WO2021155790A1 - 搜索空间的监听方法和设备 - Google Patents

搜索空间的监听方法和设备 Download PDF

Info

Publication number
WO2021155790A1
WO2021155790A1 PCT/CN2021/074919 CN2021074919W WO2021155790A1 WO 2021155790 A1 WO2021155790 A1 WO 2021155790A1 CN 2021074919 W CN2021074919 W CN 2021074919W WO 2021155790 A1 WO2021155790 A1 WO 2021155790A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
terminal device
monitoring
objects
transmission object
Prior art date
Application number
PCT/CN2021/074919
Other languages
English (en)
French (fr)
Other versions
WO2021155790A9 (zh
Inventor
纪子超
李�根
潘学明
刘思綦
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21750196.4A priority Critical patent/EP4102913A4/en
Priority to KR1020227030494A priority patent/KR20220135247A/ko
Priority to JP2022548202A priority patent/JP7408825B2/ja
Priority to BR112022015527A priority patent/BR112022015527A2/pt
Publication of WO2021155790A1 publication Critical patent/WO2021155790A1/zh
Publication of WO2021155790A9 publication Critical patent/WO2021155790A9/zh
Priority to US17/882,233 priority patent/US20220408465A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiment of the present invention relates to the field of communications, and in particular to a method and device for monitoring a search space.
  • the 5G NR system supports carrier aggregation (CA), which can configure and activate multiple carriers (component carriers, CC) or cells for terminal devices, and supports cross-carrier scheduling under carrier CA.
  • CA carrier aggregation
  • CC component carriers
  • NR also supports multiple Transmission and Reception Panel (M-TRP) scenarios, where terminal devices can be dispatched and received by multiple TRPs.
  • M-TRP Transmission and Reception Panel
  • one cell can only be scheduled by one scheduling cell (that is, it can only be self-scheduled or scheduled by another cell), and the PCell can only be scheduled by the primary cell (Primary Cell, PCell) itself.
  • PCell is generally deployed in a low-frequency carrier. Due to the insufficient bandwidth of the low-band carrier and a large number of deployments to other series (such as LTE), the PCell control channel capacity is limited, and this scheduling method in the related technology is difficult to solve the problem of the limited PCell control channel capacity.
  • the purpose of the embodiments of the present invention is to provide a method and device for monitoring a search space to solve the problem of limited control channel capacity in a scheduling method in related technologies.
  • a method for monitoring a search space is provided.
  • the method is executed by a terminal device, and the terminal device configures multiple transmission objects, and the method includes:
  • the search space SS is monitored according to the scheduling configuration information, and the SS includes at least two SSs in which the transmission object schedules one transmission object.
  • a method for monitoring a search space is provided, the method is executed by a network device, and the method includes:
  • the scheduling configuration information is used for a terminal device to monitor an SS, the terminal device configures multiple transmission objects, and the SS includes at least two SSs for which the transmission object schedules one transmission object.
  • a terminal device configured with multiple transmission objects, and the terminal device includes:
  • the monitoring module is configured to monitor the SS according to the scheduling configuration information, and the SS includes at least two SSs for which the transmission object schedules one transmission object.
  • a network device in a fourth aspect, includes:
  • the sending module is used to send scheduling configuration information
  • the scheduling configuration information is used by a terminal device to monitor an SS, and the terminal device configures a plurality of transmission objects, and the SS includes at least two SSs for which the transmission object schedules one transmission object.
  • a terminal device in a fifth aspect, includes a processor, a memory, and a computer program stored on the memory and running on the processor.
  • the computer program When the computer program is executed by the processor, The steps of the method for monitoring the search space as described in the first aspect are implemented.
  • a network device in a sixth aspect, includes a processor, a memory, and a computer program that is stored on the memory and can run on the processor.
  • the computer program is executed by the processor, The method for monitoring the search space as described in the second aspect is implemented.
  • a computer-readable storage medium is provided, and a computer program is stored on the computer-readable storage medium.
  • the monitoring method of the search space is provided.
  • a terminal device is configured with multiple transmission objects (for example, multiple cells or multiple TRPs), and can support one cell (or TRP) to be self-scheduled while being used by another cell (or TRP).
  • TRP transmission objects
  • TRP scheduling for example, supporting PCell self-scheduling while supporting PCell scheduling through SCell, solving the problem of limited capacity of the (PCell) control channel and improving communication efficiency.
  • Fig. 1 is a schematic flowchart of a method for monitoring a search space according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart of a method for monitoring a search space according to another embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • Fig. 5 is a schematic structural diagram of a terminal device according to another embodiment of the present invention.
  • Fig. 6 is a schematic structural diagram of a network device according to another embodiment of the present invention.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • LTE Time Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • terminal equipment may include, but is not limited to, a mobile station (Mobile Station, MS), a mobile terminal (Mobile Terminal), a mobile phone (Mobile Telephone), a user equipment (User Equipment, UE), and a mobile phone (handset).
  • the terminal equipment can communicate with one or more core networks through a radio access network (Radio Access Network, RAN), for example, the terminal equipment can be a mobile phone (or It is called a "cellular" phone), a computer with wireless communication function, etc.
  • the terminal device can also be a portable, pocket-sized, handheld, built-in computer or a mobile device in a vehicle.
  • a network device is a device deployed in a wireless access network to provide wireless communication functions for terminal devices.
  • the network device may be a base station, and the base station may include various forms of macro base stations, micro base stations, relay stations, and access points.
  • the names of devices with base station functions may be different.
  • an LTE network it is called an evolved NodeB (evolved NodeB, eNB, or eNodeB)
  • eNB evolved NodeB
  • 3G Third Generation
  • Node B Node B
  • Network equipment, etc. the wording does not constitute a restriction.
  • an embodiment of the present invention provides a method 100 for monitoring a search space.
  • the method can be executed by a terminal device.
  • the method can be executed by software or hardware installed on the terminal device. Including the following steps:
  • the terminal device may be configured with multiple transmission objects, and the multiple transmission objects may be multiple cells; or multiple transmission points (multiple Transmission and Reception Point, M-TRP, or multiple transmission and reception points), That is, the search space of the transmission object is associated with a specific CORESET or CORESET pool.
  • M-TRP Multiple Transmission and Reception Point
  • the scheduling configuration information obtained (e.g., received) by the terminal device may be used to configure at least one of the following: the foregoing multiple transmission object configurations; the monitored search space (Search Space, SS); the scheduled downlink control information (Downlink Control Information, DCI) format, etc.
  • the foregoing scheduling configuration information may be used to configure the scheduling relationship among the foregoing multiple transmission objects.
  • S104 Monitor the SS according to the scheduling configuration information, where the SS includes at least two transmission objects that schedule one transmission object (also referred to as a scheduled transmission object).
  • the SS includes at least two cells (may be called scheduling cells) to schedule one cell (may be called a scheduled cell); or, the SS includes at least two TRPs (may be called It is an SS that schedules a TRP (it can be called a scheduled TRP).
  • the foregoing multiple transmission objects include at least a first transmission object and a second transmission object
  • the SS monitored by the terminal device includes at least one of the following:
  • Transmission objects other than the second transmission object for example, the first object, the third transmission object, the fourth transmission object, etc.
  • the multiple transmission objects schedule the first SS of the first transmission object; among them, the first transmission object
  • the first SS may be referred to as the SS self-scheduled by the first transmission object.
  • the second transmission object schedules the second SS of the first transmission object.
  • the SS monitored by the terminal device includes a first SS self-scheduled by the first transmission object and a second SS scheduled by the second transmission object of the first transmission object.
  • it may also include a third SS self-scheduled by the second transmission object.
  • the SS monitored by the terminal device includes the second SS that schedules the first transmission object, such as the second transmission object and the third transmission object.
  • the monitoring SS mentioned in S104 may be within a first specific time and satisfy at least one of the following:
  • L is less than or equal to the number of transmission objects scheduled by the second transmission object.
  • the L is predefined; or the L is related to the maximum processing capacity M reported by the terminal device.
  • a terminal device is configured with multiple transmission objects (for example, multiple cells or multiple TRPs), and can support one cell (or TRP) to be self-scheduled while being used by another cell (or TRP).
  • TRP transmission objects
  • TRP scheduling for example, supporting PCell self-scheduling while supporting PCell scheduling through SCell, solving the problem of limited capacity of the (PCell) control channel and improving communication efficiency.
  • the terminal device mentioned in embodiment 100 is configured with cell-1 and cell-2.
  • cell-1 is self-scheduled, and cell-2 can also schedule cell-1.
  • the terminal device monitors the self-scheduled SS of cell-1 (hereinafter referred to as SE-SS) and the SS of cell-2 scheduling cell-1 (hereinafter referred to as CR-SS) to obtain the scheduling instruction DCI for scheduling cell-1.
  • SE-SS self-scheduled SS of cell-1
  • CR-SS SS of cell-2 scheduling cell-1
  • the terminal device can also monitor other SSs on cell-2 (hereinafter referred to as O-SS) to obtain scheduling DCI for scheduling cell-2.
  • O-SS other SSs on cell-2
  • the aforementioned SE-SS, CR-SS or O-SS in this embodiment may all be a common search space (CSS) or a UE-specific search space (UE-specific search space). USS).
  • a special scenario is that there is no self-scheduling on cell-1, and a DCI-J is configured for simultaneous/joint scheduling of cell-1 and cell-2 data on cell-2. At this time, DCI can also be configured on cell-2 -2 Schedule cell-1 alone.
  • the processing capability of the terminal device to monitor the PDCCH (for example, SE-SS) of cell-1 does not exceed the maximum processing capability of a single cell of the terminal device. That is, the number of PDCCH candidates monitored by the terminal device does not exceed the maximum number of PDCCH candidates in a single cell; the number of non-overlapping control channel elements (CCEs) monitored by the terminal device does not exceed the maximum number of non-overlapping CCEs in a single cell; The maximum number of DCI formats of different sizes monitored by the terminal device does not exceed the number of DCI formats of a single cell (DCI size budget), and the following embodiments are similar to this embodiment.
  • the number of PDCCH candidates monitored by the terminal device does not exceed the maximum number of PDCCH candidates in a single cell
  • CCEs non-overlapping control channel elements
  • the maximum number of DCI formats of different sizes monitored by the terminal device does not exceed the number of DCI formats of a single cell (DCI size budget), and the following embodiments are similar to this embodiment.
