WO2021156904A1 - ウェアラブルデバイス、および体温提示システム - Google Patents
ウェアラブルデバイス、および体温提示システム Download PDFInfo
- Publication number
- WO2021156904A1 WO2021156904A1 PCT/JP2020/003885 JP2020003885W WO2021156904A1 WO 2021156904 A1 WO2021156904 A1 WO 2021156904A1 JP 2020003885 W JP2020003885 W JP 2020003885W WO 2021156904 A1 WO2021156904 A1 WO 2021156904A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wearable device
- measured
- body temperature
- user
- signal
- Prior art date
Links
- 230000036760 body temperature Effects 0.000 title claims abstract description 102
- 239000000463 material Substances 0.000 claims abstract description 61
- 238000004891 communication Methods 0.000 claims description 50
- 239000011521 glass Substances 0.000 claims description 28
- 239000000758 substrate Substances 0.000 claims 1
- 238000012545 processing Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 11
- 238000001931 thermography Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 5
- 230000002123 temporal effect Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 239000004984 smart glass Substances 0.000 description 3
- 206010019345 Heat stroke Diseases 0.000 description 2
- 241001272720 Medialuna californiensis Species 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000036757 core body temperature Effects 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/48—Thermography; Techniques using wholly visual means
- G01J5/485—Temperature profile
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/6803—Head-worn items, e.g. helmets, masks, headphones or goggles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/7405—Details of notification to user or communication with user or patient ; user input means using sound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/742—Details of notification to user or communication with user or patient ; user input means using visual displays
- A61B5/7445—Display arrangements, e.g. multiple display units
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/0022—Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation of moving bodies
- G01J5/0025—Living bodies
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/025—Interfacing a pyrometer to an external device or network; User interface
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/0265—Handheld, portable
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation; Arrangements for compensating changes in sensitivity
- G01J5/064—Ambient temperature sensor; Housing temperature sensor; Constructional details thereof
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0859—Sighting arrangements, e.g. cameras
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J5/02—Constructional details
- G01J5/08—Optical arrangements
- G01J5/0893—Arrangements to attach devices to a pyrometer, i.e. attaching an optical interface; Spatial relative arrangement of optical elements, e.g. folded beam path
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/16—Sound input; Sound output
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/16—Sound input; Sound output
- G06F3/165—Management of the audio stream, e.g. setting of volume, audio stream path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/45—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/71—Circuitry for evaluating the brightness variation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/33—Transforming infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0242—Operational features adapted to measure environmental factors, e.g. temperature, pollution
- A61B2560/0247—Operational features adapted to measure environmental factors, e.g. temperature, pollution for compensation or correction of the measured physiological value
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient ; user input means
- A61B5/7455—Details of notification to user or communication with user or patient ; user input means characterised by tactile indication, e.g. vibration or electrical stimulation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry, e.g. infrared or optical thermometry
- G01J2005/0077—Imaging
Definitions
- the present invention relates to a wearable device and a body temperature presentation system.
- a body temperature measuring device that uses infrared thermography to take a thermal image of a user and estimates the body temperature such as the core body temperature of the user from the obtained thermal image.
- Such a conventional body temperature measuring device is highly convenient because it can measure the user's body temperature in a non-contact manner.
- Infrared thermography receives energy radiated from an object and visualizes it as a two-dimensional temperature distribution by obtaining the temperature of the object from Stefan-Boltzmann's law.
- thermography has come to be widely applied not only in the fields of electricity and electronics, but also in quality control of industrial products, plant maintenance, structure diagnosis, security monitoring, and so on.
- Non-Patent Document 1 discloses a technique in which a conventional body temperature measuring device using infrared thermography is applied to a pandemic countermeasure. More specifically, Non-Patent Document 1 is for installing a body temperature measuring device using infrared thermography at an airport gate or the like to detect a person's fever due to a disease such as influenza and prevent the spread of the disease. The technology is disclosed.
- the fixed body temperature measuring device may not detect the user's body temperature.
- the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to measure and present the body temperature of each user in a non-contact manner.
- the wearable device is provided on the base material at a distance from the base material mounted on the head of the person to be measured and the surface of the head of the person to be measured.
- a first sensor that measures a first signal regarding the temperature of the surface of the head of the person to be measured
- an estimation circuit that estimates the body temperature of the person to be measured based on the first signal
- the estimation circuit It is provided with a presenting device for presenting the body temperature of the person to be measured estimated in.
- the body temperature presentation system is provided on a base material mounted on the head of the person to be measured and on the surface of the head of the person to be measured.
- a first sensor for measuring a first signal related to temperature and a second signal provided on the base material and indicating the intensity of ambient light at the position of the surface of the head where the first signal is measured are measured.
- a wearable device having a second sensor and a communication terminal device connected to the wearable device via a network are provided, and at least one of the wearable device and the communication terminal device is based on the second signal.
- the communication terminal device has an estimation circuit that corrects the first signal and estimates the body temperature of the person to be measured, and the communication terminal device has a presentation device that presents the body temperature estimated by the estimation circuit. do.
- the first sensor which is provided on the base material away from the surface of the head of the person to be measured and measures the first signal regarding the temperature of the surface of the head of the person to be measured, and the first signal. Since it has a presenting device that presents the body temperature of the person to be measured estimated based on the basis, it is possible to measure and present the body temperature of each user in a non-contact manner.
- FIG. 1 is a diagram showing the appearance of a wearable device according to the first embodiment of the present invention.
- FIG. 2 is a block diagram showing a configuration of a wearable device according to the first embodiment of the present invention.
- FIG. 3 is a diagram showing an example of measurement of body temperature by a wearable device according to the first embodiment of the present invention.
- FIG. 4 is a schematic plan view of the wearable device according to the second embodiment of the present invention.
- FIG. 5 is a block diagram showing a configuration of a body temperature presentation system according to a third embodiment of the present invention.
- FIG. 6 is a block diagram showing an example of a hardware configuration that realizes the communication terminal device according to the third embodiment of the present invention.
- FIG. 1 is a diagram showing the appearance of a wearable device according to the first embodiment of the present invention.
- FIG. 2 is a block diagram showing a configuration of a wearable device according to the first embodiment of the present invention.
- FIG. 3 is a diagram showing an example of measurement
- FIG. 7 is a schematic plan view of the wearable device according to the fourth embodiment of the present invention.
- FIG. 8 is a block diagram showing a configuration of a wearable device according to a fourth embodiment of the present invention.
- FIG. 9 is a diagram for explaining an example of presentation by a wearable device according to a fourth embodiment of the present invention.
- FIG. 10 is a schematic plan view showing the configuration of the wearable device according to the fifth embodiment of the present invention.
- FIG. 1 is an example of an external view of the wearable device 1 according to the first embodiment of the present invention.
- the user's "head” will be described as including the “face”.
- the wearable device 1 As shown in FIG. 1, the wearable device 1 according to the first embodiment is realized by a glasses-type terminal such as a smart glass. The wearable device 1 is worn on the head of the user whose body temperature is to be measured.
- the wearable device 1 includes a base material 100 having a frame structure including a temple 100a and a rim 100b, and a display 14 supported by the base material 100.
- the presentation device is realized by the spectacle lens type display 14.
- the temple 100a is a pair of left and right parts formed so as to sandwich the user's temporal region.
- the temple 100a has an elongated shape along the horizontal direction of the temporal region and has a thickness suitable for wearing by the user.
- the rear side of the temple 100a comes into contact with the upper part and the rear side of the user's ear and presses the user's temporal region to prevent the wearable device 1 from falling.
- the front side of the temple 100a is connected to the rim 100b via a hinge or the like.
- the rim 100b is formed so as to follow the shape of the spectacle lens type display 14.
- the surfaces of the temple 100a and the rim 100b that face or come into contact with the user's face or head are referred to as the face side or the inner surface
- the outer temple 100a And the surface of the rim 100b may be referred to as the outer surface.
- the rim 100b of the wearable device 1 is provided with a first sensor 10 that measures a first signal regarding the temperature of the surface of the user's head, for example, the face.
- the first sensor 10 is arranged on the inner surface of the rim 100b when the wearable device 1 is worn on the user's head. Even if the first sensor 10 is integrally formed with the rim 100b, it may be attached to the rim 100b so as to be removable or non-detachable.
- the rim 100b of the wearable device 1 is provided with a second sensor that measures a second signal indicating ambient light at a position on the surface of the user's body from which the first signal was measured.
- a second sensor that measures a second signal indicating ambient light at a position on the surface of the user's body from which the first signal was measured.
- the second sensor 11 when the wearable device 1 is attached to the user's head, the second sensor 11 is visible from the inner surface of the rim 100b on which the first sensor 10 is provided. Along it, it is placed on the outer surface of the rim 100b.
- the second sensor 11 may be integrally formed with the rim 100b, or may be attached to the rim 100b so as to be removable or non-detachable.
- the estimation circuit 12 for estimating the body temperature of the user by correcting the first signal with the second signal, and the image showing the body temperature estimated by the estimation circuit 12
- a generation circuit 13, a memory 15, a power supply 16, and a switch 17 for generating contents are provided inside the temple 100a of the wearable device 1 according to the present embodiment.
- the arithmetic processing unit including the estimation circuit 12, the generation circuit 13, and the memory 15 is housed in a housing having a shape corresponding to the thickness (length in the vertical direction) and the thickness of the temple 100a.
- This housing is embedded in one of the left and right temples 100a.
- the power supply 16 and the switch 17 are also housed in a housing having a shape corresponding to the thickness and thickness of the temple 100a and embedded in the other temple 100a.
- Wiring (not shown) is provided inside the temple 100a and the rim 100b of the wearable device 1, and the first sensor 10, the second sensor 11, the estimation circuit 12, the generation circuit 13, the display 14, the memory 15, the power supply 16, and the like. And the switch 17 are electrically connected.
- the spectacle lens type display 14 visually displays image contents such as text data “36.5 ° C.” indicating the user's body temperature generated by the generation circuit 13 to the user.
- the first sensor 10 is composed of a temperature sensor or the like, and measures a first signal indicating the temperature of the surface of the face of the user wearing the wearable device 1. Since the first sensor 10 is arranged on the inner surface of the rim 100b, when the user wears the wearable device 1, the first sensor 10 is arranged at a position always separated from the user's face by a certain distance. NS.
