WO2021157949A1 - Electric vehicle charging controller - Google Patents

Electric vehicle charging controller Download PDF

Info

Publication number
WO2021157949A1
WO2021157949A1 PCT/KR2021/001127 KR2021001127W WO2021157949A1 WO 2021157949 A1 WO2021157949 A1 WO 2021157949A1 KR 2021001127 W KR2021001127 W KR 2021001127W WO 2021157949 A1 WO2021157949 A1 WO 2021157949A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistor
signal
electric vehicle
switching element
end connected
Prior art date
Application number
PCT/KR2021/001127
Other languages
French (fr)
Korean (ko)
Inventor
신광섭
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to JP2022547764A priority Critical patent/JP2023512545A/en
Publication of WO2021157949A1 publication Critical patent/WO2021157949A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the embodiment relates to an electric vehicle charge controller.
  • Eco-friendly vehicles such as Electric Vehicles (EVs) or Plug-In Hybrid Electric Vehicles (PHEVs) use Electric Vehicle Supply Equipment (EVSE) installed at charging stations to charge batteries.
  • EVs Electric Vehicles
  • PHEVs Plug-In Hybrid Electric Vehicles
  • EVSE Electric Vehicle Supply Equipment
  • an electric vehicle charging controller (EVCC) is mounted in the EV, communicates with the EV and the EVSE, and controls the charging of the electric vehicle.
  • EVCC electric vehicle charging controller
  • the EVCC when the EVCC receives a signal instructing the start of charging from the electric vehicle, it can control to start charging, and when receiving a signal instructing the end of charging from the electric vehicle, it can control to end charging.
  • the charging method of an electric vehicle may be divided into fast charging and slow charging according to the charging time.
  • the battery In the case of rapid charging, the battery is charged by the DC current supplied from the charger, and in the case of slow charging, the battery is charged by the AC current supplied to the charger. Therefore, a charger used for fast charging is called a fast charger or a DC charger, and a charger used for slow charging is called a slow charger or an AC charger.
  • Electric vehicle power supplies and electric vehicles perform a multi-step charging sequence while monitoring safety.
  • the electric vehicle power supply device and the electric vehicle transmit and receive signals according to the charging sequence through a plurality of signal lines. Since high voltage power is used to charge electric vehicles, high accuracy is required for signals transmitted and received along signal lines.
  • the charging sequence is not performed. Therefore, whenever the charging system is improved, there arises a problem of having to change to a component to which the improved circuit is applied.
  • An embodiment is to provide an electric vehicle charge controller with high compatibility.
  • An embodiment is to provide an electric vehicle charge controller capable of detecting a signal line connection state between an electric vehicle power supply device and an electric vehicle charge controller.
  • An electric vehicle charge controller includes: a switch device connected to a signal sensing device of an electric vehicle power supply device through a signal line, generating a charging permission signal and transmitting the charging permission signal to the signal detecting device; and a control unit for controlling the switch device through a plurality of switching signals, wherein the signal sensing device of the electric vehicle power supply device includes a first resistor disposed on the signal line, and the switch device includes: a first signal unit including one switching element and configured to turn on the first switching element based on a first switching signal among the plurality of switching signals to generate the charging permission signal; and a second signal unit including a second switching element and turning on a second switching element based on a second switching signal among the plurality of switching signals to generate the charging permission signal; The first signal unit or the second signal unit generates the charging permission signal according to the resistance value.
  • the signal sensing device of the electric vehicle power supply includes a first resistor disposed on the signal line, and the switching device includes the first signal unit or the second signal unit according to a resistance value of the first resistor.
  • the charging permission signal may be generated.
  • the controller turns on the first switching element through the first switching signal, and the second switching element through the second switching signal may be turned off to control the first signal unit to generate the charging permission signal.
  • the controller When the resistance value of the first resistor is greater than the second reference value and less than the third reference value, the controller turns off the first switching element through the first switching signal, and a second through the second switching signal A switching element may be turned on to control the second signal unit to generate the charging permission signal.
  • the control unit receives a node voltage of a node included in the first signal unit or the second signal unit, and an electrical connection state between the electric vehicle power supply device and the electric vehicle according to the magnitude of the node voltage can be detected.
  • the controller may determine the electrical connection state as an open state when the level of the node voltage is included in the first voltage range.
  • the controller may determine the electrical connection state as a contact failure.
  • the controller may determine the electrical connection state as a normal state when the level of the node voltage is included in a third voltage range between the second voltage range and the fourth voltage range.
  • the controller may determine the electrical connection state as an overvoltage state when the level of the node voltage is included in a fifth voltage range greater than the fourth voltage range.
  • the first signal unit may include: a first switching element having a first end connected to the first resistor and a third end connected to the control unit; a second resistor having a first end connected to a second end of the first switching element and a second end connected to a ground terminal; a third resistor having a first end connected to a second end of the second resistor; a fourth resistor having a first end connected to a second end of the third resistor and a second end connected to the ground terminal; and a first diode having a cathode terminal connected to the second end of the fourth resistor and an anode terminal connected to a ground terminal.
  • the second signal unit may include: a second switching element having a first end connected to the first resistor and a third end connected to the control unit; a fifth resistor having a first end connected to a second end of the second switching element and a second end connected to a ground terminal; a sixth resistor having a first end connected to a second end of the fifth resistor; a seventh resistor having a first end connected to a second end of the sixth resistor and a second end connected to the ground terminal; and a second diode having a cathode terminal connected to a second terminal of the seventh resistor and an anode terminal connected to a ground terminal.
  • a cathode terminal of the first diode and a cathode terminal of the second diode may be connected to the controller.
  • the second resistor may have a resistance value greater than that of the fifth resistor, the third resistor may have a resistance value greater than the sixth resistor, and the fourth resistor may have a resistance value less than that of the seventh resistor.
  • An electric vehicle charge controller includes a switch device connected to a signal sensing device of an electric vehicle power supply device through a signal line; and a microcontroller connected to the switch device, wherein the signal sensing device includes a first resistor disposed on the signal line, wherein the switch device has a first end connected to the first resistor, a first switching element having a third stage connected to the control unit; a second resistor having a first end connected to a second end of the first switching element and a second end connected to a ground terminal; a third resistor having a first end connected to a second end of the second resistor; a fourth resistor having a first end connected to a second end of the third resistor and a second end connected to the ground terminal; and a first diode having a cathode terminal connected to a second end of the fourth resistor and a first diode having an anode terminal connected to a ground terminal; and a second switching element having a first end connected to the first resistor and
  • FIG. 1 is a view for explaining an electric vehicle charging system according to an embodiment of the present invention.
  • FIG. 2 is a view showing the configuration of an electric vehicle charging system according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a circuit configuration of an electric vehicle charging system according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an embodiment of a circuit configuration between a fourth signal line of FIG. 3 and a signal sensing device.
  • FIG. 5 is a diagram showing another embodiment of the circuit configuration between the fourth signal line of FIG. 3 and the signal sensing device.
  • FIG. 6 is a block diagram illustrating an electric vehicle charge controller according to an embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a circuit diagram of an electric vehicle charge controller according to an embodiment of the present invention.
  • FIG. 8 is a first driving example of a switch device according to an embodiment of the present invention.
  • FIG. 9 is a second driving example of the switch device according to the embodiment of the present invention.
  • FIG. 10 is a diagram for explaining a voltage detected at a first node of a first signal unit according to an embodiment of the present invention.
  • FIG. 11 is a diagram for explaining a voltage detected at a second node of a second signal unit according to an embodiment of the present invention.
  • FIG. 12 is a view for explaining a process of detecting an electrical connection state between an electric vehicle power supply device and an electric vehicle charge controller according to an embodiment of the present invention.
  • the singular form may also include the plural form unless otherwise specified in the phrase, and when it is described as "at least one (or one or more) of A and (and) B, C", it is combined with A, B, C It may include one or more of all possible combinations.
  • a component when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
  • FIG. 1 is a view for explaining an electric vehicle charging system according to an embodiment of the present invention.
  • An electric vehicle charging system may refer to a system for charging a battery of an electric vehicle that operates by using electric energy as power.
  • an electric vehicle charging system may include an electric vehicle power supply device (Electric Vehicle Supply Equipment, EVSE, 10) and an electric vehicle (Electric Vehicle, EV, 20).
  • EVSE Electric Vehicle Supply Equipment
  • EV Electric Vehicle
  • the electric vehicle power supply device 10 is a facility for supplying AC or DC power, and may be disposed in a charging station or in a home, and may be implemented to be portable.
  • the electric vehicle power supply device 10 may be used interchangeably with a charging station (supply), an AC charging station (AC supply), and a DC charging station (DC supply).
  • the electric vehicle power supply 10 may receive AC or DC power from a main power source.
  • the main power may include a power system and the like.
  • the electric vehicle power supply device 10 may transform or convert AC or DC power supplied from the main power supply to the electric vehicle 20 .
  • the electric vehicle 20 refers to a vehicle that operates by receiving all or part of energy from a mounted battery.
  • the electric vehicle 20 may include a plug-in hybrid electric vehicle (PHEV) that runs in parallel with an engine using fossil fuel as well as an electric vehicle that runs only with electric energy charged in a battery.
  • PHEV plug-in hybrid electric vehicle
  • the battery provided in the electric vehicle 20 may be charged by receiving power from the electric vehicle power supply device 10 .
  • FIG. 2 is a view showing the configuration of an electric vehicle charging system according to an embodiment of the present invention.
  • An electric vehicle charging system includes an electric vehicle power supply device (10, Electric Vehicle Supply Equipment, EVSE), a cable (50, cable), a connector (51, connector), an inlet (52, inlet), and a junction.
  • a box (100, junction box), an electric vehicle charging controller (200, Electric Vehicle Charging Controller, EVCC), a battery (300), a battery management system (400, Battery Management System, BMS) and an integrated power control device (500, Electric Power) Control Unit, EPCU).
  • a configuration included in the electric vehicle charging system may be divided into a configuration of the electric vehicle power supply device 10 side (EVSE side) and a configuration of the electric vehicle 20 side (EV side).
  • the configuration of the electric vehicle power supply device 10 side may include an electric vehicle power supply device 10 , a cable 50 , and a connector 51 .
  • the configuration on the electric vehicle side may include an inlet 52 , a junction box 100 , an electric vehicle charge controller 200 , a battery 300 , a battery management system 400 , and an integrated power control device 500 . This division is for convenience of description and is not limited thereto.
  • the electric vehicle power supply device 10 supplies power for charging the battery 300 of the electric vehicle.
  • the electric vehicle power supply device 10 may transmit power supplied from a main power source (eg, a power system) to the electric vehicle 20 .
  • the electric vehicle power supply device 10 may reduce or convert the power supplied from the main power supply to the electric vehicle 20 .
  • the electric vehicle power supply apparatus 10 transforms the AC power supplied from the main power supply to the electric vehicle 20 .
  • the electric vehicle power supply device 10 converts AC power supplied from the main power source into DC power to convert the electric vehicle power to DC power.
  • the electric vehicle power supply device 10 may include a power conversion device.
  • the electric vehicle power supply device 10 may include a rectifier, an isolation transformer, an inverter, a converter, and the like.
  • the electric vehicle power supply device 10 may include a charging control device for transmitting and receiving various control signals necessary for charging the battery 300 of the electric vehicle 20 and controlling the battery charging process.
  • the charging control device may transmit and receive a control signal to and from the electric vehicle 20 and perform a battery charging process.
  • the control signal may include information such as charging preparation, charging end, proximity detection, and the like.
  • the charging control device may include a communication device for communicating with the electric vehicle 20 .
  • the communication device may communicate with the electric vehicle 20 using power line communication (PLC), a controller area network (CAN), or the like.
  • PLC power line communication
  • CAN controller area network
  • the communication device may be included in the charging control device or may be configured separately.
  • the cable 50 , the connector 51 , and the inlet 52 electrically connect the electric vehicle power supply 10 and the electric vehicle.
  • the cable 50 transfers power and signals between the electric vehicle power supply 10 and the electric vehicle 20 .
  • the cable 50 may include a power line transmitting power, a signal line transmitting a control signal related to charging, a ground line connecting the ground, and the like.
  • the cable 50 is connected to the electric vehicle power supply 10 .
  • the electric vehicle power supply device 10 and the cable 50 may be directly connected without a separate connection configuration.
  • the electric vehicle power supply device 10 and the cable 50 are a socket-outlet provided in the electric vehicle power supply device 10 and a plug (socket-outlet) provided in the cable 50 . plug) can be connected.
  • the connector 51 may be connected to the cable 50 , and the inlet 52 may be provided in the electric vehicle 20 .
  • the connector 51 and the inlet 52 may be bundled together to be referred to as a coupler.
  • the connector 51 and the inlet 52 have a structure that can be coupled to each other, and through the coupling of the connector 51 and the inlet 52 , the electric vehicle 20 and the electric vehicle power supply device 10 may be electrically connected.
  • the inlet 52 and the connector 51 may be directly connected, and may also be connected through an adapter.
  • the connector 51 and the inlet 52 may include a plurality of pins that may be coupled to each other.
  • one of the plurality of pins may be a pin for a CP port through which a CP (Control Pilot) signal is transmitted between the electric vehicle power supply device 10 and the electric vehicle charge controller 200 , and the other is the connector 51 .
  • a pin for a PD (Proximity Detection) port that detects whether the inlet 52 is in proximity, and another one is a protective earth connected to the protective ground of the electric vehicle power supply 10 and 10.
  • PE may be a pin for the port.
  • Another one of the plurality of pins may be a pin for driving a motor for opening a fuel flap flap, another one may be a pin for sensing the motor, and another one may be a pin for sensing a temperature, Another one may be a pin for LED sensing, and another one may be a pin for CAN communication.
  • One of the plurality of pins may be a pin for a voltage line applied from a collision detection sensor in the electric vehicle 20 , the other may be a battery pin for supplying charging power to the electric vehicle 20 , and the other is for high voltage protection It can be a pin.
  • the number and function of the pins are not limited thereto, and may be variously modified.
  • the junction box 100 transmits power supplied from the electric vehicle power supply device 10 to the battery 300 .
  • the power supplied from the electric vehicle power supply device 10 is a high voltage, and when it is directly supplied to the battery 300 , the battery 300 may be damaged due to the inrush current.
  • the junction box 100 may include at least one relay to prevent damage to the battery due to inrush current.
  • the electric vehicle charge controller 200 may control part or all of a process related to charging a battery of the electric vehicle 20 .
  • the electric vehicle charge controller 200 may be referred to as an electric vehicle communication controller (EVCC).
  • EVCC electric vehicle communication controller
  • the electric vehicle charge controller 200 may communicate with the electric vehicle power supply device 10 .
  • the electric vehicle charge controller 200 may transmit/receive a control command related to a battery charging process from the electric vehicle power supply device 10 .
  • the electric vehicle charge controller 200 may communicate with a charge control device provided in the electric vehicle power supply device 10 , and may transmit/receive control commands related to a battery charging process from the charge control device. .
  • the electric vehicle charge controller 200 may communicate with the electric vehicle 20 .
  • the electric vehicle charge controller 200 may receive a control command related to a battery charging process from the electric vehicle 20 .
  • the electric vehicle charge controller 200 may communicate with the battery management system 400 of the electric vehicle 20 , and may receive a control command related to a battery charging process from the battery management system 400 . there is.
  • the electric vehicle charge controller 200 may communicate with the integrated power control device 500 of the electric vehicle 20 , and receive a control command regarding the battery charging process from the integrated power control device 500 . can receive
  • the electric vehicle charge controller 200 may include a micro controller unit (MCU), a communication device, a relay device, and the like to perform the above function.
  • MCU micro controller unit
  • the electric vehicle charge controller 200 may include a micro controller unit (MCU), a communication device, a relay device, and the like to perform the above function.
  • MCU micro controller unit
  • the battery management system 400 manages the energy state of the battery 300 in the electric vehicle 20 .
  • the battery management system 400 may monitor the usage status of the battery 300 and perform control for efficient energy distribution.
  • the battery management system 400 may transmit the available power status of the electric vehicle 20 to the vehicle integrated controller and inverter for efficient use of energy.
  • the battery management system 400 may drive a cooling fan to correct a voltage deviation for each cell of the battery 300 or to maintain the battery 300 at an appropriate temperature.
  • the integrated power control device 500 is a device for controlling the overall movement of the electric vehicle including the control of the motor.
  • the integrated power control device 500 may include a motor control unit (MCU), a low voltage DC-DC converter (LDC), and a vehicle control unit (VCU).
  • the motor control device may be referred to as an inverter.
  • the motor control device may receive DC power from the battery and convert it into three-phase AC power, and may control the motor according to a command from the vehicle integrated controller.
  • the low voltage DC converter may convert high voltage power into low voltage (eg, 12 [V]) power and supply it to each component of the electric vehicle 20 .
  • the vehicle integrated controller serves to maintain the performance of the system with respect to the electric vehicle 20 as a whole.
  • the vehicle integrated controller may perform various functions such as charging and driving together with various devices such as the motor control device and the battery management system 400 .
  • FIG. 3 is a diagram illustrating a circuit configuration of an electric vehicle charging system according to an embodiment of the present invention.
  • an electric vehicle charging system includes an electric vehicle power supply device 10 , a connector 51 , an inlet 52 , and an electric vehicle 20 .
  • the electric vehicle power supply device 10 includes an overload circuit breaker (RCBO1, RCBO2), a power conversion device (PCS), an insulation monitoring device (CT), a communication device (COM1), a plurality of power lines (DC+, DC-), a plurality of may include signal lines C1 to C6 and a ground line FE.
  • the plurality of power lines DC+ and DC-, the plurality of signal lines C1 to C6 and the ground line FE may extend to the electric vehicle 20 through coupling of the connector 51 and the inlet 52 .
  • the electric vehicle power supply device 10 may receive AC power from a power system.
  • the received AC power may pass through the overload circuit breaker (RCBO1, RCBO2).
  • the overload circuit breakers RCBO1 and RCBO2 may serve to block the reception of AC power when an overload occurs in the electric vehicle power supply 10 .
  • AC power passing through the overload circuit breaker (RCBO1) is input to the power conversion device (PCS), and is converted into DC power.
  • the power converter (PCS) supplies DC power to the electric vehicle 20 through two power lines (DC+, DC-).
  • a diode (a) for blocking the reverse voltage from the electric vehicle 20 may be disposed in the first power line (DC+) of the two power lines (DC+, DC-), and the electric vehicle in the second power line (DC-)
  • a fuse u may be disposed to prevent damage due to overvoltage applied from (20).
  • the insulation monitoring device may be disposed between the two power lines (DC+, DC-) and the ground.
  • the insulation monitoring device CT may monitor the insulation state of the two power lines DC+ and DC-.
  • the first signal line C1 and the second signal line C2 may mean signal lines indicating a start/stop state of the electric vehicle power supply device 10 .
  • the first signal line C1 and the second signal line C2 are the charging sequence signals such as ready to charge and end of charge from the electric vehicle power supply 10 to the electric vehicle 20 ( charge sequence signal) can be transmitted.
  • a power of 12 [V] may be connected to one end of the first signal line C1
  • a ground may be connected to one end of the second signal line C2 .
  • the two switch devices d1 and d2 may be respectively disposed on the first signal line C1 and the second signal line C2 . In the electric vehicle power supply device 10 , the two switch devices d1 and d2 may transmit a charging sequence signal to the electric vehicle through an on-off operation.
  • the third signal line C3 may mean a signal line indicating a connection state between the connector 51 and the inlet 52 .
  • the third signal line C3 may transmit a proximity signal according to a connection state between the connector 51 and the inlet 52 .
  • One end of the third signal line C3 may be connected to the second signal line C2 .
  • the fourth signal line C4 may mean a signal line for approving charging permission for the electric vehicle 20 .
  • the fourth signal line C4 may transmit a control signal such as charging start or charging stop from the electric vehicle 20 to the electric vehicle power supply 10 .
  • the fourth signal line C4 is connected to the signal detecting device j, and the signal detecting device j may detect a control signal transmitted through the fourth signal line C4.
  • the fifth signal line C5 and the sixth signal line C6 may mean signal lines for data communication.
  • the fifth signal line C5 and the sixth signal line C6 may be connected to the communication device COM1 .
  • the electric vehicle may include the junction box 100 , the electric vehicle charge controller 200 , and the battery 300 .
  • the electric vehicle 20 may include a plurality of power lines DC+ and DC-, a plurality of signal lines C1 to C6 and a ground line FE.
  • the junction box 100 may be connected to two power lines (DC+, DC-).
  • the junction box 100 may include two contactors c disposed on each of the two power lines DC+ and DC-. The two contactors may be turned on and off by the electric vehicle charge controller 200 .
  • the junction box 100 may be connected to the battery 300 through two power lines (DC+, DC-), and transfers the DC power received from the electric vehicle power supply 10 to the battery 300 to perform charging. can do.
  • the electric vehicle charge controller 200 may include a relay device (e), a plurality of signal detection devices (f, g, h), a switch (k), and a communication device (COM2).
  • the electric vehicle charge controller 200 may be connected to a plurality of signal lines C1 to C6 and a ground line FE.
  • the relay device (e) may be disposed between the first signal line (C1) and the second signal line (C2). Specifically, one end of the relay device e may be connected to the second signal line C2 , and the other end may be connected to the first signal line C1 . In this case, two contactors c may be connected between the other end of the relay device e and the first signal line C1 .
  • the relay device (e) may control the opening and closing of the two contactors (c) through an opening/closing operation.
  • the first signal detecting device f and the second signal detecting device g are respectively connected to the first signal line C1 and the second signal line C2.
  • the two signal sensing devices f and g may detect a signal generated when the two switch devices d1 and d2 provided in the electric vehicle power supply device 10 are turned on.
  • the two signal sensing devices f and g may transmit the sensed signal to a microcontroller or an integrated vehicle controller included in the electric vehicle charge controller 200 .
  • the third signal sensing device h is connected to the third signal line C3.
  • the third signal detecting device h may detect a signal for detecting a connection state between the connector 51 and the inlet 52 .
  • the switch k is connected to the fourth signal line C4. When the switch k is turned on, a signal indicating the start of charging may be transmitted to the electric vehicle power supply 10 .
  • the communication device COM2 is connected to the fifth signal line C5 and the sixth signal line C6 .
  • the communication device COM2 may communicate with the communication device COM1 through the fifth signal line C5 and the sixth signal line C6 .
  • FIG. 4 is a diagram illustrating an embodiment of a circuit configuration between a fourth signal line of FIG. 3 and a signal sensing device.
  • 5 is a diagram showing another embodiment of the circuit configuration between the fourth signal line of FIG. 3 and the signal sensing device.
  • the signal sensing device j connected to the fourth signal line C4 in the electric vehicle power supply 10 may include an optocoupler and a first resistor RA.
  • a voltage of 12 [V] may be connected to a first end of the optocoupler, and a first resistor may be connected to a second end of the optocoupler.
  • the fourth signal line C4 may be connected to the switch device k of the electric vehicle charge controller 200 through the pin 6 of the coupler.
  • the size of the first resistor RA should be 264 [ ⁇ ] or less, and the current flowing through the fourth signal line C4 should be 50 [mA] or less.
  • the signal sensing device j connected to the fourth signal line C4 in the electric vehicle power supply 10 may include an optocoupler and a first resistor.
  • a voltage of 12 [V] may be connected to a first end of the optocoupler, and a first resistor may be connected to a second end of the optocoupler.
  • the fourth signal line C4 may be connected to the electric vehicle charge controller 200 through the pin 6 of the coupler.
  • the electric vehicle charge controller 200 may arrange a resistor RB and a switch device k on the fourth signal line C4 .
  • the first resistor RA should be 1 k[ ⁇ ]
  • the resistor RB should be 200 [ ⁇ ]
  • the current flowing through the fourth signal line C4 should be 11 [mA] or less.
  • the electric vehicle charge controller 200 is not compatible with each other in CHAdeMO 0.9 and CHAdeMO 1.0, which are electric vehicle standard specifications.
  • CHAdeMO 0.9 and CHAdeMO 1.0 which are the electric vehicle standard specifications, the electric vehicle needs to have different electric vehicle charge controllers 200 to be able to charge the battery.
  • FIG. 6 is a block diagram illustrating an electric vehicle charge controller according to an embodiment of the present invention.
  • the electric vehicle charge controller 200 includes a switch device 210 and a control unit 220 , and the switch device 210 includes a first signal unit 211 and a second signal unit 211 . It includes two signal units 212 .
  • the switch device 210 is connected to a signal sensing device of the electric vehicle power supply device through a signal line.
  • the switch device 210 generates a charging permission signal and transmits it to the signal detection device.
  • the switch device 210 includes a first signal unit 211 and a second signal unit 212 .
  • the first signal unit 211 includes a first switching element.
  • the first signal unit 211 generates a charging permission signal by turning on the first switching element based on a first switching signal among the plurality of switching signals output by the control unit 220 .
  • the second signal unit 212 includes a second switching element.
  • the second signal unit 212 generates a charging permission signal by turning on the second switching element based on a second switching signal among the plurality of switching signals output by the control unit 220 .
  • the first signal unit 211 and the second signal unit 212 selectively operate. That is, when the first signal unit 211 generates the charging permission signal, the second signal unit 212 does not generate the charging permission signal. Conversely, when the first signal unit 211 does not generate the charging permit signal, the second signal unit 212 generates the charging permit signal. In other words, when the first switching element is turned on by the first switching signal, the second switching element is turned off by the second switching signal. And, when the first switching element is turned off by the first switching signal, the second switching element is turned on by the second switching signal.
  • the controller 220 controls the switch device 210 through a plurality of switching signals.
  • the controller 220 controls the switching element of the switch device 210 according to the resistance value of the first resistor included in the electric vehicle power supply device.
  • the controller 220 When the resistance value of the first resistor is greater than the first reference value and less than the second reference value, the controller 220 turns on the first switching element through the first switching signal and turns on the second switching element through the second switching signal It may be turned off to control the first signal unit 211 to generate a charging permission signal.
  • the controller 220 When the resistance value of the first resistor is greater than the second reference value and less than the third reference value, the controller 220 turns off the first switching element through the first switching signal, and turns off the second switching element through the second switching signal It is turned on to control the second signal unit 212 to generate a charging permission signal.
  • the control unit 220 may receive the node voltage of the first signal unit 211 or the second signal unit 212 and detect an electrical connection state between the electric vehicle power supply device and the electric vehicle according to the magnitude of the node voltage. there is.
  • the controller 220 may determine the electrical connection state as an open state. As an embodiment, when the magnitude of the node voltage is included in the second voltage range or the fourth voltage range larger than the first voltage range, the controller 220 may determine the electrical connection state as a contact failure. As an embodiment, when the level of the node voltage is included in the third voltage range between the second voltage range and the fourth voltage range, the controller 220 may determine the electrical connection state as a normal state. As an embodiment, when the magnitude of the node voltage is included in the fifth voltage range greater than the fourth voltage range, the controller 220 may determine the electrical connection state as an overvoltage state.
  • the controller 220 may transmit the detection result of the electrical connection state to the electric vehicle power supply device.
  • the controller 220 may transmit the detection result of the electrical connection state to a battery management system in the electric vehicle, an integrated power management device, and the like.
  • the controller 220 may transmit the detection result of the electrical connection state to the user terminal.
  • the controller 220 may be implemented as a microcontroller (MCU).
  • MCU microcontroller
  • FIG. 7 is a diagram illustrating a circuit diagram of an electric vehicle charge controller according to an embodiment of the present invention.
  • the electric vehicle charge controller 200 includes a switch device 210 and a controller 220 , and the switch device 210 includes a first signal unit 211 and a second signal unit 212 .
  • the first signal unit 211 includes a first switching element Q1 , a second resistor RB, a third resistor RC, a fourth resistor RD, and a first diode D1 .
  • the first switching element Q1 has a first terminal connected to the first resistor RA of the electric vehicle power supply 10 .
  • the second end of the first switching element Q1 is connected to the first end of the second resistor RB.
  • the third terminal of the first switching element Q1 is connected to the controller 220 .
  • the first switching element Q1 may be a bipolar junction transistor (BJT).
  • the first switching element Q1 may include a collector terminal, an emitter terminal, and a base terminal.
  • the collector terminal of the first switching element Q1 may be connected to the first resistor RA.
  • An emitter terminal of the first switching element Q1 may be connected to a first terminal of the second resistor RB.
  • the base terminal of the second switching element Q2 may be connected to the controller 220 .
  • a first end of the second resistor RB is connected to a second end of the first switching element Q1.
  • a second end of the second resistor RB is connected to a ground terminal.
  • a second end of the second resistor RB may be connected to a first end of the third resistor RC.
  • a first end of the third resistor RC is connected to a second end of the second resistor RB.
  • a first end of the third resistor RC may be connected to a ground terminal.
  • a second end of the third resistor RC may be connected to a first end of the fourth resistor RD.
  • a second end of the third resistor RC may be connected to the cathode terminal of the first diode D1.
  • a second end of the third resistor RC may be connected to the controller 220 .
  • a first end of the fourth resistor RD is connected to a second end of the third resistor RC.
  • the fourth resistor RD may have a first terminal connected to the cathode terminal of the first diode D1.
  • a first end of the fourth resistor RD may be connected to the controller 220 .
  • a second end of the fourth resistor RD is connected to a ground terminal.
  • the cathode terminal of the first diode D1 is connected to the second terminal of the fourth resistor RD.
  • the first diode D1 has a cathode terminal connected to the controller 220 .
  • the first diode D1 has an anode terminal connected to a ground terminal.
  • the second end of the third resistor RC, the first end of the fourth resistor RD, and the cathode terminal of the first diode D1 are connected through the first node.
  • the first node is connected to the control unit 220 , and the control unit 220 may receive a node voltage of the first node.
  • the second signal unit 212 includes a second switching element Q2 , a fifth resistor RE, a sixth resistor RF, a seventh resistor RG, and a second diode D2 .
  • the second switching element Q2 has a first terminal connected to the first resistor RA of the electric vehicle power supply 10 .
  • a second end of the second switching element Q2 is connected to a first end of the fifth resistor RE.
  • the third end of the second switching element Q2 is connected to the control unit 220 .
  • the second switching element Q2 may be a bipolar junction transistor.
  • the second switching element Q2 may include a collector terminal, an emitter terminal, and a base terminal.
  • the collector terminal of the second switching element Q2 may be connected to the first resistor RA.
  • the emitter terminal of the second switching element Q2 may be connected to the first terminal of the fifth resistor RE.
  • the base terminal of the second switching element Q2 may be connected to the controller 220 .
  • a first end of the fifth resistor RE is connected to a second end of the second switching element Q2.
  • a second terminal of the fifth resistor RE is connected to a ground terminal.
  • a second end of the fifth resistor RE may be connected to a first end of the sixth resistor RF.
  • a first end of the sixth resistor RF is connected to a second end of the fifth resistor RE.
  • a first end of the sixth resistor RF may be connected to a ground terminal.
  • a second end of the sixth resistor RF may be connected to a first end of the seventh resistor RG.
  • a second end of the sixth resistor RF may be connected to the cathode terminal of the second diode D2 .
  • a second end of the sixth resistor RF may be connected to the controller 220 .
  • a first end of the seventh resistor RG is connected to a second end of the sixth resistor RF.
  • a first terminal of the seventh resistor RG may be connected to a cathode terminal of the second diode D2.
  • a first end of the seventh resistor RG may be connected to the controller 220 .
  • a second terminal of the seventh resistor RG is connected to a ground terminal.
  • the cathode terminal of the second diode D2 is connected to the second terminal of the seventh resistor RG.
  • the second diode D2 has a cathode terminal connected to the controller 220 .
  • the second diode D2 has an anode terminal connected to a ground terminal.
  • the second end of the sixth resistor RF, the first end of the seventh resistor RG, and the cathode terminal of the second diode D2 are connected through the second node.
  • the second node is connected to the control unit 220 , and the control unit 220 may receive a node voltage of the second node.
  • Table 1 below shows resistance values of the first to seventh resistors RA to RG according to an exemplary embodiment of the present invention.
  • the first resistor RA of the electric vehicle power supply 10 may have a resistance value of 1k [ ⁇ ] or 264 [ ⁇ ].
  • the first signal unit 211 and the second signal unit 212 may have circuit structures corresponding to each other.
  • the second resistor RB may correspond to the fifth resistor RE
  • the third resistor RC may correspond to the sixth resistor RF
  • the fourth resistor RD may correspond to the seventh resistor RG.
  • resistance values of the corresponding resistors may be different. This is because the control unit maintains the same node voltage at the first node or the second node depending on the connection state even though the first signal unit 211 and the second signal unit 212 selectively operate according to the resistance value of the first resistor RA. (220) is to be input.
  • the second resistor RB may have a higher resistance than the fifth resistor RE.
  • the second resistance RB of the first signal unit 211 may have a resistance value of 200 [ ⁇ ]
  • the fifth resistance RE of the second signal unit 212 may be 1k[ ⁇ ] greater than 200 [ ⁇ ]. ⁇ ].
  • the third resistor RC may have a higher resistance than the sixth resistor RF.
  • the third resistor RC of the first signal part 211 may have a resistance value of 1k [ ⁇ ]
  • the sixth resistor RF of the second signal part 212 may have a resistance value of 10k[ ⁇ ] greater than 1000 [ ⁇ ]. ⁇ ].
  • the fourth resistor RD may have a smaller value than the seventh resistor RG.
  • the fourth resistor RD of the first signal part 211 may have a resistance value of 10k[ ⁇ ]
  • the seventh resistor RG of the second signal part 212 may be 2.4k less than 10k[ ⁇ ]. It can have a resistance value of [ ⁇ ].
  • FIG. 8 is a first driving example of a switch device according to an embodiment of the present invention.
  • the first driving example shown in FIG. 8 represents a current flow when a charging permission signal is generated through the first signal unit 211 .
  • the electric vehicle power supply device 10 may include a signal sensing device including a first resistor RA and a predetermined circuit for sensing a charging permission signal.
  • a predetermined circuit is connected to a first terminal of the first resistor RA, and a voltage is applied to the first resistor RA through a voltage source connected to the predetermined circuit. Since the voltage source applies a voltage to the first resistor RA through a predetermined circuit, a voltage drop of the voltage source may occur due to the predetermined circuit.
  • the first switching element Q1 is turned on and the second switching element Q2 is turned off. Accordingly, the current I1 by the voltage source of the signal sensing device of the electric vehicle power supply device 10 flows through the second to fourth resistors RD, but does not flow through the fifth to seventh resistors RG. Accordingly, the signal sensing device of the electric vehicle power supply device 10 detects the charging permission signal generated by the second to fourth resistors RD.
  • the current I1 does not flow. However, when the voltage applied to the first diode D1 exceeds the breakdown voltage of the first diode D1, the electrical resistance is broken and the current I1 flows. According to an embodiment, when a transient current such as a rush current is applied to the first signal unit 211 and a breakdown voltage is applied to the first diode D1 , the electrical resistance of the first diode D1 is destroyed and the first diode D1 is grounded. A current I1 flows through the terminal. This is to prevent the controller 220 connected to the cathode terminal of the first diode D1 from being damaged by an excessive current such as a rush current.
  • FIG. 9 is a second driving example of the switch device according to the embodiment of the present invention.
  • the electric vehicle power supply device 10 may include a signal sensing device including a first resistor RA and a predetermined circuit for sensing a charging permission signal.
  • a predetermined circuit is connected to a first terminal of the first resistor RA, and a voltage is applied to the first resistor RA through a voltage source connected to the predetermined circuit. Since the voltage source applies a voltage to the first resistor RA through a predetermined circuit, a voltage drop of the voltage source may occur due to the predetermined circuit.
  • the first switching element Q1 is turned off and the second switching element Q2 is turned on. Accordingly, the current I2 by the voltage source of the signal sensing device of the electric vehicle power supply device 10 does not flow through the second to fourth resistors RD, but flows through the fifth to seventh resistors RG. Accordingly, the signal sensing device of the electric vehicle power supply device 10 detects the charging permission signal generated by the fifth to seventh resistors RG.
  • the current I2 does not flow.
  • the voltage applied to the second diode D2 exceeds the breakdown voltage of the second diode D2 , the electrical resistance is broken and the current I2 flows.
  • a transient current such as a rush current is applied to the second signal unit 212 and a breakdown voltage is applied to the second diode D2 , the electrical resistance of the second diode D2 is destroyed and the ground Current flows through the terminal. This is to prevent the controller 220 connected to the cathode terminal of the second diode D2 from being damaged by an excessive current such as a rush current.
  • FIG. 10 is a diagram for explaining a voltage detected at a first node of a first signal unit according to an embodiment of the present invention.
  • FIG. 10 shows a circuit configuration when the first switching signal of the first signal part is turned on and the second switching signal of the second signal part is turned off.
  • the controller may receive the node voltage Va from the first node a to which the third resistor RC, the fourth resistor RD, and the first diode D1 are connected.
  • Equation 1 represents the node voltage Va detected at the first node a.
  • Table 2 below shows resistance values and voltage values according to an exemplary embodiment.
  • the voltage (Vs) is 12 [V]
  • the first resistor (RA) is 1k [ ⁇ ]
  • the second resistor (RB) is 200 [ ⁇ ]
  • the third resistor (RC) is 1k
  • the fourth resistor RD is 10k [ ⁇ ]
  • the node voltage Va of the first node a becomes approximately 1.8 [V]. That is, when the first receiver operates normally to generate a charging permission signal, the controller may receive a node voltage Va of approximately 1.8 [V].
  • 11 is a diagram for explaining a voltage detected at a second node of a second signal unit according to an embodiment of the present invention.
  • FIG. 11 shows a circuit configuration when the first switching signal of the first signal part is turned off and the second switching signal of the second signal part is turned on.
  • the controller may receive the node voltage Vb from the second node b to which the sixth resistor RF, the seventh resistor RG, and the second diode D2 are connected.
  • Equation 1 represents the node voltage Vb detected at the second node b.
  • Table 3 below shows resistance values and voltage values according to an exemplary embodiment.
  • the voltage (Vs) is 12 [V]
  • the first resistor (RA) is 264 [ ⁇ ]
  • the fifth resistor (RE) is 1k [ ⁇ ]
  • the sixth resistor (RF) is 1k
  • the node voltage Vb of the first node becomes approximately 1.8 [V]. That is, when the second receiver operates normally to generate a charging permission signal, the controller may receive a node voltage Vb of approximately 1.8 [V].
  • 12 is a view for explaining a process of detecting an electrical connection state between an electric vehicle power supply device and an electric vehicle charge controller according to an embodiment of the present invention.
  • the controller may detect an electrical connection state between the electric vehicle power supply device and the electric vehicle charge controller based on the voltage level of the node voltage input from the first receiver or the second receiver.
  • the controller may determine the electrical connection state as an open case.
  • the first voltage range may mean a range greater than the zeroth voltage V0 and smaller than the first voltage V1.
  • the zeroth voltage V0 may be 0 [V].
  • the controller may determine the electrical connection state as an out of case.
  • the first voltage range means a range greater than 0 [V] and less than the first voltage V1
  • the second voltage range is greater than the first voltage V1 and greater than the second voltage V2. It can mean a small range.
  • the controller may determine the electrical connection state as a normal status.
  • the second voltage range means a range that is greater than the first voltage V1 and less than the second voltage V2, and the third voltage range is greater than the second voltage V2 and the third voltage V3.
  • the third voltage range may be a range including a value of 1.8 [V] that may be detected when the first receiver or the second receiver normally operates.
  • the controller may determine the electrical connection state as an out of case.
  • the third voltage range means a range that is greater than the second voltage V2 and less than the third voltage V3, and the fourth voltage range is greater than the third voltage V3 and the fourth voltage V4. ) can mean a smaller range.
  • the controller may determine the electrical connection state as an overvoltage case.
  • the fourth voltage range is greater than the third voltage V3 and less than the fourth voltage V4, and the fifth voltage range is greater than the fourth voltage V4 and the fifth voltage V5.
  • the fifth voltage V5 may be 5 [V].

