WO2019225794A1 - Non-contact power receiving device having electric vehicle overvoltage prevention function, charging system, and control method thereof - Google Patents

Non-contact power receiving device having electric vehicle overvoltage prevention function, charging system, and control method thereof Download PDF

Info

Publication number
WO2019225794A1
WO2019225794A1 PCT/KR2018/006362 KR2018006362W WO2019225794A1 WO 2019225794 A1 WO2019225794 A1 WO 2019225794A1 KR 2018006362 W KR2018006362 W KR 2018006362W WO 2019225794 A1 WO2019225794 A1 WO 2019225794A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
smoothing capacitor
overvoltage
contact power
output
Prior art date
Application number
PCT/KR2018/006362
Other languages
French (fr)
Korean (ko)
Inventor
유효열
조정구
문용기
한정호
유주승
김민호
Original Assignee
(주)그린파워
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)그린파워 filed Critical (주)그린파워
Publication of WO2019225794A1 publication Critical patent/WO2019225794A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0092Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption with use of redundant elements for safety purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/13Bicycles; Tricycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to an overvoltage preventing means having an electric vehicle overvoltage protection function, a non-contact power receiving device and a non-contact power feeding device, and a control method thereof, and more particularly, to prevent a failure of a high-voltage system in a vehicle due to an overvoltage that may be induced when charging stops.
  • the present invention relates to an overvoltage preventing means, a non-contact power receiving device, a non-contact power supply device, and a control method thereof.
  • a high voltage system such as the non-contact power receiver 200, an inverter, a converter, etc. is commonly connected to the other side of the battery main relay connected to one side of the battery (hereinafter, "DC").
  • the non-contact power receiver 200, an inverter, a converter, and the like have a smoothing capacitor at the DC link connection.
  • the high voltage component connected to the DC link may be various components such as an electric water pump and a PTC heater in addition to an inverter and a converter.
  • the in-vehicle controller turns off the battery main relay to disconnect the battery from the system.
  • the electric vehicle means not only a pure electric vehicle, but also a mobile vehicle that travels using charging energy such as a plug-in hybrid, a rechargeable fuel cell vehicle, and an electric bicycle.
  • the wireless charging system may be configured with an LC-LC method using an inductor and a capacitor as shown in FIG. 2A, or an LCCL-LCCL method using a plurality of inductors and capacitors as shown in FIG. 2B.
  • the power supply device of the LC-LC method or LCCL-LCCL method circuit and the input filter circuit of the current collector can be equivalently modeled as a sine wave current source as shown in FIG. 3A.
  • the power receiving device 230 is connected to the battery 301 mounted on the electric vehicle to charge the battery 301, the battery main relay (between the power receiving device and other electric devices (not shown in the figure) and the battery ( 302 serves to block the battery charging or discharging path.
  • the control of the battery main relay 302 may be performed by a controller (for example, a battery management system (BMS), not shown) provided in the electric vehicle.
  • BMS battery management system
  • the battery main relay 302 When the battery main relay 302 is turned off during wireless charging, since the input filter circuit functions as a current source, the current charging the battery 301 continuously drives the smoothing capacitor 234 located in front of the battery main relay 302. By charging, the voltage of the capacitor is increased to generate an overvoltage, which not only causes the smoothing capacitor burnout, shorten the life of the power receiver, damage or deteriorate, but also shorten or shorten the life of components of the electrical device connected to the same node. In a point that may cause the power supply to the power supply device must be stopped through the wired or wireless communication between the electric vehicle controller such as BMS and the power supply device outside the vehicle before turning off the battery main relay 302.
  • the delay of information transmission according to the time delay may cause the power supply device to supply power during the delayed time, which is connected to the power receiver and the connected device. It can damage the electrical equipment.
  • the in-vehicle controller does not turn off the battery main relay, when the electrical connection between the power receiver and the battery 310 is cut off for various reasons such as damage to the battery main relay 302 itself or disconnection of the battery 301 connecting cable. May occur. In this case, the in-vehicle controller cannot transmit the battery main relay off information to the feeder in advance, which can cause a relatively larger overvoltage, which can damage the power receiving device and the connected electrical device.
  • a non-contact power receiving device for electric vehicles, a power supply device, and a control method thereof including an overvoltage prevention means capable of preventing overvoltage generated when the current received from a power supply device having a current source characteristic is temporarily blocked to improve system safety. to provide.
  • the non-contact power receiving device is provided in the interior of the electric vehicle, the power receiving unit for receiving power from the non-contact power supply device, the filter unit connected to the output of the power receiving unit, the rectifying unit connected to the output of the filter unit, the overvoltage protection connected to the output of the rectifying unit Means, an overvoltage protection means and a smoothing capacitor connected to a DC link (N0) to which the battery main relay is connected, wherein the overvoltage prevention means blocks the smoothing capacitor charge current and the discharge current based on the voltage of the smoothing capacitor to overvoltage the smoothing capacitor.
  • the circuit can be configured so that the current received from the non-contact power supply device can flow through a closed loop path different from the smoothing capacitor charging path so that the rate of change of the received current is equal to or less than a predetermined value.
  • the overvoltage protection means can provide a shorted path at the front or rear of the rectifier to prevent the rectified current from charging the smoothing capacitor.
  • the overvoltage preventing means determines whether the overvoltage protection condition is applicable based on the series diode provided between the rectifier and the smoothing capacitor, the protection switch provided in parallel between the rectifier and the series diode, and the voltage of the smoothing capacitor, and based on the determination result.
  • the protection switch when the output N1 of the rectifier part is connected to the anode side of the series diode, and the anode of the smoothing capacitor is connected to the cathode side of the series diode, the protection switch is turned on (closed).
  • the node N1, which is an output of the rectifier, and the smoothing capacitor anode N0 may be electrically disconnected to prevent current from flowing between the rectifier, the protection switch, and the smoothing capacitor.
  • the protection switch when the protection switch is turned on, a reverse voltage is applied to the series diode so that the current of the smoothing capacitor may not flow through the protection switch, which may be a large capacity of the smoothing capacitor, and further, an inverter and a converter. Due to the characteristics of the electric vehicle that the smoothing capacitors of which can be connected in parallel, there is an effect of preventing excessive current from flowing to the protection switch, and shortening the life of the capacitor.
  • the overvoltage prevention means determines whether an overvoltage protection condition is applicable based on a gate switch provided between the rectifier and the smoothing capacitor, a protection switch provided in parallel between the rectifier and the gate switch, and a voltage at both ends of the smoothing capacitor, and based on the determination result.
  • Control means for controlling the gate switch and the protection switch.
  • the gate switch may be one of a relay or a MOSFET
  • the protection switch may be one of a thyristor, a MOSFET, an IGBT, or a SiCMOSFET.
  • the current flows through a switch such as a MOSFET having a relatively low on-resistance (drain-source resistance) instead of a diode (the series diode) during normal battery charging when the battery main relay is on.
  • a switch such as a MOSFET having a relatively low on-resistance (drain-source resistance) instead of a diode (the series diode) during normal battery charging when the battery main relay is on.
  • the use of a MOSFET has a small voltage drop, so that the loss can be reduced and the efficiency can be improved.
  • the control means inputs the voltage across the smoothing capacitor, and outputs the voltage signal corresponding to the voltage across the smoothing capacitor.
  • the input and output are electrically insulated voltage meter and the output of the isolated voltage meter and
  • a voltage comparator comparing the reference voltage, a switch driver controlling on or off of the protection switch and the gate switch based on the output of the voltage comparator, and a signal inverter between the output of the voltage comparator and the switch driver for the gate switch may be provided. .
  • the signal inverter is located between the driver for the protective switch and the comparator, during the time delay by the signal inverter, the current flow path by the current source is temporarily interrupted, so that a significant overvoltage at the switch stage is obtained. Since the deterioration of the components such as the switch may reduce the life of the components such as the switch and cause burnout, there is an effect that the signal inverter is provided between the driver for the protective switch and the comparator and the comparator, not the comparator.
  • control means inputs the voltage across the smoothing capacitor, and outputs a voltage signal corresponding to the voltage across the smoothing capacitor.
  • the input and output are electrically insulated voltage meter and the output of the isolated voltage meter.
  • a switch driver for controlling the on or off of the protection switch and the gate switch based on the respective outputs of the first and second voltage comparators and the first and second voltage comparators for comparing the predetermined reference voltages.
  • protection switch and the gate switch may use the same switch.
  • a non-contact power receiving device including an over-voltage protection means for an electric vehicle is provided in the interior of the electric vehicle, the power receiving unit for receiving power from the non-contact power supply, the filter unit connected to the output of the power receiving unit, the rectifying unit connected to the output of the filter unit And a smoothing capacitor connected to the DC link N0 to which the output of the rectifier and the battery main relay are connected, and an overvoltage preventing means connected to one end of the output of the filter part and connected to a negative electrode and the other side of the smoothing capacitor.
  • Blocking the smooth capacitor charge current and discharge current based on the voltage of the capacitor prevents overvoltage from occurring in the smooth capacitor, and configures a closed loop path through which the current received from the non-contact power supply device can flow. It can be made below a predetermined value.
  • the overvoltage protection means includes: first and second protection diodes having an anode connected to an input node N2 of the rectifier, one side of which is commonly connected to the cathodes of the first and second protection diodes, and the other side of which is connected to ground (G).
  • the control unit 434 may determine whether the overvoltage protection condition is applicable based on the voltage of the switch and the smoothing capacitor, and control the protection switch based on the determination result.
  • the current flows directly through the lead wires without passing through a switch such as a diode (the series diode) or a MOSFET during normal battery charging when the battery main relay is turned on, thereby improving charging efficiency.
  • a switch such as a diode (the series diode) or a MOSFET during normal battery charging when the battery main relay is turned on, thereby improving charging efficiency.
  • the overvoltage protection means can be additionally installed in the non-contact power receiving device that does not have the overvoltage protection function in use, there is an economic effect.
  • the control means inputs the voltage of both ends of the smoothing capacitor and outputs the voltage signal corresponding to the voltage of both ends of the smoothing capacitor.
  • the input and output are electrically insulated voltage meter and the output of the isolated voltage meter and predetermined
  • a voltage comparator for comparing the reference voltage, and a switch driver for controlling the on or off of the protection switch based on the output of the voltage comparator.
  • a predetermined value compared with the rate of change of the voltage between the both ends may be set based on the capacitance value of the smoothing capacitor.
  • the predetermined value compared with the rate of change of the voltage between the both ends may be set based on the capacitance value of the smoothing capacitor and the capacitance value of the capacitor of the electric device commonly connected to the DC link.
  • a non-contact charging system having an overvoltage protection function for an electric vehicle including the non-contact power receiving device and the non-contact power supply as described above, wherein the non-contact power supply is a measuring unit for measuring the amount of power or current supplied by the non-contact power supply during charging.
  • a determination unit for determining that the overvoltage protection function of the non-contact power receiving device has been performed when the state of the measured power amount or current amount smaller than the predetermined value lasts for a predetermined time; It may include a control unit for controlling the power feeding device.
  • the current source when charging an in-vehicle battery by a non-contact power supply of an electric vehicle, when the battery connection path is interrupted, the current source at the same time quickly inhibits charging of the smoothing capacitor connected to the DC link by the power received from the power supply. It can cut off the current received from the power feeding device at a time to prevent overvoltage from occurring, thereby improving safety, improving efficiency during charging, and using simple circuit elements for controlling economic advantages and high reliability.
  • there is an effect such as fast control operation, no need to communicate with the host controller or the vehicle controller, and there is an economic effect that the overvoltage protection means can be installed in a power receiving device that does not have an existing overvoltage protection function.
  • FIG. 1 is a diagram illustrating an electric vehicle including a non-contact power supply device, a current collector, an inverter, a motor, a converter, and the like.
  • 2A and 2B are diagrams showing an example of a circuit configuration of a conventional non-contact power feeding device and power receiving device.
  • 2A and 2B show a configuration of an LC-LC and LCCL-LCCL non-contact charging circuit, respectively.
  • 3A and 3B are diagrams showing an equivalent circuit configuration of the conventional non-contact power feeding device and power receiving device shown in FIGS. 2A and 2B, and an example of a battery charging current and a smoothing capacitor voltage when the battery main relay is turned off.
  • FIG. 4 is a diagram showing an example of a circuit configuration of an overvoltage protection means for a non-contact power receiving device according to Embodiment 1 of the present invention.
  • 5A to 5E are diagrams showing an example of a circuit configuration of the overvoltage protection means for a non-contact power receiving device according to the second embodiment of the present invention.
  • 6A to 6C are diagrams showing an example of a circuit configuration of the overvoltage protection means for a non-contact power receiving device according to Embodiment 3 of the present invention.
  • FIG. 1 illustrates an electric vehicle including a non-contact power supply device and a current collector and an inverter, a motor, a converter, and the like.
  • 2A and 2B illustrate a charging system including a non-contact power supply device and a current collector for a conventional electric vehicle.
  • 2A and 2B show non-contact power supply devices 101 and 102 and current collectors 210 and 220 for an LC-LC method and an LCCL-LCCL method electric vehicle, respectively, which are conventionally used.
  • 3A illustrates an equivalent circuit of the non-contact power supply devices 101 and 102 and the current collectors 210 and 220 for the LC-LC method or the LCCL-LCCL method electric vehicle.
  • the power receiving portion and the filter portion of the non-contact power feeding device and the non-contact power receiving device can be equivalently viewed as a current source, which is shown as a sine wave current source 103.
  • 3B shows the battery charge current (upper figure) and the voltage of the smoothing capacitor 234 (lower figure). When the battery main relay is turned off (opened), the battery charging current becomes zero, and the voltage of the smoothing capacitor 234 is increased, indicating a conventional problem that overvoltage is induced.
  • the non-contact power receiver 230 is provided inside the electric vehicle, and includes a power receiver 231 for receiving electric power from the non-contact power feeder, and a filter unit 232 connected to the output of the power receiver 231.
  • the rectifier 233 connected to the output of the filter unit 232, the overvoltage preventing unit 410 connected to the output of the rectifying unit 233, the DC link N0 to which the overvoltage preventing unit 410 is connected to the battery main relay 302.
  • a smoothing capacitor 234 connected to it.
  • the filter unit 232 may be a resonant network.
  • the power receiver 231 receives the power delivered in the form of a magnetic field
  • the rectifier 233 may be configured as a bridge circuit using a diode
  • the smoothing capacitor functions to smooth the output voltage of the rectifier 233.
  • one side of the battery main relay 302 is connected to the battery 301, the other side is connected to the DC link (N0), the DC link is an electrical device (for example, an inverter using the charging energy of the battery 301) , Converter, etc., not shown in the drawing), a power receiving device (charger) may be commonly connected.
  • the DC link is an electrical device (for example, an inverter using the charging energy of the battery 301) , Converter, etc., not shown in the drawing), a power receiving device (charger) may be commonly connected.
  • the overvoltage preventing means 410 blocks the smoothing capacitor 234 charging current and the discharging current based on the voltage of the smoothing capacitor 234 to prevent the overvoltage from occurring in the smoothing capacitor 234,
  • a closed loop path through which the electric current received from the non-contact power supply devices 101 and 102 can flow can be configured so that the rate of change of the electric current received is less than or equal to a predetermined value.
  • the overvoltage protection means can provide a shorted path at the front or rear of the rectifier to prevent the rectified current from charging the smoothing capacitor.
  • the overvoltage preventing means 410 may include a series diode 411 provided between the rectifier 233 and the smoothing capacitor 234, and a protection switch provided in parallel between the rectifier 233 and the series diode 411. 412, and a control means for determining whether the overvoltage protection condition is applicable based on the voltage of the smoothing capacitor 234, and controlling the protection switch 412 based on the determination result.
  • control means inputs the voltage across the smoothing capacitor 234 and outputs a voltage signal corresponding to the voltage across the smoothing capacitor 234, but the input and output are electrically insulated voltage measuring devices.
  • a voltage comparator comparing the output of the isolated voltage meter with a predetermined reference voltage, and a switch driver controlling on or off of the protection switch based on the output of the voltage comparator.
  • whether or not the overvoltage protection condition corresponds to the overvoltage protection condition may be determined when the rate of change of the voltage across the smoothing capacitor 234 exceeds a predetermined value.
  • a discharge resistor system for discharging a DC link capacitor of an electric device (eg, an inverter or a converter) commonly connected to the DC link may be provided (not shown).
  • the control means of the overvoltage preventing means directly transmits a driving signal to the discharge resistance system to operate the discharge resistance system, or transmits a forced discharge signal to a controller of the electric device so that the controller of the electric device controls the discharge resistance system. I can drive it.
  • the discharge resistor system can lower the voltage of the DC link by discharging the smoothing capacitor.
  • control means of the overvoltage protection means (Wake-up) to switch the controller of the electrical device (inverter, etc.) commonly connected to the DC link from the sleep mode to the active mode when the battery main relay is turned off Function).
  • the overvoltage prevention means may instruct a forced discharge of the controller of the activated electric device (inverter, etc.).
  • the controller of the inverter activated by the overvoltage preventing means may discharge the capacitor connected to the DC link by applying a current to the motor using an inverter commonly connected to the DC link.
  • the current applied by the inverter may be characterized in that the current is controlled so as not to rotate the motor.
  • the controller of the converter activated by the control means of the overvoltage protection means can discharge the capacitor connected to the DC link by charging or supplying power to the auxiliary battery or the electric load connected to the auxiliary battery using a converter commonly connected to the DC link.
  • the electric load may be forcibly turned on (operation).
  • the electric load may be limited to the electric load that is not recognized by the user as the five senses.
  • the electric load may be a coolant water pump, a radiator fan, a battery cooling fan, a PTC heater, an electric oil pump, or the like.
  • the overvoltage preventing means may simultaneously perform at least one or more of the overvoltage preventing methods described above.
  • the series diode 411 is connected to the output N1 of the rectifier 233 and the anode side of the series diode 411, and has an anode of the smoothing capacitor 234 and a series diode 411.
  • the node N1 which is an output of the rectifier 233
  • the anode N0 of the smoothing capacitor 234 are electrically separated from each other. A current may not flow between the rectifier 233 and the protection switch 412 and the smoothing capacitor 234.
  • the non-contact power receiver 230 is provided inside the electric vehicle, and includes a power receiver 231 for receiving electric power from the non-contact power feeder, and a filter unit 232 connected to the output of the power receiver 231.
  • the rectifier 233 connected to the output of the filter unit 232, the overvoltage preventing unit 420 connected to the output of the rectifying unit 233, the DC link N0 to which the overvoltage preventing unit 420 is connected to the battery main relay 302.
  • a smoothing capacitor 234 connected to it.
  • the overvoltage preventing means 420 blocks the smoothing capacitor 234 charging current and the discharging current based on the voltage of the smoothing capacitor 234 to prevent the overvoltage from occurring in the smoothing capacitor 234,
  • a closed loop path through which the electric current received from the non-contact power supply devices 101 and 102 can flow can be configured so that the rate of change of the electric current received is less than or equal to a predetermined value.
  • the overvoltage protection means can provide a shorted path at the front or rear of the rectifier to prevent the rectified current from charging the smoothing capacitor.
  • the overvoltage protection means 420 may include a gate switch 421 provided between the rectifier 233 and the smoothing capacitor 234, and a protection switch provided in parallel between the rectifier 233 and the gate switch 421. 422, and a control means 423 for determining whether the overvoltage protection condition is applicable based on the voltage across the smoothing capacitor 234, and controlling the gate switch 421 and the protection switch 422 based on the determination result. can do.
  • the gate switch 421 may be one of a relay and a MOSFET
  • the protection switch 422 may be one of a thyristor, a MOSFET, an IGBT, or a SiC MOSFET.
  • the MOSFET has a small forward voltage reduction compared to the forward voltage reduction of the diode, so that the charging efficiency can be increased.
  • the control means inputs a voltage across the smoothing capacitor 234 and outputs a voltage signal corresponding to the voltage across the smoothing capacitor 234.
  • An electrically insulated isolated voltage meter, a voltage comparator for comparing the output of the isolated voltage meter with a predetermined reference voltage, a switch driver for controlling on or off of the protective switch and the gate switch based on the output of the voltage comparator, and a voltage A signal inverter may be provided between the output of the comparator and the switch driver for the gate switch 421.
  • a signal inverter may be provided between the output of the voltage comparator and the switch driver for the protection switch 422.
  • control means inputs the voltage across the smoothing capacitor 234 and outputs the voltage signal corresponding to the voltage across the smoothing capacitor 234, but the input and the output are electrically An isolated isolated voltage meter, a voltage comparator for comparing the output of the isolated voltage meter with a predetermined reference voltage, a switch driver for controlling on or off of the protective switch and the gate switch based on the output of the voltage comparator, and a voltage comparator A signal inverter may be provided between the output and the switch driver for the gate switch 421.
  • control means includes a proportional voltage (a node voltage) of the DC link voltage N0 and a G node, a predetermined first voltage Vref_high, and a second voltage Vref_low. Compare and generate on or off signals SW1 and 2 of the protection switch and the gate switch based on the comparison.
  • the node a voltage can generate a voltage proportional to the DC link voltage using a plurality of resistors, as shown in FIG. 5C.
  • the node a voltage may generate a voltage proportional to the DC link voltage using one resistor, a zener diode, and a capacitor.
  • the control means selects the predetermined first voltage Vref_high and the second voltage Vref_low, and turns off the SW1 terminal when the DC link voltage is lower than the lower limit of the battery voltage usage range. And a hysteresis property such that the DC link voltage generates an on signal to the switch SW1 terminal at a voltage higher than the upper limit of the battery voltage usage range.
  • the auxiliary power supply for supplying the power of the control means must operate even when the power is not supplied, the auxiliary power can be connected to the smoothing capacitor to obtain the power.
  • the smoothing capacitor is gradually discharged by the power consumed by the auxiliary power supply.
  • the protection switch is lower than the lower reference voltage of the hysteresis, the protection switch is turned off and the gate switch is turned on to increase the smoothing capacitor voltage again. The ground side inverter can then be notified to stop the ground side inverter.
  • the non-contact power receiving device 230 including the overvoltage preventing means for an electric vehicle is provided inside the electric vehicle and includes the power receiving unit 231 and the power receiving unit 231 which receive electric power from the non-contact power feeding device.
  • Filter unit 232 connected to the output, rectifier 233 connected to the output of the filter unit 232, smoothing capacitor 234 connected to the DC link (N0) connected to the output of the rectifier 233 and the battery main relay 302
  • the output of the filter unit 232 is connected to one side, and the negative electrode and the other side of the smoothing capacitor 234 includes an overvoltage preventing means 430, the overvoltage preventing means 430, the voltage of the smoothing capacitor 234
  • the rate of change of received current is below a predetermined value Can be
  • the overvoltage protection means 430 includes first and second protection diodes 431 and 432 having an anode connected to the input nodes N2 and N3 of the rectifying unit 233, and one side of the first and second protection diodes 431 and 432. Based on the voltage of the protection switch 433 and the smoothing capacitor 234 connected in common with the cathodes of the diodes 431 and 432 and the other side connected to the ground G, it is determined whether the overvoltage protection condition is applicable, and the determination result. Control means 434 for controlling the protection switch 433 based on the.
  • control means inputs the voltage across the smoothing capacitor 234 and outputs a voltage signal corresponding to the voltage across the smoothing capacitor 234, but the input and output are electrically insulated voltage measuring devices.
  • a voltage comparator comparing the output of the isolated voltage meter with a predetermined reference voltage, and a switch driver controlling on or off of the protection switch based on the output of the voltage comparator.
  • whether or not the overvoltage protection condition corresponds to the overvoltage protection condition may be determined when the rate of change of the voltage across the smoothing capacitor 234 exceeds a predetermined value.
  • the outputs N2 and N3 of the filter unit 232 may have a sine wave shape, and when the voltage difference between N2 and N3 is V23, if V23 is a positive value, the first protection diode 431 and the protection switch ( 433) and a lower diode (so that current flows from G to N3) of one arm of the rectifier can be conducted, and if V23 is a negative value, the second protection diode 432, the protection switch 433, and the other arm of the rectifier The bottom diode of G (so that current flows from G to N2) may be conducted.
  • the non-contact power supply includes a measuring unit for measuring the amount of power or current supplied by the non-contact power supply during charging, measurement
  • the determination unit that determines that the overvoltage protection function of the non-contact power receiving device 230 is performed, and the supply of the charging power is stopped based on the result of the determination. It may include a control unit for controlling the non-contact power supply device.
  • the rectifier input terminal voltage of the power receiving device can be zero, and therefore, the output current of the power feeding device can also be 0, and the output current of the power feeding device is maintained at 0 for a predetermined time.
  • the operation of the power supply device can be stopped for overvoltage protection without the separate communication between the power supply device and the power reception device or the power supply device and the vehicle control period.
  • the predetermined reference value is an average value of the measured amount of electric power or amount of electric current during a predetermined previous time from the time when the charge amount SOC of the battery 301 of the electric vehicle, the amount of electric power or the amount of electric current is measured, and the information provided by the controller of the electric vehicle. It may be determined based on at least one of the. According to such a configuration, it is possible to quickly determine whether the overvoltage protection function is operating, and to prevent a current such as heat generation and a decrease in life due to the continuous flow of current through a protection switch.
  • the predetermined previous time may be set within a range of 30 seconds to 30 minutes.

