WO2021157554A1 - Optical apparatus - Google Patents

Optical apparatus Download PDF

Info

Publication number
WO2021157554A1
WO2021157554A1 PCT/JP2021/003671 JP2021003671W WO2021157554A1 WO 2021157554 A1 WO2021157554 A1 WO 2021157554A1 JP 2021003671 W JP2021003671 W JP 2021003671W WO 2021157554 A1 WO2021157554 A1 WO 2021157554A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
holding portion
less
lens unit
loupe
Prior art date
Application number
PCT/JP2021/003671
Other languages
French (fr)
Japanese (ja)
Inventor
英郎 山田
亨介 溝呂木
Original Assignee
株式会社オーツカ光学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社オーツカ光学 filed Critical 株式会社オーツカ光学
Publication of WO2021157554A1 publication Critical patent/WO2021157554A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05FSTATIC ELECTRICITY; NATURALLY-OCCURRING ELECTRICITY
    • H05F3/00Carrying-off electrostatic charges
    • H05F3/02Carrying-off electrostatic charges by means of earthing connections

Definitions

  • the present invention relates to an optical device.
  • Patent Document 1 discloses a technique of providing a transparent metal film such as ITO on the lens surface to prevent antistatic.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide an antistatic technique in an optical device.
  • the optical device of the present invention With a lens that has conductivity on the surface, A first holding portion, which is made of a conductive rubber-like elastic body and holds the lens, and a first holding portion. A second holding portion that has conductivity and holds the first holding portion, Have, The lens, the first holding portion, and the second holding portion are electrically connected to each other.
  • the second holding portion is an optical device having a lighting means.
  • FIG. 1 is a perspective view of the illumination magnifier 1.
  • FIG. 2 is a side view of the illumination magnifier 1, and shows the lens head 10 in a cross-sectional view.
  • the illumination magnifier 1 includes a lens head 10, an arm portion 30, a connecting bracket 20, and a clamp mounting portion 40.
  • the lens head 10 is attached to the tip of the arm portion 30 via the connecting bracket 20.
  • the arm portion 30 is fixed to the desk 99 or the like by the clamp mounting portion 40 via the arm mount 33.
  • the side of the arm portion 30 to which the lens head 10 is attached is referred to as the front end (or the front end side), and the side to which the clamp mounting portion 40 is attached is referred to as the rear end (or rear end side). Called.
  • the arm portion 30 is a support portion of the lens head 10, and has a first arm 31a on the front end side and a second arm 31b on the rear end side, which are connected by a joint portion 32. That is, the rear end of the first arm 31a and the tip of the second arm 31b are connected by the joint portion 32.
  • a connecting bracket 20 for connecting the lens head 10 is attached to the tip of the first arm 31a.
  • a joint portion 32 is attached to the rear end of the first arm 31a.
  • the first arm 31a has a structure in which a pair of parallel metal rods facing each other at a predetermined interval are connected so as to form a substantially parallelogram and supported by a metal spring 34a.
  • a joint portion 32 is attached to the tip of the second arm 31b.
  • An arm mount 33 is attached to the rear end of the second arm 31b.
  • the second arm 31b is formed by connecting a pair of parallel conductive metal rods facing each other at predetermined intervals so as to form a substantially parallelogram, and using a metal spring 34b. It has a structure that supports it. By having such a structure, the arm portion 30 is supported by the arm mount 33 of the arm portion 30 so as to be tiltable.
  • a ground connector 36 is provided on the back side (right side in FIG. 2) of the second arm 31b. By connecting the ground wire 98 attached to the ground connector 36 to the EPA ground, all the appearance parts of the illumination magnifier 1 are conducted, and the charged charge can be satisfactorily released to the EPA ground.
  • FIG. 3 is an exploded cross-sectional view of the lens head 10, and shows the lens head 10 of FIG. 2 in an exploded manner.
  • the lens head 10 has a lens outer frame 50, a first lens unit 60, and a second lens unit 70 detachably assembled.
  • the second lens unit 70 is an additional lens unit that the user uses as needed, and may not be included in the lens head 10.
  • the lens outer frame 50 is formed of a rigid body such as metal or hard synthetic resin.
  • the surface resistance of the rigid body is 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the metal for example, there are aluminum alloys (more specifically, aluminum die-cast alloys) and those in which the surface thereof is coated (painted) with a conductive material to obtain the above-mentioned surface resistance range.
  • a hard synthetic resin there are those containing a conductive substance, those coated with a conductive material, and the like.
  • the lens outer frame 50 has an annular holder body 51 and a connecting portion 52 integrally extending from the outer peripheral surface of the holder body 51.
  • the holder body 51 has a ring-shaped inner peripheral surface 53 as a lens unit mounting hole. That is, the inner peripheral surface 53 is provided so as to match the outer diameter of the lens frame 61 of the first lens unit 60, which will be described later.
  • a lighting accommodating portion 55 is formed in an annular shape with the lower side open.
  • the LED lighting unit 59 having a plurality of LED elements is housed in the lighting housing unit 55.
  • a lamp cover 54 is attached to the lower side of the lighting accommodating portion 55.
  • the lamp cover 54 is provided with, for example, a transparent resin or a resin having a milky white light diffusing structure.
  • the surface resistance of the lamp cover 54 is also 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • a lens head arrangement surface 56 formed in an annular plane is provided on the upper end outer portion of the inner peripheral surface 53.
  • the lens head arranging surface 56 comes into contact with the holder accommodating surface 69 when the first lens unit 60 is accommodated.
  • the connecting portion 52 is fixed, for example, by a connecting bracket 20 provided at the tip of the arm portion 30 and a bolt with a knob.
  • the first lens unit 60 includes a first lens 11 and a lens frame 61 that houses the first lens 11.
  • the first lens 11 is made of, for example, one piece of optical glass.
  • the first lens 11 has a transparent conductive film on its surface.
  • the transparent conductive film is, for example, indium tin oxide (ITO) or fluorine-doped tin oxide (FTO).
  • the surface resistance of the surface of the first lens 11 is set to 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less by a transparent conductive film.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • the surface resistance can be set as desired by adjusting the film thickness of the transparent conductive film.
  • a surfactant coating a water / alcohol-based conductive coating agent, or a polythiophene-based conductive polymer may be used.
  • the first lens 11 may be composed of a plurality of lenses in a plurality of groups, but in that case, a transparent conductive film is provided on at least the surface (exposed surface) of the lens exposed to the outside. Further, the material of the first lens 11 is not limited to optical glass, and a resin may be used, or a bonded lens may be used.
  • the lens frame 61 is an annular elastic mount made of an elastic material.
  • the elastic material include rubber and elastomer.
  • a certain amount of carbon is kneaded into a rigid rubber such as EPDM (ethylene propylene diene rubber) to control the surface resistance in the range of 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less. ..
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • the lens frame 61 includes a lens frame main body 61a, a flange-shaped first jaw portion 62 having a slightly larger outer diameter than the lens frame main body 61a on the upper side thereof, and a flange-shaped second jaw portion having a slightly larger outer diameter on the upper side thereof. It has 63 integrally. As a result, a step portion is formed in two steps in the upper region of the lens frame 61.
  • the inner peripheral surface 64 of the lens frame 61 is formed with a lens accommodating groove 65 having a predetermined depth on the inner peripheral surface 64 corresponding to the formation position of the first jaw portion 62.
  • the first lens 11 is accommodated in the lens frame 61 by fitting the outer edge portion of the first lens 11 into the lens accommodating groove 65.
  • the inner peripheral inclined surface 66 has an outer diameter that increases toward the upper side up to a position corresponding to the formation position of the second jaw portion 63.
  • the second lens unit accommodating surface 67 is formed in an annular shape at a position corresponding to the formation position of the second jaw portion 63, that is, in the region above the inner peripheral inclined surface 66.
  • the second lens unit 70 is housed in the second lens unit housing surface 67.
  • the outer diameter of the first jaw portion 62 is formed to be slightly smaller than the inner peripheral surface 53 of the lens outer frame 50.
  • accommodating locking convex portions 68 are formed at a plurality of locations (for example, three locations at 120 degree intervals) at predetermined intervals in the circumferential direction.
  • the accommodating locking convex portion 68 has a convex shape (for example, a semicircle in cross section) having a length in the circumferential direction of the outer peripheral surface of the first jaw portion 62.
  • the outer diameter of the outer peripheral surface of the first jaw portion 62, including the accommodating locking convex portion 68, is equal to or slightly larger than the inner diameter of the inner peripheral surface 53 of the lens outer frame 50. That is, when the first lens unit 60 is accommodated in the lens outer frame 50, the accommodation locking convex portion 68 and the inner peripheral surface 53 perform radial positioning.
  • the second lens unit 70 includes a second lens 12, which is an additional lens, and an additional lens frame 71 that accommodates the second lens 12.
  • the second lens 12 is composed of one optical glass or a plurality of groups of optical glasses.
  • the second lens 12 has a transparent conductive film on its surface.
  • the surface resistance of the second lens 12 is controlled in the range of , for example, 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • the transparent conductive films of the first lens 11 and the second lens 12 may have the same material and film thickness, or may be different.
  • the additional lens frame 71 is an annular elastic mount made of an elastic material.
  • the elastic material include rubber and elastomer.
  • a certain amount of carbon is kneaded into rigid rubber such as EPDM (ethylene propylene diene rubber), and the surface resistance is controlled in the range of 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • the additional lens frame 71 has a flange-shaped jaw portion 72 having a slightly larger outer diameter than the additional lens frame main body 71a on the lower side.
  • the outer diameter of the jaw portion 72 is substantially the same as the outer diameter of the second lens unit accommodating surface 67 of the first lens unit 60 described above. That is, when the second lens unit 70 is attached to the first lens unit 60, the jaw portion 72 (flange portion) of the second lens unit 70 fits into the second lens unit accommodating surface 67 of the first lens unit 60.
  • the inner peripheral surface 73 of the additional lens frame 71 is formed with a lens accommodating groove 74 having a predetermined depth on the inner peripheral surface 73 corresponding to the formation position of the jaw portion 72.
  • the second lens 12 is accommodated in the additional lens frame 71 by fitting the outer edge portion of the second lens 12 into the lens accommodating groove 74.
  • the inner peripheral inclined surface 75 has an outer diameter that increases toward the upper side.
  • the accommodating locking convex portion 68 formed on the peripheral surface of the first jaw portion 62 is pressed against the inner peripheral surface 53 of the lens outer frame 50 and elastically deforms.
  • the first lens unit 60 is assembled at an appropriate position of the lens outer frame 50.
  • the jaw of the second lens unit 70 is placed on the first lens unit 60, that is, on the second lens unit accommodating surface 67 of the first lens unit 60.
  • the bottom surface 76 of the portion 72 is placed in contact with the bottom surface 76.
  • the lens outer frame 50, the first lens unit 60, and the second lens unit 70 are integrally assembled.
  • the lens outer frame 50, the first lens unit 60, and the second lens unit 70 overlap each other in the thickness direction in the vicinity of the lens head arrangement surface 56 (region A1), the constituent elements of the lens outer frame 50, the first lens unit 60, and the second lens unit 70 overlap each other.
  • the static electricity is removed well.
  • the first lens 11 having conductivity and the lens frame 61 having conductivity are integrally assembled.
  • the second lens unit 70 the second lens 12 having conductivity and the additional lens frame 71 having conductivity are integrally assembled.
  • the second lens 12 is fitted into the additional lens frame 71 in close contact with the additional lens frame 71, so that they can be ideally and easily conducted.
  • the lens outer frame 50 has conductivity.
  • the lens outer frame 50, the first lens unit 60, and the second lens unit 70 are integrally assembled, and these components are electrically connected to each other.
  • the arm portion 30 is integrally assembled with the first arm 31a, the second arm 31b, the joint portion 32 connecting them, and the springs 34a and 34b with a metal, that is, a conductive member. Therefore, each component of the arm portion 30 is electrically connected to each other.
  • the lens head 10 having conductivity as a whole and the arm portion 30 having conductivity as a whole are connected by the connecting bracket 20 having conductivity. Then, the illumination magnifier 1 is connected to the EPA ground from the ground connector 36 provided on the arm portion 30 via the ground wire 98. As a result, all the appearance parts of the illumination magnifier 1 are conducted, and the charged charge can be satisfactorily released to the EPA ground.
  • the illumination magnifying glass 1 introduced into the EPA suitable antistatic protection is performed, and it is effective to prevent destruction of the inspection object due to ESD and to adhere dust and foreign matter caused by charging. Can be prevented.
  • the lens holder (lens mirror frame) of an optical component is made of a metal or resin material. Then, when measures against static electricity are required, a metal frame may be adopted, or in the case of resin parts, a conductive coating or a conductive resin may be used, and a conductive coating may be applied to the lens. Not only is such a conventional method costly, but metal parts have a low resistance value, and there is a risk of causing electrostatic destruction of nearby electric parts and the like.
  • the lens frame 61 and the additional lens frame 71 are made conductive as elastic bodies such as rubber and elastomer, and other components (particularly exposed to the surface). By giving conductive performance to each other and making them conductive to each other, it is possible to realize appropriate measures against static electricity while realizing reasonable cost and availability.
  • the antistatic structure is provided so that the battery is not normally charged, and the battery is not discharged at once when a charged person or object is touched, but is discharged slowly. It is possible to achieve both the function and the function of preventing destruction of the inspection object associated with ESD at a high level.
  • FIG. 5 is a perspective view of the stand-based loupe 101.
  • FIG. 6 is a side view of the stand-based loupe 101.
  • FIG. 7 is a front view of the stand-based loupe 101, showing the lens head 110 as a cross-sectional view.
  • FIG. 8 is a side view of the stand-based loupe 101, showing the lens head 110 as a cross-sectional view.
  • the difference from the first embodiment is that the support column 130, the horizontal bar support arm 152 and the work table 140 are used instead of the arm portion 30 as the support portion (mounting), and the LED lighting portion 59 (LED substrate). Is omitted.
  • LED lighting portion 59 LED substrate
  • the stand-based loupe 101 has a lens head 110, a joint 120, a support 130, and a work table 140. 6 to 8 show a state in which the sample table 180 is placed on the work table 140.
  • the joint 120, the support column 130, and the work table 140 are each made of metal and have a surface resistance in the range of 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • a ground wire 198 is screwed to the work table 140 on the rear side.
  • vertically extending columns 130 are provided near the left and right centers on the rear side of the work table 140.
  • a joint 120 is attached to the support column 130, and a lens head 110 is attached to the joint 120.
  • the joint 120 has a horizontal through hole that penetrates in the horizontal direction and a vertical through hole that penetrates in the vertical direction.
  • the support arm 152 of the lens head holder 150 is inserted into the horizontal through hole, and the support column 130 is inserted into the vertical through hole, and each is fixed with a bolt with a knob. As a result, the lens head 110 is attached to the support column 130.
  • the lens head 110 includes a lens head holder 150, a first lens unit 160, and a second lens unit 170.
  • the first lens unit 160 is housed in a tubular lens head holder 150.
  • the second lens unit 170 is an additional lens unit that the user uses as needed, and is arranged above the first lens unit 160.
  • the lens head holder 150 is formed of a rigid body such as a hard synthetic resin coated with a metal or a conductive material. Its surface resistance is in the range of 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • the lens head holder 150 has a tubular holder body 151 and a rod-shaped support arm 152 that integrally extends from the outer peripheral surface of the holder body 151.
  • the inner peripheral surface 153 of the holder body 151 is used as a lens unit mounting hole. That is, the inner peripheral surface 153 is provided so as to match the outer diameter of the lens frame 161 of the first lens unit 160.
  • a lens head arrangement surface 156 having an inner peripheral surface 153 side lowered by one step is formed in an annular shape on the upper end portion of the tubular holder body 151.
  • the diameter of the lens head arrangement surface 156 coincides with the outer diameter of the first jaw portion 62, which will be described later.
  • the arrangement surface 163 of the first lens unit 160 which will be described later, is arranged and supported on the lens head arrangement surface 156.
  • the support arm 152 is inserted into a through hole formed horizontally in the joint 120 and fixed by a bolt with a knob.
  • the first lens unit 160 includes a first lens 111 and a lens frame 161 that houses the first lens 111.
  • the first lens 111 has a transparent conductive film such as ITO on its surface.
  • the surface resistance of the first lens 111 is set to be in the range of 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less due to the transparent conductive film.
  • the lens frame 161 is an annular elastic mount made of an elastic material such as rubber or an elastomer, like the lens frame 61 of the first embodiment.
  • the elastic material is, for example, a rigid rubber such as EPDM kneaded with a certain amount of carbon to control the surface resistance in the range of 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • a flange-shaped jaw portion 162 bulging outward in diameter is integrally provided at the upper end of the outer peripheral surface of the lens frame 161.
  • the outer diameter of the jaw portion 162 coincides with the inner diameter of the lens head arrangement surface 156.
  • a lens accommodating groove 165 having a predetermined depth is formed in the circumferential direction near the center of the inner peripheral surface of the lens frame 161 in the vertical direction.
  • a stepped fitting portion 166 that is lowered by one step is formed.
  • the fitting portion 176 of the second lens unit 170 is fitted into the fitting portion 166.
  • the second lens unit 170 includes a second lens 112 and an additional lens frame 171 that accommodates the second lens 112.
  • the second lens 112 like the first lens 111, has a transparent conductive film on its surface.
  • the surface resistance of the second lens 12 is, for example, 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • the additional lens frame 171 is an annular elastic mount made of an elastic material, similarly to the lens frame 161.
  • the surface resistance is controlled in the range of 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less. Is.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • the additional lens frame 171 is formed with a fitting portion 176 in which the inner portion of the lower end portion is convex one step downward. As described above, when the second lens unit 170 is arranged in the first lens unit 160, the fitting portion 176 is fitted into the fitting portion 166 of the first lens unit 160.
  • the stand-based loupe 101 has the same conduction structure and effect as the illumination magnifier 1 of the first embodiment. Therefore, as the stand-based loupe 101 introduced into the EPA, suitable antistatic measures can be taken, the destruction of the inspection object due to ESD can be prevented, and the adhesion of dust and foreign substances caused by the charging can be effectively prevented.
  • FIG. 9 is a vertical cross-sectional view of the entire microscope 201.
  • FIG. 10 is an enlarged view of the region C of FIG. 9, showing the structure of the objective lens unit 220 and its mounting portion 215.
  • the microscope 201 has an eyepiece lens unit 290, an objective lens unit 220, and a mirror column 210 (body).
  • the mirror column 210 has a stage 211, a lens barrel 216, a base portion 217, a stand 218, and an arm portion 219.
  • a lens barrel 216 is provided on the upper side of the arm portion 219.
  • the lower portion of the lens barrel 216 is a mounting portion 215 for mounting the objective lens unit 220.
  • the lens barrel 216 has an optical system in which the light collected by the objective lens unit 220 on the observation optical axis is incident on the eyepiece lens unit 290.
  • the base portion 217 functions as a leg portion, and a stand 218 for holding the stage 211 is erected on the back surface thereof.
  • the arm portion 219 is supported by the stand 218 and extends toward the front side.
  • the surfaces of each of these components are conductive.
  • the surface resistance is 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • the structure of the objective lens unit 220 will be described with reference to FIG.
  • the objective lens unit 220 has a first objective lens unit 250 on the stage 211 side and a second objective lens unit 270 on the eyepiece lens unit 290 side in the optical system.
  • the first objective lens unit 250 includes a first objective lens 261 and a first lens holding portion 251 that houses the first objective lens 261 inside.
  • the first objective lens 261 is, for example, a junction lens and has a transparent conductive film as in the first and second embodiments described above.
  • the surface resistance of the first objective lens 261 is 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the transparent conductive film of the first objective lens 261 may be provided on a surface exposed to the outside, that is, a surface of the stage 211.
  • the first lens holding portion 251 has a tubular shape in which an elastic body such as rubber or elastomer is made conductive.
  • the surface resistance of the first lens holding portion 251 is 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • the first lens holding portion 251 has a lens accommodating portion 252 provided on the inner peripheral surface and a fixing portion 254 that presses and locks the first objective lens 261 arranged in the lens accommodating portion 252 from the outside. Further, the first lens holding portion 251 has a fitting portion 255 for fitting and fixing to the second lens holding portion 271 in a portion of the opening 253 on the side opposite to the side on which the first objective lens 261 is arranged. .. Due to the elastic force of the first lens holding portion 251 the fitting portion 255 is fitted into the second lens holding portion 271 in a close contact state.
  • the first objective lens 261 and the first lens holding portion 251 are conductive and have conductivity as the first objective lens unit 250.
  • the second objective lens unit 270 has a second objective lens 262 and a second lens holding unit 271 that accommodates the second objective lens 262.
  • the second objective lens 262 is housed inside the microscope 201 and is not exposed to the outside during use, it is not necessary to take special measures against static electricity. That is, no transparent conductive film is required.
  • the second lens holding portion 271 is formed of, for example, a metal whose surface resistance is controlled to be 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less by conductive coating.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • a rubber or resin material may be used as long as the surface resistance is controlled within the above range and has a desired strength.
  • the first objective lens 261 and the first lens holding portion 251 and the second lens holding portion 271 are conductive. That is, the configuration of at least the portion of the objective lens unit 220 exposed to the outside is conductive.
  • the objective lens unit 220 is connected to the EPA ground by a ground wire 298 attached to the ground terminal of the conductive mirror column 210.
  • the microscope 201 has the same conduction structure and effect as the illumination magnifier 1 of the first embodiment and the stand-based loupe 101 of the second embodiment. Therefore, as the microscope 201 introduced into the EPA, suitable antistatic prevention is performed, and it is possible to effectively prevent destruction of the inspection object due to ESD and prevention of adhesion of dust and foreign matter caused by charging. Further, since the objective lens frame of the microscope is made of rubber and the objective lens is extremely close to the observation object, it is possible to prevent the observation object from being damaged even when the rubber frame collides with the observation object.
  • FIG. 11 is a vertical cross-sectional view of the desk loupe 300.
  • the shape of the desk loupe 300 itself is the same as that of a known desk loupe. The difference is that the desk loupe 300 as a whole has conductivity.
  • the desk loupe 300 has a lens 312, a lens holder 360, and a hakama 350.
  • the lens 312 is made of, for example, one piece of optical glass, and a transparent conductive film is provided on the surface thereof.
  • the surface resistance is in the range of 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • the lens holder 360 is an annular elastic mount made of an elastic material.
  • the elastic material include rubber and elastomer.
  • a certain amount of carbon is kneaded into rigid rubber such as EPDM, and the surface resistance is controlled in the range of 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • a groove-shaped lens locking recess 364 into which the outer edge of the lens 312 is fitted is formed on the inner peripheral surface 363 of the lens holder 360 in the circumferential direction.
  • a fitting portion 362 for attaching the hakama 350 is provided at the lower end portion of the lens holder 360.
  • the hakama 350 also called a “skirt" is formed in a tubular shape and has a structure that roughly keeps the working distance in consideration of the focal length.
  • the inner peripheral surface 353 of the hakama 350 has, for example, a shape in which the lower side is slightly widened outward in the cross section of the inner peripheral surface 353, but the purpose is not limited to this shape, and the inner diameter of the inner peripheral surface 353 is a constant shape. You may.
  • a fitting portion 352 that fits with the fitting portion 362 of the lens holder 360 is provided.
  • the hakama 350 is made of a conductive resin or metal, and its surface resistance is in the range of 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • FIG. 12 is a vertical cross-sectional view of the scale loupe 400.
  • the difference from the desk loupe 300 shown in FIG. 11 is that the hakama 450 is provided with the LED lighting unit 470 and the hakama 450 is provided with the glass scale 490 at the lower end.
  • the differences will be mainly described, and the description of the same configuration / function will be omitted as appropriate.
  • the scale loupe 400 has a lens 412, an elastic mount lens holder 460 for holding the lens 412, and a hakama 450.
  • ⁇ Composition of lens 412 and hakama 450> The lens 412 is fitted in a lens locking recess 464 provided on the inner peripheral surface 463 of the lens holder 460.
  • a hakama 450 is attached to the lens holder 460 by fitting portions 452 and 462.
  • a transparent glass scale 490 attached by a scale fixing portion 480 is provided at the lower end portion of the hakama 450. As a result, the opening at the lower end of the hakama 450 is closed.
  • At least the lower surface (the surface exposed to the outside) of the glass scale 490 is a transparent conductive film. Its surface resistance is 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • the scale fixing portion 480 is, for example, a resin molded product or a metal.
  • the surface resistance of the scale fixing portion 480 is 1 ⁇ 10 5 ⁇ / ⁇ or more and 1 ⁇ 10 11 ⁇ / ⁇ or less at least in the portion exposed to the outside.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • an LED lighting unit 470 is provided on the inner peripheral surface 453 of the hakama 450.
  • the inner peripheral surface 453 of the hakama 450 is formed with a stepped annular mounting surface 465 near the boundary where the fitting portions 452 and 462 are formed.
  • An annular LED illumination unit 470 is provided on the mounting surface 465.
  • the optical device of the present embodiment includes a lens having a conductive surface and A first holding portion, which is made of a conductive rubber-like elastic body and holds the lens, and a first holding portion.
  • the lens, the first holding portion, and the second holding portion are electrically connected to each other.
  • the optical instrument of the present embodiment has an ideal surface resistance as a whole, and has suitable antistatic properties. As a result, it is possible to effectively prevent the inspection object from being destroyed due to ESD and the adhesion of dust and foreign matter caused by charging. In addition, it is possible to realize appropriate measures against static electricity while realizing reasonable cost and availability.
  • each of the surface resistance of the first holding portion and the front second holding portion is 10 5 ⁇ / ⁇ or more 10 11 ⁇ / ⁇ or less.
  • the upper limit of the surface resistance is more preferably 1 ⁇ 10 9 ⁇ / ⁇ or less, and even more preferably 1 ⁇ 10 8 ⁇ / ⁇ or less.
  • the lower limit is more preferably 1 ⁇ 10 6 ⁇ / ⁇ or more, and even more preferably 1 ⁇ 10 7 ⁇ / ⁇ or more.
  • a grounding means that conducts with the lens, the first holding portion, and the second holding portion and connects to an external ground.
  • a support portion provided between the grounding means and the second holding portion so as to be electrically connected to the grounding means and the second holding portion. Have. That is, by connecting to the EPA ground via the grounding means (earth wire), the static electricity charged in the optical device can be appropriately released to the EPA ground.
  • the second holding portion has a lighting means.
  • the second holding portion has a conductive hakama structure that keeps a predetermined working distance. Even when the optical device is a loupe having a hakama structure, since the hakama has conductivity, it is possible to prevent electrification due to observation.
  • the second holding portion has a scale at the end of the opening opposite to the first holding portion of the hakama structure. The scale is conductive. Even when the scale is provided in the hakama structure, since the scale has conductivity, it is possible to prevent charging due to observation.