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

An electric vehicle charging controller, according to one embodiment of the present invention, comprises: a switch device which is connected, via a signal line, to a signal detection device of an electric vehicle power supply device, and generates a charging enable signal and transmits same to the signal detection device; and a control unit which controls the switch device through a plurality of switching signals. The signal detection device of the electric vehicle power supply device comprises a first resistance disposed on the signal line. The switch device comprises: a first signal unit which comprises a first switching element, and generates the charging enable signal by turning on the first switching element on the basis of a first switching signal among the plurality of switching signals; and a second signal unit which comprises a second switching element, and generates the charging enable signal by turning on the second switching element on the basis of a second switching signal among the plurality of switching signals, wherein the first signal unit or the second signal unit generates the charging enable signal according to the resistance value of the first resistance.

Description

전기 자동차 충전 컨트롤러Electric Vehicle Charge Controller
실시 예는 전기 자동차 충전 컨트롤러에 관한 것이다.The embodiment relates to an electric vehicle charge controller.
전기 자동차(Electric Vehicle, EV) 또는 플러그-인 하이브리드 자동차(Plug-In Hybrid Electric Vehicle, PHEV)와 같은 친환경 자동차는 배터리 충전을 위하여 충전소에 설치된 전기 자동차 충전 설비(Electric Vehicle Supply Equipment, EVSE)를 이용한다.Eco-friendly vehicles such as Electric Vehicles (EVs) or Plug-In Hybrid Electric Vehicles (PHEVs) use Electric Vehicle Supply Equipment (EVSE) installed at charging stations to charge batteries. .
이를 위하여, 전기 자동차 충전 장치(Electric Vehicle Charging Controller, EVCC)는 EV 내에 탑재되며, EV 및 EVSE와 통신하며, 전기 자동차의 충전을 제어한다.To this end, an electric vehicle charging controller (EVCC) is mounted in the EV, communicates with the EV and the EVSE, and controls the charging of the electric vehicle.
예를 들어, EVCC가 전기 자동차로부터 충전 시작을 지시하는 신호를 수신하면, 충전을 시작하도록 제어할 수 있으며, 전기 자동차로부터 충전 종료를 지시하는 신호를 수신하면, 충전을 종료하도록 제어할 수 있다.For example, when the EVCC receives a signal instructing the start of charging from the electric vehicle, it can control to start charging, and when receiving a signal instructing the end of charging from the electric vehicle, it can control to end charging.
전기 자동차의 충전 방법은 충전 시간에 따라 급속 충전과 완속 충전으로 구분될 수 있다. 급속 충전의 경우에는, 충전기에서 공급되는 직류 전류에 의하여 배터리가 충전되고, 완속 충전의 경우에는 충전기에 공급되는 교류 전류에 의하여 배터리가 충전된다. 따라서 급속 충전에 사용되는 충전기를 급속 충전기 또는 직류 충전기라 칭하고, 완속 충전에 사용되는 충전기를 완속 충전기 또는 교류 충전기라 칭한다. The charging method of an electric vehicle may be divided into fast charging and slow charging according to the charging time. In the case of rapid charging, the battery is charged by the DC current supplied from the charger, and in the case of slow charging, the battery is charged by the AC current supplied to the charger. Therefore, a charger used for fast charging is called a fast charger or a DC charger, and a charger used for slow charging is called a slow charger or an AC charger.
전기 자동차 전원공급장치와 전기 자동차는 안전성을 모니터링하면서 복수 단계의 충전 시퀀스를 수행한다. 전기 자동차 전원공급장치와 전기 자동차는 복수의 신호선을 통해 충전 시퀀스에 따른 신호를 송수신한다. 전기 자동차 충전에는 고압 전력이 이용되므로, 신호선을 따라 송수신되는 신호에 대해 높은 정확성이 요구된다. 충전 시스템의 개선에 따라 회로 일부가 변경되어 신호의 크기 등이 변경되는 경우 충전 시퀀스는 수행되지 않는다. 그러므로, 충전 시스템이 개선될 때마다 개선된 회로가 적용된 부품으로 변경하여야 하는 문제가 발생한다. Electric vehicle power supplies and electric vehicles perform a multi-step charging sequence while monitoring safety. The electric vehicle power supply device and the electric vehicle transmit and receive signals according to the charging sequence through a plurality of signal lines. Since high voltage power is used to charge electric vehicles, high accuracy is required for signals transmitted and received along signal lines. When a part of the circuit is changed according to the improvement of the charging system and the signal level is changed, the charging sequence is not performed. Therefore, whenever the charging system is improved, there arises a problem of having to change to a component to which the improved circuit is applied.
실시 예는 호환성이 높은 전기 자동차 충전 컨트롤러를 제공하기 위한 것이다. An embodiment is to provide an electric vehicle charge controller with high compatibility.
실시 예는 전기 자동차 전원공급장치와 전기 자동차 충전 컨트롤러 사이의 신호선 연결 상태를 검출할 수 있는 전기 자동차 충전 컨트롤러를 제공하기 위한 것이다. An embodiment is to provide an electric vehicle charge controller capable of detecting a signal line connection state between an electric vehicle power supply device and an electric vehicle charge controller.
실시 예에서 해결하고자 하는 과제는 이에 한정되는 것은 아니며, 아래에서 설명하는 과제의 해결수단이나 실시 형태로부터 파악될 수 있는 목적이나 효과도 포함된다고 할 것이다.The problem to be solved in the embodiment is not limited thereto, and it will be said that the purpose or effect that can be grasped from the solving means or embodiment of the problem described below is also included.
본 발명의 실시예에 따른 전기 자동차 충전 컨트롤러는 전기 자동차 전원공급장치의 신호 감지 장치와 신호선을 통해 연결되고, 충전 허가 신호를 생성하여 상기 신호 감지 장치로 전송하는 스위치 장치; 그리고 복수의 스위칭 신호를 통해 상기 스위치 장치를 제어하는 제어부;를 포함하고, 상기 전기 자동차 전원공급장치의 신호 감지 장치는, 상기 신호선 상에 배치되는 제1 저항을 포함하고, 상기 스위치 장치는, 제1 스위칭 소자를 포함하고, 상기 복수의 스위칭 신호 중 제1 스위칭 신호에 기초하여 제1 스위칭 소자를 턴온하여 상기 충전 허가 신호를 생성하는 제1 신호부; 및 제2 스위칭 소자를 포함하고, 상기 복수의 스위칭 신호 중 제2 스위칭 신호에 기초하여 제2 스위칭 소자를 턴온하여 상기 충전 허가 신호를 생성하는 제2 신호부;를 포함하고, 상기 제1 저항의 저항값에 따라 상기 제1 신호부 또는 상기 제2 신호부가 상기 충전 허가 신호를 생성한다. An electric vehicle charge controller according to an embodiment of the present invention includes: a switch device connected to a signal sensing device of an electric vehicle power supply device through a signal line, generating a charging permission signal and transmitting the charging permission signal to the signal detecting device; and a control unit for controlling the switch device through a plurality of switching signals, wherein the signal sensing device of the electric vehicle power supply device includes a first resistor disposed on the signal line, and the switch device includes: a first signal unit including one switching element and configured to turn on the first switching element based on a first switching signal among the plurality of switching signals to generate the charging permission signal; and a second signal unit including a second switching element and turning on a second switching element based on a second switching signal among the plurality of switching signals to generate the charging permission signal; The first signal unit or the second signal unit generates the charging permission signal according to the resistance value.
상기 전기 자동차 전원공급장치의 신호 감지 장치는, 상기 신호선 상에 배치되는 제1 저항을 포함하고, 상기 스위칭 장치는, 상기 제1 저항의 저항값에 따라 상기 제1 신호부 또는 상기 제2 신호부가 상기 충전 허가 신호를 생성할 수 있다. The signal sensing device of the electric vehicle power supply includes a first resistor disposed on the signal line, and the switching device includes the first signal unit or the second signal unit according to a resistance value of the first resistor. The charging permission signal may be generated.
상기 제어부는, 상기 제1 저항의 저항값이 제1 기준값보다 크고 제2 기준값보다 작으면, 상기 제1 스위칭 신호를 통해 제1 스위칭 소자를 턴온하고, 상기 제2 스위칭 신호를 통해 제2 스위칭 소자를 턴오프하여 상기 제1 신호부가 상기 충전 허가 신호를 생성하도록 제어할 수 있다. When the resistance value of the first resistor is greater than the first reference value and less than the second reference value, the controller turns on the first switching element through the first switching signal, and the second switching element through the second switching signal may be turned off to control the first signal unit to generate the charging permission signal.
상기 제어부는, 상기 제1 저항의 저항값이 상기 제2 기준값보다 크고 제3 기준값보다 작으면, 상기 제1 스위칭 신호를 통해 제1 스위칭 소자를 턴오프하고, 상기 제2 스위칭 신호를 통해 제2 스위칭 소자를 턴온하여 상기 제2 신호부가 상기 충전 허가 신호를 생성하도록 제어할 수 있다. When the resistance value of the first resistor is greater than the second reference value and less than the third reference value, the controller turns off the first switching element through the first switching signal, and a second through the second switching signal A switching element may be turned on to control the second signal unit to generate the charging permission signal.
상기 제어부는, 상기 제1 신호부 또는 상기 제2 신호부에 포함된 노드(node)의 노드 전압을 수신하고, 상기 노드 전압의 크기에 따라 상기 전기 자동차 전원공급장치와 전기 자동차 사이의 전기적 연결 상태를 검출할 수 있다. The control unit receives a node voltage of a node included in the first signal unit or the second signal unit, and an electrical connection state between the electric vehicle power supply device and the electric vehicle according to the magnitude of the node voltage can be detected.
상기 제어부는, 상기 노드 전압의 크기가 제1 전압 범위에 포함되면, 상기 전기적 연결 상태를 개방 상태로 판단할 수 있다. The controller may determine the electrical connection state as an open state when the level of the node voltage is included in the first voltage range.
상기 제어부는, 상기 노드 전압의 크기가 상기 제1 전압 범위보다 큰 제2 전압 범위 또는 제4 전압 범위에 포함되면, 상기 전기적 연결 상태를 접촉 불량으로 판단할 수 있다. When the level of the node voltage is included in a second voltage range or a fourth voltage range greater than the first voltage range, the controller may determine the electrical connection state as a contact failure.
상기 제어부는, 상기 노드 전압의 크기가 상기 제2 전압 범위와 상기 제4 전압 범위 사이의 제3 전압 범위에 포함되면, 상기 전기적 연결 상태를 정상 상태로 판단할 수 있다. The controller may determine the electrical connection state as a normal state when the level of the node voltage is included in a third voltage range between the second voltage range and the fourth voltage range.
상기 제어부는, 상기 노드 전압의 크기가 상기 제4 전압 범위보다 큰 제5 전압 범위에 포함되면, 상기 전기적 연결 상태를 과전압 상태로 판단할 수 있다. The controller may determine the electrical connection state as an overvoltage state when the level of the node voltage is included in a fifth voltage range greater than the fourth voltage range.
상기 제1 신호부는, 제1단이 상기 제1 저항과 연결되고, 제3단이 상기 제어부와 연결되는 제1 스위칭 소자; 제1단이 상기 제1 스위칭 소자의 제2단과 연결되고, 제2단이 접지 단자와 연결되는 제2 저항; 제1단이 상기 제2 저항의 제2단과 연결되는 제3 저항; 제1단이 상기 제3 저항의 제2단과 연결되고, 제2단이 상기 접지 단자와 연결되는 제4 저항; 및 캐소드 단자가 상기 제4 저항의 제2단과 연결되고, 애노드 단자가 접지 단자와 연결되는 제1 다이오드;를 포함할 수 있다. The first signal unit may include: a first switching element having a first end connected to the first resistor and a third end connected to the control unit; a second resistor having a first end connected to a second end of the first switching element and a second end connected to a ground terminal; a third resistor having a first end connected to a second end of the second resistor; a fourth resistor having a first end connected to a second end of the third resistor and a second end connected to the ground terminal; and a first diode having a cathode terminal connected to the second end of the fourth resistor and an anode terminal connected to a ground terminal.
상기 제2 신호부는, 제1단이 상기 제1 저항과 연결되고, 제3단이 상기 제어부와 연결되는 제2 스위칭 소자; 제1단이 상기 제2 스위칭 소자의 제2단과 연결되고, 제2단이 접지 단자와 연결되는 제5 저항; 제1단이 상기 제5 저항의 제2단과 연결되는 제6 저항; 제1단이 상기 제6 저항의 제2단과 연결되고, 제2단이 상기 접지 단자와 연결되는 제7 저항; 및 캐소드 단자가 상기 제7 저항의 제2단과 연결되고, 애노드 단자가 접지 단자와 연결되는 제2 다이오드;를 포함할 수 있다. The second signal unit may include: a second switching element having a first end connected to the first resistor and a third end connected to the control unit; a fifth resistor having a first end connected to a second end of the second switching element and a second end connected to a ground terminal; a sixth resistor having a first end connected to a second end of the fifth resistor; a seventh resistor having a first end connected to a second end of the sixth resistor and a second end connected to the ground terminal; and a second diode having a cathode terminal connected to a second terminal of the seventh resistor and an anode terminal connected to a ground terminal.
상기 제1 다이오드의 캐소드 단자와 상기 제2 다이오드의 캐소드 단자는, 상기 제어부와 연결될 수 있다. A cathode terminal of the first diode and a cathode terminal of the second diode may be connected to the controller.
상기 제2 저항은, 상기 제5 저항보다 큰 저항값을 가지고, 상기 제3 저항은, 상기 제6 저항보다 큰 저항값을 가지고, 상기 제4 저항은, 상기 제7 저항보다 작은 저항값을 가질 수 있다. The second resistor may have a resistance value greater than that of the fifth resistor, the third resistor may have a resistance value greater than the sixth resistor, and the fourth resistor may have a resistance value less than that of the seventh resistor. can
본 발명의 실시예에 따른 전기 자동차 충전 컨트롤러는 전기 자동차 전원공급장치의 신호 감지 장치와 신호선을 통해 연결되는 스위치 장치; 그리고 상기 스위치 장치와 연결되는 마이크로 컨트롤러;를 포함하고, 상기 신호 감지 장치는, 상기 신호선 상에 배치되는 제1 저항을 포함하고, 상기 스위치 장치는, 제1단이 상기 제1 저항과 연결되고, 제3단이 상기 제어부와 연결되는 제1 스위칭 소자; 제1단이 상기 제1 스위칭 소자의 제2단과 연결되고, 제2단이 접지 단자와 연결되는 제2 저항; 제1단이 상기 제2 저항의 제2단과 연결되는 제3 저항; 제1단이 상기 제3 저항의 제2단과 연결되고, 제2단이 상기 접지 단자와 연결되는 제4 저항; 및 캐소드 단자가 상기 제4 저항의 제2단과 연결되고, 애노드 단자가 접지 단자와 연결되는 제1 다이오드;를 포함하는 제1 신호부; 그리고 제1단이 상기 제1 저항과 연결되고, 제3단이 상기 제어부와 연결되는 제2 스위칭 소자; 제1단이 상기 제2 스위칭 소자의 제2단과 연결되고, 제2단이 접지 단자와 연결되는 제5 저항; 제1단이 상기 제5 저항의 제2단과 연결되는 제6 저항; 제1단이 상기 제6 저항의 제2단과 연결되고, 제2단이 상기 접지 단자와 연결되는 제7 저항; 및 캐소드 단자가 상기 제7 저항의 제2단과 연결되고, 애노드 단자가 접지 단자와 연결되는 제2 다이오드;를 포함하는 제2 신호부;를 포함한다. An electric vehicle charge controller according to an embodiment of the present invention includes a switch device connected to a signal sensing device of an electric vehicle power supply device through a signal line; and a microcontroller connected to the switch device, wherein the signal sensing device includes a first resistor disposed on the signal line, wherein the switch device has a first end connected to the first resistor, a first switching element having a third stage connected to the control unit; a second resistor having a first end connected to a second end of the first switching element and a second end connected to a ground terminal; a third resistor having a first end connected to a second end of the second resistor; a fourth resistor having a first end connected to a second end of the third resistor and a second end connected to the ground terminal; and a first diode having a cathode terminal connected to a second end of the fourth resistor and a first diode having an anode terminal connected to a ground terminal; and a second switching element having a first end connected to the first resistor and a third end connected to the control unit; a fifth resistor having a first end connected to a second end of the second switching element and a second end connected to a ground terminal; a sixth resistor having a first end connected to a second end of the fifth resistor; a seventh resistor having a first end connected to a second end of the sixth resistor and a second end connected to the ground terminal; and a second signal unit including a cathode terminal connected to a second terminal of the seventh resistor and a second diode having an anode terminal connected to a ground terminal.
실시 예에 따르면, 호환성이 높은 전기 자동차 충전 컨트롤러를 제공할 수 있다. According to the embodiment, it is possible to provide an electric vehicle charge controller with high compatibility.
전기 자동차 전원공급장치와 전기 자동차 충전 컨트롤러 사이의 신호선 연결 상태에 대한 검출이 가능하다. It is possible to detect the signal line connection state between the electric vehicle power supply and the electric vehicle charge controller.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.Various and advantageous advantages and effects of the present invention are not limited to the above, and will be more easily understood in the course of describing specific embodiments of the present invention.
도 1은 본 발명의 실시예에 따른 전기 자동차 충전 시스템을 설명하기 위한 도면이다. 1 is a view for explaining an electric vehicle charging system according to an embodiment of the present invention.
도 2는 본 발명의 실시예에 따른 전기 자동차 충전 시스템의 구성을 나타낸 도면이다. 2 is a view showing the configuration of an electric vehicle charging system according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 전기 자동차 충전 시스템의 회로 구성을 나타낸 도면이다. 3 is a diagram illustrating a circuit configuration of an electric vehicle charging system according to an embodiment of the present invention.
도 4는 도 3의 제4 신호선 및 신호 감지 장치 사이의 회로 구성의 일 실시예를 나타낸 도면이다. FIG. 4 is a diagram illustrating an embodiment of a circuit configuration between a fourth signal line of FIG. 3 and a signal sensing device.
도 5는 도 3의 제4 신호선 및 신호 감지 장치 사이의 회로 구성의 다른 실시예를 나타낸 도면이다.5 is a diagram showing another embodiment of the circuit configuration between the fourth signal line of FIG. 3 and the signal sensing device.
도 6은 본 발명의 실시예에 따른 전기 자동차 충전 컨트롤러를 나타낸 구성도이다. 6 is a block diagram illustrating an electric vehicle charge controller according to an embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 전기 자동차 충전 컨트롤러의 회로도를 나타낸 도면이다. 7 is a diagram illustrating a circuit diagram of an electric vehicle charge controller according to an embodiment of the present invention.
도 8은 본 발명의 실시예에 따른 스위치 장치의 제1 구동예이다.8 is a first driving example of a switch device according to an embodiment of the present invention.
도 9는 본 발명의 실시예에 따른 스위치 장치의 제2 구동예이다. 9 is a second driving example of the switch device according to the embodiment of the present invention.
도 10은 본 발명의 실시예에 따른 제1 신호부의 제1 노드에서 검출되는 전압을 설명하기 위한 도면이다. 10 is a diagram for explaining a voltage detected at a first node of a first signal unit according to an embodiment of the present invention.
