WO2021157798A1 - Showerhead for semiconductor manufacturing equipment, and method for manufacturing same - Google Patents

Showerhead for semiconductor manufacturing equipment, and method for manufacturing same Download PDF

Info

Publication number
WO2021157798A1
WO2021157798A1 PCT/KR2020/010695 KR2020010695W WO2021157798A1 WO 2021157798 A1 WO2021157798 A1 WO 2021157798A1 KR 2020010695 W KR2020010695 W KR 2020010695W WO 2021157798 A1 WO2021157798 A1 WO 2021157798A1
Authority
WO
WIPO (PCT)
Prior art keywords
raw material
lower plate
manufacturing
shower head
processing
Prior art date
Application number
PCT/KR2020/010695
Other languages
French (fr)
Korean (ko)
Inventor
조덕형
Original Assignee
주식회사 동원파츠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동원파츠 filed Critical 주식회사 동원파츠
Publication of WO2021157798A1 publication Critical patent/WO2021157798A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P13/00Making metal objects by operations essentially involving machining but not covered by a single other subclass
    • B23P13/02Making metal objects by operations essentially involving machining but not covered by a single other subclass in which only the machining operations are important
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention relates to a shower head for a semiconductor manufacturing facility and a method for manufacturing the same, and more specifically, to a semiconductor manufacturing facility that can increase productivity by dramatically reducing material usage and processing time compared to the existing one, as well as secure price competitiveness It relates to a shower head and a method for manufacturing the same.
  • the process of manufacturing a semiconductor device includes a chemical vapor deposition process for forming an oxide film, a metal film, or a nitride film on a wafer, a film formation process such as a sputtering process, and the film formation process.
  • a dry etching process of etching and patterning a thin film formed on a wafer is included.
  • the film forming process and the dry etching process are processes in which the process gas supplied into the process chamber is activated with heat, electric field, magnetic field, etc. to induce the activated process gas and the wafer to react with each other.
  • the process gas supplied into the process chamber in which the film formation process and the dry etching process are performed is supplied into the process chamber through a shower head installed on the inner side of the process chamber.
  • the shower head has various shapes and types, and a manufacturing method thereof will be described by taking the shower head 1 shown in FIG. 1 as an example.
  • FIG. 1 is a schematic perspective view of a conventional shower head
  • FIGS. 2 to 5 are step-by-step process diagrams for manufacturing the shower head of FIG. 1 .
  • the conventional shower head 1 has an upper structure 10 in which the shaft 20 and the upper plate 30 are integrally formed, and a lower plate coupled to the upper plate 30 of the upper structure 10 ( 40) is included.
  • a supply hole through which the process gas is supplied is formed in the shaft 20 , and a diffusion space through which the process gas is diffused is formed on the upper plate 30 , and the lower plate 40 .
  • a plurality of gas injection fine holes (holes) are formed.
  • such a shower head 1 is manufactured by the method of FIGS. 2 to 5 .
  • a cylindrical metal raw material 2 as shown in FIG. 2 is prepared.
  • a shower head 1 of the form can be manufactured.
  • the present invention is to solve the above problems, and to provide a shower head for a semiconductor manufacturing facility and a method for manufacturing the same, which can increase productivity by dramatically reducing material usage and processing time compared to the existing ones, as well as secure price competitiveness .
  • the method of manufacturing a shower head for a semiconductor manufacturing facility of the present invention is a shaft raw material that is a raw material of each of the shaft, the upper plate and the lower plate in a shower head having an upper plate, a lower plate, and a shaft connected to the upper plate , individual raw material preparation step of separately preparing the upper plate raw material and the lower plate raw material;
  • the secondary molding material processing step may further include a material heat treatment step of performing heat treatment on the primary molding material.
  • the raw material for the shaft, the raw material for the upper plate, and the raw material for the lower plate may be an aluminum alloy.
  • the aluminum alloy may be selected from aluminum/silicon (Al/Si), aluminum/manganese (Al/Mn), aluminum/magnesium (Al/Mg), and an alloy for aluminum die casting.
  • the material heat treatment step may be a T6 heat treatment step.
  • the shower head for a semiconductor manufacturing facility of the present invention is manufactured by the above-described manufacturing method.
  • FIG. 1 is a schematic perspective view of a conventional shower head.
  • 2 to 5 are step-by-step process diagrams for manufacturing the shower head of FIG. 1 .
  • FIG. 6 is a flowchart of a method of manufacturing a shower head for a semiconductor manufacturing facility according to an embodiment of the present invention.
  • FIG. 7 is a perspective view of a shower head manufactured according to the method for manufacturing a shower head for a semiconductor manufacturing facility of FIG. 6 .
  • step-by-step process diagrams for manufacturing the shower head of FIG. 7 are step-by-step process diagrams for manufacturing the shower head of FIG. 7 .
  • FIG. 6 is a flowchart of a method for manufacturing a shower head for a semiconductor manufacturing facility according to an embodiment of the present invention
  • FIG. 7 is a perspective view of a shower head manufactured according to the method for manufacturing a shower head for a semiconductor manufacturing facility of FIG. 6,
  • FIGS. 8 to 15 is a step-by-step process diagram for manufacturing the shower head of FIG. 7 .
  • the shower head 100 when the shower head 100 is manufactured through the method for manufacturing a shower head for a semiconductor manufacturing facility according to the present embodiment, it is possible to increase productivity by dramatically reducing material usage and processing time compared to the existing ones, as well as to increase the price competitiveness can be secured.
  • the shower head 100 serves to supply into the process chamber during various processes of semiconductor manufacturing, in particular, during a process in which a film formation process and a dry etching process are performed.
  • the shower head 100 has a structure including an upper plate 130 , a lower plate 140 , and a shaft 120 connected to the upper plate 130 .
  • a supply hole 121 through which the process gas is supplied is formed in the shaft 120 , a diffusion space 131 through which the process gas is diffused is formed in the upper plate 130 , and the lower plate 140 has a plurality of of gas injection micro-holes (141, holes) are formed.
  • the process gas is diffused into the diffusion space 131 of the upper plate 130 through the supply hole 121 in the shaft 120 .
  • the gas may be sprayed toward the wafer through the micro-holes 141 for gas injection of the lower plate 140 .
  • the shower head manufacturing method for a semiconductor manufacturing facility is a raw material individual preparation step (S11), a primary molding material manufacturing step by friction welding (S12), It includes a material heat treatment step (S13), a secondary molding material processing step (S14), a lower plate processing step (S15), and a molding material and a lower plate bonding step (S16), and by going through these steps, a shower head 100 different from the prior art can provide
