WO2021157270A1 - Ultraviolet curable resin composition for transfer paper protective layer - Google Patents

Ultraviolet curable resin composition for transfer paper protective layer Download PDF

Info

Publication number
WO2021157270A1
WO2021157270A1 PCT/JP2021/000231 JP2021000231W WO2021157270A1 WO 2021157270 A1 WO2021157270 A1 WO 2021157270A1 JP 2021000231 W JP2021000231 W JP 2021000231W WO 2021157270 A1 WO2021157270 A1 WO 2021157270A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
protective layer
transfer paper
resin composition
Prior art date
Application number
PCT/JP2021/000231
Other languages
French (fr)
Japanese (ja)
Inventor
嘉一 斎藤
克史 望月
倫仁 小林
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2021575666A priority Critical patent/JP7409402B2/en
Priority to CN202180006881.6A priority patent/CN114761247A/en
Publication of WO2021157270A1 publication Critical patent/WO2021157270A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44CPRODUCING DECORATIVE EFFECTS; MOSAICS; TARSIA WORK; PAPERHANGING
    • B44C1/00Processes, not specifically provided for elsewhere, for producing decorative surface effects
    • B44C1/16Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like
    • B44C1/165Processes, not specifically provided for elsewhere, for producing decorative surface effects for applying transfer pictures or the like for decalcomanias; sheet material therefor
    • B44C1/175Transfer using solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G