도 11은 본 발명의 실시예에 따른 제2 신호부의 제2 노드에서 검출되는 전압을 설명하기 위한 도면이다. 11 is a diagram for explaining a voltage detected at a second node of a second signal unit according to an embodiment of the present invention.
도 12는 본 발명의 실시예에 따른 전기 자동차 전원공급장치와 전기 자동차 충전 컨트롤러 사이의 전기적 연결 상태 검출 과정을 설명하기 위한 도면이다. 12 is a view for explaining a process of detecting an electrical connection state between an electric vehicle power supply device and an electric vehicle charge controller according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
다만, 본 발명의 기술 사상은 설명되는 일부 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있고, 본 발명의 기술 사상 범위 내에서라면, 실시 예들간 그 구성 요소들 중 하나 이상을 선택적으로 결합, 치환하여 사용할 수 있다.However, the technical spirit of the present invention is not limited to some embodiments described, but may be implemented in various different forms, and within the scope of the technical spirit of the present invention, one or more of the components may be selected among the embodiments. It can be combined and substituted for use.
또한, 본 발명의 실시예에서 사용되는 용어(기술 및 과학적 용어를 포함)는, 명백하게 특별히 정의되어 기술되지 않는 한, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 일반적으로 이해될 수 있는 의미로 해석될 수 있으며, 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미를 고려하여 그 의미를 해석할 수 있을 것이다.In addition, terms (including technical and scientific terms) used in the embodiments of the present invention may be generally understood by those of ordinary skill in the art to which the present invention pertains, unless specifically defined and described explicitly. It may be interpreted as a meaning, and generally used terms such as terms defined in advance may be interpreted in consideration of the contextual meaning of the related art.
또한, 본 발명의 실시예에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다.In addition, the terminology used in the embodiments of the present invention is for describing the embodiments and is not intended to limit the present invention.
본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함할 수 있고, "A 및(와) B, C 중 적어도 하나(또는 한 개 이상)"로 기재되는 경우 A, B, C로 조합할 수 있는 모든 조합 중 하나 이상을 포함할 수 있다.In the present specification, the singular form may also include the plural form unless otherwise specified in the phrase, and when it is described as "at least one (or one or more) of A and (and) B, C", it is combined with A, B, C It may include one or more of all possible combinations.
또한, 본 발명의 실시 예의 구성 요소를 설명하는 데 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다.In addition, in describing the components of the embodiment of the present invention, terms such as first, second, A, B, (a), (b), etc. may be used.
이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등으로 한정되지 않는다.These terms are only for distinguishing the component from other components, and are not limited to the essence, order, or order of the component by the term.
그리고, 어떤 구성 요소가 다른 구성요소에 '연결', '결합' 또는 '접속'된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결, 결합 또는 접속되는 경우뿐만 아니라, 그 구성 요소와 그 다른 구성 요소 사이에 있는 또 다른 구성 요소로 인해 '연결', '결합' 또는 '접속' 되는 경우도 포함할 수 있다.And, when it is described that a component is 'connected', 'coupled' or 'connected' to another component, the component is not only directly connected, coupled or connected to the other component, but also with the component It may also include a case of 'connected', 'coupled' or 'connected' due to another element between the other elements.
또한, 각 구성 요소의 "상(위) 또는 하(아래)"에 형성 또는 배치되는 것으로 기재되는 경우, 상(위) 또는 하(아래)는 두 개의 구성 요소들이 서로 직접 접촉되는 경우뿐만 아니라 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 형성 또는 배치되는 경우도 포함한다. 또한, "상(위) 또는 하(아래)"으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다. In addition, when it is described as being formed or disposed on "above (above) or under (below)" of each component, the top (above) or bottom (below) is one as well as when two components are in direct contact with each other. Also includes a case in which another component as described above is formed or disposed between two components. In addition, when expressed as "upper (upper) or lower (lower)", the meaning of not only an upper direction but also a lower direction based on one component may be included.
도 1은 본 발명의 실시예에 따른 전기 자동차 충전 시스템을 설명하기 위한 도면이다. 1 is a view for explaining an electric vehicle charging system according to an embodiment of the present invention.
본 발명의 실시예에 따른 전기 자동차 충전 시스템은 전기 에너지를 동력으로 동작하는 전기 자동차의 배터리 충전을 위한 시스템을 의미할 수 있다. An electric vehicle charging system according to an embodiment of the present invention may refer to a system for charging a battery of an electric vehicle that operates by using electric energy as power.
도 1을 참조하면, 본 발명의 실시예에 따른 전기 자동차 충전 시스템은 전기 자동차 전원공급장치(Electric Vehicle Supply Equipment, EVSE, 10) 및 전기 자동차(Electric Vehicle, EV, 20)를 포함할 수 있다. Referring to FIG. 1 , an electric vehicle charging system according to an embodiment of the present invention may include an electric vehicle power supply device (Electric Vehicle Supply Equipment, EVSE, 10) and an electric vehicle (Electric Vehicle, EV, 20).
전기 자동차 전원공급장치(10)는 AC 또는 DC 전력을 공급하는 설비이며, 충전소에 배치되거나, 가정 내에 배치될 수 있으며, 휴대 가능하도록 구현될 수도 있다. 전기 자동차 전원공급장치(10)는 충전소(supply), AC 충전소(AC supply) 및 DC 충전소(DC supply) 등과 혼용될 수 있다. 전기 자동차 전원공급장치(10)는 주전원 측으로부터 AC 또는 DC 전력을 공급받을 수 있다. 주전원은 전력 계통 등을 포함할 수 있다. 전기 자동차 전원공급장치(10)는 주전원으로부터 공급받은 AC 또는 DC 전력을 변압하거나 변환하여 전기 자동차(20)에 공급할 수 있다. The electric vehicle power supply device 10 is a facility for supplying AC or DC power, and may be disposed in a charging station or in a home, and may be implemented to be portable. The electric vehicle power supply device 10 may be used interchangeably with a charging station (supply), an AC charging station (AC supply), and a DC charging station (DC supply). The electric vehicle power supply 10 may receive AC or DC power from a main power source. The main power may include a power system and the like. The electric vehicle power supply device 10 may transform or convert AC or DC power supplied from the main power supply to the electric vehicle 20 .
전기 자동차(20)는 탑재된 배터리로부터 에너지의 전부 혹은 일부를 공급받아 동작하는 자동차를 의미한다. 전기 자동차(20)는 배터리에 충전된 전기 에너지만으로 주행하는 전기 자동차뿐만 아니라, 화석 연료를 이용하는 엔진을 병행하여 주행하는 플러그인 하이브리드 자동차(Plug-in Hybrid Electric Vehicle, PHEV)를 포함할 수 있다. 전기 자동차(20)에 구비된 배터리는 전기 자동차 전원공급장치(10)로부터 전력을 공급받아 충전될 수 있다. The electric vehicle 20 refers to a vehicle that operates by receiving all or part of energy from a mounted battery. The electric vehicle 20 may include a plug-in hybrid electric vehicle (PHEV) that runs in parallel with an engine using fossil fuel as well as an electric vehicle that runs only with electric energy charged in a battery. The battery provided in the electric vehicle 20 may be charged by receiving power from the electric vehicle power supply device 10 .
도 2는 본 발명의 실시예에 따른 전기 자동차 충전 시스템의 구성을 나타낸 도면이다. 2 is a view showing the configuration of an electric vehicle charging system according to an embodiment of the present invention.
본 발명의 실시예에 따른 전기 자동차 충전 시스템은 전기 자동차 전원공급장치(10, Electric Vehicle Supply Equipment, EVSE), 케이블(50, cable), 커넥터(51, connector), 인렛(52, inlet), 정션 박스(100, junction box), 전기 자동차 충전 컨트롤러(200, Electric Vehicle Charging Controller, EVCC), 배터리(300), 배터리 관리 시스템(400, Battery Management System, BMS) 및 통합 전력 제어 장치(500, Electric Power Control Unit, EPCU)을 포함할 수 있다. 전기 자동차 충전 시스템에 포함된 구성은 전기 자동차 전원공급장치(10) 측(EVSE side)의 구성과 전기 자동차(20) 측(EV side)의 구성으로 구분될 수 있다. 전기 자동차 전원공급장치(10) 측의 구성은 전기 자동차 전원공급장치(10), 케이블(50) 및 커넥터(51)를 포함할 수 있다. 전기 자동차 측의 구성은 인렛(52), 정션 박스(100), 전기 자동차 충전 컨트롤러(200), 배터리(300), 배터리 관리 시스템(400) 및 통합 전력 제어 장치(500)를 포함할 수 있다. 이러한 구분은 설명의 편의를 위한 것으로서 한정되는 것은 아니다. An electric vehicle charging system according to an embodiment of the present invention includes an electric vehicle power supply device (10, Electric Vehicle Supply Equipment, EVSE), a cable (50, cable), a connector (51, connector), an inlet (52, inlet), and a junction. A box (100, junction box), an electric vehicle charging controller (200, Electric Vehicle Charging Controller, EVCC), a battery (300), a battery management system (400, Battery Management System, BMS) and an integrated power control device (500, Electric Power) Control Unit, EPCU). A configuration included in the electric vehicle charging system may be divided into a configuration of the electric vehicle power supply device 10 side (EVSE side) and a configuration of the electric vehicle 20 side (EV side). The configuration of the electric vehicle power supply device 10 side may include an electric vehicle power supply device 10 , a cable 50 , and a connector 51 . The configuration on the electric vehicle side may include an inlet 52 , a junction box 100 , an electric vehicle charge controller 200 , a battery 300 , a battery management system 400 , and an integrated power control device 500 . This division is for convenience of description and is not limited thereto.
우선, 전기 자동차 전원공급장치(10)는 전기 자동차의 배터리(300)를 충전하기 위한 전력을 공급한다. 전기 자동차 전원공급장치(10)는 주전원(예를 들어, 전력 계통)으로부터 공급받은 전력을 전기 자동차(20)로 전달할 수 있다. 이때, 전기 자동차 전원공급장치(10)는 주전원으로부터 공급받은 전력을 감압하거나 변환하여 전기 자동차(20)에 공급할 수 있다. 일 실시예에 따르면, 전기 자동차 전원공급장치(10)가 AC 전력을 전기 자동차(20)에 공급하는 경우, 전기 자동차 전원공급장치(10)는 주전원으로부터 공급받은 AC 전력을 변압하여 전기 자동차(20)에 공급할 수 있다. 다른 실시예로, 전기 자동차 전원공급장치(10)가 DC 전력을 전기 자동차(20)에 공급하는 경우, 전기 자동차 전원공급장치(10)는 주전원으로부터 공급받은 AC 전력을 DC 전력으로 변환하여 전기 자동차(20)에 공급할 수 있다. 전력의 변압이나 변환을 위하여, 전기 자동차 전원공급장치(10)는 전력 변환 장치를 구비할 수 있다. 실시예에 따르면, 전기 자동차 전원공급장치(10)는 정류기(rectifier), 절연 변압기(isolation transformer), 인버터(inverter), 컨버터(converter) 등을 포함할 수 있다. First, the electric vehicle power supply device 10 supplies power for charging the battery 300 of the electric vehicle. The electric vehicle power supply device 10 may transmit power supplied from a main power source (eg, a power system) to the electric vehicle 20 . At this time, the electric vehicle power supply device 10 may reduce or convert the power supplied from the main power supply to the electric vehicle 20 . According to an embodiment, when the electric vehicle power supply device 10 supplies AC power to the electric vehicle 20 , the electric vehicle power supply apparatus 10 transforms the AC power supplied from the main power supply to the electric vehicle 20 . ) can be supplied. In another embodiment, when the electric vehicle power supply device 10 supplies DC power to the electric vehicle 20, the electric vehicle power supply device 10 converts AC power supplied from the main power source into DC power to convert the electric vehicle power to DC power. (20) can be supplied. In order to transform or convert power, the electric vehicle power supply device 10 may include a power conversion device. According to an embodiment, the electric vehicle power supply device 10 may include a rectifier, an isolation transformer, an inverter, a converter, and the like.
전기 자동차 전원공급장치(10)는 전기 자동차(20)의 배터리(300)를 충전하는데 필요한 다양한 제어 신호를 송수신하고 배터리 충전 프로세스를 제어하기 위한 충전 제어장치를 포함할 수 있다. 충전 제어장치는 전기 자동차(20)와 제어 신호를 송수신하며 배터리 충전 프로세스를 수행할 수 있다. 제어 신호는 충전 준비, 충전 종료, 근접 검출 등의 정보를 포함할 수 있다. 충전 제어장치는 전기 자동차(20)와 통신하기 위한 통신장치를 포함할 수 있다. 통신장치는 전력선 통신(power line communication, PLC), 계측 제어기 통신망(controller area network, CAN) 등을 이용하여 전기 자동차(20)와 통신할 수 있다. 통신장치는 충전 제어장치에 포함될 수도 있고, 별도로 분리되어 구성될 수도 있다. The electric vehicle power supply device 10 may include a charging control device for transmitting and receiving various control signals necessary for charging the battery 300 of the electric vehicle 20 and controlling the battery charging process. The charging control device may transmit and receive a control signal to and from the electric vehicle 20 and perform a battery charging process. The control signal may include information such as charging preparation, charging end, proximity detection, and the like. The charging control device may include a communication device for communicating with the electric vehicle 20 . The communication device may communicate with the electric vehicle 20 using power line communication (PLC), a controller area network (CAN), or the like. The communication device may be included in the charging control device or may be configured separately.
다음으로, 케이블(50), 커넥터(51) 및 인렛(52)은 전기 자동차 전원공급장치(10)와 전기 자동차를 전기적으로 연결한다. Next, the cable 50 , the connector 51 , and the inlet 52 electrically connect the electric vehicle power supply 10 and the electric vehicle.
케이블(50)은 전기 자동차 전원공급장치(10)와 전기 자동차(20) 사이에서 전력 및 신호를 전달한다. 케이블(50)은 전력을 전달하는 전력선, 충전에 관련한 제어 신호를 전달하는 신호선, 접지를 연결하는 접지선 등을 포함할 수 있다. The cable 50 transfers power and signals between the electric vehicle power supply 10 and the electric vehicle 20 . The cable 50 may include a power line transmitting power, a signal line transmitting a control signal related to charging, a ground line connecting the ground, and the like.
케이블(50)은 전기 자동차 전원공급장치(10)와 연결된다. 일 실시예에 따르면, 전기 자동차 전원공급장치(10)와 케이블(50)은 별도의 연결 구성 없이 직접 연결될 수 있다. 또 다른 실시예에 따르면, 전기 자동차 전원공급장치(10)와 케이블(50)은 전기 자동차 전원공급장치(10)에 구비된 소켓-아웃렛(socket-outlet)과 케이블(50)에 구비된 플러그(plug)의 결합을 통해 연결될 수 있다. The cable 50 is connected to the electric vehicle power supply 10 . According to an embodiment, the electric vehicle power supply device 10 and the cable 50 may be directly connected without a separate connection configuration. According to another embodiment, the electric vehicle power supply device 10 and the cable 50 are a socket-outlet provided in the electric vehicle power supply device 10 and a plug (socket-outlet) provided in the cable 50 . plug) can be connected.
커넥터(51)는 케이블(50)에 연결될 수 있으며, 인렛(52)은 전기 자동차(20)에 구비될 수 있다. 커넥터(51)와 인렛(52)을 묶어 커플러(coupler)로 명명할 수 있다. 커넥터(51)와 인렛(52)은 서로 결합 가능한 구조로서, 커넥터(51)와 인렛(52)의 결합을 통해 전기 자동차(20)와 전기 자동차 전원공급장치(10)가 전기적으로 연결될 수 있다. 인렛(52)과 커넥터(51)는 직접 연결될 수 있을 뿐만 아니라, 어댑터(adaptor)를 통해 연결될 수도 있다. The connector 51 may be connected to the cable 50 , and the inlet 52 may be provided in the electric vehicle 20 . The connector 51 and the inlet 52 may be bundled together to be referred to as a coupler. The connector 51 and the inlet 52 have a structure that can be coupled to each other, and through the coupling of the connector 51 and the inlet 52 , the electric vehicle 20 and the electric vehicle power supply device 10 may be electrically connected. The inlet 52 and the connector 51 may be directly connected, and may also be connected through an adapter.
커넥터(51)와 인렛(52)은 서로 결합될 수 있는 복수의 핀(pin)을 구비할 수 있다. 예를 들어, 복수의 핀 중 하나는 전기 자동차 전원공급장치(10)와 전기 자동차 충전 컨트롤러(200) 사이에 CP(Control Pilot) 신호가 전송되는 CP 포트용 핀일 수 있고, 다른 하나는 커넥터(51)와 인렛(52)의 근접 여부를 감지하는 PD(Proximity Detection) 포트용 핀일 수 있으며, 또 다른 하나는 전기 자동차 전원공급장치(10)(10)의 보호 접지와 연결되는 보호 접지(Protective Earth, PE) 포트용 핀일 수 있다. 복수의 핀 중 또 다른 하나는 주유구 플랩(flap)을 열기 위한 모터를 구동시키기 위한 핀일 수 있고, 또 다른 하나는 모터를 센싱하기 위한 핀일 수 있으며, 또 다른 하나는 온도 센싱을 위한 핀일 수 있고, 또 다른 하나는 엘이디 센싱을 위한 핀일 수 있고, 또 다른 하나는 캔(CAN) 통신을 위한 핀일 수 있다. 복수의 핀 중 하나는 전기 자동차(20) 내 충돌 감지 센서로부터 인가되는 전압 라인용 핀일 수 있고, 다른 하나는 전기 자동차(20)에 충전 전력을 공급하는 배터리 핀일 수 있으며, 또 다른 하나는 고전압 보호용 핀일 수 있다. 그러나, 핀의 개수 및 기능은 이로 제한되는 것은 아니며, 다양하게 변형될 수 있다.The connector 51 and the inlet 52 may include a plurality of pins that may be coupled to each other. For example, one of the plurality of pins may be a pin for a CP port through which a CP (Control Pilot) signal is transmitted between the electric vehicle power supply device 10 and the electric vehicle charge controller 200 , and the other is the connector 51 . ) and a pin for a PD (Proximity Detection) port that detects whether the inlet 52 is in proximity, and another one is a protective earth connected to the protective ground of the electric vehicle power supply 10 and 10. PE) may be a pin for the port. Another one of the plurality of pins may be a pin for driving a motor for opening a fuel flap flap, another one may be a pin for sensing the motor, and another one may be a pin for sensing a temperature, Another one may be a pin for LED sensing, and another one may be a pin for CAN communication. One of the plurality of pins may be a pin for a voltage line applied from a collision detection sensor in the electric vehicle 20 , the other may be a battery pin for supplying charging power to the electric vehicle 20 , and the other is for high voltage protection It can be a pin. However, the number and function of the pins are not limited thereto, and may be variously modified.
정션 박스(100)는 전기 자동차 전원공급장치(10)로부터 공급된 전력을 배터리(300)에 전달한다. 전기 자동차 전원공급장치(10)로부터 공급되는 전력은 고전압으로서 이를 배터리(300)에 직접 공급하게 되면 돌입 전류로 인하여 배터리(300)가 손상될 수 있다. 정션 박스(100)는 돌입 전류에 의한 배터리 손상을 방지하기 위하여 적어도 하나의 릴레이(relay)를 포함할 수 있다. The junction box 100 transmits power supplied from the electric vehicle power supply device 10 to the battery 300 . The power supplied from the electric vehicle power supply device 10 is a high voltage, and when it is directly supplied to the battery 300 , the battery 300 may be damaged due to the inrush current. The junction box 100 may include at least one relay to prevent damage to the battery due to inrush current.
