WO2021156908A1 - Double structure - Google Patents

Double structure Download PDF

Info

Publication number
WO2021156908A1
WO2021156908A1 PCT/JP2020/003899 JP2020003899W WO2021156908A1 WO 2021156908 A1 WO2021156908 A1 WO 2021156908A1 JP 2020003899 W JP2020003899 W JP 2020003899W WO 2021156908 A1 WO2021156908 A1 WO 2021156908A1
Authority
WO
WIPO (PCT)
Prior art keywords
molded body
preform
water
barrier
coating
Prior art date
Application number
PCT/JP2020/003899
Other languages
French (fr)
Japanese (ja)
Inventor
芳樹 澤
かんな 村松
山田 俊樹
Original Assignee
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋製罐グループホールディングス株式会社 filed Critical 東洋製罐グループホールディングス株式会社
Priority to PCT/JP2020/003899 priority Critical patent/WO2021156908A1/en
Publication of WO2021156908A1 publication Critical patent/WO2021156908A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/80Packaging reuse or recycling, e.g. of multilayer packaging

Definitions

  • the present invention relates to a double structure, and particularly to a double structure having excellent recyclability.
  • the packaging material and the colored resin whose gas barrier property is enhanced by the above-mentioned barrier material have a drawback that they are difficult to recycle and are difficult to reuse. That is, in a container having a multi-layer structure having a barrier layer using the barrier material as described above, this barrier material cannot be separated from other container material resins (for example, PET or polyolefin), and similarly, a colorant. However, it cannot be separated from the container material resin, making it difficult to reuse these material resins. Barrier technology that considers the reusability of the material resin has hardly been studied.
  • a double-structured container having a double-structured structure consisting of an inner container and an outer container has been put into practical use as an airless container in which a seasoning liquid such as soy sauce is stored.
  • a double-structured container is used in combination with a cap with a check valve, and is filled in the inner container by squeezing and denting the body wall of the bottle, which is the outer container, from the outside.
  • the air is introduced into the inner container by the action of the check valve. Instead, it is introduced into the space between the inner container and the outer container through a flow path different from the pouring path of the cap.
  • Patent Document 2 describes that when a preform for an inner container and a preform for an outer container are overlapped and stretch-molded to produce a container having a double structure, the preform for the inner container and the preform for the outer container are manufactured.
  • a technique has been proposed in which a chemical that does not decompose at the stretching temperature, such as an organic oxygen absorber or a deodorant, is applied between the reform and the reform.
  • an object of the present invention is a double structure used in a state where two molded bodies are overlapped with each other, and the permeation of oxygen is effectively suppressed by the barrier material, and the barrier material can be easily removed. It is an object of the present invention to provide a double structure capable of effectively reusing a material such as a resin constituting each molded body. Another object of the present invention is to provide a composition used in the formation of a barrier coating applied to the dual structure described above in order to suppress the permeation of oxygen.
  • a double structure composed of a first molded body and a second molded body superposed on the first molded body
  • a double structure characterized in that at least the first molded body is made of plastic and a water-washable removable barrier coating is present between the first molded body and the second molded body. Will be done.
  • the barrier coating is provided on the first molded body side.
  • the barrier coating is provided on the side of the second molded body.
  • the barrier coating contains a water-soluble binder.
  • the barrier coating has a structure in which a functional material for enhancing the oxygen blocking property of the water-soluble binder is dispersed in the water-soluble binder.
  • the functional material is an oxidizable organic compound.
  • the oxidizing organic compound has the following formula (1): In the formula, ring X is an aliphatic ring having one unsaturated bond.
  • Y is an alkyl group, Being at least one selected from the group consisting of an acid anhydride represented by, an ester derived from the acid anhydride, an amide, an imide or a dicarboxylic acid, and a polymer having a structural unit derived from the acid anhydride. .. (7)
  • the water-soluble binder is a polyvinyl alcohol polymer or a polycarboxylic acid polymer.
  • the first molded body is an inner container
  • the second molded body is an outer container containing the inner container
  • the barrier coating is provided on the outer surface of the inner container. thing.
  • composition for forming a barrier coating containing an oxidizing organic compound and a water-soluble binder is provided.
  • the oxidizable organic compound is contained in the range of 10 to 300 parts by mass per 100 parts by mass of the water-soluble binder.
  • the water-soluble binder is a polyvinyl alcohol polymer or a polycarboxylic acid polymer. Is preferable.
  • the double-structured structure of the present invention can be effectively applied particularly to a double-structured container manufactured by the stack preform method.
  • a barrier coating is provided on the outer surface of the preform for an inner container, and this is applied to the outer container.
  • a double-structured container having a barrier coating between the inner container and the outer container can be obtained.
  • the permeation of oxygen into the inner container is effectively prevented, and the freshness of the contents contained in the inner container can be more effectively maintained.
  • such a double-structured container can be easily removed from the barrier coating by washing with water in the recycling process, and is separated into an inner container and an outer container. Therefore, this double-structured container is excellent in recyclability because the resin material forming the inner container and the outer container can be easily reused.
  • the double structure 100 of the present invention is formed by superimposing the second molded body 103 on the first molded body 101, but the first molded body 101.
  • a barrier coating 105 is formed on the surface of the above. That is, the second molded body 103 is superposed on the barrier coating 105 of the first molded body 101.
  • the first molded body 101 is made of plastic and may have an appropriate shape depending on its use.
  • the first plastic molded product 101 when used for packaging or the like, it may have a form such as a film or a sheet depending on the form of the substance to be packaged, or the container may have a form such as a film or a sheet. It may have such a form.
  • the second molded body 103 is simply stacked and used without being adhered so as to cover the first molded body 101, and is used, for example, for simple packaging.
  • the material is not particularly limited, and may be made of paper, metal foil, or the like.
  • the first molded body 101 and the second molded body 103 are formed of the following thermoplastic resin.
  • Olefin resins such as low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), polypropylene (PP), poly 1-butene, poly 4-methyl Random or block copolymers of ⁇ -olefins such as -1-pentene or ethylene, propylene, 1-butene, 4-methyl-1-pentene, cyclic olefin copolymers, etc.
  • Ethylene-vinyl acetate copolymers for example, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, ethylene-vinyl chloride copolymers, ion-crosslinked olefin copolymers (ionomers), etc.
  • Styrene-based resins such as polystyrene
  • a vapor deposition film of a metal oxide such as silicon oxide is provided on the surface of the second molded body 103 on the side of the first molded body 101 or the surface on the opposite side by vapor deposition or the like. good.
  • the first molded product 101 is made of plastic, its oxygen permeability is higher than that of a metal material or the like. Therefore, the first molded product 101 has a barrier property against oxygen or the like. It is required to grant.
  • the second molded body 103 is merely overlapped on the first molded body 101 without being adhered to each other, the first molded body 101 and the second molded body 101 are as shown in FIG.
  • a minute void CL may be formed between the molded body 103 and the molded body 103, and an air layer may be present along with the void CL. Therefore, it is required to suppress the oxygen permeation of the first molded product 101.
  • the barrier coating 105 is provided in order to suppress the permeation of oxygen into the first molded product 101. That is, by providing such a barrier coating 105, oxygen permeating through the first plastic molded body 101 having a high oxygen permeability can be effectively suppressed.
  • the barrier coating 105 is provided on the surface of the first molded product 101 (the surface on the side of the second molded product 103). This makes it possible to effectively prevent the permeation of the air existing in the void CL through the first molded product 105.
  • the barrier coating 105 can be provided on the surface of the second molded body 103 (that is, the surface on the side of the first molded body 101). That is, this makes it possible to prevent the permeation of oxygen through the second molded body 103 and the void CL.
  • the barrier coating is applied to both the surface of the first molded body 101 and the surface of the second molded body 103, provided that it exists between the first molded body 101 and the second molded body 103. 105 can also be provided.
  • the barrier coating 105 is formed by spray spraying, dipping, roll coating, or the like, but it is particularly important that the barrier coating 105 can be removed by washing with water. It is that. That is, the waste of various plastic products is collected for each plastic forming this product, and is mechanically separated from other parts used together with the plastic and collected, whereby various plastics or various plastics or Other parts and the like can be reused, but when the plastic product has a multi-layer structure including a barrier material, the barrier material cannot be removed and it becomes difficult to reuse the plastic.
  • the barrier coating 105 can be removed by washing with water, for example, it is heated to 90 ° C. specified in the voluntary design guideline for designated PET bottles published by the PET Bottle Recycling Promotion Council.
  • the barrier coating 105 that can be removed by washing with water as described above contains a water-soluble binder, and the water-soluble binder has a structure in which a functional material for enhancing oxygen blocking property is dispersed. Have.
  • Water-soluble binder As the water-soluble binder, various water-soluble materials can be used as long as they have a film-forming property and are water-soluble so that they can be removed by washing with water.
  • specific examples thereof include, but are not limited to, water-soluble polymers such as polyvinyl alcohol polymers, polycarboxylic acid polymers, polyallylamine, and polyethyleneimine.
  • polysaccharides such as starch, carboxymethyl cellulose and sodium alginate or derivatives thereof can also be used as a water-soluble binder.
  • the polyvinyl alcohol polymer is obtained by polymerizing a vinyl ester compound and then saponifying it completely or partially.
  • the polycarboxylic acid polymer includes homopolymers or copolymers of monomers having a carboxyl group such as polyacrylic acid, polymethacrylic acid, polymaleic acid, polyitaconic acid, and acrylic acid-methacrylic acid copolymers, and portions thereof.
  • a neutralized product can be used, and preferably polyacrylic acid and polymethacrylic acid are used.
  • the polyvinyl alcohol polymer is most preferable from the viewpoint of easy availability, film forming property, and the like.
  • Functional material for enhancing oxygen barrier properties include so-called passive barrier materials and active barrier materials.
  • the passive barrier material for example, a layered clay mineral such as montmorillonite or a so-called gas barrier resin can be used, but in particular, the layered clay mineral can be uniformly dispersed in the above-mentioned water-soluble binder, which is high. From the viewpoint of exhibiting oxygen barrier properties, it is preferably used in the present invention.
  • the active barrier material is easily oxidized by reacting with oxygen, and various organic and inorganic materials are known.
  • the active barrier material can be uniformly dispersed in the above-mentioned water-soluble binder. From the viewpoint of transparency, an organic oxidizable material is preferably used.
  • organic oxidizable material examples include so-called oxygen absorbers or antioxidants such as ascorbic acid (vitamin C), tocopherol (vitamin E), dibutylhydroxytoluene, butylhydroxyanisole, sodium elsorbate, and propyl carouside.
  • oxygen absorbers or antioxidants such as ascorbic acid (vitamin C), tocopherol (vitamin E), dibutylhydroxytoluene, butylhydroxyanisole, sodium elsorbate, and propyl carouside.
  • a compound known as, a polyene polymer having an aliphatic unsaturated bond such as polybutadiene or polyisoprene, and a compound having an unsaturated alicyclic structure are typical, and among them, an unsaturated alicyclic. Compounds having a structure are preferably used.
  • Such an organic oxidizable material not only has high oxygen blocking property, but also has no problem of coloring, and can be suitably used for applications requiring transparency.
  • examples of the compound having an unsaturated alicyclic structure as described above include methyltetrahydroinden, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, and 5-isopropi.
  • lidene-2-norbornene 5-vinylidene-2-norbornene, 6-chloromethyl-5-isopropenyl-2-norbornene, dicyclopentadiene and the like.
  • Y is an alkyl group, At least one selected from the group consisting of an acid anhydride represented by, an ester derived from the acid anhydride, an amide, an imide or a dicarboxylic acid, and a polymer having a structural unit derived from the acid anhydride is the most. Suitable for use.
  • the aliphatic ring X is a 6-membered ring having one unsaturated bond, that is, a cyclohexene ring, and the position of the unsaturated bond may be either the 3-position or the 4-position.
  • the 3-position is preferable from the viewpoint of oxidability.
  • the alkyl group is not particularly limited, but generally, from the viewpoint of synthesis and oxidability, a lower alkyl group having 3 or less carbon atoms, particularly a methyl group is preferable, and the bonding position thereof is generally 3. It may be either the 4th place or the 4th place.
  • Such an acid anhydride is alkyltetrahydrophthalic anhydride, which is obtained by the Diels-Alder reaction of maleic anhydride and diene, each obtained in the form of a mixture of isomers, and the mixture remains as a functional material.
  • anhydride 3-methyl - ⁇ represented by the following formula (2) 4 - represented by tetrahydrophthalic anhydride, and the following formula (3) 4- Methyl- ⁇ 3 -tetrahydrophthalic anhydride can be mentioned.
  • the above-mentioned acid anhydride can form a derivative by a method known per se, but such a derivative can be used as the oxygen absorbing component (B) as long as the unsaturated alicyclic structure is maintained.
  • a derivative can be used as the oxygen absorbing component (B) as long as the unsaturated alicyclic structure is maintained.
  • the above ester is an ester obtained by reacting an acid anhydride such as alkyltetrahydrophthalic anhydride with various alcohols, and the alcohol used for esterification is not particularly limited, and methyl alcohol, ethyl alcohol, propyl alcohol and the like are not particularly limited. Any of the aliphatic alcohols and aromatic alcohols such as phenol and benzyl alcohol can be used. Further, a polyhydric alcohol such as glycol can also be used. In this case, an unsaturated alicyclic structure corresponding to the number of alcohols in one molecule can be introduced. Further, such an ester may be a partial ester of the acid anhydride. That is, such an ester is represented by, for example, the following formula.
  • Z is an unsaturated alicyclic of the acid anhydride.
  • R is an organic group derived from the alcohol used in the reaction.
  • the imide is an imidized product obtained by heat-treating the above amide, and is, for example, the following formula; HOOC-Z-CONH-R Alternatively, HOOC-Z-CONH-R-CONH-Z-COOH
  • Z is an unsaturated alicyclic of the acid anhydride.
  • R is an organic group derived from the amine used in the reaction. It is obtained by heat-treating the amide represented by the following formula; Z- (CO) 2 -NR Alternatively, Z- (CO) 2 -N-RN- (CO) 2- Z
  • Z and R are the same as above. It is represented by.
  • the dicarboxylic acid is obtained by hydrolyzing the acid anhydride and cleaving the acid anhydride group, and is represented by the following formula.
  • HOOC-Z-COOH In the formula, Z and R are the same as above.
  • a polymer having a structural unit derived from the acid anhydride described above can also be used as a functional material to be blended in a water-soluble binder because it exhibits oxygen absorption. That is, the acid anhydride represented by the above-mentioned formula (1) can be used as a dibasic acid component forming a polyester. Such a copolymerized polyester has an unsaturated alicyclic structure in the molecular chain and therefore exhibits a predetermined oxygen absorption (oxidation property), and therefore is used as a functional material for imparting oxygen blocking property. It is possible to do so.
  • an aliphatic amine or an aromatic amine can be used as the amine used in the production of such an imide compound.
  • a compound having an aliphatic unsaturated bond or an unsaturated alicyclic structure is preferably used from the viewpoint of exhibiting particularly high oxygen blocking property, and particularly unsaturated fat.
  • Compounds having a ring structure are most preferably used.
  • a transition metal catalyst known per se can also be dispersed in the barrier coating 105.
  • Such a transition metal catalyst can be used in a so-called catalytic amount, and is usually in the form of a low-valent inorganic salt, organic salt or complex salt of the transition metal in an amount of 1000 ppm or less in terms of the transition metal per the above compound. Can be used as appropriate.
  • a transition metal catalyst as the transition metal, a Group VIII metal of the periodic table such as iron, cobalt and nickel is suitable, but other metals such as Group I metal such as copper and silver, tin, titanium and zirconium are used. It may be a Group IV metal, a Group V metal such as vanadium, a Group VI metal such as chromium, a Group VII metal such as manganese, or the like. Of these, cobalt is particularly suitable because it significantly promotes oxygen absorption (oxidation of oxidizing organic components).
  • Examples of the inorganic salt of the transition metal include halides such as chlorides, sulfur oxy salts such as sulfates, nitrogen oxyate salts such as nitrates, phosphor oxy salts such as phosphates, and silicates. ..
  • the barrier coating 105 By blending a colorant or an ultraviolet absorber into the barrier coating 105 used in the present invention, it is possible to impart a light-shielding property in addition to an oxygen barrier property.
  • Known pigments and dyes can be used as the colorant.
  • the barrier coating 105 includes a viscosity modifier, a defoaming agent, a filler, a heat-resistant stabilizer, a weather-resistant stabilizer, and an antioxidant, as long as the characteristics are not impaired.
  • Known blending agents such as anti-aging agents, light stabilizers, antistatic agents, metal viscosities, waxes, modifying resins and rubbers can also be blended according to their own known formulations.
  • the barrier coating 105 is formed by, for example, adding the above-mentioned water-soluble binder, functional material, and appropriately used transition metal catalyst into a volatile solvent such as water or ethanol and mixing them to obtain the coating.
  • the liquid can be easily applied by applying the liquid to the surface of the first molded body 101 (or the second molded body 103) which has been subjected to surface treatment or anchor coating to improve the coatability, if necessary, and dried. can.
  • the double structure 100 of the present invention in which the barrier coating 105 that can be removed by washing with water is provided between the first molded body 101 and the second molded body 103 can be applied to various forms. Although it can be formed, it is particularly preferably used as a double-structured container formed by biaxial stretch blow molding.
  • the outer container 1 has a bottle shape and is formed of a neck portion 1a, a body portion 1b connected to the neck portion 1a, and a bottom portion 1c closing the lower end of the body portion 1b.
  • the bottom portion 1c is a blow-stretched portion
  • the neck portion 1a is a fixed portion that is not blow-stretched, and is not thinned by blow-stretching.
  • an air introduction port 7 is formed in the neck portion 1a, and a recessed squeeze region is formed in the central portion of the body portion 1b so as to be easy to squeeze.
  • a support ring 1d is formed on the outer surface of the neck portion 1a of the outer container 1.
  • the upper portion of the neck portion 3a protrudes from the neck portion 1a of the outer container 1, and a screw 3c for fixing the cap with a screw is formed in the protruding portion, and further, the screw 3c A protrusion 3d serving as a stopper is formed in the lower portion so that the inner container 3 does not penetrate deeply into the outer container 1.
  • the form of the double-structured container 10 to which the present invention is applied is not limited to the form shown in FIG. 2, and for example, a protrusion 3d serving as a stopper is formed on the upper end of the neck portion 3a of the inner container 3. Only can be provided, and a screw for attaching the cap can be provided on the outer surface of the neck portion 1a of the outer container 1 (the upper portion of the support ring 1d).
  • the above-mentioned outer container 1 is formed of a blow-moldable thermoplastic resin, and such a thermoplastic resin is used for molding the second molded body 103 as described above. It can be formed of the resin to be used, for example, an olefin resin, a polyester resin, or the like, but is formed of a polyester resin, preferably PET, from the viewpoint of blow moldability, container strength, and transparency.
  • the inner container 3 is formed of a blow-moldable thermoplastic resin like the outer container 1, and since it is particularly easy to set blow-stretching conditions, the thermoplastic resin for forming the inner container 3 and the outer container 1 are formed. It is preferable that the thermoplastic resin forming the above is of the same type.
  • the space between the inner surface of the outer container 1 and the outer surface of the inner container 3 corresponds to the barrier coating 105 that can be washed and removed with water.
  • a coating 5 to be used there is a coating 5 to be used. That is, the coating 5 effectively suppresses the permeation of oxygen into the inner container 3, effectively avoids oxidative deterioration of the contents contained in the inner container 3, and maintains the freshness for a long period of time. can.
  • the coating 5 can be easily removed by washing with water, the outer container 1 and the inner container 3 can be separated by quickly removing the double-structured container 10 discarded after use by washing with water using a rare alkaline aqueous solution or the like. .. Therefore, it becomes easy to reuse the resin such as PET forming the inner container 3 (or the outer container 1).
  • the coating 5 corresponding to the barrier coating 105 may be provided on the inner surface of the outer container 1 or may be provided on the outer surface of the inner container 3, but since the bottle 10 does not adhere to both of them, A gap may be formed between the two and an air layer may exist. Therefore, it is preferable to provide the coating 5 on the outer surface of the inner container 3.
  • the above-mentioned double-structured container 10 is provided with the above-mentioned coating 5, it is manufactured by the so-called stack preform method. That is, the first preform obtained by injection molding using the resin for the outer container 1 (preform for molding the outer container) and the first preform obtained by injection molding using the resin for the inner container 3.
  • Using 2 preforms preforms for forming inner containers, insert the 2nd preform into the 1st preform to form a multi-structured stack preform, and biaxially stretch the stack preform. It is manufactured by a method of blow molding. That is, according to such a method, the coating 5 can be easily formed on the outer surface of the second preform (or the inner surface of the first preform).
  • the stack preform for forming a double-structured container of FIG. 2 is shown by 20 as a whole in FIG. 4, and is shown in FIG. As shown above, it is formed from a first preform 11 (see FIG. 3A) and a second preform 13 (see FIG. 3B), both of which have a test tube shape. That is, the first preform 11 is a preform for molding the outer container, the second preform 13 is the preform for molding the inner container, and the second preform 13 is inserted into the first preform. By holding the fitting together, the stack preform 20 to be used in the blow stretching step is assembled.
  • each of the first preform 11 and the second preform 13 has a portion corresponding to the neck portion 1a of the outer container 1 and the neck portion 3a of the inner container 3. That is, none of these portions are stretch-molded portions, and the first preform 11 has a support ring 1d and an air introduction port 7 formed by post-processing after injection molding, and a second preform 11.
  • Preform 13 has a screw 3c and a protrusion 3d.
  • the tubular portion 11b in which the lower end of the lower portion of the neck portion 1a of the first preform 11 is closed is stretch-molded, and by blow stretching, the body portion 1b and the bottom portion 1c of the outer container 1 are formed. It is shaped.
  • tubular portion 13b in which the lower end of the lower portion of the neck portion 3a of the second preform 13 is closed is stretch-molded, and is shaped into the form of the body portion 3b of the inner container 3 by blow stretching.
  • a coating 5 carrier coating 105 containing the above-mentioned water-soluble binder and functional material is usually formed on the portion to be the body portion 3 by stretch molding.
  • the stack preform 20 having the form shown in FIG. 4 is assembled, placed in a blow mold, and the neck portion is provided with a predetermined jig.
  • the portion containing 1a and 3a is fixed (the region indicated by X in FIG. 4), and the stack preform 20 is stretch-moldable by high-frequency heating or the like (glass transition of the resin forming the preforms 11 and 13).
  • Heat to a point temperature or higher and lower than the melting point insert a stretch rod (not shown) into the stack preform 20 (second preform 13), stretch it in the uniaxial direction, and blow air or the like.
  • the double-structured container 10 having the form shown in FIG. 2 can be obtained. That is, in FIG. 4, the region indicated by Y of the stack preform 20 is a portion to be stretch-molded.
  • the coating 5 (barrier coating 105) containing the water-soluble binder and the functional material can be easily applied to the outer container 1 and the inner container 3.
  • a thermoplastic barrier resin is used in order to form a barrier layer between the outer container 1 and the inner container 3.
  • a thermoplastic barrier resin is used.
  • thermoplastic resin in which a barrier material is dispersed.
  • the preform for the outer container 1 first preform 11
  • the preform for the inner container 3 second preform 13
  • the coating 5 can be easily formed in the predetermined portion between the preforms 11 and 13, and the coating 5 can be easily removed by washing with water, so that the recyclability is not impaired.
  • the coating 5 (barrier coating 105) prepares a coating liquid using a volatile solvent such as water or ethanol, and uses this coating liquid.
  • the coating 5 can be easily formed by applying it to the outer surface of the stretch-molded portion (cylindrical portion 13b) of the second preform by spraying or dipping, and then drying it.
  • the contents filled in the inner bag 3 squeeze (press) the recessed portion (squeeze region) of the body portion 1b of the outer container 1, for example.
  • the contents are discharged by the amount pressed and dented, and the volume of the body 3b of the inner container 3 is reduced by that amount, but the body 3b and the outer container 1 are discharged from the air introduction port 7 by that amount. Since air is introduced into the inner surface of the body portion 1b to form an air layer, the subsequent contents can be effectively discharged.
  • the invasion of oxygen from the body 3b of the inner container 3 to the inside can be effectively suppressed and prevented by the coating 5, and the oxidative deterioration of the contents can be effectively prevented, but the bottle is discarded after use. Since the coating 5 from the above can be easily removed by washing with water, excellent recyclability is ensured.
  • Coating liquid A Polyvinyl alcohol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd .: polyvinyl alcohol 1,000 completely saponified type) was prepared as a water-soluble binder.
  • the coating liquid A was obtained by adding 10 g of the above polyvinyl alcohol to 100 g of distilled water, heating to 95 ° C., and stirring until completely dissolved.
  • Coating liquid C Polyacrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd .: polyacrylic acid 250,000) was prepared as a water-soluble binder. 2 g of this polyacrylic acid was added to 100 g of ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to completely dissolve it, and then 5 g of MXBI as an oxidizing organic component was added and dissolved to obtain a coating liquid C.
  • a coating liquid D was obtained by adding 2.5 mg of N-hydroxyphthalimide (manufactured by Tokyo Chemical Industry Co., Ltd.) as an oxidation promoting component to the coating liquid C and dissolving it.
  • Coating liquid F A coating liquid F was obtained in the same manner as the coating liquid C except that the amount of MXBI, which is an oxidizable organic component, was changed to 1 g.
  • Coating liquid G A coating liquid G was obtained in the same manner as the coating liquid C except that the amount of MXBI, which is an oxidizable organic component, was changed to 2 g.
  • a coating liquid H was prepared by adding an edible pigment brown to the coating liquid A in which polyvinyl alcohol was used as the water-soluble binder.
  • Coating liquid I A butanediol vinyl alcohol copolymer (manufactured by Mitsubishi Chemical Corporation: G polymer BVE8049Q) was prepared as a water-soluble binder. 20 g of this butanediol vinyl alcohol copolymer was added to 100 g of distilled water, heated to 95 ° C., and stirred until completely dissolved to prepare a coating liquid I.
  • Coating liquid J A coating liquid J was prepared by adding 25 g of the above butanediol vinyl alcohol copolymer to 100 g of distilled water, heating to 95 ° C., and stirring until completely dissolved.
  • coating liquid A is applied to the outer surface by dipping and a dryer is used. After drying (the dry coating amount of the coating liquid A was 0.35 g), the preforms for the outer container were overlapped and biaxially stretched and blow-molded into a 500 mL bottle.
  • Example 2 A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid B and the dry coating amount thereof was set to the amount shown in Table 1.
  • Example 4 A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid D and the dry coating amount thereof was set to the amount shown in Table 1.
  • Example 5 A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid E and the dry coating amount thereof was set to the amount shown in Table 1.
  • Example 6 A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid F and the dry coating amount thereof was set to the amount shown in Table 1.
  • Example 7 A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid G and the dry coating amount thereof was set to the amount shown in Table 1.
  • ⁇ Comparative example 2> Using a twin-screw extruder (TEM-35B: manufactured by Toshiba Machine Co., Ltd.) with granulation equipment with a barrel set temperature of 260 to 280 ° C., the above-mentioned isophthalic acid copolymer polyethylene terephthalate resin was used with the oxidizing organic component MXBI. Was kneaded at 10% and extruded into strands to obtain oxygen-absorbing resin pellets. The oxidizing organic component MXBI was added from the opening in the middle of the extruder by a liquid feeder (Mono pump: manufactured by Hyojin Equipment).
  • the copolymerized polyethylene terephthalate resin 90 parts by weight
  • the oxygen-absorbing resin pellet 10 parts by weight
  • Cobalt neodecanoate manufactured by OMG: 0.015 parts by weight was dry-blended, and a 31 g single-layer preform was formed by injection molding.
  • the obtained single-layer preform was biaxially stretched and blow-molded into a 500 mL bottle.
  • Example 9 A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid H and the dry coating amount thereof was set to the amount shown in Table 1.
  • a single-layer preform was obtained by dry blending 3 parts by weight of a colored masterbatch for brown PET resin composed of red and green organic pigments with 100 parts by weight of the above-mentioned isophthalic acid copolymer polyethylene terephthalate resin. The preform was then biaxially stretched and blow molded into a 500 mL bottle.
  • Anoxic water with an oxygen concentration of 0.1 ppm or less was prepared with an anoxic water maker (LOW DISSOLVED OXYGEN: manufactured by Miura Kogyo Co., Ltd.), and the bottle was filled with oxygen and sealed with a plastic cap. ..
  • the dissolved oxygen concentration in the bottle after storage at 23 ° C. and 50% RH for 28 days was measured with a non-destructive high-sensitivity oxygen concentration meter (Oxy-4 Trace v3: manufactured by Pressens). The smaller the value of the dissolved oxygen concentration, the better the oxygen barrier property.
  • the molded bottle body wall was cut out, and the transmittance was measured by attaching an integrating sphere device attached to a spectrophotometer (UV-3100: manufactured by Shimadzu Corporation).
  • the light-shielding property was evaluated from the average transmittance in the range of 380 nm to 780 nm. The smaller the average transmittance, the better the light-shielding property.
  • Example 10 A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid I and the dry coating amount thereof was set to the amount shown in Table 1.
  • Example 12 A biaxially stretched blow bottle was obtained in the same manner as in Example 11 except that the dry coating amount of the coating liquid A was changed to the amount shown in Table 1.
  • Example 13 A biaxially stretched blow bottle was obtained in the same manner as in Example 11 except that the coating liquid A was changed to the coating liquid I and the dry coating amount thereof was set to the amount shown in Table 1.
  • Example 14 A biaxially stretched blow bottle was obtained in the same manner as in Example 13 except that the dry coating amount of the coating liquid I was changed to the amount shown in Table 1.
  • Example 15 A biaxially stretched blow bottle was obtained in the same manner as in Example 11 except that the coating liquid A was changed to the coating liquid J and the dry coating amount thereof was set to the amount shown in Table 1.
  • Example 17 A biaxially stretched blow bottle was prepared in the same manner as in Example 16 except that the coating liquid A was changed to the coating liquid H and the dry coating amount was changed to the amount shown in Table 3, and the oxygen barrier was formed under the same conditions. evaluated.
  • Example 19 A biaxially stretched blow bottle was prepared in the same manner as in Example 16 except that the coating liquid A was changed to the coating liquid J and the dry coating amount was changed to the amount shown in Table 3, and the oxygen barrier was formed under the same conditions. evaluated.
  • Example 20 A biaxially stretched blow bottle was obtained in the same manner as in Example 16. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 0% RH by filling 5 g of calcium chloride.
  • Example 23 A biaxially stretched blow bottle was obtained in the same manner as in Example 19. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 0% RH by filling 5 g of calcium chloride.
  • Example 28 A biaxially stretched blow bottle was prepared in the same manner as in Example 26 except that the coating liquid A was changed to the coating liquid I and the dry coating amount was changed to the amount shown in Table 3, and the oxygen barrier was formed under the same conditions. evaluated.
  • Example 29 A biaxially stretched blow bottle was prepared in the same manner as in Example 26 except that the coating liquid A was changed to the coating liquid J and the dry coating amount was changed to the amount shown in Table 3, and the oxygen barrier was formed under the same conditions. evaluated.
  • Example 30 A biaxially stretched blow bottle was obtained in the same manner as in Example 16. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity of the inside to 70% RH by filling 5 ml of an aqueous glycerin solution.
  • Example 31 A biaxially stretched blow bottle was obtained in the same manner as in Example 18. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity of the inside to 70% RH by filling 5 ml of an aqueous glycerin solution.
  • Example 32 A biaxially stretched blow bottle was obtained in the same manner as in Example 16. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
  • Example 33 A biaxially stretched blow bottle was obtained in the same manner as in Example 18. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
  • Example 34 A biaxially stretched blow bottle was obtained in the same manner as in Example 26.
  • the evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
  • Example 35 A biaxially stretched blow bottle was obtained in the same manner as in Example 28.
  • the evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
  • Example 36 A biaxially stretched blow bottle was obtained in the same manner as in Example 16. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
  • Example 37 A biaxially stretched blow bottle was obtained in the same manner as in Example 18. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
  • Example 38 A biaxially stretched blow bottle was obtained in the same manner as in Example 26.
  • the evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
  • Example 39 A biaxially stretched blow bottle was obtained in the same manner as in Example 28.
  • the evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
  • Double structure 101 First molded body 103: Second molded body 105: Barrier coating 1: Outer container 3: Inner container 5: Coating (barrier coating 105) 7: Air inlet 10: Double-structured container 11: First preform 13: Second preform