  • the processing capability mentioned in this embodiment is related to the scheduling cell and/or the parameters of the scheduled cell (for example, numerology/SCS), for example, it is determined according to the SCS of cell-1 or cell-2, or according to the largest or smallest of them. SCS is ok, and so on.
  • numerology/SCS for example, it is determined according to the SCS of cell-1 or cell-2, or according to the largest or smallest of them. SCS is ok, and so on.
  • the “processing capability of the terminal device to monitor" mentioned in this embodiment means the processing capability required by the terminal device to monitor the PDCCH according to the configuration parameters of the network device, or the terminal device obtains it through other means (for example, determined by itself)
  • the processing capability required for monitoring the PDCCH the following embodiments are similar to this embodiment.
  • the total processing capacity of the PDCCH (for example, CR-SS and O-SS) of cell-2 monitored by the terminal device does not exceed the maximum processing capacity of a single cell of the terminal device.
  • CR-SS and O-SS may be different SSs, or CR-SS and O-SS may be the same SS.
  • different PDCCH candidates in the SS correspond to the DCI of different scheduled cells, according to The cell ID or CIF is marked.
  • the processing capability in this embodiment is related to the parameters of the scheduling cell and/or the scheduled cell (for example, numerology/SCS), for example, determined according to the SCS of cell-1 or cell-2, or determined according to the largest or smallest SCS of them ,and many more.
  • parameters of the scheduling cell and/or the scheduled cell for example, numerology/SCS
  • SCS for example, determined according to the SCS of cell-1 or cell-2, or determined according to the largest or smallest SCS of them ,and many more.
  • the essence of the solution b) is to allocate a part of the processing capacity of cell-2 to cell-1.
  • the advantage is that it is simple to implement, but it may also reduce the number of monitorable candidates of cell-2, while the monitoring capability of cell-1 is wasted. , May lead to a decrease in scheduling flexibility.
  • the solution b) is also applicable to the scenario where cell-1 is not configured with self-scheduling, and cell-1 is scheduled by DCI only through the cross-carrier scheduling of cell-2 or the DCI of joint/multi-cell scheduling.
  • the total processing capacity of the CR-SS and O-SS monitored by the terminal equipment does not exceed (N ⁇ the maximum processing capacity of a single cell of the terminal equipment) (see the subsequent embodiment 2 of the present invention).
  • N may be predefined by the protocol, or N may be related to the processing capability M reported by the terminal device (for example, N ⁇ M).
  • the specific time mentioned in the above three schemes a, b, and c can be the same specific time, such as the same time slot; it can also be different specific times, for example, schemes a, b, and c respectively It is to monitor the SS in different time slots.
  • the at least two transport object 100 in the embodiment mentioned in the i th transport object A i is assigned a threshold processing capacity X i, the X i is not more than a single transport object Maximum processing capability; wherein, within the second specific time, the processing capability of the SS that monitors the A i for scheduling one of the transmission objects does not exceed the X i .
  • This embodiment may also include a self-scheduling scenario, that is, the transmission object scheduled by a certain transmission object Ai is itself.
  • At least two of the X i satisfy the following relationship:
  • said N is the number of said at least two transmission objects, and N is greater than or equal to 2;
  • the R is the maximum processing capacity determined according to at least one of the parameters of the at least two transmission objects.
  • the R is the maximum processing capacity determined according to a parameter of the scheduled transmission object.
  • the R is the maximum processing capacity reported by the terminal device.
  • At least two of the X i satisfy the following relationship:
  • said N is the number of said at least two transmission objects, and N is greater than or equal to 2;
  • P i is the maximum processing capacity determined according to the parameters of A i.
  • the terminal device is configured with cell-1 and cell-2.
  • cell-1 is self-scheduled, and cell-2 can also schedule cell-1.
  • the terminal device monitors the self-scheduled SS of cell-1 (hereinafter referred to as SE-SS) and the SS of cell-2 scheduling cell-1 (hereinafter referred to as CR-SS) to obtain the scheduling instruction DCI for scheduling cell-1.
  • SE-SS self-scheduled SS of cell-1
  • CR-SS SS of cell-2 scheduling cell-1
  • O-SS other SSs on cell-2
  • the processing capability of terminal equipment to monitor SE-SS does not exceed a threshold X 1 , and X 1 is not greater than the maximum processing capability of a single cell; the processing capability of terminal equipment to monitor CR-SS does not exceed a threshold X 2 , and X 2 is not greater than a single cell The maximum processing capacity of the cell.
  • the specific time for monitoring the SE-SS and the specific time for monitoring the CR-SS may be the same specific time, for example, the same time slot; or they may be different specific times, for example, in different time slots.
  • Monitor SE-SS and CR-SS may be the same specific time, for example, the same time slot; or they may be different specific times, for example, in different time slots.
  • the threshold X 1 threshold X 2 is related to the scheduling cell and/or the parameter of the scheduled cell (for example, numerology/SCS), for example, determined according to the SCS of cell-1 or cell-2, or according to the largest or The minimum SCS is determined, and so on.
  • the parameter of the scheduled cell for example, numerology/SCS
  • the threshold X 1 and the threshold X 2 satisfy a specific relationship:
  • X 1 +X 2 R, where R is the maximum processing capacity determined according to the parameters (SCS) of cell-1 or cell-2, or R is reported by the user.
  • X 1 /P 1 +X 2 /P 2 1
  • P 1 is the maximum processing capacity determined according to the SE-SS cell (ie cell-1)
  • P 2 is the CR-SS cell (ie cell-2) the determined maximum processing capacity (see the third embodiment of the present invention).
  • the essence of this solution is to allocate part of the hardware processing capacity of cell-1 to cell-2 for PDCCH monitoring.
  • the advantage is that it maintains high scheduling flexibility and does not increase hardware costs and energy consumption.
  • the threshold X 1 threshold X 2 is a quantized integer value, that is, the candidate values of X 1 and X 2 are several positive integers.
  • this embodiment is described in two cell an example, but the present embodiment is applicable to two or more cell scenario, the number of the threshold value X i may also be more, e.g., X 3, X 4 etc. .
  • X 1 and X 2 may be predefined by the protocol or configured by the network, or X 1 and X 2 may be related to the capabilities reported by the terminal device (the terminal device reports X 1 and X 2 , or X 1 and X (2 ) Calculated based on one or more capability values reported by the terminal device), the terminal device may only report one value of X 1 or X 2 , and the other value is calculated based on the above-mentioned specific relationship that needs to be satisfied.
  • the maximum, as an embodiment, the i-th transport object A i assigned at least two transport object 100 in the embodiment mentioned processing capabilities are G i, G i is not more than a single transport object of the Processing capability; wherein, within a third specific time, the processing capability of the SS that monitors the A i for scheduling one of the transmission objects is the G i .
  • At least two of the G i satisfy the following relationship:
  • said N is the number of said at least two transmission objects, and N is greater than or equal to 2;
  • the S is the maximum processing capacity determined according to at least one of the parameters of the at least two transmission objects.
  • the S is the maximum processing capacity determined according to a parameter of the scheduled transmission object.
  • At least two of the G i satisfy the following relationship:
  • said N is the number of said at least two transmission objects, and N is greater than or equal to 2;
  • the Q i is the maximum processing capacity determined according to the parameters of A i.
  • the terminal device is configured with cell-1 and cell-2.
  • cell-1 is self-scheduled, and cell-2 can also schedule cell-1.
  • the terminal device monitors the self-scheduled SS of cell-1 (hereinafter referred to as SE-SS) and the SS of cell-2 scheduling cell-1 (hereinafter referred to as CR-SS) to obtain the scheduling instruction DCI for scheduling cell-1.
  • SE-SS self-scheduled SS of cell-1
  • CR-SS SS of cell-2 scheduling cell-1
  • O-SS other SSs on cell-2
  • the processing capability required by the terminal equipment to configure the monitoring of SE-SS is G 1 ;
  • the processing capacity required for the terminal equipment to configure the monitoring of CR-SS is G 2 , G 1 and G 2
  • G 1 and G 2 To satisfy a specific relationship:
  • S is the maximum processing capacity determined according to the parameters (SCS) of cell-1 or cell-2;
  • G 1 /Q 1 +G 2 /Q 2 ⁇ 1 where Q 1 is the maximum processing capacity determined according to the SE-SS cell (ie cell-1), and Q 2 is the CR-SS cell (ie cell-2) the determined maximum processing capacity (see the fourth embodiment of the present invention).
  • the specific time for monitoring the SE-SS and the specific time for monitoring the CR-SS may be the same specific time, for example, the same time slot; or they may be different specific times, for example, in different time slots.
  • Monitor SE-SS and CR-SS may be the same specific time, for example, the same time slot; or they may be different specific times, for example, in different time slots.
  • G 1 and G 2 are related to the scheduling cell and/or the parameter (for example, numerology/SCS) of the scheduled cell.
  • G 1 and G 2 are quantized integer values, see the foregoing embodiment.
  • the processing capacity of the scheduled SS does not exceed the maximum processing capacity of A i.
  • the terminal device is configured with cell-1 and cell-2.
  • cell-1 is self-scheduled, and cell-2 can also schedule cell-1.
  • the terminal device monitors the self-scheduled SS of cell-1 (hereinafter referred to as SE-SS) and the SS of cell-2 scheduling cell-1 (hereinafter referred to as CR-SS) to obtain the scheduling instruction DCI for scheduling cell-1.
  • SE-SS self-scheduled SS of cell-1
  • CR-SS SS of cell-2 scheduling cell-1
  • O-SS other SSs on cell-2
  • the total processing capacity (including SE-SS and CR-SS) monitored by the terminal equipment does not exceed the maximum processing capacity of the single scheduled cell cell-1 of the terminal equipment;
  • the total processing capacity of the CR-SS and O-SS monitored by the terminal equipment does not exceed the maximum processing capacity of the single scheduling cell cell-2 of the terminal equipment.
  • the specific time for monitoring SE-SS and CR-SS, and the specific time for monitoring CR-SS and O-SS may be the same specific time, such as the same time slot; or different specific times, such as , Respectively monitor SE-SS and CR-SS; CR-SS and O-SS in different time slots.
