WO2021159678A1 - 超声波感测装置 - Google Patents

超声波感测装置 Download PDF

Info

Publication number
WO2021159678A1
WO2021159678A1 PCT/CN2020/108891 CN2020108891W WO2021159678A1 WO 2021159678 A1 WO2021159678 A1 WO 2021159678A1 CN 2020108891 W CN2020108891 W CN 2020108891W WO 2021159678 A1 WO2021159678 A1 WO 2021159678A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
sensing device
ultrasonic sensing
ultrasonic
piezoelectric
Prior art date
Application number
PCT/CN2020/108891
Other languages
English (en)
French (fr)
Inventor
王地宝
范成至
Original Assignee
神盾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司 filed Critical 神盾股份有限公司
Publication of WO2021159678A1 publication Critical patent/WO2021159678A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/24Methods or devices for transmitting, conducting or directing sound for conducting sound through solid bodies, e.g. wires
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1306Sensors therefor non-optical, e.g. ultrasonic or capacitive sensing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B3/00Methods or apparatus specially adapted for transmitting mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/02Mechanical acoustic impedances; Impedance matching, e.g. by horns; Acoustic resonators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0622Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements on one surface

Definitions

  • the invention relates to a sensing device, in particular to an ultrasonic sensing device.
  • the present invention provides an ultrasonic sensing device, which can have a good ultrasonic sensing effect.
  • the ultrasonic sensing device of the present invention is suitable for being arranged under the flat layer of the terminal device.
  • the ultrasonic sensing device includes a support layer and a piezoelectric layer.
  • the support layer includes a cavity.
  • the piezoelectric layer is formed above or below the support layer.
  • the piezoelectric layer emits a planar ultrasonic wave toward the flat plate layer to the finger located above the flat plate layer, and the finger reflects and reflects the sound wave.
  • the reflected sound wave passes through the piezoelectric layer to the support layer, so that the cavity receives the reflected sound wave.
  • the ultrasonic sensing device of the present invention can emit planar ultrasonic waves to the finger through the piezoelectric layer, and receive the reflected sound waves of the finger through the cavity, so as to obtain an ultrasonic sensing image with good image contrast.
  • Fig. 1A is a schematic diagram of an ultrasonic sensing device according to an embodiment of the present invention.
  • FIG. 1B is a schematic diagram of an ultrasonic sensing device according to another embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a transmitter circuit of an ultrasonic sensing device according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a receiving end circuit of an ultrasonic sensing device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a receiving end circuit of an ultrasonic sensing device according to another embodiment of the invention.
  • Vf reference voltage
  • Vout output terminal
  • FIG. 1A is a schematic diagram of an ultrasonic sensing device according to an embodiment of the invention.
  • the ultrasonic sensing device 100 is suitable for being disposed under the tablet layer 20 of the terminal device, and is used to sense the fingerprint of the finger 30 placed on the tablet layer 20 to realize the under-screen fingerprint sensing function.
  • the terminal device can be, for example, a portable electronic device such as a mobile phone, a tablet, etc.
  • the tablet layer 20 can be a display panel, a touch panel, a light-transmitting panel, or a casing, etc., such as a panel with special functionality, a general panel, and a casing. Or sheet layer.
  • the terminal device may also be, for example, a handle on the outside of a car door or a watch, etc.
  • the tablet layer 20 may be a handle shell or a watch case, and has a touch sensitive area.
  • the ultrasonic sensing device 100 can be arranged under the handle or the touch sensitive area of the watch case to provide fingerprint sensing to match the door lock function or to enable the watch to have the fingerprint sensing function.
  • the terminal device may not include the flat layer 20, and the ultrasonic sensing device 100 may be used to provide a skin detection function.
  • the ultrasonic sensing device 100 includes a substrate 110, a supporting layer 120, a piezoelectric layer 130 and an adhesive layer 140.
  • the substrate 110 may be, for example, a thin film transistor (TFT) circuit substrate.
  • the substrate 110 may be parallel to a plane formed by extending along the first direction P1 and the second direction P2, wherein the first direction P1, the second direction P2, and the third direction P3 are perpendicular to each other.
  • the supporting layer 120 may be formed on the substrate 110 and includes a plurality of cavities 121 to 124.
  • the piezoelectric layer 130 may be formed on the support layer 120.
  • the piezoelectric layer 130 and the support layer 120 may also include other dielectric layers, or the piezoelectric layer 130 may be directly combined with the support layer 120, but the present invention is not limited.
  • the adhesive layer 140 may be formed on the piezoelectric layer 130, and the flat plate layer 20 may be formed on the adhesive layer 140.
  • the piezoelectric layer 130 and the flat plate layer 20 may also include other material layers, not limited to the adhesive layer 140.
  • the piezoelectric layer 130 is a polymer or ceramic material with piezoelectric properties.