Abstract

This optical apparatus (illumination magnifier 1) includes: a lens (first lens 11) having an electrically conductive surface; a first retaining part (lens frame 61) that is made from a conductive rubber-like elastic body and that retains the lens; and a second retaining part (lens outer frame 50) that is conductive and that retains the first retaining part, with the lens (first lens 11), the first retaining part (lens frame 61), and the second retaining part (lens outer frame 50) being electrically connected to each other.

Description

光学機器Optical equipment
 本発明は、光学機器に関する。 The present invention relates to an optical device.
 光学機器では、レンズに帯電防止機能を付して、静電気を排除したり、埃や異物の付着を防止したりする機能を備えた製品がある。例えば、特許文献1には、レンズ表面にITO等の透明金属膜を設けて帯電防止する技術が開示されている。 In optical equipment, there are products that have an antistatic function on the lens to eliminate static electricity and prevent the adhesion of dust and foreign matter. For example, Patent Document 1 discloses a technique of providing a transparent metal film such as ITO on the lens surface to prevent antistatic.
特開2007-17591号公報Japanese Unexamined Patent Publication No. 2007-17591
 電子部品組立工程等において、静電気放電(ESD)を防止した区域(EPA)で作業が行われることがあるが、電子部品の精密化に伴い、従来にも増して静電気対策が求められるようになってきた。例えば、EPAに導入される拡大鏡や顕微鏡などの光学機器においても、ESDに伴う検査対象物の破壊防止や、帯電が原因となる埃や異物の付着の防止の観点から、帯電防止が求められている。上述のようなレンズ自体を帯電防止だけでは不十分であり、より効果的な帯電防止の技術が求められていた。この課題はEPAに導入される光学機器に留まるものではなく、光学機器全般に亘って克服が期待されている課題であった。 In the electronic component assembly process, work may be performed in an area (EPA) where electrostatic discharge (ESD) is prevented, but with the refinement of electronic components, static electricity countermeasures are required more than before. I came. For example, optical instruments such as magnifying glasses and microscopes introduced into EPAs are also required to be antistatic from the viewpoint of preventing destruction of inspection objects due to ESD and prevention of adhesion of dust and foreign substances caused by charging. ing. Antistatic alone is not sufficient for the lens itself as described above, and more effective antistatic technology has been required. This problem is not limited to the optical equipment introduced in the EPA, but is a problem that is expected to be overcome in all optical equipment.
 本発明は、このような状況に鑑みなされたものであって、光学機器において、帯電防止技術を提供することを目的とする。 The present invention has been made in view of such a situation, and an object of the present invention is to provide an antistatic technique in an optical device.
本発明の光学機器は、
 表面に導電性を有するレンズと、
 導電性を有するゴム状の弾性体からなり、前記レンズを保持する第1の保持部と、
 導電性を有し、前記第1の保持部を保持する第2の保持部と、
を有し、
 前記レンズと前記第1の保持部と前記第2の保持部とは導通し、
 前記第2の保持部は、照明手段を有する、光学機器。
The optical device of the present invention
With a lens that has conductivity on the surface,
A first holding portion, which is made of a conductive rubber-like elastic body and holds the lens, and a first holding portion.
A second holding portion that has conductivity and holds the first holding portion,
Have,
The lens, the first holding portion, and the second holding portion are electrically connected to each other.
The second holding portion is an optical device having a lighting means.
 本発明によると、光学機器において、帯電防止技術を提供することができる。 According to the present invention, it is possible to provide an antistatic technique in an optical device.
第1の実施形態の照明拡大鏡の斜視図である。It is a perspective view of the illumination magnifier of 1st Embodiment. 第1の実施形態の照明拡大鏡の側面図(一部断面図)である。It is a side view (partial cross-sectional view) of the illumination magnifier of 1st Embodiment. 第1の実施形態のレンズヘッドの分解断面図である。It is an exploded sectional view of the lens head of 1st Embodiment. 第1の実施形態のレンズヘッドの断面図を一部拡大して示した図である。It is the figure which showed the cross-sectional view of the lens head of 1st Embodiment partially enlarged. 第2の実施形態のスタンドベース型ルーペの斜視図である。It is a perspective view of the stand base type loupe of the 2nd Embodiment. 第2の実施形態のスタンドベース型ルーペの側面図である。It is a side view of the stand base type loupe of the 2nd Embodiment. 第2の実施形態のスタンドベース型ルーペの正面図(一部断面図)である。It is a front view (partial sectional view) of the stand base type loupe of the 2nd Embodiment. 第2の実施形態のスタンドベース型ルーペの側面図(一部断面図)である。It is a side view (partial sectional view) of the stand base type loupe of the 2nd Embodiment. 第3の実施形態の顕微鏡の断面側面図である。It is sectional drawing side view of the microscope of the 3rd Embodiment. 第3の実施形態の対物レンズユニットの断面図を一部拡大して示した図である。It is the figure which showed the cross-sectional view of the objective lens unit of 3rd Embodiment partially enlarged. 第4の実施形態のデスクルーペの断面図である。It is sectional drawing of the desk loupe of 4th Embodiment. 第5の実施形態のスケールルーペの断面図である。It is sectional drawing of the scale loupe of the 5th Embodiment.
≪実施形態の概要≫
 本実施形態の光学機器では、EPAにおいて、安全に使用する機器の各部品の外観表面に導電性を持たせ導通させて、機器の帯電電荷をスムーズにEPAグランドに逃がす。詳細は以下の実施形態で説明するが、先端に対物レンズまたは防塵ガラス等を持つ光学機器において、それらの部品(主に外観部品)を容易に導通させて適正な表面抵抗を確保させる機構を実現する。
<< Outline of the embodiment >>
In the optical device of the present embodiment, in the EPA, the external surface of each component of the device to be used safely is made conductive and made conductive, so that the charged charge of the device is smoothly released to the EPA ground. Details will be described in the following embodiments, but in an optical device having an objective lens or dustproof glass at the tip, a mechanism for easily conducting these parts (mainly external parts) to ensure appropriate surface resistance is realized. do.
≪第1の実施形態≫
<照明拡大鏡1の構造>
 図1は照明拡大鏡1の斜視図である。図2は照明拡大鏡1の側面図であって、レンズヘッド10を断面図で示している。
<< First Embodiment >>
<Structure of Illumination Magnifier 1>
FIG. 1 is a perspective view of the illumination magnifier 1. FIG. 2 is a side view of the illumination magnifier 1, and shows the lens head 10 in a cross-sectional view.
 図示のように、照明拡大鏡1は、レンズヘッド10と、アーム部30と、連結ブラケット20と、クランプ取付部40とを備える。レンズヘッド10は、連結ブラケット20を介してアーム部30の先端に取り付けられる。アーム部30は、アーム架台33を介して、クランプ取付部40によってデスク99等に固定される。なお、本実施形態では、便宜的に、アーム部30において、レンズヘッド10が取り付けられる側を先端(または先端側)と呼び、クランプ取付部40が取り付けられる側を後端(または後端側)と呼ぶ。 As shown in the figure, the illumination magnifier 1 includes a lens head 10, an arm portion 30, a connecting bracket 20, and a clamp mounting portion 40. The lens head 10 is attached to the tip of the arm portion 30 via the connecting bracket 20. The arm portion 30 is fixed to the desk 99 or the like by the clamp mounting portion 40 via the arm mount 33. In the present embodiment, for convenience, the side of the arm portion 30 to which the lens head 10 is attached is referred to as the front end (or the front end side), and the side to which the clamp mounting portion 40 is attached is referred to as the rear end (or rear end side). Called.
<アーム部30の構造>
 アーム部30は、レンズヘッド10の支持部であって、先端側の第1アーム31aと、後端側の第2アーム31bとを有し、それらは関節部32で連結されている。すなわち、第1アーム31aの後端と、第2アーム31bの先端が関節部32で連結している。
 第1アーム31aの先端には、レンズヘッド10を連結するための連結ブラケット20が取り付けられている。第1アーム31aの後端には、関節部32が取り付けられている。
 第1アーム31aは、所定間隔をおいて対向する一対の平行な金属製の棒材を略平行四辺形になるように連結し、金属製のスプリング34aで支えるようにした構造となっている。
<Structure of arm portion 30>
The arm portion 30 is a support portion of the lens head 10, and has a first arm 31a on the front end side and a second arm 31b on the rear end side, which are connected by a joint portion 32. That is, the rear end of the first arm 31a and the tip of the second arm 31b are connected by the joint portion 32.
A connecting bracket 20 for connecting the lens head 10 is attached to the tip of the first arm 31a. A joint portion 32 is attached to the rear end of the first arm 31a.
The first arm 31a has a structure in which a pair of parallel metal rods facing each other at a predetermined interval are connected so as to form a substantially parallelogram and supported by a metal spring 34a.
 第2アーム31bの先端には、関節部32が取り付けられている。第2アーム31bの後端には、アーム架台33が取り付けられている。
 第2アーム31bは、第1アーム31aと同様に、所定間隔をおいて対向する一対の平行な導電性の金属の棒材を略平行四辺形になるように連結し、金属製のスプリング34bで支えるようにした構造となっている。
 アーム部30は、このような構造を有することで、アーム部30のアーム架台33で傾起可能に支持される。
A joint portion 32 is attached to the tip of the second arm 31b. An arm mount 33 is attached to the rear end of the second arm 31b.
Similar to the first arm 31a, the second arm 31b is formed by connecting a pair of parallel conductive metal rods facing each other at predetermined intervals so as to form a substantially parallelogram, and using a metal spring 34b. It has a structure that supports it.
By having such a structure, the arm portion 30 is supported by the arm mount 33 of the arm portion 30 so as to be tiltable.
 第2アーム31bの背面側(図2の右側)には、アースコネクタ36が設けられている。アースコネクタ36に取り付けられたアース線98がEPAグランドに接続することにより、照明拡大鏡1の全ての外観部品は導通され、帯電した電荷を良好にEPAグランドに逃がすことができる。 A ground connector 36 is provided on the back side (right side in FIG. 2) of the second arm 31b. By connecting the ground wire 98 attached to the ground connector 36 to the EPA ground, all the appearance parts of the illumination magnifier 1 are conducted, and the charged charge can be satisfactorily released to the EPA ground.
<レンズヘッド10の構造>
 つづいて図2、図3及び図4を参照して、レンズヘッド10の構造を具体的に説明する。図3は、レンズヘッド10の分解断面図であって、図2のレンズヘッド10を分解して示している。
<Structure of lens head 10>
Subsequently, the structure of the lens head 10 will be specifically described with reference to FIGS. 2, 3 and 4. FIG. 3 is an exploded cross-sectional view of the lens head 10, and shows the lens head 10 of FIG. 2 in an exploded manner.
 レンズヘッド10は、レンズ外枠50と、第1レンズユニット60と、第2レンズユニット70とを着脱自在に組み付けている。第2レンズユニット70は、使用者が必要に応じて使用する付加レンズユニットであり、レンズヘッド10に含まれなくともよい。 The lens head 10 has a lens outer frame 50, a first lens unit 60, and a second lens unit 70 detachably assembled. The second lens unit 70 is an additional lens unit that the user uses as needed, and may not be included in the lens head 10.
<レンズ外枠50の構造>
 レンズ外枠50は、金属や硬質合成樹脂等の剛性体で形成されている。
 ただし、剛性体の表面抵抗は、後述するように、1×10Ω/□以上1×1011Ω/□以下である。
 金属として、例えば、アルミニウム合金(より具体的にはアルミダイキャスト合金)やその表面を導電性材料でコーティング(塗装)加工して、上記表面抵抗の範囲としたものがある。また、硬質合成樹脂であれば、導電性物質を含有するものや、導電性材料でコーティング加工したもの等がある。
<Structure of lens outer frame 50>
The lens outer frame 50 is formed of a rigid body such as metal or hard synthetic resin.
However, as will be described later, the surface resistance of the rigid body is 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less.
As the metal, for example, there are aluminum alloys (more specifically, aluminum die-cast alloys) and those in which the surface thereof is coated (painted) with a conductive material to obtain the above-mentioned surface resistance range. Further, in the case of a hard synthetic resin, there are those containing a conductive substance, those coated with a conductive material, and the like.
 レンズ外枠50は、環状のホルダ本体51と、ホルダ本体51の外周面から一体に延出する連結部52とを有する。 The lens outer frame 50 has an annular holder body 51 and a connecting portion 52 integrally extending from the outer peripheral surface of the holder body 51.
 ホルダ本体51は、環状形状の内周面53をレンズユニット装着孔としている。すなわち、内周面53は、後述する第1レンズユニット60のレンズ枠61の外径と一致するように設けられている。 The holder body 51 has a ring-shaped inner peripheral surface 53 as a lens unit mounting hole. That is, the inner peripheral surface 53 is provided so as to match the outer diameter of the lens frame 61 of the first lens unit 60, which will be described later.
 内周面53の外側には、照明収容部55が下側を開放して環状に形成されている。照明収容部55には、複数のLED素子を有するLED照明部59が収容される。照明収容部55の下側には、ランプカバー54が取り付けられている。ランプカバー54は、例えば透明樹脂または乳白色の光拡散構造を有する樹脂で設けられている。ランプカバー54についても、表面抵抗が1×10Ω/□以上1×1011Ω/□以下である。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。 On the outside of the inner peripheral surface 53, a lighting accommodating portion 55 is formed in an annular shape with the lower side open. The LED lighting unit 59 having a plurality of LED elements is housed in the lighting housing unit 55. A lamp cover 54 is attached to the lower side of the lighting accommodating portion 55. The lamp cover 54 is provided with, for example, a transparent resin or a resin having a milky white light diffusing structure. The surface resistance of the lamp cover 54 is also 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
 ホルダ本体51の上面には、内周面53の上端外側部分において、環状平面に形成されたレンズヘッド配置面56が設けられている。レンズヘッド配置面56は、第1レンズユニット60が収容されるときに、ホルダ収容面69が当接する。 On the upper surface of the holder body 51, a lens head arrangement surface 56 formed in an annular plane is provided on the upper end outer portion of the inner peripheral surface 53. The lens head arranging surface 56 comes into contact with the holder accommodating surface 69 when the first lens unit 60 is accommodated.