  • the network device can flexibly select an SS for scheduling, as long as it does not exceed the above-mentioned maximum processing capacity.
  • the essence of this embodiment is to dynamically allocate hardware processing capabilities for PDCCH monitoring of cell-1 and cell-2, so that maximum scheduling flexibility can be obtained.
  • the processing capability of the monitoring SS mentioned in the previous embodiments is related to at least one of the following: a specific DCI format or size; a specific SS; the parameters of the transmission object; the configuration of the The number of multiple transmission objects; the identification of the control resource set CORESET.
  • the monitoring capabilities allocated by the terminal device are related to the specific DCI format or size, specific search space, cell parameters (numerology/SCS), number of scheduled cells, and CORESET identification (CORESET ID or pool ID, etc.) At least one of them is related.
  • the monitoring capability for monitoring DCI may be the monitoring capability of the shared scheduling cell or any one or more scheduled cells; or, the part of the capability may be allocated from the monitoring capability of the scheduling cell and the scheduled cell.
  • Composition see the sixth embodiment of the present invention.
  • the specific time mentioned in each of the foregoing embodiments and at least one of the specific first specific time, second specific time, third specific time, and fourth specific time include the following one:
  • At least one time slot At least one time slot
  • Physical downlink control channel PDCCH monitoring opportunity wherein, the earliest starting position of the schedulable physical downlink shared channel PDSCH or physical uplink shared channel PUSCH corresponding to the PDCCH monitoring opportunity is the same. For example, PDCCH monitoring opportunities on two cells where the earliest starting position of the scheduled PDSCH/PUSCH is N.
  • the method before obtaining scheduling configuration information in Embodiment 100, the method further includes: sending terminal capabilities, where the terminal capabilities include at least one of the following:
  • the length of the monitoring timer is the length of the monitoring timer.
  • the network device can configure the terminal device with the above cell-1, cell-2 configuration, monitored SS (including CR-SS, SE-SS, O-SS, etc.), and scheduled DCI format and so on.
  • the configuration needs to meet the above-mentioned terminal device monitoring restriction; or the network device's ability to receive the terminal device's report is configured according to the terminal device's capabilities.
  • the network equipment configures the Pcell and Scell for the terminal equipment, and the Scell schedules the Pcell.
  • the network equipment configures the Pcell and Scell for the terminal equipment, and the Scell schedules the Pcell.
  • the network equipment is configured with a scaling factor N, indicating how to allocate the maximum processing capacity between cells.
  • N 0.5, which means that half of the capacity of the Pcell is allocated for self-scheduling, and half of the capacity is used for the Scell to mobilize the Pcell.
  • the terminal device determines the PDCCH monitoring capability of the scheduled Pcell according to the configured N and the SCS of the cell:
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • the terminal equipment configuration part of the monitoring capability is used to monitor DCI-J.
  • the part of the monitoring capability may be the monitoring capability of the shared Pcell or Scell, or the part of the capability may be allocated from each of the monitoring capabilities of the Pcell and Scell.
  • the terminal equipment can report the allocation ratio to the network equipment, or according to certain rules, for example, DCI-J only schedules PDSCH, Scell self-schedules PUSCH, or Pcell cross-carrier schedules Scell PUSCH.
  • the scheduling capability of the PDSCH of the Scell is allocated for monitoring DCI-J.
  • SS-0 and SS-1 are associated with CORESET pool ID-0
  • SS-2 is associated with CORESET pool ID-1
  • SS-0 schedules TRP-0
  • SS-1 and SS-2 can schedule TRP-1.
  • the foregoing embodiments of the present invention can be applied to the search space monitoring method under CA or M-TRP, and can support one cell (or TRP) to be scheduled by another cell (or TRP) at the same time, such as monitoring the PCell and SCell pair PCell's scheduling DCI allocates the maximum number of PDCCH candidates for blind detection of terminal equipment between two scheduling cells, the maximum number of non-overlapping CCEs, DCI size budget, etc., which can simplify terminal equipment implementation and reduce power consumption.
  • each of the above embodiments takes as an example that cell-2 only schedules cell-1 and cell-2 itself, but this solution is also applicable to a scenario where cell-2 schedules more than two cells.
  • the DCI for cell-2 scheduling cell-1 may be the DCI for scheduling one cell alone, or the DCI for scheduling multiple cells at the same time/jointly.
  • a special DCI can schedule data of two cells at the same time.
  • the foregoing embodiments of the present invention can also be used in the scenario of multiple Transmission and Reception Panel (M-TRP), that is, cell-1 and cell-2 in the present invention can also be TRP-1 and TRP of the same cell. -2.
  • the terminal device monitors the PDCCH of the SS corresponding to different TRPs (that is, configured with different CORESET pool indexes).
  • the method for monitoring the search space according to the embodiment of the present invention is described in detail above with reference to FIG. 1.
  • a method for monitoring a search space according to another embodiment of the present invention will be described in detail with reference to FIG. 2. It can be understood that the interaction between the network device and the terminal device described from the network device side is the same as the description on the terminal device side in the method shown in FIG. 1, and to avoid repetition, the related description is appropriately omitted.
  • Fig. 2 is a schematic diagram of the implementation process of a method for monitoring a search space according to an embodiment of the present invention, which can be applied to the network device side. As shown in FIG. 2, the method 200 includes:
  • S202 Send scheduling configuration information, where the scheduling configuration information is used by the terminal device to monitor the SS.
  • the terminal device configures multiple transmission objects.
  • the monitored SS includes at least two transmission objects scheduling one transmission object.
  • a terminal device is configured with multiple transmission objects (for example, multiple cells or multiple TRPs), and can support one cell (or TRP) to be self-scheduled while being used by another cell (or TRP).
  • TRP transmission objects
  • TRP scheduling for example, supporting PCell self-scheduling while supporting PCell scheduling through SCell, solving the problem of limited capacity of the (PCell) control channel and improving communication efficiency.
  • the multiple transmission objects include at least a first transmission object and a second transmission object
  • the monitored SS includes at least one of the following:
  • the third SS that is self-scheduled by the second transmission object.
  • the method before the sending the scheduling configuration information, the method further includes: receiving terminal capabilities, where the terminal capabilities include at least one of the following:
  • the length of the monitoring timer is the length of the monitoring timer.
  • the method for monitoring the search space according to the embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 2.
  • the terminal device according to the embodiment of the present invention will be described in detail below with reference to FIG. 3.
  • Fig. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present invention, and the terminal device is configured with multiple transmission objects. As shown in FIG. 3, the terminal device 300 includes:
  • the obtaining module 302 may be used to obtain scheduling configuration information
  • the monitoring module 304 may be configured to monitor the SS according to the scheduling configuration information, where the SS includes at least two SSs that the transmission object schedules one transmission object.
  • the terminal device provided by the embodiment of the present invention is configured with multiple transmission objects (for example, multiple cells or multiple TRPs), and can support one cell (or TRP) to be scheduled by another cell (or TRP) while being self-scheduled, for example , Support PCell self-scheduling while supporting PCell scheduling through SCell, solving the problem of limited capacity of (PCell) control channel and improving communication efficiency.
  • multiple transmission objects for example, multiple cells or multiple TRPs
  • the multiple transmission objects include at least a first transmission object and a second transmission object
  • the monitored SS includes at least one of the following:
  • the third SS that is self-scheduled by the second transmission object.
  • At least one of the following is satisfied within the first specific time:
  • the total processing capability of monitoring the second SS and the third SS does not exceed L multiplied by the maximum processing capability of a single transmission object, where L is a positive number.
  • the L is less than or equal to the number of transmission objects scheduled by the second transmission object.
  • the L is predefined; or
  • the L is related to the maximum processing capability M reported by the terminal device.
  • said at least two transport object in the i-th transport object A i is assigned a threshold processing capacity X i, the X i is not more than the maximum processing capacity of the transmission of a single object;
  • the processing capability of the SS that monitors the A i for scheduling one of the transmission objects does not exceed the X i .
  • At least two of the X i satisfy the following relationship:
  • said N is the number of said at least two transmission objects, and N is greater than or equal to 2;
  • the R is the maximum processing capacity determined according to at least one of the parameters of the at least two transmission objects.
  • the R is the maximum processing capacity determined according to a parameter of the scheduled transmission object.
  • the R is the maximum processing capacity reported by the terminal device.
  • At least two of the X i satisfy the following relationship:
  • said N is the number of said at least two transmission objects, and N is greater than or equal to 2;
  • P i is the maximum processing capacity determined according to the parameters of A i.
  • said at least two transport object in the i-th transport object A i G i is assigned the processing capacity of a single G i does not exceed the maximum processing capacity of said transmission object;
  • the processing capability of the SS that monitors the A i for scheduling one of the transmission objects is the G i .
  • At least two of the G i satisfy the following relationship:
  • said N is the number of said at least two transmission objects, and N is greater than or equal to 2;
  • the S is the maximum processing capacity determined according to at least one of the parameters of the at least two transmission objects.
  • the S is the maximum processing capacity determined according to a parameter of the scheduled transmission object.
  • At least two of the G i satisfy the following relationship:
  • said N is the number of said at least two transmission objects, and N is greater than or equal to 2;
  • the Q i is the maximum processing capacity determined according to the parameters of A i.
  • the fourth specific time for the i-th transmission object A i among the at least two transmission objects, monitor the SS of the SS scheduled by the A i for one transmission object processing capacity does not exceed the maximum processing capacity of the a i.
  • the processing capability of the monitoring SS is related to at least one of the following:
  • At least one of the first specific time, the second specific time, the third specific time, and the fourth specific time includes one of the following:
  • At least one time slot At least one time slot
  • the scheduling configuration information is used to configure at least one of the following:
  • the multiple transmission object configuration the monitored SS; the scheduled DCI format.
  • the terminal device 300 further includes a sending module, which may be used to send terminal capabilities, and the terminal capabilities include at least one of the following:
  • the length of the monitoring timer is the length of the monitoring timer.
  • the terminal device 300 may refer to the process of the method 100 corresponding to the embodiment of the present invention, and each unit/module in the terminal device 300 and the other operations and/or functions mentioned above are used to implement the corresponding methods in the method 100.