Definitions

  • the present invention relates to a resin composition for an ultraviolet curable transfer paper protective layer, a laminate, and a transfer paper for painting.
  • the present application claims priority based on Japanese Patent Application No. 2020-020157 filed in Japan on February 7, 2020, the contents of which are incorporated herein by reference.
  • the transfer paper is obtained by printing a printing ink layer containing a coloring pigment for earthenware on a mount dried by applying a water-soluble paste such as a dextrin solution, and printing a protective layer on the printing ink layer.
  • the integrated protective layer and printing ink layer are peeled off from the mount in water, the printing ink layer is brought into contact with ceramics and dried, and then the protective layer and printing ink layer are fired at a high temperature. It is a method of painting.
  • an organic solvent type resin such as an organic solvent type polymethacrylic acid ester resin is mainly used for the protective layer.
  • the protective layer using the organic solvent type resin has the following problems. (1) Since a high boiling point organic solvent is used to prevent clogging of the screen printing plate, the drying speed is slow and the productivity is low. (2) There is a risk of causing environmental pollution due to organic solvents. (3) Since the organic solvent dries slowly, blocking between the transfer papers by the residual solvent is likely to occur when the transfer papers are stacked. (4) The transfer paper is liable to change with time, and the flexibility may be lost during storage to reduce the sticking suitability.
  • Patent Document 1 describes an acrylic polymer (A), a solvent (B), and a plasticizer (D) containing 50% by mass or more of a monomer unit derived from an alkyl (meth) acrylate having 3 to 12 carbon atoms in an alkyl group. ), A resin composition for a transfer paper protective layer is described.
  • Patent Document 2 describes a polymer of a compound represented by a specific general formula (A), a photopolymerizable compound represented by a specific general formula (B), and polymerization in a molecule other than the general formula (B).
  • a resin composition for a transfer paper protective layer comprising one or more of a photopolymerizable compound having a sex double bond, a photoinitiator, and a specific non-ionic activator is described.
  • the resin composition for the transfer paper protective layer described in Patent Document 1 does not consider ultraviolet curing. Therefore, when ultraviolet curing is used as a curing means for the composition, it is unclear whether or not it can be applied. Further, since the resin composition for the transfer paper protective layer described in Patent Document 1 contains an organic solvent, it may cause environmental pollution. Further, since it takes a long time to evaporate the organic solvent after printing the resin composition for the transfer paper protective layer on the printing ink layer, there is room for improvement in productivity.
  • the present invention relates to a resin composition for an ultraviolet curable transfer paper protective layer capable of forming a protective layer having excellent calcinability during the production of a transfer paper for painting, a laminate having a protective layer having excellent calcinability, and painting. Transfer paper for use is provided.
  • the acrylic polymer contains an acrylic polymer and a polymerizable compound, and the acrylic polymer contains a monomer unit derived from an alkyl (meth) acrylate having a branched alkyl group, and the acrylic polymer contains a monomer unit.
  • the mass average molecular weight of the above is 20000 to 450,000
  • the polymerizable compound is a resin composition for an ultraviolet curable transfer paper protective layer having one or more polymerizable double bonds in the molecule.
  • the content ratio of the monomer unit derived from the alkyl (meth) acrylate having a branched alkyl group is 5 to 100% with respect to 100% by mass of all the monomer units of the acrylic polymer.
  • the resin composition for an ultraviolet curable transfer paper protective layer according to [1] or [2].
  • the monomer unit derived from the alkyl (meth) acrylate having a branched alkyl group is a monomer unit derived from isobutyl (meth) acrylate and a single amount derived from sec-butyl (meth) acrylate.
  • the UV-curable transfer paper protective layer according to any one of [1] to [3], which comprises at least one selected from the group consisting of a body unit and a monomer unit derived from 2-ethylhexyl methacrylate.
  • Resin composition for. [5] The resin composition for an ultraviolet curable transfer paper protective layer according to any one of [1] to [4], wherein the polymerizable compound contains a monofunctional monomer and a polyfunctional monomer.
  • the polyfunctional monomer is at least one selected from the group consisting of aliphatic urethane (meth) acrylate, aromatic urethane (meth) acrylate, polyester (meth) acrylate and epoxy (meth) acrylate.
  • the content ratio of the monofunctional monomer is 5.0 to 65.0% by mass with respect to 100% by mass of the resin composition for the UV curable transfer paper protective layer [5] or [6].
  • a transfer paper for painting which comprises the laminate according to [8].
  • the present invention relates to a resin composition for an ultraviolet curable transfer paper protective layer capable of forming a protective layer having excellent calcinability during the production of a transfer paper for painting, a laminate having a protective layer having excellent calcinability, and painting.
  • Transfer paper can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a transfer paper for painting.
  • (Meta) acrylate is a general term for acrylate and methacrylate.
  • (Meta) acrylic acid is a general term for acrylic acid and methacrylic acid.
  • the “monomer unit” means a structural unit formed from one monomer molecule in a polymer.
  • the numerical range expressed using "-" includes the numerical values on both sides of "-”.
  • the numerical range disclosed in the present specification may be an arbitrary numerical range by arbitrarily combining the lower limit value and the upper limit value.
  • the mass average molecular weight of the polymer is a polystyrene-equivalent value measured by the GPC-LS method (Gel Permeation Chromatography-Light Scattering Method: GPC-light scattering method). "Mw” means mass average molecular weight.
  • the viscosity is a value measured at 25 ° C. and a rotation speed of 60 rpm using a B-type viscometer.
  • Isobutyl methacrylate may be referred to as "IBMA”.
  • n-Butyl methacrylate may be referred to as "BMA”.
  • 2-Ethylhexyl methacrylate may be referred to as "EHMA”.
  • Methyl methacrylate may be referred to as "MMA”.
  • the UV-curable transfer paper protective layer resin composition (hereinafter, may be simply referred to as “resin composition”) is polymerizable with an acrylic polymer (hereinafter, may be referred to as “polymer A”). It includes a compound (hereinafter, may be referred to as “compound B”).
  • the resin composition comprises a radical initiator (hereinafter, may be referred to as “initiator C”), a defoaming agent (hereinafter, may be referred to as “defoaming agent D”), and a polymer, if necessary. It may further contain one or more selected from the group consisting of components other than A, compound B, initiator C and defoamer D (hereinafter, may be referred to as "other component E").
  • the polymer A may be a monomer unit derived from an alkyl (meth) acrylate having a branched alkyl group (hereinafter, may be referred to as “monomer a”) (hereinafter, may be referred to as “unit a”). .)including.
  • the Mw of the polymer A is 20000 to 450,000. Since the polymer A contains the unit a, a protective layer having excellent calcinability can be formed by the resin composition.
  • the monomer a examples include isopropyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, sec-butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • the monomer a is not limited to these.
  • the monomer a is at least selected from the group consisting of isopropyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, sec-butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate.
  • the monomer a is not limited to one type, and may be two or more types. Further, the unit a is not limited to one type, and may be two or more types.
  • the polymer A may contain a monomer unit other than the unit a (hereinafter, may be referred to as “another monomer unit”).
  • the other monomer unit is a monomer derived from a monomer that can be additive-polymerized with the monomer a (hereinafter, may be referred to as “another monomer”), excluding the monomer a. If it is a unit, it is not particularly limited. Specific examples of the other monomers are listed below, but the other monomers are not limited thereto.
  • Alkyl (meth) acrylate Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) Acrylate.
  • Monovinyl monomer vinyl acetate, vinyl propionate, (meth) acrylonitrile.
  • ⁇ , ⁇ -monoethylene unsaturated carboxylic acid (meth) acrylic acid, maleic acid, itaconic acid, crotonic acid.
  • Hydroxyalkyl (meth) acrylate 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate.
  • Amino group-containing alkyl (meth) acrylate diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate.
  • Aromatic monovinyl monomer styrene, ⁇ -methylstyrene.
  • Examples of the other monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, and stearyl.
  • At least one selected from the group consisting of (meth) acrylate, styrene and ⁇ -methylstyrene is preferable, and from the viewpoint of the tensile strength of the protective layer, n-butyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth).
  • At least one selected from the group consisting of acrylate and styrene is more preferable, and at least one selected from the group consisting of n-butyl (meth) acrylate and styrene is even more preferable.
  • the other monomer is not limited to one type, and may be two or more types.
  • the polymer A may have a polymerizable double bond.
  • the content ratio of the unit a in the polymer A is preferably 5% by mass or more, more preferably 20% by mass or more, still more preferably 50% by mass or more, based on the total mass of the monomer units constituting the polymer A.
  • the content ratio of the unit a in the polymer A is 100% by mass or less of the total mass of the monomer units constituting the polymer A. The higher the content ratio of the unit a in the polymer A, the more excellent the calcinability of the protective layer obtained by curing the resin composition.
  • the Mw of the polymer A is 20000 to 450,000, preferably 20000 to 300,000, and more preferably 20000 to 100,000.
  • the larger the Mw of the polymer A the higher the tensile strength of the protective layer obtained by curing the resin composition. Therefore, the handleability when peeling the integrated protective layer and the printing ink layer from the mount tends to be excellent. be.
  • the smaller the Mw of the polymer A the better the solubility of the polymer A in the polymerizable compound. Further, since the viscosity of the resin composition is sufficiently low, the film forming property tends to be excellent when the protective layer is formed by a method such as printing.
  • the glass transition temperature of the polymer A is preferably 10 ° C. or higher, more preferably 20 to 70 ° C.
  • the higher the glass transition temperature of the polymer A the less sticky the protective layer obtained by curing the resin composition becomes, and the better the blocking resistance.
  • the content ratio of the polymer A to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D is preferably 10 to 60% by mass, more preferably 20 to 50% by mass.
  • the content ratio of the polymer A is in the range of 10 to 60% by mass with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D, the bubbles in the protective layer can be further reduced. Moreover, the strength of the protective layer is further improved.
  • the larger the content ratio of the polymer A to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D the easier it is for the resin composition to cure. Further, the smaller the content ratio of the polymer A with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D, the lower the viscosity of the resin composition and the better the printability.
  • the polymer A can be produced by a polymerization method such as suspension polymerization, solution polymerization, bulk polymerization, or emulsion polymerization. Since the obtained polymer A has advantages such as easy high molecular weight, high degree of freedom in solvent selection of the resin composition, high solidification of the resin composition, and solvent-free resin composition. Suspension polymerization is preferable because the polymer A can be obtained as solid beads.
  • Compound B is a polymerizable compound other than polymer A having one or more polymerizable double bonds in the molecule.
  • Compound B has a monofunctional monomer having one polymerizable double bond in the molecule (hereinafter, may be referred to as “Compound B1”) and two or more polymerizable double bonds in the molecule. At least one selected from the group consisting of polyfunctional monomers (hereinafter, may be referred to as "Compound B2”) is preferable. Compound B is not limited to one type, and may be two or more types.
  • the compound B preferably contains one or more of the compound B1 and one or more of the compound B2.
  • compound B1 is not limited thereto.
  • Styrene compounds styrene, ⁇ -methylstyrene, chlorostyrene.
  • Alkyl (meth) acrylate Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, t-Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate.
  • Alkoxyalkyl (meth) acrylate methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate. Allyloxyalkyl (meth) acrylate: Phenoxyethyl (meth) acrylate. Hydroxyalkyl (meth) acrylate: 2-Hydroxyethyl (meth) acrylate.
  • Heterocyclic-containing (meth) acrylates tetrahydrofurfuryl (meth) acrylates, cyclohexyl (meth) acrylates, isobornyl (meth) acrylates, (meth) acryloylmorpholins.
  • Examples of compound B1 include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, and t.
  • the compound B1 includes n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate and ( More preferably, at least one selected from the group consisting of meta) acryloylmorpholin.
  • the compound B1 is not limited to one type, and may be two or more types.
  • the content ratio of compound B1 is preferably 5.0 to 65.0% by mass, more preferably 10.0 to 65.0% by mass, and 15.0 to 65.0% by mass with respect to 100% by mass of the resin composition. Is more preferable, 20.0 to 65.0% by mass is particularly preferable, and 25.0 to 65.0% by mass is most preferable.
  • Compound B2 includes a polymerizable compound having two polymerizable double bonds in the molecule (hereinafter, may be referred to as “Compound B3”) and a polymerization having three or more polymerizable double bonds in the molecule. At least one selected from the group consisting of sex compounds (hereinafter, may be referred to as "Compound B4") is preferable.
  • Alkylene glycol di (meth) acrylate ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol Di (meth) acrylate.
  • Oxyalkylene glycol di (meth) acrylate Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, di. Propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate. Aliphatic urethane (meth) acrylate. Aromatic urethane (meth) acrylate. Polyester (meth) acrylate. Epoxy (meth) acrylate.
  • Examples of compound B3 include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and dipropylene glycol di (dipropylene glycol di (meth) acrylate. At least one selected from the group consisting of meta) acrylate, polypropylene glycol di (meth) acrylate, aliphatic urethane (meth) acrylate, aromatic urethane (meth) acrylate, polyester (meth) acrylate and epoxy (meth) acrylate. preferable.
  • the compound B3 includes triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, aliphatic urethane (meth) acrylate, and aromatic urethane ( At least one selected from the group consisting of meta) acrylate, polyester (meth) acrylate and epoxy (meth) acrylate is more preferable, and aliphatic urethane (meth) acrylate, aromatic urethane (meth) acrylate, polyester (meth) acrylate. And at least one selected from the group consisting of epoxy (meth) acrylates is even more preferred.
  • Compound B3 is not limited to one type, and may be two or more types.
  • compound B4 is not limited thereto.
  • Poly (meth) acrylates of trihydric or higher aliphatic polyhydric alcohols trimethylolpropane tri (meth) acrylate, trimethylolethanetri (meth) acrylate, pentaerythritol tetra (meth) acrylate. Aliphatic urethane (meth) acrylate. Aromatic urethane (meth) acrylate. Polyester (meth) acrylate. Epoxy (meth) acrylate.
  • the compound B4 is a group consisting of an aliphatic urethane (meth) acrylate, an aromatic urethane (meth) acrylate, a polyester (meth) acrylate and an epoxy (meth) acrylate from the viewpoint of improving the ultraviolet curability and the tensile strength of the protective layer. At least one selected from is preferred.
  • the compound B4 is not limited to one type, and may be two or more types.
  • the amount of compound B4 used is high. , Preferably a small amount.
  • the content ratio of the compound B4 in the compound B is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less.
  • the content ratio of the compound B to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D is preferably 20 to 90% by mass, more preferably 40 to 65% by mass.
  • Initiator C is a compound that generates radicals under mild reaction conditions in order to proceed with a radical reaction, and is used as a polymerization initiator in a radical polymerization reaction.
  • Benzophenones Benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophenone, methyl orthobenzoylbenzoate, 4-phenylbenzophenone, 2-t-butylanthraquinone, 2-ethylanthraquinone.
  • Thioxanthones 2,4-diethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone.
  • Acetophenones Diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) Propane-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone.
  • Benzoin ethers benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether.
  • Acylphosphine oxides 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,4,6-trimethylbenzoyl)- Phosphine oxide.
  • Methylbenzoylformate 1,7-bisacridinyl heptane. 9-Phenylacridine.
  • the initiator C is not limited to one type, and may be two or more types.
  • the content ratio of the initiator C with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D is preferably 0.5 to 30% by mass, more preferably 5.0 to 25% by mass.
  • the smaller the content ratio of the initiator C with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D the higher the strength of the protective layer obtained by curing the resin composition.
  • the defoaming agent D is an additive that prevents the generation of bubbles and breaks the generated bubbles.
  • Silicone-based antifoaming agent containing polysiloxane as an active ingredient polyalkyldimethylsiloxane, polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, polyether-modified polymethylalkylsiloxane, aralkyl-modified polymethylalkylsiloxane, polyether-modified siloxane , Polydimethylsiloxane containing polyester-modified hydroxyl group.
  • a non-silicone polymer defoamer containing a polymer such as an acrylic compound as an active ingredient A mineral oil-based defoamer in which hydrophobic particles are dispersed in carrier oil.
  • the defoaming agent D at least one selected from the group consisting of silicone-based defoaming agents and non-silicone-polymer-based defoaming agents is preferable from the viewpoint of film-forming property, and polyalkyldimethylsiloxane is used as an active ingredient. At least one selected from the group consisting of a silicone-based defoaming agent and a non-silicone-polymer-based defoaming agent containing an acrylic compound as an active ingredient is more preferable.
  • the defoaming agent D is not limited to one type, and may be two or more types.
  • the content ratio of the defoaming agent D with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D is preferably 0.1 to 5% by mass, more preferably 0.3 to 3% by mass.
  • the larger the content ratio of the defoaming agent D to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D the smaller the number of bubbles in the protective layer obtained by curing the resin composition.
  • the smaller the content ratio of the defoaming agent D with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D the higher the tensile strength of the protective layer obtained by curing the resin composition. ..
  • the thixotropy is an auxiliary agent for satisfying viscosity stability, flexibility, drying property, etc. at the time of application in printing or the like.
  • examples of the thixotropy include fatty acid amide wax, amide wax, castor oil, and hydrogenated castor oil.
  • the resin other than the polymer A examples include an acrylic resin, a vinyl acetate resin, an alkyd resin, a polyester resin, and a cellulosic resin.
  • an acrylic resin is preferable.
  • Acrylic resins have a wide variety of raw material monomers and can be copolymerized in any combination, so that the degree of freedom in designing the glass transition temperature and molecular weight is high.
  • the resin composition contains an acrylic resin, the printability of the resin composition becomes more excellent, and further, the physical properties of the coating film of the protective layer obtained by curing the resin composition become easier to adjust.
  • the resin composition may contain a plasticizer.
  • the plasticizer include phthalates, phosphates, adipates, ether compounds, and paraffin compounds.
  • the phthalate ester include phthalate dialkyl esters such as dibutyl phthalate, dihexyl phthalate, dioctyl phthalate, diisononyl phthalate and diisodecyl phthalate; alkylbenzyl phthalate such as butylbenzyl phthalate; alkylaryl phthalate; phthalic acid. Dibenzyl; Diaryl phthalate and the like can be mentioned.
  • Examples of the phosphoric acid ester include a triaryl phosphate type such as tricresyl phosphate, a trialkyl phosphate type, and an alkylaryl phosphate type phosphoric acid ester.
  • Examples of the adipate ester include aliphatic dibasic acid esters such as dibutyl adipate and dioctyl adipate.
  • Examples of the ether compound include polyethylene glycol, polypropylene glycol, dibutyl glycol adipate and the like.
  • Examples of the paraffin compound include liquid paraffin and paraffin wax. Paraffin wax can be added as a plasticizer. Paraffin wax can also be added for the purpose of enhancing UV curability by blocking oxygen.
  • soybean oil such as polyester-based soybean oil and epoxidized soybean oil can also be used as a plasticizer.
  • the resin composition may contain a solvent.
  • a solvent specifically examples of the solvent are shown below, but the solvent is not limited thereto.
  • Aromatic solvents toluene, xylene, ethylbenzene.
  • Acetic acid ester solvent ethyl acetate, normal butyl acetate, isobutyl acetate, normal propyl acetate, isopropyl acetate, amyl acetate.
  • Ketone solvent methyl isobutyl ketone, methyl ethyl ketone, diisobutyl ketone, acetone.
  • Alcohol-based solvents methanol, ethanol, isopropyl alcohol, normal propyl alcohol, normal butyl alcohol, isobutyl alcohol, tertiary butyl alcohol, benzyl alcohol, diacetone alcohol, dipropylene glycol n-propyl ether, dipropylene glycol methyl ether, propylene glycol n-propyl ether.
  • Glycol solvent ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol.
  • Glycol ether solvent ethylene glycol monoethyl ether, ethylene glycol monobutyl ether.
  • Acetate solvent Methyl cellosolve acetate, methoxypropyl acetate.
  • Hydrocarbon solvents normal hexane, cyclohexane, methylcyclohexane, heptane.
  • Naphthenic solvent Exor (registered trademark) D80, Exor D110, Exor D130 (all manufactured by ExxonMobil).
  • Paraffin-based solvent Isopar (registered trademark) H, Isopar L, Isopar M (all manufactured by ExxonMobil).
  • Naphtha-based solvent Solbesso (registered trademark) 100, Solbesso 150, Solbesso 200 (above, ExxonMobil), Swazole (registered trademark) 1000, Swazol 1500, Swazol 1800 (above, manufactured by Maruzen Petroleum), Ipsol (registered trademark) ) 100, Ipsol 150 (all manufactured by Idemitsu Kosan Co., Ltd.).
  • the content ratio of the other component E to the total mass of the polymer A is preferably 15% by mass or less, more preferably 10% by mass or less.
  • the viscosity of the resin composition is preferably 0.1 to 100 Pa ⁇ s, more preferably 1 to 50 Pa ⁇ s.
  • the lower the viscosity of the resin composition the better the coating suitability when the resin composition is applied by screen printing or the like to form a protective layer.
  • the higher the viscosity of the resin composition the thicker the coating film formed by applying the resin composition by screen printing or the like, and it becomes easier to arrange the protective layer with the printing ink layer on ceramics or the like.
  • the resin composition can be produced by blending the polymer A and the compound B. At this time, if necessary, one or more selected from the group consisting of the initiator C, the defoaming agent D, and the other component E may be further blended.
  • the formulation of each component can be carried out by mixing with a commonly known stirrer.
  • the compound B is charged into a mixing device equipped with a stirrer, a cooling tube, and a thermometer, and the polymer A is gradually added while stirring the compound B to dissolve the polymer A.
  • a method of adding the initiator C, the defoaming agent D, and if desired, the other component E can be mentioned.
  • Polymer A, initiator C, defoamer D and other component E may be blended with compound B.
  • the laminate is a stack of a mount, a water-soluble paste layer, a printing ink layer, and a protective layer in this order.
  • the protective layer is a cured product of the resin composition.
  • the transfer paper for painting is made of a laminated body.
  • an embodiment of the transfer paper for painting will be described with reference to FIG. 1 as appropriate.
  • FIG. 1 is a schematic cross-sectional view showing an example of a transfer paper for painting.
  • the painting transfer paper 1 of the present embodiment is a stack of a mount 3, a water-soluble paste layer 5, a printing ink layer 7, and a protective layer 9 in this order.
  • the water-soluble paste layer 5 is formed so as to cover the entire surface of the mount 3.
  • the printing ink layer 7 is partially formed on the water-soluble paste layer 5.
  • the protective layer 9 is formed so as to cover the printing ink layer 7. A part of the protective layer 9 is in contact with the water-soluble paste layer 5.
  • a paper having good water absorption is preferable.
  • Examples of paper having good water absorption include Japanese paper.
  • Examples of the water-soluble paste that forms the water-soluble paste layer 5 include starch, polyvinyl alcohol, and carboxymethyl cellulose.
  • the ink forming the printing ink layer 7 examples include thermosetting inks, thermoplastic inks, and ultraviolet curable inks.
  • the printing ink layer 7 is formed of a pattern transferred to ceramics or the like.
  • the printing ink layer 7 may be a single layer or a multilayer.
  • the printing ink layer 7 can be formed by a known method.
  • the printing ink layer 7 can be formed by applying ink on the water-soluble adhesive layer 5 by screen printing, gravure printing, flexographic printing, offset printing, or the like and curing it if necessary.
  • the protective layer 9 is made of a cured product of the resin composition.
  • the cured product of the resin composition is preferably formed by applying the resin composition on the printing ink layer 7 and irradiating it with ultraviolet rays to cure it.
  • Examples of the method for applying the resin composition include screen printing, gravure printing, flexographic printing, and offset printing.
  • Examples of the light source of ultraviolet rays include solar rays, chemical lamps, low-pressure mercury lamps, high-pressure mercury lamps, carbon arc lamps, xenon lamps, metal halide lamps, and LED lamps.
  • a high-pressure mercury lamp, a metal halide lamp, and an LED lamp are preferable from the viewpoint of ultraviolet curability.
  • the irradiation energy density of ultraviolet rays is preferably 50 to 1500 mJ / cm 2.
  • the atmosphere when the resin composition is irradiated with ultraviolet rays and cured may be either an oxidative atmosphere or a non-oxidative atmosphere. Specifically, the atmosphere may be any of air, hydrogen, nitrogen, and a rare gas such as argon.
  • a printing ink layer 7 is formed by using ink on a mount 3 on which a water-soluble paste is applied to the entire surface to form a water-soluble paste layer 5, and the printing ink layer 7 is formed on the mount 3. It can be produced by applying a resin composition to the ink and curing it to form a protective layer 9.
  • the ceramics can be painted as follows. First, the transfer paper 1 for painting is immersed in water or warm water to dissolve the water-soluble paste layer 5, and the protective layer 9 with the printing ink layer 7 is peeled off from the mount 3. The protective layer 9 with the printing ink layer 7 is arranged at a predetermined position on the ceramic so that the ceramic and the printing ink layer 7 are in contact with each other. Then, after removing water and air bubbles between the protective layer 9 with the printing ink layer 7 and the ceramics, when the protective layer 9 is fired, the printing ink layer 7 remains on the surface of the ceramics and the ceramics are painted. Will be printed.
  • the water-soluble paste layer 5 may be provided at least at a position where the printing ink layer 7 and the protective layer 9 are formed, and may not cover the entire surface of the mount 3.
  • the prepared resin composition is printed on a mount (SPA, manufactured by Murakami Co., Ltd .; 215 mm x 290 mm) on which the water-soluble paste is uniformly applied on the entire surface, and the resin is printed on a nylon 80 mesh screen.
  • a coating film of the composition was formed and cured by ultraviolet rays.
  • the protective layer was peeled off from the mount in water. The peeled protective layer was punched out with a dumbbell type 2 (JIS K 6251: 2017) to prepare a test piece.
  • the prepared test piece was subjected to a tensile test using a tensile measuring device (Autograph AG-5kNIS, manufactured by Shimadzu Corporation) under the conditions of a test temperature of 23 ° C. and a test speed of 10 mm / min, and the maximum point elongation was measured. ..
  • the tensile strength of the protective layer was evaluated according to the following evaluation criteria.
  • UV-curable medium 803068, FERRO
  • red pigment 803068, FERRO
  • mount SPA, manufactured by Murakami; 215 mm x 290 mm
  • a UV curable ink prepared by mixing 15 parts (34634, manufactured by IZAWA) was printed on a nylon 300 mesh screen to form a printing ink layer having a floral pattern, and UV curing was performed.
  • the resin composition was printed on it with a nylon 80-mesh screen to form a coating film of the resin composition, which was then cured by ultraviolet rays to form a protective layer.
  • the conditions for UV curing of the printing ink layer are as follows. Equipment: USX5-0902 (manufactured by Eye Graphics). Conditions: Light source High pressure mercury lamp (120W). Ultraviolet illuminance 450 mW / cm 2 . Cumulative irradiation amount 400 mJ / cm 2 (irradiation distance about 130 mm, belt feed rate 4.7 m / min). The ultraviolet illuminance and the integrated irradiation amount were measured using an ultraviolet light meter (UV-351, manufactured by Oak Co., Ltd.).
  • the conditions for UV curing of the protective layer are as follows. Equipment: USX5-0902 (manufactured by Eye Graphics). Conditions: Light source High pressure mercury lamp (120W). Ultraviolet illuminance 520 mW / cm 2 . Cumulative irradiation amount 590 mJ / cm 2 (irradiation distance about 130 mm, belt feed rate 3.0 m / min). The ultraviolet illuminance and the integrated irradiation amount were measured using an ultraviolet light meter (UV-351, manufactured by Oak Co., Ltd.).
  • the laminated body (transfer paper for painting) is immersed in water to peel off the integrated protective layer and printing ink layer from the mount, and the printing ink layer is brought into contact with the plate to be attached and dried, and then ultra-high speed. It was fired at 780 ° C. for 20 minutes using a heating electric furnace (S6-2025D, manufactured by Motoyama Co., Ltd.), and the printing state on the plate was visually observed.
  • the calcinability of the protective layer was evaluated according to the following evaluation criteria.
  • methyl methacrylate was continuously added dropwise at a rate of 0.24 part / min for 75 minutes using a dropping pump. After completion of the dropping, the reaction solution was held at 60 ° C. for 6 hours and then cooled to room temperature to obtain a dispersant having a solid content of 10%, which is a transparent aqueous solution.
  • the inside of the polymerization apparatus was replaced with nitrogen, the temperature was raised to 80 ° C. and reacted for 1 hour, and in order to further increase the polymerization rate, the temperature was raised to 90 ° C. and held for 1 hour. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing a polymer.
  • the aqueous suspension was filtered through a nylon filter cloth having a mesh size of 45 ⁇ m, the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain 90 parts of polymer A1.
  • the polymer A1 contained 100% of the monomer units derived from the branched alkyl (meth) acrylate with respect to the total mass of all the monomer units constituting the polymer A1.
  • the breakdown was 81% for the monomer unit derived from isobutyl methacrylate and 19% for the monomer unit derived from 2-ethylhexyl methacrylate.
  • the glass transition temperature of the polymer A1 was 35 ° C., and the mass average molecular weight was 110,000.
  • the inside of the polymerization apparatus was replaced with nitrogen, the temperature was raised to 85 ° C. and reacted for 1 hour, and in order to further increase the polymerization rate, the temperature was raised to 95 ° C. and held for 30 minutes. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing a polymer.
  • the aqueous suspension was filtered through a nylon filter cloth having a mesh size of 45 ⁇ m, the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain 90 parts of polymer A2.
  • the polymer A2 contained 50% of the monomer units derived from the branched alkyl (meth) acrylate with respect to the total mass of all the monomer units constituting the polymer A2.
  • the breakdown was 50% of the monomer unit derived from isobutyl methacrylate and 50% of the monomer unit derived from n-butyl methacrylate.
  • the glass transition temperature of the polymer A2 was 33 ° C., and the mass average molecular weight was 190000.
  • the inside of the polymerization apparatus was replaced with nitrogen, the temperature was raised to 85 ° C. and reacted for 1 hour, and in order to further increase the polymerization rate, the temperature was raised to 95 ° C. and held for 30 minutes. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing a polymer.
  • the aqueous suspension was filtered through a nylon filter cloth having a mesh size of 45 ⁇ m, the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain 90 parts of polymer A3.
  • the polymer A3 contained 100% of the monomer units derived from the branched alkyl (meth) acrylate with respect to the total mass of all the monomer units constituting the polymer A3.
  • the breakdown was 85% of the monomer unit derived from isobutyl methacrylate and 15% of the monomer unit derived from 2-ethylhexyl methacrylate.
  • the glass transition temperature of the polymer A3 was 38 ° C., and the mass average molecular weight was 70,000.
  • the temperature was raised to 95 ° C. and held for 30 minutes. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing a polymer.
  • the aqueous suspension was filtered through a nylon filter cloth having a mesh size of 45 ⁇ m, the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain 92 parts of polymer A4.
  • the polymer A4 contained 100% of the monomer units derived from the branched alkyl (meth) acrylate with respect to the total mass of all the monomer units constituting the polymer A4.
  • the breakdown was 100% of the monomer unit derived from isobutyl methacrylate.
  • the glass transition temperature of the polymer A4 was 48 ° C., and the mass average molecular weight was 22000.
  • the inside of the polymerization apparatus was replaced with nitrogen, the temperature was raised to 85 ° C. and reacted for 1 hour, and in order to further increase the polymerization rate, the temperature was raised to 95 ° C. and held for 30 minutes. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing a polymer.
  • the aqueous suspension was filtered through a nylon filter cloth having a mesh size of 45 ⁇ m, the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain 90 parts of polymer A5.
  • the polymer A5 contained 20% of the monomer units derived from the branched alkyl (meth) acrylate with respect to the total mass of all the monomer units constituting the polymer A5.
  • the breakdown was 20% for the monomer unit derived from isobutyl methacrylate and 80% for the monomer unit derived from n-butyl methacrylate.
  • the glass transition temperature of the polymer A5 was 25 ° C., and the mass average molecular weight was 260000.
  • the inside of the polymerization apparatus was replaced with nitrogen, the temperature was raised to 75 ° C. and reacted for 1 hour, and in order to further increase the polymerization rate, the temperature was raised to 95 ° C. and held for 30 minutes. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing a polymer.
  • the aqueous suspension was filtered through a nylon filter cloth having a mesh size of 45 ⁇ m, the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain 90 parts of Comparative Polymer A6.
  • the comparative polymer A6 did not contain monomeric units derived from branched alkyl (meth) acrylates. The breakdown was 20% of the monomer unit derived from methyl methacrylate and 80% of the monomer unit derived from n-butyl methacrylate. The glass transition temperature of the comparative polymer A6 was 34 ° C., and the mass average molecular weight was 130000.
  • the comparative polymer A7 contained 100% of monomer units derived from the branched alkyl (meth) acrylate. The breakdown was 100% of the monomer unit derived from isobutyl methacrylate. The glass transition temperature of the comparative polymer A7 was 48 ° C., and the mass average molecular weight was 460000.
  • Examples 1 to 17, Comparative Examples 1 to 2 Each component was blended in the blending amount (part) shown in Table 1 or Table 2 and mixed with a high-speed disperser to produce a resin composition.
  • the solubility, tensile strength and calcinability were evaluated according to the above-mentioned evaluation method, and the evaluation results are shown in the corresponding columns of Table 1 or Table 2.
  • Initiator C1 1-Hydroxycyclohexyl-phenylketone.
  • Initiator C2 Benzophenone.
  • Defoaming agent D1 Silicone-based defoaming agent (active ingredient 0.7%; solvent: diisobutyl ketone) (BYK (registered trademark) -066N, manufactured by Big Chemie Japan Co., Ltd.).
  • Plasticizer Plasticizer E1 Paraffin wax P115 (manufactured by Nippon Seiro Co., Ltd.).
  • Plasticizer E2 Monosizer PB-3A (manufactured by DIC Corporation).
  • the resin compositions of Examples 1 to 17 were all excellent in the evaluation of the solubility of the composition and the tensile strength and calcinability of the cured product.
  • Comparative Example 1 since the monomer unit of the acrylic polymer is the monomer unit derived from linear methyl methacrylate and the monomer unit derived from n-butyl methacrylate, the calcinability of the cured product was not enough.
  • Comparative Example 2 since the mass average molecular weight of the acrylic polymer was larger than 450,000, the solubility of the composition was poor, and the tensile strength and calcinability of the cured product could not be evaluated.
  • a protective layer having excellent calcinability can be formed during the production of a transfer paper for painting.
  • the laminate of the present invention has a protective layer having excellent calcinability.
  • the transfer paper for painting of the present invention has a protective layer having excellent calcinability.