전기 자동차 충전 컨트롤러(200)는 전기 자동차(20)의 배터리 충전에 관한 프로세스의 일부 또는 전부를 제어할 수 있다. 전기 자동차 충전 컨트롤러(200)는 전기 자동차 통신 컨트롤러(Electric Vehicle Communication Controller, EVCC)로 명명될 수도 있다. The electric vehicle charge controller 200 may control part or all of a process related to charging a battery of the electric vehicle 20 . The electric vehicle charge controller 200 may be referred to as an electric vehicle communication controller (EVCC).
전기 자동차 충전 컨트롤러(200)는 전기 자동차 전원공급장치(10)와 통신할 수 있다. 전기 자동차 충전 컨트롤러(200)는 전기 자동차 전원공급장치(10)로부터 배터리 충전 프로세스에 관한 제어 명령을 송수신할 수 있다. 일 실시예에 따르면, 전기 자동차 충전 컨트롤러(200)는 전기 자동차 전원공급장치(10)에 구비된 충전 제어 장치와 통신할 수 있으며, 충전 제어 장치로부터 배터리 충전 프로세스에 관한 제어 명령을 송수신할 수 있다. The electric vehicle charge controller 200 may communicate with the electric vehicle power supply device 10 . The electric vehicle charge controller 200 may transmit/receive a control command related to a battery charging process from the electric vehicle power supply device 10 . According to an embodiment, the electric vehicle charge controller 200 may communicate with a charge control device provided in the electric vehicle power supply device 10 , and may transmit/receive control commands related to a battery charging process from the charge control device. .
전기 자동차 충전 컨트롤러(200)는 전기 자동차(20)와 통신할 수 있다. 전기 자동차 충전 컨트롤러(200)는 전기 자동차(20)로부터 배터리 충전 프로세스에 관한 제어 명령을 수신할 수 있다. 일 실시예에 따르면, 전기 자동차 충전 컨트롤러(200)는 전기 자동차(20)의 배터리 관리 시스템(400)과 통신할 수 있으며, 배터리 관리 시스템(400)으로부터 배터리 충전 프로세스에 관한 제어 명령을 수신할 수도 있다. 또 다른 실시예에 따르면, 전기 자동차 충전 컨트롤러(200)는 전기 자동차(20)의 통합 전력 제어 장치(500)와 통신할 수 있으며, 통합 전력 제어 장치(500)로부터 배터리 충전 프로세스에 관한 제어 명령을 수신할 수 있다. The electric vehicle charge controller 200 may communicate with the electric vehicle 20 . The electric vehicle charge controller 200 may receive a control command related to a battery charging process from the electric vehicle 20 . According to an embodiment, the electric vehicle charge controller 200 may communicate with the battery management system 400 of the electric vehicle 20 , and may receive a control command related to a battery charging process from the battery management system 400 . there is. According to another embodiment, the electric vehicle charge controller 200 may communicate with the integrated power control device 500 of the electric vehicle 20 , and receive a control command regarding the battery charging process from the integrated power control device 500 . can receive
전기 자동차 충전 컨트롤러(200)는 상기의 기능을 수행하기 위하여 마이크로 컨트롤러(micro controller unit, MCU), 통신 장치, 릴레이 장치 등을 구비할 수 있다. The electric vehicle charge controller 200 may include a micro controller unit (MCU), a communication device, a relay device, and the like to perform the above function.
배터리 관리 시스템(400)은 전기 자동차(20) 내 배터리(300)의 에너지 상태를 관리한다. 배터리 관리 시스템(400)은 배터리(300)의 사용 현황을 모니터링하고 효율적인 에너지 분배를 위한 제어를 수행할 수 있다. 예를 들어, 배터리 관리 시스템(400)은 에너지의 효율적인 사용을 위해 전기 자동차(20)의 가용 전력 상황을 차량 통합 제어기 및 인버터 등에 전송할 수 있다. 다른 예로, 배터리 관리 시스템(400)은 배터리(300)의 각 셀 당 전압 편차를 보정하거나 배터리(300)를 적정 온도로 유지하기 위하여 냉각팬을 구동할 수 있다. The battery management system 400 manages the energy state of the battery 300 in the electric vehicle 20 . The battery management system 400 may monitor the usage status of the battery 300 and perform control for efficient energy distribution. For example, the battery management system 400 may transmit the available power status of the electric vehicle 20 to the vehicle integrated controller and inverter for efficient use of energy. As another example, the battery management system 400 may drive a cooling fan to correct a voltage deviation for each cell of the battery 300 or to maintain the battery 300 at an appropriate temperature.
통합 전력 제어 장치(500)는 모터의 제어를 포함하여 전기 자동차의 전반적인 움직임을 제어하는 장치이다. 통합 전력 제어 장치(500)는 모터 제어 장치(Motor Control Unit, MCU), 저전압 직류 변환 장치(Low Voltage DC-DC Converter, LDC), 차량 통합 제어기(Vehicle Control Unit, VCU)를 포함할 수 있다. 모터 제어 장치는 인버터(Inverter)로 명명될 수 있다. 모터 제어 장치는 배터리로부터 직류 전원을 수신하여 3상 교류 전원으로 변환시킬 수 있으며, 차량 통합 제어기의 명령에 따라 모터를 제어할 수 있다. 저전압 직류 변환 장치는 고전압 전원을 저전압(예를 들어, 12[V]) 전원으로 변환하여 전기 자동차(20)의 각 부품에 공급할 수 있다. 차량 통합 제어기는 전기 자동차(20) 전반에 관한 시스템의 성능을 유지하는 역할을 한다. 차량 통합 제어기는 모터 제어 장치, 배터리 관리 시스템(400) 등 다양한 장치들과 함께 충전, 주행 등 다양한 기능을 수행할 수 있다. The integrated power control device 500 is a device for controlling the overall movement of the electric vehicle including the control of the motor. The integrated power control device 500 may include a motor control unit (MCU), a low voltage DC-DC converter (LDC), and a vehicle control unit (VCU). The motor control device may be referred to as an inverter. The motor control device may receive DC power from the battery and convert it into three-phase AC power, and may control the motor according to a command from the vehicle integrated controller. The low voltage DC converter may convert high voltage power into low voltage (eg, 12 [V]) power and supply it to each component of the electric vehicle 20 . The vehicle integrated controller serves to maintain the performance of the system with respect to the electric vehicle 20 as a whole. The vehicle integrated controller may perform various functions such as charging and driving together with various devices such as the motor control device and the battery management system 400 .
도 3은 본 발명의 일 실시예에 따른 전기 자동차 충전 시스템의 회로 구성을 나타낸 도면이다. 3 is a diagram illustrating a circuit configuration of an electric vehicle charging system according to an embodiment of the present invention.
도 3을 참조하면, 본 발명의 실시예에 따른 전기 자동차 충전 시스템은 전기 자동차 전원공급장치(10), 커넥터(51), 인렛(52) 및 전기 자동차(20)를 포함한다. Referring to FIG. 3 , an electric vehicle charging system according to an embodiment of the present invention includes an electric vehicle power supply device 10 , a connector 51 , an inlet 52 , and an electric vehicle 20 .
우선, 전기 자동차 전원공급장치(10)는 과부하 차단기(RCBO1, RCBO2), 전력변환장치(PCS), 절연 감시 장치(CT), 통신 장치(COM1), 복수의 전력선(DC+, DC-), 복수의 신호선(C1 내지 C6) 및 접지선(FE)을 포함할 수 있다. 복수의 전력선(DC+, DC-), 복수의 신호선(C1 내지 C6) 및 접지선(FE)은 커넥터(51)와 인렛(52)의 결합을 통해 전기 자동차(20)로 연장될 수 있다. First, the electric vehicle power supply device 10 includes an overload circuit breaker (RCBO1, RCBO2), a power conversion device (PCS), an insulation monitoring device (CT), a communication device (COM1), a plurality of power lines (DC+, DC-), a plurality of may include signal lines C1 to C6 and a ground line FE. The plurality of power lines DC+ and DC-, the plurality of signal lines C1 to C6 and the ground line FE may extend to the electric vehicle 20 through coupling of the connector 51 and the inlet 52 .
전기 자동차 전원공급장치(10)는 전력계통으로부터 교류 전력을 수신할 수 있다. 수신된 교류 전력은 과부하 차단기(RCBO1, RCBO2)를 통과할 수 있다. 과부하 차단기(RCBO1, RCBO2)는 전기 자동차 전원공급장치(10)에 과부하 발생 시 교류 전력의 수신을 차단하는 역할을 수행할 수 있다. The electric vehicle power supply device 10 may receive AC power from a power system. The received AC power may pass through the overload circuit breaker (RCBO1, RCBO2). The overload circuit breakers RCBO1 and RCBO2 may serve to block the reception of AC power when an overload occurs in the electric vehicle power supply 10 .
과부하 차단기(RCBO1)를 통과한 교류 전력은 전력변환장치(PCS)에 입력되며, 직류 전력으로 변환된다. 전력변환장치(PCS)는 2개의 전력선(DC+, DC-)을 통해 전기 자동차(20)로 직류 전력을 공급한다. 2개의 전력선(DC+, DC-) 중 제1 전력선(DC+)에는 전기 자동차(20)로부터의 역전압을 차단하기 위한 다이오드(a)가 배치될 수 있고, 제2 전력선(DC-)에는 전기 자동차(20)로부터 인가된 과전압에 의한 손상을 막기 위한 퓨즈(u)가 배치될 수 있다. AC power passing through the overload circuit breaker (RCBO1) is input to the power conversion device (PCS), and is converted into DC power. The power converter (PCS) supplies DC power to the electric vehicle 20 through two power lines (DC+, DC-). A diode (a) for blocking the reverse voltage from the electric vehicle 20 may be disposed in the first power line (DC+) of the two power lines (DC+, DC-), and the electric vehicle in the second power line (DC-) A fuse u may be disposed to prevent damage due to overvoltage applied from (20).
절연 감시 장치(CT)는 2개의 전력선(DC+, DC-)과 접지 사이에 배치될 수 있다. 절연 감시 장치(CT)는 2개의 전력선(DC+, DC-)의 절연 상태를 감시할 수 있다. The insulation monitoring device (CT) may be disposed between the two power lines (DC+, DC-) and the ground. The insulation monitoring device CT may monitor the insulation state of the two power lines DC+ and DC-.
제1 신호선(C1) 및 제2 신호선(C2)은 전기 자동차 전원공급장치(10)의 시작/정지 상태를 나타내는 신호 라인을 의미할 수 있다. 제1 신호선(C1) 및 제2 신호선(C2)은 전기 자동차 전원공급장치(10)에서 전기 자동차(20)로 충전 준비(ready to charge) 및 충전 종료(end of charge)와 같은 충전 시퀀스 신호(charge sequence signal)를 전송할 수 있다. 이를 위해, 제1 신호선(C1)의 일단에는 12[V] 크기의 전원이 연결되고, 제2 신호선(C2)의 일단에는 접지가 연결될 수 있다. 그리고, 제1 신호선(C1) 및 제2 신호선(C2)에 2개의 스위치 장치(d1, d2)가 각각 배치될 수 있다. 전기 자동차 전원공급장치(10)는 2개의 스위치 장치(d1, d2)는 온오프 동작을 통해 충전 시퀀스 신호를 전기 자동차로 전송할 수 있다. The first signal line C1 and the second signal line C2 may mean signal lines indicating a start/stop state of the electric vehicle power supply device 10 . The first signal line C1 and the second signal line C2 are the charging sequence signals such as ready to charge and end of charge from the electric vehicle power supply 10 to the electric vehicle 20 ( charge sequence signal) can be transmitted. To this end, a power of 12 [V] may be connected to one end of the first signal line C1 , and a ground may be connected to one end of the second signal line C2 . In addition, the two switch devices d1 and d2 may be respectively disposed on the first signal line C1 and the second signal line C2 . In the electric vehicle power supply device 10 , the two switch devices d1 and d2 may transmit a charging sequence signal to the electric vehicle through an on-off operation.
제3 신호선(C3)은 커넥터(51)와 인렛(52)의 연결 상태를 나타내는 신호 라인을 의미할 수 있다. 제3 신호선(C3)은 커넥터(51)와 인렛(52)의 연결 상태에 따른 근접 신호를 전송할 수 있다. 제3 신호선(C3)의 일단은 제2 신호선(C2)과 연결될 수 있다.The third signal line C3 may mean a signal line indicating a connection state between the connector 51 and the inlet 52 . The third signal line C3 may transmit a proximity signal according to a connection state between the connector 51 and the inlet 52 . One end of the third signal line C3 may be connected to the second signal line C2 .
제4 신호선(C4)은 전기 자동차(20)에 대한 충전 허가를 승인하는 신호 라인을 의미할 수 있다. 제4 신호선(C4)은 전기 자동차(20)에서 전기 자동차 전원공급장치(10)로 충전 개시 또는 충전 정지와 같은 제어 신호를 전송할 수 있다. 제4 신호선(C4)은 신호 감지 장치(j)와 연결되며, 신호 감지 장치(j)는 제4 신호선(C4)을 통해 전송된 제어 신호를 감지할 수 있다. The fourth signal line C4 may mean a signal line for approving charging permission for the electric vehicle 20 . The fourth signal line C4 may transmit a control signal such as charging start or charging stop from the electric vehicle 20 to the electric vehicle power supply 10 . The fourth signal line C4 is connected to the signal detecting device j, and the signal detecting device j may detect a control signal transmitted through the fourth signal line C4.
제5 신호선(C5) 및 제6 신호선(C6)은 데이터 통신을 위한 신호 라인을 의미할 수 있다. 제5 신호선(C5) 및 제6 신호선(C6)은 통신 장치(COM1)에 연결될 수 있다. The fifth signal line C5 and the sixth signal line C6 may mean signal lines for data communication. The fifth signal line C5 and the sixth signal line C6 may be connected to the communication device COM1 .
다음으로, 전기 자동차는 정션 박스(100), 전기 자동차 충전 컨트롤러(200) 및 배터리(300)를 포함할 수 있다. 전기 자동차(20)는 복수의 전력선(DC+, DC-), 복수의 신호선(C1 내지 C6) 및 접지선(FE)을 포함할 수 있다.Next, the electric vehicle may include the junction box 100 , the electric vehicle charge controller 200 , and the battery 300 . The electric vehicle 20 may include a plurality of power lines DC+ and DC-, a plurality of signal lines C1 to C6 and a ground line FE.
정션 박스(100)는 2개의 전력선(DC+, DC-)과 연결될 수 있다. 정션 박스(100)는 2개의 전력선(DC+, DC-) 각각에 배치된 2개의 접촉기(contactor, c)를 포함할 수 있다. 2개의 접촉기는 전기 자동차 충전 컨트롤러(200)에 의해 온오프될 수 있다. 정션 박스(100)는 2개의 전력선(DC+, DC-)을 통해 배터리(300)와 연결될 수 있으며, 전기 자동차 전원공급장치(10)로부터 수신한 직류 전력을 배터리(300)에 전달하여 충전을 수행할 수 있다. The junction box 100 may be connected to two power lines (DC+, DC-). The junction box 100 may include two contactors c disposed on each of the two power lines DC+ and DC-. The two contactors may be turned on and off by the electric vehicle charge controller 200 . The junction box 100 may be connected to the battery 300 through two power lines (DC+, DC-), and transfers the DC power received from the electric vehicle power supply 10 to the battery 300 to perform charging. can do.
전기 자동차 충전 컨트롤러(200)는 릴레이 장치(e), 복수의 신호 감지 장치(f, g, h), 스위치(k) 및 통신 장치(COM2)를 포함할 수 있다. 전기 자동차 충전 컨트롤러(200)는 복수의 신호선(C1 내지 C6) 및 접지선(FE)과 연결될 수 있다. The electric vehicle charge controller 200 may include a relay device (e), a plurality of signal detection devices (f, g, h), a switch (k), and a communication device (COM2). The electric vehicle charge controller 200 may be connected to a plurality of signal lines C1 to C6 and a ground line FE.
릴레이 장치(e)는 제1 신호선(C1) 및 제2 신호선(C2) 사이에 배치될 수 있다. 구체적으로, 릴레이 장치(e)의 일단은 제2 신호선(C2)에 연결되고, 타단은 제1 신호선(C1)에 연결될 수 있다. 이때, 릴레이 장치(e)의 타단과 제1 신호선(C1) 사이에는 2개의 접촉기(c)가 연결될 수 있다. 릴레이 장치(e)는 개폐동작을 통해 2개의 접촉기(c)의 개폐를 제어할 수 있다. The relay device (e) may be disposed between the first signal line (C1) and the second signal line (C2). Specifically, one end of the relay device e may be connected to the second signal line C2 , and the other end may be connected to the first signal line C1 . In this case, two contactors c may be connected between the other end of the relay device e and the first signal line C1 . The relay device (e) may control the opening and closing of the two contactors (c) through an opening/closing operation.
제1 신호 감지 장치(f) 및 제2 신호 감지 장치(g)는 제1 신호선(C1) 및 제2 신호선(C2)에 각각 연결된다. 2개의 신호 감지 장치(f, g)는 전기 자동차 전원공급장치(10)에 구비된 2개 스위치 장치(d1, d2)의 턴온시 발생하는 신호를 감지할 수 있다. 2개의 신호 감지 장치(f, g)는 감지된 신호를 전기 자동차 충전 컨트롤러(200)에 포함된 마이크로 컨트롤러나 차량 통합 제어기 등으로 전송할 수 있다. The first signal detecting device f and the second signal detecting device g are respectively connected to the first signal line C1 and the second signal line C2. The two signal sensing devices f and g may detect a signal generated when the two switch devices d1 and d2 provided in the electric vehicle power supply device 10 are turned on. The two signal sensing devices f and g may transmit the sensed signal to a microcontroller or an integrated vehicle controller included in the electric vehicle charge controller 200 .
제3 신호 감지 장치(h)는 제3 신호선(C3)과 연결된다. 제3 신호 감지 장치(h)는 커넥터(51)와 인렛(52)의 연결 상태를 감지하는 신호를 검출할 수 있다. The third signal sensing device h is connected to the third signal line C3. The third signal detecting device h may detect a signal for detecting a connection state between the connector 51 and the inlet 52 .
스위치(k)는 제4 신호선(C4)에 연결된다. 스위치(k)가 턴온됨으로써 전기 자동차 전원공급장치(10)로 충전 시작을 알리는 신호가 전송될 수 있다. The switch k is connected to the fourth signal line C4. When the switch k is turned on, a signal indicating the start of charging may be transmitted to the electric vehicle power supply 10 .
통신 장치(COM2)는 제5 신호선(C5) 및 제6 신호선(C6)과 연결된다. 통신장치(COM2)는 제5 신호선(C5) 및 제6 신호선(C6)을 통해 통신 장치(COM1)와 통신할 수 있다. The communication device COM2 is connected to the fifth signal line C5 and the sixth signal line C6 . The communication device COM2 may communicate with the communication device COM1 through the fifth signal line C5 and the sixth signal line C6 .
도 4는 도 3의 제4 신호선 및 신호 감지 장치 사이의 회로 구성의 일 실시예를 나타낸 도면이다. 도 5는 도 3의 제4 신호선 및 신호 감지 장치 사이의 회로 구성의 다른 실시예를 나타낸 도면이다.FIG. 4 is a diagram illustrating an embodiment of a circuit configuration between a fourth signal line of FIG. 3 and a signal sensing device. 5 is a diagram showing another embodiment of the circuit configuration between the fourth signal line of FIG. 3 and the signal sensing device.
도 4는 전기 자동차 표준 충전 규격인 CHAdeMO 0.9에서의 회로 구성일 수 있다. 도 4를 참조하면, 전기 자동차 전원공급장치(10)에서 제4 신호선(C4)과 연결된 신호 감지 장치(j)는 옵토 커플러(optocoupler)와 제1 저항(RA)을 포함할 수 있다. 옵토 커플러의 제1단에는 12[V] 크기의 전압이 연결될 수 있고, 제2단에는 제1 저항이 연결될 수 있다. 제4 신호선(C4)은 커플러의 핀(6)을 통해 전기 자동차 충전 컨트롤러(200)의 스위치 장치(k)와 연결될 수 있다. 이때, 제1 저항(RA)의 크기는 264[Ω] 이하이어야 하고, 제4 신호선(C4)에 흐르는 전류는 50[mA] 이하이어야 한다. 4 may be a circuit configuration in CHAdeMO 0.9, which is a standard charging standard for an electric vehicle. Referring to FIG. 4 , the signal sensing device j connected to the fourth signal line C4 in the electric vehicle power supply 10 may include an optocoupler and a first resistor RA. A voltage of 12 [V] may be connected to a first end of the optocoupler, and a first resistor may be connected to a second end of the optocoupler. The fourth signal line C4 may be connected to the switch device k of the electric vehicle charge controller 200 through the pin 6 of the coupler. In this case, the size of the first resistor RA should be 264 [Ω] or less, and the current flowing through the fourth signal line C4 should be 50 [mA] or less.
도 5는 전기 자동차 표준 충전 규격인 CHAdeMO 1.0에서의 회로 구성일 수 있다. 도 5를 참조하면, 전기 자동차 전원공급장치(10)에서 제4 신호선(C4)과 연결된 신호 감지 장치(j)는 옵토 커플러와 제1 저항을 포함할 수 있다. 옵토 커플러의 제1단에는 12[V] 크기의 전압이 연결될 수 있고, 제2단에는 제1 저항이 연결될 수 있다. 제4 신호선(C4)은 커플러의 핀(6)을 통해 전기 자동차 충전 컨트롤러(200)와 연결될 수 있다. 전기 자동차 충전 컨트롤러(200)는 제4 신호선(C4)에 저항(RB)과 스위치 장치(k)를 배치할 수 있다. 이때, 제1 저항(RA)은 1k[Ω], 저항(RB)은 200[Ω]이어야 하고, 제4 신호선(C4)에 흐르는 전류는 11[mA] 이하이어야 한다. 5 may be a circuit configuration in CHAdeMO 1.0, which is a standard charging standard for an electric vehicle. Referring to FIG. 5 , the signal sensing device j connected to the fourth signal line C4 in the electric vehicle power supply 10 may include an optocoupler and a first resistor. A voltage of 12 [V] may be connected to a first end of the optocoupler, and a first resistor may be connected to a second end of the optocoupler. The fourth signal line C4 may be connected to the electric vehicle charge controller 200 through the pin 6 of the coupler. The electric vehicle charge controller 200 may arrange a resistor RB and a switch device k on the fourth signal line C4 . At this time, the first resistor RA should be 1 k[Ω], the resistor RB should be 200 [Ω], and the current flowing through the fourth signal line C4 should be 11 [mA] or less.