Abstract

The present invention addresses a problem related to moving bodies, such as pure electric vehicles, plug-in hybrids, electric bicycles, and the like, which are driven using electric energy charged through non-contact charging, wherein when a battery is separated from a system due to charging stoppage, system failure, or the like, an overvoltage is caused in a high voltage system, resulting in the failure or reduced service life of a high voltage component. In order to solve this problem, the present invention provides a non-contact power receiving device having an electric vehicle overvoltage prevention function, a charging system, and a control method thereof, wherein: an overvoltage prevention means is employed in a power receiving device and prevents energy from being supplied to a high voltage system while ensuring a closed loop path for a power receiving current in order to prevent switching overvoltage that occurs when the power receiving current is cut off; and the overvoltage prevention means can discharge the high voltage system to ensure system safety without the addition of a separate discharge system, or can improve system safety, charging efficiency, and energy efficiency by converting the energy to be used for a different purpose.

Description

전기차 과전압 방지 기능을 갖는 비접촉 수전장치, 충전 시스템 및 그 제어 방법Non-contact receiving device, charging system having electric vehicle overvoltage protection function and control method thereof
본 발명은 전기차 과전압 방지 기능을 갖는 과전압 방지 수단, 비접촉 수전장치 및 비접촉 급전장치와 그 제어 방법에 관한 것으로, 보다 구체적으로는 충전 중지시 유기될 수 있는 과전압에 의한 차량내 고전압 시스템의 고장을 방지하는 수단 및 기능을 갖는 과전압 방지 수단, 비접촉 수전장치, 비접촉 급전장치 및 그 제어 방법에 관한 것이다.The present invention relates to an overvoltage preventing means having an electric vehicle overvoltage protection function, a non-contact power receiving device and a non-contact power feeding device, and a control method thereof, and more particularly, to prevent a failure of a high-voltage system in a vehicle due to an overvoltage that may be induced when charging stops. The present invention relates to an overvoltage preventing means, a non-contact power receiving device, a non-contact power supply device, and a control method thereof.
최근 대기오염 및 환경문제가 전 세계적으로 큰 이슈가 되고 있음에 따라 화석연료를 사용하는 내연기관 자동차를 대신하여 전기차에 대한 관심이 커지고 있으며, 이러한 친환경차의 상용화를 위해 많은 연구개발이 진행이 되고 있다. 전기차는 배터리의 크기 및 용량의 제약이 크며 반복적으로 충방전이 가능해야 한다. 전기차를 유선으로 커넥터를 사용하는 경우, 사용자가 수동으로 충전해야하는 불편함과, 충전 과정 및 커넥터에 접속시키는 과정에서 여러 가지 문제점들이 있다. 이를 해결하기 위해, 무선으로 전기차를 충전하는 기술들이 개발되고 있다. 자동차 배터리의 무선 충전을 위한 시스템은 일반적으로 지면(ground)에 있는 일차 유도성 회로를 구비한 급전장치와 차량에 탑재된 이차 유도성 회로를 구비한 수전장치로 이루어진다. 상기 급전장치와 수전장치 사이의 에너지 전달은 전자기 유도에 의해 일어난다. 유선 충전 시스템에 비해서 무선 충전 시스템은 커넥션을 잃어버릴 위험이 없거나 플러그의 중량과 관련된 어떠한 제약이 없다는 사실로 인해, 사용자의 편안함과 인체공학이 개선될 수 있도록 한다. As air pollution and environmental issues have become a major issue in the world recently, interest in electric vehicles is increasing instead of internal combustion engine cars using fossil fuels, and a lot of research and development is underway to commercialize these eco-friendly vehicles. have. Electric vehicles are limited in size and capacity of batteries and must be repeatedly charged and discharged. In the case of using a connector by wire for an electric vehicle, there are various inconveniences in the user's manual charging and in the charging process and the process of connecting the connector. To solve this problem, technologies for charging an electric vehicle wirelessly are being developed. Systems for wireless charging of automotive batteries generally consist of a power supply with a primary inductive circuit on the ground and a power receiver with a secondary inductive circuit mounted on the vehicle. Energy transfer between the power feeding device and the power receiving device is caused by electromagnetic induction. Compared to wired charging systems, wireless charging systems allow for improved user comfort and ergonomics due to the fact that there is no risk of losing a connection or no restrictions on the weight of the plug.
한편, 비접촉 충전 시스템을 구비한 전기차는, 도 1과 같이, 배터리와 일측이 연결된 배터리 메인 릴레이의 타측에 비접촉 수전장치(200), 인버터, 컨버터 등의 고전압 시스템이 공통으로 연결된다(이후 "DC 링크"라 함). 비접촉 수전장치(200), 인버터, 컨버터 등은 DC 링크 연결부에 평활용 커패시터를 구비한다. 여기서, DC 링크에 연결되는 고전압 부품은 인버터, 컨버터 외에도 전동식 워터펌프, PTC 히터 등 다양한 부품일 수 있다. 시스템이 정지, 충전 정지, 주요 고전압 부품의 고장, 충돌 등의 예기치 않은 이상 상황 발생하는 등의 경우에, 시스템 및 사용자의 안전을 위해 차량내 제어기는 배터리 메인 릴레이를 오프시켜서 배터리와 시스템을 분리한다. 명세서 전체에 걸쳐서, 전기차는 순수 전기차 뿐만 아니라, 플러그인 하이브리드, 충전가능한 연료전지차, 전기자전거 등 충전 에너지를 이용하여 주행하는 이동체를 의미한다.Meanwhile, in the electric vehicle having a non-contact charging system, as shown in FIG. 1, a high voltage system such as the non-contact power receiver 200, an inverter, a converter, etc. is commonly connected to the other side of the battery main relay connected to one side of the battery (hereinafter, "DC"). Link "). The non-contact power receiver 200, an inverter, a converter, and the like have a smoothing capacitor at the DC link connection. Here, the high voltage component connected to the DC link may be various components such as an electric water pump and a PTC heater in addition to an inverter and a converter. In the event of an unexpected abnormality such as a system stop, charge stop, breakdown of critical high voltage components, a crash, etc., for the safety of the system and the user, the in-vehicle controller turns off the battery main relay to disconnect the battery from the system. . Throughout the specification, the electric vehicle means not only a pure electric vehicle, but also a mobile vehicle that travels using charging energy such as a plug-in hybrid, a rechargeable fuel cell vehicle, and an electric bicycle.
무선 충전 시스템은, 도 2a와 같은 인덕터와 커패시터를 이용한 LC-LC방식, 또는, 도 2b와 같은 복수의 인덕터와 커패시터를 이용한 LCCL-LCCL방식의 회로로 구성될 수 있다. The wireless charging system may be configured with an LC-LC method using an inductor and a capacitor as shown in FIG. 2A, or an LCCL-LCCL method using a plurality of inductors and capacitors as shown in FIG. 2B.
LC-LC방식 또는 LCCL-LCCL방식 회로의 급전장치와 집전장치의 입력 필터부 회로는, 도 3a와 같이, 정현파의 전류원으로 등가 모델링할 수 있다. 또한, 수전장치(230)는 전기차에 탑재된 배터리(301)와 연결되어 배터리(301)를 충전하고, 수전장치 및 그 외 전기장치(도면에 미도시)와 배터리 사이에 구비된 배터리 메인 릴레이(302)는 배터리 충전 또는 방전 경로를 차단하는 역할을 하게 된다. 배터리 메인 릴레이(302)의 제어는 전기차에 구비된 제어기 (예를 들면, Battery Management System(BMS), 미도시)가 할 수 있는데, 위에 기재한 바와 같이, 배터리 자체의 문제 뿐 아니라, 차량내 다른 시스템의 고장, 충전 중 충격 등 비정상적 상황을 비롯하여 여러 가지 이유로, 사전 통보없이 배터리 메인 릴레이가 오프(OPEN)될 수 있다. The power supply device of the LC-LC method or LCCL-LCCL method circuit and the input filter circuit of the current collector can be equivalently modeled as a sine wave current source as shown in FIG. 3A. In addition, the power receiving device 230 is connected to the battery 301 mounted on the electric vehicle to charge the battery 301, the battery main relay (between the power receiving device and other electric devices (not shown in the figure) and the battery ( 302 serves to block the battery charging or discharging path. The control of the battery main relay 302 may be performed by a controller (for example, a battery management system (BMS), not shown) provided in the electric vehicle. As described above, not only the problem of the battery itself, but also other Battery main relays can be turned off without notice for a variety of reasons, including abnormal conditions such as system failure or shock during charging.
무선 충전 중 배터리 메인 릴레이(302)가 오프되는 경우, 입력필터회로가 전류원으로 기능하기 때문에, 배터리(301)를 충전하던 전류가 배터리 메인 릴레이(302) 전단에 위치한 평활 커패시터(234)를 지속적으로 충전시킴으로써, 커패시터의 전압을 증가시켜 과전압을 발생시키고, 그 과전압은 평활 커패시터 소손, 수전장치 수명 단축, 손상 또는 성능저하를 발생시킬 뿐 아니라, 같은 노드에 연결된 상기 전기장치의 부품의 고장이나 수명단축을 유발할 수 있는 점에서 배터리 메인 릴레이(302)를 오프 하기 전에 BMS 등의 전기차내 제어기와 차량외부의 급전장치간 유선 또는 무선 통신을 통해 급전장치에서 급전기능을 정지시켜야 한다. When the battery main relay 302 is turned off during wireless charging, since the input filter circuit functions as a current source, the current charging the battery 301 continuously drives the smoothing capacitor 234 located in front of the battery main relay 302. By charging, the voltage of the capacitor is increased to generate an overvoltage, which not only causes the smoothing capacitor burnout, shorten the life of the power receiver, damage or deteriorate, but also shorten or shorten the life of components of the electrical device connected to the same node. In a point that may cause the power supply to the power supply device must be stopped through the wired or wireless communication between the electric vehicle controller such as BMS and the power supply device outside the vehicle before turning off the battery main relay 302.
그러나, 차량외부의 급전장치와 차량내 제어기 사이의 통신에는 시간지연이 발생할 수 있고, 상기 시간지연에 따른 정보 전송의 지연은 상기 지연된 시간 동안 상기 급전장치는 전력을 공급하고, 이는 수전장치 및 연결된 전기장치를 손상시킬 수 있다. However, there may be a time delay in communication between the power supply device outside the vehicle and the in-vehicle controller, and the delay of information transmission according to the time delay may cause the power supply device to supply power during the delayed time, which is connected to the power receiver and the connected device. It can damage the electrical equipment.
나아가, 차량내 제어기가 배터리 메인 릴레이를 오프 시키지 않았음에도, 배터리 메인 릴레이(302) 자체의 손상이나 배터리(301) 연결 케이블의 단선 등 여러가지 이유로 수전장치와 배터리(310) 사이 전기적 연결이 차단되는 경우가 발생 할 수 있다. 이런 경우에는 차량내 제어기가 급전장치로 사전에 배터리 메인 릴레이 오프 정보를 전달할 수 없고, 이는 상대적으로 더 큰 과전압을 발생시켜 수전장치 및 연결된 전기장치를 손상시킬 수 있다. Furthermore, even when the in-vehicle controller does not turn off the battery main relay, when the electrical connection between the power receiver and the battery 310 is cut off for various reasons such as damage to the battery main relay 302 itself or disconnection of the battery 301 connecting cable. May occur. In this case, the in-vehicle controller cannot transmit the battery main relay off information to the feeder in advance, which can cause a relatively larger overvoltage, which can damage the power receiving device and the connected electrical device.
비록, 수전장치의 출력 전압(평활 커패시터 전압)이 상승함에 따라 지상의 급전장치용 전원장치의 전류가 증가하나, 그 전류의 변화가 크지 않아서, 급전장치가 배터리 메인 릴레이 오프 여부를 급전장치의 출력전류량을 기초로 검출하는 것이 매우 어려운 문제가 있었다. Although the current of the power supply for the ground power supply increases as the output voltage (smooth capacitor voltage) of the power receiving device increases, the change in the current is not so large that the power supply determines whether the battery main relay is turned off. There was a problem that it was very difficult to detect based on the amount of current.
선행기술로는, 문헌 US 2013-0162203A 에 유도에 의한 외부 공급으로부터의 전력이 검출될 때에만 배터리에 연결된 스위치들이 닫히게 하는 방법이 공지되어있다.In the prior art, the document US 2013-0162203A discloses a method for closing switches connected to a battery only when power from an external supply by induction is detected.
본 발명은, 전기차의 비접촉 급전장치에 의한 차량내 배터리의 충전에 있어서, 배터리 메인 릴레이가 오프(개방)되는 경우, 급전장치로부터 수전되는 전력이 DC 링크에 연결된 평활 커패시터를 충전하는 것을 신속히 금지시키는 것과 동시에 전류원 성격을 갖는 급전장치로부터 수전되는 전류를 일시에 차단시키는 경우 발생하는 과전압을 방지하여 시스템 안전성을 향상시킬 수 있는 과전압 방지 수단을 포함하는 전기차용 비접촉 수전장치와 급전장치 및 그 제어 방법을 제공한다. According to the present invention, in charging an in-vehicle battery by a non-contact power supply of an electric vehicle, when the battery main relay is turned off (opened), it is possible to quickly prohibit the power received from the power supply from charging the smoothing capacitor connected to the DC link. At the same time, a non-contact power receiving device for electric vehicles, a power supply device, and a control method thereof, including an overvoltage prevention means capable of preventing overvoltage generated when the current received from a power supply device having a current source characteristic is temporarily blocked to improve system safety. to provide.