 連結部52は、例えば、アーム部30の先端に設けられた連結ブラケット20とノブ付きボルトで固定される。 The connecting portion 52 is fixed, for example, by a connecting bracket 20 provided at the tip of the arm portion 30 and a bolt with a knob.
<第1レンズユニット60の構造>
 第1レンズユニット60は、第1レンズ11と、第1レンズ11を収容するレンズ枠61有する。
 第1レンズ11は、例えば、1枚の光学ガラスで構成されている。第1レンズ11は、表面に透明導電膜を有する。透明導電膜は、例えば、酸化インジウムスズ(ITO)やフッ素ドープ酸化スズ(FTO)である。第1レンズ11は、透明導電膜によって、表面の表面抵抗を1×10Ω/□以上1×1011Ω/□以下に設定されている。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。
<Structure of the first lens unit 60>
The first lens unit 60 includes a first lens 11 and a lens frame 61 that houses the first lens 11.
The first lens 11 is made of, for example, one piece of optical glass. The first lens 11 has a transparent conductive film on its surface. The transparent conductive film is, for example, indium tin oxide (ITO) or fluorine-doped tin oxide (FTO). The surface resistance of the surface of the first lens 11 is set to 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less by a transparent conductive film. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
 透明導電膜の膜厚を調整することで、表面抵抗を所望に設定できる。なお、透明導電膜として、界面活性剤コート、水/アルコール系の導電性コーティング剤、ポリチオフェン系導電性ポリマーが用いられてもよい。なお、第1レンズ11は、複数群複数枚で構成されてもよいが、その場合、少なくとも外部に露出しているレンズの表面(露出している面)に透明導電膜が設けられる。また、第1レンズ11の材料として光学ガラスに限らず、樹脂が用いられてもよく、また、接合レンズでもよい。 The surface resistance can be set as desired by adjusting the film thickness of the transparent conductive film. As the transparent conductive film, a surfactant coating, a water / alcohol-based conductive coating agent, or a polythiophene-based conductive polymer may be used. The first lens 11 may be composed of a plurality of lenses in a plurality of groups, but in that case, a transparent conductive film is provided on at least the surface (exposed surface) of the lens exposed to the outside. Further, the material of the first lens 11 is not limited to optical glass, and a resin may be used, or a bonded lens may be used.
 レンズ枠61は、弾性材からなる環状の弾性マウントである。弾性材として、例えば、ゴムやエラストマーがある。具体的には、EPDM(エチレンプロピレンジエンゴム)等の剛性ゴムにカーボンを一定量練り込み表面抵抗を1×10Ω/□以上1×1011Ω/□以下の範囲にコントロールしたものである。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。 The lens frame 61 is an annular elastic mount made of an elastic material. Examples of the elastic material include rubber and elastomer. Specifically, a certain amount of carbon is kneaded into a rigid rubber such as EPDM (ethylene propylene diene rubber) to control the surface resistance in the range of 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. .. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
 レンズ枠61は、レンズ枠本体61aと、その上側にレンズ枠本体61aより若干外径の大きいフランジ状の第1顎部62と、その上側にさらに若干外径が大きいフランジ状の第2顎部63とを一体に有する。これにより、レンズ枠61の上側領域には、段部が2段で形成されている。 The lens frame 61 includes a lens frame main body 61a, a flange-shaped first jaw portion 62 having a slightly larger outer diameter than the lens frame main body 61a on the upper side thereof, and a flange-shaped second jaw portion having a slightly larger outer diameter on the upper side thereof. It has 63 integrally. As a result, a step portion is formed in two steps in the upper region of the lens frame 61.
 レンズ枠61の内周面64には、より具体的には、第1顎部62の形成位置の対応する内周面64に、所定深さのレンズ収容溝65が形成されている。このレンズ収容溝65に、第1レンズ11の外縁部分が嵌め込まれることで、第1レンズ11がレンズ枠61に収容される。 More specifically, the inner peripheral surface 64 of the lens frame 61 is formed with a lens accommodating groove 65 having a predetermined depth on the inner peripheral surface 64 corresponding to the formation position of the first jaw portion 62. The first lens 11 is accommodated in the lens frame 61 by fitting the outer edge portion of the first lens 11 into the lens accommodating groove 65.
 内周面64において、レンズ収容溝65より上側の領域では、第2顎部63の形成位置に対応する位置まで、上方側ほど外径が大きくなる内周傾斜面66となっている。 In the region above the lens accommodating groove 65 on the inner peripheral surface 64, the inner peripheral inclined surface 66 has an outer diameter that increases toward the upper side up to a position corresponding to the formation position of the second jaw portion 63.
 内周面64において、第2顎部63の形成位置に対応する位置、すなわち、内周傾斜面66の上側の領域には、第2レンズユニット収容面67が環状に形成されている。第2レンズユニット収容面67に、第2レンズユニット70が収容される。 On the inner peripheral surface 64, the second lens unit accommodating surface 67 is formed in an annular shape at a position corresponding to the formation position of the second jaw portion 63, that is, in the region above the inner peripheral inclined surface 66. The second lens unit 70 is housed in the second lens unit housing surface 67.
 第1顎部62の外径は、レンズ外枠50の内周面53より若干小径に形成されている。
 第1顎部62の外周面には、周方向に所定間隔で複数箇所(例えば120度間隔で3カ所)に、収容係止凸部68が形成されている。収容係止凸部68は、第1顎部62の外周面の周方向に長さを持った凸状(例えば断面半円)である。第1顎部62の外周面の外径は、収容係止凸部68を含めると、レンズ外枠50の内周面53の内径と一致または若干大径となっている。すなわち、第1レンズユニット60がレンズ外枠50に収容される場合、収容係止凸部68と内周面53により、径方向の位置決めがなされる。
The outer diameter of the first jaw portion 62 is formed to be slightly smaller than the inner peripheral surface 53 of the lens outer frame 50.
On the outer peripheral surface of the first jaw portion 62, accommodating locking convex portions 68 are formed at a plurality of locations (for example, three locations at 120 degree intervals) at predetermined intervals in the circumferential direction. The accommodating locking convex portion 68 has a convex shape (for example, a semicircle in cross section) having a length in the circumferential direction of the outer peripheral surface of the first jaw portion 62. The outer diameter of the outer peripheral surface of the first jaw portion 62, including the accommodating locking convex portion 68, is equal to or slightly larger than the inner diameter of the inner peripheral surface 53 of the lens outer frame 50. That is, when the first lens unit 60 is accommodated in the lens outer frame 50, the accommodation locking convex portion 68 and the inner peripheral surface 53 perform radial positioning.
<第2レンズユニット70の構造>
 第2レンズユニット70は、付加レンズである第2レンズ12と、第2レンズ12を収容する付加レンズ枠71と、を有する。
<Structure of the second lens unit 70>
The second lens unit 70 includes a second lens 12, which is an additional lens, and an additional lens frame 71 that accommodates the second lens 12.
 第2レンズ12は、第1レンズ11と同様に、1枚の光学ガラス、または複数群複数枚の光学ガラスで構成されている。第2レンズ12は、表面に透明導電膜を有する。第2レンズ12の表面抵抗は、例えば1×10Ω/□以上1×1011Ω/□以下の範囲にコントロールしたものである。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。なお、第1レンズ11と第2レンズ12の透明導電膜について、材料や膜厚が同じであってもよいし、異なってもよい。 Like the first lens 11, the second lens 12 is composed of one optical glass or a plurality of groups of optical glasses. The second lens 12 has a transparent conductive film on its surface. The surface resistance of the second lens 12 is controlled in the range of , for example, 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more. The transparent conductive films of the first lens 11 and the second lens 12 may have the same material and film thickness, or may be different.
 付加レンズ枠71は、レンズ枠61と同様に、弾性材からなる環状の弾性マウントである。弾性材として、例えば、ゴムやエラストマーがある。具体的には、EPDM(エチレンプロピレンジエンゴム)等の剛性ゴムにカーボンを一定量練り込み、表面抵抗を1×10Ω/□以上1×1011Ω/□以下の範囲にコントロールしたものである。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。 Like the lens frame 61, the additional lens frame 71 is an annular elastic mount made of an elastic material. Examples of the elastic material include rubber and elastomer. Specifically, a certain amount of carbon is kneaded into rigid rubber such as EPDM (ethylene propylene diene rubber), and the surface resistance is controlled in the range of 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. be. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
 付加レンズ枠71は、下側には、付加レンズ枠本体71aより若干外径の大きいフランジ状の顎部72を有する。顎部72の外径は、上述した第1レンズユニット60の第2レンズユニット収容面67の外径に略同一である。すなわち、第2レンズユニット70を第1レンズユニット60に取り付ける際に、第2レンズユニット70の顎部72(フランジ部)が、第1レンズユニット60の第2レンズユニット収容面67に嵌まる。 The additional lens frame 71 has a flange-shaped jaw portion 72 having a slightly larger outer diameter than the additional lens frame main body 71a on the lower side. The outer diameter of the jaw portion 72 is substantially the same as the outer diameter of the second lens unit accommodating surface 67 of the first lens unit 60 described above. That is, when the second lens unit 70 is attached to the first lens unit 60, the jaw portion 72 (flange portion) of the second lens unit 70 fits into the second lens unit accommodating surface 67 of the first lens unit 60.
 付加レンズ枠71の内周面73には、より具体的には、顎部72の形成位置の対応する内周面73に、所定深さのレンズ収容溝74が形成されている。このレンズ収容溝74に、第2レンズ12の外縁部分が嵌め込まれることで、第2レンズ12が付加レンズ枠71に収容される。
 内周面73において、レンズ収容溝74より上側の領域では、上方側ほど外径が大きくなる内周傾斜面75となっている。
More specifically, the inner peripheral surface 73 of the additional lens frame 71 is formed with a lens accommodating groove 74 having a predetermined depth on the inner peripheral surface 73 corresponding to the formation position of the jaw portion 72. The second lens 12 is accommodated in the additional lens frame 71 by fitting the outer edge portion of the second lens 12 into the lens accommodating groove 74.
In the region above the lens accommodating groove 74 on the inner peripheral surface 73, the inner peripheral inclined surface 75 has an outer diameter that increases toward the upper side.
<レンズヘッド10の組み付け構造>
 ここで図4を参照して、レンズヘッド10の組み付け構造を説明する。第1レンズ11を収容する第1レンズユニット60は、レンズ外枠50の内周面53に嵌め込まれると、第2顎部63のホルダ収容面69が、レンズ外枠50のレンズヘッド配置面56に当接する。
<Assembly structure of lens head 10>
Here, the assembly structure of the lens head 10 will be described with reference to FIG. When the first lens unit 60 accommodating the first lens 11 is fitted into the inner peripheral surface 53 of the lens outer frame 50, the holder accommodating surface 69 of the second jaw portion 63 becomes the lens head arrangement surface 56 of the lens outer frame 50. Contact with.
 このとき、第1顎部62の周面に形成された収容係止凸部68がレンズ外枠50の内周面53に押しつけられて弾性変形する。これによって、第1レンズユニット60は、レンズ外枠50の適正位置に組み付けられる。 At this time, the accommodating locking convex portion 68 formed on the peripheral surface of the first jaw portion 62 is pressed against the inner peripheral surface 53 of the lens outer frame 50 and elastically deforms. As a result, the first lens unit 60 is assembled at an appropriate position of the lens outer frame 50.
 さらに、使用者が第2レンズユニット70を使用する場合には、第1レンズユニット60の上に、すなわち、第1レンズユニット60の第2レンズユニット収容面67に、第2レンズユニット70の顎部72の底面76を当接させて配置する。
 これによって、レンズ外枠50、第1レンズユニット60、及び第2レンズユニット70は、一体に組み付けられる。このとき、レンズ外枠50、第1レンズユニット60、及び第2レンズユニット70は、レンズヘッド配置面56の付近近傍(領域A1)で厚さ方向に重なっているため、それら構成要素相互間での静電気の抜けがよい。
Further, when the user uses the second lens unit 70, the jaw of the second lens unit 70 is placed on the first lens unit 60, that is, on the second lens unit accommodating surface 67 of the first lens unit 60. The bottom surface 76 of the portion 72 is placed in contact with the bottom surface 76.
As a result, the lens outer frame 50, the first lens unit 60, and the second lens unit 70 are integrally assembled. At this time, since the lens outer frame 50, the first lens unit 60, and the second lens unit 70 overlap each other in the thickness direction in the vicinity of the lens head arrangement surface 56 (region A1), the constituent elements of the lens outer frame 50, the first lens unit 60, and the second lens unit 70 overlap each other. The static electricity is removed well.
<照明拡大鏡1の導通構造及びその効果>
 照明拡大鏡1の導通構造およびその効果を纏めて説明する。
<Conduction structure of illumination magnifier 1 and its effect>
The conduction structure of the illumination magnifier 1 and its effect will be described together.
 (特徴1)
 第1レンズユニット60は、導電性を有する第1レンズ11と、導電性を有するレンズ枠61とが一体に組み付けられている。このとき、第1レンズ11がレンズ枠61に弾性力により密着状態で嵌め込まれているので、それらは理想的かつ容易に導通が可能になる。
 第2レンズユニット70は、導電性を有する第2レンズ12と、導電性を有する付加レンズ枠71とが一体に組み付けられている。第1レンズユニット60と同様に、第2レンズ12が付加レンズ枠71に弾性力により密着状態で嵌め込まれているので、それらは理想的かつ容易に導通が可能になる。
 レンズ外枠50は、上述したように、導電性を有する。そして、第1レンズユニット60がレンズ外枠50に弾性力により密着状態で嵌め込まれているので、それらは理想的かつ容易に導通が可能になる。
 したがって、レンズヘッド10において、レンズ外枠50、第1レンズユニット60、第2レンズユニット70が一体に組み付けられた状態で、それら構成要素が相互に導通している。
(Feature 1)
In the first lens unit 60, the first lens 11 having conductivity and the lens frame 61 having conductivity are integrally assembled. At this time, since the first lens 11 is fitted into the lens frame 61 in a close contact state by elastic force, they can be ideally and easily conducted.
In the second lens unit 70, the second lens 12 having conductivity and the additional lens frame 71 having conductivity are integrally assembled. Like the first lens unit 60, the second lens 12 is fitted into the additional lens frame 71 in close contact with the additional lens frame 71, so that they can be ideally and easily conducted.