- the first sensor 10 for example, an infrared temperature sensor that absorbs infrared rays and converts them into an electric signal is used.
- the first signal measured by the first sensor 10 the light intensity of infrared rays obtained by converting the infrared radiant energy emitted from the surface of the user's face into an electric signal is acquired.
- the first sensor 10 further includes an amplifier circuit, an AD conversion circuit, and the like (not shown). The first signal measured by the first sensor 10 is input to the estimation circuit 12.
- one first sensor 10 is arranged inside the center of the rim 100b in the wearable device 1, that is, on the face side of the user.
- the number of the first sensors 10 may be a plurality, and for example, a plurality of the first sensors 10 may be arranged inside the left and right rims 100b.
- the first sensor 10 is arranged on the inner surface of the rim 100b near the inner corner of the user's eye in the wearable device 1.
- the first signal indicating the temperature of the region a of the inner corner of the user can be measured.
- the inner corner of the eye has a pink thin film called half-moon folds.
- the half-moon folds are not covered by the skin and pass through blood vessels, so when the surface temperature distribution of the entire face is measured, it is the part that most easily reflects the body temperature in the center of the body. Therefore, the inner canthus region a is used as the target region for measuring the first signal indicating the temperature by the first sensor 10.
- the second sensor 11 is composed of an optical sensor including a photodiode or the like, and receives a second signal indicating the intensity of ambient light at the position of the surface of the user's face where the first signal was measured by the first sensor 10. Measure.
- the second sensor 11 detects the intensity of the ambient light at the installed position and converts it into a second signal which is an electric signal according to the intensity of the detected light.
- the second sensor 11 further includes an amplifier circuit, an AD conversion circuit, and the like (not shown). The second signal measured by the second sensor 11 is input to the estimation circuit 12.
- the second sensor 11 measures the second signal indicating the ambient light in the region a where the first signal was measured.
- the wearable device 1 when the user wears the wearable device 1, the wearable device 1 is arranged at the center of the outer surface of the rim 100b so that the ambient light is not blocked.
- the estimation circuit 12 estimates the user's body temperature based on the first signal indicating the temperature of the surface of the face such as the temperature of the region a of the inner corner of the user and the second signal indicating the intensity of ambient light.
- the first signal measured by the first sensor 10 composed of the infrared temperature sensor is data that is affected by wraparound light and reflected light, in addition to data indicating the temperature of the surface of the user's face. Therefore, using the second signal indicating the intensity of the ambient light measured by the second sensor 11, the first signal excludes the influence of light other than infrared rays emitted from the surface of the user's face included in the first signal. Correct the signal and estimate the user's body temperature.
- E the radiant energy E 1 emitted from the surface of the user's face to be measured and the surroundings represented by the second signal.
- the temperature T of the surface of the user's face to be measured is the spectral emissivity ⁇ ⁇ ( ⁇ ⁇ ⁇ 1 because the skin is not a blackbody) and the ambient temperature Ta if the ambient temperature Ta is known. Desired.
- a value evaluated experimentally in advance or a value shown in the literature or the like can be adopted.
- the estimation circuit 12 determines the infrared emissivity ⁇ ⁇ emitted from the surface of the user's face excluding the influence of the wraparound light and the reflected light represented by the first signal to the second signal. Calculate using.
- the estimation circuit 12 estimates the user's body temperature from the corrected infrared intensity (first signal). For example, the estimation circuit 12 can estimate the corrected infrared intensity data by multiplying the corrected infrared intensity data by a moving average as the body temperature. The estimation circuit 12 outputs an estimated value of the user's body temperature at regular intervals.
- the generation circuit 13 generates image content indicating the user's body temperature estimated by the estimation circuit 12.
- the generation circuit 13 generates set image contents such as a numerical value indicating a body temperature and a graphic content indicating a temperature distribution.
- the generation circuit 13 can be configured to generate image content according to a cycle in which the estimation circuit 12 outputs an estimated value.
- the generation circuit 13 may be configured to generate image content when the user's body temperature estimated by the estimation circuit 12 exceeds or falls below a preset value. For example, an alarm image may be generated when a constant rise or fall in body temperature is detected.
- the display 14 is composed of a transparent display arranged at the position of the lens of the glasses, and visually displays the image content indicating the user's body temperature generated by the generation circuit 13 to the user.
- the display 14 can visually present to the user the environmental temperature, humidity, and the like measured by an environmental temperature sensor (not shown).
- the display 14 can update and display the image content indicating the user's body temperature generated by the generation circuit 13 at regular intervals.
- the memory 15 is composed of a semiconductor memory or the like, and stores sensor data measured by the first sensor 10 and the second sensor 11, the user's body temperature estimated by the estimation circuit 12, and the like. Further, the memory 15 stores an estimation program used by the estimation circuit 12 and the generation circuit 13, an image content generation program, and the like. Further, the memory 15 stores the calibration data of the first sensor 10 and the second sensor 11. Further, the memory 15 has an area for backing up various data.
- the estimation circuit 12, the generation circuit 13, and the memory 15 can be realized by a computer composed of a processor and a main storage device. Further, the estimation circuit 12 and the generation circuit 13 can be realized by FPGA, ASIC, or the like, respectively.
- the power supply 16 is composed of a battery such as a lithium ion secondary battery, and supplies power to the wearable device 1 including the estimation circuit 12 and the generation circuit 13.
- the switch 17 is composed of a switch circuit that controls ON / OFF of the power supply 16.
- the switch 17 is provided with a physical button, a touch switch, or the like at a position that is easy for the user to operate when the wearable device 1 is attached, for example, on the outside of the temple 100a, and the power supply 16 is turned on in response to a pressing operation or a touch operation by the user. / OFF.
- the glasses-type wearable device 1 having the above-described configuration is attached to the user's head, and when the switch 17 is touch-operated with, for example, the user's finger, the power supply 16 is turned on.
- the power supply 16 is turned on, power is supplied to the wearable device 1, and the first sensor 10 measures a first signal indicating the temperature of the surface of the user's head, for example, the region a of the inner corner of the eye. Further, the second sensor 11 measures a second signal indicating the intensity of ambient light in the region a.
- the measured first signal and second signal are input to the estimation circuit 12, the first signal is corrected by the second signal, and the user's body temperature is estimated from the value excluding the influence of ambient light.
- the estimated value of the user's body temperature is input to the generation circuit 13, and the image content in a preset form is generated. For example, a text image of an estimated body temperature is generated and presented on a lens-shaped display 14 of eyeglasses. The user wearing the wearable device 1 can grasp the body temperature displayed on the display 14 by visual information.
- the body temperature of each user can be measured and presented in a non-contact manner by the glasses-type wearable device 1 including the first sensor 10 and the second sensor 11. can.
- the image content indicating the user's body temperature is visually presented to the user at a fixed cycle on the spectacle lens type display 14, it is possible to notify the user of the increase or decrease in the body temperature. can.
- the wearable device 1 is realized by a glasses-type terminal device such as smart glasses. Therefore, the user can easily grasp his / her body temperature and changes in body temperature from the information displayed on the display 14 hands-free simply by wearing the wearable device 1 on the head and operating the power button. ..
- the estimation circuit 12 can perform correction processing for each first signal indicating the temperature measured by each of the first sensors 10 to estimate the body temperature.
- the estimation circuit 12 can estimate the body temperature as a value obtained by averaging a plurality of first signals corrected by using the second signal.
- the temperature indicated by the first signal corrected by the second signal based on the first signal measured by the plurality of first sensors 10 arranged at different positions on the base material 100 is the temperature of a fixed number of pixels.
- Body temperature can also be estimated as a distribution.
- the estimation circuit 12 performs the correction process and the body temperature estimation process is illustrated, but the correction process and the body temperature estimation process can be realized by another circuit.
- the wearable device 1 is realized by a glasses-type terminal device such as smart glasses.
- the wearable device 1A according to the second embodiment further includes a mounting member 101A that is detachably fixed to general glasses G worn by the user.
- the wearable device 1A is attached to the glasses G by the attachment member 101A and attached to the user.
- a configuration different from that of the first embodiment will be mainly described.
- FIG. 4 is a schematic plan view of the wearable device 1A according to the present embodiment.
- the alternate long and short dash line shown in FIG. 4 indicates general eyeglasses G worn by the user.
- the spectacles G include a frame structure worn on the user's head, such as sunglasses, prescription spectacles, eyewear such as goggles, and a headset.
- the wearable device 1A has, for example, a base material 100A having a rectangular parallelepiped outer shape and having a size corresponding to the thickness and length of the temples of the glasses G.
- An estimation circuit 12, a generation circuit 13, a memory 15, and a power supply 16 are housed inside the base material 100A.
- the surface shown in the plan view of FIG. 4 is the upper surface of the base material 100A, the surface opposite to the upper surface in the direction perpendicular to the paper surface is the bottom surface, and the other surface is the side surface. It is explained as.
- the length of the base material 100A in the longitudinal direction in a plan view is shorter than the length of the temple of the glasses G in the longitudinal direction, and the length of the base material 100A in the lateral direction is short. , It is formed so as to be slightly thicker than the thickness of the temple of the glasses G. Further, in FIG. 4, the size of the base material 100A in the direction perpendicular to the paper surface is formed so as to be equivalent to, for example, the thickness of the temple of the glasses G.
- a resin, an alloy, wood or the like can be used as the material of the base material 100A.
- the base material 100A has a structure that can be attached to either the left or right side of the temple of general glasses G as shown in FIG. 4, for example.
- a mounting member 101A for detachably fixing the base material 100A and the temple of the glasses G is provided.
- the mounting member 101A may be made of the same material as the base material 100A, or may be made of a material having a higher strength than the material used for the base material 100A.
- the mounting member 101A may be fixed by mounting the wearable device 1A at a predetermined position on the glasses G.
- the mounting member 101A may be integrally formed with the base material 100A.
- the mounting member 101A may be formed by a clip that sandwiches one of the left and right temples of the glasses G along the longitudinal direction shown in FIG.
- the wearable device 1A can be attached to the glasses G so that the attachment member 101A formed on the base material 100A is hooked from the upper side (vertical direction with respect to the ground) of the temple of the glasses G. Further, as shown in FIG. 4, by setting the mounting position of the base material 100A to the lens side of the glasses G, it is possible to prevent the user from feeling the unevenness of the base material 100A.