본 발명에 의하면, 비접촉 수전장치는 전기차의 내부에 구비되고, 비접촉 급전장치로부터 전력을 수전하는 수전부, 수전부의 출력과 연결된 필터부, 필터부의 출력과 연결된 정류부, 정류부의 출력과 연결된 과전압 방지 수단, 과전압 방지 수단과 배터리 메인 릴레이가 연결된 DC 링크(N0)에 연결된 평활 커패시터를 포함하고, 과전압 방지 수단은, 평활 커패시터의 전압을 기초로 평활 커패시터 충전 전류 및 방전 전류를 차단하여 평활 커패시터에 과전압이 발생되는 것을 방지하고, 비접촉 급전장치로부터 수전한 전류가 평활 커패시터 충전 경로와 다른 폐루프 경로를 통해 흐를 수 있도록 회로를 구성하여 수전한 전류의 변화율이 소정 값 이하가 되도록 할 수 있다. According to the present invention, the non-contact power receiving device is provided in the interior of the electric vehicle, the power receiving unit for receiving power from the non-contact power supply device, the filter unit connected to the output of the power receiving unit, the rectifying unit connected to the output of the filter unit, the overvoltage protection connected to the output of the rectifying unit Means, an overvoltage protection means and a smoothing capacitor connected to a DC link (N0) to which the battery main relay is connected, wherein the overvoltage prevention means blocks the smoothing capacitor charge current and the discharge current based on the voltage of the smoothing capacitor to overvoltage the smoothing capacitor. Can be prevented from occurring and the circuit can be configured so that the current received from the non-contact power supply device can flow through a closed loop path different from the smoothing capacitor charging path so that the rate of change of the received current is equal to or less than a predetermined value.
과전압 방지 수단은, 정류된 전류가 평활 커패시터를 충전하지 못하도록 정류부 전단 혹은 후단에서 단락된 경로를 제공해 줄 수 있다. The overvoltage protection means can provide a shorted path at the front or rear of the rectifier to prevent the rectified current from charging the smoothing capacitor.
과전압 방지 수단은, 정류부와 평활 커패시터 사이에 구비된 직렬 다이오드, 정류부와 직렬 다이오드 사이에 병렬로 구비된 보호 스위치, 및 평활 커패시터의 전압을 기초로 과전압 보호 조건 해당 여부를 판단하고, 판단 결과에 기초하여 보호 스위치를 제어하는 제어 수단을 포함할 수 있다. The overvoltage preventing means determines whether the overvoltage protection condition is applicable based on the series diode provided between the rectifier and the smoothing capacitor, the protection switch provided in parallel between the rectifier and the series diode, and the voltage of the smoothing capacitor, and based on the determination result. Control means for controlling the protection switch.
이와 같은 구성에 의해서, 배터리 메인 릴레이가 오프되는 경우에도 수전한 전력에 의해 평활 커패시터에 과전압이 유기되는 것을 방지할 수 있을 뿐 아니라, 수전한 전류를 급격히 차단함으로써 과전압이 발생하는 것을 예방할 수 있는 효과가 있다. With this configuration, even when the battery main relay is turned off, not only the overvoltage is induced in the smoothing capacitor by the received electric power, but also the effect of preventing the overvoltage from occurring by abruptly interrupting the received current. There is.
직렬 다이오드는, 정류부의 출력(N1)과 직렬 다이오드의 애노드(anode)측이 연결되고, 평활 커패시터의 양극과 직렬 다이오드의 캐소드(cathode)측이 연결되어, 보호 스위치가 온(클로우즈)되는 경우에, 정류부의 출력인 노드(N1)와 평활 커패시터 양극(N0)을 전기적으로 분리시켜, 정류부 및 보호 스위치와 평활 커패시터사이에 전류가 흐르지 않도록 할 수 있다.In the case of the series diode, when the output N1 of the rectifier part is connected to the anode side of the series diode, and the anode of the smoothing capacitor is connected to the cathode side of the series diode, the protection switch is turned on (closed). In addition, the node N1, which is an output of the rectifier, and the smoothing capacitor anode N0 may be electrically disconnected to prevent current from flowing between the rectifier, the protection switch, and the smoothing capacitor.
이와 같은 구성에 의해서, 보호 스위치가 온이 되는 경우 직렬 다이오드에 역전압이 인가되어, 평활 커패시터의 전류가 보호 스위치를 통해서 흐르지 않을 수 있는데, 이는 상기 평활 커패시터가 대용량일 수 있고, 나아가 인버터, 컨버터의 평활 커패시터가 병렬로 연결될 수 있는 전기차의 특성상 보호 스위치에 과도한 전류가 흐르는 것을 방지하고, 커패시터의 수명 단축을 방지하는 효과가 있다. By such a configuration, when the protection switch is turned on, a reverse voltage is applied to the series diode so that the current of the smoothing capacitor may not flow through the protection switch, which may be a large capacity of the smoothing capacitor, and further, an inverter and a converter. Due to the characteristics of the electric vehicle that the smoothing capacitors of which can be connected in parallel, there is an effect of preventing excessive current from flowing to the protection switch, and shortening the life of the capacitor.
과전압 방지 수단은 정류부와 평활 커패시터 사이에 구비된 게이트 스위치, 정류부와 게이트 스위치 사이에 병렬로 구비된 보호 스위치, 및 평활 커패시터의 양단 전압을 기초로 과전압 보호 조건 해당 여부를 판단하고, 판단 결과에 기초하여 게이트 스위치 및 보호 스위치를 제어하는 제어 수단을 포함할 수 있다.The overvoltage prevention means determines whether an overvoltage protection condition is applicable based on a gate switch provided between the rectifier and the smoothing capacitor, a protection switch provided in parallel between the rectifier and the gate switch, and a voltage at both ends of the smoothing capacitor, and based on the determination result. Control means for controlling the gate switch and the protection switch.
게이트 스위치는 릴레이, MOSFET 중 하나이고, 보호 스위치는 싸이리스터, MOSFET, IGBT, SiCMOSFET 중 하나일 수 있다. The gate switch may be one of a relay or a MOSFET, and the protection switch may be one of a thyristor, a MOSFET, an IGBT, or a SiCMOSFET.
이와 같은 구성에 의하면, 배터리 메인 릴레이가 온인 정상적인 배터리 충전중에 다이오드(상기 직렬 다이오드) 대신에 상대적으로 온저항(드레인-소스 저항)이 적은 MOSFET와 같은 스위치를 통해 전류가 흐르게 되고, 다이오드를 사용하는 것에 비해 MOSFET를 사용하는 것이 전압강하량이 적으므로, 손실을 줄이고, 효율을 향상시킬 수 있는 효과가 있다. According to this configuration, the current flows through a switch such as a MOSFET having a relatively low on-resistance (drain-source resistance) instead of a diode (the series diode) during normal battery charging when the battery main relay is on. On the other hand, the use of a MOSFET has a small voltage drop, so that the loss can be reduced and the efficiency can be improved.
제어 수단은 평활 커패시터의 양단 전압을 입력으로 하고, 평활 커패시터의 양단 전압에 해당하는 전압 신호를 출력으로 하되, 입력과 출력은 전기적으로 절연된 절연형 전압 측정기, 절연형 전압 측정기의 출력과 소정의 기준 전압을 비교하는 전압 비교기, 전압 비교기의 출력을 기초로 보호 스위치 및 게이트 스위치의 온 또는 오프를 제어하는 스위치 구동기, 및 전압 비교기의 출력과 게이트 스위치용 스위치 구동기 사이에 신호 반전기를 구비할 수 있다. The control means inputs the voltage across the smoothing capacitor, and outputs the voltage signal corresponding to the voltage across the smoothing capacitor. The input and output are electrically insulated voltage meter and the output of the isolated voltage meter and A voltage comparator comparing the reference voltage, a switch driver controlling on or off of the protection switch and the gate switch based on the output of the voltage comparator, and a signal inverter between the output of the voltage comparator and the switch driver for the gate switch may be provided. .
이와 같은 구성에 의해서, 별도의 프로세스를 사용하거나, 차량 제어기 또는 상위 제어기와 통신을 하는 등의 복잡한 절차 없이, 상대적으로 저렴하고 간단한 회로로 제어수단을 구현함으로써, 경제적인 장점과 함께, 빠른 동작이 보장되며, 신뢰성이 우수한 효과가 있다. With this configuration, by implementing the control means in a relatively inexpensive and simple circuit without using a separate process, or a complicated procedure such as communicating with the vehicle controller or the host controller, it is economical and fast operation Guaranteed, reliable effect is excellent.
또한, 위의 구성과 달리, 만약, 상기 신호 반전기가 보호 스위치용 구동기와 비교기 사이에 위치한다면, 신호 반전기에 의한 시간 지연 동안, 전류원에 의한 전류 흐름 경로가 일시적으로 차단 됨으로써, 스위치 단에 상당한 과전압이 유기되어 스위치 등의 부품의 수명저하, 소손 등이 발생할 수 있는 점에서, 신호 반전기를 보호 스위치용 구동기와 비교기가 아닌 게이트 스위치용 구동기와 비교기 사이에 구비한 효과가 있다. In addition, unlike the above configuration, if the signal inverter is located between the driver for the protective switch and the comparator, during the time delay by the signal inverter, the current flow path by the current source is temporarily interrupted, so that a significant overvoltage at the switch stage is obtained. Since the deterioration of the components such as the switch may reduce the life of the components such as the switch and cause burnout, there is an effect that the signal inverter is provided between the driver for the protective switch and the comparator and the comparator, not the comparator.
또한, 제어 수단은 평활 커패시터의 양단 전압을 입력으로 하고, 평활 커패시터의 양단 전압에 해당하는 전압 신호를 출력으로 하되, 입력과 출력은 전기적으로 절연된 절연형 전압 측정기, 절연형 전압 측정기의 출력과 소정의 기준 전압을 비교하는 제 1 전압 비교기 및 제 2 전압 비교기, 제 1, 2 전압 비교기의 각각의 출력을 기초로 보호 스위치 및 게이트 스위치의 온 또는 오프를 제어하는 스위치 구동기를 구비할 수 있다. In addition, the control means inputs the voltage across the smoothing capacitor, and outputs a voltage signal corresponding to the voltage across the smoothing capacitor. The input and output are electrically insulated voltage meter and the output of the isolated voltage meter. A switch driver for controlling the on or off of the protection switch and the gate switch based on the respective outputs of the first and second voltage comparators and the first and second voltage comparators for comparing the predetermined reference voltages.
또한, 보호 스위치와 게이트 스위치는 동일한 스위치를 사용할 수 있다. In addition, the protection switch and the gate switch may use the same switch.
이 구성에 의하면, 보호 스위치와 게이트 스위치의 온 또는 오프하는 시간차가 최소화 됨으로써 양 스위치의 스위칭 시간차에 의한 스위칭 과전압을 방지할 수 있는 효과가 있다.According to this configuration, since the time difference between turning on or off the protection switch and the gate switch is minimized, switching overvoltage due to the switching time difference between the two switches can be prevented.
본 발명에 의하면, 전기차용 과전압 방지 수단을 포함한 비접촉 수전장치는, 전기차의 내부에 구비되고, 비접촉 급전장치로부터 전력을 수전하는 수전부, 수전부의 출력과 연결된 필터부, 필터부의 출력과 연결된 정류부, 정류부의 출력과 배터리 메인 릴레이가 연결된 DC 링크(N0)에 연결된 평활 커패시터, 필터부의 출력과 일측이 연결되고, 평활 커패시터의 음극과 타측이 연결된 과전압 방지수단을 포함하고, 과전압 방지 수단은, 평활 커패시터의 전압을 기초로 평활 커패시터 충전 전류 및 방전 전류를 차단하여 평활 커패시터에 과전압이 발생되는 것을 방지하고, 비접촉 급전장치로부터 수전한 전류가 흐를 수 있는 폐루프 경로를 구성하여 수전한 전류의 변화율이 소정 값 이하가 되도록 할 수 있다. According to the present invention, a non-contact power receiving device including an over-voltage protection means for an electric vehicle is provided in the interior of the electric vehicle, the power receiving unit for receiving power from the non-contact power supply, the filter unit connected to the output of the power receiving unit, the rectifying unit connected to the output of the filter unit And a smoothing capacitor connected to the DC link N0 to which the output of the rectifier and the battery main relay are connected, and an overvoltage preventing means connected to one end of the output of the filter part and connected to a negative electrode and the other side of the smoothing capacitor. Blocking the smooth capacitor charge current and discharge current based on the voltage of the capacitor prevents overvoltage from occurring in the smooth capacitor, and configures a closed loop path through which the current received from the non-contact power supply device can flow. It can be made below a predetermined value.
과전압 방지 수단은 정류부의 입력 노드(N2)에 애노드(anode)가 연결된 제 1, 2 보호 다이오드, 일측이 제 1, 2 보호 다이오드의 캐소드와 공통으로 연결되고, 타측이 그라운드(G)와 연결된 보호 스위치, 및 평활 커패시터의 전압을 기초로 과전압 보호 조건 해당 여부를 판단하고, 판단 결과에 기초하여 보호 스위치를 제어하는 제어수단(434)를 포함할 수 있다. The overvoltage protection means includes: first and second protection diodes having an anode connected to an input node N2 of the rectifier, one side of which is commonly connected to the cathodes of the first and second protection diodes, and the other side of which is connected to ground (G). The control unit 434 may determine whether the overvoltage protection condition is applicable based on the voltage of the switch and the smoothing capacitor, and control the protection switch based on the determination result.
이와 같은 구성에 의하면, 배터리 메인 릴레이가 온인 정상적인 배터리 충전중에 다이오드(상기 직렬 다이오드) 또는 MOSFET과 같은 스위치를 통하지 않고 직접 도선을 통해 전류가 흐르게 되어 충전효율을 향상시킬 수 있는 효과가 있다. 또한, 기존에 사용중인 과전압 보호기능이 없는 비접촉 수전장치에 과전압 방지수단을 추가 설치할 수 있으므로, 경제적인 효과가 있다. According to such a configuration, the current flows directly through the lead wires without passing through a switch such as a diode (the series diode) or a MOSFET during normal battery charging when the battery main relay is turned on, thereby improving charging efficiency. In addition, since the overvoltage protection means can be additionally installed in the non-contact power receiving device that does not have the overvoltage protection function in use, there is an economic effect.