As described above, the lens outer frame 50 has conductivity. Then, since the first lens unit 60 is fitted into the lens outer frame 50 in a close contact state by an elastic force, they can be ideally and easily conducted.
Therefore, in the lens head 10, the lens outer frame 50, the first lens unit 60, and the second lens unit 70 are integrally assembled, and these components are electrically connected to each other.
 アーム部30は、第1アーム31a、第2アーム31b、それらを連結する関節部32、およびスプリング34a、34bが金属、すなわち導電性を有する部材で一体に組み付けられている。このため、アーム部30の各構成要素が相互に導通している。 The arm portion 30 is integrally assembled with the first arm 31a, the second arm 31b, the joint portion 32 connecting them, and the springs 34a and 34b with a metal, that is, a conductive member. Therefore, each component of the arm portion 30 is electrically connected to each other.
 このように、照明拡大鏡1は、全体として導通性を有するレンズヘッド10と、同じく全体として導通性を有するアーム部30とが、導通性を有する連結ブラケット20で連結している。そして、照明拡大鏡1は、アーム部30に設けられたアースコネクタ36からアース線98を介してEPAグランドに接続する。その結果、照明拡大鏡1の全ての外観部品は導通され、帯電した電荷は良好にEPAグランドに逃がすことができる。 As described above, in the illumination magnifier 1, the lens head 10 having conductivity as a whole and the arm portion 30 having conductivity as a whole are connected by the connecting bracket 20 having conductivity. Then, the illumination magnifier 1 is connected to the EPA ground from the ground connector 36 provided on the arm portion 30 via the ground wire 98. As a result, all the appearance parts of the illumination magnifier 1 are conducted, and the charged charge can be satisfactorily released to the EPA ground.
 したがって、本実施形態によると、EPAに導入される照明拡大鏡1として、好適な帯電防止がなされ、ESDに伴う検査対象物の破壊防止や、帯電が原因となる埃や異物の付着を効果的に防止できる。一般的には光学部品のレンズホルダ(レンズ鏡枠)は金属や樹脂材料で製作される。そして、静電気対策が必要な場合には金属枠を採用したり、樹脂部品の場合には導電塗装や導電性樹脂等を使用し、レンズには導電コーティングを施す方法がある。このような従来の方法はコスト高になるばかりか、金属部品は抵抗値が低く近接にある電気部品等の静電破壊を起こす危険がある。実際はコストや入手容易性等の観点から金属部品で済ましている場合が多い。しかし、本実施形態の照明拡大鏡1のように、レンズ枠61、付加レンズ枠71をゴムやエラストマー等の弾性体として導電性を持たせ、さらに、それら以外の構成部品(特に表面に露出している部分)ついても導電性能を持たせ、相互に導通させることで、リーズナブルなコストや入手容易性を実現しつつ、適切な静電気対策を実現できる。 Therefore, according to the present embodiment, as the illumination magnifying glass 1 introduced into the EPA, suitable antistatic protection is performed, and it is effective to prevent destruction of the inspection object due to ESD and to adhere dust and foreign matter caused by charging. Can be prevented. Generally, the lens holder (lens mirror frame) of an optical component is made of a metal or resin material. Then, when measures against static electricity are required, a metal frame may be adopted, or in the case of resin parts, a conductive coating or a conductive resin may be used, and a conductive coating may be applied to the lens. Not only is such a conventional method costly, but metal parts have a low resistance value, and there is a risk of causing electrostatic destruction of nearby electric parts and the like. In reality, metal parts are often used from the viewpoint of cost and availability. However, like the illumination magnifying glass 1 of the present embodiment, the lens frame 61 and the additional lens frame 71 are made conductive as elastic bodies such as rubber and elastomer, and other components (particularly exposed to the surface). By giving conductive performance to each other and making them conductive to each other, it is possible to realize appropriate measures against static electricity while realizing reasonable cost and availability.
 (特徴2)
 照明拡大鏡1の構成要素、すなわち、レンズヘッド10、連結ブラケット20、アーム部30、クランプ取付部40の表面抵抗が1×10Ω/□以上1×1011Ω/□以下である場合、帯電した人・物体が触れたときであっても、一気に放電せず緩やかに放電することから、ESDに伴う検査対象物の破壊防止を効果的に実現できる。
 本願発明者は、EPA内での作業者を観察して次の知見を得た。すなわち、EPA内での作業者は、良好な視認性の維持のために第1レンズ11や第2レンズ12に直接触れることを極力避けようとする傾向がある。しかし、レンズ外枠50やレンズ枠61、付加レンズ枠71については、積極的に接触を避けようとすることはない傾向がある。逆に、レンズ位置(すなわちレンズヘッド10の位置)の調整のために触れることもある。したがって、本実施形態のように、普段から帯電しないような構成とすること、また、帯電した人・物体が触れたときに一気に放電せず緩やかに放電するような構成とすることで、帯電防止機能とESDに伴う検査対象物の破壊防止機能を高いレベルで両立できる。
(Feature 2)
When the surface resistance of the components of the illumination magnifier 1, that is, the lens head 10, the connecting bracket 20, the arm portion 30, and the clamp mounting portion 40 is 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less, Even when a charged person or object touches it, it does not discharge at once but discharges slowly, so it is possible to effectively prevent the inspection object from being destroyed due to ESD.
The inventor of the present application observed the workers in the EPA and obtained the following findings. That is, workers in the EPA tend to avoid direct contact with the first lens 11 and the second lens 12 in order to maintain good visibility. However, the lens outer frame 50, the lens frame 61, and the additional lens frame 71 tend not to actively avoid contact. On the contrary, it may be touched for adjusting the lens position (that is, the position of the lens head 10). Therefore, as in the present embodiment, the antistatic structure is provided so that the battery is not normally charged, and the battery is not discharged at once when a charged person or object is touched, but is discharged slowly. It is possible to achieve both the function and the function of preventing destruction of the inspection object associated with ESD at a high level.
≪第2の実施形態≫
 図5~8を参照して、本実施形態のスタンドベース型ルーペ101について説明する。図5はスタンドベース型ルーペ101の斜視図である。図6はスタンドベース型ルーペ101の側面図である。図7はスタンドベース型ルーペ101の正面図でありレンズヘッド110を断面図として示した図である。図8はスタンドベース型ルーペ101の側面図でありレンズヘッド110を断面図として示した図である。第1の実施形態と異なる点は、支持部(架台)としてアーム部30の代わりに支柱130、横棒の支持アーム152及び作業テーブル140を用いた点、また、LED照明部59(LED基板)を省いた点にある。以下、具体的に説明する。
<< Second Embodiment >>
The stand-based loupe 101 of the present embodiment will be described with reference to FIGS. 5 to 8. FIG. 5 is a perspective view of the stand-based loupe 101. FIG. 6 is a side view of the stand-based loupe 101. FIG. 7 is a front view of the stand-based loupe 101, showing the lens head 110 as a cross-sectional view. FIG. 8 is a side view of the stand-based loupe 101, showing the lens head 110 as a cross-sectional view. The difference from the first embodiment is that the support column 130, the horizontal bar support arm 152 and the work table 140 are used instead of the arm portion 30 as the support portion (mounting), and the LED lighting portion 59 (LED substrate). Is omitted. Hereinafter, a specific description will be given.
<スタンドベース型ルーペ101の全体構成>
 スタンドベース型ルーペ101は、レンズヘッド110と、継ぎ手120と、支柱130と、作業テーブル140とを有する。なお、図6~8では、作業テーブル140の上に試料台180が置かれている状態を示している。
<Overall configuration of stand-based loupe 101>
The stand-based loupe 101 has a lens head 110, a joint 120, a support 130, and a work table 140. 6 to 8 show a state in which the sample table 180 is placed on the work table 140.
<継ぎ手120、支柱130、作業テーブル140の構造>
 継ぎ手120、支柱130及び作業テーブル140は、それぞれ金属製であって、表面抵抗が1×10Ω/□以上1×1011Ω/□以下の範囲である。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。
<Structure of joint 120, support column 130, work table 140>
The joint 120, the support column 130, and the work table 140 are each made of metal and have a surface resistance in the range of 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
 作業テーブル140には、後方側においてアース線198がネジ止めされている。また、作業テーブル140の後方側の左右中央付近には、垂直に延びる支柱130が設けられている。 A ground wire 198 is screwed to the work table 140 on the rear side. In addition, vertically extending columns 130 are provided near the left and right centers on the rear side of the work table 140.
 支柱130には継ぎ手120が取り付けられ、この継ぎ手120にレンズヘッド110が取り付けられる。継ぎ手120は、水平方向に貫通する水平貫通孔と、垂直方向に貫通する垂直貫通孔とを有する。水平貫通孔にレンズヘッドホルダ150の支持アーム152が挿入され、垂直貫通孔に支柱130が挿入され、それぞれがノブ付きボルトで固定される。これによって、レンズヘッド110が支柱130に取り付けられる。 A joint 120 is attached to the support column 130, and a lens head 110 is attached to the joint 120. The joint 120 has a horizontal through hole that penetrates in the horizontal direction and a vertical through hole that penetrates in the vertical direction. The support arm 152 of the lens head holder 150 is inserted into the horizontal through hole, and the support column 130 is inserted into the vertical through hole, and each is fixed with a bolt with a knob. As a result, the lens head 110 is attached to the support column 130.
<レンズヘッド110の構造>
 レンズヘッド110は、レンズヘッドホルダ150と、第1レンズユニット160と、第2レンズユニット170とを有する。
 第1レンズユニット160は、筒状のレンズヘッドホルダ150に収容される。
 第2レンズユニット170は、使用者が必要に応じて使用する付加レンズユニットであって、第1レンズユニット160の上側に配置される。
<Structure of lens head 110>
The lens head 110 includes a lens head holder 150, a first lens unit 160, and a second lens unit 170.
The first lens unit 160 is housed in a tubular lens head holder 150.
The second lens unit 170 is an additional lens unit that the user uses as needed, and is arranged above the first lens unit 160.
<レンズヘッドホルダ150の構造>
 レンズヘッドホルダ150は、第1の実施形態のレンズ外枠50と同様に、金属や導電性材料でコーティング加工された硬質合成樹脂等の剛性体で形成されている。その表面抵抗は1×10Ω/□以上1×1011Ω/□以下の範囲である。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。
<Structure of lens head holder 150>
Like the lens outer frame 50 of the first embodiment, the lens head holder 150 is formed of a rigid body such as a hard synthetic resin coated with a metal or a conductive material. Its surface resistance is in the range of 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
 レンズヘッドホルダ150は、筒状のホルダ本体151と、ホルダ本体151の外周面から一体に延出する棒状の支持アーム152と、を有する。 The lens head holder 150 has a tubular holder body 151 and a rod-shaped support arm 152 that integrally extends from the outer peripheral surface of the holder body 151.
 ホルダ本体151は、その内周面153をレンズユニット装着孔としている。すなわち、内周面153は、第1レンズユニット160のレンズ枠161の外径と一致するように設けられている。 The inner peripheral surface 153 of the holder body 151 is used as a lens unit mounting hole. That is, the inner peripheral surface 153 is provided so as to match the outer diameter of the lens frame 161 of the first lens unit 160.
 筒状のホルダ本体151の上端部分には、内周面153側が一段下がったレンズヘッド配置面156が環状に形成されている。レンズヘッド配置面156の径は、後述する第1顎部62の外径と一致する。レンズヘッド配置面156に、後述する第1レンズユニット160の配置面163が配置され支持される。 A lens head arrangement surface 156 having an inner peripheral surface 153 side lowered by one step is formed in an annular shape on the upper end portion of the tubular holder body 151. The diameter of the lens head arrangement surface 156 coincides with the outer diameter of the first jaw portion 62, which will be described later. The arrangement surface 163 of the first lens unit 160, which will be described later, is arranged and supported on the lens head arrangement surface 156.
 支持アーム152は、継ぎ手120に水平方向に形成された貫通孔に挿入され、ノブ付きボルトにより固定される。 The support arm 152 is inserted into a through hole formed horizontally in the joint 120 and fixed by a bolt with a knob.
<第1レンズユニット160の構造>
 第1レンズユニット160は、第1レンズ111と、第1レンズ111を収容するレンズ枠161と有する。
<Structure of the first lens unit 160>
The first lens unit 160 includes a first lens 111 and a lens frame 161 that houses the first lens 111.
 第1レンズ111は、第1の実施形態の第1レンズ11と同様に、表面にITO等の透明導電膜を有する。第1レンズ111は、透明導電膜によって表面抵抗を1×10Ω/□以上1×1011Ω/□以下の範囲とされている。 Like the first lens 11 of the first embodiment, the first lens 111 has a transparent conductive film such as ITO on its surface. The surface resistance of the first lens 111 is set to be in the range of 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less due to the transparent conductive film.
 レンズ枠161は、第1の実施形態のレンズ枠61と同様に、ゴムやエラストマーのような弾性材からなる環状の弾性マウントである。弾性材は、例えば、EPDM等の剛性ゴムにカーボンを一定量練り込み表面抵抗を1×10Ω/□以上1×1011Ω/□以下の範囲にコントロールしたものである。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。 The lens frame 161 is an annular elastic mount made of an elastic material such as rubber or an elastomer, like the lens frame 61 of the first embodiment. The elastic material is, for example, a rigid rubber such as EPDM kneaded with a certain amount of carbon to control the surface resistance in the range of 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
 レンズ枠161の外周面の上端には、径外側に膨らんだフランジ状の顎部162が一体に設けられている。顎部162の外径は、レンズヘッド配置面156の内径と一致する。 A flange-shaped jaw portion 162 bulging outward in diameter is integrally provided at the upper end of the outer peripheral surface of the lens frame 161. The outer diameter of the jaw portion 162 coincides with the inner diameter of the lens head arrangement surface 156.