- the user can start measuring the body temperature by attaching and fixing the wearable device 1A to the glasses G that he or she normally uses and performing a touch operation of the switch 17.
- the first sensor 10 is arranged inside the glasses G, that is, on the side surface of the base material 100A that becomes the user's face side when the user wears the glasses G, at a position away from the user's face and temporal region. Has been done.
- the first sensor 10 measures a first signal indicating the temperature of the surface of the user's face, for example, the temperature of the area a of the inner corner of the eye.
- the second sensor 11 is provided on the outside of the glasses G, that is, on the side surface of the base material 100A facing the outside when the user wears the glasses G, at a position close to the position of the first sensor 10.
- the second sensor 11 measures the second signal indicating the intensity of the ambient light on the surface of the user's face where the first signal was measured, for example, the region a.
- the display 14A is provided on the front side surface of the base material 100A where the first sensor 10 and the second sensor 11 are arranged.
- the display 14A is provided so as to be aligned with the position of the lens on the left side of the glasses G.
- the body temperature displayed on the display 14A through the lens of the spectacles G can be visually displayed to the user.
- the switch 17 is arranged on the side surface of the base material 100A which is the outer side when the user wears the glasses G.
- the first sensor 10, the second sensor 11, the estimation circuit 12, the generation circuit 13, the display 14, the memory 15, the power supply 16, and the switch 17 are electrically connected via the wiring L.
- the respective configurations and functions are the same as those in the first embodiment.
- the wearable device 1A is detachably fixed to the general glasses G, it is more convenient and the body temperature of each user is measured in a non-contact manner. Can be presented.
- the base material 100A of the wearable device 1A has a rectangular parallelepiped outer shape is illustrated, but the shape of the base material 100A has an estimation circuit 12, a generation circuit 13, a memory 15, and a power supply 16 inside.
- any shape may be used as long as the switch 17 can be accommodated.
- a base material 100A having an elliptical column outer shape may be adopted.
- the wearable devices 1 and 1A according to the first and second embodiments have described the case where the temperature and ambient light measurement, estimation processing, and presentation processing are executed by one device.
- the third embodiment is an invention relating to a body temperature presentation system including a wearable device 1B and a communication terminal device 200.
- the body temperature presentation system has a configuration in which the functions of the wearable devices 1 and 1A according to the first and second embodiments are dispersed.
- FIG. 5 is a block diagram showing a configuration example of the body temperature presentation system according to the third embodiment.
- the body temperature presentation system includes a wearable device 1B and a communication terminal device 200.
- the display 14B is installed in the communication terminal device 200.
- the wearable device 1B includes a base material 100A having a rectangular parallelepiped outer shape, a first sensor 10 arranged on the face side side surface of the base material 100A, a second sensor 11 arranged on the outer side surface of the base material 100A, and a switch. 17 and a mounting member 101A are provided. Further, an estimation circuit 12, a generation circuit 13, a memory 15, a power supply 16, and a communication I / F 18 are housed inside a base material 100A having a rectangular parallelepiped outer shape, and are electrically connected via wiring L. ..
- the wearable device 1B according to the present embodiment is different from the second embodiment in that it does not include the display 14B generated by the generation circuit 13 that shows the body temperature of the user.
- the functions and configurations of the first sensor 10, the second sensor 11, the estimation circuit 12, the generation circuit 13, the memory 15, the power supply 16, and the switch 17 are the same as those in the first and second embodiments.
- the communication I / F18 is an interface circuit for communicating with the communication terminal device 200 via a network.
- a communication control circuit and an antenna corresponding to wireless data communication standards such as 3G, 4G, 5G, wireless LAN, Bluetooth (registered trademark), and Bluetooth Low Energy are used.
- the generation circuit 13 when the generation circuit 13 generates image content such as text information indicating the user's body temperature, the data of the image content indicating the body temperature is transmitted from the communication I / F 18 to the communication terminal device 200 via the network. Will be done.
- the communication terminal device 200 is a terminal device provided with a communication function and a presentation device such as a smartphone, a tablet terminal, and a notebook PC.
- the communication terminal device 200 is used, for example, by a user who wears the wearable device 1B. Further, in the configuration example of the body temperature presentation system shown in FIG. 5, the communication terminal device 200 is provided with the display 14B.
- the communication terminal device 200 When the communication terminal device 200 receives the data of the image content indicating the user's body temperature from the wearable device 1B, the communication terminal device 200 displays the received image content on the display 14B.
- the display 14B is realized by, for example, a liquid crystal display.
- the communication terminal device 200 includes, for example, a computer including a processor 202, a main storage device 203, a communication I / F 204, an auxiliary storage device 205, and an input / output I / O 206 connected via a bus 201. , It can be realized by a program that controls these hardware resources.
- the input device 207 and the display 14B are connected to each other via the bus 201.
- the main storage device 203 stores in advance a program for the processor 202 to perform various controls and calculations.
- the communication I / F 204 is an interface circuit for communicating with various external electronic devices such as a wearable device 1B via a network NW.
- the communication I / F204 for example, a communication control circuit and an antenna corresponding to wireless data communication standards such as 3G, 4G, 5G, wireless LAN, Bluetooth (registered trademark), and Bluetooth Low Energy are used.
- wireless data communication standards such as 3G, 4G, 5G, wireless LAN, Bluetooth (registered trademark), and Bluetooth Low Energy are used.
- the auxiliary storage device 205 is composed of a readable and writable storage medium and a drive device for reading and writing various information such as programs and data to the storage medium.
- a semiconductor memory such as a hard disk or a flash memory can be used as the storage medium in the auxiliary storage device 205.
- the input / output I / O 206 is composed of I / O terminals that input signals from external devices and output signals to external devices.
- the input device 207 is composed of a keyboard, a touch panel, or the like, receives an operation input from the outside, and generates a signal corresponding to the operation input.
- the communication terminal device 200 includes a display 14B for presenting the body temperature of the user is illustrated.
- the wearable device 1B includes the first sensor 10 and the second sensor 11, other configurations can be provided by the communication terminal device 200.
- the wearable device 1B includes a spectacle lens type display 14B
- the communication terminal device 200 includes an estimation circuit 12 and a generation circuit 13 for generating image content. You can also do it.
- a plurality of relay terminal devices may be provided between the wearable device 1B and the communication terminal device 200, and the wearable device 1B and the communication terminal device 200 may exchange data via the respective relay terminal devices. ..
- a router or an IoT gateway can be used as the relay terminal device.
- the communication terminal device 200 realized by a server, a cloud server, or the like executes arithmetic processing including the estimation circuit 12 and the generation circuit 13.
- the communication terminal device 200 obtains analysis data such as the average and distribution of the body temperature of the plurality of users, and the communication terminal device 200 obtains analysis data.
- the analysis data can also be presented on the display 14B of the 200 or the wearable device 1B.
- the position information of the relay terminal device is regarded as the user's position information, and the information of the user whose body temperature is higher than the set value among a plurality of users is displayed on the display screen of the communication terminal device 200, or a specific terminal. The device can be notified.
- the body temperature presentation system includes at least a wearable device 1B including the first sensor 10 and the second sensor 11, and a communication terminal device 200 that communicates with the wearable device 1B. Therefore, it becomes easier to analyze the user's body temperature measured in a non-contact manner. In particular, it is effective when analyzing the body temperature of a plurality of users.
- the calculation load can be reduced by distributing the arithmetic processing including the estimation circuit 12 and the generation circuit 13 to the communication terminal device 200 on the network. ..
- the first sensor 10 and the second sensor 11 measure a first signal regarding the temperature of the surface of the user's face and a second signal indicating the intensity of ambient light, respectively, and the user's face is measured.
- the case of estimating and presenting the body temperature was described.
- the wearable device 1C according to the fourth embodiment further includes a camera 19 that acquires a thermal image of the user's field of view.
- the wearable device 1C according to the present embodiment further includes a camera 19 in the configuration described in the second embodiment.
- the camera 19 is arranged on the outer side surface of the base material 100A, for example, and captures an image of the user's field of view.
- the camera 19 is composed of, for example, an infrared camera or the like, and acquires a thermal image of the user's field of view.
- the camera 19 further includes a visible light camera, and can acquire not only a thermal image but also an image of the user's field of view by visible light.
- FIG. 8 is a block diagram showing the configuration of the wearable device 1C according to the present embodiment.
- the wearable device 1C includes a first sensor 10, a second sensor 11, an estimation circuit 12, a generation circuit 13, a display 14, a memory 15, a power supply 16, a switch 17, a camera 19, and a thermal image processing circuit 20.
- the configurations other than the camera 19 and the thermal image processing circuit 20 are the same as those in the first to third embodiments.
- the camera 19 starts taking an image when the power supply 16 is turned on in response to a user pressing the switch 17 or a touch operation.
- the image acquired by the camera 19 is input to the thermal image processing circuit 20.
- the thermal image processing circuit 20 generates a thermal image showing the temperature distribution of the image taken by the camera 19.
- the thermal image processing circuit 20 can generate an image in which the heat distribution is represented by a color gradation, as in thermography, for example.
- the thermal image processing circuit 20 can add information in 3D space such as a clear outline to the thermal distribution image by processing the thermal image using the visible light image captured by the camera 19.
- the thermal image output from the thermal image processing circuit 20 is displayed on the display 14A.
- the thermal image processing circuit 20 can also generate a thermal image in which only a preset temperature distribution is output to the display 14A. For example, it is possible to generate an image in which a cool place or a high temperature place in the user's field of view is visually presented to the user. Further, the image generated by the thermal image processing circuit 20 is not limited to a gradation image such as thermography, and for example, information indicating a thermal distribution can be generated as data displayed by superimposing numerical values on a visible light image.
- FIG. 9 is a schematic diagram showing an example of a thermal image and a user's body temperature displayed on the display 14A.
- the user's body temperature "36.5 ° C.” is displayed as text data on the upper left of the display 14A.
- the display 14A shows regions "20 ° C.”, “25 ° C.”, and “30 ° C.” indicating the heat distribution of the user's field of view generated by the thermal image processing circuit 20.
- the display 14A visually presents to the user information indicating the user's body temperature and the heat distribution in the user's field of view.