Abstract

The present invention provides: an ultraviolet curable resin composition that is for a transfer paper protective layer and that can form a protective layer having excellent firing properties when producing transfer paper for decoration; a layered product having a protective layer having excellent firing properties; and transfer paper for decoration. The ultraviolet curable resin composition for a transfer paper protective layer according to the present invention contains an acrylic polymer and a polymerizable compound. The acrylic polymer contains a monomeric unit derived from an alkyl(meth)acrylate having a branched alkyl group. The acrylic polymer has a mass-average molecular weight of 20,000-450,000. The polymerizable compound has, in the molecule, one or more polymerizable double bonds. The layered product and transfer paper for decoration according to the present invention are each obtained by sequentially layering: base paper; a water-soluble sizing agent layer; a printing ink layer; and a protective layer of a cured product of the ultraviolet curable resin composition for an transfer paper protective layer according to the present invention.

Description

[規則37.2に基づきISAが決定した発明の名称] 転写紙保護層用紫外線硬化性樹脂組成物[Name of invention determined by ISA based on Rule 37.2.] UV curable resin composition for transfer paper protective layer
 本発明は、紫外線硬化性転写紙保護層用樹脂組成物、積層体及び絵付け用転写紙に関する。
 本願は、2020年2月7日に、日本国に出願された特願2020-020157号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a resin composition for an ultraviolet curable transfer paper protective layer, a laminate, and a transfer paper for painting.
The present application claims priority based on Japanese Patent Application No. 2020-020157 filed in Japan on February 7, 2020, the contents of which are incorporated herein by reference.
 陶磁器に絵付けをする方法はいくつかある。例えば、転写紙を使用する方法が知られている。この場合の転写紙は、デキストリン溶液等の水溶性糊剤を塗布乾燥した台紙の上に、陶磁器用着色顔料を含有する印刷インキ層を印刷し、その上に保護層を印刷したものである。この方法は、一体となった保護層及び印刷インキ層を、水中で台紙から剥離し、陶磁器に印刷インキ層を接して貼り付けて乾燥した後、高温で保護層及び印刷インキ層を焼成して絵付けする方法である。 There are several ways to paint on earthenware. For example, a method using transfer paper is known. In this case, the transfer paper is obtained by printing a printing ink layer containing a coloring pigment for earthenware on a mount dried by applying a water-soluble paste such as a dextrin solution, and printing a protective layer on the printing ink layer. In this method, the integrated protective layer and printing ink layer are peeled off from the mount in water, the printing ink layer is brought into contact with ceramics and dried, and then the protective layer and printing ink layer are fired at a high temperature. It is a method of painting.
 現在、保護層には、主として、有機溶剤型ポリメタクリル酸エステル系樹脂等の有機溶剤型樹脂が使用されている。 Currently, an organic solvent type resin such as an organic solvent type polymethacrylic acid ester resin is mainly used for the protective layer.
 しかし、有機溶剤型樹脂を用いる保護層は、次のような問題を抱えている。
(1)スクリーン印刷版の目詰りを防止するために高沸点の有機溶剤を使用するので、乾燥速度が遅く生産性が低い。
(2)有機溶剤による環境汚染を引き起こすおそれがある。
(3)有機溶剤の乾燥が遅いため、転写紙を重ねたときに残留溶剤による転写紙同士のブロッキングが起こりやすい。
(4)転写紙が経時変化を起しやすく、保存中に可撓性が失われて貼り適性が低下するおそれがある。
However, the protective layer using the organic solvent type resin has the following problems.
(1) Since a high boiling point organic solvent is used to prevent clogging of the screen printing plate, the drying speed is slow and the productivity is low.
(2) There is a risk of causing environmental pollution due to organic solvents.
(3) Since the organic solvent dries slowly, blocking between the transfer papers by the residual solvent is likely to occur when the transfer papers are stacked.
(4) The transfer paper is liable to change with time, and the flexibility may be lost during storage to reduce the sticking suitability.
 特許文献1には、アルキル基の炭素数3~12のアルキル(メタ)アクリレートに由来する単量体単位を50質量%以上含むアクリル系重合体(A)、溶剤(B)及び可塑剤(D)を含む、転写紙保護層用樹脂組成物が記載されている。 Patent Document 1 describes an acrylic polymer (A), a solvent (B), and a plasticizer (D) containing 50% by mass or more of a monomer unit derived from an alkyl (meth) acrylate having 3 to 12 carbon atoms in an alkyl group. ), A resin composition for a transfer paper protective layer is described.
 特許文献2には、特定の一般式(A)で表される化合物の重合体、特定の一般式(B)で表される光重合性化合物、前記一般式(B)以外の分子内に重合性二重結合を有する光重合性化合物、光開始剤及び特定の非イオン活性剤の1種以上からなる転写紙保護層用樹脂組成物が記載されている。 Patent Document 2 describes a polymer of a compound represented by a specific general formula (A), a photopolymerizable compound represented by a specific general formula (B), and polymerization in a molecule other than the general formula (B). A resin composition for a transfer paper protective layer comprising one or more of a photopolymerizable compound having a sex double bond, a photoinitiator, and a specific non-ionic activator is described.
国際公開第2018/135579号International Publication No. 2018/135579 特開昭63-126796号公報Japanese Unexamined Patent Publication No. 63-126996
 特許文献1に記載された転写紙保護層用樹脂組成物は、紫外線硬化を考慮したものではない。そのため、組成物の硬化手段として紫外線硬化を使用する場合には、その適用の可否が不明である。
 また、特許文献1に記載された転写紙保護層用樹脂組成物は、有機溶剤を含むため、環境汚染を引き起こすおそれがある。また、印刷インキ層上に転写紙保護層用樹脂組成物を印刷した後、有機溶剤を蒸発させるのに長時間要するため、生産性に改善の余地がある。
The resin composition for the transfer paper protective layer described in Patent Document 1 does not consider ultraviolet curing. Therefore, when ultraviolet curing is used as a curing means for the composition, it is unclear whether or not it can be applied.
Further, since the resin composition for the transfer paper protective layer described in Patent Document 1 contains an organic solvent, it may cause environmental pollution. Further, since it takes a long time to evaporate the organic solvent after printing the resin composition for the transfer paper protective layer on the printing ink layer, there is room for improvement in productivity.
 加えて、特許文献2に記載された転写紙保護層用樹脂組成物を用いて得られる絵付け用転写紙では、焼成後の保護層にピンホールが生じやすく、焼成性が不充分である。 In addition, in the transfer paper for painting obtained by using the resin composition for the transfer paper protective layer described in Patent Document 2, pinholes are likely to occur in the protective layer after firing, and the calcinability is insufficient.
 本発明は、絵付け用転写紙の製造の際に焼成性に優れた保護層を形成できる紫外線硬化性転写紙保護層用樹脂組成物、焼成性に優れた保護層を有する積層体及び絵付け用転写紙を提供する。 The present invention relates to a resin composition for an ultraviolet curable transfer paper protective layer capable of forming a protective layer having excellent calcinability during the production of a transfer paper for painting, a laminate having a protective layer having excellent calcinability, and painting. Transfer paper for use is provided.
 [1] アクリル系重合体と、重合性化合物とを含み、前記アクリル系重合体は、分岐状のアルキル基を有するアルキル(メタ)アクリレートに由来する単量体単位を含み、前記アクリル系重合体の質量平均分子量は、20000~450000であり、前記重合性化合物は、分子内に1個以上の重合性二重結合を有する、紫外線硬化性転写紙保護層用樹脂組成物。
 [2] 前記アクリル系重合体の質量平均分子量が、20000~100000である、[1]に記載の紫外線硬化性転写紙保護層用樹脂組成物。
 [3] 前記分岐状のアルキル基を有するアルキル(メタ)アクリレートに由来する単量体単位の含有割合が、前記アクリル系重合体の全単量体単位100質量%に対して5~100%である、[1]又は[2]に記載の紫外線硬化性転写紙保護層用樹脂組成物。
 [4] 前記分岐状のアルキル基を有するアルキル(メタ)アクリレートに由来する単量体単位が、イソブチル(メタ)アクリレートに由来する単量体単位、sec-ブチル(メタ)アクリレートに由来する単量体単位及び2-エチルヘキシルメタクリレートに由来する単量体単位からなる群から選択される少なくとも1種以上を含む、[1]~[3]のいずれか1つに記載の紫外線硬化性転写紙保護層用樹脂組成物。
 [5] 前記重合性化合物が、単官能単量体及び多官能単量体を含む、[1]~[4]のいずれか1つに記載の紫外線硬化性転写紙保護層用樹脂組成物。
 [6] 前記多官能単量体が、脂肪族ウレタン(メタ)アクリレート、芳香族ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート及びエポキシ(メタ)アクリレートからなる群から選択される少なくとも1種以上である、[5]に記載の紫外線硬化性転写紙保護層用樹脂組成物。
 [7] 前記単官能単量体の含有割合が、紫外線硬化性転写紙保護層用樹脂組成物100質量%に対して5.0~65.0質量%である、[5]又は[6]に記載の紫外線硬化性転写紙保護層用樹脂組成物。
 [8] 台紙と、水溶性糊剤層と、印刷インキ層と、[1]~[7]のいずれか1つに記載の紫外線硬化性転写紙保護層用樹脂組成物の硬化物からなる保護層とがこの順に積層した積層体。
 [9] [8]に記載の積層体からなる絵付け用転写紙。
[1] The acrylic polymer contains an acrylic polymer and a polymerizable compound, and the acrylic polymer contains a monomer unit derived from an alkyl (meth) acrylate having a branched alkyl group, and the acrylic polymer contains a monomer unit. The mass average molecular weight of the above is 20000 to 450,000, and the polymerizable compound is a resin composition for an ultraviolet curable transfer paper protective layer having one or more polymerizable double bonds in the molecule.
[2] The resin composition for an ultraviolet curable transfer paper protective layer according to [1], wherein the acrylic polymer has a mass average molecular weight of 20,000 to 100,000.
[3] The content ratio of the monomer unit derived from the alkyl (meth) acrylate having a branched alkyl group is 5 to 100% with respect to 100% by mass of all the monomer units of the acrylic polymer. The resin composition for an ultraviolet curable transfer paper protective layer according to [1] or [2].
[4] The monomer unit derived from the alkyl (meth) acrylate having a branched alkyl group is a monomer unit derived from isobutyl (meth) acrylate and a single amount derived from sec-butyl (meth) acrylate. The UV-curable transfer paper protective layer according to any one of [1] to [3], which comprises at least one selected from the group consisting of a body unit and a monomer unit derived from 2-ethylhexyl methacrylate. Resin composition for.
[5] The resin composition for an ultraviolet curable transfer paper protective layer according to any one of [1] to [4], wherein the polymerizable compound contains a monofunctional monomer and a polyfunctional monomer.
[6] The polyfunctional monomer is at least one selected from the group consisting of aliphatic urethane (meth) acrylate, aromatic urethane (meth) acrylate, polyester (meth) acrylate and epoxy (meth) acrylate. The resin composition for an ultraviolet curable transfer paper protective layer according to [5].
[7] The content ratio of the monofunctional monomer is 5.0 to 65.0% by mass with respect to 100% by mass of the resin composition for the UV curable transfer paper protective layer [5] or [6]. The resin composition for an ultraviolet curable transfer paper protective layer according to.
[8] Protection comprising a mount, a water-soluble paste layer, a printing ink layer, and a cured product of the resin composition for an ultraviolet curable transfer paper protective layer according to any one of [1] to [7]. A laminated body in which layers are laminated in this order.
[9] A transfer paper for painting, which comprises the laminate according to [8].
 本発明は、絵付け用転写紙の製造の際に焼成性に優れた保護層を形成できる紫外線硬化性転写紙保護層用樹脂組成物、焼成性に優れた保護層を有する積層体及び絵付け用転写紙を提供できる。 The present invention relates to a resin composition for an ultraviolet curable transfer paper protective layer capable of forming a protective layer having excellent calcinability during the production of a transfer paper for painting, a laminate having a protective layer having excellent calcinability, and painting. Transfer paper can be provided.
図1は、絵付け用転写紙の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a transfer paper for painting.
 「(メタ)アクリレート」とは、アクリレートとメタクリレートの総称である。
 「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の総称である。
 「単量体単位」とは、重合体中で単量体1分子から形成される構成単位を意味する。
 「~」を用いて表す数値範囲には「~」の両側の数値を含む。また、本明細書に開示の数値範囲は、その下限値及び上限値を任意に組み合わせて任意の数値範囲とすることができる。
"(Meta) acrylate" is a general term for acrylate and methacrylate.
"(Meta) acrylic acid" is a general term for acrylic acid and methacrylic acid.
The “monomer unit” means a structural unit formed from one monomer molecule in a polymer.
The numerical range expressed using "-" includes the numerical values on both sides of "-". In addition, the numerical range disclosed in the present specification may be an arbitrary numerical range by arbitrarily combining the lower limit value and the upper limit value.
 重合体の質量平均分子量は、GPC-LS法(Gel Permeation Chromatography-Light Scattering Method:GPC-光散乱法)で測定されたポリスチレン換算の値である。
 「Mw」は、質量平均分子量を意味する。
The mass average molecular weight of the polymer is a polystyrene-equivalent value measured by the GPC-LS method (Gel Permeation Chromatography-Light Scattering Method: GPC-light scattering method).
"Mw" means mass average molecular weight.
 重合体のガラス転移温度は、単量体単位の種類及び質量分率から、下記式のFoxの式より求めることができる。
 1/Tg=Σ(W/Tg
 式中、
 Tgは、重合体のガラス転移温度(単位:K)であり、
 Wは、重合体を構成する単量体iに由来する単量体単位iの質量分率であり、
 Tgは、単量体iの単独重合体のガラス転移温度(単位:K)である。
 Tgの値は、POLYMER HANDBOOK Volume 1(WILEY-INTERSCIENCE)に記載の値を用いることができる。
The glass transition temperature of the polymer can be obtained from the Fox formula of the following formula from the type and mass fraction of the monomer unit.
1 / Tg = Σ ( Wi / Tg i )
During the ceremony
Tg is the glass transition temperature (unit: K) of the polymer.
Wi is a mass fraction of the monomer unit i derived from the monomer i constituting the polymer.
Tg i is the glass transition temperature (unit: K) of the homopolymer of the monomer i.
As the value of Tg i, the value described in POLYMER HANDBOOK Volume 1 (WILEY-INTERSCIENCE) can be used.
 粘度は、B型粘度計を用い、25℃、回転数60rpmで測定した値である。 The viscosity is a value measured at 25 ° C. and a rotation speed of 60 rpm using a B-type viscometer.
 イソブチルメタクリレートを「IBMA」と表記する場合がある。
 n-ブチルメタクリレートを「BMA」と表記する場合がある。
 2-エチルヘキシルメタクリレートを「EHMA」と表記する場合がある。
 メチルメタクリレートを「MMA」と表記する場合がある。
Isobutyl methacrylate may be referred to as "IBMA".
n-Butyl methacrylate may be referred to as "BMA".
2-Ethylhexyl methacrylate may be referred to as "EHMA".
Methyl methacrylate may be referred to as "MMA".
[紫外線硬化性転写紙保護層用樹脂組成物]
 紫外線硬化性転写紙保護層用樹脂組成物(以下、単に「樹脂組成物」という場合がある。)は、アクリル系重合体(以下、「重合体A」という場合がある。)と、重合性化合物(以下、「化合物B」という場合がある。)とを含む。
 樹脂組成物は、必要に応じて、ラジカル開始剤(以下、「開始剤C」という場合がある。)、消泡剤(以下、「消泡剤D」という場合がある。)、並びに重合体A、化合物B、開始剤C及び消泡剤D以外の成分(以下、「その他の成分E」という場合がある。)からなる群から選択される1種以上をさらに含んでもよい。
[Resin composition for UV curable transfer paper protective layer]
The UV-curable transfer paper protective layer resin composition (hereinafter, may be simply referred to as “resin composition”) is polymerizable with an acrylic polymer (hereinafter, may be referred to as “polymer A”). It includes a compound (hereinafter, may be referred to as “compound B”).
The resin composition comprises a radical initiator (hereinafter, may be referred to as “initiator C”), a defoaming agent (hereinafter, may be referred to as “defoaming agent D”), and a polymer, if necessary. It may further contain one or more selected from the group consisting of components other than A, compound B, initiator C and defoamer D (hereinafter, may be referred to as "other component E").
〈重合体A〉
 重合体Aは、分岐状のアルキル基を有するアルキル(メタ)アクリレート(以下、「単量体a」という場合がある。)に由来する単量体単位(以下、「単位a」という場合がある。)を含む。そして、重合体AのMwは、20000~450000である。重合体Aが単位aを含むため、焼成性に優れた保護層を樹脂組成物によって形成できる。
<Polymer A>
The polymer A may be a monomer unit derived from an alkyl (meth) acrylate having a branched alkyl group (hereinafter, may be referred to as “monomer a”) (hereinafter, may be referred to as “unit a”). .)including. The Mw of the polymer A is 20000 to 450,000. Since the polymer A contains the unit a, a protective layer having excellent calcinability can be formed by the resin composition.
 単量体aの具体例としては、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートが挙げられるが、単量体aは、これらに限定されるものではない。
 単量体aとしては、イソプロピル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート及び2-エチルヘキシル(メタ)アクリレートからなる群から選択される少なくとも1種が好ましく、保護層の焼成性の観点から、イソブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート及び2-エチルヘキシル(メタ)アクリレートからなる群から選択される少なくとも1種がより好ましい。
 単量体aは、1種に限定されず、2種以上であってもよい。また、単位aは、1種に限定されず、2種以上であってもよい。
Specific examples of the monomer a include isopropyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, sec-butyl (meth) acrylate, and 2-ethylhexyl (meth) acrylate. The monomer a is not limited to these.
The monomer a is at least selected from the group consisting of isopropyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, sec-butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate. One is preferable, and at least one selected from the group consisting of isobutyl (meth) acrylate, sec-butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate is more preferable from the viewpoint of calcinability of the protective layer.
The monomer a is not limited to one type, and may be two or more types. Further, the unit a is not limited to one type, and may be two or more types.
 重合体Aは、単位a以外の単量体単位(以下、「他の単量体単位」という場合がある。)を含んでもよい。
 前記他の単量体単位は、単量体aを除く、単量体aと付加重合可能な単量体(以下、「他の単量体」という場合がある。)に由来する単量体単位であれば特に限定されない。
 前記他の単量体の具体例を以下に列挙するが、前記他の単量体はこれらに限定されるものではない。
 アルキル(メタ)アクリレート:メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート。
 モノビニルモノマー:酢酸ビニル、プロピオン酸ビニル、(メタ)アクリロニトリル。
 α,β-モノエチレン性不飽和カルボン酸:(メタ)アクリル酸、マレイン酸、イタコン酸、クロトン酸。
 ヒドロキシアルキル(メタ)アクリレート:2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート。
 アミノ基含有アルキル(メタ)アクリレート:ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート。
 芳香族モノビニルモノマー:スチレン、α-メチルスチレン。
The polymer A may contain a monomer unit other than the unit a (hereinafter, may be referred to as “another monomer unit”).
The other monomer unit is a monomer derived from a monomer that can be additive-polymerized with the monomer a (hereinafter, may be referred to as “another monomer”), excluding the monomer a. If it is a unit, it is not particularly limited.
Specific examples of the other monomers are listed below, but the other monomers are not limited thereto.
Alkyl (meth) acrylate: Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) Acrylate.
Monovinyl monomer: vinyl acetate, vinyl propionate, (meth) acrylonitrile.
α, β-monoethylene unsaturated carboxylic acid: (meth) acrylic acid, maleic acid, itaconic acid, crotonic acid.
Hydroxyalkyl (meth) acrylate: 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate.
Amino group-containing alkyl (meth) acrylate: diethylaminoethyl (meth) acrylate, dimethylaminoethyl (meth) acrylate.
Aromatic monovinyl monomer: styrene, α-methylstyrene.
 前記他の単量体としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、スチレン及びα-メチルスチレンからなる群から選択される少なくとも1種が好ましく、保護層の引張強度の観点から、n-ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート及びスチレンからなる群から選択される少なくとも1種がより好ましく、n-ブチル(メタ)アクリレート及びスチレンからなる群から選択される少なくとも1種がさらに好ましい。
 前記他の単量体は、1種に限定されず、2種以上であってもよい。
Examples of the other monomer include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, and stearyl. At least one selected from the group consisting of (meth) acrylate, styrene and α-methylstyrene is preferable, and from the viewpoint of the tensile strength of the protective layer, n-butyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth). ) At least one selected from the group consisting of acrylate and styrene is more preferable, and at least one selected from the group consisting of n-butyl (meth) acrylate and styrene is even more preferable.
The other monomer is not limited to one type, and may be two or more types.
 重合体Aは、重合性二重結合を有していてもよい。重合体A中の単位aの含有割合は、重合体Aを構成する単量体単位の合計質量の5質量%以上が好ましく、20質量%以上がより好ましく、50質量%以上がさらに好ましい。また、重合体A中の単位aの含有割合は、重合体Aを構成する単量体単位の合計質量の100質量%以下である。
 重合体A中の単位aの含有割合が、多いほど、樹脂組成物を硬化して得られる保護層の焼成性がより優れる。
The polymer A may have a polymerizable double bond. The content ratio of the unit a in the polymer A is preferably 5% by mass or more, more preferably 20% by mass or more, still more preferably 50% by mass or more, based on the total mass of the monomer units constituting the polymer A. The content ratio of the unit a in the polymer A is 100% by mass or less of the total mass of the monomer units constituting the polymer A.
The higher the content ratio of the unit a in the polymer A, the more excellent the calcinability of the protective layer obtained by curing the resin composition.
 重合体AのMwは、20000~450000であり、20000~300000が好ましく、20000~100000がより好ましい。
 重合体AのMwが大きいほど、樹脂組成物を硬化して得られる保護層の引張強度が高いので、一体となった保護層及び印刷インキ層を台紙から剥離する際の取扱い性が優れる傾向がある。
 重合体AのMwが小さいほど、重合体Aの重合性化合物に対する溶解性が良好となる。また、樹脂組成物の粘度が充分に低くなるので、印刷等の方法で保護層を形成する際の成膜性が優れる傾向がある。
The Mw of the polymer A is 20000 to 450,000, preferably 20000 to 300,000, and more preferably 20000 to 100,000.
The larger the Mw of the polymer A, the higher the tensile strength of the protective layer obtained by curing the resin composition. Therefore, the handleability when peeling the integrated protective layer and the printing ink layer from the mount tends to be excellent. be.