  • Raw material individual preparation step (S11) is each raw material shaft raw material 111 as shown in FIG. 8 to manufacture the shaft 120, the upper plate 130 and the lower plate 140 constituting the shower head 100. , It is a process of individually preparing the upper plate raw material 112 and the lower plate raw material 113 .
  • the shaft raw material 111 and the upper plate raw material 112 are separately prepared instead of being made in one lump unlike the prior art. Therefore, it is possible to dramatically reduce the amount of material used and processing time compared to the existing one.
  • the raw material for the shaft 111 , the raw material for the upper plate 112 , and the raw material for the lower plate 113 are aluminum alloys. That is, it may be selected from aluminum/silicon (Al/Si), aluminum/manganese (Al/Mn), aluminum/magnesium (Al/Mg), and an alloy for aluminum die-casting.
  • the primary molding material manufacturing step (S12) by friction welding is 1 formed in an intermediate step by integrally joining the shaft raw material 111 and the upper plate raw material 112 by friction welding as shown in FIGS. 9 and 10 . It is a process of manufacturing the car molding material (110a).
  • Rotary Friction Welding will be explained further.
  • the surfaces rub against each other while applying pressure to the two base materials, that is, the raw shaft raw material 111 and the upper plate raw material 112, frictional heat is generated.
  • a method of joining the raw materials 112 is friction welding.
  • the two base materials to be welded, the shaft raw material 111 and the upper plate raw material 112 are bitten by a friction welding machine, one is fixed and the other is rotated at high speed to rotate the two base raw materials, the shaft raw material 111 and the upper plate raw material 112.
  • frictional heat of around 1,200°C is generated on the friction surface.
  • the shaft raw material 111 and the upper plate raw material 112 can be joined by pressing with a strong mechanical force while the rotation is momentarily stopped.
  • the existing melt welding may have a defect in which gas is generated in the welding process, the gas is mixed, and bubbles are generated in the welded part.
  • the material heat treatment step (S13) is a process of performing heat treatment for the primary molding material 110a as shown in FIG. 11 .
  • the T6 heat treatment step may be performed.
  • T6 heat treatment is one of the aluminum (or its alloys) heat treatments used together with the T4 heat treatment.
  • T4 heat treatment refers to water cooling treatment (W/Q) after solution heat treatment at 500 ⁇ 525°C for about 40 minutes ⁇ 7 hours.
  • the T6 heat treatment indicates that after the T4 heat treatment is finished, artificial aging is performed at 150 to 180° C. for about 3 to 5 hours.
  • the secondary molding material processing step (S14) is a predetermined processing process, for example, a Machining Center Tooling System (MCT) processing process as shown in FIG. It is a process of processing the integrated secondary molding material (110b). 13 is a plan view and a rear view of the lower plate 140 of FIG. 12 .
  • MCT Machining Center Tooling System
  • a supply hole 121 is formed in the inside of the shaft 120 , and a diffusion space 131 is formed in the lower portion of the upper plate 130 . ) to form
  • the supply hole 121 and the diffusion space 131 are formed to communicate with each other in the vertical direction.
  • MCT Machining Center Tooling System
  • a machine to which the automatic changer system of the tool (tool) that processes the material is grafted is also called MCT.
  • the lower plate processing step S15 is a process of processing the lower plate 140 as shown in FIGS. 12 and 13 by processing the lower plate raw material 113 shown in FIG. 8 through MCT processing.
  • a groove is formed on the upper surface of the lower plate 140 for the lower part of the secondary molding material 110b to be seated, and as shown in FIG. 13 .
  • a plurality of gas injection fine holes 141 penetrating the upper and lower portions of the lower plate 140 are processed and formed.
  • the molding material and the lower plate bonding step (S16) is a process of manufacturing the shower head 100 by integrally bonding the secondary molding material 110b and the lower plate 140 processed through the previous steps as shown in FIG. 14 .
  • FIG. 15 is a plan view of FIG. 14 .
  • the bonding process may be a predetermined friction stir welding (FSW), but in addition to this, TIG welding, electron beam welding, and brazing may be applied, all of which should be said to be within the scope of the present invention. will be.
  • FSW friction stir welding
  • Friction stir welding is a solid-state joint that is welded by reverse flow in the material using frictional heat, so it does not cause blowholes or cracks compared to melting welding such as arc welding, laser welding, and electron beam welding, and deformation due to welding is small.
  • melting welding such as arc welding, laser welding, and electron beam welding
  • deformation due to welding is small.
  • Friction stir welding can be applied to the welding of the secondary molding material 110b, which is an aluminum alloy, and the lower plate 140, as in this embodiment. It is an eco-friendly technology that does not occur. Thus, it can provide several beneficial effects for the environment.
  • the shaft 120, the upper plate 130, and the lower plate 140 of the shower head 100 are each raw shaft raw material 111, the upper plate raw material 112, and the lower plate raw material 113 are individually prepared. do.
  • the raw shaft raw material 111 and the upper plate raw material 112 are joined together by friction welding (Rotary Friction Welding) to prepare a primary molding material 110a molded in an intermediate step.
  • T6 heat treatment is performed on the primary molding material 110a as shown in FIG. 11 .
  • the primary molding material 110a is substantially processed into the secondary molding material 110b in which the upper plate 130 and the shaft 120 are integrated.
  • the lower plate 140 is processed by processing the lower plate raw material 113 through MCT processing.
  • the secondary molding material 110b and the lower plate 140 are integrally joined by friction stir welding (FSW) to manufacture the shower head 100 of the form shown in FIG. 7 .
  • FSW friction stir welding
  • the present invention can be applied to a technology for manufacturing a shower head for a semiconductor manufacturing facility, and thus has industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The present invention relates to a showerhead for semiconductor manufacturing equipment, and a method for manufacturing same. The method for manufacturing the showerhead for semiconductor manufacturing equipment of the present invention, the showerhead having an upper plate, a lower plate, and a shaft connected to the upper plate, comprises: a raw material separate preparation step for separately preparing each of shaft raw material, upper plate raw material, and lower plate raw material, which are the respective raw materials of the shaft, the upper plate, and the lower plate; a primary molded material manufacturing by rotary friction welding step for, by integrally bonding the shaft raw material with the upper plate raw material by means of rotary friction welding, manufacturing primary molded material which has been molded into intermediate-step material; a secondary molded material processing step for, by using a predetermined processing process, processing the primary molded material into secondary molded material in which the upper plate and the shaft are integrated; a lower plate processing step for processing the lower plate by processing the lower plate raw material through the processing process; and a molded material and lower plate bonding step for manufacturing the showerhead by integrally bonding the secondary molded material with the lower plate.