  • Fig. 4 is a schematic structural diagram of a network device according to an embodiment of the present invention. As shown in FIG. 4, the network device 400 includes:
  • the sending module 402 can be used to send scheduling configuration information
  • the scheduling configuration information is used by a terminal device to monitor an SS, and the terminal device configures a plurality of transmission objects, and the SS includes at least two SSs for which the transmission object schedules one transmission object.
  • the terminal device is configured with multiple transmission objects (for example, multiple cells or multiple TRPs), which can support one cell (or TRP) to be scheduled by another cell (or TRP) while being scheduled by another cell (or TRP), for example, , Support PCell self-scheduling while supporting PCell scheduling through SCell, solving the problem of limited capacity of (PCell) control channel and improving communication efficiency.
  • multiple transmission objects for example, multiple cells or multiple TRPs
  • the multiple transmission objects include at least a first transmission object and a second transmission object
  • the monitored SS includes at least one of the following:
  • the third SS that is self-scheduled by the second transmission object.
  • the network device 400 further includes a receiving module, which may be used to: receive terminal capabilities, where the terminal capabilities include at least one of the following:
  • the length of the monitoring timer is the length of the monitoring timer.
  • the network device 400 can refer to the process of the method 200 corresponding to the embodiment of the present invention, and each unit/module in the network device 400 and the other operations and/or functions described above are used to implement the corresponding steps in the method 200.
  • Fig. 5 is a block diagram of a terminal device according to another embodiment of the present invention.
  • the terminal device 500 shown in FIG. 5 includes: at least one processor 501, a memory 502, at least one network interface 504, and a user interface 503.
  • the various components in the terminal device 500 are coupled together through the bus system 505.
  • the bus system 505 is used to implement connection and communication between these components.
  • the bus system 505 also includes a power bus, a control bus, and a status signal bus.
  • various buses are marked as the bus system 505 in FIG. 5.
  • the user interface 503 may include a display, a keyboard, a pointing device (for example, a mouse, a trackball), a touch panel or a touch screen, etc.
  • the memory 502 in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Synchronous Link Dynamic Random Access Memory
  • Synchlink DRAM Synchronous Link Dynamic Random Access Memory
  • DRRAM Direct Rambus RAM
  • the memory 502 stores the following elements, executable modules or data structures, or their subsets, or their extended sets: operating system 5021 and application programs 5022.
  • the operating system 5021 includes various system programs, such as a framework layer, a core library layer, a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 5022 includes various application programs, such as a media player (Media Player), a browser (Browser), etc., which are used to implement various application services.
  • the program for implementing the method of the embodiment of the present invention may be included in the application program 5022.
  • the terminal device 500 further includes: a computer program stored in the memory 502 and capable of running on the processor 501, and the computer program is executed by the processor 501 to implement the steps of the method embodiment 100 as follows.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 501 or implemented by the processor 501.
  • the processor 501 may be an integrated circuit chip with signal processing capability. In the implementation process, the steps of the foregoing method can be completed by an integrated logic circuit of hardware in the processor 501 or instructions in the form of software.
  • the aforementioned processor 501 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (Field Programmable Gate Array, FPGA) or other Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a computer-readable storage medium that is mature in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the computer-readable storage medium is located in the memory 502, and the processor 501 reads the information in the memory 502, and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 501, each step of the above method embodiment 100 is implemented.
  • the embodiments described in the embodiments of the present invention may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more application specific integrated circuits (ASIC), digital signal processor (Digital Signal Processing, DSP), digital signal processing equipment (DSP Device, DSPD), programmable Logic device (Programmable Logic Device, PLD), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, and others for performing the functions described in this application Electronic unit or its combination.
  • ASIC application specific integrated circuits
  • DSP Digital Signal Processing
  • DSP Device digital signal processing equipment
  • PLD programmable Logic Device
  • PLD Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present invention can be implemented through modules (such as procedures, functions, etc.) that execute the functions described in the embodiments of the present invention.
  • the software codes can be stored in the memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the terminal device 500 can implement the various processes implemented by the terminal device in the foregoing embodiments, and can achieve the same or equivalent technical effects. To avoid repetition, details are not described herein again.