The smaller the Mw of the polymer A, the better the solubility of the polymer A in the polymerizable compound. Further, since the viscosity of the resin composition is sufficiently low, the film forming property tends to be excellent when the protective layer is formed by a method such as printing.
 重合体Aのガラス転移温度は、10℃以上が好ましく、20~70℃がより好ましい。
 重合体Aのガラス転移温度が高いほど、樹脂組成物を硬化して得られる保護層に粘着性が出にくくなり、耐ブロッキング性が良好となる。ガラス転移温度が低いほど硬化物の引張強度が良好となる。
The glass transition temperature of the polymer A is preferably 10 ° C. or higher, more preferably 20 to 70 ° C.
The higher the glass transition temperature of the polymer A, the less sticky the protective layer obtained by curing the resin composition becomes, and the better the blocking resistance. The lower the glass transition temperature, the better the tensile strength of the cured product.
 重合体A、化合物B、開始剤C及び消泡剤Dの合計質量に対する重合体Aの含有割合は、10~60質量%が好ましく、20~50質量%がより好ましい。
 重合体Aの含有割合が、重合体A、化合物B、開始剤C及び消泡剤Dの合計質量に対して10~60質量%の範囲内であると、保護層の気泡をより低減でき、かつ、保護層の強度がより向上する。
 重合体A、化合物B、開始剤C及び消泡剤Dの合計質量に対する重合体Aの含有割合が大きいほど、樹脂組成物がより硬化しやすくなる。
 また、重合体A、化合物B、開始剤C及び消泡剤Dの合計質量に対する重合体Aの含有割合が小さいほど、樹脂組成物がより低粘度となり、印刷性がより良好となる。
The content ratio of the polymer A to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D is preferably 10 to 60% by mass, more preferably 20 to 50% by mass.
When the content ratio of the polymer A is in the range of 10 to 60% by mass with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D, the bubbles in the protective layer can be further reduced. Moreover, the strength of the protective layer is further improved.
The larger the content ratio of the polymer A to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D, the easier it is for the resin composition to cure.
Further, the smaller the content ratio of the polymer A with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D, the lower the viscosity of the resin composition and the better the printability.
 重合体Aは、懸濁重合、溶液重合、塊状重合、乳化重合等の重合方法によって製造できる。
 得られる重合体Aを高分子量化しやすいこと、樹脂組成物の溶剤選択の自由度が高くなること、樹脂組成物をハイソリッド化できること、樹脂組成物を無溶剤にできること等の利点があるので、重合体Aを固形ビーズとして取得できる懸濁重合が好ましい。
The polymer A can be produced by a polymerization method such as suspension polymerization, solution polymerization, bulk polymerization, or emulsion polymerization.
Since the obtained polymer A has advantages such as easy high molecular weight, high degree of freedom in solvent selection of the resin composition, high solidification of the resin composition, and solvent-free resin composition. Suspension polymerization is preferable because the polymer A can be obtained as solid beads.
〈化合物B〉
 化合物Bは、分子内に1個以上の重合性二重結合を有する重合体A以外の重合性化合物である。
<Compound B>
Compound B is a polymerizable compound other than polymer A having one or more polymerizable double bonds in the molecule.
 化合物Bは、分子内に1個の重合性二重結合を有する単官能単量体(以下、「化合物B1」という場合がある。)及び分子内に2個以上の重合性二重結合を有する多官能単量体(以下、「化合物B2」という場合がある。)からなる群から選択される少なくとも1種が好ましい。
 化合物Bは、1種に限定されず、2種以上であってもよい。
Compound B has a monofunctional monomer having one polymerizable double bond in the molecule (hereinafter, may be referred to as “Compound B1”) and two or more polymerizable double bonds in the molecule. At least one selected from the group consisting of polyfunctional monomers (hereinafter, may be referred to as "Compound B2") is preferable.
Compound B is not limited to one type, and may be two or more types.
 樹脂組成物の硬化物の最大点伸度がより良好となることから、化合物Bは、化合物B1の1種以上と、化合物B2の1種以上とを含むことが好ましい。 Since the maximum point elongation of the cured product of the resin composition becomes better, the compound B preferably contains one or more of the compound B1 and one or more of the compound B2.
 化合物B1の具体例を以下に列挙するが、化合物B1はこれらに限定されるものではない。
 スチレン系化合物:スチレン、α-メチルスチレン、クロロスチレン。
 アルキル(メタ)アクリレート:メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート。
 アルコキシアルキル(メタ)アクリレート:メトキシエチル(メタ)アクリレート、エトキシエチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート。
 アリロキシアルキル(メタ)アクリレート:フェノキシエチル(メタ)アクリレート。
 ヒドロキシアルキル(メタ)アクリレート:2-ヒドロキシエチル(メタ)アクリレート。
 複素環含有(メタ)アクリレート:テトラヒドロフルフリル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、(メタ)アクリロイルモルフォリン。
Specific examples of compound B1 are listed below, but compound B1 is not limited thereto.
Styrene compounds: styrene, α-methylstyrene, chlorostyrene.
Alkyl (meth) acrylate: Methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, t-Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate.
Alkoxyalkyl (meth) acrylate: methoxyethyl (meth) acrylate, ethoxyethyl (meth) acrylate, butoxyethyl (meth) acrylate.
Allyloxyalkyl (meth) acrylate: Phenoxyethyl (meth) acrylate.
Hydroxyalkyl (meth) acrylate: 2-Hydroxyethyl (meth) acrylate.
Heterocyclic-containing (meth) acrylates: tetrahydrofurfuryl (meth) acrylates, cyclohexyl (meth) acrylates, isobornyl (meth) acrylates, (meth) acryloylmorpholins.
 化合物B1としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、sec-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート及び(メタ)アクリロイルモルフォリンからなる群から選択される少なくとも1種が好ましい。
 紫外線硬化性、保護層の引張強度を向上させる観点から、化合物B1としては、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、イソボルニル(メタ)アクリレート及び(メタ)アクリロイルモルフォリンからなる群から選択される少なくとも1種がより好ましい。
 化合物B1は、1種に限定されず、2種以上であってもよい。
Examples of compound B1 include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, sec-butyl (meth) acrylate, and t. -Butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, phenoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, cyclohexyl (meth) acrylate, At least one selected from the group consisting of isobornyl (meth) acrylate and (meth) acryloylmorpholine is preferred.
From the viewpoint of improving the ultraviolet curability and the tensile strength of the protective layer, the compound B1 includes n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, phenoxyethyl (meth) acrylate, isobornyl (meth) acrylate and ( More preferably, at least one selected from the group consisting of meta) acryloylmorpholin.
The compound B1 is not limited to one type, and may be two or more types.
 化合物B1の含有割合は、樹脂組成物100質量%に対して5.0~65.0質量%が好ましく、10.0~65.0質量%がより好ましく、15.0~65.0質量%がさらに好ましく、20.0~65.0質量%が特に好ましく、25.0~65.0質量%が最も好ましい。
 化合物B1の含有割合が多いほどアクリル系重合体の化合物B1に対する溶解性が良好となる。また化合物B1の含有割合が少ないほど、樹脂組成物を硬化して得られる保護層の引張強度が高くなる。
The content ratio of compound B1 is preferably 5.0 to 65.0% by mass, more preferably 10.0 to 65.0% by mass, and 15.0 to 65.0% by mass with respect to 100% by mass of the resin composition. Is more preferable, 20.0 to 65.0% by mass is particularly preferable, and 25.0 to 65.0% by mass is most preferable.
The higher the content ratio of the compound B1, the better the solubility of the acrylic polymer in the compound B1. Further, the smaller the content ratio of the compound B1, the higher the tensile strength of the protective layer obtained by curing the resin composition.
 化合物B2としては、分子内に2個の重合性二重結合を有する重合性化合物(以下、「化合物B3」という場合がある。)及び分子内に3個以上の重合性二重結合を有する重合性化合物(以下、「化合物B4」という場合がある。)からなる群から選択される少なくとも1種が好ましい。 Compound B2 includes a polymerizable compound having two polymerizable double bonds in the molecule (hereinafter, may be referred to as “Compound B3”) and a polymerization having three or more polymerizable double bonds in the molecule. At least one selected from the group consisting of sex compounds (hereinafter, may be referred to as "Compound B4") is preferable.
 化合物B3の具体例を以下に列挙するが、化合物B3はこれらに限定されるものではない。
 アルキレングリコールジ(メタ)アクリレート:エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオール(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート。
 オキシアルキレングリコールジ(メタ)アクリレート:ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート。
 脂肪族ウレタン(メタ)アクリレート。
 芳香族ウレタン(メタ)アクリレート。
 ポリエステル(メタ)アクリレート。
 エポキシ(メタ)アクリレート。
Specific examples of compound B3 are listed below, but compound B3 is not limited thereto.
Alkylene glycol di (meth) acrylate: ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, 1,4-butanediol (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol Di (meth) acrylate.
Oxyalkylene glycol di (meth) acrylate: Diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, di. Propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate.
Aliphatic urethane (meth) acrylate.
Aromatic urethane (meth) acrylate.
Polyester (meth) acrylate.
Epoxy (meth) acrylate.
 化合物B3としては、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、脂肪族ウレタン(メタ)アクリレート、芳香族ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート及びエポキシ(メタ)アクリレートからなる群から選択される少なくとも1種が好ましい。
 紫外線硬化性と保護層の引張強度を向上させる観点から、化合物B3としては、トリエチレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、脂肪族ウレタン(メタ)アクリレート、芳香族ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート及びエポキシ(メタ)アクリレートからなる群から選択される少なくとも1種がより好ましく、脂肪族ウレタン(メタ)アクリレート、芳香族ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート及びエポキシ(メタ)アクリレートからなる群から選択される少なくとも1種がさらに好ましい。
 化合物B3は、1種に限定されず、2種以上であってもよい。
Examples of compound B3 include diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and dipropylene glycol di (dipropylene glycol di (meth) acrylate. At least one selected from the group consisting of meta) acrylate, polypropylene glycol di (meth) acrylate, aliphatic urethane (meth) acrylate, aromatic urethane (meth) acrylate, polyester (meth) acrylate and epoxy (meth) acrylate. preferable.
From the viewpoint of improving the ultraviolet curability and the tensile strength of the protective layer, the compound B3 includes triethylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, aliphatic urethane (meth) acrylate, and aromatic urethane ( At least one selected from the group consisting of meta) acrylate, polyester (meth) acrylate and epoxy (meth) acrylate is more preferable, and aliphatic urethane (meth) acrylate, aromatic urethane (meth) acrylate, polyester (meth) acrylate. And at least one selected from the group consisting of epoxy (meth) acrylates is even more preferred.
Compound B3 is not limited to one type, and may be two or more types.
 化合物B4の具体例を以下に列挙するが、化合物B4はこれらに限定されるものではない。
 3価以上の脂肪族多価アルコールのポリ(メタ)アクリレート:トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート。
 脂肪族ウレタン(メタ)アクリレート。
 芳香族ウレタン(メタ)アクリレート。
 ポリエステル(メタ)アクリレート。
 エポキシ(メタ)アクリレート。
Specific examples of compound B4 are listed below, but compound B4 is not limited thereto.
Poly (meth) acrylates of trihydric or higher aliphatic polyhydric alcohols: trimethylolpropane tri (meth) acrylate, trimethylolethanetri (meth) acrylate, pentaerythritol tetra (meth) acrylate.
Aliphatic urethane (meth) acrylate.
Aromatic urethane (meth) acrylate.
Polyester (meth) acrylate.
Epoxy (meth) acrylate.
 化合物B4としては、紫外線硬化性と保護層の引張強度を向上させる観点から、脂肪族ウレタン(メタ)アクリレート、芳香族ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート及びエポキシ(メタ)アクリレートからなる群から選択される少なくとも1種が好ましい。
 化合物B4は、1種に限定されず、2種以上であってもよい。
The compound B4 is a group consisting of an aliphatic urethane (meth) acrylate, an aromatic urethane (meth) acrylate, a polyester (meth) acrylate and an epoxy (meth) acrylate from the viewpoint of improving the ultraviolet curability and the tensile strength of the protective layer. At least one selected from is preferred.
The compound B4 is not limited to one type, and may be two or more types.
 化合物Bとして化合物B4を多量に使用した場合は、樹脂組成物を硬化して得られる保護層の可撓性が低下し、また焼成性にもよい影響を与えないので、化合物B4の使用量は、少量とすることが好ましい。保護層の可撓性と焼成性が良好となる観点から、化合物B中の化合物B4の含有割合は、20質量%以下が好ましく、10質量%以下がより好ましく、5質量%以下がさらに好ましい。 When a large amount of compound B4 is used as compound B, the flexibility of the protective layer obtained by curing the resin composition is lowered, and the calcinability is not positively affected. Therefore, the amount of compound B4 used is high. , Preferably a small amount. From the viewpoint of improving the flexibility and calcinability of the protective layer, the content ratio of the compound B4 in the compound B is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less.
 重合体A、化合物B、開始剤C及び消泡剤Dの合計質量に対する化合物Bの含有割合は、20~90質量%が好ましく、40~65質量%がより好ましい。
 重合体A、化合物B、開始剤C及び消泡剤Dの合計質量に対する化合物Bの含有割合が大きいほど、樹脂組成物がより低粘度となり、印刷性がより良好となる。また、重合体A、化合物B、開始剤C及び消泡剤Dの合計質量に対する化合物Bの含有割合が小さいほど、樹脂組成物の紫外線硬化性がより良好となる。
The content ratio of the compound B to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D is preferably 20 to 90% by mass, more preferably 40 to 65% by mass.
The larger the content ratio of the compound B with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D, the lower the viscosity of the resin composition and the better the printability. Further, the smaller the content ratio of the compound B with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D, the better the ultraviolet curability of the resin composition.
〈開始剤C〉
 開始剤Cは、ラジカル反応を進めるために穏和な反応条件でラジカルを発生させる化合物であり、ラジカル重合反応において重合開始剤として用いられる。
<Initiator C>
Initiator C is a compound that generates radicals under mild reaction conditions in order to proceed with a radical reaction, and is used as a polymerization initiator in a radical polymerization reaction.
 開始剤Cの具体例を以下に示すが、開始剤Cはこれらに限定されるものではない。
 ベンゾフェノン類:ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、メチルオルソベンゾイルベンゾエート、4-フェニルベンゾフェノン、2-t-ブチルアントラキノン、2-エチルアントラキノン。
 チオキサントン類:2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン。
 アセトフェノン類:ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン。
 ベンゾインエーテル類:ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル。
 アシルホスフィンオキサイド類:2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド。
 メチルベンゾイルホルメート。
 1,7-ビスアクリジニルヘプタン。
 9-フェニルアクリジン。
 開始剤Cは、1種に限定されず、2種以上であってもよい。
Specific examples of the initiator C are shown below, but the initiator C is not limited thereto.
Benzophenones: Benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophenone, methyl orthobenzoylbenzoate, 4-phenylbenzophenone, 2-t-butylanthraquinone, 2-ethylanthraquinone.
Thioxanthones: 2,4-diethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone.
Acetophenones: Diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethylketal, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) Propane-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone.
Benzoin ethers: benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether.
Acylphosphine oxides: 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,4,6-trimethylbenzoyl)- Phosphine oxide.
Methylbenzoylformate.
1,7-bisacridinyl heptane.
9-Phenylacridine.
The initiator C is not limited to one type, and may be two or more types.
 重合体A、化合物B、開始剤C及び消泡剤Dの合計質量に対する開始剤Cの含有割合は、0.5~30質量%が好ましく、5.0~25質量%がより好ましい。
 重合体A、化合物B、開始剤C及び消泡剤Dの合計質量に対する開始剤Cの含有割合が大きいほど、樹脂組成物の硬化性がより良好となる。また、重合体A、化合物B、開始剤C及び消泡剤Dの合計質量に対する開始剤Cの含有割合が小さいほど、樹脂組成物を硬化して得られる保護層の強度がより向上する。
The content ratio of the initiator C with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D is preferably 0.5 to 30% by mass, more preferably 5.0 to 25% by mass.
The larger the content ratio of the initiator C to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D, the better the curability of the resin composition. Further, the smaller the content ratio of the initiator C with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D, the higher the strength of the protective layer obtained by curing the resin composition.
〈消泡剤D〉
 消泡剤Dは、泡の発生を防いだり、発生した泡を破泡したりする添加剤である。
<Defoamer D>
The defoaming agent D is an additive that prevents the generation of bubbles and breaks the generated bubbles.
 消泡剤Dの具体例を以下に示すが、消泡剤Dはこれらに限定されるものではない。
 ポリシロキサンを活性成分とするシリコーン系消泡剤:ポリアルキルジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、ポリエーテル変性ポリメチルアルキルシロキサン、アラルキル変性ポリメチルアルキルシロキサン、ポリエーテル変性シロキサン、ポリエステル変性水酸基含有ポリジメチルシロキサン。
 アクリル系化合物等のポリマーを活性成分とする非シリコーン・ポリマー系消泡剤。
 疎水粒子をキャリヤオイルに分散させたミネラルオイル系消泡剤。
Specific examples of the defoaming agent D are shown below, but the defoaming agent D is not limited thereto.
Silicone-based antifoaming agent containing polysiloxane as an active ingredient: polyalkyldimethylsiloxane, polyether-modified polydimethylsiloxane, polyester-modified polydimethylsiloxane, polyether-modified polymethylalkylsiloxane, aralkyl-modified polymethylalkylsiloxane, polyether-modified siloxane , Polydimethylsiloxane containing polyester-modified hydroxyl group.
A non-silicone polymer defoamer containing a polymer such as an acrylic compound as an active ingredient.
A mineral oil-based defoamer in which hydrophobic particles are dispersed in carrier oil.
 消泡剤Dとしては、成膜性の観点から、シリコーン系消泡剤及び非シリコーン・ポリマー系消泡剤からなる群から選択される少なくとも1種が好ましく、ポリアルキルジメチルシロキサンを活性成分とするシリコーン系消泡剤及びアクリル系化合物を活性成分とする非シリコーン・ポリマー系消泡剤からなる群から選択される少なくとも1種がより好ましい。
 消泡剤Dは、1種に限定されず、2種以上であってもよい。
As the defoaming agent D, at least one selected from the group consisting of silicone-based defoaming agents and non-silicone-polymer-based defoaming agents is preferable from the viewpoint of film-forming property, and polyalkyldimethylsiloxane is used as an active ingredient. At least one selected from the group consisting of a silicone-based defoaming agent and a non-silicone-polymer-based defoaming agent containing an acrylic compound as an active ingredient is more preferable.
The defoaming agent D is not limited to one type, and may be two or more types.
 重合体A、化合物B、開始剤C及び消泡剤Dの合計質量に対する消泡剤Dの含有割合は、0.1~5質量%が好ましく、0.3~3質量%がより好ましい。
 重合体A、化合物B、開始剤C及び消泡剤Dの合計質量に対する消泡剤Dの含有割合が大きいほど、樹脂組成物を硬化して得られる保護層の気泡がより少なくなる。また、重合体A、化合物B、開始剤C及び消泡剤Dの合計質量に対する消泡剤Dの含有割合が小さいほど、樹脂組成物を硬化して得られる保護層の引張強度がより高くなる。
The content ratio of the defoaming agent D with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D is preferably 0.1 to 5% by mass, more preferably 0.3 to 3% by mass.
The larger the content ratio of the defoaming agent D to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D, the smaller the number of bubbles in the protective layer obtained by curing the resin composition. Further, the smaller the content ratio of the defoaming agent D with respect to the total mass of the polymer A, the compound B, the initiator C and the defoaming agent D, the higher the tensile strength of the protective layer obtained by curing the resin composition. ..
〈その他の成分E〉
 その他の成分E(重合体A、化合物B、開始剤C及び消泡剤D以外の成分)としては、例えば、チキソ剤、重合体A以外の樹脂、可塑剤、溶剤が挙げられる。
<Other ingredients E>
Examples of the other component E (components other than the polymer A, the compound B, the initiator C and the defoaming agent D) include a thixotropic agent, a resin other than the polymer A, a plasticizer, and a solvent.
 前記チキソ剤は、印刷等での塗布時の粘度安定性、柔軟性、乾燥性等を満足させるための助剤である。
 前記チキソ剤としては、例えば、脂肪酸アマイド系ワックス、アマイド系ワックス、ヒマシ油、水添ヒマシ油が挙げられる。
The thixotropy is an auxiliary agent for satisfying viscosity stability, flexibility, drying property, etc. at the time of application in printing or the like.
Examples of the thixotropy include fatty acid amide wax, amide wax, castor oil, and hydrogenated castor oil.
 前記重合体A以外の樹脂としては、例えば、アクリル系樹脂、酢酸ビニル樹脂、アルキッド樹脂、ポリエステル樹脂、セルロース系樹脂が挙げられる。
 前記重合体A以外の樹脂としては、アクリル系樹脂が好ましい。アクリル系樹脂は、原料のモノマーの種類が豊富であり、かつ、任意の組合せで共重合できるため、ガラス転移温度及び分子量の設計自由度が高い。
 樹脂組成物がアクリル系樹脂を含むと、樹脂組成物の印刷性がより優れたものとなり、さらに、樹脂組成物を硬化して得られる保護層の塗膜物性の調整がより容易となる。
Examples of the resin other than the polymer A include an acrylic resin, a vinyl acetate resin, an alkyd resin, a polyester resin, and a cellulosic resin.
As the resin other than the polymer A, an acrylic resin is preferable. Acrylic resins have a wide variety of raw material monomers and can be copolymerized in any combination, so that the degree of freedom in designing the glass transition temperature and molecular weight is high.
When the resin composition contains an acrylic resin, the printability of the resin composition becomes more excellent, and further, the physical properties of the coating film of the protective layer obtained by curing the resin composition become easier to adjust.