 レンズ枠161の内周面の上下方向略中央付近には、所定深さのレンズ収容溝165が周方向に亘って形成されている。このレンズ収容溝165に、第1レンズ111の外縁部分が嵌め込まれることで、第1レンズ111がレンズ枠161に収容される。 A lens accommodating groove 165 having a predetermined depth is formed in the circumferential direction near the center of the inner peripheral surface of the lens frame 161 in the vertical direction. By fitting the outer edge portion of the first lens 111 into the lens accommodating groove 165, the first lens 111 is accommodated in the lens frame 161.
 レンズ枠161の内周面の上端部分には、一段下がった階段状の嵌合部166が形成されている。第2レンズユニット170を第1レンズユニット160の上に配置する際に、この嵌合部166に第2レンズユニット170の嵌合部176が嵌め込まれる。 At the upper end of the inner peripheral surface of the lens frame 161, a stepped fitting portion 166 that is lowered by one step is formed. When the second lens unit 170 is arranged on the first lens unit 160, the fitting portion 176 of the second lens unit 170 is fitted into the fitting portion 166.
<第2レンズユニット170の構造>
 第2レンズユニット170は、第2レンズ112と、第2レンズ112を収容する付加レンズ枠171と、を有する。
<Structure of the second lens unit 170>
The second lens unit 170 includes a second lens 112 and an additional lens frame 171 that accommodates the second lens 112.
 第2レンズ112は、第1レンズ111と同様に、表面に透明導電膜を有する。第2レンズ12の表面抵抗は、例えば1×10Ω/□以上1×1011Ω/□以下である。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。 The second lens 112, like the first lens 111, has a transparent conductive film on its surface. The surface resistance of the second lens 12 is, for example, 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
 付加レンズ枠171は、レンズ枠161と同様に、弾性材からなる環状の弾性マウントであって、表面抵抗を1×10Ω/□以上1×1011Ω/□以下の範囲に管理したものである。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。 The additional lens frame 171 is an annular elastic mount made of an elastic material, similarly to the lens frame 161. The surface resistance is controlled in the range of 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. Is. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
 付加レンズ枠171は、下側端部内側部分が一段下に凸になった嵌合部176が形成されている。上述のように、第2レンズユニット170を第1レンズユニット160に配置する際に、嵌合部176が第1レンズユニット160の嵌合部166に嵌め込まれる。 The additional lens frame 171 is formed with a fitting portion 176 in which the inner portion of the lower end portion is convex one step downward. As described above, when the second lens unit 170 is arranged in the first lens unit 160, the fitting portion 176 is fitted into the fitting portion 166 of the first lens unit 160.
<スタンドベース型ルーペ101の導通構造及びその効果>
 スタンドベース型ルーペ101は、第1の実施形態の照明拡大鏡1と同様の導通構造及び効果を有する。したがって、EPAに導入されるスタンドベース型ルーペ101として、好適な帯電防止がなされ、ESDに伴う検査対象物の破壊防止や、帯電が原因となる埃や異物の付着を効果的に防止できる。
<Conduction structure of stand-based loupe 101 and its effect>
The stand-based loupe 101 has the same conduction structure and effect as the illumination magnifier 1 of the first embodiment. Therefore, as the stand-based loupe 101 introduced into the EPA, suitable antistatic measures can be taken, the destruction of the inspection object due to ESD can be prevented, and the adhesion of dust and foreign substances caused by the charging can be effectively prevented.
≪第3の実施形態≫
 図9及び図10を参照して、本実施形態の顕微鏡201について説明する。
 図9は顕微鏡201の全体の縦断面図である。図10は図9の領域Cを拡大して示す図であって、対物レンズユニット220及びその取付部215の構造を示す。
<< Third Embodiment >>
The microscope 201 of the present embodiment will be described with reference to FIGS. 9 and 10.
FIG. 9 is a vertical cross-sectional view of the entire microscope 201. FIG. 10 is an enlarged view of the region C of FIG. 9, showing the structure of the objective lens unit 220 and its mounting portion 215.
<顕微鏡201の全体構成>
 図9に示すように、顕微鏡201は、接眼レンズユニット290と、対物レンズユニット220と、鏡柱210(ボディ)とを有する。
<Overall configuration of microscope 201>
As shown in FIG. 9, the microscope 201 has an eyepiece lens unit 290, an objective lens unit 220, and a mirror column 210 (body).
<鏡柱210の構成>
 鏡柱210は、ステージ211と、鏡筒216と、ベース部217と、スタンド218と、アーム部219とを有する。
<Structure of mirror pillar 210>
The mirror column 210 has a stage 211, a lens barrel 216, a base portion 217, a stand 218, and an arm portion 219.
 アーム部219の上側に鏡筒216が設けられている。鏡筒216の下側部分が対物レンズユニット220を取り付ける取付部215となっている。鏡筒216は、観察光軸上の対物レンズユニット220によって集光された光を接眼レンズユニット290に入射する光学系を有する。ベース部217は脚部として機能するとともに、その背面にステージ211を保持するスタンド218を立設させている。アーム部219は、スタンド218に支持されて前面側に向かって延在する。 A lens barrel 216 is provided on the upper side of the arm portion 219. The lower portion of the lens barrel 216 is a mounting portion 215 for mounting the objective lens unit 220. The lens barrel 216 has an optical system in which the light collected by the objective lens unit 220 on the observation optical axis is incident on the eyepiece lens unit 290. The base portion 217 functions as a leg portion, and a stand 218 for holding the stage 211 is erected on the back surface thereof. The arm portion 219 is supported by the stand 218 and extends toward the front side.
 これら構成要素のそれぞれ表面(外部に露出している領域)は導電性を有している。表面抵抗が1×10Ω/□以上1×1011Ω/□以下である。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。
 そして、構成要素が一体に組み付けられた状態、すなわち鏡柱210として各構成要素は導通しており、表面抵抗が上記値の範囲である。
The surfaces of each of these components (regions exposed to the outside) are conductive. The surface resistance is 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
Then, the components are integrally assembled, that is, each component is conducting as a mirror column 210, and the surface resistance is in the range of the above values.
<対物レンズユニット220の構成>
 図10を参照して、対物レンズユニット220の構造を説明する。対物レンズユニット220は、光学系においてステージ211側の第1対物レンズユニット250と、接眼レンズユニット290側の第2対物レンズユニット270とを有する。
<Structure of objective lens unit 220>
The structure of the objective lens unit 220 will be described with reference to FIG. The objective lens unit 220 has a first objective lens unit 250 on the stage 211 side and a second objective lens unit 270 on the eyepiece lens unit 290 side in the optical system.
 第1対物レンズユニット250は、第1対物レンズ261と、第1対物レンズ261を内部に収容する第1レンズ保持部251と、を有する。 The first objective lens unit 250 includes a first objective lens 261 and a first lens holding portion 251 that houses the first objective lens 261 inside.
 第1対物レンズ261は、例えば接合レンズであって、上述の第1及び第2の実施形態と同様に透明導電膜を有する。第1対物レンズ261の表面抵抗は1×10Ω/□以上1×1011Ω/□以下である。なお、観察者や別の部材(標本202等)との接触を考慮すると、第1対物レンズ261の透明導電膜は、外部に露出する面、すなわちステージ211の面に設けられればよい。 The first objective lens 261 is, for example, a junction lens and has a transparent conductive film as in the first and second embodiments described above. The surface resistance of the first objective lens 261 is 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. Considering contact with an observer or another member (specimen 202 or the like), the transparent conductive film of the first objective lens 261 may be provided on a surface exposed to the outside, that is, a surface of the stage 211.
 第1レンズ保持部251は、例えば、ゴムやエラストマー等の弾性体に導電性を持たせた筒状の形状を呈する。第1レンズ保持部251の表面抵抗は1×10Ω/□以上1×1011Ω/□以下である。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。 The first lens holding portion 251 has a tubular shape in which an elastic body such as rubber or elastomer is made conductive. The surface resistance of the first lens holding portion 251 is 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
 第1レンズ保持部251は、内周面に設けられたレンズ収容部252と、レンズ収容部252に配置した第1対物レンズ261を外側から押さえて係止する固定部254とを有する。また、第1レンズ保持部251は、第1対物レンズ261が配置される側とは反対側の開口253の部分に、第2レンズ保持部271と嵌合固定するための嵌合部255を有する。第1レンズ保持部251の弾性力により、嵌合部255は第2レンズ保持部271に密着状態で嵌め込まれている。 The first lens holding portion 251 has a lens accommodating portion 252 provided on the inner peripheral surface and a fixing portion 254 that presses and locks the first objective lens 261 arranged in the lens accommodating portion 252 from the outside. Further, the first lens holding portion 251 has a fitting portion 255 for fitting and fixing to the second lens holding portion 271 in a portion of the opening 253 on the side opposite to the side on which the first objective lens 261 is arranged. .. Due to the elastic force of the first lens holding portion 251 the fitting portion 255 is fitted into the second lens holding portion 271 in a close contact state.
 このような構成により、第1対物レンズ261と第1レンズ保持部251とは導通し、第1対物レンズユニット250として導電性を有している。 With such a configuration, the first objective lens 261 and the first lens holding portion 251 are conductive and have conductivity as the first objective lens unit 250.
 第2対物レンズユニット270は、第2対物レンズ262と、第2対物レンズ262を収容する第2レンズ保持部271と、を有する。 The second objective lens unit 270 has a second objective lens 262 and a second lens holding unit 271 that accommodates the second objective lens 262.
 第2対物レンズ262は、顕微鏡201の内部に収容され使用時に外部に露出しないので、特に静電気対策は施さなくてもよい。すなわち、透明導電膜は不要である。 Since the second objective lens 262 is housed inside the microscope 201 and is not exposed to the outside during use, it is not necessary to take special measures against static electricity. That is, no transparent conductive film is required.
 第2レンズ保持部271は、例えば、導電塗装により表面抵抗を1×10Ω/□以上1×1011Ω/□以下にコントロールした金属により形成されている。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。
 レンズ保持部271の材料として、表面抵抗が上記値の範囲にコントロールされており所望の強度を有していれば、ゴムや樹脂製材料でもよい。
The second lens holding portion 271 is formed of, for example, a metal whose surface resistance is controlled to be 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less by conductive coating. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
As the material of the lens holding portion 271, a rubber or resin material may be used as long as the surface resistance is controlled within the above range and has a desired strength.
 このような構成により、第1対物レンズ261、第1レンズ保持部251と、第2レンズ保持部271は導通している。すなわち、対物レンズユニット220の少なくとも外部に露出している部分の構成が導通している。 With such a configuration, the first objective lens 261 and the first lens holding portion 251 and the second lens holding portion 271 are conductive. That is, the configuration of at least the portion of the objective lens unit 220 exposed to the outside is conductive.
 また、対物レンズユニット220は、導電性を有する鏡柱210のアース端子に取り付けられたアース線298により、EPAグランドに接続される。 Further, the objective lens unit 220 is connected to the EPA ground by a ground wire 298 attached to the ground terminal of the conductive mirror column 210.
<顕微鏡201の導通構造及びその効果>
 顕微鏡201は、第1の実施形態の照明拡大鏡1や第2の実施形態のスタンドベース型ルーペ101と同様の導通構造及び効果を有する。したがって、EPAに導入される顕微鏡201として、好適な帯電防止がなされ、ESDに伴う検査対象物の破壊防止や、帯電が原因となる埃や異物の付着の防止を効果的に実現できる。また、顕微鏡の対物レンズ枠がゴムであり、対物レンズが観察物に極めて接近することから、ゴム枠が観察物に衝突した場合でも、観察物を傷つけることを防止できる。
<Conduction structure of microscope 201 and its effect>
The microscope 201 has the same conduction structure and effect as the illumination magnifier 1 of the first embodiment and the stand-based loupe 101 of the second embodiment. Therefore, as the microscope 201 introduced into the EPA, suitable antistatic prevention is performed, and it is possible to effectively prevent destruction of the inspection object due to ESD and prevention of adhesion of dust and foreign matter caused by charging. Further, since the objective lens frame of the microscope is made of rubber and the objective lens is extremely close to the observation object, it is possible to prevent the observation object from being damaged even when the rubber frame collides with the observation object.
≪第4の実施形態≫
 図11を参照してデスクルーペ300について説明する。図11は、デスクルーペ300の縦断面図である。デスクルーペ300の形状自体は、公知のデスクルーペと同様の形状である。異なる点は、デスクルーペ300全体として導電性を有する点にある。
<< Fourth Embodiment >>
The desk loupe 300 will be described with reference to FIG. FIG. 11 is a vertical cross-sectional view of the desk loupe 300. The shape of the desk loupe 300 itself is the same as that of a known desk loupe. The difference is that the desk loupe 300 as a whole has conductivity.
<デスクルーペ300の構成>
 デスクルーペ300は、レンズ312と、レンズホルダ360と、ハカマ350とを有する。
<Structure of Desk Loupe 300>
The desk loupe 300 has a lens 312, a lens holder 360, and a hakama 350.
<レンズ312の構成>
 レンズ312は、例えば1枚の光学ガラスで構成されており、その表面に透明導電膜が設けられている。表面抵抗は1×10Ω/□以上1×1011Ω/□以下の範囲である。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。
<Structure of lens 312>
The lens 312 is made of, for example, one piece of optical glass, and a transparent conductive film is provided on the surface thereof. The surface resistance is in the range of 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
<レンズホルダ360の構成>
 レンズホルダ360は、弾性材からなる環状の弾性マウントである。弾性材として、例えば、ゴムやエラストマーがある。具体的には、EPDM等の剛性ゴムにカーボンを一定量練り込み表面抵抗を1×10Ω/□以上1×1011Ω/□以下の範囲にコントロールしたものである。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。
<Structure of lens holder 360>
The lens holder 360 is an annular elastic mount made of an elastic material. Examples of the elastic material include rubber and elastomer. Specifically, a certain amount of carbon is kneaded into rigid rubber such as EPDM, and the surface resistance is controlled in the range of 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