  • FIG. 6 is a structural diagram of a network device applied in an embodiment of the present invention, which can implement the details of the method embodiment 200 and achieve the same effect.
  • the network device 600 includes: a processor 601, a transceiver 602, a memory 603, and a bus interface, where:
  • the network device 600 further includes: a computer program stored in the memory 603 and capable of running on the processor 601, and the computer program is executed by the processor 601 to implement the steps of the method embodiment 200.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 601 and various circuits of the memory represented by the memory 603 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 602 may be a plurality of elements, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the processor 601 is responsible for managing the bus architecture and general processing, and the memory 603 can store data used by the processor 601 when performing operations.
  • the embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored.
  • the computer program When the computer program is executed by a processor, it implements any one of the method embodiment 100 and the method embodiment 200 described above. Each process can achieve the same technical effect. To avoid repetition, I won’t repeat it here.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk, or optical disk, etc.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to make a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the method described in each embodiment of the present invention.
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Alarm Systems (AREA)

Abstract

本发明实施例公开了一种搜索空间的监听方法和设备,该方法由终端设备执行,所述终端设备配置多个传输对象,所述方法包括:获取调度配置信息;根据所述调度配置信息监听SS,所述SS包括至少两个所述传输对象对一个所述传输对象进行调度的SS。

Description

搜索空间的监听方法和设备
相关申请的交叉引用
本申请主张在2020年02月06日在中国提交的中国专利申请号202010082038.3的优先权,其全部内容通过引用包含于此。
技术领域
本发明实施例涉及通信领域,尤其涉及一种搜索空间的监听方法和设备。
背景技术
5G NR系统支持载波聚合(carrier aggregation,CA),可以为终端设备配置并激活多个载波(component carrier,CC)或小区,且支持载CA下跨载波调度。此外,NR也支持多传输面板(multiple Transmission and Reception Panel,M-TRP)的场景,终端设备可以被多个TRP进行数据调度与收发。但Release-15NR一个小区只能由一个调度小区来调度(即只能是自调度或被另一个小区调度),且PCell只能被主小区(Primary Cell,PCell)自己调度。
出于增强控制信道覆盖考虑,一般将PCell部署在低频段的载波carrier。由于低频段carrier的带宽不足,且已经大量部署给其他系列(例如LTE),PCell控制信道容量有限,相关技术中的这种调度方式难以解决PCell控制信道容量有限的问题。
发明内容
本发明实施例的目的是提供一种搜索空间的监听方法和设备,用以解决相关技术中的调度方式难以解决控制信道容量有限的问题。
第一方面,提供了一种搜索空间的监听方法,所述方法由终端设备执行,所述终端设备配置多个传输对象,所述方法包括:
获取调度配置信息;
根据所述调度配置信息监听搜索空间SS,所述SS包括至少两个所述传输对象对一个所述传输对象进行调度的SS。
第二方面,提供了一种搜索空间的监听方法,所述方法由网络设备执行,所述方法包括:
发送调度配置信息;
其中,所述调度配置信息用于终端设备监听SS,所述终端设备配置多个传输对象, 所述SS包括至少两个所述传输对象对一个所述传输对象进行调度的SS。
第三方面,提供了一种终端设备,所述终端设备配置多个传输对象,所述终端设备包括:
获取模块,用于获取调度配置信息;
监听模块,用于根据所述调度配置信息监听SS,所述SS包括至少两个所述传输对象对一个所述传输对象进行调度的SS。
第四方面,提供了一种网络设备,该网络设备包括:
发送模块,用于发送调度配置信息;
其中,所述调度配置信息用于终端设备监听SS,所述终端设备配置多个传输对象,所述SS包括至少两个所述传输对象对一个所述传输对象进行调度的SS。
第五方面,提供了一种终端设备,该终端设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的搜索空间的监听方法的步骤。
第六方面,提供了一种网络设备,该网络设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的搜索空间的监听方法。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如第一方面和第二方面中任意一个方面所述的搜索空间的监听方法。
本发明实施例提供的搜索空间的监听方法,终端设备配置有多个传输对象(例如,多个小区或多个TRP),可以支持一个小区(或TRP)自调度的同时,被另一个小区(或TRP)调度,例如,支持PCell自调度的同时支持通过SCell调度PCell,解决(PCell)控制信道容量有限的问题,提升通信效率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是根据本发明的一个实施例的搜索空间的监听方法的示意性流程图;
图2是根据本发明的另一个实施例的搜索空间的监听方法的示意性流程图;
图3是根据本发明的一个实施例的终端设备的结构示意图;
图4是根据本发明的一个实施例的网络设备的结构示意图;
图5是根据本发明的另一个实施例的终端设备的结构示意图;
图6是根据本发明的另一个实施例的网络设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。本说明书各个实施例中的“和/或”表示前后两者的至少之一。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、5G系统,或者说新无线(New Radio,NR)系统,或者为后续演进通信系统。
在本发明实施例中,终端设备可以包括但不限于移动台(Mobile Station,MS)、移动终端(Mobile Terminal)、移动电话(Mobile Telephone)、用户设备(User Equipment,UE)、手机(handset)及便携设备(portable equipment)、车辆(vehicle)等,该终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,例如,终端设备可以是移动电话(或称为“蜂窝”电话)、具有无线通信功能的计算机等,终端设备还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
本发明实施例中,网络设备是一种部署在无线接入网中用以为终端设备提供无线通信功能的装置。所述网络设备可以为基站,所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等。在采用不同的无线接入技术的系统中,具有基站功能的设备的名称可能会有所不同。例如在LTE网络中,称为演进的节点B(Evolved NodeB,eNB或eNodeB),在第三代(3rd Generation,3G)网络中,称为节点B(Node B),或者后续演进通信系统中的网络设备等等,然用词并不构成限制。
如图1所示,本发明的一个实施例提供一种搜索空间的监听方法100,该方法可以由终端设备执行,换言之,该方法可以由安装在终端设备的软件或硬件来执行,该方法100包括如下步骤:
S102:获取调度配置信息。
本发明实施例中,终端设备可以配置多个传输对象,这多个传输对象可以是多个小区;或者是多传输点(multiple Transmission and Reception Point,M-TRP,或称多发送接收点), 即传输对象的搜索空间关联特定的CORESET或CORESET pool。
可选地,终端设备获取(例如接收)到的调度配置信息可以用于配置如下至少之一:上述多个传输对象配置;监听的搜索空间(Search Space,SS);调度的下行控制信息(Downlink Control Information,DCI)格式等。上述调度配置信息可以用于配置上述多个传输对象间的调度关系。
S104:根据调度配置信息监听SS,该SS包括至少两个传输对象对一个传输对象(还可以称作是被调度的传输对象)进行调度的SS。
可选地,该SS包括至少两个小区(可以称作是调度小区)对一个小区(可以称作是被调度小区)进行调度的SS;或者是,该SS包括至少两个TRP(可以称作是调度TRP)对一个TRP(可以称作是被调度TRP)进行调度的SS。
可选地,上述多个传输对象至少包括第一传输对象和第二传输对象,终端设备监听的SS包括如下至少之一:
1)多个传输对象中第二传输对象之外的传输对象(例如,第一对象,第三传输对象,第四传输对象等)调度第一传输对象的第一SS;其中,第一传输对象调度第一传输对象的情形下,第一SS可以称作是第一传输对象自调度的SS。
2)第二传输对象调度第一传输对象的第二SS。
3)第二传输对象自调度的第三SS。
在一个例子中,终端设备监听的SS包括第一传输对象自调度的第一SS以及第二传输对象调度第一传输对象的第二SS,当然还可以包括第二传输对象自调度的第三SS。
在另一个例子中,终端设备监听的SS包括第二传输对象、第三传输对象等调度第一传输对象的第二SS。
可选地,作为一个实施例,在S104中提到的监听SS可以是在第一特定时间内,满足如下至少之一:
1)监听上述第一SS的处理能力不超过单个所述传输对象的最大处理能力;
2)监听上述第二SS和第三SS的总处理能力不超过单个所述传输对象的最大处理能力;
3)监听上述第二SS和第三SS的总处理能力不超过L乘以单个所述传输对象的最大处理能力,所述L为正数。
可选地,L小于或等于所述第二传输对象调度的传输对象的数量。
可选地,所述L是预定义的;或所述L与所述终端设备上报的最大处理能力M相关。
本发明实施例提供的搜索空间的监听方法,终端设备配置有多个传输对象(例如,多个小区或多个TRP),可以支持一个小区(或TRP)自调度的同时,被另一个小区(或 TRP)调度,例如,支持PCell自调度的同时支持通过SCell调度PCell,解决(PCell)控制信道容量有限的问题,提升通信效率。
在一个具体的实施例中,实施例100中提到的终端设备配置了cell-1与cell-2。其中,cell-1是自调度,同时cell-2也可以调度cell-1。终端设备监听cell-1自调度的SS(以下称为SE-SS),以及cell-2调度cell-1的SS(以下称为CR-SS),以获取调度cell-1的调度指令DCI。
同时,终端设备还可以监听cell-2上的其他SS(以下称为O-SS),以获取调度cell-2的调度DCI。
可选地,该实施例中上述提到的SE-SS,CR-SS或O-SS都可以是公共搜索空间(common search space,CSS)或终端设备的特定搜索空间(UE-specific search space,USS)。