Abstract

A double structure 100 comprises: a first molded body 101; and a second molded body 103 that is superimposed on the first molded body. The double structure is characterized in that at least the first molded body 101 is made from plastic, and in that a barrier coating 105, which can be removed by washing with water, is present between the first molded body 101 and the second molded body 103.

Description

二重構造体Double structure
 本発明は、二重構造体に関するものであり、特にリサイクル性に優れた二重構造体に関する。 The present invention relates to a double structure, and particularly to a double structure having excellent recyclability.
 近年において、プラスチックは、種々の形状に容易に成形できることから、各種の用途に使用されている。しかしながら、プラスチック製品は、金属製品やガラス製品に比して、ガスバリア性が劣っている。
 このため、容器やフィルムなどの包装材のように、酸素等に対するバリア性が要求される用途に使用されるプラスチック製品では、エチレン・ビニルアルコール共重合体樹脂等のパッシブバリア材の層を用いた多層構造が導入されている。
 一方、最近では、被酸化性有機化合物のようなアクティブバリア材も開発されており(例えば特許文献1参照)、包装材等の分野で使用されるようになっている。
 また光バリアを目的に着色することで遮光性を付与して使用されることもある。
In recent years, plastics have been used for various purposes because they can be easily formed into various shapes. However, plastic products are inferior in gas barrier properties to metal products and glass products.
For this reason, in plastic products used for applications that require barrier properties against oxygen and the like, such as packaging materials for containers and films, a layer of passive barrier materials such as ethylene / vinyl alcohol copolymer resin is used. A multi-layer structure has been introduced.
On the other hand, recently, active barrier materials such as oxidizable organic compounds have been developed (see, for example, Patent Document 1), and have come to be used in the field of packaging materials and the like.
In addition, it may be used with light-shielding properties by coloring it for the purpose of light barrier.
 しかしながら、上述したバリア材によりガスバリア性が高められた包装材や着色された樹脂は、リサイクル性に難があり、再利用が難しいという欠点がある。
 即ち、上記のようなバリア材を用いたバリア層を有する多層構造の容器では、このバリア材を他の容器素材樹脂(例えば、PETやポリオレフィン)などから分離することができず、同様に着色剤も容器素材樹脂から分離できず、これら素材樹脂の再利用を困難としている。素材樹脂の再利用性を考慮したバリア技術については、ほとんど検討されていない。
However, the packaging material and the colored resin whose gas barrier property is enhanced by the above-mentioned barrier material have a drawback that they are difficult to recycle and are difficult to reuse.
That is, in a container having a multi-layer structure having a barrier layer using the barrier material as described above, this barrier material cannot be separated from other container material resins (for example, PET or polyolefin), and similarly, a colorant. However, it cannot be separated from the container material resin, making it difficult to reuse these material resins. Barrier technology that considers the reusability of the material resin has hardly been studied.
 例えば、最近では、内容器と外容器とからなる二重構造を有している二重構造容器が、醤油等の調味液が収容されるエアレス容器として実用されている。かかる二重構造容器は、逆止弁付のキャップと組み合わせで使用されるものであり、外容器であるボトルの胴部壁を外部からスクイズして凹ませることにより、内容器に充填されている内容物がキャップに形成されている注出路から排出され、ボトルの胴部壁の押圧を停止することにより内容物の排出を終了させると、逆止弁の作用により、空気は内容器には導入されず、キャップの注出路とは異なる流路を通って、内容器と外容器との間の空間に導入されることとなる。これにより、内容器は、内容物が排出された分だけ収縮することとなり、内容物を排出する毎に、内容器が収縮していく。このような方法により内容物が排出される二重構造容器では、内容物を小出しできると共に、内容物が充填されている内容器への空気の侵入が有効に防止されるため、内容物の酸化劣化を有効に回避でき、内容物の鮮度を長期間にわたって保持できるという利点がある。 For example, recently, a double-structured container having a double-structured structure consisting of an inner container and an outer container has been put into practical use as an airless container in which a seasoning liquid such as soy sauce is stored. Such a double-structured container is used in combination with a cap with a check valve, and is filled in the inner container by squeezing and denting the body wall of the bottle, which is the outer container, from the outside. When the contents are discharged from the injection path formed in the cap and the discharge of the contents is completed by stopping the pressing of the body wall of the bottle, the air is introduced into the inner container by the action of the check valve. Instead, it is introduced into the space between the inner container and the outer container through a flow path different from the pouring path of the cap. As a result, the inner container shrinks by the amount that the contents are discharged, and each time the contents are discharged, the inner container shrinks. In a double-structured container in which the contents are discharged by such a method, the contents can be dispensed and air is effectively prevented from entering the inner container filled with the contents, so that the contents are oxidized. There is an advantage that deterioration can be effectively avoided and the freshness of the contents can be maintained for a long period of time.
 上記のような二重構造容器においても、内容物の排出のために、内容器と外容器との間に空気を導入することが必要であるため、内容器に酸素バリア性を付与することが望まれる。例えば、特許文献2には、内容器用のプリフォームと外容器用のプリフォームを重ねて延伸成形を行って二重構造を有する容器を製造するに際して、内容器用のプリフォームと外容器用のプリフォームとの間に、有機系の酸素吸収剤や脱臭剤など、延伸温度で分解しない薬剤を施しておくという技術が提案されている。
 しかるに、かかる技術では、粉末状の薬剤を内容器と外容器との間の空間に充填しているに過ぎないため、薬剤と内容器もしくは外容器との密着性が不十分である。また、このような粉末状の薬剤が、容器素材樹脂の再利用性を阻害するために、実用されるには至っていない。
Even in the above-mentioned double-structured container, since it is necessary to introduce air between the inner container and the outer container in order to discharge the contents, it is possible to impart an oxygen barrier property to the inner container. desired. For example, Patent Document 2 describes that when a preform for an inner container and a preform for an outer container are overlapped and stretch-molded to produce a container having a double structure, the preform for the inner container and the preform for the outer container are manufactured. A technique has been proposed in which a chemical that does not decompose at the stretching temperature, such as an organic oxygen absorber or a deodorant, is applied between the reform and the reform.
However, in such a technique, since the powdered drug is merely filled in the space between the inner container and the outer container, the adhesion between the drug and the inner container or the outer container is insufficient. In addition, such powdered chemicals have not been put into practical use because they hinder the reusability of the container material resin.
特開2018-21128号公報Japanese Unexamined Patent Publication No. 2018-21128 特開平5-228988号公報Japanese Unexamined Patent Publication No. 5-228988
 従って、本発明の目的は、2つの成形体が重なりあった状態で使用される二重構造体であって、バリア材により酸素の透過が有効に抑制され、しかもバリア材の除去を容易に行うことができ、各成形体を構成している樹脂等の素材の再利用を有効に行うことができる二重構造体を提供することにある。
 本発明の他の目的は、酸素の透過を抑制するために、上記の二重構造体に適用されるバリアコーティングの形成に使用される組成物を提供することにある。
Therefore, an object of the present invention is a double structure used in a state where two molded bodies are overlapped with each other, and the permeation of oxygen is effectively suppressed by the barrier material, and the barrier material can be easily removed. It is an object of the present invention to provide a double structure capable of effectively reusing a material such as a resin constituting each molded body.
Another object of the present invention is to provide a composition used in the formation of a barrier coating applied to the dual structure described above in order to suppress the permeation of oxygen.
 本発明によれば、
 第1の成形体と、該第1の成形体に重ね合わされた第2の成形体とからなる二重構造体において、
 少なくとも前記第1の成形体はプラスチック製であり、該第1の成形体と第2の成形体との間に、水洗除去可能なバリアコーティングが存在することを特徴とする二重構造体が提供される。
According to the present invention
In a double structure composed of a first molded body and a second molded body superposed on the first molded body,
Provided is a double structure characterized in that at least the first molded body is made of plastic and a water-washable removable barrier coating is present between the first molded body and the second molded body. Will be done.
 本発明の二重構造体においては、以下の態様が好適に採用される。
(1)前記バリアコーティングが、前記第1の成形体側に設けられていること。
(2)前記バリアコーティングが、前記第2の成形体側に設けられていること。
(3)前記バリアコーティングが、水溶性バインダを含むこと。
(4)前記バリアコーティングが、前記水溶性バインダに、該水溶性バインダの酸素遮断性を高めるための機能性材料が分散されている構造を有すること。
(5)前記機能性材料が被酸化性有機化合物であること。
(6)前記被酸化性有機化合物が、下記式(1):
Figure JPOXMLDOC01-appb-C000002
  式中、環Xは、1つの不飽和結合を有する脂肪族環であり、
     Yは、アルキル基である、
で表わされる酸無水物、該酸無水物から誘導されるエステル、アミド、イミド又はジカルボン酸、及び該酸無水物に由来する構成単位を有する重合体からなる群より選択された少なくとも一種であること。
(7)前記水溶性バインダがポリビニルアルコールポリマーまたはポリカルボン酸ポリマーであること。
(8)前記第1の成形体が内容器であり、前記第2の成形体が該内容器を収容している外容器であり、該内容器の外面に、前記バリアコーティングが設けられていること。
(9)前記第1の成形体が内容器用プリフォームであり、前記第2の成形体が該内容器用プリフォームを収容している外容器用プリフォームであり、該内容器用プリフォームの外面に、前記バリアコーティングが設けられており、且つスタックプリフォーム構造を有すること。
In the double structure of the present invention, the following aspects are preferably adopted.
(1) The barrier coating is provided on the first molded body side.
(2) The barrier coating is provided on the side of the second molded body.
(3) The barrier coating contains a water-soluble binder.
(4) The barrier coating has a structure in which a functional material for enhancing the oxygen blocking property of the water-soluble binder is dispersed in the water-soluble binder.
(5) The functional material is an oxidizable organic compound.
(6) The oxidizing organic compound has the following formula (1):
Figure JPOXMLDOC01-appb-C000002
In the formula, ring X is an aliphatic ring having one unsaturated bond.
Y is an alkyl group,
Being at least one selected from the group consisting of an acid anhydride represented by, an ester derived from the acid anhydride, an amide, an imide or a dicarboxylic acid, and a polymer having a structural unit derived from the acid anhydride. ..
(7) The water-soluble binder is a polyvinyl alcohol polymer or a polycarboxylic acid polymer.
(8) The first molded body is an inner container, the second molded body is an outer container containing the inner container, and the barrier coating is provided on the outer surface of the inner container. thing.
(9) The first molded body is a preform for an inner container, the second molded body is a preform for an outer container containing the preform for the inner container, and the preform for the inner container is on the outer surface. , The barrier coating is provided and has a stack preform structure.
 本発明によれば、被酸化性有機化合物と水溶性バインダとを含むバリアコーティング形成用組成物が提供される。 According to the present invention, a composition for forming a barrier coating containing an oxidizing organic compound and a water-soluble binder is provided.
 本発明のバリアコーティング形成用組成物においては、
(10)前記水溶性バインダ100質量部当り、10~300質量部の範囲で前記被酸化性有機化合物を含んでいること、
(11)前記水溶性バインダがポリビニルアルコールポリマーまたはポリカルボン酸ポリマーであること、
が好適である。
In the composition for forming a barrier coating of the present invention,
(10) The oxidizable organic compound is contained in the range of 10 to 300 parts by mass per 100 parts by mass of the water-soluble binder.
(11) The water-soluble binder is a polyvinyl alcohol polymer or a polycarboxylic acid polymer.
Is preferable.
 本発明の二重構造体は、プラスチック製の第1の成形体に第2の成形体を重ねて使用されるものであるが、第1の成形体と第2の成形体との間に、水洗により除去可能なバリアコーティングが設けられている点に重要な特徴を有している。
 即ち、このバリアコーティングは、第1の成形体表面或いは第2の成形体の表面へのコーティングにより設けられ、これにより、第1の成形体への酸素透過を有効に防止することができる。しかも、使用済みの二重構造体からこのバリアコーティングは水洗により容易に除去することができ、第1の成形体と第2の成形体に分離される。従って、水洗することにより、これらの成形体、或いはこれら成形体を形成している素材を容易に再利用することができる。
The double structure of the present invention is used by superimposing the second molded body on the first molded body made of plastic, and the second molded body is sandwiched between the first molded body and the second molded body. It has an important feature in that it has a barrier coating that can be removed by washing with water.
That is, this barrier coating is provided by coating the surface of the first molded product or the surface of the second molded product, whereby oxygen permeation to the first molded product can be effectively prevented. Moreover, this barrier coating can be easily removed from the used double structure by washing with water, and is separated into a first molded body and a second molded body. Therefore, by washing with water, these molded bodies or the materials forming these molded bodies can be easily reused.
 本発明の二重構造体は、特にスタックプリフォーム法により製造される二重構造容器に効果的に適用することができ、例えば、内容器用プリフォームの外面にバリアコーティングを設け、これを外容器用プリフォームの内部に挿入保持することにより得られるスタックプリフォームを、延伸ブロー成形することにより、内容器と外容器との間にバリアコーティングを備えた二重構造容器を得ることができる。このような二重構造容器は、内容器内への酸素の透過が有効に防止され、内容器内に収容されている内容物の鮮度をより効果的に保持することができる。しかも、このような二重構造容器は、リサイクル工程での水洗により、バリアコーティングを容易に除去することができ、内容器と外容器に分離される。従って、この二重構造容器は、内容器や外容器を形成している樹脂素材を容易に再利用することができるのでリサイクル性に優れている。 The double-structured structure of the present invention can be effectively applied particularly to a double-structured container manufactured by the stack preform method. For example, a barrier coating is provided on the outer surface of the preform for an inner container, and this is applied to the outer container. By stretching blow molding the stack preform obtained by inserting and holding it inside the preform for use, a double-structured container having a barrier coating between the inner container and the outer container can be obtained. In such a double-structured container, the permeation of oxygen into the inner container is effectively prevented, and the freshness of the contents contained in the inner container can be more effectively maintained. Moreover, such a double-structured container can be easily removed from the barrier coating by washing with water in the recycling process, and is separated into an inner container and an outer container. Therefore, this double-structured container is excellent in recyclability because the resin material forming the inner container and the outer container can be easily reused.
本発明の二重構造体を説明するための概念図。The conceptual diagram for demonstrating the double structure of this invention. 本発明の二重構造体の好適例である二重構造容器の成形直後における概略側断面図。FIG. 6 is a schematic side sectional view immediately after molding of a double-structured container which is a preferable example of the double-structured structure of the present invention. 図2の二重構造容器の製造に用いる第1のプリフォーム(外容器成形用プリフォーム)形成と第2のプリフォーム(内容器成形用プリフォーム)とを示す概略側断面図。FIG. 2 is a schematic side sectional view showing a first preform (preform for molding an outer container) and a second preform (preform for molding an inner container) used for manufacturing the double-structured container of FIG. 第2のプリフォームが第1のプリフォーム内に収容されて保持されているスタックプリフォームを示す概略側断面図。Schematic side sectional view showing a stack preform in which a second preform is housed and held in a first preform.
 図1を参照して、本発明の二重構造体100は、第1の成形体101の上に第2の成形体103を重ねることにより形成されるものであるが、第1の成形体101の表面にバリアコーティング105が形成されている。即ち、第1の成形体101のバリアコーティング105上に、第2の成形体103が重ねられる。 With reference to FIG. 1, the double structure 100 of the present invention is formed by superimposing the second molded body 103 on the first molded body 101, but the first molded body 101. A barrier coating 105 is formed on the surface of the above. That is, the second molded body 103 is superposed on the barrier coating 105 of the first molded body 101.
<第1の成形体101及び第2の成形体103>
 第1の成形体101は、プラスチック製であり、その用途に応じて、適宜の形状を有してればよい。例えば、このプラスチック製の第1の成形体101を包装等の用途に使用する場合、包装される物質の形態に応じて、フィルムないしはシート等の形態を有していてよいし、また、容器のような形態を有するものであってもよい。さらに、第2の成形体103は、第1の成形体101を覆うように、接着せずに、単に重ねて使用されるものであり、例えば、簡単な包装に使用されるものであり、その材質は特に限定されず、紙製、金属箔等であってもよいが、一般的には、第1の成形体101の形態に応じて、これを覆うような形態に容易に成形できることから、第1の成形体101と同様、プラスチック製であることが好ましい。また、上述した水洗により除去可能なバリアコーティング105が第1の成形体101と第2の成形体103との間に設けられている本発明の二重構造体100の形態を有するフイルム乃至シート状の成形体に対して、真空成形、圧空成形、張出成形、プラグアシスト成形等の手段に付することにより、カップ状、トレイ状等の容器とすることもできる。
<First molded body 101 and second molded body 103>
The first molded body 101 is made of plastic and may have an appropriate shape depending on its use. For example, when the first plastic molded product 101 is used for packaging or the like, it may have a form such as a film or a sheet depending on the form of the substance to be packaged, or the container may have a form such as a film or a sheet. It may have such a form. Further, the second molded body 103 is simply stacked and used without being adhered so as to cover the first molded body 101, and is used, for example, for simple packaging. The material is not particularly limited, and may be made of paper, metal foil, or the like. However, in general, depending on the form of the first molded body 101, it can be easily molded into a form that covers the first molded body 101. Like the first molded product 101, it is preferably made of plastic. Further, a film or sheet having the form of the double structure 100 of the present invention in which the barrier coating 105 that can be removed by washing with water is provided between the first molded body 101 and the second molded body 103. By subjecting the molded product to a means such as vacuum forming, pressure molding, overhang molding, plug assist molding, etc., a cup-shaped or tray-shaped container can be formed.
 一般に、包装分野に使用する場合には、第1の成形体101及び第2の成形体103は、以下の熱可塑性樹脂により形成されていることが好適である。
 オレフィン系樹脂、例えば、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)、線状低密度ポリエチレン(LLDPE)、ポリプロピレン(PP)、ポリ1-ブテン、ポリ4-メチル-1-ペンテンあるいはエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン等のα-オレフィン同士のランダムあるいはブロック共重合体、環状オレフィン共重合体など;
 エチレン・ビニル系共重合体、例えば、エチレン・酢酸ビニル共重合体、エチレン・ビニルアルコール共重合体、エチレン・塩化ビニル共重合体、イオン架橋オレフィン共重合体(アイオノマー)等;
 スチレン系樹脂、例えば、ポリスチレン、アクリロニトリル・スチレン共重合体、ABS、α-メチルスチレン・スチレン共重合体等;
 ビニル系樹脂、例えば、ポリ塩化ビニル、ポリ塩化ビニリデン、塩化ビニル・塩化ビニリデン共重合体、ポリアクリル酸メチル、ポリメタクリル酸メチル等;
 ポリアミド樹脂、例えば、ナイロン6、ナイロン6-6、ナイロン6-10、ナイロン11、ナイロン12等;
 ポリエステル樹脂、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリエチレンフラノエート(PEF)、ポリトリメチレンフラノエート(PTF)及びこれらの共重合ポリエステル等;
 ポリカーボネート樹脂;
 ポリフエニレンオキサイド樹脂;
 生分解性樹脂、例えば、ポリ乳酸(PLA)、ポリブチレンサクシネート(PBS)、ポリヒドロキシアルカノエート(PHA)及びこれらの共重合体等;
 勿論、成形性が損なわれない限り、これらの熱可塑性樹脂のブレンド物を使用することもできる。また、包装材の分野では、特に上記の中でも、ポリエチレンテフタレート等のポリエステルや、ポリエチレン、ポリプロピレン等のオレフィン系樹脂が最も好適に使用される。
Generally, when used in the packaging field, it is preferable that the first molded body 101 and the second molded body 103 are formed of the following thermoplastic resin.
Olefin resins such as low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), linear low density polyethylene (LLDPE), polypropylene (PP), poly 1-butene, poly 4-methyl Random or block copolymers of α-olefins such as -1-pentene or ethylene, propylene, 1-butene, 4-methyl-1-pentene, cyclic olefin copolymers, etc.;
Ethylene-vinyl acetate copolymers, for example, ethylene-vinyl acetate copolymers, ethylene-vinyl alcohol copolymers, ethylene-vinyl chloride copolymers, ion-crosslinked olefin copolymers (ionomers), etc.;
Styrene-based resins such as polystyrene, acrylonitrile / styrene copolymer, ABS, α-methylstyrene / styrene copolymer, etc .;
Vinyl-based resins such as polyvinyl chloride, polyvinylidene chloride, vinyl chloride / vinylidene chloride copolymer, methyl polyacrylate, polymethyl methacrylate, etc.;