이와 같이, 도 4와 도 5에서 설명한 회로 구성의 경우, 제4 신호선(C4)에서 허용하는 최대 전류값이 서로 상이하다. 따라서, 전기 자동차 표준 규격인 CHAdeMO 0.9와 CHAdeMO 1.0에서 전기 자동차 충전 컨트롤러(200)는 서로 호환되지 않는다. 전기 자동차 표준 규격인 CHAdeMO 0.9와 CHAdeMO 1.0에서 전기 자동차는 서로 다른 전기 자동차 충전 컨트롤러(200)를 구비해야 배터리 충전이 가능하게 된다. As described above, in the case of the circuit configuration described with reference to FIGS. 4 and 5 , the maximum current allowed by the fourth signal line C4 is different from each other. Accordingly, the electric vehicle charge controller 200 is not compatible with each other in CHAdeMO 0.9 and CHAdeMO 1.0, which are electric vehicle standard specifications. In CHAdeMO 0.9 and CHAdeMO 1.0, which are the electric vehicle standard specifications, the electric vehicle needs to have different electric vehicle charge controllers 200 to be able to charge the battery.
도 6은 본 발명의 실시예에 따른 전기 자동차 충전 컨트롤러를 나타낸 구성도이다. 6 is a block diagram illustrating an electric vehicle charge controller according to an embodiment of the present invention.
도 6을 참조하면, 본 발명의 실시예에 따른 전기 자동차 충전 컨트롤러(200)는 스위치 장치(210) 및 제어부(220)를 포함하고, 스위치 장치(210)는 제1 신호부(211) 및 제2 신호부(212)를 포함한다. Referring to FIG. 6 , the electric vehicle charge controller 200 according to an embodiment of the present invention includes a switch device 210 and a control unit 220 , and the switch device 210 includes a first signal unit 211 and a second signal unit 211 . It includes two signal units 212 .
스위치 장치(210)는 전기 자동차 전원공급장치의 신호 감지 장치와 신호선을 통해 연결된다. 스위치 장치(210)는 충전 허가 신호를 생성하여 신호 감지 장치로 전송한다. The switch device 210 is connected to a signal sensing device of the electric vehicle power supply device through a signal line. The switch device 210 generates a charging permission signal and transmits it to the signal detection device.
스위치 장치(210)는 제1 신호부(211) 및 제2 신호부(212)를 포함한다. The switch device 210 includes a first signal unit 211 and a second signal unit 212 .
제1 신호부(211)는 제1 스위칭 소자를 포함한다. 제1 신호부(211)는 제어부(220)가 출력하는 복수의 스위칭 신호 중 제1 스위칭 신호에 기초하여 제1 스위칭 소자를 턴온함으로써 충전 허가 신호를 생성한다. The first signal unit 211 includes a first switching element. The first signal unit 211 generates a charging permission signal by turning on the first switching element based on a first switching signal among the plurality of switching signals output by the control unit 220 .
제2 신호부(212)는 제2 스위칭 소자를 포함한다. 제2 신호부(212)는 제어부(220)가 출력하는 복수의 스위칭 신호 중 제2 스위칭 신호에 기초하여 제2 스위칭 소자를 턴온함으로써 충전 허가 신호를 생성한다. The second signal unit 212 includes a second switching element. The second signal unit 212 generates a charging permission signal by turning on the second switching element based on a second switching signal among the plurality of switching signals output by the control unit 220 .
제1 신호부(211)와 제2 신호부(212)는 선택적으로 동작한다. 즉, 제1 신호부(211)가 충전 허가 신호를 생성하면, 제2 신호부(212)는 충전 허가 신호를 생성하지 않는다. 반대로, 제1 신호부(211)가 충전 허가 신호를 생성하지 않으면, 제2 신호부(212)는 충전 허가 신호를 생성한다. 다시 말하면, 제1 스위칭 신호에 의해 제1 스위칭 소자가 턴온되면, 제2 스위칭 신호에 의해 제2 스위칭 소자가 턴오프된다. 그리고, 제1 스위칭 신호에 의해 제1 스위칭 소자가 턴오프되면, 제2 스위칭 신호에 의해 제2 스위칭 소자가 턴온된다. The first signal unit 211 and the second signal unit 212 selectively operate. That is, when the first signal unit 211 generates the charging permission signal, the second signal unit 212 does not generate the charging permission signal. Conversely, when the first signal unit 211 does not generate the charging permit signal, the second signal unit 212 generates the charging permit signal. In other words, when the first switching element is turned on by the first switching signal, the second switching element is turned off by the second switching signal. And, when the first switching element is turned off by the first switching signal, the second switching element is turned on by the second switching signal.
제어부(220)는 복수의 스위칭 신호를 통해 스위치 장치(210)를 제어한다. 제어부(220)는 전기 자동차 전원공급장치에 포함된 제1 저항의 저항값에 따라 스위치 장치(210)의 스위칭 소자를 제어한다. The controller 220 controls the switch device 210 through a plurality of switching signals. The controller 220 controls the switching element of the switch device 210 according to the resistance value of the first resistor included in the electric vehicle power supply device.
제어부(220)는 제1 저항의 저항값이 제1 기준값보다 크고 제2 기준값보다 작으면, 제1 스위칭 신호를 통해 제1 스위칭 소자를 턴온하고, 제2 스위칭 신호를 통해 제2 스위칭 소자를 턴오프하여 제1 신호부(211)가 충전 허가 신호를 생성하도록 제어할 수 있다. When the resistance value of the first resistor is greater than the first reference value and less than the second reference value, the controller 220 turns on the first switching element through the first switching signal and turns on the second switching element through the second switching signal It may be turned off to control the first signal unit 211 to generate a charging permission signal.
제어부(220)는 제1 저항의 저항값이 제2 기준값보다 크고 제3 기준값보다 작으면, 제1 스위칭 신호를 통해 제1 스위칭 소자를 턴오프하고, 제2 스위칭 신호를 통해 제2 스위칭 소자를 턴온하여 제2 신호부(212)가 충전 허가 신호를 생성하도록 제어할 수 있다. When the resistance value of the first resistor is greater than the second reference value and less than the third reference value, the controller 220 turns off the first switching element through the first switching signal, and turns off the second switching element through the second switching signal It is turned on to control the second signal unit 212 to generate a charging permission signal.
제어부(220)는 제1 신호부(211) 또는 제2 신호부(212)의 노드 전압을 수신하고, 노드 전압의 크기에 따라 전기 자동차 전원공급장치와 전기 자동차 사이의 전기적 연결 상태를 검출할 수 있다. The control unit 220 may receive the node voltage of the first signal unit 211 or the second signal unit 212 and detect an electrical connection state between the electric vehicle power supply device and the electric vehicle according to the magnitude of the node voltage. there is.
일 실시예로, 제어부(220)는 노드 전압의 크기가 제1 전압 범위에 포함되면, 전기적 연결 상태를 개방 상태로 판단할 수 있다. 일 실시예로, 제어부(220)는 노드 전압의 크기가 제1 전압 범위보다 큰 제2 전압 범위 또는 제4 전압 범위에 포함되면, 전기적 연결 상태를 접촉 불량으로 판단할 수 있다. 일 실시예로, 제어부(220)는 노드 전압의 크기가 제2 전압 범위와 제4 전압 범위 사이의 제3 전압 범위에 포함되면, 전기적 연결 상태를 정상 상태로 판단할 수 있다. 일 실시예로, 제어부(220)는 노드 전압의 크기가 제4 전압 범위보다 큰 제5 전압 범위에 포함되면, 전기적 연결 상태를 과전압 상태로 판단할 수 있다. As an embodiment, when the magnitude of the node voltage is included in the first voltage range, the controller 220 may determine the electrical connection state as an open state. As an embodiment, when the magnitude of the node voltage is included in the second voltage range or the fourth voltage range larger than the first voltage range, the controller 220 may determine the electrical connection state as a contact failure. As an embodiment, when the level of the node voltage is included in the third voltage range between the second voltage range and the fourth voltage range, the controller 220 may determine the electrical connection state as a normal state. As an embodiment, when the magnitude of the node voltage is included in the fifth voltage range greater than the fourth voltage range, the controller 220 may determine the electrical connection state as an overvoltage state.
제어부(220)는 전기적 연결 상태의 검출 결과를 전기 자동차 전원공급장치로 전송할 수 있다. 제어부(220)는 전기적 연결 상태의 검출 결과를 전기 자동차 내 배터리 관리 시스템, 통합 전력 관리 장치 등으로 전송할 수 있다. 다른 예로, 제어부(220)는 전기적 연결 상태의 검출 결과를 사용자 단말로 전송할 수도 있다. The controller 220 may transmit the detection result of the electrical connection state to the electric vehicle power supply device. The controller 220 may transmit the detection result of the electrical connection state to a battery management system in the electric vehicle, an integrated power management device, and the like. As another example, the controller 220 may transmit the detection result of the electrical connection state to the user terminal.
제어부(220)는 마이크로 컨트롤러(MCU)로 구현될 수 있다. The controller 220 may be implemented as a microcontroller (MCU).
도 7은 본 발명의 실시예에 따른 전기 자동차 충전 컨트롤러의 회로도를 나타낸 도면이다. 7 is a diagram illustrating a circuit diagram of an electric vehicle charge controller according to an embodiment of the present invention.
본 발명의 실시예에 따른 전기 자동차 충전 컨트롤러(200)는 스위치 장치(210) 및 제어부(220)를 포함하며, 스위치 장치(210)는 제1 신호부(211) 및 제2 신호부(212)를 포함한다. The electric vehicle charge controller 200 according to the embodiment of the present invention includes a switch device 210 and a controller 220 , and the switch device 210 includes a first signal unit 211 and a second signal unit 212 . includes
제1 신호부(211)는 제1 스위칭 소자(Q1), 제2 저항(RB), 제3 저항(RC), 제4 저항(RD) 및 제1 다이오드(D1)를 포함한다. The first signal unit 211 includes a first switching element Q1 , a second resistor RB, a third resistor RC, a fourth resistor RD, and a first diode D1 .
제1 스위칭 소자(Q1)는 제1단이 전기 자동차 전원공급장치(10)의 제1 저항(RA)과 연결된다. 제1 스위칭 소자(Q1)는 제2단이 제2 저항(RB)의 제1단에 연결된다. 제1 스위칭 소자(Q1)는 제3단이 제어부(220)와 연결된다. 제1 스위칭 소자(Q1)는 양극성 접합 트랜지스터(Bipolar Junction Transistor, BJT)일 수 있다. 제1 스위칭 소자(Q1)는 컬렉터(collector) 단자, 이미터(emitter) 단자 및 베이스(base) 단자를 포함할 수 있다. 제1 스위칭 소자(Q1)의 컬렉터 단자는 제1 저항(RA)과 연결될 수 있다. 제1 스위칭 소자(Q1)의 이미터 단자는 제2 저항(RB)의 제1단에 연결될 수 있다. 제2 스위칭 소자(Q2)의 베이스 단자는 제어부(220)에 연결될 수 있다.The first switching element Q1 has a first terminal connected to the first resistor RA of the electric vehicle power supply 10 . The second end of the first switching element Q1 is connected to the first end of the second resistor RB. The third terminal of the first switching element Q1 is connected to the controller 220 . The first switching element Q1 may be a bipolar junction transistor (BJT). The first switching element Q1 may include a collector terminal, an emitter terminal, and a base terminal. The collector terminal of the first switching element Q1 may be connected to the first resistor RA. An emitter terminal of the first switching element Q1 may be connected to a first terminal of the second resistor RB. The base terminal of the second switching element Q2 may be connected to the controller 220 .
제2 저항(RB)은 제1단이 제1 스위칭 소자(Q1)의 제2단과 연결된다. 제2 저항(RB)은 제2단이 접지 단자와 연결된다. 제2 저항(RB)은 제2단이 제3 저항(RC)의 제1단에 연결될 수 있다. A first end of the second resistor RB is connected to a second end of the first switching element Q1. A second end of the second resistor RB is connected to a ground terminal. A second end of the second resistor RB may be connected to a first end of the third resistor RC.
제3 저항(RC)은 제1단이 제2 저항(RB)의 제2단과 연결된다. 제3 저항(RC)은 제1단이 접지 단자와 연결될 수 있다. 제3 저항(RC)은 제2단이 제4 저항(RD)의 제1단에 연결될 수 있다. 제3 저항(RC)은 제2단이 제1 다이오드(D1)의 캐소드 단자에 연결될 수 있다. 제3 저항(RC)은 제2단이 제어부(220)와 연결될 수 있다. A first end of the third resistor RC is connected to a second end of the second resistor RB. A first end of the third resistor RC may be connected to a ground terminal. A second end of the third resistor RC may be connected to a first end of the fourth resistor RD. A second end of the third resistor RC may be connected to the cathode terminal of the first diode D1. A second end of the third resistor RC may be connected to the controller 220 .
제4 저항(RD)은 제1단이 제3 저항(RC)의 제2단과 연결된다. 제4 저항(RD)은 제1단이 제1 다이오드(D1)의 캐소드 단자에 연결될 수 있다. 제4 저항(RD)은 제1단이 제어부(220)와 연결될 수 있다. 제4 저항(RD)은 제2단이 접지 단자와 연결된다. A first end of the fourth resistor RD is connected to a second end of the third resistor RC. The fourth resistor RD may have a first terminal connected to the cathode terminal of the first diode D1. A first end of the fourth resistor RD may be connected to the controller 220 . A second end of the fourth resistor RD is connected to a ground terminal.
제1 다이오드(D1)는 캐소드 단자가 제4 저항(RD)의 제2단과 연결된다. 제1 다이오드(D1)는 캐소드 단자가 제어부(220)와 연결된다. 제1 다이오드(D1)는 애노드 단자가 접지 단자와 연결된다. The cathode terminal of the first diode D1 is connected to the second terminal of the fourth resistor RD. The first diode D1 has a cathode terminal connected to the controller 220 . The first diode D1 has an anode terminal connected to a ground terminal.
상기에서 살펴본 바와 같이, 제3 저항(RC)의 제2단, 제4 저항(RD)의 제1단 및 제1 다이오드(D1)의 캐소드 단자는 제1 노드를 통해 연결된다. 제1 노드는 제어부(220)와 연결되며, 제어부(220)는 제1 노드의 노드 전압을 입력받을 수 있다. As described above, the second end of the third resistor RC, the first end of the fourth resistor RD, and the cathode terminal of the first diode D1 are connected through the first node. The first node is connected to the control unit 220 , and the control unit 220 may receive a node voltage of the first node.
제2 신호부(212)는 제2 스위칭 소자(Q2), 제5 저항(RE), 제6 저항(RF), 제7 저항(RG) 및 제2 다이오드(D2)를 포함한다. The second signal unit 212 includes a second switching element Q2 , a fifth resistor RE, a sixth resistor RF, a seventh resistor RG, and a second diode D2 .
제2 스위칭 소자(Q2)는 제1단이 전기 자동차 전원공급장치(10)의 제1 저항(RA)과 연결된다. 제2 스위칭 소자(Q2)는 제2단이 제5 저항(RE)의 제1단에 연결된다. 제2 스위칭 소자(Q2)는 제3단이 제어부(220)와 연결된다. 제2 스위칭 소자(Q2)는 양극성 접합 트랜지스터일 수 있다. 제2 스위칭 소자(Q2)는 컬렉터(collector) 단자, 이미터(emitter) 단자 및 베이스(base) 단자를 포함할 수 있다. 제2 스위칭 소자(Q2)의 컬렉터 단자는 제1 저항(RA)과 연결될 수 있다. 제2 스위칭 소자(Q2)의 이미터 단자는 제5 저항(RE)의 제1단에 연결될 수 있다. 제2 스위칭 소자(Q2)의 베이스 단자는 제어부(220)에 연결될 수 있다.The second switching element Q2 has a first terminal connected to the first resistor RA of the electric vehicle power supply 10 . A second end of the second switching element Q2 is connected to a first end of the fifth resistor RE. The third end of the second switching element Q2 is connected to the control unit 220 . The second switching element Q2 may be a bipolar junction transistor. The second switching element Q2 may include a collector terminal, an emitter terminal, and a base terminal. The collector terminal of the second switching element Q2 may be connected to the first resistor RA. The emitter terminal of the second switching element Q2 may be connected to the first terminal of the fifth resistor RE. The base terminal of the second switching element Q2 may be connected to the controller 220 .
제5 저항(RE)은 제1단이 제2 스위칭 소자(Q2)의 제2단과 연결된다. 제5 저항(RE)은 제2단이 접지 단자와 연결된다. 제5 저항(RE)은 제2단이 제6 저항(RF)의 제1단에 연결될 수 있다. A first end of the fifth resistor RE is connected to a second end of the second switching element Q2. A second terminal of the fifth resistor RE is connected to a ground terminal. A second end of the fifth resistor RE may be connected to a first end of the sixth resistor RF.
제6 저항(RF)은 제1단이 제5 저항(RE)의 제2단과 연결된다. 제6 저항(RF)은 제1단이 접지 단자와 연결될 수 있다. 제6 저항(RF)은 제2단이 제7 저항(RG)의 제1단에 연결될 수 있다. 제6 저항(RF)은 제2단이 제2 다이오드(D2)의 캐소드 단자에 연결될 수 있다. 제6 저항(RF)은 제2단이 제어부(220)와 연결될 수 있다. A first end of the sixth resistor RF is connected to a second end of the fifth resistor RE. A first end of the sixth resistor RF may be connected to a ground terminal. A second end of the sixth resistor RF may be connected to a first end of the seventh resistor RG. A second end of the sixth resistor RF may be connected to the cathode terminal of the second diode D2 . A second end of the sixth resistor RF may be connected to the controller 220 .
제7 저항(RG)은 제1단이 제6 저항(RF)의 제2단과 연결된다. 제7 저항(RG)은 제1단이 제2 다이오드(D2)의 캐소드 단자에 연결될 수 있다. 제7 저항(RG)은 제1단이 제어부(220)와 연결될 수 있다. 제7 저항(RG)은 제2단이 접지 단자와 연결된다. A first end of the seventh resistor RG is connected to a second end of the sixth resistor RF. A first terminal of the seventh resistor RG may be connected to a cathode terminal of the second diode D2. A first end of the seventh resistor RG may be connected to the controller 220 . A second terminal of the seventh resistor RG is connected to a ground terminal.
제2 다이오드(D2)는 캐소드 단자가 제7 저항(RG)의 제2단과 연결된다. 제2 다이오드(D2)는 캐소드 단자가 제어부(220)와 연결된다. 제2 다이오드(D2)는 애노드 단자가 접지 단자와 연결된다. The cathode terminal of the second diode D2 is connected to the second terminal of the seventh resistor RG. The second diode D2 has a cathode terminal connected to the controller 220 . The second diode D2 has an anode terminal connected to a ground terminal.
상기에서 살펴본 바와 같이, 제6 저항(RF)의 제2단, 제7 저항(RG)의 제1단 및 제2 다이오드(D2)의 캐소드 단자는 제2 노드를 통해 연결된다. 제2 노드는 제어부(220)와 연결되며, 제어부(220)는 제2 노드의 노드 전압을 입력받을 수 있다As described above, the second end of the sixth resistor RF, the first end of the seventh resistor RG, and the cathode terminal of the second diode D2 are connected through the second node. The second node is connected to the control unit 220 , and the control unit 220 may receive a node voltage of the second node.
아래의 표 1은 본 발명의 실시예에 따른 제1 내지 제7 저항(RA 내지 RG)의 저항값을 나타낸다. Table 1 below shows resistance values of the first to seventh resistors RA to RG according to an exemplary embodiment of the present invention.
저항resistance 저항값[Ω]Resistance [Ω] 저항resistance 저항값[Ω]Resistance [Ω]
제1 저항(RA)first resistor (RA) 1000 또는 2641000 or 264
제2 저항(RB)second resistor (RB) 200200 제5 저항(RE)5th resistor (RE) 10001000
제3 저항(RC)Third resistor (RC) 10001000 제6 저항(RF)6th resistor (RF) 1000010000
제4 저항(RD)4th resistor (RD) 1000010000 제7 저항(RG)7th resistor (RG) 24002400