一种特殊的场景是,cell-1上没有自调度,cell-2上配置了一个DCI-J同时/联合调度cell-1与cell-2的数据,此时,cell-2上还可以配置DCI-2单独调度cell-1。
上述实施例中,针对终端设备监听SS的处理能力,以下将分a、b、c三个方案进行说明。
a)可选地,在特定时间内(例如,一个时隙内),终端设备监听cell-1的PDCCH(例如,SE-SS)的处理能力不超过终端设备单个小区的最大处理能力。即,终端设备监听的PDCCH候选数不超过单个小区的最大的PDCCH候选数目;终端设备监听的不重叠控制信道元素(Control Channel Element,CCE)的数目不超过单个小区的最大的不重叠CCE数目;终端设备监听的不同大小DCI格式的最大数量不超过单个小区的DCI格式的数量(DCI size budget),后文各个实施例与该实施例类同。
该实施例中提到的处理能力与调度小区和/或被调度小区的参数(例如,numerology/SCS)有关,例如,根据cell-1或cell-2的SCS确定,或根据其中最大或最小的SCS确定,等等。
该实施例中提到的“终端设备监听……的处理能力”,表示根据网络设备的配置参数,终端设备监听PDCCH所需的处理能力,或者终端设备通过其他方式获取(例如,自己确定)的监听PDCCH所需的处理能力,后文各个实施例与该实施例类同。
b)可选地,在特定时间内,终端设备监听的cell-2的PDCCH(例如CR-SS与O-SS)的总处理能力不超过终端设备单个小区的最大处理能力。(见后文本发明实施例一)
该实施例中,CR-SS与O-SS可以是不同的SS,或者,CR-SS与O-SS可以是相同的SS,此时SS里面不同的PDCCH候选对应不同被调度小区的DCI,根据小区ID或CIF进行标示。
该实施例中的处理能力与调度小区和/或被调度小区的参数(例如,numerology/SCS) 有关,例如,根据cell-1或cell-2的SCS确定,或根据其中最大或最小的SCS确定,等等。
该方案b)实质是将cell-2的处理能力分配了一部分给cell-1,好处是实现简单,但也可能导致cell-2的可监听候选数量减少,而cell-1的监听能力却浪费了,有可能导致调度灵活性下降。
该方案b)还适用于当cell-1上不配置自调度,只通过cell-2的跨载波调度DCI或联合/多小区调度DCI调度cell-1的场景。
c)可选地,终端设备监听的CR-SS与O-SS的总处理能力不超过(N×终端设备单个小区的最大处理能力)(见本发明后续的实施例二)。
可选地,N≤cell-2调度的小区的数量,例如,在cell-2调度cell-1与cell-2时,N=2或N=1.5。
上述方案b)是N=1的特例。
可选地,N可以是协议预定义的,或N可以与终端设备上报的处理能力M有关(例如,N≤M)。
该方案c)的好处是可以保持cell-2的调度灵活性,但要求cell-2有更大的处理能力,可能更高的硬件成本与能耗。
需要说明的是,上述a、b、c三个方案中提到的特定时间可以是同一个特定时间,例如同一个时隙;也可以是不同的特定时间,例如,方案a、b、c分别是在不同的时隙内监听SS。
可选地,作为一个实施例,实施例100中提到的至少两个传输对象中的第i个传输对象A i分配有处理能力阈值X i,所述X i不超过单个所述传输对象的最大处理能力;其中,在第二特定时间内,监听所述A i对一个所述传输对象进行调度的SS的处理能力不超过所述X i
该实施例还可以包括自调度的场景,即某一个传输对象Ai调度的传输对象是其本身。
可选地,至少两个所述X i满足如下关系:
Figure PCTCN2021074919-appb-000001
其中,所述N是所述至少两个传输对象的数量,N大于或等于2;
所述R是根据所述至少两个传输对象的参数中的至少一个确定的最大处理能力;或
所述R是根据被调度的一个所述传输对象的参数确定的最大处理能力;或
所述R是所述终端设备上报的最大处理能力。
可选地,至少两个所述X i满足如下关系:
Figure PCTCN2021074919-appb-000002
其中,所述N是所述至少两个传输对象的数量,N大于或等于2;
P i为根据所述A i的参数确定的最大处理能力。
为详细说明,以下将结合一个具体的实施例进行说明。还以之前的例子为例:即终端设备配置了cell-1与cell-2。其中,cell-1是自调度,同时cell-2也可以调度cell-1。终端设备监听cell-1自调度的SS(以下称为SE-SS),以及cell-2调度cell-1的SS(以下称为CR-SS),以获取调度cell-1的调度指令DCI。同时,终端设备还可以监听cell-2上的其他SS(以下称为O-SS),以获取调度cell-2的调度DCI。
可选地,在特定时间内,对于被调度小区cell-1:
终端设备监听SE-SS的处理能力不超过一个阈值X 1,且X 1不大于单个小区的最大处理能力;终端设备监听CR-SS的处理能力不超过一个阈值X 2,且X 2不大于单个小区的最大处理能力。
该实施例中监听SE-SS的特定时间和监听CR-SS的特定时间可以是同一个特定时间,例如同一个时隙;也可以是不同的特定时间,例如,分别是在不同的时隙内监听SE-SS与CR-SS。
可选地,该阈值X 1阈值X 2与调度小区和/或被调度小区的参数(例如,numerology/SCS)有关,例如,根据cell-1或cell-2的SCS确定,或根据其中最大或最小的SCS确定,等等。
优选的,阈值X 1阈值X 2满足特定关系:
X 1+X 2=R,其中R为根据cell-1或cell-2的参数(SCS)确定的最大处理能力,或R为用户上报的。
例如,以最大PDCCH候选为例,假设cell-1与cell-2的SCS不相同(cell-1:μ=0,cell-2:μ=1),则X 1+X 2=44(根据cell-1)或X 1+X 2=36(根据cell-2)。
或者,X 1/P 1+X 2/P 2=1,其中,P 1为根据SE-SS的小区(即cell-1)确定的最大处理能力,P 2为根据CR-SS的小区(即cell-2)确定的最大处理能力(见本发明后续实施例三)。
例如,以最大PDCCH候选为例,假设cell-1与cell-2的SCS相同(μ=0),则可能的阈值为X 1=30,X 2=14,满足30/44+14/44=1。
假设cell-1与cell-2的SCS不相同(cell-1:μ=0,cell-2:μ=1)则可能的阈值为X 1=22,X 2=18,满足X 1/P 1+X 2/P 2=22/44+18/36=1。
该方案的实质是将部分cell-1的硬件处理能力分配给了cell-2进行PDCCH监听,好处是保持了较高的调度灵活性,且不会提高硬件成本与能耗。
优选的,阈值X 1阈值X 2是一个量化的整数值,即,X 1和X 2的候选值是几个正整数,例如,以最大PDCCH候选为例,X 1不是0,…,44之间的任意整数,而是以K为步长(例如K=4)的等差序列0,4,8,…,40,44。这样可以简化终端设备的实现复杂度。
需要说明的是,该实施例的描述以两个cell为例说明,但本方案适用于两个以上cell的场景,上述阈值X i的数量还可以更多,例如,X 3,X 4等等。
可选地,X 1和X 2可以是协议预定义的,或网络配置的,或X 1和X 2可以与终端设备上报的能力有关(终端设备上报X 1和X 2,或X 1和X 2根据终端设备上报的一个或多个能力值计算获得),终端设备可以只上报X 1或X 2中的一个值,另一个值通过上述需满足的特定关系推算。
可选地,作为一个实施例,实施例100中提到的至少两个传输对象中的第i个传输对象A i分配有处理能力G i,所述G i不超过单个所述传输对象的最大处理能力;其中,在第三特定时间内,监听所述A i对一个所述传输对象进行调度的SS的处理能力为所述G i
可选地,至少两个所述G i满足如下关系:
Figure PCTCN2021074919-appb-000003
其中,所述N是所述至少两个传输对象的数量,N大于或等于2;
所述S是根据所述至少两个传输对象的参数中的至少一个确定的最大处理能力;或
所述S是根据被调度的一个所述传输对象的参数确定的最大处理能力。
可选地,至少两个所述G i满足如下关系:
Figure PCTCN2021074919-appb-000004
其中,所述N是所述至少两个传输对象的数量,N大于或等于2;
所述Q i为根据所述A i的参数确定的最大处理能力。
为详细说明,以下将结合一个具体的实施例进行说明。还以之前的例子为例:即终端设备配置了cell-1与cell-2。其中,cell-1是自调度,同时cell-2也可以调度cell-1。终端设备监听cell-1自调度的SS(以下称为SE-SS),以及cell-2调度cell-1的SS(以下称为CR-SS),以获取调度cell-1的调度指令DCI。同时,终端设备还可以监听cell-2上的其他SS(以下称为O-SS),以获取调度cell-2的调度DCI。
在特定时间内,对于被调度小区cell-1:终端设备配置监听SE-SS所需的处理能力为G 1;终端设备配置监听CR-SS所需的处理能力为G 2,G 1和G 2满足特定关系:
G 1+G 2≤S,其中S为根据cell-1或cell-2的参数(SCS)确定的最大处理能力;
或者,G 1/Q 1+G 2/Q 2≤1,其中,Q 1为根据SE-SS的小区(即cell-1)确定的最大处理能力,Q 2为根据CR-SS的小区(即cell-2)确定的最大处理能力(见本发明实施例四)。
该实施例中监听SE-SS的特定时间和监听CR-SS的特定时间可以是同一个特定时间,例如同一个时隙;也可以是不同的特定时间,例如,分别是在不同的时隙内监听SE-SS与CR-SS。
可选地,G 1和G 2与调度小区和/或被调度小区的参数(例如,numerology/SCS)有关。
优选的,G 1和G 2是一个量化的整数值,参见前文实施例。
可选地,作为一个实施例,实施例100中在第四特定时间内,针对所述至少两个传输对象中的第i个传输对象A i,监听所述A i对一个所述传输对象进行调度的SS的处理能力不超过所述A i的最大处理能力。
为详细说明,以下将结合一个具体的实施例进行说明。还以之前的例子为例:即终端设备配置了cell-1与cell-2。其中,cell-1是自调度,同时cell-2也可以调度cell-1。终端设备监听cell-1自调度的SS(以下称为SE-SS),以及cell-2调度cell-1的SS(以下称为CR-SS),以获取调度cell-1的调度指令DCI。同时,终端设备还可以监听cell-2上的其他SS(以下称为O-SS),以获取调度cell-2的调度DCI。
在特定时间内:
对于被调度小区cell-1,终端设备监听的总处理能力(包括SE-SS与CR-SS)不超过终端设备单个被调度小区cell-1的最大处理能力;
对于调度小区cell-2,终端设备监听的CR-SS与O-SS的总处理能力不超过终端设备单个调度小区cell-2的最大处理能力。
该实施例中监听SE-SS与CR-SS的特定时间,和监听CR-SS与O-SS的特定时间可以是同一个特定时间,例如同一个时隙;也可以是不同的特定时间,例如,分别是在不同的时隙内监听SE-SS与CR-SS;CR-SS与O-SS。
该实施例中,网络设备可以灵活选择一个SS进行调度,只要不超过上述最大处理能力。
该实施例实质是把硬件处理能力动态分配用于cell-1与cell-2的PDCCH监听,可以获得最大调度灵活性。
可选地,作为一个实施例,前文各个实施例中提到的监听SS的处理能力与如下至少之一相关:特定的DCI格式或大小;特定SS;所述传输对象的参数;配置的所述多个传输对象的数量;控制资源集CORESET的标识。
也即,在特定时间内,终端设备分配的监听能力与特定DCI格式或大小、特定搜索空间、小区参数(numerology/SCS)、调度的小区数量、CORESET的标识(CORESET ID或pool ID等)中的至少一个有关。
该实施例中,用于监听DCI的监听能力可以是共享调度小区或任一个或多个被调度小区的监听能力;或者,该部分能力是从调度小区与被调度小区的监听能力中各分配一部分组成(见本发明后文实施例六)。
可选地,作为一个实施例,前文各个实施例中提到的特定时间,以及具体的第一特定 时间、第二特定时间、第三特定时间和第四特定时间的至少之一包括下述之一:
特定时刻;
至少一个时隙;
一个时间间隔;
监听定时器生效的时间内;
物理下行控制信道PDCCH监听机会;其中,所述PDCCH监听机会对应的可调度的物理下行共享信道PDSCH或物理上行共享信道PUSCH的最早起始位置相同。例如,调度的PDSCH/PUSCH的最早起始位置都为N的两个cell上的PDCCH监听机会。
可选地,作为一个实施例,实施例100获取调度配置信息之前,所述方法还包括:发送终端能力,所述终端能力包括以下至少之一:
是否支持监听至少两个所述传输对象对一个所述传输对象进行调度;
监听至少两个所述传输对象的最大处理能力;
可调度的PDSCH或PUSCH的最早起始位置;
特定时间间隔的长度;
监听定时器的长度。
可选地,在前文各个实施例中,网络设备可以为终端设备配置上述cell-1,cell-2配置,监听的SS(包括CR-SS,SE-SS,O-SS等),以及调度的DCI格式等等。可选地,配置需要满足上述终端设备监听的限制;或网络设备接收终端设备上报的能力,根据终端设备能力进行配置。
为详细说明本发明实施例提供的搜索空间的监听方法,以下将结合几个具体的实施例进行说明。
实施例一:
网络设备为终端设备配置了Pcell与Scell,且Scell调度Pcell,Pcell与Scell的SCS都是15kHz(即μ=0)。