Polyamide resin, for example, nylon 6, nylon 6-6, nylon 6-10, nylon 11, nylon 12, etc .;
Polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polyethylene furanoate (PEF), polytrimethylene furanoate (PTF) and copolymerized polyesters thereof and the like;
Polycarbonate resin;
Polyphenylene oxide resin;
Biodegradable resins such as polylactic acid (PLA), polybutylene succinate (PBS), polyhydroxyalkanoates (PHA) and copolymers thereof;
Of course, a blend of these thermoplastic resins can also be used as long as the moldability is not impaired. Further, in the field of packaging materials, particularly among the above, polyesters such as polyethylene teflate and olefin resins such as polyethylene and polypropylene are most preferably used.
 尚、使用形態によっては、第2の成形体103の第1の成形体101側の表面或いはその反対側の表面に、蒸着等により酸化珪素等の金属酸化物の蒸着膜が設けられていてもよい。 Depending on the mode of use, even if a vapor deposition film of a metal oxide such as silicon oxide is provided on the surface of the second molded body 103 on the side of the first molded body 101 or the surface on the opposite side by vapor deposition or the like. good.
 ところで、第1の成形体101は、プラスチック製であることから、その酸素透過度は、金属材料等に比して大きいことから、この第1の成形体101には、酸素等に対するバリア性を付与することが要求される。特に、第2の成形体103は、第1の成形体101上に接着せずに重ねているに過ぎないため、図1に示されているように、第1の成形体101と第2の成形体103との間に、微小な空隙CLが形成される場合があり、この空隙CLにともなって空気層が存在しうる。従って、第1の成形体101の酸素透過を抑制することが求められるわけである。 By the way, since the first molded product 101 is made of plastic, its oxygen permeability is higher than that of a metal material or the like. Therefore, the first molded product 101 has a barrier property against oxygen or the like. It is required to grant. In particular, since the second molded body 103 is merely overlapped on the first molded body 101 without being adhered to each other, the first molded body 101 and the second molded body 101 are as shown in FIG. A minute void CL may be formed between the molded body 103 and the molded body 103, and an air layer may be present along with the void CL. Therefore, it is required to suppress the oxygen permeation of the first molded product 101.
<バリアコーティング105>
 本発明においては、第1の成形体101への酸素透過を抑制するために、バリアコーティング105が設けられる。即ち、このようなバリアコーティング105を設けることにより、酸素透過度の大きいプラスチック製の第1の成形体101を透過する酸素を有効に抑制することができる。
<Barrier coating 105>
In the present invention, the barrier coating 105 is provided in order to suppress the permeation of oxygen into the first molded product 101. That is, by providing such a barrier coating 105, oxygen permeating through the first plastic molded body 101 having a high oxygen permeability can be effectively suppressed.
 尚、本発明においては、図1に示されているように、バリアコーティング105は、第1の成形体101の表面(第2の成形体103側の表面)に設けられていることが最も好適であり、これにより、空隙CLに存在する空気の第1の成形体105の透過を有効に防止することができる。しかるに、第2の成形体103がプラスチック製或いは紙製である場合、第2の成形体103の表面(即ち、第1の成形体101側の表面)にバリアコーティング105を設けることもできる。即ち、これにより、第2の成形体103及び空隙CLを通っての酸素の透過を防止することができるからである。勿論、第1の成形体101と第2の成形体103との間に存在することを条件として、第1の成形体101の表面及と第2の成形体103の表面との両方にバリアコーティング105を設けることもできる。 In the present invention, as shown in FIG. 1, it is most preferable that the barrier coating 105 is provided on the surface of the first molded product 101 (the surface on the side of the second molded product 103). This makes it possible to effectively prevent the permeation of the air existing in the void CL through the first molded product 105. However, when the second molded body 103 is made of plastic or paper, the barrier coating 105 can be provided on the surface of the second molded body 103 (that is, the surface on the side of the first molded body 101). That is, this makes it possible to prevent the permeation of oxygen through the second molded body 103 and the void CL. Of course, the barrier coating is applied to both the surface of the first molded body 101 and the surface of the second molded body 103, provided that it exists between the first molded body 101 and the second molded body 103. 105 can also be provided.
 本発明において、上記のバリアコーティング105は、スプレー噴霧、ディッピング、ロールコート等の塗布により形成されるものであるが、特に、重要な点には、このバリアコーティング105は、水洗により除去が可能となっていることである。
 即ち、種々のプラスチック製品の廃棄物は、この製品を形成しているプラスチック毎に回収され、プラスチックと共に使用されている他の部品と機械的に分離されて回収され、これにより、各種のプラスチック或いは他の部品等再利用が可能となるが、プラスチック製品がバリア材を含む多層構造となっている場合、このバリア材を除去することができず、プラスチックの再利用が困難となってしまう。
 しかるに、本発明では、バリアコーティング105が水洗による除去が可能となっているため、例えば、PETボトルリサイクル推進協議会の公表している指定PETボトルの自主設計ガイドラインに示された90℃に加熱した1.5%アルカリ水溶液中に15分浸漬することで容易に取り除くことができるため、第1の成形体の酸素透過を有効に抑制し、第1の成形体によって覆われている領域に存在する物質の酸化劣化を有効に防止することができるばかりか、第1の成形体101や第2の成形体103を形成しているプラスチック素材等の再利用も可能となる。
In the present invention, the barrier coating 105 is formed by spray spraying, dipping, roll coating, or the like, but it is particularly important that the barrier coating 105 can be removed by washing with water. It is that.
That is, the waste of various plastic products is collected for each plastic forming this product, and is mechanically separated from other parts used together with the plastic and collected, whereby various plastics or various plastics or Other parts and the like can be reused, but when the plastic product has a multi-layer structure including a barrier material, the barrier material cannot be removed and it becomes difficult to reuse the plastic.
However, in the present invention, since the barrier coating 105 can be removed by washing with water, for example, it is heated to 90 ° C. specified in the voluntary design guideline for designated PET bottles published by the PET Bottle Recycling Promotion Council. Since it can be easily removed by immersing it in a 1.5% alkaline aqueous solution for 15 minutes, it effectively suppresses oxygen permeation of the first molded product and exists in the region covered by the first molded product. Not only can the oxidative deterioration of the substance be effectively prevented, but also the plastic material or the like forming the first molded body 101 or the second molded body 103 can be reused.
 本発明において、上記のような水洗により除去可能なバリアコーティング105は、水溶性バインダを含むものであり、この水溶性バインダに、酸素遮断性を高めるための機能性材料が分散している構造を有している。 In the present invention, the barrier coating 105 that can be removed by washing with water as described above contains a water-soluble binder, and the water-soluble binder has a structure in which a functional material for enhancing oxygen blocking property is dispersed. Have.
水溶性バインダ;
 上記の水溶性バインダとしては、成膜性を有しており、水洗による除去可能な水溶性を有しているものであれば、種々の水溶性材料を使用することができる。
 例えば、その具体例としては、これに限定されるものではないが、水溶性ポリマー、例えば、ポリビニルアルコールポリマー、ポリカルボン酸ポリマー、ポリアリルアミン、ポリエチレンイミンなどを挙げることができる。また、澱粉、カルボキシメチルセルロース、アルギン酸ソーダ等の多糖類もしくはその誘導体も水溶性バインダとして使用することができる。
 上記ポリビニルアルコールポリマーは、ビニルエステル化合物を重合し、次いでこれを完全または部分的にけん化することにより得られるものである。本発明における、水洗による除去を可能とする観点からは、未変性のポリビニルアルコール樹脂を用いることが好ましいが、部分的に変性された変性ポリビニルアルコール樹脂を用いてもよい。
 また、上記ポリカルボン酸ポリマーには、ポリアクリル酸、ポリメタクリル酸、ポリマレイン酸、ポリイタコン酸、アクリル酸-メタクリル酸コポリマー等のカルボキシル基を有するモノマーの単独重合体又は共重合体、及びこれらの部分中和物を使用することができ、好適には、ポリアクリル酸、ポリメタクリル酸を用いることが好ましい。これらポリマーの中でも、特に入手のし易さ、成膜性等の観点からポリビニルアルコールポリマーが最も好適である。
Water-soluble binder;
As the water-soluble binder, various water-soluble materials can be used as long as they have a film-forming property and are water-soluble so that they can be removed by washing with water.
For example, specific examples thereof include, but are not limited to, water-soluble polymers such as polyvinyl alcohol polymers, polycarboxylic acid polymers, polyallylamine, and polyethyleneimine. Further, polysaccharides such as starch, carboxymethyl cellulose and sodium alginate or derivatives thereof can also be used as a water-soluble binder.
The polyvinyl alcohol polymer is obtained by polymerizing a vinyl ester compound and then saponifying it completely or partially. From the viewpoint of enabling removal by washing with water in the present invention, it is preferable to use an unmodified polyvinyl alcohol resin, but a partially modified modified polyvinyl alcohol resin may be used.
In addition, the polycarboxylic acid polymer includes homopolymers or copolymers of monomers having a carboxyl group such as polyacrylic acid, polymethacrylic acid, polymaleic acid, polyitaconic acid, and acrylic acid-methacrylic acid copolymers, and portions thereof. A neutralized product can be used, and preferably polyacrylic acid and polymethacrylic acid are used. Among these polymers, the polyvinyl alcohol polymer is most preferable from the viewpoint of easy availability, film forming property, and the like.
機能性材料;
 酸素遮断性を高めるための機能性材料には、所謂、パッシブバリア材とアクティブバリア材がある。
Functional material;
Functional materials for enhancing oxygen barrier properties include so-called passive barrier materials and active barrier materials.
 パッシブバリア材としては、例えば、モンモリロナイト等の層状粘土鉱物や、所謂ガスバリア性樹脂を使用することができるが、特に層状粘土鉱物が、上記の水溶性バインダ中に均一に分散することができ、高い酸素バリア性を示すという観点から、本発明では好適に使用される。 As the passive barrier material, for example, a layered clay mineral such as montmorillonite or a so-called gas barrier resin can be used, but in particular, the layered clay mineral can be uniformly dispersed in the above-mentioned water-soluble binder, which is high. From the viewpoint of exhibiting oxygen barrier properties, it is preferably used in the present invention.
 また、アクティブバリア材は、酸素と反応して容易に酸化されるものであり、有機及び無機の各種材料が知られているが、特に前述した水溶性バインダ中に均一に分散することができ、透明性の観点から、有機系の被酸化性材料が好適に使用される。 Further, the active barrier material is easily oxidized by reacting with oxygen, and various organic and inorganic materials are known. In particular, the active barrier material can be uniformly dispersed in the above-mentioned water-soluble binder. From the viewpoint of transparency, an organic oxidizable material is preferably used.
 有機系の被酸化性材料としては、例えば、アスコルビン酸(ビタミンC)、トコフェロール(ビタミンE)、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール、エルソルビン酸ナトリウム、没食子酸プロピルなどの所謂酸素吸収剤もしくは酸化防止剤として知られている化合物や、ポリブタジエンやポリイソプレン等の脂肪族不飽和結合を有するポリエン重合体、さらには、不飽和脂環構造を有する化合物等が代表的であるが、中でも、不飽和脂環構造を有する化合物が好適に使用される。このような有機系被酸化性材料は、酸素遮断性が高いばかりか、着色の問題が無く、透明性を必要とする用途に好適に使用できる。
 尚、不飽和脂環構造を有する化合物は、これが酸素と接触したとき、環内の不飽和結合の部分が容易に酸化され、これにより、酸素が吸収され、酸素吸収性が発揮されるが、芳香族環内に存在する不飽和結合では、このような被酸化性は示さない。
Examples of the organic oxidizable material include so-called oxygen absorbers or antioxidants such as ascorbic acid (vitamin C), tocopherol (vitamin E), dibutylhydroxytoluene, butylhydroxyanisole, sodium elsorbate, and propyl carouside. A compound known as, a polyene polymer having an aliphatic unsaturated bond such as polybutadiene or polyisoprene, and a compound having an unsaturated alicyclic structure are typical, and among them, an unsaturated alicyclic. Compounds having a structure are preferably used. Such an organic oxidizable material not only has high oxygen blocking property, but also has no problem of coloring, and can be suitably used for applications requiring transparency.
In a compound having an unsaturated alicyclic structure, when it comes into contact with oxygen, the unsaturated bond portion in the ring is easily oxidized, whereby oxygen is absorbed and oxygen absorption is exhibited. Unsaturated bonds present within the aromatic ring do not exhibit such oxidizability.
 本発明において、上記のような不飽和脂環構造を有する化合物(不飽和脂環構造化合物)としては、メチルテトラヒドロインデン、5-エチリデン-2-ノルボルネン、5-メチレン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネン、5-ビニリデン-2-ノルボルネン、6-クロロメチル-5-イソプロペニル-2-ノルボルネン、ジシクロペンタジエン等がある。本発明においては、特に下記式(1):
Figure JPOXMLDOC01-appb-C000003
    式中、環Xは、1つの不飽和結合を有する脂肪族環であり、
       Yは、アルキル基である、
で表わされる酸無水物、該酸無水物から誘導されるエステル、アミド、イミド又はジカルボン酸、及び該酸無水物に由来する構成単位を有する重合体からなる群より選択された少なくとも一種が、最も好適に使用される。
In the present invention, examples of the compound having an unsaturated alicyclic structure as described above (unsaturated alicyclic compound) include methyltetrahydroinden, 5-ethylidene-2-norbornene, 5-methylene-2-norbornene, and 5-isopropi. There are lidene-2-norbornene, 5-vinylidene-2-norbornene, 6-chloromethyl-5-isopropenyl-2-norbornene, dicyclopentadiene and the like. In the present invention, the following formula (1):
Figure JPOXMLDOC01-appb-C000003
In the formula, ring X is an aliphatic ring having one unsaturated bond.
Y is an alkyl group,
At least one selected from the group consisting of an acid anhydride represented by, an ester derived from the acid anhydride, an amide, an imide or a dicarboxylic acid, and a polymer having a structural unit derived from the acid anhydride is the most. Suitable for use.
 上記の式(1)において、脂肪族環Xは、一つの不飽和結合を有する6員環、即ち、シクロヘキセン環であり、不飽和結合の位置は、3位及び4位の何れでもよいが、特に3位であることが被酸化性の観点から好適である。また、アルキル基としては、特に制限されないが、一般的には、合成上及び被酸化性の観点から、炭素数が3以下の低級アルキル基、特にメチル基が好ましく、その結合位置は、一般に3位或いは4位の何れでもよい。このような酸無水物は、アルキルテトラヒドロ無水フタル酸であり、無水マレイン酸とジエンとのディールスアルダー反応により得られ、それぞれ異性体の混合物の形態で得られ、その混合物のまま、機能性材料として使用することができる。
 本発明において、上記酸無水物の最も好適な例としては、下記式(2)で表される3-メチル-Δ-テトラヒドロフタル酸無水物、及び下記式(3)で表される4-メチル-Δ-テトラヒドロフタル酸無水物を挙げることができる。
In the above formula (1), the aliphatic ring X is a 6-membered ring having one unsaturated bond, that is, a cyclohexene ring, and the position of the unsaturated bond may be either the 3-position or the 4-position. In particular, the 3-position is preferable from the viewpoint of oxidability. The alkyl group is not particularly limited, but generally, from the viewpoint of synthesis and oxidability, a lower alkyl group having 3 or less carbon atoms, particularly a methyl group is preferable, and the bonding position thereof is generally 3. It may be either the 4th place or the 4th place. Such an acid anhydride is alkyltetrahydrophthalic anhydride, which is obtained by the Diels-Alder reaction of maleic anhydride and diene, each obtained in the form of a mixture of isomers, and the mixture remains as a functional material. Can be used.
In the present invention, as the most preferable examples of the acid anhydride, 3-methyl -Δ represented by the following formula (2) 4 - represented by tetrahydrophthalic anhydride, and the following formula (3) 4- Methyl-Δ 3 -tetrahydrophthalic anhydride can be mentioned.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 また、上記の酸無水物は、それ自体公知の方法で誘導体を形成し得るが、不飽和脂環構造が維持されている限り、このような誘導体を酸素吸収成分(B)として使用することができる。即ち、上記の酸無水物から誘導されるエステル、アミド、イミド、或いはジカルボン酸を、被酸化性の機能性材料して使用することができる。 Further, the above-mentioned acid anhydride can form a derivative by a method known per se, but such a derivative can be used as the oxygen absorbing component (B) as long as the unsaturated alicyclic structure is maintained. can. That is, an ester, amide, imide, or dicarboxylic acid derived from the above acid anhydride can be used as an oxidizable functional material.
 上記のエステルは、アルキルテトラヒドロ無水フタル酸等の酸無水物と各種アルコールと反応させて得られるエステルであり、エステル化に用いるアルコールとしては、特に制限されず、メチルアルコールやエチルアルコールやプロピルアルコール等の脂肪族アルコールやフェノールやベンジルアルコール等の芳香族アルコールの何れも使用することができる。さらにグリコール等の多価アルコールも使用することができる。この場合には、1分子中のアルコールの数に相当する数の不飽和脂環構造を導入することができる。
 また、かかるエステルは、上記酸無水物の部分エステルであってもよい。
 即ち、このようなエステルは、例えば下記式で表される。
     R-O-OC-Z-CO-O-R
     HOOC-Z-CO-O-R
   或いは
     HOOC-Z-CO-O-R-O-CO-Z-COOH
   式中、Zは、酸無水物が有する不飽和脂環であり、
      Rは、反応に用いたアルコールに由来する有機基である。
The above ester is an ester obtained by reacting an acid anhydride such as alkyltetrahydrophthalic anhydride with various alcohols, and the alcohol used for esterification is not particularly limited, and methyl alcohol, ethyl alcohol, propyl alcohol and the like are not particularly limited. Any of the aliphatic alcohols and aromatic alcohols such as phenol and benzyl alcohol can be used. Further, a polyhydric alcohol such as glycol can also be used. In this case, an unsaturated alicyclic structure corresponding to the number of alcohols in one molecule can be introduced.
Further, such an ester may be a partial ester of the acid anhydride.
That is, such an ester is represented by, for example, the following formula.
ROO-OC-Z-CO-OR
HOOC-Z-CO-OR
Alternatively, HOOC-Z-CO-O-R-O-CO-Z-COOH
In the formula, Z is an unsaturated alicyclic of the acid anhydride.
R is an organic group derived from the alcohol used in the reaction.
 また、上記のアミドは、アルキルテトラヒドロ無水フタル酸等の酸無水物と各種アミン化合物と反応させて得られるものである。
 用いるアミンは、特に制限されず、メチルアミン、エチルアミン、プロピルアミン等の脂肪族アミンや、フェニルアミン等の芳香族アミンの何れも使用することができ、酸無水物基を形成している2個のカルボニル基の内の一方がアミド化されたものであってもよいし、両方がアミド化されたものであってもよい。さらに、モノアミンに限定されず、ジアミン、トリアミン等の多価アミンも使用することができ、この場合には、1分子中のアミンの数に相当する数の不飽和脂環構造を導入することができる。
The above amide is obtained by reacting an acid anhydride such as alkyltetrahydrophthalic anhydride with various amine compounds.
The amine used is not particularly limited, and any of an aliphatic amine such as methylamine, ethylamine and propylamine and an aromatic amine such as phenylamine can be used, and two amines forming an acid anhydride group can be used. One of the carbonyl groups of the above may be amidated, or both may be amidated. Furthermore, the present invention is not limited to monoamines, and polyvalent amines such as diamines and triamines can also be used. In this case, an unsaturated alicyclic structure corresponding to the number of amines in one molecule can be introduced. can.
 また、イミドは、上記のアミドを熱処理してイミド化したものであり、例えば、下記式;
    HOOC-Z-CONH-R
   或いは
    HOOC-Z-CONH-R-CONH-Z-COOH
   式中、Zは、酸無水物が有する不飽和脂環であり、
      Rは、反応に用いたアミンに由来する有機基である、
で表されるアミドを熱処理することにより得られ、下記式;
    Z-(CO)-N-R
   或いは
    Z-(CO)-N-R-N-(CO)-Z
   式中、Z及びRは、上記と同じである、
で表される。
The imide is an imidized product obtained by heat-treating the above amide, and is, for example, the following formula;
HOOC-Z-CONH-R
Alternatively, HOOC-Z-CONH-R-CONH-Z-COOH
In the formula, Z is an unsaturated alicyclic of the acid anhydride.
R is an organic group derived from the amine used in the reaction.
It is obtained by heat-treating the amide represented by the following formula;
Z- (CO) 2 -NR
Alternatively, Z- (CO) 2 -N-RN- (CO) 2- Z
In the formula, Z and R are the same as above.
It is represented by.
 さらに、ジカルボン酸は、酸無水物が加水分解して酸無水物基が開裂したものであり、下記式で表される。
    HOOC-Z-COOH
   式中、Z及びRは、上記と同じである。
Further, the dicarboxylic acid is obtained by hydrolyzing the acid anhydride and cleaving the acid anhydride group, and is represented by the following formula.
HOOC-Z-COOH
In the formula, Z and R are the same as above.
 さらに、前述した酸無水物に由来する構成単位を有する重合体も、酸素吸収性を示すため、水溶性バインダ中に配合する機能性材料として使用することができる。即ち、前述した式(1)で表される酸無水物は、ポリエステルを形成する二塩基酸成分として使用することができる。このような共重合ポリエステルは、分子鎖中に不飽和脂環構造を有しており、従って、所定の酸素吸収性(被酸化性)を示すため、酸素遮断性を付与する機能性材料として使用することが可能となるわけである。 Furthermore, a polymer having a structural unit derived from the acid anhydride described above can also be used as a functional material to be blended in a water-soluble binder because it exhibits oxygen absorption. That is, the acid anhydride represented by the above-mentioned formula (1) can be used as a dibasic acid component forming a polyester. Such a copolymerized polyester has an unsaturated alicyclic structure in the molecular chain and therefore exhibits a predetermined oxygen absorption (oxidation property), and therefore is used as a functional material for imparting oxygen blocking property. It is possible to do so.