Description

반도체 제조 설비용 샤워 헤드 및 이의 제조방법Shower head for semiconductor manufacturing equipment and manufacturing method thereof
본 발명은 반도체 제조 설비용 샤워 헤드 및 이의 제조방법에 관한 것으로서, 더욱 구체적으로는 기존 대비 자재 사용량과 가공 시간을 획기적으로 줄여 생산성을 높일 수 있음은 물론 가격 경쟁력을 확보할 수 있는 반도체 제조 설비용 샤워 헤드 및 이의 제조방법에 관한 것이다.The present invention relates to a shower head for a semiconductor manufacturing facility and a method for manufacturing the same, and more specifically, to a semiconductor manufacturing facility that can increase productivity by dramatically reducing material usage and processing time compared to the existing one, as well as secure price competitiveness It relates to a shower head and a method for manufacturing the same.
반도체소자를 제조하는 공정은 웨이퍼 상에 산화막, 금속막 또는 질화막 등을 형성하는 화학기상증착(Chemical Vapor Deposition) 공정 및 스퍼터링(Sputtering) 공정 등의 성막(成膜) 공정과, 상기 성막 공정에 의해서 웨이퍼 상에 형성된 박막(薄膜)을 식각하여 패터닝하는 건식식각(Dry etching) 공정을 포함한다.The process of manufacturing a semiconductor device includes a chemical vapor deposition process for forming an oxide film, a metal film, or a nitride film on a wafer, a film formation process such as a sputtering process, and the film formation process. A dry etching process of etching and patterning a thin film formed on a wafer is included.
이와 같은 상기 성막 공정 및 건식식각 공정은 공정 챔버 내부로 공급되는 공정가스를 열, 전기장, 자기장 등으로 활성화시켜 활성화된 공정가스와 웨이퍼가 서로 반응하도록 유도하는 공정이다.The film forming process and the dry etching process are processes in which the process gas supplied into the process chamber is activated with heat, electric field, magnetic field, etc. to induce the activated process gas and the wafer to react with each other.
그리고, 상기 성막 공정 및 건식식각 공정이 진행되는 공정 챔버 내부로 공급되는 공정가스는 공정 챔버 내측의 상부에 설치되는 샤워 헤드(Shower head)를 통해서 공정 챔버 내로 공급된다.In addition, the process gas supplied into the process chamber in which the film formation process and the dry etching process are performed is supplied into the process chamber through a shower head installed on the inner side of the process chamber.
샤워 헤드는 그 형태와 종류가 다양한데, 도 1에 도시된 샤워 헤드(1)를 예로 하여 그 제조방법을 설명한다.The shower head has various shapes and types, and a manufacturing method thereof will be described by taking the shower head 1 shown in FIG. 1 as an example.
도 1은 종래의 샤워 헤드에 대한 개략적인 사시도이고, 도 2 내지 도 5는 도 1의 샤워 헤드를 제조하기 위한 단계별 공정도이다.1 is a schematic perspective view of a conventional shower head, and FIGS. 2 to 5 are step-by-step process diagrams for manufacturing the shower head of FIG. 1 .
이들 도면을 참조하면, 종래의 샤워 헤드(1)는 샤프트(20)와 상판(30)이 일체로 형성되는 상부 구조체(10)와, 상부 구조체(10)의 상판(30)에 결합하는 하판(40)을 포함한다.Referring to these drawings, the conventional shower head 1 has an upper structure 10 in which the shaft 20 and the upper plate 30 are integrally formed, and a lower plate coupled to the upper plate 30 of the upper structure 10 ( 40) is included.
내부 구조를 도시하지는 않았으나 샤프트(20) 내에는 공정가스가 공급되는 공급홀(hole)이 형성되고, 상판(30)에는 공정가스가 확산되는 확산 공간부(space)가 형성되며, 하판(40)는 복수의 가스 분사용 미세홀(hole)이 형성된다.Although the internal structure is not shown, a supply hole through which the process gas is supplied is formed in the shaft 20 , and a diffusion space through which the process gas is diffused is formed on the upper plate 30 , and the lower plate 40 . A plurality of gas injection fine holes (holes) are formed.
한편, 이러한 샤워 헤드(1)의 구조가 일반적인데, 이러한 샤워 헤드(1)는 도 2 내지 도 5의 방법으로 제조된다.On the other hand, the structure of such a shower head 1 is general, such a shower head 1 is manufactured by the method of FIGS. 2 to 5 .
우선, 샤프트(20)와 상판(30)이 일체로 형성되는 상부 구조체(10)를 만들기 위해 예컨대, 도 2와 같은 원기둥 형태의 금속 원자재(2)를 준비한다.First, in order to make the upper structure 10 in which the shaft 20 and the upper plate 30 are integrally formed, for example, a cylindrical metal raw material 2 as shown in FIG. 2 is prepared.
그런 다음, 도 3처럼 원자재(2)를 가공해서 가공 전 상부 구조체(10a)를 만든다. 가공 전 상부 구조체(10a)에는 도 1과 같은 모양은 아니나 가공 전 샤프트(20a)와 가공 전 상판(30a)이 형성된다.Then, by processing the raw material (2) as shown in Figure 3 to make the upper structure (10a) before processing. In the upper structure 10a before processing, although not in the same shape as in FIG. 1 , the shaft 20a before processing and the top plate 30a before processing are formed.
다음, 도 3의 가공 전 상부 구조체(10a)를 공작기계로 가공해서 도 4와 같은 실질적인 가공 후 상부 구조체(10)를 만든 다음, 도 5처럼 미리 만들어진 하판(40)에 결합함으로써 도 1과 같은 형태의 샤워 헤드(1)를 제조할 수 있다.Next, by processing the upper structure 10a before processing of FIG. 3 with a machine tool to make the upper structure 10 after substantial processing as in FIG. A shower head 1 of the form can be manufactured.
이러한 방법으로 샤워 헤드(1)를 제조하는 것이 일반적이지만, 이러한 고전적인 방법을 적용해서 샤워 헤드(1)를 제조할 경우, 자재 사용량이 많아질 수밖에 없는데, 자재 사용량이 많음에도 불구하고 가공 후에 버려지는 부분(도 2의 A 부분)이 많아 자재 로스(loss) 발생이 클 수밖에 없고, 가공 시간이 오래 걸려 생산성이 감소하게 되며, 이로 인해 가격 경쟁력이 약해지는 문제점이 있다.Although it is common to manufacture the shower head 1 in this way, when the shower head 1 is manufactured by applying this classical method, the amount of material used is inevitably increased. There are many parts (part A in FIG. 2 ), which inevitably causes a large material loss, and takes a long processing time to reduce productivity, thereby weakening price competitiveness.
본 발명은 전술한 문제점을 해결하기 위한 것으로서, 기존 대비 자재 사용량과 가공 시간을 획기적으로 줄여 생산성을 높일 수 있음은 물론 가격 경쟁력을 확보할 수 있는 반도체 제조 설비용 샤워 헤드 및 이의 제조방법를 제공하는 것이다.The present invention is to solve the above problems, and to provide a shower head for a semiconductor manufacturing facility and a method for manufacturing the same, which can increase productivity by dramatically reducing material usage and processing time compared to the existing ones, as well as secure price competitiveness .
상기 목적을 달성하기 위하여 본 발명의 반도체 제조 설비용 샤워 헤드의 제조방법은, 상판과 하판과 상기 상판에 연결되는 샤프트를 구비하는 샤워 헤드에서 상기 샤프트, 상기 상판 및 상기 하판 각각의 원자재인 샤프트 원자재, 상판 원자재, 하판 원자재를 개별적으로 준비하는 원자재 개별 준비단계; 상기 샤프트 원자재와 상기 상판 원자재를 마찰용접(Rotary Friction Welding)해 일체로 접합해서 중간 단계로 성형된 1차 성형자재를 제조하는 마찰용접에 의한 1차 성형자재 제조단계; 소정의 가공 공정을 이용해서 상기 1차 성형자재를 상기 상판과 상기 샤프트가 일체화된 2차 성형자재로 가공하는 2차 성형자재 가공단계; 상기 가공 공정을 통해 상기 하판 원자재를 가공해서 상기 하판을 가공하는 하판 가공단계; 및 상기 2차 성형자재와 상기 하판을 일체로 접합해서 샤워 헤드를 제조하는 성형자재 및 하판 접합단계를 포함하여 이루어진 것을 특징으로 한다.In order to achieve the above object, the method of manufacturing a shower head for a semiconductor manufacturing facility of the present invention is a shaft raw material that is a raw material of each of the shaft, the upper plate and the lower plate in a shower head having an upper plate, a lower plate, and a shaft connected to the upper plate , individual raw material preparation step of separately preparing the upper plate raw material and the lower plate raw material; A primary molding material manufacturing step by friction welding of manufacturing a primary molding material molded in an intermediate step by integrally joining the shaft raw material and the upper plate raw material by friction welding (Rotary Friction Welding); a secondary molding material processing step of processing the primary molding material into a secondary molding material in which the upper plate and the shaft are integrated using a predetermined processing process; a lower plate processing step of processing the lower plate by processing the lower plate raw material through the processing process; and a molding material and a lower plate bonding step for manufacturing a shower head by integrally bonding the secondary molding material and the lower plate.