- the wearable device 1B presents the measured information indicating the body temperature of the user and the heat distribution of the user's field of vision to the display 14A so as to be visible to the user. It is possible to easily guide the user to a warm place or the like.
- the user can temporarily move to the cool place indicated by the heat distribution presented on the display 14A, and the wearable device 1B. It can be utilized for the prevention of heat stroke of the user using.
- the user's body temperature was presented as visual information.
- the body temperature of the user is presented by sound.
- FIG. 10 is a schematic plan view showing a configuration example of the wearable device 1D according to the present embodiment.
- the wearable device 1D includes, for example, a base material 100A having a rectangular parallelepiped outer shape, and a mounting member 101A provided on the base material 100A and fixed to the glasses G.
- a first sensor 10 for measuring a first signal indicating the temperature of the surface of the user's face, for example, the area a of the inner corner of the eye is arranged on the side surface of the base material 100A on the face side.
- a second sensor 11 for measuring a second signal indicating the intensity of ambient light in the region a is arranged on the outer side surface of the base material 100A.
- the base material 100A houses an estimation circuit 12, a generation circuit 13, a memory 15, and a power supply 16. Further, the switch 17 is arranged on the outer side surface of the base material 100A.
- the wiring L is arranged inside the base material 100A, and the estimation circuit 12, the generation circuit 13D, the memory 15, the power supply 16, the switch 17, and the communication I / F 18 are electrically connected by the wiring L. There is.
- the generation circuit 13D generates a sound that is audible to the user, which indicates the user's body temperature estimated by the estimation circuit 12.
- the generation circuit 13D can generate, for example, a voice indicating body temperature, a warning sound, vibration, and the like.
- the wearable device 1D includes a speaker 14D as a presentation device.
- a speaker 14D as a presentation device.
- the speaker 14D outputs sound data such as a voice indicating the body temperature generated by the generation circuit 13D.
- a bone conduction speaker can be used so that it can be attached to the temple of the glasses G.
- the speaker 14D comes into contact with the user's temporal region, ears, and the like.
- the sound indicating the body temperature generated by the generation circuit 13D is transmitted through the temple of the glasses G and is output from the speaker 14D.
- a wireless earphone can be used as the speaker 14D.
- the communication I / F 18 housed in the base material 100A and the communication I / F built in the speaker 14D perform short-range wireless communication to transmit and receive sound data such as voice.
- the wearable device 1D presents the measured information indicating the body temperature of the user by sound, and therefore, for example, a visually impaired user, a body temperature, or the like. Even when it is not desired to present the information of the above in a visible manner from the outside, the body temperature of each user measured in a non-contact manner can be presented to the user.
- the first to fifth embodiments described above can be combined.
- the speaker 14D in addition to displaying the user's body temperature on the display 14, the speaker 14D can output a sound such as a warning sound.
- 1 wearable device, 10 ... first sensor, 11 ... second sensor, 12 ... estimation circuit, 13 ... generation circuit, 14 ... display, 15 ... memory, 16 ... power supply, 17 ... switch, 100 ... base material, 100a ... Temple, 100b ... rim.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Signal Processing (AREA)
- Audiology, Speech & Language Pathology (AREA)
- General Engineering & Computer Science (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
- Eyeglasses (AREA)
Abstract
ウェアラブルデバイス(1)は、ユーザの頭部に装着される基材(100)と、ユーザの頭部の表面から離間して基材(100)に設けられ、ユーザの頭部の表面の温度に関する第1信号を測定する第1センサ(10)と、第1信号に基づいて、ユーザの体温を推定する推定回路(12)と、推定回路(12)で推定されたユーザ体温を提示するディスプレイ(14)とを備える。
Description
本発明は、ウェアラブルデバイス、および体温提示システムに関する。
従来から、赤外線サーモグラフィを利用して、ユーザの熱画像を撮影し、得られた熱画像からユーザの深部体温などの体温を推定する体温測定装置が知られている。このような従来の体温測定装置は、ユーザの体温を非接触で測定できるため利便性が高い。
すべての物体は、絶対零度(0K:-273.15℃)以上であれば、原子や分子の振動または回転により、ある波長のエネルギーを放射している。赤外線サーモグラフィは、物体から放射されるエネルギーを受光し、ステファンボルツマンの法則から物体の温度を求めることで2次元温度分布として映像化する。
このような特長を活かし、赤外線サーモグラフィは、電気や電子分野はもとより、工業製品の品質管理、プラントメンテナンス、構造物診断、セキュリティ監視など、多岐にわたり応用されるようになった。
例えば、非特許文献1は、従来の赤外線サーモグラフィを用いた体温測定装置をパンデミック対策へ応用した技術を開示している。より具体的には、非特許文献1は、空港のゲート等に赤外線サーモグラフィを用いた体温測定装置を設置して、インフルエンザ等の病気による人の発熱を感知し、病気の拡大を防止するための技術を開示している。
ところで、近年の高齢化や健康への関心の高まりを背景に、体温およびその他の生体情報を用いて体調や健康状態をモニタリングする技術が要求されている。
例えば、運動中のユーザのように、ユーザの動線が固定されていない状況下で熱中症対策として従来の赤外線サーモグラフィを活用し非接触でユーザの体温を測定しようとした場合、ユーザの移動する位置によっては、固定式の体温測定装置ではユーザの体温が検知されない恐れがある。
また、接触型の温度センサを使用してユーザ個人の体温をモニタリングする従来技術も存在するが、ユーザの体と温度センサとが接触する部分の通気性の低下や温度センサの肌触りによっては、ユーザに対して心理的な不快感だけでなく、人によっては皮膚のかぶれなどが生ずる可能性もある。
太田二朗、濱田枝里「インフルエンザ拡大防止の観点から赤外線サーモグラフィによる体表温度計測事例の紹介」NEC技報 Vol.62 No.3/2009、pp.87-91
本発明は、上述した課題を解決するためになされたものであり、ユーザごとの体温を非接触で測定し提示することを目的とする。
上述した課題を解決するために、本発明に係るウェアラブルデバイスは、被測定者の頭部に装着される基材と、前記被測定者の前記頭部の表面から離間して前記基材に設けられ、前記被測定者の前記頭部の表面の温度に関する第1信号を測定する第1センサと、前記第1信号に基づいて、前記被測定者の体温を推定する推定回路と、前記推定回路で推定された前記被測定者の前記体温を提示する提示装置とを備える。