 また、本発明においては、上述した一般式で表される酸無水物、或いは該酸無水物から誘導される化合物の中でも、特に分子量が2000以下、より好ましくは1000以下の非ポリマー型の化合物(即ち、繰り返し単位を分子中に有していない化合物)が好適である。このような低分子量の非ポリマー型化合物は分子の運動性が高いため、特に酸素との反応性が高く、また水溶性バインダとの相溶性も高いので、高い酸素吸収性と透明性を示すからである。また、このような低分子量の非ポリマー型の化合物の中でも、特に前記一般式(1)の酸無水物とアミンとの反応物であるアミドを熱処理して得られるイミド化合物が特に高い酸素吸収能を示し、より好適に使用される。 Further, in the present invention, among the acid anhydride represented by the above general formula or the compound derived from the acid anhydride, a non-polymer type compound having a molecular weight of 2000 or less, more preferably 1000 or less ( That is, a compound having no repeating unit in the molecule) is preferable. Since such low molecular weight non-polymeric compounds have high molecular mobility, they are particularly highly reactive with oxygen and highly compatible with water-soluble binders, so that they exhibit high oxygen absorption and transparency. Is. Among such low molecular weight non-polymeric compounds, the imide compound obtained by heat-treating the amide, which is a reaction product of the acid anhydride of the general formula (1) and an amine, has a particularly high oxygen absorption capacity. Is shown, and it is used more preferably.
 このようなイミド化合物の製造に使用される前記アミンとしては、脂肪族アミン及び芳香族アミンのいずれも使用することができる。 As the amine used in the production of such an imide compound, either an aliphatic amine or an aromatic amine can be used.
 なお、上記の脂肪族アミン及び芳香族アミンの例としては、メチルアミン、メチレンジアミン、プロピルアミン、プロピレンジアミン、ブチルアミン、ブチレンジアミン、ペンチルアミン、ペンタメチレンジアミン、ヘキシルアミン、ヘキサメチレンジアミン、ヘプチルアミン、ヘプタメチレンジアミン、オクチルアミン、オクタメチレンジアミン、ノニルアミン、ノナメチレンジアミン、デシルアミン、デカメチレンジアミン、ウンデシルアミン、ウンデカメチレンジアミン、ドデシルアミン、ドデカメチレンジアミン、トリデシルアミン、トリデカメチレンジアミン、テトラデシルアミン、テトラデカメチレンジアミン、ペンタデシルアミン、ペンタデカメチレンジアミン、ヘキサデシルアミン、ヘキサデカメチレンジアミン、ヘプタデシルアミン、ヘプタデカメチレンジアミン、オクタデシルアミン、オクタデカメチレンジアミン、ノナデシルアミン、ノナデカメチレンジアミン、エイコシルアミン、1,3-ビス(アミノメチル)シクロヘキサン、トリス(2-アミノエチル)アミン、m-キシリレンジアミン、p-キシリレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、2,4,6-トリアミノー1,3,5-トリアジン、2,4,6-トリアミノピリミジン等を挙げることができる。 Examples of the above aliphatic amines and aromatic amines include methylamine, methylenediamine, propylamine, propylenediamine, butylamine, butylenediamine, pentylamine, pentamethylenediamine, hexylamine, hexamethylenediamine, and heptylamine. Heptamethylenediamine, octylamine, octamethylenedimine, nonylamine, nonamethylenediamine, decylamine, decamethylenedimine, undecylamine, undecamethylenediamine, dodecylamine, dodecamethylenediamine, tridecylamine, tridecamethylenediamine, tetradecyl Amine, tetradecamethylenediamine, pentadecylamine, pentadecamethylenediamine, hexadecylamine, hexadecamethylenediamine, heptadecylamine, heptadecamethylenediamine, octadecylamine, octadecamethylenediamine, nonadecilamine, nonadecamethylenediamine, eiko Sylamine, 1,3-bis (aminomethyl) cyclohexane, tris (2-aminoethyl) amine, m-xylylene diamine, p-xylylene diamine, p-phenylenediamine, 4,4'-diaminodiphenylmethane, 4, Examples thereof include 4'-diaminodiphenyl ether, 2,4,6-triamino-1,3,5-triazine, 2,4,6-triaminopyrimidine and the like.
 本発明においては、上述した各種の機能性材料の中でも、特に高い酸素遮断性を示すという観点から、脂肪族不飽和結合或いは不飽和脂環構造を有する化合物が好適に使用され、特に不飽和脂環構造を有する化合物が最も好適に使用される。 In the present invention, among the various functional materials described above, a compound having an aliphatic unsaturated bond or an unsaturated alicyclic structure is preferably used from the viewpoint of exhibiting particularly high oxygen blocking property, and particularly unsaturated fat. Compounds having a ring structure are most preferably used.
 本発明において、上述した機能性材料は、その種類に応じて、十分な酸素吸収性、即ち、酸素遮断性が得られるような量で水溶性バインダ中に配合されていればよい。具体的な配合量は、その種類によって異なるため、一概に規定することはできないが、一般的には、水溶性バインダ100質量部当り、10~300質量部、特に50~250質量部の量で使用されていることが好ましい。この量が少な過ぎると、十分な酸素遮断性を確保することができず、また、多すぎると、水溶性バインダの成膜性が損なわれ、一様な厚みのコーティング105を形成することが困難となるおそれがある。 In the present invention, the above-mentioned functional material may be blended in the water-soluble binder in an amount such that sufficient oxygen absorption, that is, oxygen blocking property can be obtained, depending on the type thereof. Since the specific blending amount differs depending on the type, it cannot be unconditionally specified, but generally, the amount is 10 to 300 parts by mass, particularly 50 to 250 parts by mass per 100 parts by mass of the water-soluble binder. It is preferable that it is used. If this amount is too small, sufficient oxygen blocking property cannot be ensured, and if it is too large, the film forming property of the water-soluble binder is impaired, and it is difficult to form a coating 105 having a uniform thickness. There is a risk of becoming.
 また、上述した機能性材料として、脂肪族不飽和結合或いは不飽和脂環構造を有する化合物が使用される場合には、不飽和結合と酸素との反応(酸素吸収性)を促進させるため、それ自体公知の遷移金属触媒をバリアコーティング105中に分散させておくこともできる。
 このような遷移金属触媒は、所謂触媒量で使用することができ、通常、上記化合物当り、遷移金属換算で1000ppm以下の量で、遷移金属の低価数の無機塩、有機塩或いは錯塩の形で適宜使用することができる。
Further, when a compound having an aliphatic unsaturated bond or an unsaturated alicyclic structure is used as the above-mentioned functional material, it is used in order to promote the reaction between the unsaturated bond and oxygen (oxygen absorption). A transition metal catalyst known per se can also be dispersed in the barrier coating 105.
Such a transition metal catalyst can be used in a so-called catalytic amount, and is usually in the form of a low-valent inorganic salt, organic salt or complex salt of the transition metal in an amount of 1000 ppm or less in terms of the transition metal per the above compound. Can be used as appropriate.
 かかる遷移金属触媒において、遷移金属としては、鉄、コバルト、ニッケル等の周期律表第VIII族金属が好適であるが、他に銅、銀等の第I族金属、錫、チタン、ジルコニウム等の第IV族金属、バナジウム等の第V族金属、クロム等の第VI族金属、マンガン等の第VII族金属等であってもよい。これらの中でも特にコバルトは、酸素吸収性(酸化性有機成分の酸化)を著しく促進させるため、特に好適である。 In such a transition metal catalyst, as the transition metal, a Group VIII metal of the periodic table such as iron, cobalt and nickel is suitable, but other metals such as Group I metal such as copper and silver, tin, titanium and zirconium are used. It may be a Group IV metal, a Group V metal such as vanadium, a Group VI metal such as chromium, a Group VII metal such as manganese, or the like. Of these, cobalt is particularly suitable because it significantly promotes oxygen absorption (oxidation of oxidizing organic components).
 また、上記遷移金属の無機塩としては、塩化物などのハライド、硫酸塩等のイオウのオキシ塩、硝酸塩などの窒素のオキシ酸塩、リン酸塩などのリンオキシ塩、ケイ酸塩等が挙げられる。 Examples of the inorganic salt of the transition metal include halides such as chlorides, sulfur oxy salts such as sulfates, nitrogen oxyate salts such as nitrates, phosphor oxy salts such as phosphates, and silicates. ..
 遷移金属の有機塩としては、カルボン酸塩、スルホン酸塩、ホスホン酸塩などが挙げられるが、本発明においては、カルボン酸塩が好適である。その具体例としては、酢酸、プロピオン酸、イソプロピオン酸、ブタン酸、イソブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、イソヘプタン酸、オクタン酸、2-エチルヘキサン酸、ノナン酸、3,5,5-トリメチルヘキサン酸、デカン酸、ネオデカン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マーガリン酸、ステアリン酸、アラキン酸、リンデル酸、ツズ酸、ペトロセリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、ギ酸、シュウ酸、スルファミン酸、ナフテン酸等の遷移金属塩を挙げることができる。 Examples of the organic salt of the transition metal include carboxylic acid salt, sulfonate, phosphonate, and the like, but in the present invention, the carboxylic acid salt is preferable. Specific examples thereof include acetic acid, propionic acid, isopropionic acid, butanoic acid, isobutanoic acid, pentanoic acid, hexanoic acid, heptanic acid, isoheptanic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, 3,5,5. -Trimethylhexanoic acid, decanoic acid, neodecanoic acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, araquinic acid, linder acid, tsuzuic acid, petroseric acid, oleic acid, linoleic acid, linolenic acid , Arachidonic acid, formic acid, oxalic acid, sulfamic acid, naphthenic acid and other transition metal salts.
 遷移金属の錯体としては、β-ジケトンまたはβ-ケト酸エステルとの錯体が挙げられる。 Examples of the transition metal complex include a complex with β-diketone or β-keto acid ester.
 本発明に用いるバリアコーティング105には着色剤や紫外線吸収剤を配合することで酸素バリア性に加え遮光性を付与することができる。着色剤としては公知の顔料や染料を用いることができる。
 さらに、バリアコーティング105には、着色剤や紫外線吸収剤以外にも、その特性を損なわない範囲内で、粘度調整剤、消泡剤、充填剤、耐熱安定剤、耐候安定剤、酸化防止剤、老化防止剤、光安定剤、帯電防止剤、金属セッケン、ワックス、改質用樹脂乃至ゴム等の公知の配合剤を、それ自体公知の処方に従って配合することもできる。
By blending a colorant or an ultraviolet absorber into the barrier coating 105 used in the present invention, it is possible to impart a light-shielding property in addition to an oxygen barrier property. Known pigments and dyes can be used as the colorant.
Further, in addition to the colorant and the ultraviolet absorber, the barrier coating 105 includes a viscosity modifier, a defoaming agent, a filler, a heat-resistant stabilizer, a weather-resistant stabilizer, and an antioxidant, as long as the characteristics are not impaired. Known blending agents such as anti-aging agents, light stabilizers, antistatic agents, metal viscosities, waxes, modifying resins and rubbers can also be blended according to their own known formulations.
 上記のような水溶性バインダと機能性材料とからなるバリアコーティング105の厚みは、二重構造体100の用途に応じて、要求される酸素遮断性が確保できるような厚みに設定される。 The thickness of the barrier coating 105 made of the water-soluble binder and the functional material as described above is set to a thickness that can secure the required oxygen blocking property according to the application of the double structure 100.
 尚、バリアコーティング105の形成は、例えば、前述した水溶性バインダ、機能性材料及び適宜使用される遷移金属触媒を、水やエタノール等の揮発性の溶剤に投入して混合し、得られた塗布液を、必要に応じ塗布性を高めるための表面処理やアンカーコートを施した第1の成形体101(或いは第2の成形体103)の表面に塗布し、乾燥することにより容易に行うことができる。 The barrier coating 105 is formed by, for example, adding the above-mentioned water-soluble binder, functional material, and appropriately used transition metal catalyst into a volatile solvent such as water or ethanol and mixing them to obtain the coating. The liquid can be easily applied by applying the liquid to the surface of the first molded body 101 (or the second molded body 103) which has been subjected to surface treatment or anchor coating to improve the coatability, if necessary, and dried. can.
<二重構造体100の好適な形態>
 上述した水洗により除去可能なバリアコーティング105が第1の成形体101と第2の成形体103との間に設けられている本発明の二重構造体100は、種々の形態に適用することができるが、特に二軸延伸ブロー成形によって成形される二重構造容器として好適に使用される。
<Preferable form of double structure 100>
The double structure 100 of the present invention in which the barrier coating 105 that can be removed by washing with water is provided between the first molded body 101 and the second molded body 103 can be applied to various forms. Although it can be formed, it is particularly preferably used as a double-structured container formed by biaxial stretch blow molding.
 このような二重構造容器の形態は、例えば図2に示されている。
 図2において、本発明の二重構造体100が適用された二重構造容器は、全体として10で示されており、外容器1と、外容器1の内部に収容されている内容器3とから構成されており、外容器1の内面と、内容器3の外面との間にバリアコーティング5が設けられている。即ち、この例では、外容器1が第2の成形体103に対応し、内容器3が第1の成形体101に対応し、バリアコーティング5は、水洗により除去可能なものとなっている。
The form of such a double-structured container is shown in FIG. 2, for example.
In FIG. 2, the double-structured container to which the double-structured structure 100 of the present invention is applied is indicated by 10 as a whole, and the outer container 1 and the inner container 3 housed inside the outer container 1 A barrier coating 5 is provided between the inner surface of the outer container 1 and the outer surface of the inner container 3. That is, in this example, the outer container 1 corresponds to the second molded body 103, the inner container 3 corresponds to the first molded body 101, and the barrier coating 5 can be removed by washing with water.
 図2において、外容器1は、ボトル形状を有しており、首部1a、首部1aに連なる胴部1b及び胴部1bの下端を閉じている底部1cとから形成されており、胴部1b及び底部1cがブロー延伸されている部分であり、首部1aは、ブロー延伸されていない固定部であり、ブロー延伸による薄肉化はされていない。また、首部1aには空気導入口7が形成され、胴部1bの中央部分には、スクイズし易いように、凹んだスクイズ領域が形成されている。 In FIG. 2, the outer container 1 has a bottle shape and is formed of a neck portion 1a, a body portion 1b connected to the neck portion 1a, and a bottom portion 1c closing the lower end of the body portion 1b. The bottom portion 1c is a blow-stretched portion, and the neck portion 1a is a fixed portion that is not blow-stretched, and is not thinned by blow-stretching. Further, an air introduction port 7 is formed in the neck portion 1a, and a recessed squeeze region is formed in the central portion of the body portion 1b so as to be easy to squeeze.
 また、図2の例では、外容器1の首部1aの外面にサポートリング1dが形成されている。 Further, in the example of FIG. 2, a support ring 1d is formed on the outer surface of the neck portion 1a of the outer container 1.
 一方、内容器3は、非延伸部である首部3aと、ブロー延伸されて袋状に薄肉となっている胴部3bとを有しており、成形直後の段階では、胴部3bの外面は、外容器1の胴部1b及び底部1cの内面に密着している。
 このような内容器3において、首部3aは、外容器1の首部1a内に嵌めこまれている。図1の例では、この首部3aの上方部分が外容器1の首部1aから突出しており、この突出した部分に、キャップを螺子固定するための螺子3cが形成されており、さらに、螺子3cの下方部分に、内容器3が外容器1内に深く侵入しないように、ストッパーとなる突起3dが形成されている。
 勿論、本発明が適用される二重構造容器10の形態は、図2に示されている形態に限定されるものではなく、例えば、内容器3の首部3aの上端に、ストッパーとなる突起3dのみを設け、外容器1の首部1aの外面(サポートリング1dの上方部)に、キャップを装着するための螺子を設けることもできる。
On the other hand, the inner container 3 has a neck portion 3a which is a non-stretched portion and a body portion 3b which is blow-stretched to have a thin bag shape. , It is in close contact with the inner surfaces of the body 1b and the bottom 1c of the outer container 1.
In such an inner container 3, the neck portion 3a is fitted in the neck portion 1a of the outer container 1. In the example of FIG. 1, the upper portion of the neck portion 3a protrudes from the neck portion 1a of the outer container 1, and a screw 3c for fixing the cap with a screw is formed in the protruding portion, and further, the screw 3c A protrusion 3d serving as a stopper is formed in the lower portion so that the inner container 3 does not penetrate deeply into the outer container 1.
Of course, the form of the double-structured container 10 to which the present invention is applied is not limited to the form shown in FIG. 2, and for example, a protrusion 3d serving as a stopper is formed on the upper end of the neck portion 3a of the inner container 3. Only can be provided, and a screw for attaching the cap can be provided on the outer surface of the neck portion 1a of the outer container 1 (the upper portion of the support ring 1d).
 本発明において、上述した外容器1は、ブロー成形可能な熱可塑性樹脂により形成されており、このような熱可塑性樹脂としては、先に述べたように、第2の成形体103の成形に使用される樹脂、例えば、オレフィン系樹脂やポリエステル樹脂等により形成することができるが、ブロー成形性、容器強度、透明性の観点で、ポリエステル樹脂、最適にはPETにより形成される。 In the present invention, the above-mentioned outer container 1 is formed of a blow-moldable thermoplastic resin, and such a thermoplastic resin is used for molding the second molded body 103 as described above. It can be formed of the resin to be used, for example, an olefin resin, a polyester resin, or the like, but is formed of a polyester resin, preferably PET, from the viewpoint of blow moldability, container strength, and transparency.
 さらに、内容器3は、外容器1と同様、ブロー成形可能な熱可塑性樹脂により形成され、特にブロー延伸条件の設定が容易であることから、内容器3形成用の熱可塑性樹脂と外容器1を形成している熱可塑性樹脂とが同種であることが好ましい。 Further, the inner container 3 is formed of a blow-moldable thermoplastic resin like the outer container 1, and since it is particularly easy to set blow-stretching conditions, the thermoplastic resin for forming the inner container 3 and the outer container 1 are formed. It is preferable that the thermoplastic resin forming the above is of the same type.
 本発明が適用される二重構造容器10では、図2に示されているように、外容器1の内面と内容器3の外面との間に、前述した水洗除去可能なバリアコーティング105に相当するコーティング5が存在している。
 即ち、このコーティング5により、内容器3内への酸素の透過が有効に抑制され、内容器3内に収容される内容物の酸化劣化を有効に回避し、その鮮度を長期にわたって維持することができる。しかも、このコーティング5は水洗により容易に除去することができるため、使用後に廃棄された二重構造容器10を稀アルカリ水溶液等による水洗によって速やかに取り除くことにより外容器1と内容器3を分離できる。従って、内容器3(或いは外容器1)を形成しているPET等の樹脂の再利用が容易となる。
In the double-structured container 10 to which the present invention is applied, as shown in FIG. 2, the space between the inner surface of the outer container 1 and the outer surface of the inner container 3 corresponds to the barrier coating 105 that can be washed and removed with water. There is a coating 5 to be used.
That is, the coating 5 effectively suppresses the permeation of oxygen into the inner container 3, effectively avoids oxidative deterioration of the contents contained in the inner container 3, and maintains the freshness for a long period of time. can. Moreover, since the coating 5 can be easily removed by washing with water, the outer container 1 and the inner container 3 can be separated by quickly removing the double-structured container 10 discarded after use by washing with water using a rare alkaline aqueous solution or the like. .. Therefore, it becomes easy to reuse the resin such as PET forming the inner container 3 (or the outer container 1).
 上記のバリアコーティング105に相当するコーティング5は、外容器1の内面に設けることもできるし、内容器3の外面に設けられていてもよいが、このボトル10は両者を接着していないので、両者の間には空隙が形成され空気層が存在しうる。従って、内容器3の外面にコーティング5を設けることが好適である。 The coating 5 corresponding to the barrier coating 105 may be provided on the inner surface of the outer container 1 or may be provided on the outer surface of the inner container 3, but since the bottle 10 does not adhere to both of them, A gap may be formed between the two and an air layer may exist. Therefore, it is preferable to provide the coating 5 on the outer surface of the inner container 3.
 上述した二重構造容器10は、上記のようなコーティング5が設けられるため、所謂スタックプリフォーム法により製造される。
 即ち、外容器1用の樹脂を用いての射出成形により得られた第1のプリフォーム(外容器成形用プリフォーム)と、内容器3用の樹脂を用いての射出成形により得られた第2のプリフォーム(内容器成形用プリフォーム)を使用し、第2のプリフォームを第1のプリフォーム内に挿入して多重構造のスタックプリフォームを形成し、このスタックプリフォームについて二軸延伸ブロー成形を行うという方法により製造される。
 即ち、かかる方法によれば、第2のプリフォームの外面(或いは第1のプリフォームの内面)に、コーティング5を容易に形成することができる。
Since the above-mentioned double-structured container 10 is provided with the above-mentioned coating 5, it is manufactured by the so-called stack preform method.
That is, the first preform obtained by injection molding using the resin for the outer container 1 (preform for molding the outer container) and the first preform obtained by injection molding using the resin for the inner container 3. Using 2 preforms (preforms for forming inner containers), insert the 2nd preform into the 1st preform to form a multi-structured stack preform, and biaxially stretch the stack preform. It is manufactured by a method of blow molding.
That is, according to such a method, the coating 5 can be easily formed on the outer surface of the second preform (or the inner surface of the first preform).
 上記のスタックプリフォーム法を説明するための図3及び図4において、図2の二重構造容器成形用のスタックプリフォームは、図4において全体として20で示されており、図3に示されているように何れも試験管形状を有している第1のプリフォーム11(図3(a)参照)と第2のプリフォーム13(図3(b)参照)とから形成される。
 即ち、第1のプリフォーム11が外容器成形用のプリフォーム、第2のプリフォーム13が内容器成形用のプリフォームであり、第2のプリフォーム13を第1のプリフォーム内に挿入して嵌合保持することにより、ブロー延伸工程に供されるスタックプリフォーム20が組み合立てられる。
In FIGS. 3 and 4 for explaining the above-mentioned stack preform method, the stack preform for forming a double-structured container of FIG. 2 is shown by 20 as a whole in FIG. 4, and is shown in FIG. As shown above, it is formed from a first preform 11 (see FIG. 3A) and a second preform 13 (see FIG. 3B), both of which have a test tube shape.