 また前記保護層の柔軟性を向上させるために、樹脂組成物は可塑剤を含有していてもよい。前記可塑剤としては、例えば、フタル酸エステル、リン酸エステル、アジピン酸エステル、エーテル系化合物、パラフィン系化合物が挙げられる。フタル酸エステルとしては、フタル酸ジブチル、フタル酸ジヘキシル、フタル酸ジオクチル、フタル酸ジイソノニル、フタル酸ジイソデシル等のフタル酸ジアルキルエステル;フタル酸ブチルベンジル等のフタル酸アルキルベンジル;フタル酸アルキルアリール;フタル酸ジベンジル;フタル酸ジアリール等が挙げられる。リン酸エステルとしては、リン酸トリクレシル等のリン酸トリアリール系、リン酸トリアルキル系、リン酸アルキルアリール系等のリン酸エステルが挙げられる。アジピン酸エステルとしては、アジピン酸ジブチル、アジピン酸ジオクチル等の脂肪族二塩基酸エステルが挙げられる。エーテル系化合物としては、ポリエチレングリコール、ポリプロピレングリコール、ジブチルグリコールアジペート等が挙げられる。パラフィン系化合物としては、流動パラフィンやパラフィンワックス等が挙げられる。パラフィンワックスは、可塑剤として添加することができる。また、パラフィンワックスは、酸素遮断によりUV硬化性を高める目的でも添加することができる。その他に、ポリエステル系大豆油、エポキシ化大豆油等の大豆油等も可塑剤として使用できる。 Further, in order to improve the flexibility of the protective layer, the resin composition may contain a plasticizer. Examples of the plasticizer include phthalates, phosphates, adipates, ether compounds, and paraffin compounds. Examples of the phthalate ester include phthalate dialkyl esters such as dibutyl phthalate, dihexyl phthalate, dioctyl phthalate, diisononyl phthalate and diisodecyl phthalate; alkylbenzyl phthalate such as butylbenzyl phthalate; alkylaryl phthalate; phthalic acid. Dibenzyl; Diaryl phthalate and the like can be mentioned. Examples of the phosphoric acid ester include a triaryl phosphate type such as tricresyl phosphate, a trialkyl phosphate type, and an alkylaryl phosphate type phosphoric acid ester. Examples of the adipate ester include aliphatic dibasic acid esters such as dibutyl adipate and dioctyl adipate. Examples of the ether compound include polyethylene glycol, polypropylene glycol, dibutyl glycol adipate and the like. Examples of the paraffin compound include liquid paraffin and paraffin wax. Paraffin wax can be added as a plasticizer. Paraffin wax can also be added for the purpose of enhancing UV curability by blocking oxygen. In addition, soybean oil such as polyester-based soybean oil and epoxidized soybean oil can also be used as a plasticizer.
 またアクリル系重合体Aの溶解性を向上させるために、樹脂組成物は溶剤を含有していてもよい。前記溶剤の具体例を以下に示すが、前記溶剤はこれらに限定されるものではない。
 芳香族系溶剤:トルエン、キシレン、エチルベンゼン。
 酢酸エステル系溶剤:酢酸エチル、酢酸ノルマルブチル、酢酸イソブチル、酢酸ノルマルプロピル、酢酸イソプロピル、酢酸アミル。
 ケトン系溶剤:メチルイソブチルケトン、メチルエチルケトン、ジイソブチルケトン、アセトン。
 アルコール系溶剤:メタノール、エタノール、イソプロピルアルコール、ノルマルプロピルアルコール、ノルマルブチルアルコール、イソブチルアルコール、ターシャリブチルアルコール、ベンジルアルコール、ジアセトンアルコール、ジプロピレングリコールn-プロピルエーテル、ジプロピレングリコールメチルエーテル、プロピレングリコールn-プロピルエーテル。
 グリコール系溶剤:エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール。
 グリコールエーテル系溶剤:エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル。
 アセテート系溶剤:メチルセロソルブアセテート、メトキシプロピルアセテート。
 炭化水素系溶剤:ノルマルヘキサン、シクロへキサン、メチルシクロへキサン、ヘプタン。
 ナフテン系溶剤:エクソール(登録商標)D80、エクソールD110、エクソールD130(以上、エクソンモービル社製)。
 パラフィン系溶剤:アイソパー(登録商標)H、アイソパーL、アイソパーM(以上、エクソンモービル社製)。
 ナフサ系溶剤:ソルベッソ(登録商標)100、ソルベッソ150、ソルベッソ200(以上、エクソンモービル社製)、スワゾール(登録商標)1000、スワゾール1500、スワゾール1800(以上、丸善石油社製)、イプゾール(登録商標)100、イプゾール150(以上、出光興産社製)。
Further, in order to improve the solubility of the acrylic polymer A, the resin composition may contain a solvent. Specific examples of the solvent are shown below, but the solvent is not limited thereto.
Aromatic solvents: toluene, xylene, ethylbenzene.
Acetic acid ester solvent: ethyl acetate, normal butyl acetate, isobutyl acetate, normal propyl acetate, isopropyl acetate, amyl acetate.
Ketone solvent: methyl isobutyl ketone, methyl ethyl ketone, diisobutyl ketone, acetone.
Alcohol-based solvents: methanol, ethanol, isopropyl alcohol, normal propyl alcohol, normal butyl alcohol, isobutyl alcohol, tertiary butyl alcohol, benzyl alcohol, diacetone alcohol, dipropylene glycol n-propyl ether, dipropylene glycol methyl ether, propylene glycol n-propyl ether.
Glycol solvent: ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol.
Glycol ether solvent: ethylene glycol monoethyl ether, ethylene glycol monobutyl ether.
Acetate solvent: Methyl cellosolve acetate, methoxypropyl acetate.
Hydrocarbon solvents: normal hexane, cyclohexane, methylcyclohexane, heptane.
Naphthenic solvent: Exor (registered trademark) D80, Exor D110, Exor D130 (all manufactured by ExxonMobil).
Paraffin-based solvent: Isopar (registered trademark) H, Isopar L, Isopar M (all manufactured by ExxonMobil).
Naphtha-based solvent: Solbesso (registered trademark) 100, Solbesso 150, Solbesso 200 (above, ExxonMobil), Swazole (registered trademark) 1000, Swazol 1500, Swazol 1800 (above, manufactured by Maruzen Petroleum), Ipsol (registered trademark) ) 100, Ipsol 150 (all manufactured by Idemitsu Kosan Co., Ltd.).
 重合体Aの総質量に対するその他の成分Eの含有割合は、15質量%以下が好ましく、10質量%以下がより好ましい。
 重合体Aの総質量に対するその他の成分Eの含有割合が小さいほど、樹脂組成物をスクリーン印刷等により塗布して保護層を形成する際の塗布適性がより向上する。
The content ratio of the other component E to the total mass of the polymer A is preferably 15% by mass or less, more preferably 10% by mass or less.
The smaller the content ratio of the other component E to the total mass of the polymer A, the better the coating suitability when the resin composition is applied by screen printing or the like to form a protective layer.
〈樹脂組成物の粘度〉
 樹脂組成物の粘度は、0.1~100Pa・sが好ましく、1~50Pa・sがより好ましい。
 樹脂組成物の粘度が低いほど、樹脂組成物をスクリーン印刷等により塗布して保護層を形成する際の塗布適性がより向上する。また、樹脂組成物の粘度が高いほど、樹脂組成物をスクリーン印刷等により塗布して形成した塗膜が厚くなり、印刷インキ層の付いた保護層を陶磁器等に、より配置しやすくなる。
<Viscosity of resin composition>
The viscosity of the resin composition is preferably 0.1 to 100 Pa · s, more preferably 1 to 50 Pa · s.
The lower the viscosity of the resin composition, the better the coating suitability when the resin composition is applied by screen printing or the like to form a protective layer. Further, the higher the viscosity of the resin composition, the thicker the coating film formed by applying the resin composition by screen printing or the like, and it becomes easier to arrange the protective layer with the printing ink layer on ceramics or the like.
〈樹脂組成物の製造方法〉
 樹脂組成物は、重合体A及び化合物Bを配合して製造できる。このとき、必要に応じて、開始剤C、消泡剤D及びその他成分Eからなる群から選択される1種以上をさらに配合してもよい。
 各成分の配合は、通常知られた撹拌機で混合することにより行うことができる。
<Manufacturing method of resin composition>
The resin composition can be produced by blending the polymer A and the compound B. At this time, if necessary, one or more selected from the group consisting of the initiator C, the defoaming agent D, and the other component E may be further blended.
The formulation of each component can be carried out by mixing with a commonly known stirrer.
 樹脂組成物の製造方法としては、例えば、撹拌機、冷却管、温度計を備えた混合装置に化合物Bを仕込み、これを撹拌しながら重合体Aを少しずつ添加し、重合体Aが溶解したのを確認した後、開始剤C、消泡剤D、所望によりその他の成分Eを添加する方法が挙げられる。
 重合体A、開始剤C、消泡剤D及びその他の成分Eは、化合物Bとともに配合してもよい。
As a method for producing the resin composition, for example, the compound B is charged into a mixing device equipped with a stirrer, a cooling tube, and a thermometer, and the polymer A is gradually added while stirring the compound B to dissolve the polymer A. After confirming that, a method of adding the initiator C, the defoaming agent D, and if desired, the other component E can be mentioned.
Polymer A, initiator C, defoamer D and other component E may be blended with compound B.
[積層体、絵付け用転写紙]
 積層体は、台紙と水溶性糊剤層と印刷インキ層と保護層とがこの順に積層したものである。
 前記保護層は、樹脂組成物の硬化物である。
[Laminate, transfer paper for painting]
The laminate is a stack of a mount, a water-soluble paste layer, a printing ink layer, and a protective layer in this order.
The protective layer is a cured product of the resin composition.
 絵付け用転写紙は、積層体からなる。
 以下では、適宜、図1を参照しながら、絵付け用転写紙の一実施形態を説明する。
The transfer paper for painting is made of a laminated body.
Hereinafter, an embodiment of the transfer paper for painting will be described with reference to FIG. 1 as appropriate.
 図1は、絵付け用転写紙の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of a transfer paper for painting.
 本実施形態の絵付け用転写紙1は、台紙3と、水溶性糊剤層5と、印刷インキ層7と、保護層9とがこの順に積層したものである。
 水溶性糊剤層5は、台紙3の全面を覆うように形成されている。
 印刷インキ層7は、水溶性糊剤層5上に部分的に形成されている。
 保護層9は、印刷インキ層7を被覆するように形成されている。保護層9の一部は水溶性糊剤層5と接している。
The painting transfer paper 1 of the present embodiment is a stack of a mount 3, a water-soluble paste layer 5, a printing ink layer 7, and a protective layer 9 in this order.
The water-soluble paste layer 5 is formed so as to cover the entire surface of the mount 3.
The printing ink layer 7 is partially formed on the water-soluble paste layer 5.
The protective layer 9 is formed so as to cover the printing ink layer 7. A part of the protective layer 9 is in contact with the water-soluble paste layer 5.
 台紙3としては、吸水性のよい紙が好ましい。
 吸水性のよい紙としては、例えば、和紙が挙げられる。
As the mount 3, a paper having good water absorption is preferable.
Examples of paper having good water absorption include Japanese paper.
 水溶性糊剤層5を形成する水溶性糊剤としては、例えば、澱粉、ポリビニルアルコール、カルボキシメチルセルロースが挙げられる。 Examples of the water-soluble paste that forms the water-soluble paste layer 5 include starch, polyvinyl alcohol, and carboxymethyl cellulose.
 印刷インキ層7を形成するインキとしては、例えば、熱硬化性インキ、熱可塑性インキ、紫外線硬化性インキが挙げられる。
 印刷インキ層7は、陶磁器等に転写される絵柄で形成される。
 印刷インキ層7は、単層でもよく多層でもよい。
 印刷インキ層7は、公知の方法により形成できる。例えば、スクリーン印刷、グラビア印刷、フレキソ印刷、オフセット印刷等により、インキを水溶性糊剤層5上に塗布し、必要に応じて硬化させることによって印刷インキ層7を形成できる。
Examples of the ink forming the printing ink layer 7 include thermosetting inks, thermoplastic inks, and ultraviolet curable inks.
The printing ink layer 7 is formed of a pattern transferred to ceramics or the like.
The printing ink layer 7 may be a single layer or a multilayer.
The printing ink layer 7 can be formed by a known method. For example, the printing ink layer 7 can be formed by applying ink on the water-soluble adhesive layer 5 by screen printing, gravure printing, flexographic printing, offset printing, or the like and curing it if necessary.
 保護層9は、樹脂組成物の硬化物からなる。
 樹脂組成物の硬化物は、樹脂組成物を印刷インキ層7の上に塗布し、紫外線を照射して硬化させて形成することが好ましい。
 樹脂組成物の塗布方法としては、例えば、スクリーン印刷、グラビア印刷、フレキソ印刷、オフセット印刷が挙げられる。
 紫外線の光源としては、太陽光線、ケミカルランプ、低圧水銀ランプ、高圧水銀ランプ、カーボンアークランプ、キセノンランプ、メタルハライドランプ、LEDランプが挙げられる。紫外線の光源としては、紫外線硬化性の観点から、高圧水銀ランプ、メタルハライドランプ、LEDランプが好ましい。
 紫外線の照射エネルギー密度は、50~1500mJ/cmが好ましい。
 樹脂組成物に紫外線を照射して硬化する際の雰囲気は、酸化的雰囲気及び非酸化的雰囲気のいずれでもよい。具体的には、空気、水素、窒素、及びアルゴン等の希ガスのいずれの雰囲気下であってもよい。
The protective layer 9 is made of a cured product of the resin composition.
The cured product of the resin composition is preferably formed by applying the resin composition on the printing ink layer 7 and irradiating it with ultraviolet rays to cure it.
Examples of the method for applying the resin composition include screen printing, gravure printing, flexographic printing, and offset printing.
Examples of the light source of ultraviolet rays include solar rays, chemical lamps, low-pressure mercury lamps, high-pressure mercury lamps, carbon arc lamps, xenon lamps, metal halide lamps, and LED lamps. As the light source of ultraviolet rays, a high-pressure mercury lamp, a metal halide lamp, and an LED lamp are preferable from the viewpoint of ultraviolet curability.
The irradiation energy density of ultraviolet rays is preferably 50 to 1500 mJ / cm 2.
The atmosphere when the resin composition is irradiated with ultraviolet rays and cured may be either an oxidative atmosphere or a non-oxidative atmosphere. Specifically, the atmosphere may be any of air, hydrogen, nitrogen, and a rare gas such as argon.
 絵付け用転写紙1は、例えば、水溶性糊剤が全面に塗布されて水溶性糊剤層5が形成された台紙3の上に、インキを用いて印刷インキ層7を形成し、その上に樹脂組成物を塗布し、硬化して保護層9を形成することで製造できる。 In the painting transfer paper 1, for example, a printing ink layer 7 is formed by using ink on a mount 3 on which a water-soluble paste is applied to the entire surface to form a water-soluble paste layer 5, and the printing ink layer 7 is formed on the mount 3. It can be produced by applying a resin composition to the ink and curing it to form a protective layer 9.
 絵付け用転写紙1を用いると、例えば、次のようにして陶磁器に絵付けを行うことができる。
 まず、絵付け用転写紙1を水又は温水に浸漬し、水溶性糊剤層5を溶解させて、印刷インキ層7の付いた保護層9を台紙3から剥離する。この印刷インキ層7の付いた保護層9を、陶磁器の所定の位置に、陶磁器と印刷インキ層7とが接触するように配置する。そして、印刷インキ層7の付いた保護層9と陶磁器との間の水分及び気泡を除去した後、保護層9を焼成すると、陶磁器の表面に印刷インキ層7が残り、陶磁器の絵付けが行われる。
Using the painting transfer paper 1, for example, the ceramics can be painted as follows.
First, the transfer paper 1 for painting is immersed in water or warm water to dissolve the water-soluble paste layer 5, and the protective layer 9 with the printing ink layer 7 is peeled off from the mount 3. The protective layer 9 with the printing ink layer 7 is arranged at a predetermined position on the ceramic so that the ceramic and the printing ink layer 7 are in contact with each other. Then, after removing water and air bubbles between the protective layer 9 with the printing ink layer 7 and the ceramics, when the protective layer 9 is fired, the printing ink layer 7 remains on the surface of the ceramics and the ceramics are painted. Will be printed.
 上述した実施形態は、絵付け用転写紙1を陶磁器に対して適用する例を挙げて説明したが、絵付け用転写紙1は、陶磁器以外、例えば、酒瓶、食品瓶にも適用できる。 The above-described embodiment has been described with an example of applying the painting transfer paper 1 to ceramics, but the painting transfer paper 1 can be applied to other than ceramics, for example, liquor bottles and food bottles.
 以上、絵付け用転写紙の実施形態について、一例を示して説明したが、本発明は前記実施形態に限定されるものではない。前記実施形態における各構成及びそれらの組み合わせ等は一例であり、本発明の要旨を逸脱しない限り、構成の付加、省略、置換及びその他の変更が可能である。 Although the embodiment of the transfer paper for painting has been described above by showing an example, the present invention is not limited to the above embodiment. Each configuration and a combination thereof in the above-described embodiment are examples, and the configurations can be added, omitted, replaced, and other changes as long as they do not deviate from the gist of the present invention.
 例えば、水溶性糊剤層5は、少なくとも印刷インキ層7及び保護層9が形成される位置に設けられていればよく、台紙3の全面を覆うものでなくてもよい。 For example, the water-soluble paste layer 5 may be provided at least at a position where the printing ink layer 7 and the protective layer 9 are formed, and may not cover the entire surface of the mount 3.
 以下、本発明を実施例によりさらに具体的に説明するが、本発明は後述する実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変形が可能である。
 実施例及び比較例中の「部」は「質量部」を、「%」は「質量%」を意味する。
 下記の実施例における各種の条件、評価結果の値は、本明細書に開示の実施形態における好ましい数値範囲と同様に、好適な数値範囲を示すものであり、本発明の好ましい範囲は、実施形態における好ましい数値範囲と下記実施例の値又は実施例同士の値の組合せにより示される範囲を考慮して決定できる。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the Examples described later, and various modifications can be made without departing from the gist of the present invention.
In Examples and Comparative Examples, "parts" means "parts by mass" and "%" means "% by mass".
The various conditions and the values of the evaluation results in the following examples indicate a suitable numerical range as in the preferable numerical range in the embodiment disclosed in the present specification, and the preferable range of the present invention is the embodiment. It can be determined in consideration of the preferable numerical range in 1 and the range indicated by the combination of the values of the following examples or the values of the examples.
[評価方法]
〈溶解性〉
 重合体A、化合物B、開始剤C及び消泡剤Dは、表1又は表2に記載の部数を配合し、撹拌機、冷却管及び温度計を備えた混合装置に化合物Bを仕込み、これを内温25℃、300rpmで10分間、撹拌機で撹拌しながら重合体Aを少しずつ添加し、次いで、内温50℃、300rpmで60分間撹拌した。その後、開始剤C及び消泡剤Dを添加し、内温40℃、300rpmで30分間撹拌した。
 混合物の溶解性を、以下の評価基準で評価した。
[Evaluation method]
<Solubility>
The polymer A, the compound B, the initiator C and the defoaming agent D are blended in the number of copies shown in Table 1 or Table 2, and the compound B is charged in a mixing device equipped with a stirrer, a cooling tube and a thermometer. The polymer A was added little by little while stirring with a stirrer at an internal temperature of 25 ° C. and 300 rpm for 10 minutes, and then the mixture was stirred at an internal temperature of 50 ° C. and 300 rpm for 60 minutes. Then, the initiator C and the defoaming agent D were added, and the mixture was stirred at an internal temperature of 40 ° C. and 300 rpm for 30 minutes.
The solubility of the mixture was evaluated according to the following evaluation criteria.
 (評価基準)
  A:目視で固形物の残存がない。
  C:目視で固形物の残存がある。
(Evaluation criteria)
A: There is no residual solid matter visually.
C: There is a residual solid matter visually.
〈引張強度〉
 シリンダー印刷機を用い、水溶性糊剤が全面に均一に塗布された台紙(SPA,ムラカミ社製;215mm×290mm)上に、調製した樹脂組成物をナイロン製80メッシュのスクリーンで印刷して樹脂組成物の塗膜を形成し、紫外線硬化を行った。その後、水中で台紙から保護層を剥離した。
 剥離した保護層をダンベル2号型(JIS K 6251:2017)で打ち抜いて試験片を作製した。
 作成した試験片について、試験温度23℃、試験速度10mm/分の条件で、引張測定装置(オートグラフAG-5kNIS,島津製作所社製)を用いて引張試験を行い、最大点伸度を測定した。
 保護層の引張強度を、以下の評価基準で評価した。
<Tensile strength>
Using a cylinder printing machine, the prepared resin composition is printed on a mount (SPA, manufactured by Murakami Co., Ltd .; 215 mm x 290 mm) on which the water-soluble paste is uniformly applied on the entire surface, and the resin is printed on a nylon 80 mesh screen. A coating film of the composition was formed and cured by ultraviolet rays. Then, the protective layer was peeled off from the mount in water.
The peeled protective layer was punched out with a dumbbell type 2 (JIS K 6251: 2017) to prepare a test piece.
The prepared test piece was subjected to a tensile test using a tensile measuring device (Autograph AG-5kNIS, manufactured by Shimadzu Corporation) under the conditions of a test temperature of 23 ° C. and a test speed of 10 mm / min, and the maximum point elongation was measured. ..
The tensile strength of the protective layer was evaluated according to the following evaluation criteria.
 (評価基準)
  A:最大点伸度が100%以上である。
  B:最大点伸度が50%以上100%未満である。
  C:最大点伸度が50%未満である。
(Evaluation criteria)
A: The maximum point elongation is 100% or more.
B: The maximum point elongation is 50% or more and less than 100%.
C: The maximum point elongation is less than 50%.
[積層体(絵付け用転写紙)の作成方法]
 シリンダー印刷機を用い、水溶性糊剤が全面に均一に塗布された台紙(SPA,ムラカミ社製;215mm×290mm)上に、紫外線硬化性メジウム(803068,FERRO社製)12部と赤色顔料(34634,IZAWA社製)15部とを混合して調製した紫外線硬化性インキを、ナイロン製300メッシュのスクリーンで印刷して、花柄模様の印刷インキ層を形成し、紫外線硬化を行った。次いで、その上に樹脂組成物をナイロン製80メッシュのスクリーンで印刷して樹脂組成物の塗膜を形成し、紫外線硬化を行って保護層を形成した。
[How to make a laminate (transfer paper for painting)]
Using a cylinder printing machine, 12 parts of UV-curable medium (803068, FERRO) and red pigment (803068, FERRO) are printed on a mount (SPA, manufactured by Murakami; 215 mm x 290 mm) in which a water-soluble paste is uniformly applied to the entire surface. A UV curable ink prepared by mixing 15 parts (34634, manufactured by IZAWA) was printed on a nylon 300 mesh screen to form a printing ink layer having a floral pattern, and UV curing was performed. Next, the resin composition was printed on it with a nylon 80-mesh screen to form a coating film of the resin composition, which was then cured by ultraviolet rays to form a protective layer.
 印刷インキ層の紫外線硬化の条件は、次のとおりである。
 装置:USX5-0902(アイグラフィックス社製)。
 条件:光源 高圧水銀ランプ(120W)。
    紫外線照度 450mW/cm
    積算照射量 400mJ/cm(照射距離約130mm、ベルト送り速度4.7m/min)。
 紫外線照度及び積算照射量は、紫外線光量計(UV-351,オーク社製)を使用して測定した。
The conditions for UV curing of the printing ink layer are as follows.
Equipment: USX5-0902 (manufactured by Eye Graphics).
Conditions: Light source High pressure mercury lamp (120W).
Ultraviolet illuminance 450 mW / cm 2 .
Cumulative irradiation amount 400 mJ / cm 2 (irradiation distance about 130 mm, belt feed rate 4.7 m / min).
The ultraviolet illuminance and the integrated irradiation amount were measured using an ultraviolet light meter (UV-351, manufactured by Oak Co., Ltd.).
 保護層の紫外線硬化の条件は、次のとおりである。
 装置:USX5-0902(アイグラフィックス社製)。
 条件:光源 高圧水銀ランプ(120W)。
    紫外線照度 520mW/cm
    積算照射量 590mJ/cm(照射距離約130mm、ベルト送り速度3.0m/min)。
 紫外線照度及び積算照射量は、紫外線光量計(UV-351,オーク社製)を使用して測定した。
The conditions for UV curing of the protective layer are as follows.
Equipment: USX5-0902 (manufactured by Eye Graphics).
Conditions: Light source High pressure mercury lamp (120W).
Ultraviolet illuminance 520 mW / cm 2 .
Cumulative irradiation amount 590 mJ / cm 2 (irradiation distance about 130 mm, belt feed rate 3.0 m / min).
The ultraviolet illuminance and the integrated irradiation amount were measured using an ultraviolet light meter (UV-351, manufactured by Oak Co., Ltd.).
〈焼成性〉
 前記の積層体(絵付け用転写紙)を水中に浸漬して台紙から一体となった保護層及び印刷インキ層を剥離し、皿に印刷インキ層を接して貼り付けて乾燥した後、超高速昇温電気炉(S6-2025D,モトヤマ社製)を用いて780℃、20分間焼成し、皿への印刷状態を目視で観察した。
 保護層の焼成性を、以下の評価基準で評価した。
<Burning property>
The laminated body (transfer paper for painting) is immersed in water to peel off the integrated protective layer and printing ink layer from the mount, and the printing ink layer is brought into contact with the plate to be attached and dried, and then ultra-high speed. It was fired at 780 ° C. for 20 minutes using a heating electric furnace (S6-2025D, manufactured by Motoyama Co., Ltd.), and the printing state on the plate was visually observed.
The calcinability of the protective layer was evaluated according to the following evaluation criteria.
 (評価基準)
  A:焼成後、ピンホールがなく花柄模様が印刷された。
  C:焼成後、花柄模様にピンホールが発生した。
 前記焼成性の評価における紫外線硬化は、前記の印刷インキ層の紫外線硬化と同条件で行った。
(Evaluation criteria)
A: After firing, there were no pinholes and a floral pattern was printed.
C: After firing, pinholes were generated in the floral pattern.