上述した課題を解決するために、本発明に係る体温提示システムは、被測定者の頭部に装着される基材と、前記基材に設けられ、前記被測定者の前記頭部の表面の温度に関する第1信号を測定する第1センサと、前記基材に設けられ、前記第1信号が測定された前記頭部の表面の位置での周辺光の強さを示す第2信号を測定する第2センサとを有するウェアラブルデバイスと、前記ウェアラブルデバイスとネットワークを介して接続される通信端末装置と、を備え、前記ウェアラブルデバイスおよび前記通信端末装置の少なくともいずれかは、前記第2信号に基づいて前記第1信号を補正して、前記被測定者の体温を推定する推定回路を有し、前記通信端末装置は、前記推定回路により推定された前記体温を提示する提示装置を有することを特徴とする。
本発明によれば、被測定者の頭部の表面から離間して基材に設けられ、被測定者の頭部の表面の温度に関する第1信号を測定する第1センサと、第1信号に基づいて推定された被測定者の体温を提示する提示装置とを有するので、非接触でユーザごとの体温を測定し提示することができる。
以下、本発明の好適な実施の形態について、図1から図10を参照して詳細に説明する。
[第1の実施の形態]
図1は、本発明の第1の実施の形態に係るウェアラブルデバイス1の外観図の一例である。以下において、ユーザの「頭部」には、「顔」が含まれるものとして説明する。
図1は、本発明の第1の実施の形態に係るウェアラブルデバイス1の外観図の一例である。以下において、ユーザの「頭部」には、「顔」が含まれるものとして説明する。
[ウェアラブルデバイスの全体構成]
図1に示すように、第1の実施の形態に係るウェアラブルデバイス1は、スマートグラスなどのメガネ型端末により実現されている。ウェアラブルデバイス1は、体温を測定する対象であるユーザの頭部に装着される。ウェアラブルデバイス1は、テンプル100aおよびリム100bを含むフレーム構造を有する基材100と、基材100によって支持されるディスプレイ14を備える。本実施の形態では、メガネレンズ型のディスプレイ14によって、提示装置が実現される。
図1に示すように、第1の実施の形態に係るウェアラブルデバイス1は、スマートグラスなどのメガネ型端末により実現されている。ウェアラブルデバイス1は、体温を測定する対象であるユーザの頭部に装着される。ウェアラブルデバイス1は、テンプル100aおよびリム100bを含むフレーム構造を有する基材100と、基材100によって支持されるディスプレイ14を備える。本実施の形態では、メガネレンズ型のディスプレイ14によって、提示装置が実現される。
テンプル100aは、図1に示すように、ユーザの側頭部を挟むように形成された左右一対からなるパーツである。テンプル100aは、側頭部の水平方向に沿って細長い形状を有し、かつユーザの装着に適した厚みを有する。テンプル100aの後方側は、ユーザの耳の上部および後方に接触して、ユーザの側頭部を押下することでウェアラブルデバイス1の落下を防止する。また、テンプル100aの前方側はヒンジなどを介してリム100bと接続されている。リム100bは、メガネレンズ型のディスプレイ14の形状を沿うように形成されている。
以下において、ウェアラブルデバイス1がユーザに装着された際に、ユーザの顔あるいは頭部に面する、あるいは接するテンプル100aおよびリム100bの面を、顔側または内側の面といい、外部側のテンプル100aおよびリム100bの面を外側の面という場合がある。
ウェアラブルデバイス1のリム100bには、ユーザの頭部、例えば、顔の表面の温度に関する第1信号を測定する第1センサ10が設けられている。例えば、図1に示すように、第1センサ10は、ウェアラブルデバイス1がユーザの頭部に装着されたときに、リム100bの内側の面に配置される。なお、第1センサ10は、リム100bと一体的に形成されていても、リム100bに着脱可能にあるいは着脱できないように取り付けられる構成としてもよい。
さらに、ウェアラブルデバイス1のリム100bには、第1信号が測定されたユーザの体の表面の位置での周辺光を示す第2信号を測定する第2センサが設けられている。例えば、図1に示すように、第2センサ11は、ウェアラブルデバイス1がユーザの頭部に装着されたときに、第1センサ10が設けられているリム100bの内側の面から、視界方向に沿って、リム100bの外側の面に配置される。第2センサ11は、リム100bと一体的に形成されていても、リム100bに着脱可能にあるいは着脱できないように取り付けられる構成としてもよい。
本実施の形態に係るウェアラブルデバイス1のテンプル100aの内部には、第1信号を第2信号により補正して、ユーザの体温を推定する推定回路12、推定回路12で推定された体温を示す画像コンテンツを生成する生成回路13、メモリ15、電源16、およびスイッチ17が設けられている。
図1に示す例では、推定回路12、生成回路13、およびメモリ15を含む演算処理部はテンプル100aの太さ(鉛直方向の長さ)や厚みに対応する形状を有する筐体に収容されて、この筐体が左右一方のテンプル100aに埋め込まれている。また、電源16およびスイッチ17についても、テンプル100aの太さや厚みに対応する形状を有する筐体に収容されて他方のテンプル100aに埋め込まれている。
ウェアラブルデバイス1のテンプル100aおよびリム100bの内部には、図示されない配線が設けられており、第1センサ10、第2センサ11、推定回路12、生成回路13、ディスプレイ14、メモリ15、電源16、およびスイッチ17が電気的に接続されている。
本実施の形態では、メガネレンズ型のディスプレイ14は、生成回路13で生成されたユーザの体温を示すテキストデータ「36.5℃」などの画像コンテンツをユーザに視認可能に表示する。
[ウェアラブルデバイスの各構成]
次に、図2および図3を参照して、本実施の形態に係るウェアラブルデバイス1が備える各構成についてより詳細に説明する。
次に、図2および図3を参照して、本実施の形態に係るウェアラブルデバイス1が備える各構成についてより詳細に説明する。
第1センサ10は、温度センサなどで構成され、ウェアラブルデバイス1を装着したユーザの顔の表面の温度を示す第1信号を測定する。第1センサ10は、リム100bの内側の面に配置されているため、ユーザがウェアラブルデバイス1を装着した際に、ユーザの顔面から常に一定の距離だけ離間した位置に第1センサ10が配置される。
第1センサ10として、例えば、赤外線を吸収して電気信号に変換する赤外線温度センサを用いる。この場合、第1センサ10で測定される第1信号は、ユーザの顔の表面から放出される赤外線放射エネルギーを電気信号に変換した赤外線の光強度が取得される。第1センサ10は、さらに、図示されないアンプ回路やAD変換回路などを備えている。第1センサ10で測定された第1信号は、推定回路12に入力される。
図1の例では、第1センサ10は、ウェアラブルデバイス1におけるリム100bの中央の内側、つまりユーザの顔面側に1つ配置されている。しかし、第1センサ10の数は複数であってもよく、例えば、左右のリム100bの内側に複数個配置されていてもよい。
例えば、図3に示すように、ウェアラブルデバイス1におけるユーザの目頭に近いリム100bの内側の面に、第1センサ10を配置する。第1センサ10を、ユーザの皮膚と非接触で、かつ、目頭により近い位置に配置することで、ユーザの目頭の領域aの温度を示す第1信号を測定することができる。
顔面の領域のうち、目頭の部分には、半月ひだと呼ばれるピンク色の薄膜が存在している。半月ひだは、皮膚に覆われておらず、血管も通っているため顔全体の表面温度分布を測定した際に、最も身体の中心の体内温度を反映しやすい部分である。そこで、第1センサ10で温度を示す第1信号を計測するターゲットの領域として目頭の領域aを用いる。
第2センサ11は、フォトダイオードなどを備えた光センサで構成され、第1センサ10で第1信号が測定されたユーザの顔の表面の位置での周辺光の強さを示す第2信号を測定する。第2センサ11は、設置された位置での周辺光の強さを検出し、検出された光の強弱に応じた電気信号である第2信号に変換する。第2センサ11は、さらに、図示されないアンプ回路やAD変換回路などを備えている。第2センサ11で測定された第2信号は、推定回路12に入力される。
第2センサ11は、第1信号が測定された領域aの周辺光を示す第2信号を測定する。図1の例では、ユーザがウェアラブルデバイス1を装着した際に、周辺光が遮られることのないように、リム100bの外側の面の中央部に配置されている。
推定回路12は、ユーザの目頭の領域aの温度など顔の表面の温度を示す第1信号と、周辺光の強さ示す第2信号とに基づいて、ユーザの体温を推定する。赤外線温度センサで構成される第1センサ10で測定された第1信号は、ユーザの顔の表面の温度を示すデータに加えて、回り込み光や反射光の影響を受けたデータとなる。そのため、第2センサ11で測定された周辺光の強さを示す第2信号を用いて、第1信号に含まれるユーザの顔の表面から放出された赤外線以外の光の影響を除いて第1信号を補正し、ユーザの体温を推定する。
ここで、第1センサ10で測定される第1信号をEと表すと、Eは、測定対象であるユーザの顔の表面から放出される放射エネルギーE1と、第2信号で表される周囲の影響による放射エネルギーE2とが含まれる(E=E1+E2)。よく知られているように、測定対象のユーザの顔の表面の温度Tは、分光放射率ελ(皮膚は黒体ではないためελ<1)と、周囲の温度Taが既知であれば求められる。被測定面の分光放射率ελは、予め実験的に評価された値あるいは文献などに示されている値を採用することができる。
上記より、推定回路12は、第1信号から第2信号で表される回り込み光や反射光の影響を除いたユーザの顔の表面から放出された赤外線強度を、既知の分光放射率ελを用いて算出する。
また、推定回路12は、補正された赤外線強度(第1信号)より、ユーザの体温を推定する。例えば、推定回路12は、補正後の赤外線強度のデータに移動平均をかけた値を体温として推定することができる。なお、推定回路12は、一定周期でユーザの体温の推定値を出力する。
生成回路13は、推定回路12で推定されたユーザの体温を示す画像コンテンツを生成する。生成回路13は、例えば、体温を示す数値や温度分布を示すグラフィックコンテンツなど設定された画像コンテンツを生成する。生成回路13は、推定回路12が推定値を出力する周期に応じて画像コンテンツを生成する構成とすることができる。
また、生成回路13は、推定回路12で推定されたユーザの体温が、予め設定された値を上回った場合、あるいは、下回った場合に、画像コンテンツを生成する構成としてもよい。例えば、体温の一定の上昇や低下が検知された場合に、アラーム画像を生成してもよい。
ディスプレイ14は、メガネのレンズの位置に配置された透明ディスプレイで構成されて、生成回路13で生成されたユーザの体温を示す画像コンテンツをユーザに視認可能に表示する。ディスプレイ14は、生成回路13で生成されたユーザの体温に加えて、図示されない環境温度センサなどで測定された環境温度や湿度などをユーザに視認可能に提示することもできる。例えば、ディスプレイ14は、生成回路13が生成したユーザの体温を示す画像コンテンツを一定周期で更新して表示させることができる。
メモリ15は、半導体メモリなどで構成され、第1センサ10および第2センサ11で測定されたセンサデータ、推定回路12で推定されたユーザの体温などを記憶する。また、メモリ15は、推定回路12や生成回路13が用いる推定プログラムや画像コンテンツの生成プログラムなどを格納する。また、メモリ15は、第1センサ10および第2センサ11の校正データを記憶している。さらに、メモリ15は、各種データをバックアップする領域を有する。
なお、推定回路12、生成回路13、およびメモリ15は、プロセッサと主記憶装置とで構成されるコンピュータで実現することができる。また、推定回路12および生成回路13は、それぞれFPGAやASICなどで実現することもできる。
電源16は、リチウムイオン二次電池などのバッテリーで構成され、推定回路12および生成回路13を含むウェアラブルデバイス1に電力を供給する。
スイッチ17は、電源16のON/OFFを制御するスイッチ回路で構成される。スイッチ17は、ユーザがウェアラブルデバイス1を装着した際に操作しやすい位置、例えば、テンプル100aの外側に物理ボタンやタッチスイッチなどが設けられ、ユーザによる押下操作やタッチ操作に応じて電源16がON/OFFする。
上述した構成を有するメガネ型のウェアラブルデバイス1は、ユーザの頭部に装着され、例えば、ユーザの指などでスイッチ17のタッチ操作が行われると、電源16がONとなる。電源16はONとなり、ウェアラブルデバイス1に電力が供給され、第1センサ10はユーザの頭部の表面、例えば、目頭の領域aの温度を示す第1信号を測定する。また、第2センサ11は、領域aでの周辺光の強さを示す第2信号を測定する。