That is, the first preform 11 is a preform for molding the outer container, the second preform 13 is the preform for molding the inner container, and the second preform 13 is inserted into the first preform. By holding the fitting together, the stack preform 20 to be used in the blow stretching step is assembled.
 図3から理解されるように、第1のプリフォーム11及び第2のプリフォーム13は、何れも外容器1の首部1a及び内容器3の首部3aに相当する部分を有している。即ち、これらの部分は、何れも延伸成形されない部分であり、第1のプリフォーム11は、サポートリング1d及び射出成形後の後加工により形成された空気導入口7を有しており、第2のプリフォーム13は、螺子3c及び突起3dを有している。
 また、第1のプリフォーム11の首部1aの下方部分の下端が閉じられた筒状部11bが延伸成形される部分であり、ブロー延伸により、外容器1の胴部1b及び底部1cの形態に賦形される。
 さらに、第2のプリフォーム13の首部3aの下方部分の下端が閉じられた筒状部13bが延伸成形される部分であり、ブロー延伸により、内容器3の胴部3bの形態に賦形される。即ち、延伸成形により胴部3となる部分に、通常、前述した水溶性バインダ及び機能性材料を含むコーティング5(バリアコーティング105)が塗布により形成されることとなる。
As can be understood from FIG. 3, each of the first preform 11 and the second preform 13 has a portion corresponding to the neck portion 1a of the outer container 1 and the neck portion 3a of the inner container 3. That is, none of these portions are stretch-molded portions, and the first preform 11 has a support ring 1d and an air introduction port 7 formed by post-processing after injection molding, and a second preform 11. Preform 13 has a screw 3c and a protrusion 3d.
Further, the tubular portion 11b in which the lower end of the lower portion of the neck portion 1a of the first preform 11 is closed is stretch-molded, and by blow stretching, the body portion 1b and the bottom portion 1c of the outer container 1 are formed. It is shaped.
Further, the tubular portion 13b in which the lower end of the lower portion of the neck portion 3a of the second preform 13 is closed is stretch-molded, and is shaped into the form of the body portion 3b of the inner container 3 by blow stretching. NS. That is, a coating 5 (barrier coating 105) containing the above-mentioned water-soluble binder and functional material is usually formed on the portion to be the body portion 3 by stretch molding.
 このような第1のプリフォーム11内に、第2のプリフォーム13を挿入することによって図4に示す形態のスタックプリフォーム20を組み立て、ブロー金型内に配置し、所定の治具で首部1a,3aを含む部分を固定し(図4においてXで示す領域)、高周波加熱等により、このスタックプリフォーム20を延伸成形可能な温度(プリフォーム11,13を形成している樹脂のガラス転移点温度以上、融点未満)に加熱し、このスタックプリフォーム20(第2のプリフォーム13)内に、ストレッチロッド(図示せず)を挿入して一軸方向に延伸し、さらに、エア等のブロー流体を供給し、周方向に膨張させることにより、図2に示す形態の二重構造容器10が得られる。即ち、図4において、スタックプリフォーム20のYで示す領域が延伸成形される部分となる。 By inserting the second preform 13 into such a first preform 11, the stack preform 20 having the form shown in FIG. 4 is assembled, placed in a blow mold, and the neck portion is provided with a predetermined jig. The portion containing 1a and 3a is fixed (the region indicated by X in FIG. 4), and the stack preform 20 is stretch-moldable by high-frequency heating or the like (glass transition of the resin forming the preforms 11 and 13). Heat to a point temperature or higher and lower than the melting point), insert a stretch rod (not shown) into the stack preform 20 (second preform 13), stretch it in the uniaxial direction, and blow air or the like. By supplying the fluid and expanding it in the circumferential direction, the double-structured container 10 having the form shown in FIG. 2 can be obtained. That is, in FIG. 4, the region indicated by Y of the stack preform 20 is a portion to be stretch-molded.
 本発明においては、上記のような方法により二重構造容器10を成形することにより、水溶性バインダ及び機能性材料を含むコーティング5(バリアコーティング105)を容易に、外容器1と内容器3との間に形成することができる。
 例えば、共射出成形によりプリフォームを成形し、これを二軸延伸ブロー成形する方法では、外容器1と内容器3との間にバリア層を形成するためには、熱可塑性のバリア性樹脂を用いる、もしくはバリア材を分散させた熱可塑性樹脂を用いるという手段を取らざるを得ない。既に述べたように、このような方法で酸素に対するバリア性を付与する場合には、使用後に廃棄されたボトルからバリア材を除去することができず、リサイクル性が損なわれてしまう。
 しかるに、上述したスタック法を採用した場合には、外容器1用のプリフォーム(第1のプリフォーム11)と内容器3用のプリフォーム(第2のプリフォーム13)とが別個に成形されるため、これらプリフォーム11,13の間の所定部分に容易にコーティング5を形成することができ、しかもかかるコーティング5は水洗により容易に除去できるため、リサイクル性が損なわれることもない。
In the present invention, by molding the double-structured container 10 by the method as described above, the coating 5 (barrier coating 105) containing the water-soluble binder and the functional material can be easily applied to the outer container 1 and the inner container 3. Can be formed between.
For example, in the method of molding a preform by co-injection molding and biaxially stretching blow molding this, in order to form a barrier layer between the outer container 1 and the inner container 3, a thermoplastic barrier resin is used. There is no choice but to use or use a thermoplastic resin in which a barrier material is dispersed. As already described, when the barrier property against oxygen is imparted by such a method, the barrier material cannot be removed from the bottle discarded after use, and the recyclability is impaired.
However, when the stacking method described above is adopted, the preform for the outer container 1 (first preform 11) and the preform for the inner container 3 (second preform 13) are separately molded. Therefore, the coating 5 can be easily formed in the predetermined portion between the preforms 11 and 13, and the coating 5 can be easily removed by washing with water, so that the recyclability is not impaired.
 尚、上述した二重構造容器10においては、コーティング5(バリアコーティング105)は、先にも述べたように、水やエタノール等の揮発性溶剤を用いて塗布液を調製し、この塗布液を、噴霧或いはディッピング等により、第2のプリフォームの延伸成形される部分(筒状部13b)の外面に施し、次いで乾燥することにより、容易に形成することができ、この場合のコーティング5は、通常、コーティング5中の機能性材料が、1g/m以上の量で分布するように形成することが好適である。
 このようにしてコーティング5が設けられているスタックプリフォーム20をブロー延伸成形することにより、図2に示されているように、外容器1と内容器3との間に水洗除去可能なコーティング5を設けることができる。
 尚、かかるブロー延伸成形に際しては、コーティング5中の水溶性バインダ(さらには機能性材料)は流動状態にあるため、膜切れ等を生じることなく、第1のプリフォーム11及び第2のプリフォーム13と共に引き延ばされ、所定の領域にコーティング5を設けることができる。
In the double-structured container 10 described above, as described above, the coating 5 (barrier coating 105) prepares a coating liquid using a volatile solvent such as water or ethanol, and uses this coating liquid. The coating 5 can be easily formed by applying it to the outer surface of the stretch-molded portion (cylindrical portion 13b) of the second preform by spraying or dipping, and then drying it. Usually, it is preferable to form the functional material in the coating 5 so as to be distributed in an amount of 1 g / m 2 or more.
By blow-stretch molding the stack preform 20 provided with the coating 5 in this way, as shown in FIG. 2, the coating 5 that can be washed and removed between the outer container 1 and the inner container 3 can be removed. Can be provided.
At the time of such blow stretching molding, since the water-soluble binder (and the functional material) in the coating 5 is in a fluid state, the first preform 11 and the second preform do not cause film breakage or the like. The coating 5 can be provided in a predetermined area by being stretched together with the 13.
 上記のようにして製造された二重構造容器10は、予め、もしくは後加工により外容器1の内面と内容器3の外面との間に空気を導入するための経路を設けることで、内容器3の胴部3bに内容物を収容した後、この外容器1の首部1aに、それ自体公知の逆止弁付キャップを装着することによりエアレス容器しての使用に供することもできる。 The double-structured container 10 manufactured as described above is an inner container by providing a path for introducing air between the inner surface of the outer container 1 and the outer surface of the inner container 3 in advance or by post-processing. After accommodating the contents in the body portion 3b of 3, the neck portion 1a of the outer container 1 can be used as an airless container by attaching a cap with a check valve known per se.
 このような本発明が適用された二重構造容器10では、内袋3に充填された内容物は、例えば、外容器1の胴部1bの凹んでいる部分(スクイズ領域)をスクイズ(押圧)することにより、押圧されて凹んだ分ずつ排出されていき、内容物が排出されて内容器3の胴部3bが減容するが、その分空気導入口7から胴部3bと外容器1の胴部1bの内面との間に空気が導入されて空気層が形成されるため、その後の内容物の排出も有効に行われる。
 かかる本発明においては、内容器3の胴部3bからの内部への酸素の侵入がコーティング5により有効に抑制防止でき、内容物の酸化劣化を有効に防止できるばかりが、使用後に廃棄されたボトルからのコーティング5を水洗により容易に除去できるため、優れたリサイクル性が確保されている。
In the double-structured container 10 to which the present invention is applied, the contents filled in the inner bag 3 squeeze (press) the recessed portion (squeeze region) of the body portion 1b of the outer container 1, for example. By doing so, the contents are discharged by the amount pressed and dented, and the volume of the body 3b of the inner container 3 is reduced by that amount, but the body 3b and the outer container 1 are discharged from the air introduction port 7 by that amount. Since air is introduced into the inner surface of the body portion 1b to form an air layer, the subsequent contents can be effectively discharged.
In the present invention, the invasion of oxygen from the body 3b of the inner container 3 to the inside can be effectively suppressed and prevented by the coating 5, and the oxidative deterioration of the contents can be effectively prevented, but the bottle is discarded after use. Since the coating 5 from the above can be easily removed by washing with water, excellent recyclability is ensured.
 本発明を次の例によりさらに説明するが、本発明はこれらの実施例に限定されるものではない。
 次に実施例及び比較例で使用した材料及び試験方法を示す。
The present invention will be further described by the following examples, but the present invention is not limited to these examples.
Next, the materials and test methods used in Examples and Comparative Examples are shown.
<被酸化性有機成分の合成例>
 攪拌装置、窒素導入管、滴下漏斗を備えた1000mLの4ツ口セパラブルフラスコに、250gのメチルテトラヒドロ無水フタル酸混合物(HN-2200:日立化成製)を仕込んだ。この無水フタル酸混合物は、4-メチル-Δ-テトラヒドロ無水フタル酸を45重量%およびcis-3-メチル-Δ-テトラヒドロ無水フタル酸を21重量%含有するものである。
 この無水フタル酸混合物が仕込まれている4ツ口セパラブルフラスコに、エタノール200mLに溶解させたメタキシレンジアミン(東京化成工業製)101gを、徐々に加えた。全量投入後、窒素雰囲気下120℃~180℃で、生成する水を取り除きながら約5時間反応させることにより被酸化性有機成分MXBIを得た。
<Synthesis example of oxidizing organic components>
A 1000 mL 4-neck separable flask equipped with a stirrer, a nitrogen introduction tube, and a dropping funnel was charged with 250 g of a methyltetrahydrophthalic anhydride mixture (HN-2200: manufactured by Hitachi Kasei). The phthalic anhydride mixture, 4-methyl - [delta 3 - tetrahydrophthalic anhydride and 45% by weight and cis-3- methyl - [delta 4 - tetrahydro phthalic anhydride those which contain 21 wt%.
101 g of m-xylylenediamine (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 200 mL of ethanol was gradually added to a 4-neck separable flask containing this phthalic anhydride mixture. After the whole amount was added, the reaction was carried out at 120 ° C. to 180 ° C. under a nitrogen atmosphere for about 5 hours while removing the generated water to obtain an oxidizing organic component MXBI.
<コーティング液の調製>
(コーティング液A)
 水溶性バインダとしてポリビニルアルコール(富士フイルム和光純薬製:ポリビニルアルコール1,000完全けん化型)を用意した。
 上記のポリビニルアルコール10gを蒸留水100gに加え95℃に加熱し完全に溶解するまで攪拌することでコーティング液Aを得た。
<Preparation of coating liquid>
(Coating liquid A)
Polyvinyl alcohol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd .: polyvinyl alcohol 1,000 completely saponified type) was prepared as a water-soluble binder.
The coating liquid A was obtained by adding 10 g of the above polyvinyl alcohol to 100 g of distilled water, heating to 95 ° C., and stirring until completely dissolved.
(コーティング液B)
 前記コーティング液Aに、さらに被酸化性有機成分としてL(+)-アスコルビン酸(富士フイルム和光純薬製)5g加え溶解させることでコーティング液Bを得た。
(Coating liquid B)
Coating liquid B was obtained by further adding 5 g of L (+)-ascorbic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) as an oxidizing organic component to the coating liquid A and dissolving it.
(コーティング液C)
 水溶性バインダとしてポリアクリル酸(富士フイルム和光純薬製:ポリアクリル酸250,000)を用意した。
 このポリアクリル酸2gをエタノール(富士フイルム和光純薬製)100gに加え完全に溶解させ、さらに被酸化性有機成分としてMXBI5g加え溶解させることでコーティング液Cを得た。
(Coating liquid C)
Polyacrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd .: polyacrylic acid 250,000) was prepared as a water-soluble binder.
2 g of this polyacrylic acid was added to 100 g of ethanol (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) to completely dissolve it, and then 5 g of MXBI as an oxidizing organic component was added and dissolved to obtain a coating liquid C.
(コーティング液D)
 前記コーティング液Cに、酸化促進成分としてN-ヒドロキシフタルイミド(東京化成工業製)2.5mg加え溶解させることでコーティング液Dを得た。
(Coating liquid D)
A coating liquid D was obtained by adding 2.5 mg of N-hydroxyphthalimide (manufactured by Tokyo Chemical Industry Co., Ltd.) as an oxidation promoting component to the coating liquid C and dissolving it.
(コーティング液E)
 前記コーティング液Cに、遷移金属触媒としてステアリン酸コバルト(和光純薬製)5.3mg加え溶解させることでコーティング液Eを得た。
(Coating liquid E)
To the coating liquid C, 5.3 mg of cobalt stearate (manufactured by Wako Pure Chemical Industries, Ltd.) as a transition metal catalyst was added and dissolved to obtain a coating liquid E.
(コーティング液F)
 被酸化性有機成分であるMXBIの量を1gに変更した以外は、コーティング液Cと同様にしてコーティング液Fを得た。
(Coating liquid F)
A coating liquid F was obtained in the same manner as the coating liquid C except that the amount of MXBI, which is an oxidizable organic component, was changed to 1 g.
(コーティング液G)
 被酸化性有機成分であるMXBIの量を2gに変更した以外は、コーティング液Cと同様にしてコーティング液Gを得た。
(Coating liquid G)
A coating liquid G was obtained in the same manner as the coating liquid C except that the amount of MXBI, which is an oxidizable organic component, was changed to 2 g.
(コーティング液H)
 水溶性バインダとしてポリビニルアルコールが使用されているコーティング液Aに、食用色素茶色を添加することでコーティング液Hを調製した。
(Coating liquid H)
A coating liquid H was prepared by adding an edible pigment brown to the coating liquid A in which polyvinyl alcohol was used as the water-soluble binder.
(コーティング液I)
 水溶性バインダとしてブタンジオールビニルアルコール共重合体(三菱ケミカル製:GポリマーBVE8049Q)を用意した。
 このブタンジオールビニルアルコール共重合体20gを蒸留水100gに加え95℃に加熱し完全に溶解するまで攪拌することでコーティング液Iを調製した。
(Coating liquid I)
A butanediol vinyl alcohol copolymer (manufactured by Mitsubishi Chemical Corporation: G polymer BVE8049Q) was prepared as a water-soluble binder.
20 g of this butanediol vinyl alcohol copolymer was added to 100 g of distilled water, heated to 95 ° C., and stirred until completely dissolved to prepare a coating liquid I.
(コーティング液J)
 上記のブタンジオールビニルアルコール共重合体25gを蒸留水100gに加え95℃に加熱し完全に溶解するまで攪拌することでコーティング液Jを調製した。
(Coating liquid J)
A coating liquid J was prepared by adding 25 g of the above butanediol vinyl alcohol copolymer to 100 g of distilled water, heating to 95 ° C., and stirring until completely dissolved.
<実施例1>
 内容器用プリフォーム及び外容器用プリフォームの形成素材として、イソフタル酸共重合ポリエチレンテレフタレート樹脂(新光合繊製5015w、イソフタル酸共重合比率=1.8mol%、固有粘度(IV)=0.83)を用意した。
 この共重合ポリエチレンテレフタレート樹脂を用いての射出成形により、内容器用プリフォーム(12g)及び外容器用プリフォーム(17g)を得た。
 この内容器用プリフォームをマイクロ波プラズマ表面処理装置(Micro Labo-PS2:(株)ニッシン製)を用いて酸素プラズマによる表面処理を施した後、その外面にディッピングによりコーティング液Aを塗布しドライヤーで乾燥し(コーティング液Aの乾燥塗布量は0.35g)、外容器用プリフォームを重ねて500mL用ボトルへ二軸延伸ブロー成形した。
<Example 1>
Isophthalic acid copolymer polyethylene terephthalate resin (Shinko Synthetic Fiber 5015w, isophthalic acid copolymerization ratio = 1.8 mol%, intrinsic viscosity (IV) = 0.83) was used as a material for forming the preform for the inner container and the preform for the outer container. I prepared it.
By injection molding using this copolymerized polyethylene terephthalate resin, a preform for an inner container (12 g) and a preform for an outer container (17 g) were obtained.
After surface treatment of this inner container preform with oxygen plasma using a microwave plasma surface treatment device (Micro Labo-PS2: manufactured by Nissin Co., Ltd.), coating liquid A is applied to the outer surface by dipping and a dryer is used. After drying (the dry coating amount of the coating liquid A was 0.35 g), the preforms for the outer container were overlapped and biaxially stretched and blow-molded into a 500 mL bottle.
<実施例2>
 コーティング液Aをコーティング液Bに変更し、その乾燥塗布量を表1に示す量とした以外は、実施例1と同様の手法で二軸延伸ブローボトルを得た。
<Example 2>
A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid B and the dry coating amount thereof was set to the amount shown in Table 1.
<実施例3>
 コーティング液Aをコーティング液Cに変更し、その乾燥塗布量を表1に示す量とした以外は、実施例1と同様の手法で二軸延伸ブローボトルを得た。
<Example 3>
A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid C and the dry coating amount thereof was set to the amount shown in Table 1.
<実施例4>
 コーティング液Aをコーティング液Dに変更し、その乾燥塗布量を表1に示す量とした以外は、実施例1と同様の手法で二軸延伸ブローボトルを得た。
<Example 4>
A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid D and the dry coating amount thereof was set to the amount shown in Table 1.
<実施例5>
 コーティング液Aをコーティング液Eに変更し、その乾燥塗布量を表1に示す量とした以外は、実施例1と同様の手法で二軸延伸ブローボトルを得た。
<Example 5>
A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid E and the dry coating amount thereof was set to the amount shown in Table 1.
<実施例6>
 コーティング液Aをコーティング液Fに変更し、その乾燥塗布量を表1に示す量とした以外は、実施例1と同様の手法で二軸延伸ブローボトルを得た。
<Example 6>
A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid F and the dry coating amount thereof was set to the amount shown in Table 1.
<実施例7>
 コーティング液Aをコーティング液Gに変更し、その乾燥塗布量を表1に示す量とした以外は、実施例1と同様の手法で二軸延伸ブローボトルを得た。
<Example 7>
A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid G and the dry coating amount thereof was set to the amount shown in Table 1.
<実施例8>
 コーティング液Eの乾燥塗布量を表1に示す量に変更した以外は、実施例5と同様の手法で二軸延伸ブローボトルを得た。
<Example 8>
A biaxially stretched blow bottle was obtained in the same manner as in Example 5 except that the dry coating amount of the coating liquid E was changed to the amount shown in Table 1.
<比較例1>
 コーティングを施さずに作成した以外は実施例1と同様の手法で二軸延伸ブローボトルを得た。
<Comparative example 1>
A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that it was prepared without coating.
<比較例2>
 バレル設定温度を260~280℃とした造粒設備付帯二軸押出機(TEM-35B:東芝機械(株)製)を用い、前述したイソフタル酸共重合ポリエチレンテレフタレート樹脂に、被酸化性有機成分MXBIを10%混練しストランド状に押出、酸素吸収性樹脂ペレットを得た。なお、被酸化性有機成分MXBIは液体フィーダー(モーノポンプ:兵神装備製)により押出機中途の開口部より添加した。
 次いで、
   前記共重合ポリエチレンテレフタレート樹脂:90重量部
   前記酸素吸収性樹脂ペレット:10重量部
   ネオデカン酸コバルト(OMG製):0.015重量部
をドライブレンドし、射出成形により31g単層プリフォームを成形した。得られた単層プリフォームを、500mL用ボトルに二軸延伸ブロー成形した。
<Comparative example 2>
Using a twin-screw extruder (TEM-35B: manufactured by Toshiba Machine Co., Ltd.) with granulation equipment with a barrel set temperature of 260 to 280 ° C., the above-mentioned isophthalic acid copolymer polyethylene terephthalate resin was used with the oxidizing organic component MXBI. Was kneaded at 10% and extruded into strands to obtain oxygen-absorbing resin pellets. The oxidizing organic component MXBI was added from the opening in the middle of the extruder by a liquid feeder (Mono pump: manufactured by Hyojin Equipment).
Then
The copolymerized polyethylene terephthalate resin: 90 parts by weight The oxygen-absorbing resin pellet: 10 parts by weight Cobalt neodecanoate (manufactured by OMG): 0.015 parts by weight was dry-blended, and a 31 g single-layer preform was formed by injection molding. The obtained single-layer preform was biaxially stretched and blow-molded into a 500 mL bottle.
<実施例9>
 コーティング液Aをコーティング液Hに変更し、その乾燥塗布量を表1に示す量とした以外は、実施例1と同様の手法で二軸延伸ブローボトルを得た。
<Example 9>
A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid H and the dry coating amount thereof was set to the amount shown in Table 1.
<比較例3>
 前述したイソフタル酸共重合ポリエチレンテレフタレート樹脂100重量部に、赤色と緑色の有機顔料からなる茶色PET樹脂用着色マスターバッチを3重量部ドライブレンドしての射出成形により、単層プリフォームを得た。次いで、このプリフォームを500mL用ボトルへ二軸延伸ブロー成形した。
<Comparative example 3>