제어수단은 평활 커패시터의 양단 전압을 입력으로 하고, 평활 커패시터의 양단 전압에 해당하는 전압 신호를 출력으로 하되, 입력과 출력은 전기적으로 절연된 절연형 전압 측정기, 절연형 전압 측정기의 출력과 소정의 기준 전압을 비교하는 전압 비교기, 전압 비교기의 출력을 기초로 보호 스위치의 온 또는 오프를 제어하는 스위치 구동기를 포함할 수 있다. The control means inputs the voltage of both ends of the smoothing capacitor and outputs the voltage signal corresponding to the voltage of both ends of the smoothing capacitor. The input and output are electrically insulated voltage meter and the output of the isolated voltage meter and predetermined A voltage comparator for comparing the reference voltage, and a switch driver for controlling the on or off of the protection switch based on the output of the voltage comparator.
과전압 보호 조건 해당 여부는, 평활 커패시터의 양단 전압의 변화율이 소정 값을 초과하는 경우 과전압 보호 조건에 해당한다고 판단할 수 있다.It may be determined whether the overvoltage protection condition corresponds to the overvoltage protection condition when the rate of change of the voltage across the smoothing capacitor exceeds a predetermined value.
또한, 상기 양단 전압의 변화율과 비교하는 소정 값은 평활 커패시터의 커패시턴스 값을 기초로 설정될 수 있다.In addition, a predetermined value compared with the rate of change of the voltage between the both ends may be set based on the capacitance value of the smoothing capacitor.
또한, 상기 양단 전압의 변화율과 비교하는 소정 값은 평활 커패시터의 커패시턴스 값과 DC 링크에 공통으로 연결된 전기장치의 커패시터의 커패시턴스 값을 기초로 설정될 수 있다.In addition, the predetermined value compared with the rate of change of the voltage between the both ends may be set based on the capacitance value of the smoothing capacitor and the capacitance value of the capacitor of the electric device commonly connected to the DC link.
이와 같은 구성에 의하면, 과전압 방지 기능 동작 여부를 신속하게 판단하여, 보호 스위치 등에 지속적으로 전류가 흘러서 발열, 수명저하 등의 문제를 예방할 수 있는 효과가 있다.According to such a configuration, it is possible to quickly determine whether the overvoltage protection function is operating, and to prevent a problem such as heat generation and a decrease in life due to the continuous flow of current through the protection switch.
본 발명에 의하면, 위와 같은 비접촉 수전장치와 비접촉 급전장치를 포함하는 전기차용 과전압 방지 기능을 갖는 비접촉 충전시스템으로서, 비접촉 급전장치는, 충전 중에 비접촉 급전장치가 공급하는 전력량 또는 전류량을 측정하는 측정부, 측정된 전력량 또는 전류량이 소정 값보다 작은 상태가 소정 시간 지속되는 경우, 비접촉 수전장치의 과전압 방지 기능 동작이 실시된 것으로 판단하는 판단부, 판단의 결과를 기초로 충전 전력의 공급이 중단되도록 비접촉 급전장치를 제어하는 제어부를 포함할 수 있다. According to the present invention, a non-contact charging system having an overvoltage protection function for an electric vehicle including the non-contact power receiving device and the non-contact power supply as described above, wherein the non-contact power supply is a measuring unit for measuring the amount of power or current supplied by the non-contact power supply during charging. A determination unit for determining that the overvoltage protection function of the non-contact power receiving device has been performed when the state of the measured power amount or current amount smaller than the predetermined value lasts for a predetermined time; It may include a control unit for controlling the power feeding device.
본 발명은, 전기차의 비접촉 급전장치에 의한 차량내 배터리의 충전에 있어서, 배터리 연결 경로가 차단된 경우, 급전장치로부터 수전되는 전력이 DC 링크에 연결된 평활 커패시터를 충전하는 것을 신속히 금지시키는 것과 동시에 전류원 성격을 갖는 급전장치로부터 수전되는 전류를 일시에 차단시켜 과전압이 발생하는 것을 방지하여 안전성을 향상시킬 수 있고, 충전 중 효율을 향상시킬 수 있으며, 간단한 회로 소자를 제어에 이용함으로써 경제적 장점, 고신뢰성, 빠른 제어 동작, 상위 또는 차량 제어기와 통신이 필요하지 않는 장점 등 효과가 있고, 과전압 방지 수단을 기존의 과전압 보호 기능이 없는 수전장치 등에 설치할 수 있는 경제적인 효과가 있다. According to the present invention, when charging an in-vehicle battery by a non-contact power supply of an electric vehicle, when the battery connection path is interrupted, the current source at the same time quickly inhibits charging of the smoothing capacitor connected to the DC link by the power received from the power supply. It can cut off the current received from the power feeding device at a time to prevent overvoltage from occurring, thereby improving safety, improving efficiency during charging, and using simple circuit elements for controlling economic advantages and high reliability. In addition, there is an effect such as fast control operation, no need to communicate with the host controller or the vehicle controller, and there is an economic effect that the overvoltage protection means can be installed in a power receiving device that does not have an existing overvoltage protection function.
본 발명의 예시적인 실시 형태의 특징, 이점 및 기술적 그리고 산업적 중요성이 첨부 도면을 참조하여 하기에 기술될 것이며, 첨부 도면에서 동일한 도면 부호는 동일한 요소를 지시한다. The features, advantages and technical and industrial significance of exemplary embodiments of the invention will be described below with reference to the accompanying drawings, wherein like reference numerals designate like elements.
도 1은 비접촉 급전장치와 집전장치 및 인버터, 모터, 컨버터 등을 포함한 전기차를 나타내는 도면이다. 1 is a diagram illustrating an electric vehicle including a non-contact power supply device, a current collector, an inverter, a motor, a converter, and the like.
도 2a와 2b는 종래 비접촉 급전장치 및 수전장치의 회로 구성 일례를 나타낸 도면이다. 도 2a 와 도 2b는 각각 LC-LC 방식, LCCL-LCCL 방식 비접촉 충전 회로 구성을 나타낸다. 2A and 2B are diagrams showing an example of a circuit configuration of a conventional non-contact power feeding device and power receiving device. 2A and 2B show a configuration of an LC-LC and LCCL-LCCL non-contact charging circuit, respectively.
도 3a 및 도 3b는 도 2a, 도 2b에 나타난 종래 비접촉 급전장치 및 수전장치의 등가 회로 구성과, 배터리 메인 릴레이를 오프하는 경우 배터리 충전 전류 및 평활 커패시터 전압의 일례를 나타낸 도면이다. 3A and 3B are diagrams showing an equivalent circuit configuration of the conventional non-contact power feeding device and power receiving device shown in FIGS. 2A and 2B, and an example of a battery charging current and a smoothing capacitor voltage when the battery main relay is turned off.
도 4는 본 발명의 실시 형태 1에 의한 비접촉 수전장치용 과전압 보호 수단의 회로 구성의 일례를 나타낸 도면이다. 4 is a diagram showing an example of a circuit configuration of an overvoltage protection means for a non-contact power receiving device according to Embodiment 1 of the present invention.
도 5a 내지 도 5e는 본 발명의 실시 형태 2에 의한 비접촉 수전장치용 과전압 보호 수단의 회로 구성의 일례를 나타낸 도면이다. 5A to 5E are diagrams showing an example of a circuit configuration of the overvoltage protection means for a non-contact power receiving device according to the second embodiment of the present invention.
도 6a 내지 도 6c는 본 발명의 실시 형태 3에 의한 비접촉 수전장치용 과전압 보호 수단의 회로 구성의 일례를 나타낸 도면이다. 6A to 6C are diagrams showing an example of a circuit configuration of the overvoltage protection means for a non-contact power receiving device according to Embodiment 3 of the present invention.
이하에서, 본 발명의 실시 형태에 대하여, 도면을 참조하면서 상세하게 설명한다. 이하에서는 복수의 실시 형태에 대하여 설명하지만, 각 실시 형태에서 설명된 구성을 적당히 조합하는 것은 출원 당초부터 예정되어 있다. 또한, 도면 중 동일 또는 상당 부분에는 동일한 부분을 붙이고, 그 설명은 반복하지 않는다.EMBODIMENT OF THE INVENTION Hereinafter, embodiment of this invention is described in detail, referring drawings. Hereinafter, although some embodiment is described, combining suitably the structure demonstrated by each embodiment is anticipated from the beginning of an application. In addition, the same part is attached | subjected to the same or equivalent part in drawing, and the description is not repeated.
도 1은 비접촉 급전장치와 집전장치 및 인버터, 모터, 컨버터 등을 포함한 전기차를 나타낸다. 1 illustrates an electric vehicle including a non-contact power supply device and a current collector and an inverter, a motor, a converter, and the like.
명세서 전체에 걸쳐서, 전기차는 순수 전기차 뿐만 아니라, 플러그인 하이브리드, 충전가능한 연료전지차, 전기자전거 등 충전 에너지를 이용하여 주행하는 이동체를 통칭한다. Throughout the specification, not only pure electric vehicles, but also electric vehicles, collectively refer to mobile vehicles that run using charging energy such as plug-in hybrids, rechargeable fuel cell vehicles, and electric bicycles.
도 2a 및 도 2b는 종래의 전기차용 비접촉 급전장치와 집전장치를 포함한 충전 시스템을 나타낸다. 도 2a, 2b는 각각 종래 사용되는 LC-LC방식 및 LCCL-LCCL방식 전기차용 비접촉 급전장치(101, 102)와 집전장치(210, 220)를 나타낸다. 2A and 2B illustrate a charging system including a non-contact power supply device and a current collector for a conventional electric vehicle. 2A and 2B show non-contact power supply devices 101 and 102 and current collectors 210 and 220 for an LC-LC method and an LCCL-LCCL method electric vehicle, respectively, which are conventionally used.
도 3a는 상기 LC-LC방식 또는 LCCL-LCCL방식 전기차용 비접촉 급전장치(101, 102)와 집전장치(210, 220)의 등가회로를 나타낸다. 여기서, 비접촉 급전장치와 비접촉 수전장치의 수전부 및 필터부는 등가적으로 전류원으로 볼 수 있고, 이는 정현파의 전류원(103)으로 도시하였다. 도 3b는 배터리 충전전류(위쪽 도면)와 평활 커패시터(234)의 전압(아래쪽 도면)을 도시하였다. 배터리 메인 릴레이가 오프(개방)되는 경우, 배터리 충전 전류가 0이 되고, 평활 커패시터(234)의 전압이 증가되어 과전압이 유기되는 종래 문제점을 나타낸다. 3A illustrates an equivalent circuit of the non-contact power supply devices 101 and 102 and the current collectors 210 and 220 for the LC-LC method or the LCCL-LCCL method electric vehicle. Here, the power receiving portion and the filter portion of the non-contact power feeding device and the non-contact power receiving device can be equivalently viewed as a current source, which is shown as a sine wave current source 103. 3B shows the battery charge current (upper figure) and the voltage of the smoothing capacitor 234 (lower figure). When the battery main relay is turned off (opened), the battery charging current becomes zero, and the voltage of the smoothing capacitor 234 is increased, indicating a conventional problem that overvoltage is induced.
[실시 형태 1] Embodiment 1
도 4에 도시한 바와 같이, 비접촉 수전장치(230)는 전기차의 내부에 구비되고, 비접촉 급전장치로부터 전력을 수전하는 수전부(231), 수전부(231)의 출력과 연결된 필터부(232), 필터부(232)의 출력과 연결된 정류부(233), 정류부(233)의 출력과 연결된 과전압 방지 수단(410), 과전압 방지 수단(410)과 배터리 메인 릴레이(302)가 연결된 DC 링크(N0)에 연결된 평활 커패시터(234)를 포함한다. As shown in FIG. 4, the non-contact power receiver 230 is provided inside the electric vehicle, and includes a power receiver 231 for receiving electric power from the non-contact power feeder, and a filter unit 232 connected to the output of the power receiver 231. The rectifier 233 connected to the output of the filter unit 232, the overvoltage preventing unit 410 connected to the output of the rectifying unit 233, the DC link N0 to which the overvoltage preventing unit 410 is connected to the battery main relay 302. And a smoothing capacitor 234 connected to it.
여기서, 필터부(232)는 공진 네트워크일 수 있다. Here, the filter unit 232 may be a resonant network.
여기서, 수전부(231)는 자기장 형태로 전달되는 전력을 수신하고, 정류부(233)은 다이오드를 이용한 브릿지 회로로 구성될 수 있으며, 평활 커패시터는 정류부(233)의 출력 전압을 평활하는 기능을 한다. Here, the power receiver 231 receives the power delivered in the form of a magnetic field, the rectifier 233 may be configured as a bridge circuit using a diode, and the smoothing capacitor functions to smooth the output voltage of the rectifier 233. .
또한, 배터리 메인 릴레이(302)의 일측은 배터리(301)과 연결되고, 타측은 DC 링크(N0)에 연결되는데, DC 링크에는 배터리(301)의 충전 에너지를 이용하는 전기장치(예를 들어, 인버터, 컨버터 등, 도면에 미도시), 수전장치(충전기)가 공통으로 연결될 수 있다.In addition, one side of the battery main relay 302 is connected to the battery 301, the other side is connected to the DC link (N0), the DC link is an electrical device (for example, an inverter using the charging energy of the battery 301) , Converter, etc., not shown in the drawing), a power receiving device (charger) may be commonly connected.
본 실시형태에서, 과전압 방지 수단(410)은, 평활 커패시터(234)의 전압을 기초로 평활 커패시터(234) 충전 전류 및 방전 전류를 차단하여 평활 커패시터(234)에 과전압이 발생되는 것을 방지하고, 비접촉 급전장치(101, 102)로부터 수전한 전류가 흐를 수 있는 폐루프 경로를 구성하여 수전한 전류의 변화율이 소정 값 이하가 되도록 할 수 있다. In the present embodiment, the overvoltage preventing means 410 blocks the smoothing capacitor 234 charging current and the discharging current based on the voltage of the smoothing capacitor 234 to prevent the overvoltage from occurring in the smoothing capacitor 234, A closed loop path through which the electric current received from the non-contact power supply devices 101 and 102 can flow can be configured so that the rate of change of the electric current received is less than or equal to a predetermined value.