상기 2차 성형자재 가공단계의 진행 전에, 상기 1차 성형자재에 대한 열처리를 진행하는 자재 열처리 단계를 더 포함할 수 있다.Prior to the progress of the secondary molding material processing step, it may further include a material heat treatment step of performing heat treatment on the primary molding material.
상기 샤프트 원자재, 상기 상판 원자재 및 상기 하판 원자재가 알루미늄 합금일 수 있다.The raw material for the shaft, the raw material for the upper plate, and the raw material for the lower plate may be an aluminum alloy.
상기 알루미늄 합금이 알루미늄/실리콘(Al/Si), 알루미늄/망간(Al/Mn), 알루미늄/마그네슘(Al/Mg), 알루미늄 다이캐스트용 합금 중에서 선택될 수 있다.The aluminum alloy may be selected from aluminum/silicon (Al/Si), aluminum/manganese (Al/Mn), aluminum/magnesium (Al/Mg), and an alloy for aluminum die casting.
상기 자재 열처리 단계가 T6 열처리 단계일 수 있다.The material heat treatment step may be a T6 heat treatment step.
상기 목적을 달성하기 위하여 본 발명의 반도체 제조 설비용 샤워 헤드는 상술한 제조방법에 의해 제조되는 것을 특징으로 한다.In order to achieve the above object, the shower head for a semiconductor manufacturing facility of the present invention is manufactured by the above-described manufacturing method.
본 발명에 따르면, 기존 대비 자재 사용량과 가공 시간을 획기적으로 줄여 생산성을 높일 수 있음은 물론 가격 경쟁력을 확보할 수 있는 효과가 있다.According to the present invention, it is possible to increase productivity by remarkably reducing the amount of material used and processing time compared to the prior art, as well as to secure price competitiveness.
도 1은 종래의 샤워 헤드에 대한 개략적인 사시도이다.1 is a schematic perspective view of a conventional shower head.
도 2 내지 도 5는 도 1의 샤워 헤드를 제조하기 위한 단계별 공정도이다.2 to 5 are step-by-step process diagrams for manufacturing the shower head of FIG. 1 .
도 6은 본 발명의 일 실시예에 따른 반도체 제조 설비용 샤워 헤드 제조방법의 순서도이다.6 is a flowchart of a method of manufacturing a shower head for a semiconductor manufacturing facility according to an embodiment of the present invention.
도 7은 도 6의 반도체 제조 설비용 샤워 헤드 제조방법에 따라 제조된 샤워 헤드의 사시도이다.7 is a perspective view of a shower head manufactured according to the method for manufacturing a shower head for a semiconductor manufacturing facility of FIG. 6 .
도 8 내지 도 15는 도 7의 샤워 헤드를 제조하기 위한 단계별 공정도이다.8 to 15 are step-by-step process diagrams for manufacturing the shower head of FIG. 7 .
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 쉽게 실시할 수 있도록 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, the embodiments of the present invention will be described in detail so that those of ordinary skill in the art can easily implement them.
그러나 본 발명에 관한 설명은 구조적이나 기능적 설명을 위한 실시예에 불과하므로 본 발명의 권리범위는 본문에 설명된 실시예에 의하여 제한되는 것으로 해석되어서는 아니 된다.However, since the description of the present invention is merely an embodiment for structural or functional description, the scope of the present invention should not be construed as being limited by the embodiment described in the text.
도 6은 본 발명의 일 실시예에 따른 반도체 제조 설비용 샤워 헤드 제조방법의 순서도, 도 7은 도 6의 반도체 제조 설비용 샤워 헤드 제조방법에 따라 제조된 샤워 헤드의 사시도, 그리고, 도 8 내지 도 15는 도 7의 샤워 헤드를 제조하기 위한 단계별 공정도이다.6 is a flowchart of a method for manufacturing a shower head for a semiconductor manufacturing facility according to an embodiment of the present invention, FIG. 7 is a perspective view of a shower head manufactured according to the method for manufacturing a shower head for a semiconductor manufacturing facility of FIG. 6, and FIGS. 8 to 15 is a step-by-step process diagram for manufacturing the shower head of FIG. 7 .
이들 도면을 참조하면, 본 실시예에 따른 반도체 제조 설비용 샤워 헤드 제조방법을 통해 샤워 헤드(100)를 제조할 경우, 기존 대비 자재 사용량과 가공 시간을 획기적으로 줄여 생산성을 높일 수 있음은 물론 가격 경쟁력을 확보할 수 있다.Referring to these drawings, when the shower head 100 is manufactured through the method for manufacturing a shower head for a semiconductor manufacturing facility according to the present embodiment, it is possible to increase productivity by dramatically reducing material usage and processing time compared to the existing ones, as well as to increase the price competitiveness can be secured.
샤워 헤드(100)의 구조에 대해 도 7 및 도 13을 참조해서 먼저 살펴본다. 앞서 기술한 것처럼 샤워 헤드(100)는 반도체 제조의 여러 공정 중에, 특히 성막 공정 및 건식식각 공정이 진행되는 공정 중, 공정 챔버 내로 공급하는 역할을 한다.The structure of the shower head 100 will be first looked at with reference to FIGS. 7 and 13 . As described above, the shower head 100 serves to supply into the process chamber during various processes of semiconductor manufacturing, in particular, during a process in which a film formation process and a dry etching process are performed.
이러한 샤워 헤드(100)는 상판(130)과 하판(140)과 상판(130)에 연결되는 샤프트(120)를 구비하는 구조로 이루어진다.The shower head 100 has a structure including an upper plate 130 , a lower plate 140 , and a shaft 120 connected to the upper plate 130 .
샤프트(120) 내에는 공정가스가 공급되는 공급홀(121, hole)이 형성되고, 상판(130)에는 공정가스가 확산되는 확산 공간부(131, space)가 형성되며, 하판(140)은 복수의 가스 분사용 미세홀(141, hole)이 형성된다.A supply hole 121 through which the process gas is supplied is formed in the shaft 120 , a diffusion space 131 through which the process gas is diffused is formed in the upper plate 130 , and the lower plate 140 has a plurality of of gas injection micro-holes (141, holes) are formed.
이에, 공정 챔버에 본 실시예의 샤워 헤드(100)를 배치한 후, 공정을 진행하면 공정가스가 샤프트(120) 내의 공급홀(121)을 통해 상판(130)의 확산 공간부(131)로 확산된 후, 하판(140)의 가스 분사용 미세홀(141)을 통해 웨이퍼 쪽으로 분사될 수 있다.Accordingly, after disposing the shower head 100 of the present embodiment in the process chamber and proceeding with the process, the process gas is diffused into the diffusion space 131 of the upper plate 130 through the supply hole 121 in the shaft 120 . After being formed, the gas may be sprayed toward the wafer through the micro-holes 141 for gas injection of the lower plate 140 .
한편, 이와 같은 샤워 헤드(100)를 제조하기 위한 본 실시예에 따른 반도체 제조 설비용 샤워 헤드 제조방법은, 원자재 개별 준비단계(S11), 마찰용접에 의한 1차 성형자재 제조단계(S12), 자재 열처리 단계(S13), 2차 성형자재 가공단계(S14), 하판 가공단계(S15) 및 성형자재 및 하판 접합단계(S16)를 포함하며, 이들 단계를 거침으로써 종래와 다른 샤워 헤드(100)를 제공할 수 있다.On the other hand, the shower head manufacturing method for a semiconductor manufacturing facility according to this embodiment for manufacturing such a shower head 100 is a raw material individual preparation step (S11), a primary molding material manufacturing step by friction welding (S12), It includes a material heat treatment step (S13), a secondary molding material processing step (S14), a lower plate processing step (S15), and a molding material and a lower plate bonding step (S16), and by going through these steps, a shower head 100 different from the prior art can provide