The ultraviolet curing in the evaluation of the calcinability was performed under the same conditions as the ultraviolet curing of the printing ink layer.
[分散剤の製造方法]
 撹拌機、冷却管及び温度計を備えた重合装置中に、脱イオン水900部、メタクリル酸2-スルホエチルナトリウム60部、メタクリル酸カリウム10部及びメチルメタクリレート12部を入れて撹拌し、重合装置内を窒素置換しながら、50℃に昇温した。その中に、重合開始剤(2,2’-アゾビス(2-メチルプロピオンアミジン)二塩酸塩)の0.08部を添加し、さらに60℃に昇温した。昇温後、滴下ポンプを使用して、メチルメタクリレートを0.24部/分の速度で75分間連続的に滴下した。滴下終了後、反応液を60℃で6時間保持した後、室温に冷却して、透明な水溶液である固形分10%の分散剤を得た。
[Manufacturing method of dispersant]
900 parts of deionized water, 60 parts of 2-sulfoethyl sodium methacrylate, 10 parts of potassium methacrylate and 12 parts of methyl methacrylate are placed in a polymerization apparatus equipped with a stirrer, a cooling tube and a thermometer, and the mixture is stirred and stirred. The temperature was raised to 50 ° C. while replacing the inside with nitrogen. 0.08 part of a polymerization initiator (2,2'-azobis (2-methylpropionamidine) dihydrochloride) was added thereto, and the temperature was further raised to 60 ° C. After the temperature was raised, methyl methacrylate was continuously added dropwise at a rate of 0.24 part / min for 75 minutes using a dropping pump. After completion of the dropping, the reaction solution was held at 60 ° C. for 6 hours and then cooled to room temperature to obtain a dispersant having a solid content of 10%, which is a transparent aqueous solution.
[アクリル系重合体の合成]
〈合成例1:重合体A1〉
 撹拌機、冷却管、温度計を備えた重合装置中に、脱イオン水145部、硫酸ナトリウム0.3部及び分散剤(固形分10%)0.3部を入れて撹拌し、均一な水溶液とした。次に、イソブチルメタクリレートの81部と、2-エチルヘキシルメタクリレートの19部と、ドデシルメルカプタンの0.2部と、2,2’-アゾビス(2-メチルブチロニトリル)の0.3部とを加え、水性懸濁液とした。
 次に、重合装置内を窒素置換し、80℃に昇温して1時間反応し、さらに重合率を上げるため、後処理温度として90℃に昇温して1時間保持した。その後、反応液を40℃に冷却して、ポリマーを含む水性懸濁液を得た。この水性懸濁液を目開き45μmのナイロン製濾過布で濾過し、濾過物を脱イオン水で洗浄し、脱水し、40℃で16時間乾燥して、重合体A1を90部得た。
[Synthesis of acrylic polymer]
<Synthesis Example 1: Polymer A1>
In a polymerization apparatus equipped with a stirrer, a cooling tube, and a thermometer, 145 parts of deionized water, 0.3 part of sodium sulfate, and 0.3 part of a dispersant (solid content 10%) are put and stirred to make a uniform aqueous solution. And said. Next, 81 parts of isobutyl methacrylate, 19 parts of 2-ethylhexyl methacrylate, 0.2 parts of dodecyl mercaptan, and 0.3 parts of 2,2'-azobis (2-methylbutyronitrile) were added. , An aqueous suspension.
Next, the inside of the polymerization apparatus was replaced with nitrogen, the temperature was raised to 80 ° C. and reacted for 1 hour, and in order to further increase the polymerization rate, the temperature was raised to 90 ° C. and held for 1 hour. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing a polymer. The aqueous suspension was filtered through a nylon filter cloth having a mesh size of 45 μm, the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain 90 parts of polymer A1.
 重合体A1は、分岐状のアルキル(メタ)アクリレートに由来する単量体単位を、重合体A1を構成する全単量体単位の合計質量に対して100%含んでいた。その内訳は、イソブチルメタクリレート由来の単量体単位が81%であり、2-エチルヘキシルメタクリレート由来の単量体単位が19%であった。
 重合体A1のガラス転移温度は35℃であり、質量平均分子量は110000であった。
The polymer A1 contained 100% of the monomer units derived from the branched alkyl (meth) acrylate with respect to the total mass of all the monomer units constituting the polymer A1. The breakdown was 81% for the monomer unit derived from isobutyl methacrylate and 19% for the monomer unit derived from 2-ethylhexyl methacrylate.
The glass transition temperature of the polymer A1 was 35 ° C., and the mass average molecular weight was 110,000.
〈合成例2:重合体A2〉
 撹拌機、冷却管、温度計を備えた重合装置中に、脱イオン水145部、硫酸ナトリウム0.2部及び分散剤(固形分10%)0.3部を入れて撹拌し、均一な水溶液とした。次に、イソブチルメタクリレートの50部と、n-ブチルメタクリレートの50部と、ドデシルメルカプタンの0.13部と、2,2’-アゾビス(2-メチルブチロニトリル)の0.3部とを加え、水性懸濁液とした。
 次に、重合装置内を窒素置換し、85℃に昇温して1時間反応し、さらに重合率を上げるため、後処理温度として95℃に昇温して30分間保持した。その後、反応液を40℃に冷却して、ポリマーを含む水性懸濁液を得た。この水性懸濁液を目開き45μmのナイロン製濾過布で濾過し、濾過物を脱イオン水で洗浄し、脱水し、40℃で16時間乾燥して、重合体A2を90部得た。
<Synthesis Example 2: Polymer A2>
In a polymerization apparatus equipped with a stirrer, a cooling tube, and a thermometer, 145 parts of deionized water, 0.2 part of sodium sulfate, and 0.3 part of a dispersant (solid content 10%) are put and stirred to make a uniform aqueous solution. And said. Next, 50 parts of isobutyl methacrylate, 50 parts of n-butyl methacrylate, 0.13 part of dodecyl mercaptan, and 0.3 part of 2,2'-azobis (2-methylbutyronitrile) were added. , An aqueous suspension.
Next, the inside of the polymerization apparatus was replaced with nitrogen, the temperature was raised to 85 ° C. and reacted for 1 hour, and in order to further increase the polymerization rate, the temperature was raised to 95 ° C. and held for 30 minutes. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing a polymer. The aqueous suspension was filtered through a nylon filter cloth having a mesh size of 45 μm, the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain 90 parts of polymer A2.
 重合体A2は、分岐状のアルキル(メタ)アクリレートに由来する単量体単位を、重合体A2を構成する全単量体単位の合計質量に対して50%含んでいた。その内訳は、イソブチルメタクリレート由来の単量体単位が50%であり、n-ブチルメタクリレート由来の単量体単位が50%であった。
 重合体A2のガラス転移温度は33℃であり、質量平均分子量は190000であった。
The polymer A2 contained 50% of the monomer units derived from the branched alkyl (meth) acrylate with respect to the total mass of all the monomer units constituting the polymer A2. The breakdown was 50% of the monomer unit derived from isobutyl methacrylate and 50% of the monomer unit derived from n-butyl methacrylate.
The glass transition temperature of the polymer A2 was 33 ° C., and the mass average molecular weight was 190000.
〈合成例3:重合体A3〉
 撹拌機、冷却管、温度計を備えた重合装置中に、脱イオン水145部、硫酸ナトリウム0.2部及び分散剤(固形分10%)0.3部を入れて撹拌し、均一な水溶液とした。次に、イソブチルメタクリレートの85部と、2-エチルヘキシルメタクリレートの15部と、ドデシルメルカプタンの0.3部と、2,2’-アゾビス(2-メチルブチロニトリル)の0.3部とを加え、水性懸濁液とした。
 次に、重合装置内を窒素置換し、85℃に昇温して1時間反応し、さらに重合率を上げるため、後処理温度として95℃に昇温して30分間保持した。その後、反応液を40℃に冷却して、ポリマーを含む水性懸濁液を得た。この水性懸濁液を目開き45μmのナイロン製濾過布で濾過し、濾過物を脱イオン水で洗浄し、脱水し、40℃で16時間乾燥して、重合体A3を90部得た。
<Synthesis Example 3: Polymer A3>
In a polymerization apparatus equipped with a stirrer, a cooling tube, and a thermometer, 145 parts of deionized water, 0.2 part of sodium sulfate, and 0.3 part of a dispersant (solid content 10%) are put and stirred to make a uniform aqueous solution. And said. Next, 85 parts of isobutyl methacrylate, 15 parts of 2-ethylhexyl methacrylate, 0.3 parts of dodecyl mercaptan, and 0.3 parts of 2,2'-azobis (2-methylbutyronitrile) were added. , An aqueous suspension.
Next, the inside of the polymerization apparatus was replaced with nitrogen, the temperature was raised to 85 ° C. and reacted for 1 hour, and in order to further increase the polymerization rate, the temperature was raised to 95 ° C. and held for 30 minutes. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing a polymer. The aqueous suspension was filtered through a nylon filter cloth having a mesh size of 45 μm, the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain 90 parts of polymer A3.
 重合体A3は、分岐状のアルキル(メタ)アクリレートに由来する単量体単位を、重合体A3を構成する全単量体単位の合計質量に対して100%含んでいた。その内訳は、イソブチルメタクリレート由来の単量体単位が85%であり、2-エチルヘキシルメタクリレート由来の単量体単位が15%であった。
 重合体A3のガラス転移温度は38℃であり、質量平均分子量は70000であった。
The polymer A3 contained 100% of the monomer units derived from the branched alkyl (meth) acrylate with respect to the total mass of all the monomer units constituting the polymer A3. The breakdown was 85% of the monomer unit derived from isobutyl methacrylate and 15% of the monomer unit derived from 2-ethylhexyl methacrylate.
The glass transition temperature of the polymer A3 was 38 ° C., and the mass average molecular weight was 70,000.
〈合成例4:重合体A4〉
 撹拌機、冷却管、温度計を備えた重合装置中に、脱イオン水145部、硫酸ナトリウム0.2部及び分散剤(固形分10%)0.3部を入れて撹拌し、均一な水溶液とした。次に、イソブチルメタクリレートの100部と、ドデシルメルカプタンの0.3部と、2,2’-アゾビス(2-メチルブチロニトリル)の1.2部とを加え、水性懸濁液とした。
 次に、重合装置内を窒素置換し、85℃に昇温して1時間反応し、さらに重合率を上げるため、後処理温度として95℃に昇温して30分間保持した。その後、反応液を40℃に冷却して、ポリマーを含む水性懸濁液を得た。この水性懸濁液を目開き45μmのナイロン製濾過布で濾過し、濾過物を脱イオン水で洗浄し、脱水し、40℃で16時間乾燥して、重合体A4を92部得た。
<Synthesis Example 4: Polymer A4>
In a polymerization apparatus equipped with a stirrer, a cooling tube, and a thermometer, 145 parts of deionized water, 0.2 part of sodium sulfate, and 0.3 part of a dispersant (solid content 10%) are put and stirred to make a uniform aqueous solution. And said. Next, 100 parts of isobutyl methacrylate, 0.3 part of dodecyl mercaptan, and 1.2 part of 2,2'-azobis (2-methylbutyronitrile) were added to prepare an aqueous suspension.
Next, the inside of the polymerization apparatus was replaced with nitrogen, the temperature was raised to 85 ° C. and reacted for 1 hour, and in order to further increase the polymerization rate, the temperature was raised to 95 ° C. and held for 30 minutes. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing a polymer. The aqueous suspension was filtered through a nylon filter cloth having a mesh size of 45 μm, the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain 92 parts of polymer A4.
 重合体A4は、分岐状のアルキル(メタ)アクリレートに由来する単量体単位を、重合体A4を構成する全単量体単位の合計質量に対して100%含んでいた。その内訳は、イソブチルメタクリレート由来の単量体単位が100%であった。
 重合体A4のガラス転移温度は48℃であり、質量平均分子量は22000であった。
The polymer A4 contained 100% of the monomer units derived from the branched alkyl (meth) acrylate with respect to the total mass of all the monomer units constituting the polymer A4. The breakdown was 100% of the monomer unit derived from isobutyl methacrylate.
The glass transition temperature of the polymer A4 was 48 ° C., and the mass average molecular weight was 22000.
〈合成例5:重合体A5〉
 撹拌機、冷却管、温度計を備えた重合装置中に、脱イオン水145部、硫酸ナトリウム0.2部及び分散剤(固形分10%)0.3部を入れて撹拌し、均一な水溶液とした。次に、イソブチルメタクリレートの20部と、n-ブチルメタクリレートの80部と、オクチルメルカプタンの0.05部と、2,2’-アゾビス(2-メチルブチロニトリル)の0.15部とを加え、水性懸濁液とした。
 次に、重合装置内を窒素置換し、85℃に昇温して1時間反応し、さらに重合率を上げるため、後処理温度として95℃に昇温して30分間保持した。その後、反応液を40℃に冷却して、ポリマーを含む水性懸濁液を得た。この水性懸濁液を目開き45μmのナイロン製濾過布で濾過し、濾過物を脱イオン水で洗浄し、脱水し、40℃で16時間乾燥して、重合体A5を90部得た。
<Synthesis Example 5: Polymer A5>
In a polymerization apparatus equipped with a stirrer, a cooling tube, and a thermometer, 145 parts of deionized water, 0.2 part of sodium sulfate, and 0.3 part of a dispersant (solid content 10%) are put and stirred to make a uniform aqueous solution. And said. Next, 20 parts of isobutyl methacrylate, 80 parts of n-butyl methacrylate, 0.05 part of octyl mercaptan, and 0.15 part of 2,2'-azobis (2-methylbutyronitrile) were added. , Aqueous suspension.
Next, the inside of the polymerization apparatus was replaced with nitrogen, the temperature was raised to 85 ° C. and reacted for 1 hour, and in order to further increase the polymerization rate, the temperature was raised to 95 ° C. and held for 30 minutes. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing a polymer. The aqueous suspension was filtered through a nylon filter cloth having a mesh size of 45 μm, the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain 90 parts of polymer A5.
 重合体A5は、分岐状のアルキル(メタ)アクリレートに由来する単量体単位を、重合体A5を構成する全単量体単位の合計質量に対して20%含んでいた。その内訳は、イソブチルメタクリレート由来の単量体単位が20%であり、n-ブチルメタクリレート由来の単量体単位が80%であった。
 重合体A5のガラス転移温度は25℃であり、質量平均分子量は260000であった。
The polymer A5 contained 20% of the monomer units derived from the branched alkyl (meth) acrylate with respect to the total mass of all the monomer units constituting the polymer A5. The breakdown was 20% for the monomer unit derived from isobutyl methacrylate and 80% for the monomer unit derived from n-butyl methacrylate.
The glass transition temperature of the polymer A5 was 25 ° C., and the mass average molecular weight was 260000.
〈合成例6:比較重合体A6〉
 撹拌機、冷却管、温度計を備えた重合装置中に、脱イオン水145部、硫酸ナトリウム0.2部及び分散剤(固形分10%)0.3部を入れて撹拌し、均一な水溶液とした。次に、メチルメタクリレートの20部と、n-ブチルメタクリレートの80部と、ドデシルメルカプタンの0.17部と、2,2’-アゾビス(2-メチルブチロニトリル)の0.3部とを加え、水性懸濁液とした。
 次に、重合装置内を窒素置換し、75℃に昇温して1時間反応し、さらに重合率を上げるため、後処理温度として95℃に昇温して30分間保持した。その後、反応液を40℃に冷却して、ポリマーを含む水性懸濁液を得た。この水性懸濁液を目開き45μmのナイロン製濾過布で濾過し、濾過物を脱イオン水で洗浄し、脱水し、40℃で16時間乾燥して、比較重合体A6を90部得た。
<Synthesis Example 6: Comparative Polymer A6>
In a polymerization apparatus equipped with a stirrer, a cooling tube, and a thermometer, 145 parts of deionized water, 0.2 part of sodium sulfate, and 0.3 part of a dispersant (solid content 10%) are put and stirred to make a uniform aqueous solution. And said. Next, 20 parts of methyl methacrylate, 80 parts of n-butyl methacrylate, 0.17 part of dodecyl mercaptan, and 0.3 part of 2,2'-azobis (2-methylbutyronitrile) were added. , Aqueous suspension.
Next, the inside of the polymerization apparatus was replaced with nitrogen, the temperature was raised to 75 ° C. and reacted for 1 hour, and in order to further increase the polymerization rate, the temperature was raised to 95 ° C. and held for 30 minutes. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing a polymer. The aqueous suspension was filtered through a nylon filter cloth having a mesh size of 45 μm, the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain 90 parts of Comparative Polymer A6.
 比較重合体A6は、分岐状のアルキル(メタ)アクリレートに由来する単量体単位を含んでいなかった。その内訳は、メチルメタクリレート由来の単量体単位が20%であり、n-ブチルメタクリレート由来の単量体単位が80%であった。
 比較重合体A6のガラス転移温度は34℃であり、質量平均分子量は130000であった。
The comparative polymer A6 did not contain monomeric units derived from branched alkyl (meth) acrylates. The breakdown was 20% of the monomer unit derived from methyl methacrylate and 80% of the monomer unit derived from n-butyl methacrylate.
The glass transition temperature of the comparative polymer A6 was 34 ° C., and the mass average molecular weight was 130000.
〈合成例7:比較重合体A7〉
 撹拌機、冷却管、温度計を備えた重合装置中に、脱イオン水145部、硫酸ナトリウム0.1部及び分散剤(固形分10%)0.3部を入れて撹拌し、均一な水溶液とした。次に、イソブチルメタクリレートの100部と、2,2’-アゾビス(2-メチルブチロニトリル)の0.1部とを加え、水性懸濁液とした。
 次に、重合装置内を窒素置換し、80℃に昇温して1時間反応し、さらに重合率を上げるため、後処理温度として90℃に昇温して60分間保持した。その後、反応液を40℃に冷却して、ポリマーを含む水性懸濁液を得た。この水性懸濁液を目開き45μmのナイロン製濾過布で濾過し、濾過物を脱イオン水で洗浄し、脱水し、40℃で16時間乾燥して、比較重合体A7を92部得た。
<Synthesis Example 7: Comparative Polymer A7>
In a polymerization apparatus equipped with a stirrer, a cooling tube, and a thermometer, 145 parts of deionized water, 0.1 part of sodium sulfate, and 0.3 part of a dispersant (solid content 10%) are put and stirred to make a uniform aqueous solution. And said. Next, 100 parts of isobutyl methacrylate and 0.1 part of 2,2'-azobis (2-methylbutyronitrile) were added to prepare an aqueous suspension.
Next, the inside of the polymerization apparatus was replaced with nitrogen, the temperature was raised to 80 ° C. and reacted for 1 hour, and in order to further increase the polymerization rate, the temperature was raised to 90 ° C. and held for 60 minutes. Then, the reaction solution was cooled to 40 ° C. to obtain an aqueous suspension containing a polymer. The aqueous suspension was filtered through a nylon filter cloth having a mesh size of 45 μm, the filtrate was washed with deionized water, dehydrated, and dried at 40 ° C. for 16 hours to obtain 92 parts of Comparative Polymer A7.
 比較重合体A7は、分岐状のアルキル(メタ)アクリレートに由来する単量体単位を100%含んでいた。その内訳は、イソブチルメタクリレート由来の単量体単位が100%であった。
 比較重合体A7のガラス転移温度は48℃であり、質量平均分子量は460000であった。
The comparative polymer A7 contained 100% of monomer units derived from the branched alkyl (meth) acrylate. The breakdown was 100% of the monomer unit derived from isobutyl methacrylate.
The glass transition temperature of the comparative polymer A7 was 48 ° C., and the mass average molecular weight was 460000.
[実施例1~17、比較例1~2]
 表1又は表2に示す配合量(部)で各成分を配合し、高速分散機で混合し樹脂組成物を製造した。
 各例において、上述した評価方法に従って、溶解性、引張強度及び焼成性を評価し、評価結果を表1又は表2の該当欄に示した。
[Examples 1 to 17, Comparative Examples 1 to 2]
Each component was blended in the blending amount (part) shown in Table 1 or Table 2 and mixed with a high-speed disperser to produce a resin composition.
In each example, the solubility, tensile strength and calcinability were evaluated according to the above-mentioned evaluation method, and the evaluation results are shown in the corresponding columns of Table 1 or Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
●アクリル系重合体
 重合体A1:合成例1で合成したアクリル系重合体(IBMA/EHMA=81/19(重合体中の質量%の比);Mw=110000)。
 重合体A2:合成例2で合成したアクリル系重合体(IBMA/BMA=50/50(重合体中の質量%の比);Mw=190000)。
 重合体A3:合成例3で合成したアクリル系重合体(IBMA/EHMA=85/15(重合体中の質量%の比);Mw=70000)。
 重合体A4:合成例4で合成したアクリル系重合体(IBMA=100(重合体中の質量%);Mw=22000)。
 重合体A5:合成例5で合成したアクリル系重合体(IBMA/BMA=20/80;(重合体中の質量%の比)Mw=260000)。
 比較重合体A6:合成例6で合成したアクリル系重合体(MMA/BMA=20/80(重合体中の質量%の比);Mw=130000)。
 比較重合体A7:合成例7で合成したアクリル系重合体(IBMA=100(重合体中の質量%);Mw=460000)。
● Acrylic polymer Polymer A1: The acrylic polymer synthesized in Synthesis Example 1 (IBMA / EHMA = 81/19 (ratio of mass% in polymer); Mw = 110,000).
Polymer A2: The acrylic polymer synthesized in Synthesis Example 2 (IBMA / BMA = 50/50 (ratio of mass% in polymer); Mw = 190000).
Polymer A3: The acrylic polymer synthesized in Synthesis Example 3 (IBMA / EHMA = 85/15 (ratio of mass% in polymer); Mw = 70000).
Polymer A4: The acrylic polymer synthesized in Synthesis Example 4 (IBMA = 100 (mass% in polymer); Mw = 22000).
Polymer A5: Acrylic polymer synthesized in Synthesis Example 5 (IBMA / BMA = 20/80; (ratio of mass% in polymer) Mw = 260000).
Comparative polymer A6: The acrylic polymer synthesized in Synthesis Example 6 (MMA / BMA = 20/80 (ratio of mass% in polymer); Mw = 130000).
Comparative polymer A7: The acrylic polymer synthesized in Synthesis Example 7 (IBMA = 100 (mass% in polymer); Mw = 460000).
●重合性化合物
 化合物B1-1:2-エチルヘキシルアクリレート。
 化合物B1-2:n-ブチルアクリレート。
 化合物B1-3:n-ブチルメタクリレート。
 化合物B3-1:トリエチレングリコールジメタクリレート。
 化合物B3-2:2官能の脂肪族ウレタンアクリレート(有効成分100%)。(EBECRYL8402,ダイセル・オルネクス社製)。
● Polymerizable compound Compound B1-1: 2-ethylhexyl acrylate.
Compound B1-2: n-butyl acrylate.
Compound B1-3: n-Butyl methacrylate.
Compound B3-1: Triethylene glycol dimethacrylate.
Compound B3-2: Bifunctional aliphatic urethane acrylate (100% active ingredient). (EBECRYL8402, manufactured by Daicel Ornex).
●開始剤
 開始剤C1:1-ヒドロキシシクロヘキシル-フェニルケトン。
 開始剤C2:ベンゾフェノン。
● Initiator Initiator C1: 1-Hydroxycyclohexyl-phenylketone.
Initiator C2: Benzophenone.
●消泡剤
 消泡剤D1:シリコーン系消泡剤(有効成分0.7%;溶剤:ジイソブチルケトン)(BYK(登録商標)-066N,ビックケミージャパン社製)。
● Defoaming agent Defoaming agent D1: Silicone-based defoaming agent (active ingredient 0.7%; solvent: diisobutyl ketone) (BYK (registered trademark) -066N, manufactured by Big Chemie Japan Co., Ltd.).
●可塑剤
 可塑剤E1:パラフィンワックスP115(日本精蝋社製)。
 可塑剤E2:モノサイザー PB-3A(DIC社製)。
● Plasticizer Plasticizer E1: Paraffin wax P115 (manufactured by Nippon Seiro Co., Ltd.).
Plasticizer E2: Monosizer PB-3A (manufactured by DIC Corporation).
 表2中の「N.D.」は測定不能であったことを示す。評価なし。 "ND" in Table 2 indicates that measurement was not possible. No evaluation.
 実施例1~17の樹脂組成物は、組成物の溶解性、並びに硬化物の引張強度及び焼成性の評価が、いずれも良好であった。
 一方、比較例1は、アクリル系重合体の単量体単位が、直鎖状のメチルメタクリレート由来の単量体単位とn-ブチルメタクリレート由来の単量体単位であるため、硬化物の焼成性が充分でなかった。
 比較例2は、アクリル系重合体の質量平均分子量が450000よりも大きかったため、組成物の溶解性が悪く、硬化物の引張強度及び焼成性を評価できなかった。
The resin compositions of Examples 1 to 17 were all excellent in the evaluation of the solubility of the composition and the tensile strength and calcinability of the cured product.
On the other hand, in Comparative Example 1, since the monomer unit of the acrylic polymer is the monomer unit derived from linear methyl methacrylate and the monomer unit derived from n-butyl methacrylate, the calcinability of the cured product Was not enough.
In Comparative Example 2, since the mass average molecular weight of the acrylic polymer was larger than 450,000, the solubility of the composition was poor, and the tensile strength and calcinability of the cured product could not be evaluated.
 1…絵付け用転写紙、3…台紙、5…水溶性糊剤層、7…印刷インキ層、9…保護層 1 ... Transfer paper for painting, 3 ... Mount, 5 ... Water-soluble glue layer, 7 ... Printing ink layer, 9 ... Protective layer
 本発明の紫外線硬化性転写紙保護層用樹脂組成物によれば、絵付け用転写紙の製造の際に焼成性に優れた保護層を形成できる。
 本発明の積層体は、焼成性に優れた保護層を有する。
 本発明の絵付け用転写紙は、焼成性に優れた保護層を有する。
According to the resin composition for an ultraviolet curable transfer paper protective layer of the present invention, a protective layer having excellent calcinability can be formed during the production of a transfer paper for painting.
The laminate of the present invention has a protective layer having excellent calcinability.
The transfer paper for painting of the present invention has a protective layer having excellent calcinability.