과전압 방지 수단은, 정류된 전류가 평활 커패시터를 충전하지 못하도록 정류부 전단 혹은 후단에서 단락된 경로를 제공해 줄 수 있다.The overvoltage protection means can provide a shorted path at the front or rear of the rectifier to prevent the rectified current from charging the smoothing capacitor.
바람직하게는, 과전압 방지 수단(410)은 정류부(233)와 평활 커패시터(234) 사이에 구비된 직렬 다이오드(411), 정류부(233)와 직렬 다이오드(411) 사이에 병렬로 구비된 보호 스위치(412), 및 평활 커패시터(234)의 전압을 기초로 과전압 보호 조건 해당 여부를 판단하고, 판단 결과에 기초하여 보호 스위치(412)를 제어하는 제어 수단을 포함할 수 있다. Preferably, the overvoltage preventing means 410 may include a series diode 411 provided between the rectifier 233 and the smoothing capacitor 234, and a protection switch provided in parallel between the rectifier 233 and the series diode 411. 412, and a control means for determining whether the overvoltage protection condition is applicable based on the voltage of the smoothing capacitor 234, and controlling the protection switch 412 based on the determination result.
바람직하게는, 제어수단은 평활 커패시터(234)의 양단 전압을 입력으로 하고, 평활 커패시터(234)의 양단 전압에 해당하는 전압 신호를 출력으로 하되, 입력과 출력은 전기적으로 절연된 절연형 전압 측정기, 절연형 전압 측정기의 출력과 소정의 기준 전압을 비교하는 전압 비교기, 및 전압 비교기의 출력을 기초로 보호 스위치의 온 또는 오프를 제어하는 스위치 구동기를 포함할 수 있다. Preferably, the control means inputs the voltage across the smoothing capacitor 234 and outputs a voltage signal corresponding to the voltage across the smoothing capacitor 234, but the input and output are electrically insulated voltage measuring devices. A voltage comparator comparing the output of the isolated voltage meter with a predetermined reference voltage, and a switch driver controlling on or off of the protection switch based on the output of the voltage comparator.
바람직하게는, 과전압 보호 조건 해당 여부는, 평활 커패시터(234)의 양단 전압의 변화율이 소정 값을 초과하는 경우 과전압 보호 조건에 해당한다고 판단할 수 있다. Preferably, whether or not the overvoltage protection condition corresponds to the overvoltage protection condition may be determined when the rate of change of the voltage across the smoothing capacitor 234 exceeds a predetermined value.
또한, DC 링크에 공통으로 연결된 전기장치(예를 들어, 인버터, 컨버터)의 DC 링크 커패시터의 방전을 위한 방전 저항 시스템이 구비될 수 있다(미도시). 과전압 방지 수단의 제어 수단은 상기 방전 저항 시스템에 구동 신호를 직접 전송하여 상기 방전 저항 시스템이 동작하게 하거나, 상기 전기장치의 제어기에 강제 방전 신호를 전송하여 상기 전기 장치의 제어기가 상기 방전 저항 시스템을 구동할 수 있다. 상기 방전 저항 시스템이 상기 평활 커패시터를 방전시킴으로써 DC 링크의 전압을 낮출 수 있다. 이러한 구성에 의하면, 인버터 등이 활성화되지 않는 충전 중인 차량에서, 배터리 메인 릴레이가 오프되는 경우에도, DC 링크에 연결된 커패시터에 충전된 에너지를 신속하게 방전시킬 수 있으므로, 사용자 전기 안전 및 시스템 보호 성능을 향상시킬 수 있는 효과가 있다. In addition, a discharge resistor system for discharging a DC link capacitor of an electric device (eg, an inverter or a converter) commonly connected to the DC link may be provided (not shown). The control means of the overvoltage preventing means directly transmits a driving signal to the discharge resistance system to operate the discharge resistance system, or transmits a forced discharge signal to a controller of the electric device so that the controller of the electric device controls the discharge resistance system. I can drive it. The discharge resistor system can lower the voltage of the DC link by discharging the smoothing capacitor. According to this configuration, even in a charging vehicle in which an inverter or the like is not activated, even when the battery main relay is turned off, energy charged in a capacitor connected to the DC link can be quickly discharged, thereby improving user electrical safety and system protection performance. There is an effect that can be improved.
또한, 과전압 방지 수단의 제어 수단은 배터리 메인 릴레이가 오프되는 경우 DC 링크에 공통으로 연결된 전기장치(인버터 등)의 제어기를 수면(Sleep) 모드에서 활성(Active) 모드로 전환시키는 기능(Wake-up 기능)을 갖을 수 있다. 과전압 방지 수단은 활성화된 전기장치(인버터 등)의 제어기에 강제 방전을 지시할 수 있다.In addition, the control means of the overvoltage protection means (Wake-up) to switch the controller of the electrical device (inverter, etc.) commonly connected to the DC link from the sleep mode to the active mode when the battery main relay is turned off Function). The overvoltage prevention means may instruct a forced discharge of the controller of the activated electric device (inverter, etc.).
또한, 과전압 방지 수단에 의해 활성화된 인버터의 제어기는 DC 링크에 공통으로 연결된 인버터를 이용해 모터에 전류를 인가함으로써 DC 링크에 연결된 커패시터를 방전시킬 수 있다. 여기서, 인버터가 인가하는 전류는 모터를 회전시키지 않도록 전류 제어되는 것을 특징으로 할 수 있다. In addition, the controller of the inverter activated by the overvoltage preventing means may discharge the capacitor connected to the DC link by applying a current to the motor using an inverter commonly connected to the DC link. Here, the current applied by the inverter may be characterized in that the current is controlled so as not to rotate the motor.
또한, 과전압 방지 수단의 제어수단에 의해 활성화된 컨버터의 제어기는 DC 링크에 공통으로 연결된 컨버터를 이용해 보조 배터리 또는 보조 배터리와 연결된 전장부하에 충전 또는 전력을 공급함으로써 DC 링크에 연결된 커패시터를 방전시킬 수 있다. 여기서, 보조 배터리가 만충전 상태인 경우, 전장부하를 강제로 온 (동작) 시킬 수 있다. 또한, 상기 전장부하는 사용자가 오감으로 인식할 수 없는 전장부하로 한정할 수 있다. 예를 들어, 상기 전장부하는 냉각수 워터펌프, 라디에이터 팬, 배터리 냉각팬, PTC히터, 전동식 오일펌프 등일 수 있다. In addition, the controller of the converter activated by the control means of the overvoltage protection means can discharge the capacitor connected to the DC link by charging or supplying power to the auxiliary battery or the electric load connected to the auxiliary battery using a converter commonly connected to the DC link. have. Here, when the auxiliary battery is in a fully charged state, the electric load may be forcibly turned on (operation). In addition, the electric load may be limited to the electric load that is not recognized by the user as the five senses. For example, the electric load may be a coolant water pump, a radiator fan, a battery cooling fan, a PTC heater, an electric oil pump, or the like.
또한, 과전압 방지수단은 위에 기재된 과전압 방지 방법 중 적어도 하나 이상을 동시에 실시할 수 있다.In addition, the overvoltage preventing means may simultaneously perform at least one or more of the overvoltage preventing methods described above.
바람직하게는, 직렬 다이오드(411)는, 정류부(233)의 출력(N1)과 직렬 다이오드(411)의 애노드(anode)측이 연결되고, 평활 커패시터(234)의 양극과 직렬 다이오드(411)의 캐소드(cathode)측이 연결되어, 보호 스위치(412)가 온(클로우즈)되는 경우에, 정류부(233)의 출력인 노드(N1)와 평활 커패시터(234) 양극(N0)을 전기적으로 분리시켜, 정류부(233) 및 보호 스위치(412)와 평활 커패시터(234)사이에 전류가 흐르지 않도록 할 수 있다.Preferably, the series diode 411 is connected to the output N1 of the rectifier 233 and the anode side of the series diode 411, and has an anode of the smoothing capacitor 234 and a series diode 411. When the cathode side is connected and the protection switch 412 is turned on (closed), the node N1, which is an output of the rectifier 233, and the anode N0 of the smoothing capacitor 234 are electrically separated from each other. A current may not flow between the rectifier 233 and the protection switch 412 and the smoothing capacitor 234.
[실시 형태 2] Embodiment 2
도 5a에 도시한 바와 같이, 비접촉 수전장치(230)는 전기차의 내부에 구비되고, 비접촉 급전장치로부터 전력을 수전하는 수전부(231), 수전부(231)의 출력과 연결된 필터부(232), 필터부(232)의 출력과 연결된 정류부(233), 정류부(233)의 출력과 연결된 과전압 방지 수단(420), 과전압 방지 수단(420)과 배터리 메인 릴레이(302)가 연결된 DC 링크(N0)에 연결된 평활 커패시터(234)를 포함한다. As shown in FIG. 5A, the non-contact power receiver 230 is provided inside the electric vehicle, and includes a power receiver 231 for receiving electric power from the non-contact power feeder, and a filter unit 232 connected to the output of the power receiver 231. The rectifier 233 connected to the output of the filter unit 232, the overvoltage preventing unit 420 connected to the output of the rectifying unit 233, the DC link N0 to which the overvoltage preventing unit 420 is connected to the battery main relay 302. And a smoothing capacitor 234 connected to it.
본 실시형태에서, 과전압 방지 수단(420)은, 평활 커패시터(234)의 전압을 기초로 평활 커패시터(234) 충전 전류 및 방전 전류를 차단하여 평활 커패시터(234)에 과전압이 발생되는 것을 방지하고, 비접촉 급전장치(101, 102)로부터 수전한 전류가 흐를 수 있는 폐루프 경로를 구성하여 수전한 전류의 변화율이 소정 값 이하가 되도록 할 수 있다. In the present embodiment, the overvoltage preventing means 420 blocks the smoothing capacitor 234 charging current and the discharging current based on the voltage of the smoothing capacitor 234 to prevent the overvoltage from occurring in the smoothing capacitor 234, A closed loop path through which the electric current received from the non-contact power supply devices 101 and 102 can flow can be configured so that the rate of change of the electric current received is less than or equal to a predetermined value.
과전압 방지 수단은, 정류된 전류가 평활 커패시터를 충전하지 못하도록 정류부 전단 혹은 후단에서 단락된 경로를 제공해 줄 수 있다.The overvoltage protection means can provide a shorted path at the front or rear of the rectifier to prevent the rectified current from charging the smoothing capacitor.
바람직하게는, 과전압 방지 수단(420)은 정류부(233)와 평활 커패시터(234) 사이에 구비된 게이트 스위치(421), 정류부(233)와 게이트 스위치(421) 사이에 병렬로 구비된 보호 스위치(422), 및 평활 커패시터(234)의 양단 전압을 기초로 과전압 보호 조건 해당 여부를 판단하고, 판단 결과에 기초하여 게이트 스위치(421) 및 보호 스위치(422)를 제어하는 제어 수단(423)을 포함할 수 있다.Preferably, the overvoltage protection means 420 may include a gate switch 421 provided between the rectifier 233 and the smoothing capacitor 234, and a protection switch provided in parallel between the rectifier 233 and the gate switch 421. 422, and a control means 423 for determining whether the overvoltage protection condition is applicable based on the voltage across the smoothing capacitor 234, and controlling the gate switch 421 and the protection switch 422 based on the determination result. can do.
바람직하게는, 게이트 스위치(421)는 릴레이, MOSFET 중 하나이고, 보호 스위치(422)는 싸이리스터, MOSFET, IGBT, SiC MOSFET 중 하나일 수 있다.Preferably, the gate switch 421 may be one of a relay and a MOSFET, and the protection switch 422 may be one of a thyristor, a MOSFET, an IGBT, or a SiC MOSFET.
여기서, MOSFET는 순방향 전압 감소분이 다이오드의 순방향 전압 감소분에 비해서 작으므로, 충전 효율을 증대할 수 있다.Here, the MOSFET has a small forward voltage reduction compared to the forward voltage reduction of the diode, so that the charging efficiency can be increased.
바람직하게는, 제어 수단은, 도 5b에 나타낸 바와 같이, 평활 커패시터(234)의 양단 전압을 입력으로 하고, 평활 커패시터(234)의 양단 전압에 해당하는 전압 신호를 출력으로 하되, 입력과 출력은 전기적으로 절연된 절연형 전압 측정기, 절연형 전압 측정기의 출력과 소정의 기준 전압을 비교하는 전압 비교기, 전압 비교기의 출력을 기초로 보호 스위치 및 게이트 스위치의 온 또는 오프를 제어하는 스위치 구동기, 및 전압 비교기의 출력과 게이트 스위치(421)용 스위치 구동기 사이에 신호 반전기를 구비할 수 있다. Preferably, as shown in FIG. 5B, the control means inputs a voltage across the smoothing capacitor 234 and outputs a voltage signal corresponding to the voltage across the smoothing capacitor 234. An electrically insulated isolated voltage meter, a voltage comparator for comparing the output of the isolated voltage meter with a predetermined reference voltage, a switch driver for controlling on or off of the protective switch and the gate switch based on the output of the voltage comparator, and a voltage A signal inverter may be provided between the output of the comparator and the switch driver for the gate switch 421.
또한, 전압 비교기의 출력과 보호 스위치(422)용 스위치 구동기 사이에 신호 반전기를 구비할 수 있다. In addition, a signal inverter may be provided between the output of the voltage comparator and the switch driver for the protection switch 422.
또한, 제어 수단은, 도 5b에 나타낸 바와 같이, 평활 커패시터(234)의 양단 전압을 입력으로 하고, 평활 커패시터(234)의 양단 전압에 해당하는 전압 신호를 출력으로 하되, 입력과 출력은 전기적으로 절연된 절연형 전압 측정기, 절연형 전압 측정기의 출력과 소정의 기준 전압을 비교하는 전압 비교기, 전압 비교기의 출력을 기초로 보호 스위치 및 게이트 스위치의 온 또는 오프를 제어하는 스위치 구동기, 및 전압 비교기의 출력과 게이트 스위치(421)용 스위치 구동기 사이에 신호 반전기를 구비할 수 있다. In addition, as shown in FIG. 5B, the control means inputs the voltage across the smoothing capacitor 234 and outputs the voltage signal corresponding to the voltage across the smoothing capacitor 234, but the input and the output are electrically An isolated isolated voltage meter, a voltage comparator for comparing the output of the isolated voltage meter with a predetermined reference voltage, a switch driver for controlling on or off of the protective switch and the gate switch based on the output of the voltage comparator, and a voltage comparator A signal inverter may be provided between the output and the switch driver for the gate switch 421.