  • the polymer material may, for example, be polyvinylidene fluoride (PVDF).
  • the ceramic material may be, for example, aluminum nitride (AlN) or lead zirconate titanate (PZT).
  • the piezoelectric layer 130 includes a first electrode layer 131 and a second electrode layer 133 arranged in parallel, and a piezoelectric film 132 is provided between the first electrode layer 131 and the second electrode layer 133.
  • the number of cavities of the supporting layer 120 of the present invention is not limited to that shown in FIG. 1A.
  • the support layer 120 of the ultrasonic sensing device 100 may, for example, include a plurality of cavities arranged in an array.
  • the cavities 121-124 are a parallel capacitor structure.
  • the cavities 121 to 124 respectively include first metal layers 121_1 to 124_1 and second metal layers 121_3 to 124_3 arranged in parallel, and there are intermediate layers 121_2 to 124_2 between the first metal layers 121_1 to 124_1 and the second metal layers 121_3 to 124_3 .
  • the intermediate layers 121_2 to 124_2 may be soft polymer materials, such as organic polymers (Polymer), and the thickness may be between 0.5 micrometers (um) to 1 micrometer, but the invention is not limited to this.
  • the intermediate layers 121_2 to 124_2 can also be fluid or vacuum, and have a thickness between 50 nanometers (nm) and 200 nanometers, where the fluid can also be, for example, air. Or liquid (Liquid).
  • the piezoelectric layer 130 can be used as an ultrasonic transmitting unit, and the cavities 121 to 124 can be used as an ultrasonic receiving unit.
  • the first electrode layer 131 and the second electrode layer 133 of the piezoelectric layer 130 can be applied with an alternating voltage to cause the piezoelectric film 132 to generate planar ultrasonic waves.
  • the piezoelectric layer 130 may emit planar ultrasonic waves toward the flat plate layer 20 toward the third direction P3.
  • the plane ultrasonic wave can be transmitted to the finger 30 above the flat plate layer 20 through the adhesive layer 140 and the flat plate layer 20.
  • the surface of the finger 30 can correspondingly reflect and reflect sound waves according to the plane ultrasonic waves.
  • the reflected sound waves are transmitted back to the support layer 120 through the flat layer 20, the piezoelectric layer 130 and the adhesive layer 140, so that the cavities 121 to 124 of the support layer 120 receive the reflected sound waves. Since the acoustic impedance of the finger skin and the air are not the same, the reflection results of the planar ultrasonic wave through the ridge and valley lines of the fingerprint are different.
  • the ridge line of the fingerprint is shown in FIG. 1A where the finger 30 contacts the plate layer 20.
  • the valley line of the fingerprint is shown in FIG. 1A where the finger 30 and the plate layer 20 are not in contact.
  • the cavities 121 to 124 of the supporting layer 120 receive the reflected sound waves and output a plurality of sensing signals to the processing circuit at the back end, and the processing circuit calculates the fingerprint image.
  • FIG. 1B is a schematic diagram of an ultrasonic sensing device according to another embodiment of the invention.
  • the ultrasonic sensing device 100 of this embodiment can also be sequentially arranged as a piezoelectric layer 130, a substrate 110 and a support layer 120 along the third direction P3.
  • the support layer 120 may be formed above the substrate 110
  • the piezoelectric layer 130 may be formed below the substrate 110.
  • the planar ultrasonic waves generated by the piezoelectric layer 130 can sequentially pass through the substrate 110, the support layer 120, the adhesive layer 140, and the plate layer 20 to be transmitted to the finger 30 above the plate layer 20.
  • the surface of the finger 30 can correspondingly reflect and reflect sound waves according to the plane ultrasonic waves.
  • the reflected sound waves are transmitted back to the support layer 120 through the flat plate layer 20 and the adhesive layer 140 in order, so that the cavities 121 to 124 of the support layer 120 receive the reflected sound waves.
  • the cavities 121 to 124 of the supporting layer 120 receive the reflected sound waves and output a plurality of sensing signals to the processing circuit at the back end, and the processing circuit calculates the fingerprint image.
  • the ultrasonic sensing device 100 of this embodiment can also be sequentially arranged as the substrate 110, the piezoelectric layer 130, and the support layer 120 along the third direction P3.
  • the ultrasonic sensing device 100 of FIG. 1A or FIG. 1B may include the transmitter circuit 200 shown in FIG. 2.
  • the transmitting end circuit 200 includes an ultrasonic transmitter 210, a power supply unit 220, and a resistor 230.
  • the piezoelectric layer 130 of FIG. 1A or FIG. 1B can be equivalently represented as the ultrasonic transmitter 210 of FIG. 2.
  • One end of the ultrasonic transmitter 210 may, for example, correspond to the first electrode layer 131, and the other end of the ultrasonic transmitter 210 may, for example, correspond to the second electrode layer 133.
  • one end of the ultrasonic transmitter 210 can be electrically connected to the reference voltage Vf (for example, a ground voltage), and the other end is electrically connected to one end of the resistor 230.
  • the other end of the resistor 230 is electrically connected to one end of the power supply unit 220.
  • the other end of the power supply unit 220 is electrically connected to the reference voltage Vf.