 レンズホルダ360の内周面363にはレンズ312の外縁を嵌め込む溝状のレンズ係止凹部364が周方向に亘って形成されている。レンズホルダ360の下側端部には、ハカマ350を取り付けるための嵌合部362が設けられている。 A groove-shaped lens locking recess 364 into which the outer edge of the lens 312 is fitted is formed on the inner peripheral surface 363 of the lens holder 360 in the circumferential direction. A fitting portion 362 for attaching the hakama 350 is provided at the lower end portion of the lens holder 360.
<ハカマ350の構成>
 ハカマ350は「スカート」とも称されており、筒状形成され、焦点距離を考慮し作動距離に概略保つ構造を有する。ハカマ350の内周面353は、例えば、内周面353の断面において下側が若干外側に広がった形状であるが、この形状に限る趣旨でなく、内周面353の内径が一定の形状であってもよい。ハカマ350の上側端部には、レンズホルダ360の嵌合部362と嵌合する嵌合部352が設けられている。
<Structure of Hakama 350>
The hakama 350, also called a "skirt", is formed in a tubular shape and has a structure that roughly keeps the working distance in consideration of the focal length. The inner peripheral surface 353 of the hakama 350 has, for example, a shape in which the lower side is slightly widened outward in the cross section of the inner peripheral surface 353, but the purpose is not limited to this shape, and the inner diameter of the inner peripheral surface 353 is a constant shape. You may. At the upper end of the hakama 350, a fitting portion 352 that fits with the fitting portion 362 of the lens holder 360 is provided.
 ハカマ350は導電性の樹脂や金属で構成されており、その表面抵抗は1×10Ω/□以上1×1011Ω/□以下の範囲である。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。 The hakama 350 is made of a conductive resin or metal, and its surface resistance is in the range of 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
<デスクルーペ300の導通構造及びその効果>
 本実施形態のデスクルーペ300では、デスクルーペ300の表面全体が、上記値の表面抵抗にコントロールされた導電性を有することから、ハカマ350が観察物に接近する場合でも、ESDに伴う観察物(検査対象物)の破壊防止や、帯電が原因となる埃や異物の付着を効果的に防止できる。なお、本実施形態のデスクルーペ300や第5の実施形態で説明するスケールルーペ400をEPAで使用する場合は、それらは人の手で操作されることから、静電防止用リストストラップを介してEPAグランドへ電荷を逃がす必要がある。
<Conduction structure of desk loupe 300 and its effect>
In the desk loupe 300 of the present embodiment, since the entire surface of the desk loupe 300 has conductivity controlled by the surface resistance of the above value, even when the hakama 350 approaches the observation object, the observation object accompanying the ESD ( It is possible to effectively prevent the destruction of the inspection target) and the adhesion of dust and foreign matter caused by charging. When the desk loupe 300 of the present embodiment or the scale loupe 400 described in the fifth embodiment is used in the EPA, they are operated by human hands, and therefore, they are operated by human hands, so that they are operated via an antistatic wrist strap. It is necessary to release the charge to the EPA ground.
≪第5の実施形態≫
 図12を参照してスケールルーペ400について説明する。図12はスケールルーペ400の縦断面図である。図11で示したデスクルーペ300と異なる点は、ハカマ450にLED照明部470を設けた点と、ハカマ450の下端にガラススケール490を設けた点にある。以下では、主に異なる点について説明し、同様の構成・機能については説明を適宜省略する。
<< Fifth Embodiment >>
The scale loupe 400 will be described with reference to FIG. FIG. 12 is a vertical cross-sectional view of the scale loupe 400. The difference from the desk loupe 300 shown in FIG. 11 is that the hakama 450 is provided with the LED lighting unit 470 and the hakama 450 is provided with the glass scale 490 at the lower end. In the following, the differences will be mainly described, and the description of the same configuration / function will be omitted as appropriate.
<スケールルーペ400の構成>
 スケールルーペ400は、レンズ412と、レンズ412を保持する弾性マウントのレンズホルダ460と、ハカマ450とを有する。
<Structure of scale loupe 400>
The scale loupe 400 has a lens 412, an elastic mount lens holder 460 for holding the lens 412, and a hakama 450.
<レンズ412、ハカマ450の構成>
 レンズ412は、レンズホルダ460の内周面463に設けられたレンズ係止凹部464に嵌め込まれている。レンズホルダ460には、嵌合部452、462によりハカマ450が取り付けられている。
<Composition of lens 412 and hakama 450>
The lens 412 is fitted in a lens locking recess 464 provided on the inner peripheral surface 463 of the lens holder 460. A hakama 450 is attached to the lens holder 460 by fitting portions 452 and 462.
<ガラススケール490の構成>
 ハカマ450の下端部には、スケール固定部480によって取り付けられた透明なガラススケール490が設けられている。これによって、ハカマ450の下端の開口が塞がれている。ガラススケール490の少なくとも下側の面(外側に露出している側の面)は、透明導電膜とされている。その表面抵抗は1×10Ω/□以上1×1011Ω/□以下である。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。
<Structure of glass scale 490>
A transparent glass scale 490 attached by a scale fixing portion 480 is provided at the lower end portion of the hakama 450. As a result, the opening at the lower end of the hakama 450 is closed. At least the lower surface (the surface exposed to the outside) of the glass scale 490 is a transparent conductive film. Its surface resistance is 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
 また、スケール固定部480は例えば樹脂成形品や金属である。特に固定構造については限定しないが、少なくとも外部に露出している部分はスケール固定部480の表面抵抗が1×10Ω/□以上1×1011Ω/□以下である。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。 Further, the scale fixing portion 480 is, for example, a resin molded product or a metal. Although the fixed structure is not particularly limited, the surface resistance of the scale fixing portion 480 is 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less at least in the portion exposed to the outside. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
<LED照明部470の構成>
 また、ハカマ450の内周面453には、LED照明部470が設けられている。具体的には、ハカマ450の内周面453は嵌合部452、462が形成される境界付近に段状になった環状の取付面465が形成されている。取付面465に環状のLED照明部470が設けられている。
<Structure of LED lighting unit 470>
Further, an LED lighting unit 470 is provided on the inner peripheral surface 453 of the hakama 450. Specifically, the inner peripheral surface 453 of the hakama 450 is formed with a stepped annular mounting surface 465 near the boundary where the fitting portions 452 and 462 are formed. An annular LED illumination unit 470 is provided on the mounting surface 465.
<スケールルーペ400の導通構造及びその効果>
 本実施形態のデスクルーペ400では、ガラススケール490が導電性を有するとともにデスクルーペ400の表面全体が、表面抵抗が上記値にコントロールされた導電性を有することから、ハカマ450が観察物に接近する場合でも、ESDに伴う観察物(検査対象物)の破壊防止や、帯電が原因となる埃や異物の付着を効果的に防止できる。
<Conduction structure of scale loupe 400 and its effect>
In the desk loupe 400 of the present embodiment, since the glass scale 490 has conductivity and the entire surface of the desk loupe 400 has conductivity whose surface resistance is controlled to the above value, the hakama 450 approaches the observed object. Even in this case, it is possible to effectively prevent the observation object (inspection object) from being destroyed due to ESD and the adhesion of dust and foreign matter caused by charging.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成(変形例)を採用することもできる。 Although the embodiments of the present invention have been described above with reference to the drawings, these are examples of the present invention, and various configurations (modifications) other than the above can be adopted.
≪第1~第4の実施形態のまとめ≫
 本実施形態の特徴を纏めると次の通りである。
(1)本実施形態の光学機器は、表面に導電性を有するレンズと、
 導電性を有するゴム状の弾性体からなり、前記レンズを保持する第1の保持部と、
 導電性を有し、前記第1の保持部を保持する第2の保持部と、
を有し、
 前記レンズと前記第1の保持部と前記第2の保持部とは導通している。
 本実施形態の光学機器は、全体が理想的な表面抵抗を持ち、好適な帯電防止がなされている。その結果、ESDに伴う検査対象物の破壊防止や、帯電が原因となる埃や異物の付着を効果的に防止できる。また、リーズナブルなコストや入手容易性を実現しつつ、適切な静電気対策を実現できる。
(2)前記レンズは、表面に透明導電膜を有する。
(3)前記レンズ、前記第1の保持部及び前第2の保持部のそれぞれの表面抵抗が10Ω/□以上1011Ω/□以下である。なお、表面抵抗は、上限については、より好ましくは、1×10Ω/□以下、さらにより好ましくは1×10Ω/□以下である。また、下限については、より好ましくは1×10Ω/□以上、さらにより好ましくは1×10Ω/□以上である。
 構成部品の表面抵抗を上記値にコントロールすることで、帯電した人・物体が触れたときであっても、一気に放電せず緩やかに放電することから、ESDに伴う検査対象物の破壊防止を効果的に実現できる。
(4)前記レンズ、前記第1の保持部及び前記第2の保持部と導通し、外部アースに接続するアース手段と、
 前記アース手段と前記第2の保持部との間に、前記アース手段と前記第2の保持部とに導通して設けられる支持部と、
 を有する。
 すなわち、アース手段(アース線)を介してEPAグランドに接続することで、光学機器に帯電した静電気を適切にEPAグランドに逃がすことができる。
(5)前記第2の保持部は、照明手段を有する。
 照明手段が設けられる場合でも、帯電に伴う誤動作や故障を防止できる。
(6)前記第2の保持部は、作動距離を所定に保つ導電性を有するハカマ構造を有する。
 光学機器がハカマ構造を有するルーペである場合でも、ハカマが導電性を有するので、観察に伴う帯電を防止できる。
(7)前記第2の保持部は、前記ハカマ構造の前記第1の保持部と反対側の開口端部にスケールを有し、
 前記スケールは導電性を有する。
 ハカマ構造にスケールが設けられる場合でも、スケールが導電性を有するので、観察に伴う帯電を防止できる。
<< Summary of the first to fourth embodiments >>
The features of this embodiment are summarized as follows.
(1) The optical device of the present embodiment includes a lens having a conductive surface and
A first holding portion, which is made of a conductive rubber-like elastic body and holds the lens, and a first holding portion.
A second holding portion that has conductivity and holds the first holding portion,
Have,
The lens, the first holding portion, and the second holding portion are electrically connected to each other.
The optical instrument of the present embodiment has an ideal surface resistance as a whole, and has suitable antistatic properties. As a result, it is possible to effectively prevent the inspection object from being destroyed due to ESD and the adhesion of dust and foreign matter caused by charging. In addition, it is possible to realize appropriate measures against static electricity while realizing reasonable cost and availability.
(2) The lens has a transparent conductive film on its surface.
(3) the lens, each of the surface resistance of the first holding portion and the front second holding portion is 10 5 Ω / □ or more 10 11 Ω / □ or less. The upper limit of the surface resistance is more preferably 1 × 10 9 Ω / □ or less, and even more preferably 1 × 10 8 Ω / □ or less. The lower limit is more preferably 1 × 10 6 Ω / □ or more, and even more preferably 1 × 10 7 Ω / □ or more.
By controlling the surface resistance of the component parts to the above value, even when a charged person or object touches it, it does not discharge at once but discharges slowly, which is effective in preventing the destruction of the inspection object due to ESD. Can be realized.
(4) A grounding means that conducts with the lens, the first holding portion, and the second holding portion and connects to an external ground.
A support portion provided between the grounding means and the second holding portion so as to be electrically connected to the grounding means and the second holding portion.
Have.
That is, by connecting to the EPA ground via the grounding means (earth wire), the static electricity charged in the optical device can be appropriately released to the EPA ground.
(5) The second holding portion has a lighting means.
Even if the lighting means is provided, it is possible to prevent malfunctions and failures due to charging.
(6) The second holding portion has a conductive hakama structure that keeps a predetermined working distance.
Even when the optical device is a loupe having a hakama structure, since the hakama has conductivity, it is possible to prevent electrification due to observation.
(7) The second holding portion has a scale at the end of the opening opposite to the first holding portion of the hakama structure.
The scale is conductive.
Even when the scale is provided in the hakama structure, since the scale has conductivity, it is possible to prevent charging due to observation.
 この出願は、2020年2月6日に出願された日本出願特願2020-018545号を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Application Japanese Patent Application No. 2020-018545 filed on February 6, 2020, and incorporates all of its disclosures herein.
1 照明拡大鏡
10、110 レンズヘッド
11、111 第1レンズ
12、112 第2レンズ
30 アーム部
40 クランプ取付部
50 レンズ外枠
51、151 ホルダ本体
59、470 LED照明部
60、160 第1レンズユニット
61、161 レンズ枠
70、170 第2レンズユニット
71、171 付加レンズ枠
101 スタンドベース型ルーペ
120 継ぎ手
130 支柱
140 作業テーブル
150 レンズヘッドホルダ
152 支持アーム
201 顕微鏡
210 鏡柱
220 対物レンズユニット
250 第1対物レンズユニット
251 第1レンズ保持部
252 レンズ収容部
261 第1対物レンズ
262 第2対物レンズ
270 第2対物レンズユニット
271 第2レンズ保持部
271 レンズ保持部
290 接眼レンズユニット
300 デスクルーペ
312、412 レンズ
350、450 ハカマ
360、460 レンズホルダ
400 デスクルーペ
400 スケールルーペ
450 ハカマ
490 ガラススケール
1 Illumination magnifier 10, 110 Lens head 11, 111 First lens 12, 112 Second lens 30 Arm 40 Clamp mounting 50 Lens outer frame 51, 151 Holder body 59, 470 LED lighting 60, 160 First lens unit 61, 161 Lens frame 70, 170 Second lens unit 71, 171 Additional lens frame 101 Stand base type loupe 120 Joint 130 Support 140 Work table 150 Lens head holder 152 Support arm 201 Microscope 210 Mirror pillar 220 Objective lens unit 250 First objective Lens unit 251 1st lens holding part 252 Lens housing part 261 1st objective lens 262 2nd objective lens 270 2nd objective lens unit 271 2nd lens holding part 271 Lens holding part 290 Eyepiece lens unit 300 Desk loupe 312, 412 Lens 350 , 450 Hakama 360, 460 Lens Holder 400 Desk Loupe 400 Scale Loupe 450 Hakama 490 Glass Scale