또한, 제어 수단은, 도 5c에 나타낸 바와 같이, DC 링크 전압(N0와 G노드 사이 전압)의 비례되는 전압(a노드 전압)과 소정의 제1전압(Vref_high) 및 제2전압(Vref_low)와 비교하고 이를 기초로 보호 스위치 및 게이트 스위치의 온 또는 오프 신호(SW1,2)를 생성할 수 있다. In addition, as shown in FIG. 5C, the control means includes a proportional voltage (a node voltage) of the DC link voltage N0 and a G node, a predetermined first voltage Vref_high, and a second voltage Vref_low. Compare and generate on or off signals SW1 and 2 of the protection switch and the gate switch based on the comparison.
여기서, a노드 전압은, 도 5c에 나타낸 바와 같이, 복수의 저항을 이용해서 DC 링크 전압에 비례한 전압을 생성할 수 있다.Here, the node a voltage can generate a voltage proportional to the DC link voltage using a plurality of resistors, as shown in FIG. 5C.
여기서, a노드 전압은, 도 5d에 나타낸 바와 같이, 하나의 저항과 제너다이오드 및 커패시터를 이용해서 DC 링크 전압에 비례한 전압을 생성할 수 있다.Here, the node a voltage, as shown in FIG. 5D, may generate a voltage proportional to the DC link voltage using one resistor, a zener diode, and a capacitor.
또한, 제어 수단은, 도 5e에 나타낸 바와 같이, 소정의 제1전압(Vref_high) 및 제2전압(Vref_low)을 선정하는데 있어서, DC링크 전압이 배터리 전압 사용 범위의 하한 보다 낮은 경우 SW1단자에 오프신호를 발생시키고, DC링크 전압이 배터리 전압 사용 범위의 상한 보다 높은 전압에서 스위치 SW1단자에 온신호를 발생시키도록 히스테리시스 속성을 갖을 수 있다. Further, as shown in Fig. 5E, the control means selects the predetermined first voltage Vref_high and the second voltage Vref_low, and turns off the SW1 terminal when the DC link voltage is lower than the lower limit of the battery voltage usage range. And a hysteresis property such that the DC link voltage generates an on signal to the switch SW1 terminal at a voltage higher than the upper limit of the battery voltage usage range.
또한, 제어수단의 전원을 공급하는 보조전원은, 전원이 공급되지 않는 경우에도 동작해야 하므로, 평활 캐패시터와 연결되어 전원을 얻을 수 있다.In addition, since the auxiliary power supply for supplying the power of the control means must operate even when the power is not supplied, the auxiliary power can be connected to the smoothing capacitor to obtain the power.
또한, 보호 스위치가 온 되면 상기 보조전원에서 소모하는 전력에 의해 평활 커패시터가 서서히 방전되며 히스테리시스 낮은쪽 기준전압 이하가 되면 보호 스위치가 오프, 게이트 스위치가 온되어 다시 평활 커패시터 전압이 상승할 수 있다. 이 후에 지상측 인버터 제어기에 통보되어 지상측 인버터를 정지할 수 있다. In addition, when the protection switch is turned on, the smoothing capacitor is gradually discharged by the power consumed by the auxiliary power supply. When the protection switch is lower than the lower reference voltage of the hysteresis, the protection switch is turned off and the gate switch is turned on to increase the smoothing capacitor voltage again. The ground side inverter can then be notified to stop the ground side inverter.
[실시 형태 3]Embodiment 3
도 6에 도시한 바와 같이, 전기차용 과전압 방지 수단을 포함한 비접촉 수전장치(230)는, 전기차의 내부에 구비되고, 비접촉 급전장치로부터 전력을 수전하는 수전부(231), 수전부(231)의 출력과 연결된 필터부(232), 필터부(232)의 출력과 연결된 정류부(233), 정류부(233)의 출력과 배터리 메인 릴레이(302)가 연결된 DC 링크(N0)에 연결된 평활 커패시터(234), 필터부(232)의 출력과 일측이 연결되고, 평활 커패시터(234)의 음극과 타측이 연결된 과전압 방지수단(430)을 포함하고, 과전압 방지 수단(430)은, 평활 커패시터(234)의 전압을 기초로 평활 커패시터(234) 충전 전류 및 방전 전류를 차단하여 평활 커패시터(234)에 과전압이 발생되는 것을 방지하고, 비접촉 급전장치(101)로부터 수전한 전류가 흐를 수 있는 폐루프 경로를 구성하여 수전한 전류의 변화율이 소정 값 이하가 되도록 할 수 있다. As shown in FIG. 6, the non-contact power receiving device 230 including the overvoltage preventing means for an electric vehicle is provided inside the electric vehicle and includes the power receiving unit 231 and the power receiving unit 231 which receive electric power from the non-contact power feeding device. Filter unit 232 connected to the output, rectifier 233 connected to the output of the filter unit 232, smoothing capacitor 234 connected to the DC link (N0) connected to the output of the rectifier 233 and the battery main relay 302 The output of the filter unit 232 is connected to one side, and the negative electrode and the other side of the smoothing capacitor 234 includes an overvoltage preventing means 430, the overvoltage preventing means 430, the voltage of the smoothing capacitor 234 By blocking the charging and discharging currents of the smoothing capacitor 234 to prevent overvoltage from occurring in the smoothing capacitor 234, and constructing a closed loop path through which the current received from the non-contact power supply device 101 can flow. The rate of change of received current is below a predetermined value Can be
본 실시형태에서, 과전압 방지 수단(430)은 정류부(233)의 입력 노드(N2, N3)에 애노드(anode)가 연결된 제 1, 2 보호 다이오드(431, 432), 일측이 제 1, 2 보호 다이오드(431, 432)의 캐소드와 공통으로 연결되고, 타측이 그라운드(G)와 연결된 보호 스위치(433), 및 평활 커패시터(234)의 전압을 기초로 과전압 보호 조건 해당 여부를 판단하고, 판단 결과에 기초하여 보호 스위치(433)를 제어하는 제어수단(434)를 포함할 수 있다. In the present embodiment, the overvoltage protection means 430 includes first and second protection diodes 431 and 432 having an anode connected to the input nodes N2 and N3 of the rectifying unit 233, and one side of the first and second protection diodes 431 and 432. Based on the voltage of the protection switch 433 and the smoothing capacitor 234 connected in common with the cathodes of the diodes 431 and 432 and the other side connected to the ground G, it is determined whether the overvoltage protection condition is applicable, and the determination result. Control means 434 for controlling the protection switch 433 based on the.
바람직하게는, 제어수단은 평활 커패시터(234)의 양단 전압을 입력으로 하고, 평활 커패시터(234)의 양단 전압에 해당하는 전압 신호를 출력으로 하되, 입력과 출력은 전기적으로 절연된 절연형 전압 측정기, 절연형 전압 측정기의 출력과 소정의 기준 전압을 비교하는 전압 비교기, 및 전압 비교기의 출력을 기초로 보호 스위치의 온 또는 오프를 제어하는 스위치 구동기를 포함할 수 있다. Preferably, the control means inputs the voltage across the smoothing capacitor 234 and outputs a voltage signal corresponding to the voltage across the smoothing capacitor 234, but the input and output are electrically insulated voltage measuring devices. A voltage comparator comparing the output of the isolated voltage meter with a predetermined reference voltage, and a switch driver controlling on or off of the protection switch based on the output of the voltage comparator.
바람직하게는, 과전압 보호 조건 해당 여부는, 평활 커패시터(234)의 양단 전압의 변화율이 소정 값을 초과하는 경우 과전압 보호 조건에 해당한다고 판단할 수 있다. Preferably, whether or not the overvoltage protection condition corresponds to the overvoltage protection condition may be determined when the rate of change of the voltage across the smoothing capacitor 234 exceeds a predetermined value.
또한, 필터부(232)의 출력(N2, N3)은 사인파 형태일 수 있고, N2와 N3의 전압차를 V23라고 할때, V23 이 양의 값이면 제 1 보호 다이오드(431), 보호 스위치(433) 및 정류부의 일측 암의 아래쪽 다이오드(G에서 N3로 전류가 흐르도록)가 도통될 수 있고, V23 이 음의 값이면 제 2 보호 다이오드(432), 보호 스위치(433) 및 정류부의 타측 암의 아래쪽 다이오드(G에서 N2로 전류가 흐르도록)가 도통될 수 있다.In addition, the outputs N2 and N3 of the filter unit 232 may have a sine wave shape, and when the voltage difference between N2 and N3 is V23, if V23 is a positive value, the first protection diode 431 and the protection switch ( 433) and a lower diode (so that current flows from G to N3) of one arm of the rectifier can be conducted, and if V23 is a negative value, the second protection diode 432, the protection switch 433, and the other arm of the rectifier The bottom diode of G (so that current flows from G to N2) may be conducted.
[실시 형태 4] Embodiment 4
위에 기재한 바와 같은 비접촉 수전장치와 비접촉 급전장치를 포함하는 전기차용 과전압 방지 기능을 갖는 비접촉 충전시스템에서, 비접촉 급전장치는, 충전 중에 비접촉 급전장치가 공급하는 전력량 또는 전류량을 측정하는 측정부, 측정된 전력량 또는 전류량이 소정 기준 값보다 작은 상태가 소정 시간 지속되는 경우, 비접촉 수전장치(230)의 과전압 방지 기능 동작이 실시된 것으로 판단하는 판단부, 판단의 결과를 기초로 충전 전력의 공급이 중단되도록 비접촉 급전장치를 제어하는 제어부를 포함할 수 있다. In a non-contact charging system having an overvoltage protection function for an electric vehicle including a non-contact power receiver and a non-contact power supply as described above, the non-contact power supply includes a measuring unit for measuring the amount of power or current supplied by the non-contact power supply during charging, measurement In the case where the amount of power or the current amount smaller than the predetermined reference value lasts for a predetermined time, the determination unit that determines that the overvoltage protection function of the non-contact power receiving device 230 is performed, and the supply of the charging power is stopped based on the result of the determination. It may include a control unit for controlling the non-contact power supply device.
본 실시형태에서, 과전압 방지 기능이 동작하면, 수전장치의 정류부 입력단 전압이 0이 될 수 있고, 따라서, 급전장치의 출력전류도 0이 될 수 있으며, 소정 시간 급전장치의 출력전류가 0으로 지속되는 경우, 급전장치와 수전장치간 또는 급전장치와 차량 제어기간 별도의 통신에 의하지 않고서도, 과전압 보호를 위해 급전장치의 동작을 정지시킬 수 있다. In this embodiment, when the overvoltage protection function is operated, the rectifier input terminal voltage of the power receiving device can be zero, and therefore, the output current of the power feeding device can also be 0, and the output current of the power feeding device is maintained at 0 for a predetermined time. In this case, the operation of the power supply device can be stopped for overvoltage protection without the separate communication between the power supply device and the power reception device or the power supply device and the vehicle control period.
또한, 상기 소정 기준 값은 전기차의 배터리(301)의 충전량(SOC), 상기 전력량 또는 전류량을 측정한 시각으로부터 소정의 이전 시간 동안 상기 측정된 전력량 또는 전류량의 평균값 및 상기 전기차의 제어부에서 제공한 정보 중 적어도 어느 하나를 기초로 결정될 수 있다. 이와 같은 구성에 의하면, 과전압 방지 기능 동작 여부를 신속하게 판단하여, 보호 스위치 등에 지속적으로 전류가 흘러서 발열, 수명저하 등의 문제가 발생하지 않도록 예방할 수 있는 효과가 있다. In addition, the predetermined reference value is an average value of the measured amount of electric power or amount of electric current during a predetermined previous time from the time when the charge amount SOC of the battery 301 of the electric vehicle, the amount of electric power or the amount of electric current is measured, and the information provided by the controller of the electric vehicle. It may be determined based on at least one of the. According to such a configuration, it is possible to quickly determine whether the overvoltage protection function is operating, and to prevent a current such as heat generation and a decrease in life due to the continuous flow of current through a protection switch.
또한, 상기 소정의 이전 시간은 30초에서 30분 범위내에서 설정될 수 있다. In addition, the predetermined previous time may be set within a range of 30 seconds to 30 minutes.
이상과 같이 본 발명에서는 구체적인 구성 소자 등과 같은 특정 사항들과 한정된 실시예 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것 일 뿐, 본 발명은 상기의 일 실시예에 한정되는 것이 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, the present invention has been described by specific embodiments such as specific components and the like. However, this is merely provided to help a more general understanding of the present invention, and the present invention is limited to the above embodiment. However, various modifications and variations are possible to those skilled in the art to which the present invention pertains.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허 청구 범위뿐 아니라 이 특허 청구 범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Therefore, the spirit of the present invention should not be limited to the described embodiments, and all the things equivalent to or equivalent to the claims as well as the following claims will fall within the scope of the present invention. .
[부호의 설명][Description of the code]
100 : 비접촉 급전장치100: non-contact power supply device
101 : (LC방식) 비접촉 급전장치101: (LC type) non-contact power supply device
102 : (LCCL방식) 비접촉 급전장치102: (LCCL type) non-contact power feeding device
103 : (등가) 정현파 전류원103: (equivalent) sine wave current source
200 : 비접촉 수전장치200: non-contact receiving device
210 : LC방식의 비접촉 수전장치210: LC contactless power receiver
220 : LCCL방식 비접촉 수전장치220: LCCL non-contact receiving device
230 : 수전장치230: power receiver
231 : 수전부231: faucet
232 : 필터부232: filter unit
233 : 정류부233: rectifier
234 : 평활 커패시터234: smoothing capacitor
301 : 배터리301: Battery
302 : 배터리 메인 릴레이302: Battery Main Relay
410, 420, 430 : 과전압 방지 수단410, 420, 430: overvoltage protection means
411 : 직렬 다이오드411: series diode
412, 422 : 보호 스위치412, 422: protection switch
421 : 게이트 스위치421: Gate Switch
431 : 제 1 보호 다이오드431: first protection diode
432 : 제 2 보호 다이오드432: second protection diode
433 : 보호 스위치433: protection switch
434 : 스위치 제어수단434: switch control means