网络设备配置了Pcell自调度的SE-SS的PDCCH候选数A=40,Scell自调度的O-SS的PDCCH候选数B=15,Scell调度Pcell的CR-SS的PDCCH候选数C=20,即分配了Scell的部分处理能力用于调度Pcell。
终端设备同时监听上述SS,其中A<44,B+C=35<44,均不超过终端设备单个slot内的最大处理能力。
实施例二:
网络设备为终端设备配置了Pcell与Scell,且Scell调度Pcell,Pcell与Scell的SCS都是15kHz(即μ=0)。
终端设备上报其支持的跨载波调度的能力N=1.5。
网络设备配置了Pcell自调度的SE-SS的PDCCH候选数A=40,Scell自调度的O-SS的PDCCH候选数B=40,Scell调度Pcell的CR-SS的PDCCH候选数C=20,即分配了Scell的部分处理能力用于调度Pcell。
终端设备同时监听上述SS,其中A<44。B+C=60,60>44但60<44×N=66,因此不超过终端设备单个slot内的最大处理能力。
实施例三:
网络设备为终端设备配置了Pcell与Scell,且Scell调度Pcell,Pcell的SCS是15kHz(即μ=0),Scell的SCS是30kHz(即μ=1)。
终端设备上报对于被调度小区的阈值为X 1=22,网络设备计算X 2=18满足22/44+18/36=1。
网络设备配置了Pcell自调度的SE-SS的PDCCH候选数A=20,Scell自调度的O-SS的PDCCH候选数B=20,Scell调度Pcell的CR-SS的PDCCH候选数C=10,即分配了Scell的部分处理能力用于调度Pcell。
终端设备同时监听上述SS,其中A<X 1=22,C<X 2=18,B<36,因此不超过终端设备单个slot内的最大处理能力。
实施例四:
网络设备为终端设备配置了Pcell与Scell,且Scell调度Pcell,Pcell的SCS是15kHz(即μ=0),Scell的SCS是30kHz(即μ=1)。
终端设备上报对于被调度小区的阈值为X 1=22,网络设备计算X 2=18满足22/44+18/36=1。
网络设备配置了Pcell自调度的SE-SS的PDCCH候选数A=20,Scell自调度的O-SS的PDCCH候选数B=20,Scell调度Pcell的CR-SS的PDCCH候选数C=10,即分配了Scell的部分处理能力用于调度Pcell。
终端设备同时监听上述SS,其中,A/44+C/36=20/44+10/36<1,B<36,因此均不超过终端设备单个slot内的最大处理能力。
实施例五:
网络设备为终端设备配置了Pcell与Scell,且Scell调度Pcell,Pcell与Scell的SCS都是15kHz(即μ=0)。
网络设备配置了scaling factor N,指示如果分配小区间的最大处理能力。N=0.5,表示Pcell分配一半的能力用于自调度,一半的能力用于Scell调动Pcell。
终端设备根据配置的N以及cell的SCS,确定被调度的Pcell的监听PDCCH能力:
Pcell自调度的SE-SS的最大PDCCH候选数=44×N=24,Scell调度Pcell的CR-SS的最大PDCCH候选数=44×N=22,
Pcell自调度的DCI size budget=4×N=2,Scell调度Pcell的DCI size budget=4×N=2,即自调度监听的不同DCI格式数为2,Scell调度Pcell的不同DCI格式数为2。
实施例六:
网络设备为终端设备配置了Pcell与Scell,Pcell与Scell的SCS都是15kHz(即μ=0),且Pcell配置了DCI-J用于同时调度Pcell与Scell的数据。
终端设备配置部分监听能力用于监听DCI-J。
该部分监听能力可以是共享Pcell或Scell的监听能力,或者,该部分能力是从Pcell与Scell的监听能力中各分配一部分。
按照一定比例(scaling factor),终端设备可以上报分配比例给网络设备,或,按照一定规则,例如,DCI-J只调度PDSCH,Scell自调度PUSCH,或通过Pcell跨载波调度Scell的PUSCH。
此时,将Scell的PDSCH的调度能力分配用于监听DCI-J。
实施例七
网络设备为终端设备配置了Pcell上监听TRP-1(关联CORESET pool ID=0)与TRP-2(关联CORESET pool ID=1),每个TRP自调度,且TRP-1还可以调度TRP-2,Pcell的SCS是15kHz(即μ=0)。
其中,SS-0与SS-1关联CORESET pool ID-0,SS-2关联CORESET pool ID-1,SS-0调度TRP-0,且SS-1与SS-2可以调度TRP-1。
终端设备上报其支持的跨TRP调度的能力L=1,以及两个TRP的总调度能力R=1.5,即最大PDCCH候选=44*R=66;
网络设备配置了SS-0的PDCCH候选数A=20,SS-2的PDCCH候选数B=20,SS-1的PDCCH候选数C=10,即分配了TRP-1的部分处理能力用于监听对TPR-2的调度。
终端设备同时监听上述SS,其中A+B+C<66,A+C=30<44,均不超过终端设备的最大处理能力。
本发明上述各个实施例可应用于CA或M-TRP下的搜索空间监听方法,可以支持一个小区(或TRP)自调度的同时,被另一个小区(或TRP)调度,例如监听PCell与SCell对PCell的调度DCI,在两个调度小区间分配终端设备盲检测的最大PDCCH候选数,最大不重叠CCE数,DCI size budget等等,从而可以简化终端设备实现,降低功耗。
需要说明是的是,以上各个实施例的描述多是以两个cell为例说明,但本方案适用于两个以上cell的场景;
以上各个实施例的描述以cell-2只调度cell-1与cell-2自己为例说明,但本方案同样适用于cell-2调度两个以上cell的场景。
上述方案中,cell-2调度cell-1的DCI可以是单独调度一个小区的DCI,也可以是同时/联合调度多个小区的DCI。例如,cell-2调度cell-1时,可以是一个特殊的DCI同时调度两个cell的数据。
本发明上述各个实施例也可以用于多传输面板(multiple Transmission and Reception Panel,M-TRP)的场景,即发明中的cell-1、cell-2也可以是同一个cell的TRP-1与TRP-2,终端设备监听对应不同的TRP(即配置不同的CORESET pool index)的SS的PDCCH。
需要说明的是,本说明书上述各个实施例均是以至少两个小区对一个小区进行调度为例进行说明,实际上,上述各个实施例同样适用于至少两个TRP对一个TRP进行调度的场景,也即可以将前文各个实施例中的小区替换为TRP。
以上结合图1详细描述了根据本发明实施例的搜索空间的监听方法。下面将结合图2详细描述根据本发明另一实施例的搜索空间的监听方法。可以理解的是,从网络设备侧描述的网络设备与终端设备的交互与图1所示的方法中的终端设备侧的描述相同,为避免重复,适当省略相关描述。
图2是本发明实施例的搜索空间的监听方法实现流程示意图,可以应用在网络设备侧。如图2所示,该方法200包括:
S202:发送调度配置信息,该调度配置信息用于终端设备监听SS,终端设备配置多个传输对象,监听的SS包括至少两个传输对象对一个传输对象进行调度的SS。
本发明实施例提供的搜索空间的监听方法,终端设备配置有多个传输对象(例如,多个小区或多个TRP),可以支持一个小区(或TRP)自调度的同时,被另一个小区(或TRP)调度,例如,支持PCell自调度的同时支持通过SCell调度PCell,解决(PCell)控制信道容量有限的问题,提升通信效率。
可选地,作为一个实施例,所述多个传输对象至少包括第一传输对象和第二传输对象,监听的所述SS包括如下至少之一:
所述第一传输对象自调度的第一SS;
所述第二传输对象调度所述第一传输对象的第二SS;
所述第二传输对象自调度的第三SS。
可选地,作为一个实施例,所述发送调度配置信息之前,所述方法还包括:接收终端能力,所述终端能力包括以下至少之一:
是否支持监听至少两个所述传输对象对一个所述传输对象进行调度;
监听至少两个所述传输对象的最大处理能力;
可调度的PDSCH或PUSCH的最早起始位置;
特定时间间隔的长度;
监听定时器的长度。
以上结合图1至图2详细描述了根据本发明实施例的搜索空间的监听方法。下面将结合图3详细描述根据本发明实施例的终端设备。
图3是根据本发明实施例的终端设备的结构示意图,该终端设备配置多个传输对象。如图3所示,终端设备300包括:
获取模块302,可以用于获取调度配置信息;
监听模块304,可以用于根据所述调度配置信息监听SS,所述SS包括至少两个所述传输对象对一个所述传输对象进行调度的SS。
本发明实施例提供的终端设备配置有多个传输对象(例如,多个小区或多个TRP),可以支持一个小区(或TRP)自调度的同时,被另一个小区(或TRP)调度,例如,支持PCell自调度的同时支持通过SCell调度PCell,解决(PCell)控制信道容量有限的问题,提升通信效率。
可选地,作为一个实施例,所述多个传输对象至少包括第一传输对象和第二传输对象,监听的所述SS包括如下至少之一:
所述第一传输对象自调度的第一SS;
所述第二传输对象调度所述第一传输对象的第二SS;
所述第二传输对象自调度的第三SS。
可选地,作为一个实施例,在第一特定时间内满足如下至少之一:
监听所述第一SS的处理能力不超过单个所述传输对象的最大处理能力;
监听所述第二SS和第三SS的总处理能力不超过单个所述传输对象的最大处理能力;
监听所述第二SS和第三SS的总处理能力不超过L乘以单个所述传输对象的最大处理能力,所述L为正数。
可选地,作为一个实施例,所述L小于或等于所述第二传输对象调度的传输对象的数量。
可选地,作为一个实施例,所述L是预定义的;或
所述L与所述终端设备上报的最大处理能力M相关。
可选地,作为一个实施例,所述至少两个传输对象中的第i个传输对象A i分配有处理能力阈值X i,所述X i不超过单个所述传输对象的最大处理能力;
其中,在第二特定时间内,监听所述A i对一个所述传输对象进行调度的SS的处理能力不超过所述X i
可选地,作为一个实施例,至少两个所述X i满足如下关系:
Figure PCTCN2021074919-appb-000005
其中,所述N是所述至少两个传输对象的数量,N大于或等于2;
所述R是根据所述至少两个传输对象的参数中的至少一个确定的最大处理能力;或
所述R是根据被调度的一个所述传输对象的参数确定的最大处理能力;或
所述R是所述终端设备上报的最大处理能力。
可选地,作为一个实施例,至少两个所述X i满足如下关系:
Figure PCTCN2021074919-appb-000006
其中,所述N是所述至少两个传输对象的数量,N大于或等于2;
P i为根据所述A i的参数确定的最大处理能力。
可选地,作为一个实施例,所述至少两个传输对象中的第i个传输对象A i分配有处理能力G i,所述G i不超过单个所述传输对象的最大处理能力;
其中,在第三特定时间内,监听所述A i对一个所述传输对象进行调度的SS的处理能力为所述G i
可选地,作为一个实施例,至少两个所述G i满足如下关系:
Figure PCTCN2021074919-appb-000007
其中,所述N是所述至少两个传输对象的数量,N大于或等于2;
所述S是根据所述至少两个传输对象的参数中的至少一个确定的最大处理能力;或
所述S是根据被调度的一个所述传输对象的参数确定的最大处理能力。
可选地,作为一个实施例,至少两个所述G i满足如下关系:
Figure PCTCN2021074919-appb-000008
其中,所述N是所述至少两个传输对象的数量,N大于或等于2;
所述Q i为根据所述A i的参数确定的最大处理能力。
可选地,作为一个实施例,在第四特定时间内,针对所述至少两个传输对象中的第i个传输对象A i,监听所述A i对一个所述传输对象进行调度的SS的处理能力不超过所述A i的最大处理能力。
可选地,作为一个实施例,所述监听SS的处理能力与如下至少之一相关:
特定下行控制信息的DCI格式或大小;特定SS;所述传输对象的参数;配置的所述多个传输对象的数量;控制资源集CORESET的标识。
可选地,作为一个实施例,所述第一特定时间、所述第二特定时间、所述第三特定时间和所述第四特定时间的至少之一包括下述之一:
特定时刻;
至少一个时隙;
一个时间间隔;
监听定时器生效的时间内;
PDCCH监听机会;其中,所述PDCCH监听机会对应的可调度的PDSCH或PUSCH的最早起始位置相同。
可选地,作为一个实施例,所述调度配置信息用于配置如下至少之一:
所述多个传输对象配置;监听的所述SS;调度的DCI格式。
可选地,作为一个实施例,所述终端设备300还包括发送模块,可以用于:发送终端能力,所述终端能力包括以下至少之一:
是否支持监听至少两个所述传输对象对一个所述传输对象进行调度;
监听至少两个所述传输对象的最大处理能力;
可调度的PDSCH或PUSCH的最早起始位置;
特定时间间隔的长度;
监听定时器的长度。
根据本发明实施例的终端设备300可以参照对应本发明实施例的方法100的流程,并且,该终端设备300中的各个单元/模块和上述其他操作和/或功能分别为了实现方法100中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图4是根据本发明实施例的网络设备的结构示意图。如图4所述,网络设备400包括:
发送模块402,可以用于发送调度配置信息;