測定された第1信号および第2信号は、推定回路12に入力され、第1信号が第2信号により補正されて、外乱光の影響が除かれた値より、ユーザの体温が推定される。ユーザの体温の推定値は、生成回路13に入力され、予め設定された形態の画像コンテンツが生成される。例えば、体温の推定値のテキスト画像などが生成され、メガネのレンズ型のディスプレイ14に提示される。ウェアラブルデバイス1を装着したユーザは、ディスプレイ14に表示された体温を視覚情報により把握することができる。
以上説明したように、第1の実施の形態によれば、第1センサ10と第2センサ11とを含むメガネ型のウェアラブルデバイス1により、ユーザごとの体温を非接触で測定し提示することができる。
また、第1の実施の形態によれば、メガネレンズ型のディスプレイ14に一定周期でユーザの体温を示す画像コンテンツをユーザに視認可能に提示するので、ユーザの体温上昇や低下を通知することができる。
また、第1の実施の形態によれば、ウェアラブルデバイス1は、スマートグラスなどのメガネ型端末装置で実現される。そのため、ユーザはウェアラブルデバイス1を頭部に装着して電源ボタンの操作をするだけで、ディスプレイ14に表示された情報から、自身の体温および体温の変化をハンズフリーで容易に把握することができる。
なお、説明した実施の形態では、第1センサ10がウェアラブルデバイス1において1つ設けられている場合について説明した。しかし、前述したように、第1センサ10の数は複数であってもよい。複数の第1センサ10を採用した場合には、推定回路12は、第1センサ10の各々で測定された温度を示す第1信号ごとに、補正処理を行い、体温を推定することができる。推定回路12は、第2信号を用いて補正された複数の第1信号を平均化した値を体温と推定することができる。
また、基材100において異なる位置に配置されている複数の第1センサ10で測定された第1信号に基づいて、第2信号で補正された第1信号により示される温度を一定画素数の温度分布として体温を推定することもできる。
また、説明した実施の形態では、推定回路12が補正処理と体温の推定処理とを行う場合を例示したが、補正処理と体温の推定処理とを別の回路で実現することもできる。
[第2の実施の形態]
次に、本発明の第2の実施の形態について説明する。なお、以下の説明では、上述した第1の実施の形態と同じ構成については同一の符号を付し、その説明を省略する。
次に、本発明の第2の実施の形態について説明する。なお、以下の説明では、上述した第1の実施の形態と同じ構成については同一の符号を付し、その説明を省略する。
第1の実施の形態では、ウェアラブルデバイス1が、スマートグラスなどのメガネ型端末装置により実現される場合について説明した。これに対し、第2の実施の形態に係るウェアラブルデバイス1Aは、ユーザが着用する一般的なメガネGに着脱可能に固定する取付部材101Aをさらに備える。ウェアラブルデバイス1Aは、取付部材101AによりメガネGに取り付けられてユーザに装着される。以下、第1の実施の形態と異なる構成を中心に説明する。
図4は、本実施の形態に係るウェアラブルデバイス1Aの平面模式図である。図4に示す一点鎖線はユーザが着用する一般的なメガネGを示している。メガネGには、サングラス、度付きのメガネ、ゴーグルなどのアイウェア、およびヘッドセットなど、ユーザの頭部に装着されるフレーム構造が含まれる。
ウェアラブルデバイス1Aは、例えば、メガネGのテンプルの太さや長さに対応する大きさの、外形が直方体である基材100Aを有する。基材100Aの内部には、推定回路12、生成回路13、メモリ15、および電源16が収容されている。以下、直方体の外形を有する基材100Aにおいて、図4の平面図の示される面を基材100Aの上面、紙面に対して垂直な方向の上面に対抗する面を底面、およびその他の面を側面として説明する。
例えば、図4に示すように、平面視での基材100Aの長手方向の長さは、メガネGのテンプルの長手方向の長さよりも短く、また、基材100Aの短手方向の長さは、メガネGのテンプルの厚さよりもわずかに厚くなるように形成されている。また、図4において紙面に対して垂直方向の基材100Aの寸法は、例えば、メガネGのテンプルの太さと同等となるように形成される。基材100Aの材料としては、樹脂、合金、木材などを用いることができる。
基材100Aは、例えば、図4に示すような一般的なメガネGのテンプルの左右一方に取り付け可能な構造を有する。図4の例では、基材100AとメガネGのテンプルとを着脱可能に固定する取付部材101Aが設けられている。取付部材101Aは、基材100Aと同じ材料で形成されていてもよく、また、基材100Aに用いられる材料よりも強度の高い材料により形成されていてもよい。
なお、取付部材101Aは、ウェアラブルデバイス1AをメガネGの所定の位置に取り付けて固定することができればよく、例えば、取付部材101Aは、基材100Aと一体的に形成されていてもよい。例えば、基材100Aの底面において、図4に示す長手方向に沿って、メガネGの左右一方のテンプルを挟持するクリップにより取付部材101Aを形成してもよい。
例えば、基材100Aに形成された取付部材101AをメガネGのテンプルの上側(大地に対する上下方向)から引っ掛けるようにウェアラブルデバイス1AをメガネGに取り付けることもできる。また、図4に示すように、基材100Aの取り付け位置を、メガネGのレンズ側とすることで、ユーザが基材100Aの凹凸を感じないようにすることができる。
たとえば、ユーザは、普段自分が使用するメガネGにウェアラブルデバイス1Aを取り付けて固定し、スイッチ17のタッチ操作を行うことで、体温の測定を開始することができる。
第1センサ10は、メガネGの内側、すなわち、ユーザがメガネGを着用したときにユーザの顔側となる基材100Aの側面であって、ユーザの顔や側頭部から離間した位置に配置されている。第1センサ10は、ユーザの顔の表面の温度、例えば、目頭の領域aの温度を示す第1信号を測定する。
第2センサ11は、メガネGの外側、すなわち、ユーザがメガネGを着用したときに、外部に面した基材100Aの側面において、第1センサ10の位置に近接した位置に設けられている。第2センサ11は、第1信号が測定されたユーザの顔の表面、例えば、領域aでの周辺光の強さを示す第2信号を測定する。
ディスプレイ14Aは、基材100Aにおいて、第1センサ10および第2センサ11が配置されている前方の側面に設けられている。図4の例では、ディスプレイ14Aは、メガネGの左側のレンズの位置に合わせて設けられている。図4に示すように、ウェアラブルデバイス1Aが取り付けられたメガネGがユーザに着用されると、メガネGのレンズを介してディスプレイ14Aに表示される体温をユーザに視認可能に表示することができる。
スイッチ17は、ユーザがメガネGを着用した際に、外部側となる基材100Aの側面に配置されている。
第1センサ10、第2センサ11、推定回路12、生成回路13、ディスプレイ14、メモリ15、電源16、およびスイッチ17は、配線Lを介して電気的に接続されている。なお、それぞれの構成および機能は、第1の実施の形態と同様である。
以上説明したように、第2の実施の形態では、ウェアラブルデバイス1Aが、一般的なメガネGに着脱可能に固定されるので、より利便性に優れ、かつ、非接触でユーザごとの体温を測定し提示することができる。
なお、説明した実施の形態では、ウェアラブルデバイス1Aの基材100Aが直方体の外形を有する場合を例示したが、基材100Aの形状は、内部に推定回路12、生成回路13、メモリ15、電源16、およびスイッチ17を収容できれば、任意の形状でよい。例えば、楕円柱の外形を有する基材100Aを採用してもよい。
[第3の実施の形態]
次に、本発明の第3の実施の形態について説明する。なお、以下の説明では、上述した第1および第2の実施の形態と同じ構成については同一の符号を付し、その説明を省略する。
次に、本発明の第3の実施の形態について説明する。なお、以下の説明では、上述した第1および第2の実施の形態と同じ構成については同一の符号を付し、その説明を省略する。
第1および第2の実施の形態に係るウェアラブルデバイス1、1Aは、温度および周辺光の測定、推定処理、および提示処理が1つのデバイスで実行される場合について説明した。これに対し、第3の実施の形態は、ウェアラブルデバイス1Bと通信端末装置200とを備える体温提示システムに係る発明である。体温提示システムは、第1および第2の実施の形態に係るウェアラブルデバイス1、1Aの機能が分散された構成を有する。
図5は、第3の実施の形態に係る体温提示システムの構成例を示すブロック図である。図5に示すように、体温提示システムは、ウェアラブルデバイス1Bと通信端末装置200とを備える。図5に示す例では、ディスプレイ14Bは、通信端末装置200に設置される。
[ウェアラブルデバイスの構成]
ウェアラブルデバイス1Bは、直方体の外形を有する基材100Aと、基材100Aの顔側の側面に配置された第1センサ10、基材100Aの外部側の側面に配置された第2センサ11、スイッチ17、および取付部材101Aを備える。また、直方体の外形を有する基材100Aの内部には、推定回路12、生成回路13、メモリ15、電源16、および通信I/F18が収容され、配線Lを介して電気的に接続されている。
ウェアラブルデバイス1Bは、直方体の外形を有する基材100Aと、基材100Aの顔側の側面に配置された第1センサ10、基材100Aの外部側の側面に配置された第2センサ11、スイッチ17、および取付部材101Aを備える。また、直方体の外形を有する基材100Aの内部には、推定回路12、生成回路13、メモリ15、電源16、および通信I/F18が収容され、配線Lを介して電気的に接続されている。
本実施の形態に係るウェアラブルデバイス1Bは、生成回路13で生成されたユーザの体温を示すディスプレイ14Bを備えていない点で、第2の実施の形態とは異なる。なお、第1センサ10、第2センサ11、推定回路12、生成回路13、メモリ15、電源16、およびスイッチ17の機能および構成は第1および第2の実施の形態と同様である。
通信I/F18は、ネットワークを介して通信端末装置200との通信を行うためのインターフェース回路である。通信I/F18としては、例えば、3G、4G、5G、無線LAN、Bluetooth(登録商標)、Bluetooth Low Energyなどの無線データ通信規格に対応した通信制御回路およびアンテナが用いられる。
本実施の形態では、生成回路13でユーザの体温を示すテキスト情報などの画像コンテンツが生成されると、体温を示す画像コンテンツのデータは通信I/F18からネットワークを介して通信端末装置200に送出される。
[通信端末装置の構成]
次に、通信端末装置200の構成について、より詳細に説明する。
通信端末装置200は、スマートフォン、タブレット端末、ノートPCなど通信機能および提示装置を備えた端末装置である。通信端末装置200は、例えば、ウェアラブルデバイス1Bを装着するユーザによって用いられる。また、図5に示す体温提示システムの構成例では、通信端末装置200にディスプレイ14Bが設けられている。
次に、通信端末装置200の構成について、より詳細に説明する。
通信端末装置200は、スマートフォン、タブレット端末、ノートPCなど通信機能および提示装置を備えた端末装置である。通信端末装置200は、例えば、ウェアラブルデバイス1Bを装着するユーザによって用いられる。また、図5に示す体温提示システムの構成例では、通信端末装置200にディスプレイ14Bが設けられている。
通信端末装置200は、ウェアラブルデバイス1Bから、ユーザの体温を示す画像コンテンツのデータを受信すると、ディスプレイ14Bに受信された画像コンテンツを表示させる。ディスプレイ14Bは、例えば、液晶ディスプレイなどにより実現される。
次に、通信端末装置200を実現するコンピュータ構成の一例を図6のブロック図を参照して説明する。
図6に示すように、通信端末装置200は、例えば、バス201を介して接続されるプロセッサ202、主記憶装置203、通信I/F204、補助記憶装置205、入出力I/O206を備えるコンピュータと、これらのハードウェア資源を制御するプログラムによって実現することができる。通信端末装置200は、例えば、入力装置207と、ディスプレイ14Bとがそれぞれバス201を介して接続されている。
主記憶装置203には、プロセッサ202が各種制御や演算を行うためのプログラムが予め格納されている。
通信I/F204は、ネットワークNWを介してウェアラブルデバイス1Bなど各種外部電子機器との通信を行うためのインターフェース回路である。
通信I/F204としては、例えば、3G、4G、5G、無線LAN、Bluetooth(登録商標)、Bluetooth Low Energyなどの無線データ通信規格に対応した通信制御回路およびアンテナが用いられる。