A single-layer preform was obtained by dry blending 3 parts by weight of a colored masterbatch for brown PET resin composed of red and green organic pigments with 100 parts by weight of the above-mentioned isophthalic acid copolymer polyethylene terephthalate resin. The preform was then biaxially stretched and blow molded into a 500 mL bottle.
 上記実施例及び比較例で作製された二軸延伸ブローボトルについて、下記の方法でバリア性、リサイクル性或いは遮光性を評価し、その結果を、使用したコーティング液の種類、塗布量と共に表1或いは表2に示した。 The biaxially stretched blow bottles produced in the above Examples and Comparative Examples were evaluated for barrier property, recyclability or light shielding property by the following method, and the results are shown in Table 1 or the coating amount together with the type and coating amount of the coating liquid used. It is shown in Table 2.
(バリア性能の評価/溶存酸素濃度の測定)
 無酸素水製造器(LOW DISSOLVED OXYGEN:三浦工業(株)製)で酸素濃度が0.1ppm以下である無酸素水を作成し、これを成形したボトルに満注充填し、プラスチックキャップで密封した。23℃50%RHで28日間保管した後のボトル内水中溶存酸素濃度を非破壊高感度酸素濃度計(Oxy-4 Trace v3:Presens社製)で測定した。
 この溶存酸素濃度の値が小さい程、酸素バリア性が優れていることを示す。
(Evaluation of barrier performance / Measurement of dissolved oxygen concentration)
Anoxic water with an oxygen concentration of 0.1 ppm or less was prepared with an anoxic water maker (LOW DISSOLVED OXYGEN: manufactured by Miura Kogyo Co., Ltd.), and the bottle was filled with oxygen and sealed with a plastic cap. .. The dissolved oxygen concentration in the bottle after storage at 23 ° C. and 50% RH for 28 days was measured with a non-destructive high-sensitivity oxygen concentration meter (Oxy-4 Trace v3: manufactured by Pressens).
The smaller the value of the dissolved oxygen concentration, the better the oxygen barrier property.
(遮光性評価)
 成形したボトル胴壁を切り出し、分光光度計(UV-3100:(株)島津製作所製)に付属の積分球装置を装着して透過率を測定した。380nmから780nmの範囲での平均透過率から遮光性を評価した。
 この平均透過率が小さい程、遮光性が優れていることを示す。
(Evaluation of light blocking effect)
The molded bottle body wall was cut out, and the transmittance was measured by attaching an integrating sphere device attached to a spectrophotometer (UV-3100: manufactured by Shimadzu Corporation). The light-shielding property was evaluated from the average transmittance in the range of 380 nm to 780 nm.
The smaller the average transmittance, the better the light-shielding property.
(リサイクル性の評価)
 成形したボトルの胴部を1cm角に切り、90℃に加熱した1.5%水酸化ナトリウム水溶液に浸漬した。15分後に取り出し水道水で洗浄した後、目視、フーリエ変換赤外分光光度計(FTS7000 SIRIES:VARIAN社製)を用いATR法により表面測定、分光光度計(UV-3100:(株)島津製作所製)に付属の積分球装置を装着して透過率測定を行いバリア成分の有無によりリサイクル性を評価した。
 〇:リサイクル性に優れている。(バリア成分が除去されている。)
 ×:リサイクル性が劣っている。(バリア成分が残存している。)
(Evaluation of recyclability)
The body of the molded bottle was cut into 1 cm squares and immersed in a 1.5% aqueous sodium hydroxide solution heated to 90 ° C. After 15 minutes, take out and wash with tap water, then visually, surface measurement by ATR method using Fourier transform infrared spectrophotometer (FTS7000 SILIES: manufactured by VARIAN), spectrophotometer (UV-3100: manufactured by Shimadzu Corporation) ) Was attached to the integrating sphere device, and the transmittance was measured, and the recyclability was evaluated by the presence or absence of the barrier component.
〇: Excellent recyclability. (The barrier component has been removed.)
×: Poor recyclability. (The barrier component remains.)
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
<実施例10>
 コーティング液Aをコーティング液Iに変更し、その乾燥塗布量を表1に示す量とした以外は、実施例1と同様の手法で二軸延伸ブローボトルを得た。
<Example 10>
A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the coating liquid A was changed to the coating liquid I and the dry coating amount thereof was set to the amount shown in Table 1.
<実施例11>
 前述したイソフタル酸共重合ポリエチレンテレフタレート樹脂を用いての射出成形により、内容器用プリフォーム(20g)を得た。
 この内容器用プリフォームをマイクロ波プラズマ表面処理装置(Micro Labo-PS2:(株)ニッシン製)を用いて酸素プラズマによる表面処理を施した後、外面にディッピングによりコーティング液Aを塗布しドライヤーで乾燥した(コーティング液Aの乾燥塗布量は0.21g)。このコーティングを覆うように内容器用プリフォームの外側に、前記共重合ポリエチレンテレフタレート樹脂を射出成形して外容器用プリフォーム(10g)を成形することにより、二重プリフォームを得た。得られた二重プリフォームを500mL用ボトルへ二軸延伸ブロー成形した。ボトル胴部での内容器の厚みは約200μm、外容器の厚みは約100μmであった。
<Example 11>
A preform (20 g) for an inner container was obtained by injection molding using the above-mentioned isophthalic acid copolymer polyethylene terephthalate resin.
This preform for the inner container is surface-treated with oxygen plasma using a microwave plasma surface treatment device (Micro Labo-PS2: manufactured by Nissin Co., Ltd.), and then the coating liquid A is applied to the outer surface by dipping and dried with a dryer. (The dry coating amount of the coating liquid A was 0.21 g). A double preform was obtained by injection molding the copolymerized polyethylene terephthalate resin on the outside of the inner container preform so as to cover this coating to form the outer container preform (10 g). The obtained double preform was biaxially stretched and blow molded into a 500 mL bottle. The thickness of the inner container at the bottle body was about 200 μm, and the thickness of the outer container was about 100 μm.
<実施例12>
 コーティング液Aの乾燥塗布量を表1に示す量に変更した以外は、実施例11と同様の手法で二軸延伸ブローボトルを得た。
<Example 12>
A biaxially stretched blow bottle was obtained in the same manner as in Example 11 except that the dry coating amount of the coating liquid A was changed to the amount shown in Table 1.
<実施例13>
 コーティング液Aをコーティング液Iに変更し、その乾燥塗布量を表1に示す量とした以外は、実施例11と同様の手法で二軸延伸ブローボトルを得た。
<Example 13>
A biaxially stretched blow bottle was obtained in the same manner as in Example 11 except that the coating liquid A was changed to the coating liquid I and the dry coating amount thereof was set to the amount shown in Table 1.
<実施例14>
 コーティング液Iの乾燥塗布量を表1に示す量に変更した以外は、実施例13と同様の手法で二軸延伸ブローボトルを得た。
<Example 14>
A biaxially stretched blow bottle was obtained in the same manner as in Example 13 except that the dry coating amount of the coating liquid I was changed to the amount shown in Table 1.
<実施例15>
 コーティング液Aをコーティング液Jに変更し、その乾燥塗布量を表1に示す量とした以外は、実施例11と同様の手法で二軸延伸ブローボトルを得た。
<Example 15>
A biaxially stretched blow bottle was obtained in the same manner as in Example 11 except that the coating liquid A was changed to the coating liquid J and the dry coating amount thereof was set to the amount shown in Table 1.
 上記の実施例10~15で作製された二軸延伸ブローボトルについて、実施例1と同様の手法でバリア性及びリサイクル性を評価し、その結果を、使用したコーティング液の種類、塗布量と共に表3に示した。 The biaxially stretched blow bottles produced in Examples 10 to 15 above were evaluated for their barrier properties and recyclability by the same method as in Example 1, and the results are shown in the table together with the type and coating amount of the coating liquid used. Shown in 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<実施例16>
 コーティング液Aの乾燥塗布量を表3に示す量に変更した以外は、実施例1と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は塩化カルシウムを5g充填することにより内部を0%RHに調湿して22℃60%RHの保存環境で行った。
<Example 16>
A biaxially stretched blow bottle was obtained in the same manner as in Example 1 except that the dry coating amount of the coating liquid A was changed to the amount shown in Table 3. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity to 0% RH by filling 5 g of calcium chloride.
<実施例17>
 コーティング液Aをコーティング液Hに変更し、乾燥塗布量を表3に示す量に変更した以外は、実施例16と同様の手法で二軸延伸ブローボトルを作成し、同様の条件で酸素バリアを評価した。
<Example 17>
A biaxially stretched blow bottle was prepared in the same manner as in Example 16 except that the coating liquid A was changed to the coating liquid H and the dry coating amount was changed to the amount shown in Table 3, and the oxygen barrier was formed under the same conditions. evaluated.
<実施例18>
 コーティング液Aをコーティング液Iに変更し、乾燥塗布量を表3に示す量に変更した以外は、実施例16と同様の手法で二軸延伸ブローボトルを作成し、同様の条件で酸素バリアを評価した。
<Example 18>
A biaxially stretched blow bottle was prepared in the same manner as in Example 16 except that the coating liquid A was changed to the coating liquid I and the dry coating amount was changed to the amount shown in Table 3, and the oxygen barrier was formed under the same conditions. evaluated.
<実施例19>
 コーティング液Aをコーティング液Jに変更し、乾燥塗布量を表3に示す量に変更した以外は、実施例16と同様の手法で二軸延伸ブローボトルを作成し、同様の条件で酸素バリアを評価した。
<Example 19>
A biaxially stretched blow bottle was prepared in the same manner as in Example 16 except that the coating liquid A was changed to the coating liquid J and the dry coating amount was changed to the amount shown in Table 3, and the oxygen barrier was formed under the same conditions. evaluated.
<比較例4>
 コーティングを施さずに作成した以外は実施例16と同様の手法で二軸延伸ブローボトルを作成し、同様の条件で酸素バリアを評価した。
<Comparative example 4>
A biaxially stretched blow bottle was prepared in the same manner as in Example 16 except that it was prepared without coating, and the oxygen barrier was evaluated under the same conditions.
<実施例20>
 実施例16と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は塩化カルシウムを5g充填することにより内部を0%RHに調湿して30℃80%RHの保存環境で行った。
<Example 20>
A biaxially stretched blow bottle was obtained in the same manner as in Example 16. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 0% RH by filling 5 g of calcium chloride.
<実施例21>
 実施例17と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は塩化カルシウムを5g充填することにより内部を0%RHに調湿して30℃80%RHの保存環境で行った。
<Example 21>
A biaxially stretched blow bottle was obtained in the same manner as in Example 17. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 0% RH by filling 5 g of calcium chloride.
<実施例22>
 実施例18と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は塩化カルシウムを5g充填することにより内部を0%RHに調湿して30℃80%RHの保存環境で行った。
<Example 22>
A biaxially stretched blow bottle was obtained in the same manner as in Example 18. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 0% RH by filling 5 g of calcium chloride.
<実施例23>
 実施例19と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は塩化カルシウムを5g充填することにより内部を0%RHに調湿して30℃80%RHの保存環境で行った。
<Example 23>
A biaxially stretched blow bottle was obtained in the same manner as in Example 19. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 0% RH by filling 5 g of calcium chloride.
<比較例5>
 比較例4と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は塩化カルシウムを5g充填することにより内部を0%RHに調湿して30℃80%RHの保存環境で行った。
<Comparative example 5>
A biaxially stretched blow bottle was obtained in the same manner as in Comparative Example 4. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 0% RH by filling 5 g of calcium chloride.
<実施例24>
 実施例16と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価はグリセリン水溶液を5ml充填することにより内部を70%RHに調湿して22℃60%RHの保存環境で行った。
<Example 24>
A biaxially stretched blow bottle was obtained in the same manner as in Example 16. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity of the inside to 70% RH by filling 5 ml of an aqueous glycerin solution.
<実施例25>
 実施例18と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価はグリセリン水溶液を5ml充填することにより内部を70%RHに調湿して22℃60%RHの保存環境で行った。
<Example 25>
A biaxially stretched blow bottle was obtained in the same manner as in Example 18. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity of the inside to 70% RH by filling 5 ml of an aqueous glycerin solution.
<実施例26>
 コーティング液Aの乾燥塗布量を表3に示す量に変更した以外は、実施例11と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価はグリセリン水溶液を5ml充填することにより内部を70%RHに調湿して22℃60%RHの保存環境で行った。
<Example 26>
A biaxially stretched blow bottle was obtained in the same manner as in Example 11 except that the dry coating amount of the coating liquid A was changed to the amount shown in Table 3. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity of the inside to 70% RH by filling 5 ml of an aqueous glycerin solution.
<実施例27>
 コーティング液Aをコーティング液Hに変更し、乾燥塗布量を表3に示す量に変更した以外は、実施例26と同様の手法で二軸延伸ブローボトルを作成し、同様の条件で酸素バリアを評価した。
<Example 27>
A biaxially stretched blow bottle was prepared in the same manner as in Example 26 except that the coating liquid A was changed to the coating liquid H and the dry coating amount was changed to the amount shown in Table 3, and the oxygen barrier was formed under the same conditions. evaluated.
<実施例28>
 コーティング液Aをコーティング液Iに変更し、乾燥塗布量を表3に示す量に変更した以外は、実施例26と同様の手法で二軸延伸ブローボトルを作成し、同様の条件で酸素バリアを評価した。
<Example 28>
A biaxially stretched blow bottle was prepared in the same manner as in Example 26 except that the coating liquid A was changed to the coating liquid I and the dry coating amount was changed to the amount shown in Table 3, and the oxygen barrier was formed under the same conditions. evaluated.
<実施例29>
 コーティング液Aをコーティング液Jに変更し、乾燥塗布量を表3に示す量に変更した以外は、実施例26と同様の手法で二軸延伸ブローボトルを作成し、同様の条件で酸素バリアを評価した。
<Example 29>
A biaxially stretched blow bottle was prepared in the same manner as in Example 26 except that the coating liquid A was changed to the coating liquid J and the dry coating amount was changed to the amount shown in Table 3, and the oxygen barrier was formed under the same conditions. evaluated.
<比較例6>
 比較例4と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価はグリセリン水溶液を5ml充填することにより内部を70%RHに調湿して22℃60%RHの保存環境で行った。
<Comparative Example 6>
A biaxially stretched blow bottle was obtained in the same manner as in Comparative Example 4. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity of the inside to 70% RH by filling 5 ml of an aqueous glycerin solution.
<実施例30>
 実施例16と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価はグリセリン水溶液を5ml充填することにより内部を70%RHに調湿して30℃80%RHの保存環境で行った。
<Example 30>
A biaxially stretched blow bottle was obtained in the same manner as in Example 16. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity of the inside to 70% RH by filling 5 ml of an aqueous glycerin solution.
<実施例31>
 実施例18と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価はグリセリン水溶液を5ml充填することにより内部を70%RHに調湿して30℃80%RHの保存環境で行った。
<Example 31>
A biaxially stretched blow bottle was obtained in the same manner as in Example 18. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity of the inside to 70% RH by filling 5 ml of an aqueous glycerin solution.
<比較例7>
 比較例4と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価はグリセリン水溶液を5ml充填することにより内部を70%RHに調湿して30℃80%RHの保存環境で行った。
<Comparative Example 7>
A biaxially stretched blow bottle was obtained in the same manner as in Comparative Example 4. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity of the inside to 70% RH by filling 5 ml of an aqueous glycerin solution.
<実施例32>
 実施例16と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は水を5ml充填することにより内部を100%RHに調湿して22℃60%RHの保存環境で行った。
<Example 32>
A biaxially stretched blow bottle was obtained in the same manner as in Example 16. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
<実施例33>
 実施例18と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は水を5ml充填することにより内部を100%RHに調湿して22℃60%RHの保存環境で行った。
<Example 33>
A biaxially stretched blow bottle was obtained in the same manner as in Example 18. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
<実施例34>
 実施例26と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は水を5ml充填することにより内部を100%RHに調湿して22℃60%RHの保存環境で行った。
<Example 34>
A biaxially stretched blow bottle was obtained in the same manner as in Example 26. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
<実施例35>
 実施例28と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は水を5ml充填することにより内部を100%RHに調湿して22℃60%RHの保存環境で行った。
<Example 35>
A biaxially stretched blow bottle was obtained in the same manner as in Example 28. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
<比較例8>
 比較例4と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は水を5ml充填することにより内部を100%RHに調湿して22℃60%RHの保存環境で行った。
<Comparative Example 8>
A biaxially stretched blow bottle was obtained in the same manner as in Comparative Example 4. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 22 ° C. and 60% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
<実施例36>
 実施例16と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は水を5ml充填することにより内部を100%RHに調湿して30℃80%RHの保存環境で行った。
<Example 36>
A biaxially stretched blow bottle was obtained in the same manner as in Example 16. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
<実施例37>
 実施例18と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は水を5ml充填することにより内部を100%RHに調湿して30℃80%RHの保存環境で行った。
<Example 37>
A biaxially stretched blow bottle was obtained in the same manner as in Example 18. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
<実施例38>
 実施例26と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は水を5ml充填することにより内部を100%RHに調湿して30℃80%RHの保存環境で行った。
<Example 38>
A biaxially stretched blow bottle was obtained in the same manner as in Example 26. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
<実施例39>
 実施例28と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は水を5ml充填することにより内部を100%RHに調湿して30℃80%RHの保存環境で行った。
<Example 39>
A biaxially stretched blow bottle was obtained in the same manner as in Example 28. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
<比較例9>
 比較例4と同様の手法で二軸延伸ブローボトルを得た。得られたボトルの酸素バリアの評価は水を5ml充填することにより内部を100%RHに調湿して30℃80%RHの保存環境で行った。
<Comparative Example 9>
A biaxially stretched blow bottle was obtained in the same manner as in Comparative Example 4. The evaluation of the oxygen barrier of the obtained bottle was carried out in a storage environment of 30 ° C. and 80% RH by adjusting the humidity to 100% RH by filling 5 ml of water.
 上記の実施例16~39及び比較例4~9で作成されたボトルについては、以下の方法でボトル内酸素濃度を測定することによりバリア性を評価し、その結果を、使用したコーティング液の種類、塗布量と共に表4に示した。 For the bottles prepared in Examples 16 to 39 and Comparative Examples 4 to 9 above, the barrier property was evaluated by measuring the oxygen concentration in the bottle by the following method, and the result was used as the type of coating liquid. , And the coating amount are shown in Table 4.
(バリア性能の評価/ボトル内酸素濃度の測定)
 成形したボトルを窒素置換したグローブボックス内にてアルミ箔積層フィルムで密封した。この際、ボトル内部が0%RH、70%RHまたは100%RHになるように調湿した。22℃60%RHまたは30℃80%RH環境下で保存し、28日間保管した後のボトル内酸素濃度を非破壊高感度酸素濃度計(Oxy-4 Trace v3:Presens社製)で測定した。
 この酸素濃度の値が小さい程、酸素バリア性能が優れていることを示す。
(Evaluation of barrier performance / Measurement of oxygen concentration in bottle)
The molded bottle was sealed with an aluminum foil laminated film in a nitrogen-substituted glove box. At this time, the humidity was adjusted so that the inside of the bottle had 0% RH, 70% RH, or 100% RH. After storage in an environment of 22 ° C. 60% RH or 30 ° C. 80% RH and stored for 28 days, the oxygen concentration in the bottle was measured with a non-destructive high-sensitivity oxygen concentration meter (Oxy-4 Trace v3: manufactured by Pressens).
The smaller the value of this oxygen concentration, the better the oxygen barrier performance.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 100:二重構造体
 101:第1の成形体
 103:第2の成形体
 105:バリアコーティング
   1:外容器
   3:内容器
   5:コーティング(バリアコーティング105)
   7:空気導入口
  10:二重構造容器
  11:第1のプリフォーム
  13:第2のプリフォーム
100: Double structure 101: First molded body 103: Second molded body 105: Barrier coating 1: Outer container 3: Inner container 5: Coating (barrier coating 105)
7: Air inlet 10: Double-structured container 11: First preform 13: Second preform