원자재 개별 준비단계(S11)는 샤워 헤드(100)를 구성하는 샤프트(120), 상판(130) 및 하판(140)을 제조하기 위해 도 8에 도시된 바와 같이 각각의 원자재인 샤프트 원자재(111), 상판 원자재(112), 하판 원자재(113)를 개별적으로 준비하는 공정이다.Raw material individual preparation step (S11) is each raw material shaft raw material 111 as shown in FIG. 8 to manufacture the shaft 120, the upper plate 130 and the lower plate 140 constituting the shower head 100. , It is a process of individually preparing the upper plate raw material 112 and the lower plate raw material 113 .
본 실시예에서는 종래와 달리 한 덩어리에서 만들지 않고, 샤프트 원자재(111)와 상판 원자재(112)를 개별적으로 준비한다. 따라서, 기존 대비 자재 사용량과 가공 시간을 획기적으로 줄일 수 있다.In this embodiment, the shaft raw material 111 and the upper plate raw material 112 are separately prepared instead of being made in one lump unlike the prior art. Therefore, it is possible to dramatically reduce the amount of material used and processing time compared to the existing one.
본 실시예에서 샤프트 원자재(111), 상판 원자재(112), 하판 원자재(113)는 알루미늄 합금으로 적용된다. 즉 알루미늄/실리콘(Al/Si), 알루미늄/망간(Al/Mn), 알루미늄/마그네슘(Al/Mg), 알루미늄 다이캐스트용 합금 중에서 선택될 수 있다.In this embodiment, the raw material for the shaft 111 , the raw material for the upper plate 112 , and the raw material for the lower plate 113 are aluminum alloys. That is, it may be selected from aluminum/silicon (Al/Si), aluminum/manganese (Al/Mn), aluminum/magnesium (Al/Mg), and an alloy for aluminum die-casting.
물론, 통상의 상품명, 즉 알코아(alcoa)라는 상품명으로 사용하는 알루미늄 합금 중에서 선택해서 재료로 활용해도 무방하다.Of course, it may be used as a material by selecting from aluminum alloys used under a common brand name, that is, a brand name of alcoa.
마찰용접에 의한 1차 성형자재 제조단계(S12)는 도 9 및 도 10처럼 샤프트 원자재(111)와 상판 원자재(112)를 마찰용접(Rotary Friction Welding)하여 일체로 접합해서 중간 단계로 성형된 1차 성형자재(110a)를 제조하는 공정이다.The primary molding material manufacturing step (S12) by friction welding is 1 formed in an intermediate step by integrally joining the shaft raw material 111 and the upper plate raw material 112 by friction welding as shown in FIGS. 9 and 10 . It is a process of manufacturing the car molding material (110a).
마찰용접(Rotary Friction Welding)에 대해 부연 설명한다. 본 실시예처럼 두 모재, 즉 샤프트 원자재(111)와 상판 원자재(112)에 압력을 가하면서 표면을 서로 마찰하면 마찰열이 발생하는데, 이때 발생하는 마찰열을 이용해 두 모재인 샤프트 원자재(111)와 상판 원자재(112)를 접합하는 공법이 마찰용접이다.Rotary Friction Welding will be explained further. As in this embodiment, when the surfaces rub against each other while applying pressure to the two base materials, that is, the raw shaft raw material 111 and the upper plate raw material 112, frictional heat is generated. A method of joining the raw materials 112 is friction welding.
먼저 용접하고자 하는 두 모재인 샤프트 원자재(111)와 상판 원자재(112)를 마찰용접기에 물린 뒤, 한쪽은 고정하고 다른 한쪽을 고속으로 회전시켜 두 모재인 샤프트 원자재(111)와 상판 원자재(112)를 마찰시키면 그 마찰면에 1,200℃ 내외의 마찰열이 발생한다.First, the two base materials to be welded, the shaft raw material 111 and the upper plate raw material 112, are bitten by a friction welding machine, one is fixed and the other is rotated at high speed to rotate the two base raw materials, the shaft raw material 111 and the upper plate raw material 112. When friction is applied, frictional heat of around 1,200°C is generated on the friction surface.
이러한 마찰열로 인해 마찰면이 녹게 되는데, 이때, 순간적으로 회전을 급정지하면서 강력한 기계 힘으로 눌러서 샤프트 원자재(111)와 상판 원자재(112)를 접합시킬 수 있다.Due to this frictional heat, the friction surface is melted. At this time, the shaft raw material 111 and the upper plate raw material 112 can be joined by pressing with a strong mechanical force while the rotation is momentarily stopped.
이러한 마찰용접의 가장 큰 장점은 서로 다른 성질의 이종 금속 접합이 가능하다는 점이다. 특히, 본 실시예처럼 일반용접에서 불가능한 비철금속들의 접합도 가능하다.The biggest advantage of such friction welding is that it is possible to join dissimilar metals with different properties. In particular, bonding of non-ferrous metals, which is not possible in general welding, is possible as in this embodiment.
또한, 기존의 용융용접은 용접을 하는 과정에 가스가 발생하고, 그 가스가 섞여 들어가며 용접부에 기포가 생기는 결함이 있을 수 있는데, 마찰용접은 마찰열과 압력만으로 용접하므로 이러한 결함이 전혀 생기지 않는다.In addition, the existing melt welding may have a defect in which gas is generated in the welding process, the gas is mixed, and bubbles are generated in the welded part.
자재 열처리 단계(S13)는 도 11처럼 1차 성형자재(110a)에 대한 열처리를 진행하는 공정이다. 이때는 T6 열처리 단계를 진행할 수 있다.The material heat treatment step (S13) is a process of performing heat treatment for the primary molding material 110a as shown in FIG. 11 . In this case, the T6 heat treatment step may be performed.
T6 열처리는 T4 열처리와 함께 사용하는 알루미늄(또는 그 합금) 열처리 중 하나이다. T4 열처리는 500~525℃에서 약 40분~7시간 용체화처리 후, 수랭 처리(W/Q)를 한 것을 일컫는다.The T6 heat treatment is one of the aluminum (or its alloys) heat treatments used together with the T4 heat treatment. T4 heat treatment refers to water cooling treatment (W/Q) after solution heat treatment at 500~525℃ for about 40 minutes~7 hours.
이에 반해, T6 열처리는 T4 열처리가 끝난 후, 150~180℃ 사이에서 약 3~5시간 동안 인공시효를 실시한 것을 가리킨다.On the other hand, the T6 heat treatment indicates that after the T4 heat treatment is finished, artificial aging is performed at 150 to 180° C. for about 3 to 5 hours.
인공시효는 상온보다도 높은 온도로 행하는 시효로서, 인공시효를 진행하면 조직이 더욱 안정적으로 되어 강도가 세질 수 있다. 즉 내구성이 현저하게 강화된다.Artificial aging is aging performed at a temperature higher than room temperature, and when artificial aging is performed, the tissue becomes more stable and strength can be increased. That is, durability is remarkably strengthened.
2차 성형자재 가공단계(S14)는 도 12처럼 소정의 가공 공정, 예컨대 MCT(Machining Center Tooling System) 가공 공정을 이용해서 1차 성형자재(110a)를 실질적인 상판(130)과 샤프트(120)가 일체화된 2차 성형자재(110b)로 가공하는 공정이다. 도 13은 도 12의 하판(140)에 대한 평면도 및 배면도이다.The secondary molding material processing step (S14) is a predetermined processing process, for example, a Machining Center Tooling System (MCT) processing process as shown in FIG. It is a process of processing the integrated secondary molding material (110b). 13 is a plan view and a rear view of the lower plate 140 of FIG. 12 .
상기 2차 성형자재 가공단계(S14)에서는 도 12에 도시된 바와 같이, 상기 샤프트(120)의 내부에는 공급홀(121)을 가공 형성하고, 상기 상판(130)의 하부에는 확산공간부(131)를 형성한다.In the secondary molding material processing step (S14), as shown in FIG. 12 , a supply hole 121 is formed in the inside of the shaft 120 , and a diffusion space 131 is formed in the lower portion of the upper plate 130 . ) to form
이때, 상기 공급홀(121)과 확산공간부(131)는 상하방향으로 상호 연통되게 형성된다.At this time, the supply hole 121 and the diffusion space 131 are formed to communicate with each other in the vertical direction.
참고로, MCT(Machining Center Tooling System)는 X축, Y축, Z축의 3축 가공이 가능한 CNC 밀링의 일 버전이다.For reference, the Machining Center Tooling System (MCT) is a version of CNC milling capable of 3-axis machining of the X-axis, Y-axis, and Z-axis.