補助記憶装置205は、読み書き可能な記憶媒体と、その記憶媒体に対してプログラムやデータなどの各種情報を読み書きするための駆動装置とで構成されている。補助記憶装置205には、記憶媒体としてハードディスクやフラッシュメモリなどの半導体メモリを使用することができる。
入出力I/O206は、外部機器からの信号を入力したり、外部機器へ信号を出力したりするI/O端子により構成される。
入力装置207は、キーボードやタッチパネルなどで構成され、外部からの操作入力を受け付け、操作入力に応じた信号を生成する。
なお、図5に示す体温提示システムでは、通信端末装置200がユーザの体温を提示するディスプレイ14Bを備える場合について例示した。しかし、ウェアラブルデバイス1Bは、第1センサ10および第2センサ11を備えていれば、その他の構成は、通信端末装置200が備えることもできる。
また、第1および第2の実施の形態と同様に、ウェアラブルデバイス1Bがメガネレンズ型のディスプレイ14Bを備え、通信端末装置200が、推定回路12および画像コンテンツを生成する生成回路13を備える構成とすることもできる。
また、ウェアラブルデバイス1Bと通信端末装置200との間に複数の中継端末装置を設けて、それぞれの中継端末装置を介してウェアラブルデバイス1Bと通信端末装置200とがデータのやり取りを行う構成としてもよい。中継端末装置として、ルータやIoTゲートウェイを用いることができる。
例えば、推定回路12および生成回路13を含む演算処理を、サーバやクラウドサーバなどで実現される通信端末装置200が実行する構成を採用した場合を考える。この場合、例えば、複数のユーザ各々に装着されるウェアラブルデバイス1Bからの温度に関するデータに基づいて、通信端末装置200は、複数のユーザの体温の平均や分布などの解析データを求め、通信端末装置200やウェアラブルデバイス1Bのディスプレイ14Bに解析データを提示することもできる。また、例えば、中継端末装置の位置情報をユーザの位置情報とみなして、複数のユーザのうち体温が設定値よりも高いユーザの情報を通信端末装置200の表示画面に表示したり、特定の端末装置に通知することができる。
以上説明したように、第3の実施の形態に係る体温提示システムは、少なくとも第1センサ10および第2センサ11を備えるウェアラブルデバイス1Bと、ウェアラブルデバイス1Bと通信を行う通信端末装置200とを備えるので、非接触で測定されたユーザの体温の解析がより容易となる。特に、複数のユーザの体温を解析する場合などにおいて有効である。
また、第3の実施の形態に係る体温提示システムによれば、推定回路12および生成回路13を含む演算処理をネットワーク上の通信端末装置200に分散することで、計算負荷を低減することができる。
[第4の実施の形態]
次に、本発明の第4の実施の形態について説明する。なお、以下の説明では、上述した第1から第3の実施の形態と同じ構成については同一の符号を付し、その説明を省略する。
次に、本発明の第4の実施の形態について説明する。なお、以下の説明では、上述した第1から第3の実施の形態と同じ構成については同一の符号を付し、その説明を省略する。
第1から第3の実施の形態では、第1センサ10および第2センサ11によってユーザの顔の表面の温度に関する第1信号および周辺光の強さを示す第2信号をそれぞれ測定し、ユーザの体温を推定および提示する場合について説明した。これに対して、第4の実施の形態に係るウェアラブルデバイス1Cは、ユーザの視界の熱画像を取得するカメラ19をさらに備える。
図7に示すように、本実施の形態に係るウェアラブルデバイス1Cは、第2の実施の形態で説明した構成において、さらにカメラ19を備える。
カメラ19は、例えば、基材100Aの外部側の側面に配置され、ユーザの視界の画像を撮影する。カメラ19は、例えば、赤外線カメラなどで構成され、ユーザの視界の熱画像を取得する。また、カメラ19は、可視光カメラをさらに備え、熱画像だけでなく可視光によるユーザの視界の画像を取得することもできる。
図8は、本実施の形態に係るウェアラブルデバイス1Cの構成を示すブロック図である。ウェアラブルデバイス1Cは、第1センサ10、第2センサ11、推定回路12、生成回路13、ディスプレイ14、メモリ15、電源16、スイッチ17、カメラ19、および熱画像処理回路20を備える。カメラ19および熱画像処理回路20以外の構成は、第1から第3の実施の形態と同様である。
カメラ19は、ユーザのスイッチ17の押下やタッチ操作に応じて電源16がONとなると、画像の撮影を開始する。カメラ19によって取得された画像は、熱画像処理回路20に入力される。
熱画像処理回路20は、カメラ19によって撮影された画像の温度分布を示す熱画像を生成する。熱画像処理回路20は、例えば、サーモグラフィのように熱分布を色のグラデーションで表した画像を生成することができる。熱画像処理回路20は、カメラ19で撮影された可視光画像を用いて熱画像を処理することで、熱分布画像により明確な輪郭など3D空間の情報を付与することができる。熱画像処理回路20から出力される熱画像は、ディスプレイ14Aに表示される。
また、熱画像処理回路20は、予め設定された温度分布のみがディスプレイ14Aに出力される熱画像を生成することもできる。例えば、ユーザの視界における冷涼場所や高温場所などがユーザに視認可能に提示されるような画像を生成することも可能である。また、熱画像処理回路20が生成する画像は、サーモグラフィのようなグラデーション画像に限らず、例えば、熱分布を示す情報を数値で可視光画像に重ねて表示されるデータとして生成することもできる。
図9は、ディスプレイ14Aに表示される熱画像およびユーザの体温の一例を示す模式図である。ディスプレイ14Aの左上には、ユーザの体温「36.5℃」がテキストデータで表示されている。
また、ディスプレイ14Aには、熱画像処理回路20によって生成されたユーザの視界の熱分布を示す領域「20℃」、「25℃」、「30℃」が示されている。
図9に示すように、ディスプレイ14Aはユーザの体温、およびユーザの視界における熱分布を示す情報がユーザに視認可能に提示される。
以上説明したように、第4の実施の形態に係るウェアラブルデバイス1Bは、測定されたユーザの体温およびユーザの視界の熱分布を示す情報をユーザに視認可能にディスプレイ14Aに提示するので、冷涼場所や温暖場所などへユーザを容易に誘導することができる。
例えば、ディスプレイ14Aに提示されたユーザの体温が比較的高い場合には、ユーザは、ディスプレイ14Aに提示されている熱分布で示された冷涼場所へ一時的に移動することができ、ウェアラブルデバイス1Bを用いたユーザの熱中症予防に活用することができる。
[第5の実施の形態]
次に、本発明の第5の実施の形態について説明する。なお、以下の説明では、上述した第1から第4の実施の形態と同じ構成については同一の符号を付し、その説明を省略する。
次に、本発明の第5の実施の形態について説明する。なお、以下の説明では、上述した第1から第4の実施の形態と同じ構成については同一の符号を付し、その説明を省略する。
第1から第4の実施の形態では、ユーザの体温を視覚情報として提示した。これに対して、第5の実施の形態では、ユーザの体温を音により提示する。
図10は、本実施の形態に係るウェアラブルデバイス1Dの構成例を示す平面模式図である。図10に示すように、ウェアラブルデバイス1Dは、例えば、直方体の外形を有する基材100Aと、基材100Aに設けられて、メガネGに固定される取付部材101Aとを備える。
基材100Aの顔側の側面には、ユーザの顔の表面、例えば、目頭の領域aの温度を示す第1信号を測定する第1センサ10が配置されている。また、基材100Aの外部側の側面には、領域aでの周辺光の強さを示す第2信号を測定する第2センサ11が配置されている。
基材100Aには、推定回路12、生成回路13、メモリ15、および電源16が収容されている。また、スイッチ17は、基材100Aの外部側の側面に配設されている。
基材100Aの内部には、配線Lは配設されており、推定回路12、生成回路13D、メモリ15、電源16、スイッチ17、および通信I/F18は、配線Lにより電気的に接続されている。
生成回路13Dは、推定回路12で推定されたユーザの体温を示すユーザに可聴である音を生成する。生成回路13Dは、例えば、体温を示す音声、警告音、振動などを生成することができる。
ウェアラブルデバイス1Dは提示装置としてスピーカ14Dを備える。例えば、図10に示すように、左右一対のスピーカ14Dを採用することができる。スピーカ14Dは、生成回路13Dで生成された体温を示す音声などの音データを出力する。
スピーカ14Dとして、例えば、骨伝導スピーカを用いて、メガネGのテンプルに取り付け可能な構成とすることができる。例えば、ユーザがウェアラブルデバイス1Dを取り付けたメガネGを着用すると、スピーカ14Dがユーザの側頭部や耳などに接触する。スピーカ14Dは、生成回路13Dで生成された体温を示す音は、メガネGのテンプルを伝わり、スピーカ14Dから出力される。
あるいは、スピーカ14Dとして、ワイヤレスイヤホンを用いることもできる。この場合、例えば、基材100Aに収容されている通信I/F18とスピーカ14Dに内蔵されている通信I/Fとが近距離無線通信を行い、音声などの音データの送受信を行う。
以上説明したように、第5の実施の形態によれば、ウェアラブルデバイス1Dは、測定されたユーザの体温を示す情報を、音により提示するので、例えば、目が不自由なユーザや、体温などの情報を外部からも視認可能に提示することを望まない場合等であっても、非接触で測定されたユーザごとの体温をユーザに提示することができる。
以上、本発明のウェアラブルデバイス、および体温提示システムにおける実施の形態について説明したが、本発明は説明した実施の形態に限定されるものではなく、請求項に記載した発明の範囲において当業者が想定し得る各種の変形を行うことが可能である。
例えば、説明した第1から第5の実施の形態はそれぞれ組み合わせることができる。例えば、第1から第4の実施の形態で説明したように、ユーザの体温をディスプレイ14に表示することに加えて、スピーカ14Dで警告音などの音を出力することもできる。
1…ウェアラブルデバイス、10…第1センサ、11…第2センサ、12…推定回路、13…生成回路、14…ディスプレイ、15…メモリ、16…電源、17…スイッチ、100…基材、100a…テンプル、100b…リム。
Claims (8)
- 被測定者の頭部に装着される基材と、
前記被測定者の前記頭部の表面から離間して前記基材に設けられ、前記被測定者の前記頭部の表面の温度に関する第1信号を測定する第1センサと、
前記第1信号に基づいて、前記被測定者の体温を推定する推定回路と、
前記推定回路で推定された前記被測定者の前記体温を提示する提示装置と
を備えるウェアラブルデバイス。 - 請求項1に記載のウェアラブルデバイスにおいて、
前記基材に設けられ、前記第1信号が測定された前記頭部の表面の位置での周辺光の強さを示す第2信号を測定する第2センサをさらに備え、
前記推定回路は、前記第2信号に基づいて前記第1信号を補正して、前記被測定者の体温を推定する
ことを特徴とするウェアラブルデバイス。 - 請求項2に記載のウェアラブルデバイスにおいて、
前記推定回路で推定された前記体温を示す画像コンテンツを生成する生成回路をさらに備え、
前記提示装置は、前記基材に支持されたディスプレイを含み、
前記ディスプレイは、前記生成回路で生成された前記画像コンテンツを前記被測定者に視認可能に表示する
ことを特徴とするウェアラブルデバイス。 - 請求項3に記載のウェアラブルデバイスにおいて、
前記基材に配設され、前記被測定者の視界の熱画像を取得するカメラをさらに備え、
前記ディスプレイは、前記画像コンテンツと、前記カメラによって取得された前記熱画像とを、前記被測定者に視認可能に表示する
ことを特徴とするウェアラブルデバイス。 - 請求項1から4のいずれか1項に記載のウェアラブルデバイスにおいて、
前記提示装置は、前記体温を示す音を出力するスピーカを含む
ことを特徴とするウェアラブルデバイス。 - 請求項1から5のいずれか1項に記載のウェアラブルデバイスにおいて、
前記第1信号は、前記被測定者の顔に含まれる所定の領域の温度を示す信号を含む
ことを特徴とするウェアラブルデバイス。 - 請求項1から6のいずれか1項に記載のウェアラブルデバイスにおいて、
前記基材および前記提示装置の少なくともいずれかに配設された、前記被測定者が装着するメガネに前記基材を着脱可能に固定する取付部材をさらに備え、
前記提示装置は、前記メガネのレンズの位置に合わせて配置される
ことを特徴とするウェアラブルデバイス。 - 被測定者の頭部に装着される基材と、
前記基材に設けられ、前記被測定者の前記頭部の表面の温度に関する第1信号を測定する第1センサと、