Claims (9)

  1.  アクリル系重合体と、重合性化合物とを含み、
     前記アクリル系重合体は、分岐状のアルキル基を有するアルキル(メタ)アクリレートに由来する単量体単位を含み、
     前記アクリル系重合体の質量平均分子量は、20000~450000であり、
     前記重合性化合物は、分子内に1個以上の重合性二重結合を有する、紫外線硬化性転写紙保護層用樹脂組成物。
    Contains an acrylic polymer and a polymerizable compound,
    The acrylic polymer contains a monomer unit derived from an alkyl (meth) acrylate having a branched alkyl group.
    The mass average molecular weight of the acrylic polymer is 20000 to 450,000.
    The polymerizable compound is a resin composition for an ultraviolet curable transfer paper protective layer having one or more polymerizable double bonds in the molecule.
  2.  前記アクリル系重合体の質量平均分子量が、20000~100000である、請求項1に記載の紫外線硬化性転写紙保護層用樹脂組成物。 The resin composition for an ultraviolet curable transfer paper protective layer according to claim 1, wherein the acrylic polymer has a mass average molecular weight of 20000 to 100,000.
  3.  前記分岐状のアルキル基を有するアルキル(メタ)アクリレートに由来する単量体単位の含有割合が、前記アクリル系重合体の全単量体単位100質量%に対して5~100%である、請求項1又は2に記載の紫外線硬化性転写紙保護層用樹脂組成物。 Claimed that the content ratio of the monomer unit derived from the alkyl (meth) acrylate having a branched alkyl group is 5 to 100% with respect to 100% by mass of all the monomer units of the acrylic polymer. Item 2. The resin composition for an ultraviolet curable transfer paper protective layer according to Item 1 or 2.
  4.  前記分岐状のアルキル基を有するアルキル(メタ)アクリレートに由来する単量体単位が、イソブチル(メタ)アクリレートに由来する単量体単位、sec-ブチル(メタ)アクリレートに由来する単量体単位及び2-エチルヘキシルメタクリレートに由来する単量体単位からなる群から選択される少なくとも1種以上を含む、請求項1~3のいずれか1項に記載の紫外線硬化性転写紙保護層用樹脂組成物。 The monomer unit derived from the alkyl (meth) acrylate having a branched alkyl group is a monomer unit derived from isobutyl (meth) acrylate, a monomer unit derived from sec-butyl (meth) acrylate, and the like. The resin composition for an ultraviolet curable transfer paper protective layer according to any one of claims 1 to 3, which comprises at least one selected from the group consisting of monomer units derived from 2-ethylhexyl methacrylate.
  5.  前記重合性化合物が、単官能単量体及び多官能単量体を含む、請求項1~4のいずれか1項に記載の紫外線硬化性転写紙保護層用樹脂組成物。 The resin composition for an ultraviolet curable transfer paper protective layer according to any one of claims 1 to 4, wherein the polymerizable compound contains a monofunctional monomer and a polyfunctional monomer.
  6.  前記多官能単量体が、脂肪族ウレタン(メタ)アクリレート、芳香族ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート及びエポキシ(メタ)アクリレートからなる群から選択される少なくとも1種以上である、請求項5に記載の紫外線硬化性転写紙保護層用樹脂組成物。 Claimed that the polyfunctional monomer is at least one selected from the group consisting of an aliphatic urethane (meth) acrylate, an aromatic urethane (meth) acrylate, a polyester (meth) acrylate and an epoxy (meth) acrylate. Item 5. The resin composition for an ultraviolet curable transfer paper protective layer according to Item 5.
  7.  前記単官能単量体の含有割合が、紫外線硬化性転写紙保護層用樹脂組成物100質量%に対して5.0~65.0質量%である、請求項5又は6に記載の紫外線硬化性転写紙保護層用樹脂組成物。 The UV curable according to claim 5 or 6, wherein the content ratio of the monofunctional monomer is 5.0 to 65.0 mass% with respect to 100 mass% of the resin composition for the UV curable transfer paper protective layer. A resin composition for a protective layer for sex transfer paper.
  8.  台紙と、
     水溶性糊剤層と、
     印刷インキ層と、
     請求項1~7のいずれか1項に記載の紫外線硬化性転写紙保護層用樹脂組成物の硬化物からなる保護層と、
     がこの順に積層した積層体。
    Mount and
    With a water-soluble glue layer,
    Printing ink layer and
    A protective layer made of a cured product of the resin composition for an ultraviolet curable transfer paper protective layer according to any one of claims 1 to 7.
    Is a laminated body laminated in this order.
  9.  請求項8に記載の積層体からなる絵付け用転写紙。 A transfer paper for painting made of the laminate according to claim 8.
PCT/JP2021/000231 2020-02-07 2021-01-06 Ultraviolet curable resin composition for transfer paper protective layer WO2021157270A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021575666A JP7409402B2 (en) 2020-02-07 2021-01-06 Ultraviolet curable resin composition for transfer paper protective layer
CN202180006881.6A CN114761247A (en) 2020-02-07 2021-01-06 Ultraviolet-curable resin composition for protective layer of transfer paper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020020157 2020-02-07
JP2020-020157 2020-02-07