소재를 가공하는 툴(공구)의 자동교환장치시스템이 접목된 머신을 일컬어 MCT라 부르기도 하는데, 이 머신을 사용하여 제품을 가공하는 것을 통틀어 MCT 가공이라고 한다.A machine to which the automatic changer system of the tool (tool) that processes the material is grafted is also called MCT.
단순가공은 물론 곡면가공에 탁월하며 대표적으로는 금형가공에 많이 사용되고 있으며 주로 금속과 알루미늄 가공에 많이 활용된다. 따라서, 본 실시예에서도 이러한 MCT 가공을 적용하고 있는 것이다.It is excellent not only for simple processing but also for curved surface processing. Therefore, this MCT processing is also applied in this embodiment.
하판 가공단계(S15)는 MCT 가공을 통해 도 8에 도시된 하판 원자재(113)를 가공해서 도 12 및 도 13에 도시된 바와 같은 상기 하판(140)을 가공하는 공정이다.The lower plate processing step S15 is a process of processing the lower plate 140 as shown in FIGS. 12 and 13 by processing the lower plate raw material 113 shown in FIG. 8 through MCT processing.
상기 하판 가공단계(S15)에서는 도 12에 도시된 바와 같이 상기 하판(140)의 상면에 상기 2차 성형자재(110b)의 하부가 안착되기 위한 홈을 가공 형성하고, 도 13에 도시된 바와 같이 상기 하판(140)의 상하를 관통하는 다수개의 가스 분사용 미세홀(141)을 가공 형성한다.In the lower plate processing step (S15), as shown in FIG. 12 , a groove is formed on the upper surface of the lower plate 140 for the lower part of the secondary molding material 110b to be seated, and as shown in FIG. 13 . A plurality of gas injection fine holes 141 penetrating the upper and lower portions of the lower plate 140 are processed and formed.
그리고, 성형자재 및 하판 접합단계(S16)는 앞 단계들을 통해 가공 완료된 상기 2차 성형자재(110b)와 하판(140)을 도 14처럼 일체로 접합해서 샤워 헤드(100)를 제조하는 공정이다. 참고로, 도 15는 도 14의 평면도이다.In addition, the molding material and the lower plate bonding step (S16) is a process of manufacturing the shower head 100 by integrally bonding the secondary molding material 110b and the lower plate 140 processed through the previous steps as shown in FIG. 14 . For reference, FIG. 15 is a plan view of FIG. 14 .
이때의 접합 공정은 소정의 마찰교반 용접(Friction Stir Welding, FSW)일 수 있으나 이 외에도 티그 용접, 전자 빔 용접 및 브레이징 등이 적용될 수 있는데, 이러한 사항 모두가 본 발명의 권리범위에 속하다고 하여야 할 것이다.At this time, the bonding process may be a predetermined friction stir welding (FSW), but in addition to this, TIG welding, electron beam welding, and brazing may be applied, all of which should be said to be within the scope of the present invention. will be.
마찰교반 용접(FSW)에 대해 부연 설명한다. 마찰교반 용접(FSW)은 마찰열을 이용하여 재료 내의 역성 유동에 의해 용접하는 고상 접합이므로 아크 용접, 레이저 용접, 전자 빔 용접 등의 용융 용접보다 블로홀이나 갈라짐이 발생하지 않고 용접에 따른 변형이 작다. 현재 철도 차량, 함정, 항공기, 자동차 따위에 널리 응용되고 있다.Friction stir welding (FSW) will be further described. Friction stir welding (FSW) is a solid-state joint that is welded by reverse flow in the material using frictional heat, so it does not cause blowholes or cracks compared to melting welding such as arc welding, laser welding, and electron beam welding, and deformation due to welding is small. Currently, it is widely applied to railway vehicles, ships, aircraft, automobiles, and the like.
마찰교반 용접(FSW)은 본 실시예처럼 알루미늄 합금인 2차 성형자재(110b)와 하판(140)의 용접에 적용할 수 있는데, 특히, 금속을 녹이지 않고 서로 섞이도록 하여 용접하므로 유해가스가 발생하지 않는 친환경적 기술이다. 따라서, 환경적으로 여러 유익한 효과를 제공할 수 있다.Friction stir welding (FSW) can be applied to the welding of the secondary molding material 110b, which is an aluminum alloy, and the lower plate 140, as in this embodiment. It is an eco-friendly technology that does not occur. Thus, it can provide several beneficial effects for the environment.
종래의 아크용접 후에 반드시 수행했던 용접변형 교정작업을 생략할 수 있다. 또한, 기존의 리벳이음방식 등은 자동화하기 어려운 결점이 있었으나 마찰교반용접(FSW)은 자동화가 가능해서 획기적 비용 절감과 용접 결함방지를 동시에 이룰 수 있다.It is possible to omit the welding deformation correction work that must be performed after conventional arc welding. In addition, the existing rivet joint method had a drawback that it was difficult to automate, but friction stir welding (FSW) can be automated so that it can achieve epoch-making cost reduction and prevention of welding defects at the same time.
이하, 샤워 헤드(100)를 제조하는 과정을 일련적으로 설명한다.Hereinafter, a process of manufacturing the shower head 100 will be described sequentially.
우선, 도 8처럼 샤워 헤드(100)의 샤프트(120), 상판(130) 및 하판(140) 각각의 원자재인 샤프트 원자재(111), 상판 원자재(112), 하판 원자재(113)를 개별적으로 준비한다.First, as shown in FIG. 8, the shaft 120, the upper plate 130, and the lower plate 140 of the shower head 100 are each raw shaft raw material 111, the upper plate raw material 112, and the lower plate raw material 113 are individually prepared. do.
다음, 도 9 및 도 10처럼 샤프트 원자재(111)와 상판 원자재(112)를 마찰용접(Rotary Friction Welding)해 일체로 접합해서 중간 단계로 성형된 1차 성형자재(110a)를 제조한다.Next, as shown in FIGS. 9 and 10 , the raw shaft raw material 111 and the upper plate raw material 112 are joined together by friction welding (Rotary Friction Welding) to prepare a primary molding material 110a molded in an intermediate step.
다음, 도 11처럼 1차 성형자재(110a)에 대해 T6 열처리를 진행한다. 그런 다음, 도 12처럼 MCT 가공을 이용해서 1차 성형자재(110a)를 실질적인 상판(130)과 샤프트(120)가 일체화된 2차 성형자재(110b)로 가공한다.Next, T6 heat treatment is performed on the primary molding material 110a as shown in FIG. 11 . Then, using the MCT processing as shown in FIG. 12 , the primary molding material 110a is substantially processed into the secondary molding material 110b in which the upper plate 130 and the shaft 120 are integrated.
다음, 도 12처럼 MCT 가공을 통해 하판 원자재(113)를 가공해서 하판(140)을 가공한다.Next, as shown in FIG. 12 , the lower plate 140 is processed by processing the lower plate raw material 113 through MCT processing.
그런 다음, 도 14처럼 2차 성형자재(110b)와 하판(140)을 마찰교반용접(FSW)으로 일체로 접합해서 도 7과 같은 형태의 샤워 헤드(100)를 제조할 수 있다.Then, as shown in FIG. 14 , the secondary molding material 110b and the lower plate 140 are integrally joined by friction stir welding (FSW) to manufacture the shower head 100 of the form shown in FIG. 7 .
이상 설명한 바와 같은 구조로 작용을 하는 본 실시예에 따르면, 기존 대비 자재 사용량과 가공 시간을 획기적으로 줄여 생산성을 높일 수 있음은 물론 가격 경쟁력을 확보할 수 있게 된다.According to this embodiment, which operates in the structure as described above, it is possible to increase productivity by remarkably reducing the amount of material used and processing time compared to the prior art, as well as to secure price competitiveness.
이처럼 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명하다. 따라서 그러한 수정예 또는 변형예들은 본 발명의 청구범위에 속한다고 하여야 할 것이다.As such, the present invention is not limited to the described embodiments, and it is apparent to those skilled in the art that various modifications and variations can be made without departing from the spirit and scope of the present invention. Accordingly, it should be said that such modifications or variations fall within the scope of the claims of the present invention.
본 발명은 반도체 제조 설비용 샤워 헤드를 제조하는 기술에 적용될 수 있어, 산업상 이용가능성이 있다.The present invention can be applied to a technology for manufacturing a shower head for a semiconductor manufacturing facility, and thus has industrial applicability.