Claims (13)

  1.  第1の成形体と、該第1の成形体に重ね合わされた第2の成形体とからなる二重構造体において、
     少なくとも前記第1の成形体はプラスチック製であり、該第1の成形体と第2の成形体との間に、水洗除去可能なバリアコーティングが存在することを特徴とする二重構造体。
    In a double structure composed of a first molded body and a second molded body superposed on the first molded body,
    A double structure characterized in that at least the first molded body is made of plastic and a barrier coating that can be washed and removed is present between the first molded body and the second molded body.
  2.  前記バリアコーティングが、前記第1の成形体側に設けられている請求項1に記載の二重構造体。 The double structure according to claim 1, wherein the barrier coating is provided on the side of the first molded body.
  3.  前記バリアコーティングが、前記第2の成形体側に設けられている請求項1に記載の二重構造体。 The double structure according to claim 1, wherein the barrier coating is provided on the side of the second molded body.
  4.  前記バリアコーティングが、水溶性バインダを含む請求項1に記載の二重構造体。 The double structure according to claim 1, wherein the barrier coating contains a water-soluble binder.
  5.  前記バリアコーティングが、前記水溶性バインダに、該水溶性バインダの酸素遮断性を高めるための機能性材料が分散されている構造を有する請求項4に記載の二重構造体。 The double structure according to claim 4, wherein the barrier coating has a structure in which a functional material for enhancing the oxygen blocking property of the water-soluble binder is dispersed in the water-soluble binder.
  6.  前記機能性材料が被酸化性有機化合物である請求項5に記載の二重構造体。 The double structure according to claim 5, wherein the functional material is an oxidizable organic compound.
  7.  前記被酸化性有機化合物が、下記式(1):
    Figure JPOXMLDOC01-appb-C000001
      式中、環Xは、1つの不飽和結合を有する脂肪族環であり、
         Yは、アルキル基である、
    で表わされる酸無水物、該酸無水物から誘導されるエステル、アミド、イミド又はジカルボン酸、及び該酸無水物に由来する構成単位を有する重合体からなる群より選択された少なくとも一種である請求項6に記載の二重構造体。
    The oxidizing organic compound has the following formula (1):
    Figure JPOXMLDOC01-appb-C000001
    In the formula, ring X is an aliphatic ring having one unsaturated bond.
    Y is an alkyl group,
    A claim which is at least one selected from the group consisting of an acid anhydride represented by, an ester derived from the acid anhydride, an amide, an imide or a dicarboxylic acid, and a polymer having a structural unit derived from the acid anhydride. Item 6. The double structure according to Item 6.
  8.  前記水溶性バインダがポリビニルアルコールポリマーまたはポリカルボン酸ポリマーである請求項4に記載の二重構造体。 The double structure according to claim 4, wherein the water-soluble binder is a polyvinyl alcohol polymer or a polycarboxylic acid polymer.
  9.  前記第1の成形体が内容器であり、前記第2の成形体が該内容器を収容している外容器であり、該内容器の外面に、前記バリアコーティングが設けられている請求項1に記載の二重構造体。 Claim 1 in which the first molded body is an inner container, the second molded body is an outer container containing the inner container, and the barrier coating is provided on the outer surface of the inner container. The double structure described in.
  10.  前記第1の成形体が内容器用プリフォームであり、前記第2の成形体が該内容器用プリフォームを収容している外容器用プリフォームであり、該内容器用プリフォームの外面に、前記バリアコーティングが設けられており、且つスタックプリフォーム構造を有する請求項1に記載の二重構造体。 The first molded body is a preform for an inner container, the second molded body is a preform for an outer container containing the preform for the inner container, and the barrier is placed on the outer surface of the preform for the inner container. The double structure according to claim 1, which is provided with a coating and has a stack preform structure.
  11.  被酸化性有機化合物と水溶性バインダとを含むバリアコーティング形成用組成物。 A composition for forming a barrier coating containing an oxidizable organic compound and a water-soluble binder.
  12.  前記水溶性バインダ100質量部当り、10~300質量部の範囲で前記被酸化性有機化合物を含んでいる請求項11に記載のバリアコーティング形成用組成物。 The composition for forming a barrier coating according to claim 11, which contains the oxidizing organic compound in the range of 10 to 300 parts by mass per 100 parts by mass of the water-soluble binder.
  13.  前記水溶性バインダがポリビニルアルコールポリマーまたはポリカルボン酸ポリマーである請求項11に記載のバリアコーティング形成用樹脂組成物。 The resin composition for forming a barrier coating according to claim 11, wherein the water-soluble binder is a polyvinyl alcohol polymer or a polycarboxylic acid polymer.
PCT/JP2020/003899 2020-02-03 2020-02-03 Double structure WO2021156908A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003899 WO2021156908A1 (en) 2020-02-03 2020-02-03 Double structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/003899 WO2021156908A1 (en) 2020-02-03 2020-02-03 Double structure