Claims (11)

  1. 전기차용 과전압 방지 수단을 포함한 비접촉 수전장치로서, A non-contact power receiver comprising an overvoltage protection means for an electric vehicle,
    상기 비접촉 수전장치는,The non-contact receiving device,
    전기차의 내부에 구비되고;It is provided in the inside of an electric vehicle;
    비접촉 급전장치로부터 전력을 수전하는 수전부;A power receiving unit receiving electric power from the non-contact power supply device;
    상기 수전부의 출력과 연결된 필터부; A filter unit connected to an output of the power receiving unit;
    상기 필터부의 출력과 연결된 정류부;A rectifier connected to the output of the filter unit;
    상기 정류부의 출력과 연결된 과전압 방지 수단; 및Overvoltage protection means connected to the output of said rectifier; And
    상기 과전압 방지 수단과 배터리 메인 릴레이가 연결된 DC 링크에 연결된 평활 커패시터;A smoothing capacitor connected to the DC link to which the overvoltage preventing means and the battery main relay are connected;
    를 포함하고,Including,
    상기 과전압 방지 수단은,The overvoltage prevention means,
    상기 평활 커패시터의 전압을 기초로 상기 평활 커패시터의 충전 전류 및 방전 전류를 차단하여 상기 평활 커패시터에 과전압이 발생되는 것을 방지하고, 비접촉 급전장치로부터 수전한 전류가 흐를 수 있는 폐루프 경로를 구성하여 상기 수전한 전류의 변화율이 소정 값 이하가 되도록 하는 것;Blocking the charging current and the discharge current of the smoothing capacitor based on the voltage of the smoothing capacitor to prevent the overvoltage from occurring in the smoothing capacitor, and configure a closed loop path through which the current received from the non-contact power supply device can flow Such that the rate of change of the received current is equal to or less than a predetermined value;
    을 특징으로 하는 전기차용 과전압 방지 기능을 갖는 비접촉 수전장치.Non-contact power receiving device having an over-voltage protection function for an electric vehicle.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 과전압 방지 수단은The overvoltage prevention means
    상기 정류부와 상기 평활 커패시터 사이에 구비된 직렬 다이오드;A series diode provided between the rectifier and the smoothing capacitor;
    상기 정류부와 상기 직렬 다이오드 사이에 병렬로 구비된 보호 스위치; 및A protection switch provided in parallel between the rectifier and the series diode; And
    상기 평활 커패시터의 전압을 기초로 과전압 보호 조건 해당 여부를 판단하고, 상기 판단 결과에 기초하여 상기 보호 스위치를 제어하는 제어 수단;Control means for determining whether an overvoltage protection condition is applicable based on the voltage of the smoothing capacitor and controlling the protection switch based on the determination result;
    을 포함하는 것을 특징으로 하는 전기차용 과전압 방지 기능을 갖는 비접촉 수전장치.Non-contact power receiving device having an over-voltage protection function for an electric vehicle comprising a.
  3. 제 2 항에 있어서,The method of claim 2,
    상기 직렬 다이오드는The series diode
    상기 정류부의 출력과 상기 직렬 다이오드의 애노드(anode)측이 연결되고;An output of the rectifier and an anode side of the series diode are connected;
    상기 평활 커패시터의 양극과 상기 직렬 다이오드의 캐소드(cathode)측이 연결되어;An anode of the smoothing capacitor and a cathode of the series diode are connected;
    상기 보호 스위치가 온(클로우즈)되는 경우에, 상기 정류부의 출력인 노드와 상기 평활 커패시터의 양극(+)을 전기적으로 분리시켜, 상기 정류부 및 상기 보호 스위치와 상기 평활 커패시터사이에 전류가 흐르지 않도록 하는 것;When the protection switch is turned on (closed), the node, which is an output of the rectifier, and the positive electrode (+) of the smoothing capacitor are electrically separated to prevent current from flowing between the rectifier and the protection switch and the smoothing capacitor. that;
    을 특징으로 하는 전기차용 과전압 방지 기능을 갖는 비접촉 수전장치.Non-contact power receiving device having an over-voltage protection function for an electric vehicle.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 과전압 방지 수단은The overvoltage prevention means
    상기 정류부와 상기 평활 커패시터 사이에 구비된 게이트 스위치;A gate switch provided between the rectifier and the smoothing capacitor;
    상기 정류부와 상기 게이트 스위치 사이에 병렬로 구비된 보호 스위치; 및A protection switch provided in parallel between the rectifier and the gate switch; And
    상기 평활 커패시터의 양단 전압을 기초로 과전압 보호 조건 해당 여부를 판단하고, 상기 판단 결과에 기초하여 상기 게이트 스위치 및 상기 보호 스위치를 제어하는 제어 수단을 포함하는 것;을 특징으로 하는 전기차용 과전압 방지 기능을 갖는 비접촉 수전장치.And controlling means for determining whether an overvoltage protection condition is applicable based on the voltage across the smoothing capacitor, and controlling the gate switch and the protection switch based on the determination result. Non-contact receiving device having a.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 게이트 스위치는 릴레이, MOSFET 중 하나이고,The gate switch is one of a relay, a MOSFET,
    상기 보호 스위치는 릴레이, 싸이리스터, MOSFET, IGBT, SiC MOSFET 중 하나인 것을 특징으로 하는 전기차용 과전압 방지 기능을 갖는 비접촉 수전장치.The protection switch is a relay, a thyristor, a MOSFET, an IGBT, a non-contact receiving apparatus having an overvoltage protection function for an electric vehicle, characterized in that one of.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 제어 수단은The control means
    상기 평활 커패시터의 양단 전압을 입력으로 하고, 상기 평활 커패시터의 양단 전압에 해당하는 전압 신호를 출력으로 하되, 입력과 출력은 전기적으로 절연된 절연형 전압 측정기;An input voltage and a voltage signal corresponding to both voltages of the smoothing capacitor as outputs, the input and output of the smoothing capacitor being electrically insulated;
    상기 절연형 전압 측정기의 출력과 소정의 기준 전압을 비교하는 전압 비교기; A voltage comparator comparing the output of the isolated voltage meter with a predetermined reference voltage;
    상기 전압 비교기의 출력을 기초로 상기 보호 스위치 및 상기 게이트 스위치의 온 또는 오프를 제어하는 스위치 구동기; 및A switch driver for controlling on or off of the protection switch and the gate switch based on an output of the voltage comparator; And
    상기 전압 비교기의 출력과 상기 게이트 스위치용 스위치 구동기 사이에 신호 반전기;를 구비하는 것을 특징으로 하는 전기차용 과전압 방지 기능을 갖는 비접촉 수전장치.And a signal inverter between an output of the voltage comparator and the switch driver for the gate switch.
  7. 전기차용 과전압 방지 수단을 포함한 비접촉 수전장치에 있어서,In a non-contact power receiving device including an overvoltage protection means for an electric vehicle,
    상기 비접촉 수전장치는,The non-contact receiving device,
    전기차의 내부에 구비되고;It is provided in the inside of an electric vehicle;
    비접촉 급전장치로부터 전력을 수전하는 수전부;A power receiving unit receiving electric power from the non-contact power supply device;
    상기 수전부의 출력과 연결된 필터부;A filter unit connected to an output of the power receiving unit;
    상기 필터부의 출력과 연결된 정류부;A rectifier connected to the output of the filter unit;
    상기 정류부의 출력과 배터리 메인 릴레이가 연결된 DC 링크에 연결된 평활 커패시터; 및A smoothing capacitor connected to a DC link to which the output of the rectifier and the battery main relay are connected; And
    상기 필터부의 출력과 일측이 연결되고, 상기 평활 커패시터의 음극과 타측이 연결된 과전압 방지수단;을 포함하고;And an overvoltage preventing means connected at one side of the output of the filter unit and connected to a cathode of the smoothing capacitor and the other side of the smoothing capacitor;
    상기 과전압 방지 수단은The overvoltage prevention means
    상기 평활 커패시터의 전압을 기초로 상기 평활 커패시터의 충전 전류 및 방전 전류를 차단하여 상기 평활 커패시터에 과전압이 발생되는 것을 방지하고, 비접촉 급전장치로부터 수전한 전류가 흐를 수 있는 폐루프 경로를 구성하여 상기 수전한 전류의 변화율이 소정 값 이하가 되도록 하는 것을 특징으로 하는 전기차용 과전압 방지 기능을 갖는 비접촉 수전장치.Blocks the charging current and the discharge current of the smoothing capacitor based on the voltage of the smoothing capacitor to prevent overvoltage from occurring in the smoothing capacitor, and configures a closed loop path through which a current received from a non-contact power supply device can flow. A non-contact power receiver having an overvoltage protection function for an electric vehicle, wherein the rate of change of the received electric current is equal to or less than a predetermined value.
  8. 제 7 항에 있어서, The method of claim 7, wherein
    상기 과전압 방지 수단은The overvoltage prevention means
    상기 정류부의 입력 노드들(N2, N3)에 애노드(anode)가 각각 연결된 제 1, 2 보호 다이오드;First and second protection diodes each having an anode connected to the input nodes N2 and N3 of the rectifier;
    일측이 상기 제 1, 2 보호 다이오드의 캐소드와 공통으로 연결되고, 타측이 그라운드(G)와 연결된 보호 스위치; 및A protection switch having one side connected in common with the cathodes of the first and second protection diodes and the other side connected with the ground (G); And
    상기 평활 커패시터의 전압을 기초로 과전압 보호 조건 해당 여부를 판단하고, 상기 판단 결과에 기초하여 상기 보호 스위치를 제어하는 제어수단;Control means for determining whether an overvoltage protection condition is applicable based on the voltage of the smoothing capacitor and controlling the protection switch based on the determination result;
    을 포함하는 것을 특징으로 하는 전기차용 과전압 방지 기능을 갖는 비접촉 수전장치.Non-contact power receiving device having an over-voltage protection function for an electric vehicle comprising a.
  9. 제 2 항 또는 제 8 항에 있어서,The method according to claim 2 or 8,
    상기 제어수단은The control means
    상기 평활 커패시터의 양단 전압을 입력으로 하고, 상기 평활 커패시터의 양단 전압에 해당하는 전압 신호를 출력으로 하되, 입력과 출력은 전기적으로 절연된 절연형 전압 측정기;An input voltage and a voltage signal corresponding to both voltages of the smoothing capacitor as outputs, the input and output of the smoothing capacitor being electrically insulated;
    상기 절연형 전압 측정기의 출력과 소정의 기준 전압을 비교하는 전압 비교기; 및A voltage comparator comparing the output of the isolated voltage meter with a predetermined reference voltage; And
    상기 전압 비교기의 출력을 기초로 상기 보호 스위치의 온 또는 오프를 제어하는 스위치 구동기;를 포함하는 것을 특징으로 하는 전기차용 과전압 방지 기능을 갖는 비접촉 수전장치.And a switch driver configured to control on or off of the protection switch based on the output of the voltage comparator.
  10. 제 2 항, 제 4 항, 및 제 8 항 중 어느 한 항에 있어서, The method according to any one of claims 2, 4, and 8,
    상기 과전압 보호 조건 해당 여부는Whether the overvoltage protection condition is applicable
    상기 평활 커패시터의 양단 전압의 변화율이 소정 값을 초과하는 경우과전압 보호 조건에 해당한다고 판단하는 것을 특징으로 하는 전기차용 과전압 방지 기능을 갖는 비접촉 수전장치.Non-contact power receiving device having an over-voltage protection function for an electric vehicle, characterized in that it is determined that the change rate of the voltage across the smoothing capacitor exceeds a predetermined value.
  11. 제 2 항, 제 4 항, 및 제 8 항 중 어느 한 항의 비접촉 수전장치와 비접촉 급전장치를 포함하는 전기차용 과전압 방지 기능을 갖는 비접촉 충전시스템으로서,A non-contact charging system having an overvoltage protection function for an electric vehicle, comprising the non-contact power receiving device of any one of claims 2, 4, and 8, and a non-contact power supply device.
    상기 비접촉 급전장치는,The non-contact power supply device,
    충전 중에 상기 비접촉 급전장치가 공급하는 전력량 또는 전류량을 측정하는 측정부;A measuring unit which measures the amount of power or current supplied by the non-contact power feeding device during charging;
    상기 측정된 전력량 또는 전류량이 소정 값보다 작은 상태가 소정 시간 지속되는 경우, 비접촉 수전장치의 과전압 방지 기능 동작이 실시된 것으로 판단하는 판단부; 및A determination unit that determines that the overvoltage protection function of the non-contact power receiver is performed when the state of the measured amount of power or current is smaller than a predetermined value for a predetermined time; And
    상기 판단의 결과를 기초로 충전 전력의 공급이 중단되도록 상기 비접촉 급전장치를 제어하는 제어부;A control unit controlling the non-contact power supply device such that the supply of charging power is stopped based on a result of the determination;
    를 포함하는 전기차용 과전압 방지 기능을 갖는 비접촉 급전장치.Non-contact power supply having an overvoltage protection function for an electric vehicle comprising a.
PCT/KR2018/006362 2018-05-24 2018-06-04 Non-contact power receiving device having electric vehicle overvoltage prevention function, charging system, and control method thereof WO2019225794A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180059283A KR101946027B1 (en) 2018-05-24 2018-05-24 A wireless electric power receiving device and charging system having a overvoltage protection means and the control method for electric vehicles
KR10-2018-0059283 2018-05-24