Claims (7)

  1.  表面に導電性を有するレンズと、
     導電性を有するゴム状の弾性体からなり、前記レンズを保持する第1の保持部と、
     導電性を有し、前記第1の保持部を保持する第2の保持部と、
    を有し、
     前記レンズと前記第1の保持部と前記第2の保持部とは導通し、
     前記第2の保持部は、照明手段を有する、光学機器。
    With a lens that has conductivity on the surface,
    A first holding portion, which is made of a conductive rubber-like elastic body and holds the lens, and a first holding portion.
    A second holding portion that has conductivity and holds the first holding portion,
    Have,
    The lens, the first holding portion, and the second holding portion are electrically connected to each other.
    The second holding portion is an optical device having a lighting means.
  2.  表面に導電性を有するレンズと、
     導電性を有するゴム状の弾性体からなり、前記レンズを保持する第1の保持部と、
     導電性を有し、前記第1の保持部を保持する第2の保持部と、
    を有し、
     前記レンズと前記第1の保持部と前記第2の保持部とは導通し、
     前記第2の保持部は、作動距離を所定に保つ導電性を有するハカマ構造を有する、
    光学機器。
    With a lens that has conductivity on the surface,
    A first holding portion, which is made of a conductive rubber-like elastic body and holds the lens, and a first holding portion.
    A second holding portion that has conductivity and holds the first holding portion,
    Have,
    The lens, the first holding portion, and the second holding portion are electrically connected to each other.
    The second holding portion has a conductive hakama structure that keeps a predetermined working distance.
    Optical equipment.
  3.  前記第2の保持部は、照明手段を有する、請求項2に記載の光学機器。 The optical device according to claim 2, wherein the second holding portion has a lighting means.
  4.  前記第2の保持部は、前記ハカマ構造の前記第1の保持部と反対側の開口端部にスケールを有し、
     前記スケールは導電性を有している、請求項2または3に記載の光学機器。
    The second holding portion has a scale at the end of the opening opposite to the first holding portion of the hakama structure.
    The optical device according to claim 2 or 3, wherein the scale has conductivity.
  5.  前記レンズは、表面に透明導電膜を有する、請求項1から4までのいずれか1項に記載の光学機器。 The optical device according to any one of claims 1 to 4, wherein the lens has a transparent conductive film on its surface.
  6.  前記レンズ、前記第1の保持部及び前記第2の保持部のそれぞれの表面抵抗が1×10Ω/□以上1×1011Ω/□以下である、請求項1から5までのいずれか1項に記載の光学機器。 Any of claims 1 to 5, wherein the surface resistance of each of the lens, the first holding portion, and the second holding portion is 1 × 10 5 Ω / □ or more and 1 × 10 11 Ω / □ or less. The optical device according to item 1.
  7.  前記レンズ、前記第1の保持部及び前記第2の保持部と導通し、外部アースに接続するアース手段と、
     前記アース手段と前記第2の保持部との間に、前記アース手段と前記第2の保持部とに導通して設けられる支持部と、
     を有する、請求項1から6までのいずれか1項に記載の光学機器。
    A grounding means that conducts with the lens, the first holding portion, and the second holding portion and connects to an external ground.
    A support portion provided between the grounding means and the second holding portion so as to be electrically connected to the grounding means and the second holding portion.
    The optical device according to any one of claims 1 to 6.
PCT/JP2021/003671 2020-02-06 2021-02-02 Optical apparatus WO2021157554A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-018545 2020-02-06
JP2020018545A JP6741891B1 (en) 2020-02-06 2020-02-06 Optical equipment

Publications (1)

Publication Number Publication Date
WO2021157554A1 true WO2021157554A1 (en) 2021-08-12

Family

ID=72047790

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003671 WO2021157554A1 (en) 2020-02-06 2021-02-02 Optical apparatus

Country Status (2)

Country Link
JP (1) JP6741891B1 (en)
WO (1) WO2021157554A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115835464B (en) * 2023-02-23 2023-05-02 成都思越智能装备股份有限公司 Antistatic structure of trolley

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335509U (en) * 1989-04-20 1991-04-08
JP2000037343A (en) * 1998-07-24 2000-02-08 Olympus Optical Co Ltd Endoscope system
JP2002136472A (en) * 2000-11-02 2002-05-14 Olympus Optical Co Ltd Endoscope
JP2007041141A (en) * 2005-08-01 2007-02-15 Sharp Corp Lens retainer mechanism, lens position adjusting method, and camera module
JP2008096649A (en) * 2006-10-11 2008-04-24 Ootsuka Kogaku:Kk Mount structure for lens
JP2010041709A (en) * 2008-07-10 2010-02-18 Rohm Co Ltd Camera module
JP2012034947A (en) * 2010-08-10 2012-02-23 Hoya Corp Electronic endoscope

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0335509U (en) * 1989-04-20 1991-04-08
JP2000037343A (en) * 1998-07-24 2000-02-08 Olympus Optical Co Ltd Endoscope system
JP2002136472A (en) * 2000-11-02 2002-05-14 Olympus Optical Co Ltd Endoscope
JP2007041141A (en) * 2005-08-01 2007-02-15 Sharp Corp Lens retainer mechanism, lens position adjusting method, and camera module
JP2008096649A (en) * 2006-10-11 2008-04-24 Ootsuka Kogaku:Kk Mount structure for lens
JP2010041709A (en) * 2008-07-10 2010-02-18 Rohm Co Ltd Camera module
JP2012034947A (en) * 2010-08-10 2012-02-23 Hoya Corp Electronic endoscope

Also Published As

Publication number Publication date
JP2021124626A (en) 2021-08-30
JP6741891B1 (en) 2020-08-19

Similar Documents

Publication Publication Date Title
US7547101B2 (en) Eyeglasses with integrated telescoping video display
WO2021157554A1 (en) Optical apparatus
US20170108714A1 (en) Wearable electronic display
EP3037871B1 (en) Display device
KR940019524A (en) Rear vision assembly for vehicles and its adapters
US20170235148A1 (en) Head mounted image display apparatus
CN110740234A (en) Lens group, camera module and electronic equipment
KR20070048621A (en) Modular night vision assemblies
CN104503109A (en) Liquid crystal display module and display device
JP2014016426A (en) Optical fiber fusion-bonding machine
JP6530949B2 (en) Medical monitors, electronic devices, and video display units
CN207216250U (en) Optical mirror slip fixing device and optical projection system
CN111261056B (en) Switch display device and assembly method thereof
CN110312019B (en) Camera assembly and electronic equipment
US10394028B2 (en) Virtual image display apparatus
KR102489588B1 (en) Liquid Crystal Display Device
CN101167010B (en) Ophthalmic display
JP2008241859A (en) Stand type magnifier apparatus
JPH09318905A (en) Head-mounted type display device
CN113823197A (en) Display device and electronic device
CN100510832C (en) Microscope and anti-electrostatic-discharge method
CN106240475B (en) Anti-glare glass, anti-glare touch screen and rearview mirror
CN1376939A (en) Camera adapter for microscope
CN210925913U (en) Circuit breaker shell and circuit breaker with same
CN108600424A (en) Leaded light component and mobile terminal comprising it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21751219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21751219

Country of ref document: EP

Kind code of ref document: A1