표 1을 참조하면, 전기 자동차 전원공급장치(10)의 제1 저항(RA)은 1k[Ω] 또는 264[Ω] 크기의 저항값을 가질 수 있다. 제1 신호부(211)와 제2 신호부(212)는 서로 대응하는 회로 구조를 가질 수 있다. 제2 저항(RB)은 제5 저항(RE)에 대응하고, 제3 저항(RC)은 제6 저항(RF)에 대응하고, 제4 저항(RD)은 제7 저항(RG)에 대응할 수 있다. 다만, 대응하는 저항의 저항값은 상이할 수 있다. 이는, 제1 저항(RA)의 저항값에 따라 제1 신호부(211)와 제2 신호부(212)가 선택적으로 동작하더라도 연결 상태에 따라 제1 노드 또는 제2 노드에서 동일한 노드 전압이 제어부(220)에 입력되도록 하기 위함이다. Referring to Table 1, the first resistor RA of the electric vehicle power supply 10 may have a resistance value of 1k [Ω] or 264 [Ω]. The first signal unit 211 and the second signal unit 212 may have circuit structures corresponding to each other. The second resistor RB may correspond to the fifth resistor RE, the third resistor RC may correspond to the sixth resistor RF, and the fourth resistor RD may correspond to the seventh resistor RG. there is. However, resistance values of the corresponding resistors may be different. This is because the control unit maintains the same node voltage at the first node or the second node depending on the connection state even though the first signal unit 211 and the second signal unit 212 selectively operate according to the resistance value of the first resistor RA. (220) is to be input.
제2 저항(RB)은 제5 저항(RE)보다 큰 저항값을 가질 수 있다. 제1 신호부(211)의 제2 저항(RB)은 200[Ω]의 저항값을 가질 수 있고, 제2 신호부(212)의 제5 저항(RE)은 200[Ω] 보다 큰 1k[Ω]의 저항값을 가질 수 있다. The second resistor RB may have a higher resistance than the fifth resistor RE. The second resistance RB of the first signal unit 211 may have a resistance value of 200 [Ω], and the fifth resistance RE of the second signal unit 212 may be 1k[Ω] greater than 200 [Ω]. Ω].
제3 저항(RC)은 제6 저항(RF)보다 큰 저항값을 가질 수 있다. 제1 신호부(211)의 제3 저항(RC)은 1k[Ω]의 저항값을 가질 수 있고, 제2 신호부(212)의 제6 저항(RF)은 1000[Ω]보다 큰 10k[Ω]의 저항값을 가질 수 있다. The third resistor RC may have a higher resistance than the sixth resistor RF. The third resistor RC of the first signal part 211 may have a resistance value of 1k [Ω], and the sixth resistor RF of the second signal part 212 may have a resistance value of 10k[Ω] greater than 1000 [Ω]. Ω].
제4 저항(RD)은 제7 저항(RG)보다 작은 값을 가질 수 있다. 제1 신호부(211)의 제4 저항(RD)은 10k[Ω]의 저항값을 가질 수 있고, 제2 신호부(212)의 제7 저항(RG)은 10k[Ω]보다 작은 2.4k[Ω]의 저항값을 가질 수 있다. The fourth resistor RD may have a smaller value than the seventh resistor RG. The fourth resistor RD of the first signal part 211 may have a resistance value of 10k[Ω], and the seventh resistor RG of the second signal part 212 may be 2.4k less than 10k[Ω]. It can have a resistance value of [Ω].
도 8은 본 발명의 실시예에 따른 스위치 장치의 제1 구동예이다.8 is a first driving example of a switch device according to an embodiment of the present invention.
도 8에 도시된 제1 구동예는 제1 신호부 (211)를 통해 충전 허가 신호를 생성하는 경우 전류 흐름을 나타낸다.The first driving example shown in FIG. 8 represents a current flow when a charging permission signal is generated through the first signal unit 211 .
전기 자동차 전원공급장치(10)는 제1 저항(RA)과 충전 허가 신호를 감지하기 위한 소정의 회로로 구성되는 신호 감지 장치를 포함할 수 있다. 소정의 회로는 제1 저항(RA)의 제1단과 연결되며, 소정의 회로에 연결된 전압원을 통해 제1 저항(RA)에 전압이 인가된다. 전압원은 소정의 회로를 거쳐 제1 저항(RA)에 전압을 인가하므로, 전압원의 전압은 소정의 회로에 의한 전압 강하가 발생할 수 있다. The electric vehicle power supply device 10 may include a signal sensing device including a first resistor RA and a predetermined circuit for sensing a charging permission signal. A predetermined circuit is connected to a first terminal of the first resistor RA, and a voltage is applied to the first resistor RA through a voltage source connected to the predetermined circuit. Since the voltage source applies a voltage to the first resistor RA through a predetermined circuit, a voltage drop of the voltage source may occur due to the predetermined circuit.
제1 구동예에서 제1 스위칭 소자(Q1)는 턴온되고 제2 스위칭 소자(Q2)는 턴오프된다. 따라서, 전기 자동차 전원공급장치(10)의 신호 감지 장치의 전압원에 의한 전류(I1)는 제2 내지 제4 저항(RD)에 흐르며, 제5 내지 제7 저항(RG)에는 흐르지 않는다. 따라서, 전기 자동차 전원공급장치(10)의 신호 감지 장치는 제2 내지 제4 저항(RD)에 의해 생성된 충전 허가 신호를 감지하게 된다. In the first driving example, the first switching element Q1 is turned on and the second switching element Q2 is turned off. Accordingly, the current I1 by the voltage source of the signal sensing device of the electric vehicle power supply device 10 flows through the second to fourth resistors RD, but does not flow through the fifth to seventh resistors RG. Accordingly, the signal sensing device of the electric vehicle power supply device 10 detects the charging permission signal generated by the second to fourth resistors RD.
제1 다이오드(D1)의 경우, 캐소드 단자가 제2 저항(RB)의 제2단과 연결되므로, 전류(I1)가 흐르지 않는다. 다만, 제1 다이오드(D1)에 인가된 전압이 제1 다이오드(D1)의 항복 전압(breakdown voltage)을 넘는 경우, 전기 저항이 파괴되어 전류(I1)가 흐르게 된다. 일 실시예에 따르면, 돌입 전류와 같은 과도 전류가 제1 신호부(211)에 인가되어 제1 다이오드(D1)에 항복 전압이 인가되는 경우, 제1 다이오드(D1)는 전기 저항이 파괴되며 접지단자로 전류(I1)가 흐르게 된다. 이는 돌입 전류와 같은 과도 전류에 의해 제1 다이오드(D1)의 캐소드 단자에 연결된 제어부(220)가 파손되는 것을 방지하기 위함이다. In the case of the first diode D1, since the cathode terminal is connected to the second terminal of the second resistor RB, the current I1 does not flow. However, when the voltage applied to the first diode D1 exceeds the breakdown voltage of the first diode D1, the electrical resistance is broken and the current I1 flows. According to an embodiment, when a transient current such as a rush current is applied to the first signal unit 211 and a breakdown voltage is applied to the first diode D1 , the electrical resistance of the first diode D1 is destroyed and the first diode D1 is grounded. A current I1 flows through the terminal. This is to prevent the controller 220 connected to the cathode terminal of the first diode D1 from being damaged by an excessive current such as a rush current.
도 9는 본 발명의 실시예에 따른 스위치 장치의 제2 구동예이다. 9 is a second driving example of the switch device according to the embodiment of the present invention.
전기 자동차 전원공급장치(10)는 제1 저항(RA)과 충전 허가 신호를 감지하기 위한 소정의 회로로 구성되는 신호 감지 장치를 포함할 수 있다. 소정의 회로는 제1 저항(RA)의 제1단과 연결되며, 소정의 회로에 연결된 전압원을 통해 제1 저항(RA)에 전압이 인가된다. 전압원은 소정의 회로를 거쳐 제1 저항(RA)에 전압을 인가하므로, 전압원의 전압은 소정의 회로에 의한 전압 강하가 발생할 수 있다. The electric vehicle power supply device 10 may include a signal sensing device including a first resistor RA and a predetermined circuit for sensing a charging permission signal. A predetermined circuit is connected to a first terminal of the first resistor RA, and a voltage is applied to the first resistor RA through a voltage source connected to the predetermined circuit. Since the voltage source applies a voltage to the first resistor RA through a predetermined circuit, a voltage drop of the voltage source may occur due to the predetermined circuit.
제2 구동예에서 제1 스위칭 소자(Q1)는 턴오프되고 제2 스위칭 소자(Q2)는 턴온된다. 따라서, 전기 자동차 전원공급장치(10)의 신호 감지 장치의 전압원에 의한 전류(I2)는 제2 내지 제4 저항(RD)에는 흐르지 않으며, 제5 내지 제7 저항(RG)에 흐르게 된다. 따라서, 전기 자동차 전원공급장치(10)의 신호 감지 장치는 제5 내지 제7 저항(RG)에 의해 생성된 충전 허가 신호를 감지하게 된다. In the second driving example, the first switching element Q1 is turned off and the second switching element Q2 is turned on. Accordingly, the current I2 by the voltage source of the signal sensing device of the electric vehicle power supply device 10 does not flow through the second to fourth resistors RD, but flows through the fifth to seventh resistors RG. Accordingly, the signal sensing device of the electric vehicle power supply device 10 detects the charging permission signal generated by the fifth to seventh resistors RG.
제2 다이오드(D2)의 경우, 캐소드 단자가 제2 저항(RB)의 제2단과 연결되므로, 전류(I2)가 흐르지 않는다. 다만, 제2 다이오드(D2)에 인가된 전압이 제2 다이오드(D2)의 항복 전압(breakdown voltage)을 넘는 경우, 전기 저항이 파괴되어 전류(I2)가 흐르게 된다. 일 실시예에 따르면, 돌입 전류와 같은 과도 전류가 제2 신호부(212)에 인가되어 제2 다이오드(D2)에 항복 전압이 인가되는 경우, 제2 다이오드(D2)는 전기 저항이 파괴되며 접지단자로 전류가 흐르게 된다. 이는 돌입 전류와 같은 과도 전류에 의해 제2 다이오드(D2)의 캐소드 단자에 연결된 제어부(220)가 파손되는 것을 방지하기 위함이다. In the case of the second diode D2, since the cathode terminal is connected to the second terminal of the second resistor RB, the current I2 does not flow. However, when the voltage applied to the second diode D2 exceeds the breakdown voltage of the second diode D2 , the electrical resistance is broken and the current I2 flows. According to an embodiment, when a transient current such as a rush current is applied to the second signal unit 212 and a breakdown voltage is applied to the second diode D2 , the electrical resistance of the second diode D2 is destroyed and the ground Current flows through the terminal. This is to prevent the controller 220 connected to the cathode terminal of the second diode D2 from being damaged by an excessive current such as a rush current.
도 10은 본 발명의 실시예에 따른 제1 신호부의 제1 노드에서 검출되는 전압을 설명하기 위한 도면이다. 10 is a diagram for explaining a voltage detected at a first node of a first signal unit according to an embodiment of the present invention.
도 10은 제1 신호부의 제1 스위칭 신호가 턴온되고 제2 신호부의 제2 스위칭 신호가 턴오프 되는 경우의 회로 구성을 도시한다. 10 shows a circuit configuration when the first switching signal of the first signal part is turned on and the second switching signal of the second signal part is turned off.
제어부는 제3 저항(RC), 제4 저항(RD) 및 제1 다이오드(D1)가 연결되는 제1 노드(a)로부터 노드 전압(Va)을 입력받을 수 있다. The controller may receive the node voltage Va from the first node a to which the third resistor RC, the fourth resistor RD, and the first diode D1 are connected.
아래의 수학식 1은 제1 노드(a)에서 검출되는 노드 전압(Va)을 나타낸다. Equation 1 below represents the node voltage Va detected at the first node a.
Figure PCTKR2021001127-appb-img-000001
Figure PCTKR2021001127-appb-img-000001
아래의 표 2는 일 실시예에 따른 저항값 및 전압값을 나타낸다. Table 2 below shows resistance values and voltage values according to an exemplary embodiment.
저항resistance 저항값[Ω]Resistance [Ω] 전압Voltage 전압값[V]Voltage value [V]
제1 저항(RA)first resistor (RA) 10001000 전압(Vs)Voltage (Vs) 1212
제2 저항(RB)second resistor (RB) 200200 -- --
제3 저항(RC)Third resistor (RC) 10001000 -- --
제4 저항(RD)4th resistor (RD) 1000010000 -- --
표 2에 도시된 것처럼, 전압(Vs)이 12[V]이고, 제1 저항(RA)이 1k[Ω], 제2 저항(RB)이 200[Ω], 제3 저항(RC)이 1k[Ω], 제4 저항(RD)이 10k[Ω]인 경우, 수학식 1에 따르면 제1 노드(a)의 노드 전압(Va)은 대략 1.8[V]가 된다. 즉, 제1 수신부가 정상적으로 구동하여 충전 허가 신호를 생성하는 경우 제어부는 대략 1.8[V]의 노드 전압(Va)을 입력받을 수 있다. 도 11은 본 발명의 실시예에 따른 제2 신호부의 제2 노드에서 검출되는 전압을 설명하기 위한 도면이다. As shown in Table 2, the voltage (Vs) is 12 [V], the first resistor (RA) is 1k [Ω], the second resistor (RB) is 200 [Ω], the third resistor (RC) is 1k When [Ω] and the fourth resistor RD are 10k [Ω], according to Equation 1, the node voltage Va of the first node a becomes approximately 1.8 [V]. That is, when the first receiver operates normally to generate a charging permission signal, the controller may receive a node voltage Va of approximately 1.8 [V]. 11 is a diagram for explaining a voltage detected at a second node of a second signal unit according to an embodiment of the present invention.
도 11은 제1 신호부의 제1 스위칭 신호가 턴오프되고 제2 신호부의 제2 스위칭 신호가 턴온되는 경우의 회로 구성을 도시한다. 11 shows a circuit configuration when the first switching signal of the first signal part is turned off and the second switching signal of the second signal part is turned on.
제어부는 제6 저항(RF), 제7 저항(RG) 및 제2 다이오드(D2)가 연결되는 제2 노드(b)로부터 노드 전압(Vb)을 입력받을 수 있다. The controller may receive the node voltage Vb from the second node b to which the sixth resistor RF, the seventh resistor RG, and the second diode D2 are connected.
아래의 수학식 1은 제2 노드(b)에서 검출되는 노드 전압(Vb)을 나타낸다. Equation 1 below represents the node voltage Vb detected at the second node b.
Figure PCTKR2021001127-appb-img-000002
Figure PCTKR2021001127-appb-img-000002
아래의 표 3은 일 실시예에 따른 저항값 및 전압값을 나타낸다. Table 3 below shows resistance values and voltage values according to an exemplary embodiment.
저항resistance 저항값[Ω]Resistance [Ω] 전압Voltage 전압값[V]Voltage value [V]
제1 저항(RA)first resistor (RA) 264264 전압(VS)Voltage (VS) 1212
제5 저항(RE)5th resistor (RE) 10001000 -- --
제6 저항(RF)6th resistor (RF) 1000010000 -- --
제7 저항(RG)7th resistor (RG) 24002400 -- --
표 2에 도시된 것처럼, 전압(Vs)이 12[V]이고, 제1 저항(RA)이 264[Ω], 제5 저항(RE)이 1k[Ω], 제6 저항(RF)이 1k[Ω], 제7 저항(RG)이 2.4k[Ω]인 경우, 수학식 1에 따르면 제1 노드의 노드 전압(Vb)은 대략 1.8[V]가 된다. 즉, 제2 수신부가 정상적으로 구동하여 충전 허가 신호를 생성하는 경우 제어부는 대략 1.8[V]의 노드 전압(Vb)을 입력받을 수 있다. 도 12는 본 발명의 실시예에 따른 전기 자동차 전원공급장치와 전기 자동차 충전 컨트롤러 사이의 전기적 연결 상태 검출 과정을 설명하기 위한 도면이다. As shown in Table 2, the voltage (Vs) is 12 [V], the first resistor (RA) is 264 [Ω], the fifth resistor (RE) is 1k [Ω], the sixth resistor (RF) is 1k When [Ω] and the seventh resistor RG are 2.4 k[Ω], according to Equation 1, the node voltage Vb of the first node becomes approximately 1.8 [V]. That is, when the second receiver operates normally to generate a charging permission signal, the controller may receive a node voltage Vb of approximately 1.8 [V]. 12 is a view for explaining a process of detecting an electrical connection state between an electric vehicle power supply device and an electric vehicle charge controller according to an embodiment of the present invention.
제어부는 제1 수신부 또는 제2 수신부로부터 입력된 노드 전압의 전압 크기를 통해 전기 자동차 전원공급장치와 전기 자동차 충전 컨트롤러 사이의 전기적 연결 상태를 검출할 수 있다. The controller may detect an electrical connection state between the electric vehicle power supply device and the electric vehicle charge controller based on the voltage level of the node voltage input from the first receiver or the second receiver.
제어부는 노드 전압의 크기가 제1 전압 범위에 포함되면, 전기적 연결 상태를 개방 상태(open case)로 판단할 수 있다. 일 실시예에 따르면, 제1 전압 범위는 제0 전압(V0)보다 크고 제1 전압(V1)보다 작은 범위를 의미할 수 있다. 제0 전압(V0)은 0[V]일 수 있다. When the magnitude of the node voltage is included in the first voltage range, the controller may determine the electrical connection state as an open case. According to an embodiment, the first voltage range may mean a range greater than the zeroth voltage V0 and smaller than the first voltage V1. The zeroth voltage V0 may be 0 [V].
제어부는 노드 전압의 크기가 제1 전압 범위보다 큰 제2 전압 범위 포함되면, 전기적 연결 상태를 접촉 불량(out of case)으로 판단할 수 있다. 일 실시예에 따르면, 제1 전압 범위는 0[V]보다 크고 제1 전압(V1)보다 작은 범위를 의미하고, 제2 전압 범위는 제1 전압(V1)보다 크고 제2 전압(V2)보다 작은 범위를 의미할 수 있다. When the magnitude of the node voltage is included in the second voltage range greater than the first voltage range, the controller may determine the electrical connection state as an out of case. According to an embodiment, the first voltage range means a range greater than 0 [V] and less than the first voltage V1, and the second voltage range is greater than the first voltage V1 and greater than the second voltage V2. It can mean a small range.
제어부는 노드 전압의 크기가 제2 전압 범위보다 큰 제3 전압 범위에 포함되면, 전기적 연결 상태를 정상 상태(normal status)로 판단할 수 있다. 일 실시예에 따르면, 제2 전압 범위는 제1 전압(V1)보다 크고 제2 전압(V2)보다 작은 범위를 의미하고, 제3 전압 범위는 제2 전압(V2)보다 크고 제3 전압(V3)보다 작은 범위를 의미할 수 있다. 제3 전압 범위는 제1 수신부 또는 제2 수신부가 정상 동작할 때 검출될 수 있는 1.8[V] 값을 포함하는 범위일 수 있다. When the level of the node voltage is included in the third voltage range greater than the second voltage range, the controller may determine the electrical connection state as a normal status. According to an embodiment, the second voltage range means a range that is greater than the first voltage V1 and less than the second voltage V2, and the third voltage range is greater than the second voltage V2 and the third voltage V3. ) can mean a smaller range. The third voltage range may be a range including a value of 1.8 [V] that may be detected when the first receiver or the second receiver normally operates.
제어부는 노드 전압의 크기가 제3 전압 범위보다 큰 제4 전압 범위 포함되면, 전기적 연결 상태를 접촉 불량(out of case)으로 판단할 수 있다. 일 실시예에 따르면, 제3 전압 범위는 제2 전압(V2)보다 크고 제3 전압(V3)보다 작은 범위를 의미하고, 제4 전압 범위는 제3 전압(V3)보다 크고 제4 전압(V4)보다 작은 범위를 의미할 수 있다. When the magnitude of the node voltage is included in the fourth voltage range greater than the third voltage range, the controller may determine the electrical connection state as an out of case. According to an embodiment, the third voltage range means a range that is greater than the second voltage V2 and less than the third voltage V3, and the fourth voltage range is greater than the third voltage V3 and the fourth voltage V4. ) can mean a smaller range.
제어부는 노드 전압의 크기가 제4 전압 범위보다 큰 제5 전압 범위에 포함되면, 전기적 연결 상태를 과전압 상태(overvoltage case)로 판단할 수 있다. 일 실시예에 따르면, 제4 전압 범위는 제3 전압(V3)보다 크고 제4 전압(V4)보다 작은 범위를 의미하고, 제5 전압 범위는 제4 전압(V4)보다 크고 제5 전압(V5)보다 작은 범위를 의미할 수 있다. 제5 전압(V5)은 5[V]일 수 있다. When the magnitude of the node voltage is included in the fifth voltage range greater than the fourth voltage range, the controller may determine the electrical connection state as an overvoltage case. According to an exemplary embodiment, the fourth voltage range is greater than the third voltage V3 and less than the fourth voltage V4, and the fifth voltage range is greater than the fourth voltage V4 and the fifth voltage V5. ) can mean a smaller range. The fifth voltage V5 may be 5 [V].
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다. Although the embodiment has been described above, it is only an example and does not limit the present invention, and those of ordinary skill in the art to which the present invention pertains are not exemplified above in a range that does not depart from the essential characteristics of the present embodiment. It will be appreciated that various modifications and applications are possible. For example, each component specifically shown in the embodiment can be implemented by modification. And differences related to such modifications and applications should be construed as being included in the scope of the present invention defined in the appended claims.