Publications (1)

Publication Number Publication Date
WO2021156908A1 true WO2021156908A1 (en) 2021-08-12

Family

ID=77199916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/003899 WO2021156908A1 (en) 2020-02-03 2020-02-03 Double structure

Country Status (1)

Country Link
WO (1) WO2021156908A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7443720B2 (en) 2018-11-19 2024-03-06 東洋製罐グループホールディングス株式会社 double structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB879595A (en) * 1958-05-02 1961-10-11 Montedison Spa Treatment of articles formed from propylene polymers
JP2012067307A (en) * 2003-08-14 2012-04-05 Cobarr Spa Oxygen-scavenging composition and the application thereof in packaging and container
JP2012250771A (en) * 2011-06-06 2012-12-20 Kuraray Europe Gmbh Plastic containers with gas barrier coating and optionally hydrophilic inside coating
JP2014514421A (en) * 2011-05-06 2014-06-19 グラハム パッケージング カンパニー,エル ピー Active oxygen scavenging composition for plastic containers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB879595A (en) * 1958-05-02 1961-10-11 Montedison Spa Treatment of articles formed from propylene polymers
JP2012067307A (en) * 2003-08-14 2012-04-05 Cobarr Spa Oxygen-scavenging composition and the application thereof in packaging and container
JP2014514421A (en) * 2011-05-06 2014-06-19 グラハム パッケージング カンパニー,エル ピー Active oxygen scavenging composition for plastic containers
JP2012250771A (en) * 2011-06-06 2012-12-20 Kuraray Europe Gmbh Plastic containers with gas barrier coating and optionally hydrophilic inside coating

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7443720B2 (en) 2018-11-19 2024-03-06 東洋製罐グループホールディングス株式会社 double structure

Similar Documents

Publication Publication Date Title
AU2003262283B2 (en) Oxygen-absorbing resin composition and layered product
CA2364882C (en) Resin composition and multi-layer container using the same
CA2364520C (en) Packaging material and multi-layer container
JP5036306B2 (en) Oxygen-absorbing composition and packaging material
KR101829486B1 (en) Oxygen scavenging plastic material
CN100430220C (en) Multilayer structure superior in gas barrier property
JP6188805B2 (en) Oxygen scavenging plastic material
JP2021151893A (en) Double structured container
JP2003012944A (en) Resin composition having excellent moldability and gas barrier property, and packaging material
WO2021156908A1 (en) Double structure
JP5804775B2 (en) Multilayer structure, container using the same, and manufacturing method thereof
JP7443720B2 (en) double structure
JP7187970B2 (en) Stretch molded structure with barrier coating
JP2004161796A (en) Resin composition having excellent moldability and gas barrier property and packaging material
JP4926697B2 (en) Oxygen absorbent, method for producing the same, and oxygen-absorbing composition and packaging material using the same
EP1253171A1 (en) Oxygen absorbing resin composition and multi-layer container using the same
JP4296636B2 (en) Oxygen-absorbing resin composition, packaging material, and packaging container
JP2003055569A (en) Biodegradable resin composition and packaging container prepared by using the same
KR20150029696A (en) Oxygen-absorbing resin composition
US10232593B2 (en) Oxygen-scavenging composition and articles thereof
JP2002069319A (en) Resin composition having gas barrier property
JP2003334906A (en) Laminate and container
WO2018062429A1 (en) Molded body having excellent gas barrier properties
JP4186609B2 (en) Gas barrier material and laminated structure using the same
JP2021524535A (en) Compositions Containing Polyester-Polyester Polymers, Transition Metal Catalysts, and Active Substances

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917309

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP