波拼接法的瞬态数字莫尔 移相干涉测量装置,如图2所述,包括1-光源,2-分光镜,3-参考镜,4-第一偏振光栅,5-被测镜,6-第二偏振光栅,7-第一成像物镜,8-第一相机,9-第二成像物镜,10-第二相机。其中偏振光栅是一种基于入射光的偏振态实现选择性分光的衍射光学元件,衍射角度取决于光栅线数。通过控制入射光的偏振态,偏振光栅能够调控正一阶和负一阶之间的能量分布。偏振光栅相对传统光栅有超高的衍射效率,可用于光谱相关、光束选择和波长选择等多种应用场合,还可用于实现非机械式的大角度光束偏转,与传统的机械式偏转器件相比,所需空间小,且增加的系统重量可以忽略不计。偏振光栅的应用包括增强现实(AR)系统(如:AR头戴式装置)、电信设备和光学系统中的光束偏转等。某些主流生产商提供周期5μm,工作波长为520nm、650nm、780nm、850nm、940nm的标准偏振光栅,除了标准的偏振光栅,有的生产商还提供多种定制服务,包括定制特殊尺寸、设计波长、光栅周期、衍射角度等指标。
本实施例所述被测镜平面镜,被测范围为直径23mm的圆域。测量过程中,光源出射中心波长为632.8nm的单色线偏振光,光束口径为30mm。分光镜通光口径为25.4mm。参考镜为标准平面镜,表面平整度为λ/10,口径为25.4mm。第一偏振光栅空间周期为363μm,工作波长为633nm,1级衍射角约为0.1°,口径为25.4mm。第二偏振光栅空间周期为5μm,工作波长为633nm,口径为25.4mm,可在约10cm后将两束干涉光完全分离。第一成像物镜及第二成像物镜焦距为50mm,工 作波长为350nm-700nm,口径为25mm。第一相机及第二相机分辨率为1024×1024,像元尺寸为5μm。
测量步骤如下:
(1)构建虚拟干涉测量装置,在像面上得到理想系统剩余波前
Figure PCTCN2021075983-appb-000003
(2)根据虚拟干涉测量装置构建实际干涉测量装置。
(3)通过偏振光栅的分光性能,使用空间周期为363μm的第一偏振光栅进行分光,将+1级衍射光和-1级衍射光分别作为频率为f R1=70/1024λ/pixel、f R2=-70/1024λ/pixel的不同空间载波,再使用空间周期为5μm的第二偏振光栅将两束干涉光分离,一次性采集获得两幅干涉图。加载空间载波f R1获得的干涉图定义为干涉图I,加载空间载波f R2获得的干涉图定义为干涉图II。
(4)根据专利201810067710.4中提出方法的步骤三至步骤七进行采用两步载波拼接,求解完整的无错误的被测面形,实现对被测面形的测量。
专利201810067710.4中提出方法的步骤三至步骤七如下:
步骤三:采用数字莫尔移相干涉方法分别对干涉图I、干涉图II进行求解:采用数字莫尔移相干涉方法求解加载载波fR1时的被测面形SFE1;采用数字莫尔移相干涉方法求解加载载波fR2时的被测面形SFE2;
步骤四:预标记错误区域,并比较错误区域是否重叠;
步骤4.1:以步骤三中求解出的被测面形SFE1为基底,利用空间 载波fR1预标记求解出的被测面形SFE1的求解错误区域ω1,ω1∈SFE1;
步骤4.2:以步骤三中求解出的被测面形SFE2为基底利用空间载波fR2预标记求解出的被测面形SFE2的求解错误区域ω2,ω2∈SFE2;
步骤4.3:检查错误区域ω1和错误区域ω2是否完全分开没有重叠,如果有重叠区域则需要更改步骤二中加载的载波;
步骤五:根据步骤4.1中求解出的被测面形SFE1的求解错误区域ω1,提取求解出的被测面形SFE2在ω1处无错误的区域SFE2';
Figure PCTCN2021075983-appb-000004
步骤六:根据步骤三中求解出的被测面形SFE1、求解出的被测面形SFE2计算求解拼接向量τ=[Δa,Δb,Δc]T;
Figure PCTCN2021075983-appb-000005
式中
Figure PCTCN2021075983-appb-000006
为求解出的被测面形SFE1的相位,
Figure PCTCN2021075983-appb-000007
为求解出的被测面形SFE2的相位;
步骤七:利用拼接向量τ调整步骤五中求解出的无错误的面形SFE2'的相对位置和倾斜量;并用求解出的无错误的区域SFE2'替换求解出的被测面形SFE1中的求解错误区域ω1,得到最终完整的无错 误的被测面形SFE,定义求解出的无错误的被测面形SFE的相位为
Figure PCTCN2021075983-appb-000008
则有
Figure PCTCN2021075983-appb-000009
得到最终完整的无错误的被测面形SFE即解决采用数字莫尔移相干涉方法在大剩余波前时求解错误的问题,进而扩展传统的数字莫尔移相方法的测量范围,消除传统的数字莫尔移相方法的剩余波前带宽限制,使得数字莫尔移相干涉测量方法的剩余波前带宽与传统的移相干涉方法相当;即实现对被测面形的测量。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属本发明技术方案的保护范围。

Claims (10)

  1. 光学元件面形的瞬态数字莫尔移相干涉测量装置,其特征在于:其包括:光源(1)、分光镜(2)、参考镜(3)、第一偏振光栅(4)、被测镜(5)、第二偏振光栅(6)、第一成像物镜(7)、第一相机(8)、第二成像物镜(9)和第二相机(10);
    光源出射单色线偏振光,经过分光镜分光后,一部分被反射至参考镜表面,一部分透射至第一偏振光栅,入射参考镜表面的单色线偏振光经参考镜反射后透过分光镜,入射第一偏振光栅的单色线偏振光被第一偏振光栅的分光性能分为+1级左旋圆偏振衍射光作为第一光束和-1级右旋圆偏振衍射光作为第二光束,这两束光分别与入射光成大小相等方向相反的两个夹角,作为所述频率分别为f R1、f R2的不同空间载波入射被测镜表面,并被其反射回第一偏振光栅,经过第一偏振光栅后,第一光束变为右旋圆偏振光,第二光束变为左旋圆偏振光,两者均返回分光镜,经分光镜反射后分别与上述经参考镜反射后透过分光镜的单色线偏振光产生干涉,其中第一光束与线偏振光中的右旋圆偏振成分产生第一干涉光,第二光束与线偏振光中的左旋圆偏振成分产生第二干涉光,第一干涉光经过第二偏振光栅后出射至第一成像物镜,经第一成像物镜会聚后进入第一相机,得到第一干涉图,第二干涉光经过第二偏振光栅后出射至第二成像物镜,经第二成像物镜会聚后进入第二相机,得到第二干涉图。
  2. 根据权利要求1所述的光学元件面形的瞬态数字莫尔移相干涉测量装置,其特征在于:所述光源出射单色线偏振光,具体偏振方向及波长根据实际测量情况决定,光束口径不小于被测面上被测范围口径。
  3. 根据权利要求2所述的光学元件面形的瞬态数字莫尔移相干涉测量装置,其特征在于:所述分光镜为非偏振分光镜,其工作波长范围根据光源进行选择,其通光口径不小于被测面上被测范围口径。
  4. 根据权利要求3所述的光学元件面形的瞬态数字莫尔移相干涉测量装置,其特征在于:所述参考镜具体面形及表面平整度根据实际测量情况决定,其口径不小于被测面上被测范围口径。
  5. 根据权利要求4所述的光学元件面形的瞬态数字莫尔移相干涉测量装置,其特征在于:所述第一偏振光栅空间周期较大,线偏振光入射后分光得到的两束衍射光间夹角较小,使其载波大小能保证剩余波前带宽在限制范围之内;其工作波长根据光源进行选择,其口径不小于被测面上被测范围口径。
  6. 根据权利要求5所述的光学元件面形的瞬态数字莫尔移相干涉测量装置,其特征在于:所述被测镜可为平面、球面或非球面。
  7. 根据权利要求6所述的光学元件面形的瞬态数字莫尔移相干涉测量装置,其特征在于:所述第二偏振光栅空间周期较小, 以便将两束干涉光在允许距离范围内完全分离,其工作波长根据光源进行选择,其口径不小于被测面上被测范围口径。
  8. 根据权利要求7所述的光学元件面形的瞬态数字莫尔移相干涉测量装置,其特征在于:所述第一成像物镜及第二成像物镜具有相同的参数及指标,其焦距根据允许距离范围选择,其成像质量综合测量精度要求及相机参数进行选择,其工作波长根据光源进行选择,其口径根据第二偏振光栅的出射光口径进行选择。
  9. 根据权利要求8所述的光学元件面形的瞬态数字莫尔移相干涉测量装置,其特征在于:所述第一相机及第二相机具有相同参数及指标,其性能根据测量精度要求进行选择,其工作波长范围根据光源进行选择,其像面尺寸综合第二偏振光栅的出射光口径及成像物镜参数进行选择。
  10. 光学元件面形的瞬态数字莫尔移相干涉测量方法,其特征在于:其包括以下步骤:
    (1)构建虚拟干涉测量装置,在像面上得到理想系统剩余波前
    Figure PCTCN2021075983-appb-100001
    (2)根据虚拟干涉测量装置构建实际干涉测量装置;
    (3)通过偏振光栅的分光性能,使用空间周期较大的偏振光栅进行分光,将+1级衍射光作为第一光束和-1级衍射光作为第二光束,分别作为频率为f R1、f R2的不同空间载波,再使用空间周期较小的另一个偏振光栅将两束重叠的干涉光 分离,一次性采集获得两幅干涉图;加载空间载波f R1获得的干涉图定义为第一干涉图,加载空间载波f R2获得的干涉图定义为第二干涉图;
    (4)采用基于两步载波拼接法的数字莫尔移相干涉测量方法,求解完整的无错误的被测面形,实现对被测面形的测量。
PCT/CN2021/075983 2020-02-10 2021-02-08 光学元件面形的瞬态数字莫尔移相干涉测量装置和方法 WO2021160082A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/617,315 US12018930B2 (en) 2020-02-10 2021-02-08 Transient digital moire phase-shifting interferometric measuring device and method for the surface shape of an optical element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010091711.XA CN111238397B (zh) 2020-02-10 2020-02-10 光学元件面形的瞬态数字莫尔移相干涉测量装置和方法
CN202010091711.X 2020-02-10

Publications (1)

Publication Number Publication Date
WO2021160082A1 true WO2021160082A1 (zh) 2021-08-19

Family

ID=70874946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075983 WO2021160082A1 (zh) 2020-02-10 2021-02-08 光学元件面形的瞬态数字莫尔移相干涉测量装置和方法

Country Status (3)

Country Link
US (1) US12018930B2 (zh)
CN (1) CN111238397B (zh)
WO (1) WO2021160082A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111048987B (zh) * 2019-12-31 2021-02-12 哈尔滨工业大学 基于激光管温度多点采集的高频率复现性激光稳频方法与装置
CN111238397B (zh) * 2020-02-10 2021-03-02 北京理工大学 光学元件面形的瞬态数字莫尔移相干涉测量装置和方法
CN111811429B (zh) * 2020-07-14 2021-04-20 北京理工大学 一种子孔径拼接干涉测量方法和装置
CN114136466B (zh) * 2021-11-24 2023-11-28 西安工业大学 一种实现瞬时两步相移的横向剪切干涉测量装置及方法
CN116839506B (zh) * 2023-09-01 2023-11-21 中国科学院长春光学精密机械与物理研究所 掠入射式拼接平面镜面形检测方法、系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906508B1 (ko) * 2008-06-12 2009-07-07 (주)펨트론 디지털 홀로그래피를 이용한 3d 측정장치
CN104165582A (zh) * 2014-08-28 2014-11-26 哈尔滨工程大学 一种基于反射光栅的相移点衍射干涉检测装置及检测方法
CN105865339A (zh) * 2016-05-12 2016-08-17 哈尔滨工业大学 分瞳式移相干涉共焦微位移测量装置
CN108562240A (zh) * 2018-01-24 2018-09-21 北京理工大学 基于两步载波拼接法的数字莫尔移相干涉测量方法
CN111238397A (zh) * 2020-02-10 2020-06-05 北京理工大学 光学元件面形的瞬态数字莫尔移相干涉测量装置和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3495854B2 (ja) * 1996-09-12 2004-02-09 キヤノン株式会社 位相分布測定方法及びそれを用いた位相シフト電子モアレ装置
CN100491938C (zh) * 2004-04-22 2009-05-27 北京理工大学 用于数字莫尔移相干涉术的莫尔滤波合成方法
CN1587950A (zh) * 2004-07-08 2005-03-02 北京理工大学 一种用部分补偿透镜实现非球面面形的干涉测量方法
CN101893429B (zh) * 2010-07-16 2011-11-30 华中科技大学 一种基于偏振相移显微干涉术的超精表面测量系统
CN104949630B (zh) * 2014-03-25 2017-06-20 南京理工大学 一种大数值孔径条纹对比度可调节的点衍射干涉装置
CN109737892B (zh) * 2019-01-08 2020-06-23 北京卫星环境工程研究所 基于区域定位拟合算法的数字莫尔移相干涉面形测量方法
CN110500968B (zh) * 2019-07-11 2021-04-20 北京理工大学 基于稀疏傅里叶变换的数字莫尔干涉相位实时测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906508B1 (ko) * 2008-06-12 2009-07-07 (주)펨트론 디지털 홀로그래피를 이용한 3d 측정장치
CN104165582A (zh) * 2014-08-28 2014-11-26 哈尔滨工程大学 一种基于反射光栅的相移点衍射干涉检测装置及检测方法
CN105865339A (zh) * 2016-05-12 2016-08-17 哈尔滨工业大学 分瞳式移相干涉共焦微位移测量装置
CN108562240A (zh) * 2018-01-24 2018-09-21 北京理工大学 基于两步载波拼接法的数字莫尔移相干涉测量方法
CN111238397A (zh) * 2020-02-10 2020-06-05 北京理工大学 光学元件面形的瞬态数字莫尔移相干涉测量装置和方法

Also Published As

Publication number Publication date
CN111238397A (zh) 2020-06-05
US12018930B2 (en) 2024-06-25
CN111238397B (zh) 2021-03-02
US20220252391A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
WO2021160082A1 (zh) 光学元件面形的瞬态数字莫尔移相干涉测量装置和方法
CN110017767B (zh) 基于液晶空间光调制器的空间移相动态干涉仪及其应用
Millerd et al. Pixelated phase-mask dynamic interferometers
JP7383048B2 (ja) 変位測定装置、変位測定方法およびフォトリソグラフィー装置
US7057737B2 (en) Common optical-path testing of high-numerical-aperture wavefronts
CN102589416B (zh) 用于非球面测量的波长扫描干涉仪及方法
CN103267629B (zh) 点衍射干涉波像差测量仪及检测方法
CN108061515B (zh) 相位偏移干涉仪
CN109313008B (zh) 用于样本测量的光学系统和方法
JP2006214856A (ja) 測定装置及び方法
CN104713494B (zh) 傅里叶变换移相标定的双波长调谐干涉测试装置及方法
CN103398655B (zh) 一种波长调谐相移点衍射干涉测量方法
CN101788344B (zh) 瞬时相移横向剪切干涉仪
WO2005043073A2 (en) Reconfigureable interferometer system
CN101915556A (zh) 可用于低反射率光学球面面形检测的偏振点衍射干涉系统
JP2017003590A (ja) 偏光系コヒーレント勾配検知システムおよび方法
CN116379961B (zh) 一种相位测量系统及方法
CN114719741B (zh) 一种共光路偏振点衍射同步移相干涉系统及方法
CN111256582A (zh) 一种瞬态移相横向剪切干涉仪及测量方法
CN111238396B (zh) 一种瞬态数字莫尔移相干涉测量装置和方法
CN108362222A (zh) 基于多向倾斜载频的非零位新型点衍射干涉测量系统
CN101694369A (zh) 同时相移的斐索干涉仪
CN104748946B (zh) 光纤点衍射干涉仪光纤衍射参考波前偏差测量方法
Liu et al. A new lateral shearing interferometer for precision surface measurement
CN114459619B (zh) 一种相移量实时在线测量装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753259

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/04/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21753259

Country of ref document: EP

Kind code of ref document: A1