  • the power supply unit 220 may be an alternating current (AC) power supply, and is used to provide alternating current to drive the ultrasonic transmitter 210 so that the ultrasonic transmitter 210 can emit plane ultrasonic waves.
  • AC alternating current
  • FIG. 3 is a schematic diagram of a receiving end circuit of an ultrasonic sensing device according to an embodiment of the invention.
  • the ultrasonic sensing device 100 of FIG. 1A or FIG. 1B may include the receiving end circuit 300 of this embodiment.
  • the receiving end circuit 300 includes an ultrasonic receiver 310, a power supply unit 320, resistors 330, 350, an amplifier 340, and a capacitor 360.
  • the receiving end circuit 300 is a Trans-Impedance Amplifier (TIA) circuit.
  • TIA Trans-Impedance Amplifier
  • one end of the ultrasonic receiver 310 may correspond to the first metal layer 121_1, and the other end of the ultrasonic receiver 310 may correspond to the second metal layer 121_3, for example.
  • one end of the ultrasonic receiver 310 can be electrically connected to the reference voltage Vf (for example, a ground voltage), and the other end is electrically connected to one end of the resistor 330 and the inverting input end of the amplifier 340.
  • the other end of the resistor 330 is electrically connected to one end of the power supply unit 320.
  • the other end of the power supply unit 320 is electrically connected to the reference voltage Vf.
  • the inverting input terminal of the amplifier 340 is also electrically connected to one end of the resistor 350 and one end of the capacitor 360.
  • the non-inverting input terminal of the amplifier 340 is electrically connected to the reference voltage Vf.
  • the output terminal of the amplifier 340 is electrically connected to the other end of the resistor 350 and the other end of the capacitor 360, and is also electrically connected to the output terminal Vout.
  • the power supply unit 320 may be a direct current (DC) power supply, and is used to provide direct current power to drive the ultrasonic receiver 310 to receive reflected sound waves.
  • the amplifier 340 can read the sensing result of the ultrasonic receiver 310 and output the sensing signal from the output terminal Vout.
  • the receiving end circuit 300 can output the sensing signal from the output end Vout to the back-end processing circuit, so that the processing circuit generates an ultrasonic sensing image (such as a fingerprint image or a skin image) through signal processing and calculation.
  • the ultrasonic sensing device 100 of FIG. 1A or FIG. 1B may include the receiving end circuit 400 of this embodiment.
  • the receiving end circuit 400 includes an ultrasonic receiver 410, a power supply unit 420, a resistor 430, and an amplifier 440.
  • the receiving end circuit 400 is a voltage buffer (Voltage Buffer) circuit.
  • Each of the cavities 121 to 124 in FIG. 1A or FIG. 1B can be equivalently represented as the ultrasonic receiver 410 in FIG. 4.
  • one end of the ultrasonic receiver 410 may correspond to the first metal layer 121_1, and the other end of the ultrasonic receiver 410 may correspond to the second metal layer 121_3, for example.
  • one end of the ultrasonic receiver 410 can be electrically connected to the reference voltage Vf (for example, a ground voltage), and the other end is electrically connected to one end of the resistor 430 and the non-inverting input end of the amplifier 440.
  • the other end of the resistor 430 is electrically connected to one end of the power supply unit 420.
  • the other end of the power supply unit 420 is electrically connected to the reference voltage Vf.
  • the inverting input terminal of the amplifier 440 is electrically connected to the output terminal of the amplifier 440.
  • the output terminal of the amplifier 440 is also electrically connected to the output terminal Vout.
  • the power supply unit 420 may be a direct current power supply, and is used to provide direct current power to drive the ultrasonic receiver 410 to receive reflected sound waves.
  • the amplifier 440 can read the sensing result of the ultrasonic receiver 410 and output the sensing signal from the output terminal Vout.
  • the receiving end circuit 400 can output the sensing signal from the output end Vout to the back-end processing circuit, so that the processing circuit generates an ultrasonic sensing image through signal processing and calculation.
  • processing circuits described in FIGS. 3 and 4 above can refer to the processor in the ultrasonic sensing device, so that the ultrasonic sensing device directly generates ultrasonic sensing images, or is the processing of the terminal equipment.
  • the processor of the terminal device can generate the ultrasonic sensing image according to the sensing signal provided by the ultrasonic sensing device, which is not limited by the present invention.
  • the ultrasonic sensing device of the present invention can emit planar ultrasonic waves through the piezoelectric layer, which is a piezoelectric ultrasonic transducer design, so that the surface of the finger can reflect with a high signal-to-noise ratio (Signal Noise Ratio, SNR) reflected sound waves.
  • the ultrasonic sensing device of the present invention can effectively receive reflected sound waves through multiple cavities belonging to a parallel capacitor architecture, and can generate ultrasonic sensing images with good image contrast.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声波感测装置,其适于设置在终端设备的平板层(20)下方。超声波感测装置包括支撑层(120)以及压电层(130)。支撑层(120)包括腔体(121~124)。压电层(130)形成在支撑层(120)上方或基板(110)下方。压电层(130)朝平板层(20)发射平面超声波至位于平板层(20)上方的手指,并且手指反射声波。反射声波通过压电层(130)至支撑层(120),以使腔体(121~124)接收反射声波。因此,超声波感测装置可取得具有图像对比度佳的超声波感测图像。