Claims (6)

  1. 상판과 하판과 상기 상판에 연결되는 샤프트를 구비하는 샤워 헤드에서 상기 샤프트, 상기 상판 및 상기 하판 각각의 원자재인 샤프트 원자재, 상판 원자재, 하판 원자재를 개별적으로 준비하는 원자재 개별 준비단계;In a shower head having an upper plate, a lower plate, and a shaft connected to the upper plate, the raw material for the shaft, the raw material for the upper plate, and the raw material for the lower plate, which are the raw materials for each of the shaft, the upper plate, and the lower plate are individually prepared separately;
    상기 샤프트 원자재와 상기 상판 원자재를 마찰용접(Rotary Friction Welding)해 일체로 접합해서 중간 단계로 성형된 1차 성형자재를 제조하는 마찰용접에 의한 1차 성형자재 제조단계;A primary molding material manufacturing step by friction welding of manufacturing a primary molding material molded in an intermediate step by integrally joining the shaft raw material and the upper plate raw material by friction welding (Rotary Friction Welding);
    소정의 가공 공정을 이용해서 상기 1차 성형자재를 상기 상판과 상기 샤프트가 일체화된 2차 성형자재로 가공하는 2차 성형자재 가공단계;a secondary molding material processing step of processing the primary molding material into a secondary molding material in which the upper plate and the shaft are integrated using a predetermined processing process;
    상기 가공 공정을 통해 상기 하판 원자재를 가공해서 상기 하판을 가공하는 하판 가공단계; 및a lower plate processing step of processing the lower plate by processing the lower plate raw material through the processing process; and
    상기 2차 성형자재와 상기 하판을 일체로 접합해서 샤워 헤드를 제조하는 성형자재 및 하판 접합단계;를 포함하여 이루어진 것을 특징으로 하는 반도체 제조 설비용 샤워 헤드 제조방법.A method for manufacturing a shower head for a semiconductor manufacturing facility, comprising: a molding material and a lower plate bonding step for manufacturing a shower head by integrally bonding the secondary molding material and the lower plate.
  2. 제1항에 있어서,According to claim 1,
    상기 2차 성형자재 가공단계의 진행 전에,Before proceeding with the secondary molding material processing step,
    상기 1차 성형자재에 대한 열처리를 진행하는 자재 열처리 단계;를 더 포함하는 것을 특징으로 하는 반도체 제조 설비용 샤워 헤드 제조방법.A method of manufacturing a shower head for a semiconductor manufacturing facility further comprising; a material heat treatment step of performing heat treatment on the primary molding material.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 샤프트 원자재, 상기 상판 원자재 및 상기 하판 원자재가 알루미늄 합금인 것을 특징으로 하는 반도체 제조 설비용 샤워 헤드 제조방법.The method of manufacturing a shower head for a semiconductor manufacturing facility, characterized in that the shaft raw material, the upper plate raw material, and the lower plate raw material are aluminum alloy.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 알루미늄 합금이 알루미늄/실리콘(Al/Si), 알루미늄/망간(Al/Mn), 알루미늄/마그네슘(Al/Mg), 알루미늄 다이캐스트용 합금 중에서 선택되는 것을 특징으로 하는 반도체 제조 설비용 샤워 헤드 제조방법.The aluminum alloy is aluminum / silicon (Al / Si), aluminum / manganese (Al / Mn), aluminum / magnesium (Al / Mg), aluminum die-casting alloy, characterized in that selected from a shower head manufacturing for a semiconductor manufacturing facility method.
  5. 제3항에 있어서,4. The method of claim 3,
    상기 자재 열처리 단계가 T6 열처리 단계인 것을 특징으로 하는 반도체 제조 설비용 샤워 헤드 제조방법.The method for manufacturing a shower head for a semiconductor manufacturing facility, characterized in that the material heat treatment step is a T6 heat treatment step.
  6. 제1항 내지 제5항 중 어느 한 항의 제조방법에 따라 제조된 반도체 제조설비용 샤워 헤드.A shower head for a semiconductor manufacturing facility manufactured according to the manufacturing method of any one of claims 1 to 5.
PCT/KR2020/010695 2020-02-04 2020-08-12 Showerhead for semiconductor manufacturing equipment, and method for manufacturing same WO2021157798A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0013258 2020-02-04
KR1020200013258A KR20210099418A (en) 2020-02-04 2020-02-04 Shower head manufacturing method and shower head manufactured by the same