Publications (1)

Publication Number Publication Date
WO2021157270A1 true WO2021157270A1 (en) 2021-08-12

Family

ID=77200562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000231 WO2021157270A1 (en) 2020-02-07 2021-01-06 Ultraviolet curable resin composition for transfer paper protective layer

Country Status (3)

Country Link
JP (1) JP7409402B2 (en)
CN (1) CN114761247A (en)
WO (1) WO2021157270A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142385A (en) * 1981-02-27 1982-09-03 Toyobo Co Ltd Transferring paper for painting china
JPS60161200A (en) * 1984-01-05 1985-08-22 東洋紡績株式会社 Printing transfer paper for china-painting of pottery
JPS60248400A (en) * 1984-05-24 1985-12-09 東洋紡績株式会社 Printing transfer paper for china-painting pottery
JPS63126796A (en) * 1986-11-17 1988-05-30 東洋紡績株式会社 Printing transfer paper for china-painting pottery
JPH0811420A (en) * 1994-06-30 1996-01-16 Dainippon Printing Co Ltd Transfer sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5834606B2 (en) * 2011-08-05 2015-12-24 Dic株式会社 UV-curable adhesive resin composition, adhesive and laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57142385A (en) * 1981-02-27 1982-09-03 Toyobo Co Ltd Transferring paper for painting china
JPS60161200A (en) * 1984-01-05 1985-08-22 東洋紡績株式会社 Printing transfer paper for china-painting of pottery
JPS60248400A (en) * 1984-05-24 1985-12-09 東洋紡績株式会社 Printing transfer paper for china-painting pottery
JPS63126796A (en) * 1986-11-17 1988-05-30 東洋紡績株式会社 Printing transfer paper for china-painting pottery
JPH0811420A (en) * 1994-06-30 1996-01-16 Dainippon Printing Co Ltd Transfer sheet

Also Published As

Publication number Publication date
JP7409402B2 (en) 2024-01-09
CN114761247A (en) 2022-07-15
JPWO2021157270A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
JP5477995B1 (en) Active energy ray-curable offset printing ink composition
CN110382639B (en) Ink composition for active energy ray-curable offset printing and method for producing printed matter using same
WO2008009987A1 (en) A printing ink
JP2020105351A (en) Active energy ray-curable composition
JPWO2015141552A1 (en) Active energy ray-curable offset ink composition
JP2009073942A (en) Ultraviolet-curable overprint varnish composition, coating method therewith and object coated therewith
CN106985587B (en) Resin composition for protective layer of transfer paper, process for producing the same, and decorative transfer paper
JP6196877B2 (en) Active energy ray-curable offset printing ink composition and printing method using the composition
JP6604332B2 (en) Photocurable composition for nail or artificial nail topcoat
WO2021157270A1 (en) Ultraviolet curable resin composition for transfer paper protective layer
JP2020147730A (en) Electron beam-curable printing ink composition and electron beam-curable overprint varnish composition
JP6339383B2 (en) Active energy ray-curable ink composition for offset printing and method for producing printed matter using the same
JP2018090718A (en) Active energy ray-curable ink composition for offset printing
JP5689614B2 (en) Active energy ray-curable inkjet ink composition and printed matter
KR101093529B1 (en) Photocureing type addhesive composition and process for transcribing by using it
JP2018178115A (en) Multi-branched urethane compound-containing polymerizable composition
JP5371250B2 (en) Curable resin composition, optical member and laminate
JP6947165B2 (en) Resin composition for transfer paper protective layer, its manufacturing method and transfer paper for painting
WO2018135579A1 (en) Resin composition for transfer paper protective layers, method for producing same, laminate and transfer paper for painting
WO2015133560A1 (en) Active-energy-ray-curable coating composition
US20130029046A1 (en) Printing ink containing a divinyl ester
JP2004315546A (en) Ultraviolet curable overprint varnish composition
JP2005125540A (en) Repeelable information sheet
EP4212559A1 (en) Resin composition, method for producing resin composition, and cured body
JP6421401B1 (en) Active energy ray curable overcoat varnish

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750419

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575666

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750419

Country of ref document: EP

Kind code of ref document: A1