Claims (13)

  1. 전기 자동차 전원공급장치의 신호 감지 장치와 신호선을 통해 연결되고, 충전 허가 신호를 생성하여 상기 신호 감지 장치로 전송하는 스위치 장치; 그리고 a switch device connected to a signal detecting device of the electric vehicle power supply through a signal line, generating a charging permission signal and transmitting the signal to the signal detecting device; And
    복수의 스위칭 신호를 통해 상기 스위치 장치를 제어하는 제어부;를 포함하고,Including; a control unit for controlling the switch device through a plurality of switching signals,
    상기 전기 자동차 전원공급장치의 신호 감지 장치는, The signal detection device of the electric vehicle power supply device,
    상기 신호선 상에 배치되는 제1 저항을 포함하고, a first resistor disposed on the signal line;
    상기 스위치 장치는, The switch device is
    제1 스위칭 소자를 포함하고, 상기 복수의 스위칭 신호 중 제1 스위칭 신호에 기초하여 제1 스위칭 소자를 턴온하여 상기 충전 허가 신호를 생성하는 제1 신호부; 및 a first signal unit including a first switching element and configured to turn on the first switching element based on a first switching signal among the plurality of switching signals to generate the charging permission signal; and
    제2 스위칭 소자를 포함하고, 상기 복수의 스위칭 신호 중 제2 스위칭 신호에 기초하여 제2 스위칭 소자를 턴온하여 상기 충전 허가 신호를 생성하는 제2 신호부;를 포함하고, A second signal unit including a second switching element and turning on a second switching element based on a second switching signal among the plurality of switching signals to generate the charging permission signal; and
    상기 제1 저항의 저항값에 따라 상기 제1 신호부 또는 상기 제2 신호부가 상기 충전 허가 신호를 생성하는 전기 자동차 충전 컨트롤러. The electric vehicle charge controller configured to generate the charging permission signal by the first signal unit or the second signal unit according to a resistance value of the first resistor.
  2. 제1항에 있어서,According to claim 1,
    상기 제어부는, The control unit is
    상기 제1 저항의 저항값이 제1 기준값보다 크고 제2 기준값보다 작으면, 상기 제1 스위칭 신호를 통해 제1 스위칭 소자를 턴온하고, 상기 제2 스위칭 신호를 통해 제2 스위칭 소자를 턴오프하여 상기 제1 신호부가 상기 충전 허가 신호를 생성하도록 제어하는 전기 자동차 충전 컨트롤러. When the resistance value of the first resistor is greater than the first reference value and less than the second reference value, the first switching element is turned on through the first switching signal, and the second switching element is turned off through the second switching signal. An electric vehicle charging controller for controlling the first signal unit to generate the charging permission signal.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 제어부는, The control unit is
    상기 제1 저항의 저항값이 상기 제2 기준값보다 크고 제3 기준값보다 작으면, 상기 제1 스위칭 신호를 통해 제1 스위칭 소자를 턴오프하고, 상기 제2 스위칭 신호를 통해 제2 스위칭 소자를 턴온하여 상기 제2 신호부가 상기 충전 허가 신호를 생성하도록 제어하는 전기 자동차 충전 컨트롤러. When the resistance value of the first resistor is greater than the second reference value and less than the third reference value, the first switching element is turned off through the first switching signal, and the second switching element is turned on through the second switching signal to control the second signal unit to generate the charging permission signal.
  4. 제1항에 있어서,According to claim 1,
    상기 제어부는, The control unit is
    상기 제1 신호부 또는 상기 제2 신호부에 포함된 노드(node)의 노드 전압을 수신하고, 상기 노드 전압의 크기에 따라 상기 전기 자동차 전원공급장치와 전기 자동차 사이의 전기적 연결 상태를 검출하는 전기 자동차 충전 컨트롤러. Receives a node voltage of a node included in the first signal unit or the second signal unit, and detects an electrical connection state between the electric vehicle power supply device and the electric vehicle according to the magnitude of the node voltage car charge controller.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 제어부는, The control unit is
    상기 노드 전압의 크기가 제1 전압 범위에 포함되면, 상기 전기적 연결 상태를 개방 상태로 판단하는 전기 자동차 충전 컨트롤러. An electric vehicle charge controller configured to determine the electrical connection state as an open state when the level of the node voltage is included in a first voltage range.
  6. 제5항에 있어서,6. The method of claim 5,
    상기 제어부는, The control unit is
    상기 노드 전압의 크기가 상기 제1 전압 범위보다 큰 제2 전압 범위 또는 제4 전압 범위에 포함되면, 상기 전기적 연결 상태를 접촉 불량으로 판단하는 전기 자동차 충전 컨트롤러. When the level of the node voltage is included in a second voltage range or a fourth voltage range greater than the first voltage range, the electric vehicle charge controller determines the electrical connection state as a contact failure.
  7. 제6항에 있어서,7. The method of claim 6,
    상기 제어부는, The control unit is
    상기 노드 전압의 크기가 상기 제2 전압 범위와 상기 제4 전압 범위 사이의 제3 전압 범위에 포함되면, 상기 전기적 연결 상태를 정상 상태로 판단하는 전기 자동차 충전 컨트롤러. When the level of the node voltage is included in a third voltage range between the second voltage range and the fourth voltage range, the electric vehicle charge controller determines that the electrical connection state is a normal state.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 제어부는, The control unit is
    상기 노드 전압의 크기가 상기 제4 전압 범위보다 큰 제5 전압 범위에 포함되면, 상기 전기적 연결 상태를 과전압 상태로 판단하는 전기 자동차 충전 컨트롤러. When the level of the node voltage is included in a fifth voltage range greater than the fourth voltage range, the electric vehicle charge controller determines the electrical connection state as an overvoltage state.
  9. 제1항에 있어서,According to claim 1,
    상기 제1 신호부는; the first signal unit;
    제1단이 상기 제1 저항과 연결되고, 제3단이 상기 제어부와 연결되는 제1 스위칭 소자;a first switching element having a first end connected to the first resistor and a third end connected to the control unit;
    제1단이 상기 제1 스위칭 소자의 제2단과 연결되고, 제2단이 접지 단자와 연결되는 제2 저항; a second resistor having a first end connected to a second end of the first switching element and a second end connected to a ground terminal;
    제1단이 상기 제2 저항의 제2단과 연결되는 제3 저항; a third resistor having a first end connected to a second end of the second resistor;
    제1단이 상기 제3 저항의 제2단과 연결되고, 제2단이 상기 접지 단자와 연결되는 제4 저항; 및 a fourth resistor having a first end connected to a second end of the third resistor and a second end connected to the ground terminal; and
    캐소드 단자가 상기 제4 저항의 제2단과 연결되고, 애노드 단자가 접지 단자와 연결되는 제1 다이오드;를 포함하는 전기 자동차 충전 컨트롤러. and a first diode having a cathode terminal connected to a second terminal of the fourth resistor and an anode terminal connected to a ground terminal.
  10. 제9항에 있어서,10. The method of claim 9,
    상기 제2 신호부는, The second signal unit,
    제1단이 상기 제1 저항과 연결되고, 제3단이 상기 제어부와 연결되는 제2 스위칭 소자;a second switching element having a first end connected to the first resistor and a third end connected to the control unit;
    제1단이 상기 제2 스위칭 소자의 제2단과 연결되고, 제2단이 접지 단자와 연결되는 제5 저항; a fifth resistor having a first end connected to a second end of the second switching element and a second end connected to a ground terminal;
    제1단이 상기 제5 저항의 제2단과 연결되는 제6 저항; a sixth resistor having a first end connected to a second end of the fifth resistor;
    제1단이 상기 제6 저항의 제2단과 연결되고, 제2단이 상기 접지 단자와 연결되는 제7 저항; 및 a seventh resistor having a first end connected to a second end of the sixth resistor and a second end connected to the ground terminal; and
    캐소드 단자가 상기 제7 저항의 제2단과 연결되고, 애노드 단자가 접지 단자와 연결되는 제2 다이오드;를 포함하는 전기 자동차 충전 컨트롤러. and a second diode having a cathode terminal connected to a second terminal of the seventh resistor and an anode terminal connected to a ground terminal.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 제1 다이오드의 캐소드 단자와 상기 제2 다이오드의 캐소드 단자는, 상기 제어부와 연결되는 전기 자동차 충전 컨트롤러. The cathode terminal of the first diode and the cathode terminal of the second diode are connected to the controller.
  12. 제11항에 있어서,12. The method of claim 11,
    상기 제2 저항은, 상기 제5 저항보다 큰 저항값을 가지고, The second resistor has a resistance value greater than that of the fifth resistor,
    상기 제3 저항은, 상기 제6 저항보다 큰 저항값을 가지고, The third resistor has a resistance value greater than that of the sixth resistor,
    상기 제4 저항은, 상기 제7 저항보다 작은 저항값을 가지는 전기 자동차 충전 컨트롤러. The fourth resistor may have a smaller resistance value than the seventh resistor.
  13. 전기 자동차 전원공급장치의 신호 감지 장치와 신호선을 통해 연결되는 스위치 장치; 그리고 a switch device connected to the signal sensing device of the electric vehicle power supply device through a signal line; And
    상기 스위치 장치와 연결되는 마이크로 컨트롤러;를 포함하고, Including; a microcontroller connected to the switch device;
    상기 신호 감지 장치는, The signal detection device,
    상기 신호선 상에 배치되는 제1 저항을 포함하고, a first resistor disposed on the signal line;
    상기 스위치 장치는, The switch device is
    제1단이 상기 제1 저항과 연결되고, 제3단이 상기 마이크로 컨트롤러와 연결되는 제1 스위칭 소자; 제1단이 상기 제1 스위칭 소자의 제2단과 연결되고, 제2단이 접지 단자와 연결되는 제2 저항; 제1단이 상기 제2 저항의 제2단과 연결되는 제3 저항; 제1단이 상기 제3 저항의 제2단과 연결되고, 제2단이 상기 접지 단자와 연결되는 제4 저항; 및 캐소드 단자가 상기 제4 저항의 제2단과 연결되고, 애노드 단자가 접지 단자와 연결되는 제1 다이오드;를 포함하는 제1 신호부; 그리고 a first switching element having a first end connected to the first resistor and a third end connected to the microcontroller; a second resistor having a first end connected to a second end of the first switching element and a second end connected to a ground terminal; a third resistor having a first end connected to a second end of the second resistor; a fourth resistor having a first end connected to a second end of the third resistor and a second end connected to the ground terminal; and a first diode having a cathode terminal connected to a second end of the fourth resistor and a first diode having an anode terminal connected to a ground terminal; And
    제1단이 상기 제1 저항과 연결되고, 제3단이 상기 마이크로 컨트롤러와 연결되는 제2 스위칭 소자; 제1단이 상기 제2 스위칭 소자의 제2단과 연결되고, 제2단이 접지 단자와 연결되는 제5 저항; 제1단이 상기 제5 저항의 제2단과 연결되는 제6 저항; 제1단이 상기 제6 저항의 제2단과 연결되고, 제2단이 상기 접지 단자와 연결되는 제7 저항; 및 캐소드 단자가 상기 제7 저항의 제2단과 연결되고, 애노드 단자가 접지 단자와 연결되는 제2 다이오드;를 포함하는 제2 신호부;를 포함하는 전기 자동차 충전 컨트롤러.a second switching element having a first end connected to the first resistor and a third end connected to the microcontroller; a fifth resistor having a first end connected to a second end of the second switching element and a second end connected to a ground terminal; a sixth resistor having a first end connected to a second end of the fifth resistor; a seventh resistor having a first end connected to a second end of the sixth resistor and a second end connected to the ground terminal; and a second diode having a cathode terminal connected to a second end of the seventh resistor and a second diode having an anode terminal connected to a ground terminal.
PCT/KR2021/001127 2020-02-06 2021-01-28 Electric vehicle charging controller WO2021157949A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022547764A JP2023512545A (en) 2020-02-06 2021-01-28 electric car charge controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0014500 2020-02-06
KR1020200014500A KR20210100471A (en) 2020-02-06 2020-02-06 Electric vehicle charging controller

Publications (1)

Publication Number Publication Date
WO2021157949A1 true WO2021157949A1 (en) 2021-08-12

Family

ID=77200767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001127 WO2021157949A1 (en) 2020-02-06 2021-01-28 Electric vehicle charging controller

Country Status (3)

Country Link
JP (1) JP2023512545A (en)
KR (1) KR20210100471A (en)
WO (1) WO2021157949A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140118700A (en) * 2013-03-28 2014-10-08 파나소닉 주식회사 Signal generation circuit
KR20160033511A (en) * 2014-09-18 2016-03-28 엘에스산전 주식회사 Cable installment type charging control apparatus and method thereof
US9725005B2 (en) * 2011-12-15 2017-08-08 Chargepoint, Inc. Circuit for controlling an electric vehicle pilot signal level for connector disconnect
KR20180019464A (en) * 2016-08-16 2018-02-26 엘지이노텍 주식회사 Apparatus for driving relay of electric vehicle
KR20180092091A (en) * 2017-02-08 2018-08-17 엘지이노텍 주식회사 Charging control apparatus for electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9725005B2 (en) * 2011-12-15 2017-08-08 Chargepoint, Inc. Circuit for controlling an electric vehicle pilot signal level for connector disconnect
KR20140118700A (en) * 2013-03-28 2014-10-08 파나소닉 주식회사 Signal generation circuit
KR20160033511A (en) * 2014-09-18 2016-03-28 엘에스산전 주식회사 Cable installment type charging control apparatus and method thereof
KR20180019464A (en) * 2016-08-16 2018-02-26 엘지이노텍 주식회사 Apparatus for driving relay of electric vehicle
KR20180092091A (en) * 2017-02-08 2018-08-17 엘지이노텍 주식회사 Charging control apparatus for electric vehicle

Also Published As

Publication number Publication date
JP2023512545A (en) 2023-03-27
KR20210100471A (en) 2021-08-17

Similar Documents

Publication Publication Date Title
WO2019078616A2 (en) Electric vehicle charging apparatus
WO2018034486A1 (en) Charging device for electric vehicle
WO2021162190A1 (en) Electric vehicle charging device and method for controlling same
WO2011132887A2 (en) Universal charging device
WO2019225794A1 (en) Non-contact power receiving device having electric vehicle overvoltage prevention function, charging system, and control method thereof
WO2023153651A1 (en) Battery charge/discharge device
WO2014061933A1 (en) Uninterruptable dc power supply providing seamless dc power to load
WO2018056503A1 (en) System and method for switching line short-circuit fault section in inverter-based stand-alone microgrid
WO2019212125A1 (en) Circuit breaker control module
WO2019031686A1 (en) Energy storage system
WO2018117386A1 (en) Battery pack
WO2019132373A1 (en) Electric vehicle power relay assembly and driving method therefor
CN110799378A (en) Charging device for electric vehicle
WO2021085759A1 (en) Static transfer switch, and ups module to which static transfer switch is applied
WO2018105990A1 (en) Microgrid system, and method for managing malfunction
WO2018216850A1 (en) Power conversion device
WO2021182815A2 (en) Electric vehicle charging controller and electric vehicle charger comprising same
WO2019059489A1 (en) Microgrid system
WO2021157949A1 (en) Electric vehicle charging controller
WO2021157920A1 (en) Individual discharge system and method for battery racks
WO2021206211A1 (en) Charging adaptor that is compatible with can-plc data communication
WO2020111899A1 (en) Switch control device and method
WO2022146130A1 (en) Electric vehicle charging controller
WO2022039402A1 (en) Device for sensing quick charge high voltage for electric vehicle
WO2021162291A1 (en) Relay device and electric vehicle charging controller comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21749984

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022547764

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21749984

Country of ref document: EP

Kind code of ref document: A1