前記基材に設けられ、前記第1信号が測定された前記頭部の表面の位置での周辺光の強さを示す第2信号を測定する第2センサと
を有するウェアラブルデバイスと、
前記ウェアラブルデバイスとネットワークを介して接続される通信端末装置と、
を備え、
前記ウェアラブルデバイスおよび前記通信端末装置の少なくともいずれかは、
前記第2信号に基づいて前記第1信号を補正して、前記被測定者の体温を推定する推定回路を有し、
前記通信端末装置は、
前記推定回路により推定された前記体温を提示する提示装置を有する
ことを特徴とする体温提示システム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/794,042 US12038331B2 (en) | 2020-02-03 | 2020-02-03 | Wearable device, and body temperature presentation system |
CN202080095463.4A CN115066599A (zh) | 2020-02-03 | 2020-02-03 | 可穿戴设备和体温提示系统 |
JP2021575102A JP7243871B2 (ja) | 2020-02-03 | 2020-02-03 | ウェアラブルデバイス、および体温提示システム |
PCT/JP2020/003885 WO2021156904A1 (ja) | 2020-02-03 | 2020-02-03 | ウェアラブルデバイス、および体温提示システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/003885 WO2021156904A1 (ja) | 2020-02-03 | 2020-02-03 | ウェアラブルデバイス、および体温提示システム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021156904A1 true WO2021156904A1 (ja) | 2021-08-12 |
Family
ID=77199870
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/003885 WO2021156904A1 (ja) | 2020-02-03 | 2020-02-03 | ウェアラブルデバイス、および体温提示システム |
Country Status (4)
Country | Link |
---|---|
US (1) | US12038331B2 (ja) |
JP (1) | JP7243871B2 (ja) |
CN (1) | CN115066599A (ja) |
WO (1) | WO2021156904A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11719580B1 (en) * | 2020-05-14 | 2023-08-08 | Fireside Security Group, Inc. | Integrated access gateway |
CN116125669A (zh) * | 2023-01-31 | 2023-05-16 | 富泰华工业(深圳)有限公司 | 显示装置及拍摄视野的调制方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006507855A (ja) * | 2002-04-22 | 2006-03-09 | マルシオ マルク アブリュー | 生物学的パラメーターの測定装置及び方法 |
WO2014042927A1 (en) * | 2012-09-12 | 2014-03-20 | Bae Systems Information And Electronic Systems Integration Inc. | Face mounted extreme environment thermal sensor system |
CN107167932A (zh) * | 2017-04-17 | 2017-09-15 | 深圳市元征科技股份有限公司 | 基于太阳镜的体温监控方法、太阳镜 |
JP2018504733A (ja) * | 2014-10-21 | 2018-02-15 | フィリップス ライティング ホールディング ビー ヴィ | 発光分布のハンズフリー設定のためのシステム、方法、及びコンピュータプログラム |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7380936B2 (en) * | 2003-10-09 | 2008-06-03 | Ipventure, Inc. | Eyeglasses with a clock or other electrical component |
US7677723B2 (en) * | 2003-10-09 | 2010-03-16 | Ipventure, Inc. | Eyeglasses with a heart rate monitor |
CN104597623A (zh) * | 2013-10-31 | 2015-05-06 | 深圳富泰宏精密工业有限公司 | 智能偏光眼镜 |
US9183709B2 (en) * | 2014-03-26 | 2015-11-10 | Intel Corporation | Wearable device as an ambient information display |
US10959666B2 (en) * | 2015-01-12 | 2021-03-30 | Enbiomedic | Wearable hip joint-action detectors |
US10911860B2 (en) * | 2016-03-23 | 2021-02-02 | Intel Corporation | Automated and body driven headset audio control |
US10367812B2 (en) * | 2016-07-20 | 2019-07-30 | Vivint, Inc. | Integrated system component and electronic device |
WO2018184072A1 (en) * | 2017-04-07 | 2018-10-11 | Brien Holden Vision Institute | Systems, devices and methods for slowing the progression of a condition of the eye and/or improve ocular and/or other physical conditions |
-
2020
- 2020-02-03 WO PCT/JP2020/003885 patent/WO2021156904A1/ja active Application Filing
- 2020-02-03 JP JP2021575102A patent/JP7243871B2/ja active Active
- 2020-02-03 CN CN202080095463.4A patent/CN115066599A/zh active Pending
- 2020-02-03 US US17/794,042 patent/US12038331B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006507855A (ja) * | 2002-04-22 | 2006-03-09 | マルシオ マルク アブリュー | 生物学的パラメーターの測定装置及び方法 |
WO2014042927A1 (en) * | 2012-09-12 | 2014-03-20 | Bae Systems Information And Electronic Systems Integration Inc. | Face mounted extreme environment thermal sensor system |
JP2018504733A (ja) * | 2014-10-21 | 2018-02-15 | フィリップス ライティング ホールディング ビー ヴィ | 発光分布のハンズフリー設定のためのシステム、方法、及びコンピュータプログラム |
CN107167932A (zh) * | 2017-04-17 | 2017-09-15 | 深圳市元征科技股份有限公司 | 基于太阳镜的体温监控方法、太阳镜 |
Also Published As
Publication number | Publication date |
---|---|
CN115066599A (zh) | 2022-09-16 |
US20230046325A1 (en) | 2023-02-16 |
JP7243871B2 (ja) | 2023-03-22 |
JPWO2021156904A1 (ja) | 2021-08-12 |
US12038331B2 (en) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105677015B (zh) | 虚拟实境系统 | |
US10635900B2 (en) | Method for displaying gaze point data based on an eye-tracking unit | |
US11237409B2 (en) | Wearing detection module for spectacle frame | |
US10307053B2 (en) | Method for calibrating a head-mounted eye tracking device | |
US20190101984A1 (en) | Heartrate monitor for ar wearables | |
WO2021156904A1 (ja) | ウェアラブルデバイス、および体温提示システム | |
JP6359909B2 (ja) | ウェアラブル装置 | |
KR101467529B1 (ko) | 착용형 정보 제공 시스템 | |
CN110275602A (zh) | 人工现实系统和头戴式显示器 | |
JP6262371B2 (ja) | 眼球運動検出装置 | |
JP6535694B2 (ja) | 情報処理方法、情報処理装置及びプログラム | |
WO2022261217A1 (en) | Temperature detection | |
US10163014B2 (en) | Method for monitoring the visual behavior of a person | |
US20210267546A1 (en) | Ear temperature measurement of wearable headset | |
US11156856B2 (en) | Eyewear with wearing status detector | |
WO2024006632A1 (en) | Electronic device with lens position sensing | |
CN209690628U (zh) | 系统和头戴式设备 | |
KR20150061766A (ko) | 헬스 케어 기능을 갖는 시스루 스마트 안경 | |
WO2017077601A1 (ja) | 情報処理方法、情報処理装置、プログラム及びアイウエア | |
EP3112927A1 (en) | A vision monitoring module fixed on a spectacle frame | |
JP7513115B2 (ja) | 体温推定装置 | |
WO2022118387A1 (ja) | 体温推定装置 | |
WO2022259351A1 (ja) | 体温推定装置及び体温推定方法 | |
WO2016158574A1 (ja) | 視線移動検出方法、プログラム、情報処理装置及びアイウエア | |
US20240277260A1 (en) | Respiration Detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20917869 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021575102 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20917869 Country of ref document: EP Kind code of ref document: A1 |