Publications (1)

Publication Number Publication Date
WO2019225794A1 true WO2019225794A1 (en) 2019-11-28

Family

ID=65370359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006362 WO2019225794A1 (en) 2018-05-24 2018-06-04 Non-contact power receiving device having electric vehicle overvoltage prevention function, charging system, and control method thereof

Country Status (2)

Country Link
KR (1) KR101946027B1 (en)
WO (1) WO2019225794A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200343720A1 (en) * 2019-04-23 2020-10-29 Samsung Electronics Co., Ltd. Electronic device wirelessly receiving power and method of operating same
CN112816911A (en) * 2021-01-04 2021-05-18 福建万润新能源科技有限公司 Method and system for detecting high-voltage abnormal open circuit of motor controller of new energy vehicle
CN113212168A (en) * 2021-05-19 2021-08-06 广州小鹏汽车科技有限公司 Direct-current discharge circuit, control method and electric automobile
CN114179647A (en) * 2020-09-15 2022-03-15 北京新能源汽车股份有限公司 Wireless charging control method and device and vehicle

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210129561A (en) * 2020-04-20 2021-10-28 삼성전자주식회사 Electronic device performing over-voltage protecting operation and method for controlling thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044762A (en) * 2010-08-18 2012-03-01 Showa Aircraft Ind Co Ltd Non-contact power feeder with overvoltage protection
JP2013005615A (en) * 2011-06-17 2013-01-07 Toyota Motor Corp Power incoming equipment, power transmission equipment, vehicle, and non-contact power supply system
JP2014103746A (en) * 2012-11-19 2014-06-05 Toyota Motor Corp Non-contact power incoming device
US20170070142A1 (en) * 2015-09-04 2017-03-09 Power Integrations, Inc. Input and output overvoltage protection in a power converter
JP2017147849A (en) * 2016-02-17 2017-08-24 富士機械製造株式会社 Non-contact power supply device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699930B2 (en) 2011-12-29 2015-04-15 トヨタ自動車株式会社 Power supply system, vehicle equipped with the same, and control method of power supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044762A (en) * 2010-08-18 2012-03-01 Showa Aircraft Ind Co Ltd Non-contact power feeder with overvoltage protection
JP2013005615A (en) * 2011-06-17 2013-01-07 Toyota Motor Corp Power incoming equipment, power transmission equipment, vehicle, and non-contact power supply system
JP2014103746A (en) * 2012-11-19 2014-06-05 Toyota Motor Corp Non-contact power incoming device
US20170070142A1 (en) * 2015-09-04 2017-03-09 Power Integrations, Inc. Input and output overvoltage protection in a power converter
JP2017147849A (en) * 2016-02-17 2017-08-24 富士機械製造株式会社 Non-contact power supply device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200343720A1 (en) * 2019-04-23 2020-10-29 Samsung Electronics Co., Ltd. Electronic device wirelessly receiving power and method of operating same
US11495962B2 (en) * 2019-04-23 2022-11-08 Samsung Electronics Co., Ltd. Electronic device wirelessly receiving power and method of operating same
CN114179647A (en) * 2020-09-15 2022-03-15 北京新能源汽车股份有限公司 Wireless charging control method and device and vehicle
CN112816911A (en) * 2021-01-04 2021-05-18 福建万润新能源科技有限公司 Method and system for detecting high-voltage abnormal open circuit of motor controller of new energy vehicle
CN113212168A (en) * 2021-05-19 2021-08-06 广州小鹏汽车科技有限公司 Direct-current discharge circuit, control method and electric automobile

Also Published As

Publication number Publication date
KR101946027B1 (en) 2019-02-11

Similar Documents

Publication Publication Date Title
WO2019225794A1 (en) Non-contact power receiving device having electric vehicle overvoltage prevention function, charging system, and control method thereof
US8134338B2 (en) Battery management system and driving method thereof
WO2019078616A2 (en) Electric vehicle charging apparatus
WO2012018206A2 (en) Battery management apparatus for an electric vehicle, and method for managing same
WO2018021664A1 (en) Battery balancing device and method
JP4395770B2 (en) Method for detecting disconnection of charge line of battery charger and battery charger
WO2010024653A2 (en) Apparatus and method for controlling a switch unit between battery pack and a load, and battery pack and battery management apparatus including the apparatus
WO2011083993A2 (en) Battery control device and method
JP5677261B2 (en) Power storage system
CN113711457A (en) Conversion device, conversion system, switching device, vehicle including these devices, and control method
WO2015126035A1 (en) Apparatus, system and method for preventing damage to battery rack by means of voltage measurement
US20180152027A1 (en) Motor vehicle and charge and discharge control circuit thereof
CN104661851A (en) Contactless charging system for charging a motor vehicle battery
WO2019221368A1 (en) Device, battery system, and method for controlling main battery and sub battery
WO2018066839A1 (en) Fuse diagnosis device and method using voltage distribution
WO2019235670A1 (en) Non-contact power feeding device for electric vehicle
KR20190121730A (en) Charge controller for a battery in a vehicle
KR100966732B1 (en) Battery Equalizing-charge Device of Battery System and Method thereof
WO2020004820A1 (en) Circulation charging system for electric vehicle
TW202040909A (en) Electricity storage system
KR102542960B1 (en) Fault diagnosis system of power converter for electric vehicle
CN110431723B (en) Battery device, battery management device, electronic device, electric vehicle, power storage device, and power system
WO2019093625A1 (en) Charging control apparatus and method
WO2014084631A1 (en) Cell balancing device of battery module and method therefor
CN113363113A (en) Power relay assembly, control method thereof and vehicle comprising same

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919686

Country of ref document: EP

Kind code of ref document: A1