Description

超声波感测装置 技术领域
本发明涉及一种感测设备,尤其涉及一种超声波感测装置。
背景技术
传统的超声波感测技术,大多单独采用压电式微加工超音波换能器(Piezoelectric Micromachined Ultrasonic Transducer,PMUT)架构来发射与接收超声波,或是单独采用电容式微加工超音波换能器(Capacitive Micromachined Ultrasonic Transducer,CMUT)架构来发射与接收超声波。对此,传统的超声波感测技术由于具有超声波信号强度不足,因此存在较难穿透较硬、较厚或多层固体结构的问题,或者是由CMUT架构或PMUT架构所发射的超声波存在有球面波发散的缺点,而导致反射声波具有低信号噪声比(Signal Noise Ratio,SNR)以及图像对比度不佳的问题。
发明内容
有鉴于此,本发明提供一种超声波感测装置,可具有良好的超声波感测效果。
根据本发明的实施例,本发明的超声波感测装置适于设置在终端设备的平板层下方。超声波感测装置包括支撑层以及压电层。支撑层包括腔体。压电层形成在支撑层上方或形成在支撑层下方。压电层朝平板层发射平面超声波至位于平板层上方的手指,并且手指反射反射声波。反射声波通过压电层至支撑层,以使腔体接收反射声波。
基于上述,本发明的超声波感测装置可通过压电层发射平面超声波至手指,并且通过腔体接收手指的反射声波,以取得具有图像对比度佳的超声波感测图像。
为让本发明的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。
附图说明
图1A为本发明一实施例的超声波感测装置的示意图;
图1B为本发明另一实施例的超声波感测装置的示意图;
图2为本发明一实施例的超声波感测装置的发射端电路的示意图;
图3为本发明一实施例的超声波感测装置的接收端电路的示意图;
图4为本发明另一实施例的超声波感测装置的接收端电路的示意图。
附图标记说明
20:平板层;
30:手指;
100:超声波感测装置;
110:基板;
120:支撑层;
121~124:腔体;
121_1~124_1:第一金属层;
121_2~124_2:中间层;
121_3~124_3:第二金属层;
130:压电层;
131:第一电极层;
132:压电薄膜;
133:第二电极层;
140:黏着层;
200:发射端电路;
210:超音波发射器;
220、320、420:电源单元;
230、330、350、430:电阻;
300、400:接收端电路;
310、410:超音波接收器;
340、440:放大器;
360:电容;
Vf:参考电压;
Vout:输出端;
P1:第一方向;
P2:第二方向;
P3:第三方向。
具体实施方式
现将详细地参考本发明的示范性实施例,示范性实施例的实例说明于附图中。只要有可能,相同元件符号在附图和描述中用来表示相同或相似部分。
图1A为本发明一实施例的超声波感测装置的示意图。参考图1A,超声波感测装置100适于设置在终端设备的平板层20下方,并且用以感测放置在平板层20上的手指30的指纹,以实现屏下指纹感测功能。终端设备可例如是手机、平板等携带式电子装置等,并且平板层20可为显示面板、触控面板、透光面板或机壳等,诸如此类的具有特殊功能性的面板、一般面板、壳体或薄板层。然而,在一实施例中,终端设备亦可例如是汽车车门外侧把手或手表等,并且平板层20可为把手外壳或手表机壳,并且具有触控敏感区。换言之,超声波感测装置100可设置在把手或手表机壳的触控敏感区下,以提供指纹感测来搭配车门锁功能或使手表具有指纹感测功能。或者,在另一实施例中,终端设备可不包括平板层20,并且超声波感测装置100可用于提供皮肤感测(Skin detection)功能。
在本实施例中,超声波感测装置100包括基板110、支撑层120、压电层130以及黏着层140。基板110可例如为薄膜晶体管(Thin Film Transistor,TFT)电路基板。基板110可平行于沿着第一方向P1以及第二方向P2延伸所形成的平面,其中第一方向P1、第二方向P2以及第三方向P3相互垂直。支撑层120可形成在基板110上,并且包括多个腔体121~124。压电层130可形成于支撑层120上方。压电层130与支撑层120之间还可包括其他介质层,或者压电层130可与支撑层120直接结合,而本发明并不加以限制。在本实施例中,黏着层140可形成于压电层130上方,并且平板层20可形成于黏着层140上方。压电层130与平板层20之间亦可包括其他材料层,而不限于黏着层140。
在本实施例中,压电层130为一种具有压电特性的聚合物材料(polymer) 或陶瓷材料(ceramic)。所述聚合物材料可例如是聚偏二氟乙烯(PVDF)。所述陶瓷材料可例如是氮化铝(AlN)或锆钛酸铅(PZT)。压电层130包括平行设置的第一电极层131以及第二电极层133,并且第一电极层131以及第二电极层133之间具有压电薄膜132。另外,本发明的支撑层120的腔体数量并不限于图1A所示。超声波感测装置100的支撑层120可例如包括有数组排列的多个腔体。
在本实施例中,腔体121~124为一种平行电容结构。腔体121~124分别包括平行设置的第一金属层121_1~124_1以及第二金属层121_3~124_3,并且第一金属层121_1~124_1以及第二金属层121_3~124_3之间具有中间层121_2~124_2。在本实施例中,中间层121_2~124_2可为软性聚合物材料,例如有机聚合物(Polymer),并且厚度可为介于0.5微米(um)至1微米之间,但本发明并不限于此。在一实施例中,中间层121_2~124_2亦可为流体(Fluid)或真空(Vacuum),并且厚度为介于50纳米(nm)至200纳米之间,其中流体还可例如是空气(Air)或液体(Liquid)。
在本实施例中,压电层130可作为超声波发射单元,并且腔体121~124可作为超声波接收单元。具体而言,压电层130的第一电极层131以及第二电极层133可施加交流电压,而使压电薄膜132产生平面超声波。压电层130可朝第三方向P3对平板层20发射平面超声波。平面超声波可经过黏着层140以及平板层20传递至平板层20上方的手指30。手指30的表面可依据平面超声波而对应地反射反射声波。接着,反射声波经过平板层20、压电层130以及黏着层140回传至支撑层120,而使支撑层120的腔体121~124接收反射声波。由于手指皮肤与空气的声波阻抗并不相同,因此平面超声波经由指纹的脊线与谷线反射的反射结果不同。所述指纹的脊线如图1A所示手指30与平板层20的接触处。所述指纹的谷线如图1A所示手指30与平板层20的未接触处。支撑层120的腔体121~124接收反射声波后输出多个感测信号至后端的处理电路,由处理电路运算产生指纹图像。
然而,本发明的超声波感测装置的配置不限于图1A。图1B为本发明另一实施例的超声波感测装置的示意图。参考图1B,有别于图1A,本实施例的超声波感测装置100沿着第三方向P3还可依序排列为压电层130、基板110以及支撑层120。换言之,支撑层120可形成在基板110上方,并且压电层 130形成在基板110下方。因此,由压电层130产生的平面超声波可依序经过基板110、支撑层120、黏着层140以及平板层20传递至平板层20上方的手指30。手指30的表面可依据平面超声波而对应地反射反射声波。接着,反射声波依序经过平板层20以及黏着层140回传至支撑层120,而使支撑层120的腔体121~124接收反射声波。支撑层120的腔体121~124接收反射声波后输出多个感测信号至后端的处理电路,由处理电路运算产生指纹图像。此外,在又一实施例中,本实施例的超声波感测装置100沿着第三方向P3也可依序排列为基板110、压电层130以及支撑层120。
图2为本发明一实施例的超声波感测装置的发射端电路的示意图。图1A或图1B的超声波感测装置100可包括图2所示的发射端电路200。在本实施例中,发射端电路200包括超音波发射器210、电源单元220以及电阻230。图1A或图1B的压电层130可等效表示为图2的超音波发射器210。超音波发射器210的一端可例如对应于第一电极层131,并且超音波发射器210的另一端可例如对应于第二电极层133。在本实施例中,超音波发射器210的一端可电性连接参考电压Vf(例如为接地电压),并且另一端电性连接电阻230的一端。电阻230的另一端电性连接电源单元220的一端。电源单元220的另一端电性连接参考电压Vf。在本实施例中,电源单元220可为交流电(Alternating Current,AC)电源,并且用以提供交流电来驱动超音波发射器210,以使超音波发射器210可发射平面超声波。
图3为本发明一实施例的超声波感测装置的接收端电路的示意图。参考图3,图1A或图1B的超声波感测装置100可包括本实施例的接收端电路300。在本实施例中,接收端电路300包括超音波接收器310、电源单元320、电阻330、350、放大器340以及电容360。接收端电路300为一种转阻放大器(Trans-Impedance Amplifier,TIA)电路。图1A或图1B的腔体121~124的每一个可各别等效表示为图3的超音波接收器310。以腔体121为例,超音波接收器310的一端可例如对应于第一金属层121_1,并且超音波接收器310的另一端可例如对应于第二金属层121_3。在本实施例中,超音波接收器310的一端可电性连接参考电压Vf(例如为接地电压),并且另一端电性连接电阻330的一端以及放大器340的反相输入端。电阻330的另一端电性连接电源单元320的一端。电源单元320的另一端电性连接参考电压Vf。放大器340 的反相输入端还电性连接电阻350的一端以及电容360的一端。放大器340的非反相输入端电性连接参考电压Vf。放大器340的输出端电性连接电阻350的另一端以及电容360的另一端,并且还电性连接输出端Vout。
在本实施例中,在本实施例中,电源单元320可为直流电(Direct Current,DC)电源,并且用以提供直流电来驱动超音波接收器310接收反射声波。当超音波接收器310接收到反射声波时,放大器340可读出超音波接收器310的感测结果,而从输出端Vout输出感测信号。并且,接收端电路300可从输出端Vout输出感测信号至后端的处理电路,以使处理电路经过信号处理与运算而产生超声波感测图像(例如指纹图像或皮肤图像)。
图4为本发明另一实施例的超声波感测装置的接收端电路的示意图。参考图4,图1A或图1B的超声波感测装置100可包括本实施例的接收端电路400。在本实施例中,接收端电路400包括超音波接收器410、电源单元420、电阻430以及放大器440。接收端电路400为一种电压缓冲器(Voltage Buffer)电路。图1A或图1B的腔体121~124的每一个可各别等效表示为图4的超音波接收器410。以腔体121为例,超音波接收器410的一端可例如对应于第一金属层121_1,并且超音波接收器410的另一端可例如对应于第二金属层121_3。在本实施例中,超音波接收器410的一端可电性连接参考电压Vf(例如为接地电压),并且另一端电性连接电阻430的一端以及放大器440的非反相输入端。电阻430的另一端电性连接电源单元420的一端。电源单元420的另一端电性连接参考电压Vf。放大器440的反相输入端电性连接放大器440的输出端。放大器440的输出端还电性连接输出端Vout。
在本实施例中,在本实施例中,电源单元420可为直流电电源,并且用以提供直流电来驱动超音波接收器410接收反射声波。当超音波接收器410接收到反射声波时,放大器440可读出超音波接收器410的感测结果,而从输出端Vout输出感测信号。并且,接收端电路400可从输出端Vout输出感测信号至后端的处理电路,以使处理电路经过信号处理与运算而产生超声波感测图像。
另外,值得注意的是,上述图3与图4所述的处理电路可指的是超声波感测装置内的处理器,以使超声波感测装置直接产生超声波感测图像,或者是终端设备的处理器,以使终端设备的处理器可依据超声波感测装置的提供 的感测信号来产生超声波感测图像,本发明不加以限制。
综上所述,本发明的超声波感测装置可通过属于一种压电超音波换能器设计的压电层来发射平面超声波,以使手指表面可反射具有高信号噪声比(Signal Noise Ratio,SNR)的反射声波。并且,本发明的超声波感测装置可通过属于一种平行电容架构的多个腔体来有效接收反射声波,而可产生具有良好图像对比的超声波感测图像。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (10)

  1. 一种超声波感测装置,适于设置在终端设备的平板层下方,其特征在于,所述超声波感测装置包括:
    支撑层,包括腔体;以及
    压电层,形成在所述支撑层上方或者所述支撑层下方,
    其中所述压电层朝所述平板层发射平面超声波至位于所述平板层上方的手指,并且所述手指反射反射声波,其中所述反射声波通过所述压电层至所述支撑层,以使所述腔体接收所述反射声波。
  2. 根据权利要求1所述的超声波感测装置,其特征在于,所述腔体包括平行设置的第一金属层以及第二金属层,并且所述第一金属层以及所述第二金属层之间具有中间层。
  3. 根据权利要求2所述的超声波感测装置,其特征在于,所述中间层为软性聚合物材料。
  4. 根据权利要求3所述的超声波感测装置,其特征在于,所述中间层的厚度为介于0.5微米至1微米之间。
  5. 根据权利要求2所述的超声波感测装置,其特征在于,所述中间层为流体或为真空。
  6. 根据权利要求5所述的超声波感测装置,其特征在于,所述流体为空气或液体。
  7. 根据权利要求5所述的超声波感测装置,其特征在于,所述中间层的厚度为介于50纳米至200纳米之间。
  8. 根据权利要求1所述的超声波感测装置,其特征在于,所述压电层包括平行设置的第一电极层以及第二电极层,并且所述第一电极层以及所述第二电极层之间具有压电薄膜。
  9. 根据权利要求1所述的超声波感测装置,其特征在于,所述平板层与所述压电层之间具有黏着层。
  10. 根据权利要求1所述的超声波感测装置,其特征在于,还包括:
    薄膜晶体管电路基板,其中所述支撑层形成在所述薄膜晶体管电路基板上,并且所述压电层形成在所述支撑层上方或者所述薄膜晶体管电路基板下方。
PCT/CN2020/108891 2020-02-10 2020-08-13 超声波感测装置 WO2021159678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202062972618P 2020-02-10 2020-02-10
US62/972,618 2020-02-10

Publications (1)

Publication Number Publication Date
WO2021159678A1 true WO2021159678A1 (zh) 2021-08-19

Family

ID=72657916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108891 WO2021159678A1 (zh) 2020-02-10 2020-08-13 超声波感测装置

Country Status (4)

Country Link
US (1) US20210248339A1 (zh)
CN (4) CN212782039U (zh)
TW (4) TWM605330U (zh)
WO (1) WO2021159678A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212782039U (zh) * 2020-02-10 2021-03-23 神盾股份有限公司 超声波指纹感测架构
CN115498097A (zh) * 2022-09-23 2022-12-20 业泓科技(成都)有限公司 荧幕下生物辨识模组的制造方法及其装置的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106711320A (zh) * 2017-01-09 2017-05-24 清华大学 一种超声波指纹采集器件及其制备方法
US20170322292A1 (en) * 2016-05-04 2017-11-09 Invensense, Inc. Two-dimensional array of cmos control elements
CN207780806U (zh) * 2018-01-08 2018-08-28 杭州士兰微电子股份有限公司 封闭空腔结构和超声波指纹传感器
CN108960218A (zh) * 2018-09-25 2018-12-07 东莞新科技术研究开发有限公司深圳分公司 一种超声波指纹传感器及指纹识别模组
CN110265544A (zh) * 2019-06-24 2019-09-20 京东方科技集团股份有限公司 压电传感器及制备方法、进行指纹识别的方法及电子设备
CN209531368U (zh) * 2018-11-20 2019-10-25 深圳市汇顶科技股份有限公司 超声换能器件及电子装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337264B1 (ko) * 2006-02-28 2013-12-05 삼성디스플레이 주식회사 터치 패널, 이를 구비한 표시 장치 및 그 제조 방법
US20140107498A1 (en) * 2012-10-17 2014-04-17 Nokia Corporation Wearable Apparatus and Associated Methods
US9551783B2 (en) * 2013-06-03 2017-01-24 Qualcomm Incorporated Display with backside ultrasonic sensor array
JP6316433B2 (ja) * 2013-12-12 2018-04-25 クアルコム,インコーポレイテッド マイクロメカニカル超音波トランスデューサおよびディスプレイ
US9898640B2 (en) * 2016-05-02 2018-02-20 Fingerprint Cards Ab Capacitive fingerprint sensing device and method for capturing a fingerprint using the sensing device
US10736649B2 (en) * 2016-08-25 2020-08-11 Ethicon Llc Electrical and thermal connections for ultrasonic transducer
US10846501B2 (en) * 2017-04-28 2020-11-24 The Board Of Trustees Of The Leland Stanford Junior University Acoustic biometric touch scanner
CN212782039U (zh) * 2020-02-10 2021-03-23 神盾股份有限公司 超声波指纹感测架构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170322292A1 (en) * 2016-05-04 2017-11-09 Invensense, Inc. Two-dimensional array of cmos control elements
CN106711320A (zh) * 2017-01-09 2017-05-24 清华大学 一种超声波指纹采集器件及其制备方法
CN207780806U (zh) * 2018-01-08 2018-08-28 杭州士兰微电子股份有限公司 封闭空腔结构和超声波指纹传感器
CN108960218A (zh) * 2018-09-25 2018-12-07 东莞新科技术研究开发有限公司深圳分公司 一种超声波指纹传感器及指纹识别模组
CN209531368U (zh) * 2018-11-20 2019-10-25 深圳市汇顶科技股份有限公司 超声换能器件及电子装置
CN110265544A (zh) * 2019-06-24 2019-09-20 京东方科技集团股份有限公司 压电传感器及制备方法、进行指纹识别的方法及电子设备

Also Published As

Publication number Publication date
CN212411218U (zh) 2021-01-26
TW202131157A (zh) 2021-08-16
CN212782039U (zh) 2021-03-23
CN111797819A (zh) 2020-10-20
TWM605330U (zh) 2020-12-11
CN111738219A (zh) 2020-10-02
TW202131220A (zh) 2021-08-16
TWM605655U (zh) 2020-12-21
US20210248339A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
WO2020102965A1 (zh) 超声换能器件及电子装置
WO2020259201A1 (zh) 压电传感器及制备方法、进行指纹识别的方法及电子设备
CN105447470B (zh) 电子装置
CN109492623B (zh) 超声波指纹识别模组及显示面板
TW202027569A (zh) 具有可撓性基板之超音波指紋感測器
WO2021159678A1 (zh) 超声波感测装置
JP5305304B2 (ja) 機械電気変換素子、機械電気変換装置及びその製造方法
WO2020248677A1 (zh) 一种显示面板、其控制方法及显示装置
CN106886753B (zh) 声波式指纹识别装置应用其的电子装置
CN109815918A (zh) 指纹识别模组及其制作方法和驱动方法、显示装置
US20200184176A1 (en) Ultrasound fingerprint detection and related apparatus and methods
JP2012127945A (ja) 面積の大きい超音波接触画像処理
TWI675333B (zh) 指紋識別裝置及電子裝置
WO2017188072A1 (ja) 超音波デバイス、超音波モジュール、及び超音波測定装置
TW201816576A (zh) 指紋識別裝置、其製造方法、顯示裝置
Wang et al. Highly sensitive piezoelectric micromachined ultrasonic transducer operated in air
Peng et al. Broadband piezoelectric transducers for under-display ultrasonic fingerprint sensing applications
CN109492474A (zh) 超声波指纹识别模组及电子设备
Pala et al. Fully transparent piezoelectric ultrasonic transducer with 3D printed substrate
Hillenbrand et al. DC-Biased piezoelectret film transducers for airborne ultrasound
TWI777485B (zh) 指紋感測裝置
TWI644118B (zh) 超音波元件
TWI760035B (zh) 顯示裝置
CN111950324A (zh) 一种超声波传感器及其制作方法和显示面板
CN218525127U (zh) 一种超声波指纹识别模组和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919176

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919176

Country of ref document: EP

Kind code of ref document: A1