Publications (1)

Publication Number Publication Date
WO2021157798A1 true WO2021157798A1 (en) 2021-08-12

Family

ID=77200031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010695 WO2021157798A1 (en) 2020-02-04 2020-08-12 Showerhead for semiconductor manufacturing equipment, and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20210099418A (en)
WO (1) WO2021157798A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020048465A (en) * 2000-12-18 2002-06-24 이계안 A processing method of shift fork with light weight using semi-solidification molding
KR20130123653A (en) * 2012-05-03 2013-11-13 (주)레오포즈 Method for manufacturing aluminium wheelhub
US20140295580A1 (en) * 2013-04-02 2014-10-02 Tokyo Electron Limited Method for manufacturing semiconductor device and manufacturing apparatus
JP2016084256A (en) * 2014-10-27 2016-05-19 日本特殊陶業株式会社 Aluminum nitride sintered compact, component for semiconductor manufacturing, and method for producing the aluminum nitride sintered compact
KR20180022582A (en) * 2016-08-23 2018-03-06 램 리써치 코포레이션 Rotary friction welded blank for pecvd heated showerhead

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040003869A (en) 2002-07-04 2004-01-13 오창규 System for providing advertisement through user authorization process and method thereof
KR20070111772A (en) 2006-05-19 2007-11-22 삼성전자주식회사 A method of manufacturing thin film transistor array panel
US8574759B2 (en) 2007-03-29 2013-11-05 Mitsubishi Materials Corporation Positive electrode forming material, component thereof, method for producing the same and rechargeable lithium-ion battery
KR101838167B1 (en) 2016-07-12 2018-03-13 주식회사 엔에스엠 Frame transferring sheet of display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020048465A (en) * 2000-12-18 2002-06-24 이계안 A processing method of shift fork with light weight using semi-solidification molding
KR20130123653A (en) * 2012-05-03 2013-11-13 (주)레오포즈 Method for manufacturing aluminium wheelhub
US20140295580A1 (en) * 2013-04-02 2014-10-02 Tokyo Electron Limited Method for manufacturing semiconductor device and manufacturing apparatus
JP2016084256A (en) * 2014-10-27 2016-05-19 日本特殊陶業株式会社 Aluminum nitride sintered compact, component for semiconductor manufacturing, and method for producing the aluminum nitride sintered compact
KR20180022582A (en) * 2016-08-23 2018-03-06 램 리써치 코포레이션 Rotary friction welded blank for pecvd heated showerhead

Also Published As

Publication number Publication date
KR20210099418A (en) 2021-08-12

Similar Documents

Publication Publication Date Title
CN100513053C (en) Device for clamping components
JP3726786B2 (en) Joining method and joining tool
ITPD970299A1 (en) PROCEDURE FOR FORMING COMPONENTS OF A CONBUSTION TURBINE AVERAGE ANTE BOND IN THE TRANSITIONAL LIQUID PHASE.
WO2021157798A1 (en) Showerhead for semiconductor manufacturing equipment, and method for manufacturing same
CN103084602A (en) Bearing ring lathe clamp
CN114243358A (en) Airtight metal packaging structure and manufacturing method
CN218080465U (en) Four-jaw chuck
CN110216497B (en) Machining tool and machining method for thin-wall special-shaped ring
CN111015079B (en) Processing method of fork joint
CN213857071U (en) Inner hole turning clamp for thin-wall workpiece
CN214602520U (en) Full-automatic laser welding workstation for automobile turbine shell
US6003588A (en) Process for introducing cores into a casting mold
JP3402801B2 (en) Movable sheave processing method for pulley device for continuously variable transmission
JP2003080402A (en) Machine tool
GB2085118A (en) Casting connecting rod bearing surfaces
WO2023048336A1 (en) Stainless pipe with copper coating and method of manufacturing same
JPH0885071A (en) Polyhedronal jig and jig switching mechanism
JP2005096015A (en) Automatic six-face machining system
CN215090765U (en) Outer three-jaw and chuck provided with outer three-jaw
CN210120109U (en) Plasma processing device and monopole electrostatic chuck
CN110479961B (en) Titanium alloy combined casting process
JPS63126619A (en) Automation device for bending machine
EP4119446A1 (en) Method for the assembly of frames in an aircraft shell
JP2629602B2 (en) Composite casting method
JPH01218774A (en) Butt welding method and press die used therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917510

Country of ref document: EP

Kind code of ref document: A1