其中,所述调度配置信息用于终端设备监听SS,所述终端设备配置多个传输对象,所述SS包括至少两个所述传输对象对一个所述传输对象进行调度的SS。
本发明实施例中,终端设备配置有多个传输对象(例如,多个小区或多个TRP),可以支持一个小区(或TRP)自调度的同时,被另一个小区(或TRP)调度,例如,支持PCell自调度的同时支持通过SCell调度PCell,解决(PCell)控制信道容量有限的问题,提升通信效率。
可选地,作为一个实施例,所述多个传输对象至少包括第一传输对象和第二传输对象,监听的所述SS包括如下至少之一:
所述第一传输对象自调度的第一SS;
所述第二传输对象调度所述第一传输对象的第二SS;
所述第二传输对象自调度的第三SS。
可选地,作为一个实施例,所述网络设备400还包括接收模块,可以用于:接收终端能力,所述终端能力包括以下至少之一:
是否支持监听至少两个所述传输对象对一个所述传输对象进行调度;
监听至少两个所述传输对象的最大处理能力;
可调度的PDSCH或PUSCH的最早起始位置;
特定时间间隔的长度;
监听定时器的长度。
根据本发明实施例的网络设备400可以参照对应本发明实施例的方法200的流程,并且,该网络设备400中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
本说明书中的各个实施例采用递进的方式描述,每个实施例重点说明的通常是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于设备实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
图5是本发明另一个实施例的终端设备的框图。图5所示的终端设备500包括:至少一个处理器501、存储器502、至少一个网络接口504和用户接口503。终端设备500中的各个组件通过总线系统505耦合在一起。可理解,总线系统505用于实现这些组件之间的连接通信。总线系统505除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图5中将各种总线都标为总线系统505。
其中,用户接口503可以包括显示器、键盘、点击设备(例如,鼠标,轨迹球(trackball))、触感板或者触摸屏等。
可以理解,本发明实施例中的存储器502可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM, SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本发明实施例描述的系统和方法的存储器502旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器502存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统5021和应用程序5022。
其中,操作系统5021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序5022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本发明实施例方法的程序可以包含在应用程序5022中。
在本发明实施例中,终端设备500还包括:存储在存储器上502并可在处理器501上运行的计算机程序,计算机程序被处理器501执行时实现如下方法实施例100的步骤。
上述本发明实施例揭示的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器501执行时实现如上述方法实施例100的各步骤。
可以理解的是,本发明实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本发明实施例所述功能的模块(例如过程、函数等)来实 现本发明实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
终端设备500能够实现前述实施例中终端设备实现的各个过程,并且能够达到相同或等同的技术效果,为避免重复,这里不再赘述。
请参阅图6,图6是本发明实施例应用的网络设备的结构图,能够实现方法实施例200的细节,并达到相同的效果。如图6所示,网络设备600包括:处理器601、收发机602、存储器603和总线接口,其中:
在本发明实施例中,网络设备600还包括:存储在存储器上603并可在处理器601上运行的计算机程序,计算机程序被处理器601、执行时实现方法实施例200的步骤。
在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器603代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机602可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。
处理器601负责管理总线架构和通常的处理,存储器603可以存储处理器601在执行操作时所使用的数据。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例100和方法实施例200中任意一个方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (43)

  1. 一种搜索空间的监听方法,所述方法由终端设备执行,所述终端设备配置多个传输对象,所述方法包括:
    获取调度配置信息;
    根据所述调度配置信息监听搜索空间SS,所述SS包括至少两个所述传输对象对一个所述传输对象进行调度的SS。
  2. 根据权利要求1所述的方法,其中,所述多个传输对象至少包括第一传输对象和第二传输对象,监听的所述SS包括如下至少之一:
    所述第一传输对象自调度的第一SS;
    所述第二传输对象调度所述第一传输对象的第二SS;
    所述第二传输对象自调度的第三SS。
  3. 根据权利要求2所述的方法,其中,在第一特定时间内满足如下至少之一:
    监听所述第一SS的处理能力不超过单个所述传输对象的最大处理能力;
    监听所述第二SS和第三SS的总处理能力不超过单个所述传输对象的最大处理能力;
    监听所述第二SS和第三SS的总处理能力不超过L乘以单个所述传输对象的最大处理能力,所述L为正数。
  4. 根据权利要求3所述的方法,其中,所述L小于或等于所述第二传输对象调度的传输对象的数量。
  5. 根据权利要求3所述的方法,其中,
    所述L是预定义的;或
    所述L与所述终端设备上报的最大处理能力M相关。
  6. 根据权利要求1所述的方法,其中,
    所述至少两个所述传输对象中的第i个传输对象A i分配有处理能力阈值X i,所述X i不超过单个所述传输对象的最大处理能力;
    其中,在第二特定时间内,监听所述A i对一个所述传输对象进行调度的SS的处理能力不超过所述X i
  7. 根据权利要求6所述的方法,其中,至少两个所述X i满足如下关系:
    Figure PCTCN2021074919-appb-100001
    其中,所述N是所述至少两个所述传输对象的数量,N大于或等于2;
    所述R是根据所述至少两个所述传输对象的参数中的至少一个确定的最大处理能 力;或
    所述R是根据被调度的一个所述传输对象的参数确定的最大处理能力;或
    所述R是所述终端设备上报的最大处理能力。
  8. 根据权利要求6所述的方法,其中,至少两个所述X i满足如下关系:
    Figure PCTCN2021074919-appb-100002
    其中,所述N是所述至少两个所述传输对象的数量,N大于或等于2;
    P i为根据所述A i的参数确定的最大处理能力。
  9. 根据权利要求1所述的方法,其中,
    所述至少两个所述传输对象中的第i个传输对象A i分配有处理能力G i,所述G i不超过单个所述传输对象的最大处理能力;
    其中,在第三特定时间内,监听所述A i对一个所述传输对象进行调度的SS的处理能力为所述G i
  10. 根据权利要求9所述的方法,其中,至少两个所述G i满足如下关系:
    Figure PCTCN2021074919-appb-100003
    其中,所述N是所述至少两个所述传输对象的数量,N大于或等于2;
    所述S是根据所述至少两个所述传输对象的参数中的至少一个确定的最大处理能力;或
    所述S是根据被调度的一个所述传输对象的参数确定的最大处理能力。
  11. 根据权利要求9所述的方法,其中,至少两个所述G i满足如下关系:
    Figure PCTCN2021074919-appb-100004
    其中,所述N是所述至少两个所述传输对象的数量,N大于或等于2;
    所述Q i为根据所述A i的参数确定的最大处理能力。
  12. 根据权利要求1所述的方法,其中,在第四特定时间内,针对所述至少两个所述传输对象中的第i个传输对象A i,监听所述A i对一个所述传输对象进行调度的SS的处理能力不超过所述A i的最大处理能力。
  13. 根据权利要求1所述的方法,其中,所述监听SS的处理能力与如下至少之一相关:
    特定下行控制信息DCI格式或大小;特定SS;所述传输对象的参数;配置的所述多个传输对象的数量;控制资源集CORESET的标识。
  14. 根据权利要求3、6、9或12所述的方法,其中,第一特定时间、第二特定时 间、第三特定时间和第四特定时间的至少之一包括下述之一:
    特定时刻;
    至少一个时隙;
    一个时间间隔;
    监听定时器生效的时间内;
    物理下行控制信道PDCCH监听机会;其中,所述PDCCH监听机会对应的可调度的物理下行共享信道PDSCH或物理上行共享信道PUSCH的最早起始位置相同。
  15. 根据权利要求1所述的方法,其中,所述调度配置信息用于配置如下至少之一:
    所述多个传输对象配置;监听的所述SS;调度的DCI格式。
  16. 根据权利要求1所述的方法,其中,所述获取调度配置信息之前,所述方法还包括:发送终端能力,所述终端能力包括以下至少之一:
    是否支持监听至少两个所述传输对象对一个所述传输对象进行调度;
    监听至少两个所述传输对象的最大处理能力;
    可调度的PDSCH或PUSCH的最早起始位置;
    特定时间间隔的长度;
    监听定时器的长度。
  17. 一种搜索空间的监听方法,所述方法由网络设备执行,所述方法包括:
    发送调度配置信息;
    其中,所述调度配置信息用于终端设备监听SS,所述终端设备配置多个传输对象,所述SS包括至少两个所述传输对象对一个所述传输对象进行调度的SS。
  18. 根据权利要求17所述的方法,其中,所述多个传输对象至少包括第一传输对象和第二传输对象,监听的所述SS包括如下至少之一:
    所述第一传输对象自调度的第一SS;
    所述第二传输对象调度所述第一传输对象的第二SS;
    所述第二传输对象自调度的第三SS。
  19. 根据权利要求17所述的方法,其中,所述发送调度配置信息之前,所述方法还包括:接收终端能力,所述终端能力包括以下至少之一:
    是否支持监听至少两个所述传输对象对一个所述传输对象进行调度;
    监听至少两个所述传输对象的最大处理能力;
    可调度的PDSCH或PUSCH的最早起始位置;
    特定时间间隔的长度;
    监听定时器的长度。
  20. 一种终端设备,所述终端设备配置多个传输对象,所述终端设备包括:
    获取模块,用于获取调度配置信息;
    监听模块,用于根据所述调度配置信息监听SS,所述SS包括至少两个所述传输对象对一个所述传输对象进行调度的SS。
  21. 根据权利要求20所述的终端设备,其中,所述多个传输对象至少包括第一传输对象和第二传输对象,监听的所述SS包括如下至少之一:
    所述第一传输对象自调度的第一SS;
    所述第二传输对象调度所述第一传输对象的第二SS;
    所述第二传输对象自调度的第三SS。
  22. 根据权利要求21所述的终端设备,其中,在第一特定时间内满足如下至少之一:
    监听所述第一SS的处理能力不超过单个所述传输对象的最大处理能力;
    监听所述第二SS和第三SS的总处理能力不超过单个所述传输对象的最大处理能力;
    监听所述第二SS和第三SS的总处理能力不超过L乘以单个所述传输对象的最大处理能力,所述L为正数。
  23. 根据权利要求22所述的终端设备,其中,所述L小于或等于所述第二传输对象调度的传输对象的数量。
  24. 根据权利要求22所述的终端设备,其中,
    所述L是预定义的;或
    所述L与所述终端设备上报的最大处理能力M相关。
  25. 根据权利要求20所述的终端设备,其中,
    所述至少两个所述传输对象中的第i个传输对象A i分配有处理能力阈值X i,所述X i不超过单个所述传输对象的最大处理能力;
    其中,在第二特定时间内,监听所述A i对一个所述传输对象进行调度的SS的处理能力不超过所述X i
  26. 根据权利要求25所述的终端设备,其中,
    至少两个所述X i满足如下关系:
    Figure PCTCN2021074919-appb-100005
    其中,所述N是所述至少两个所述传输对象的数量,N大于或等于2;
    所述R是根据所述至少两个所述传输对象的参数中的至少一个确定的最大处理能力;或
    所述R是根据被调度的一个所述传输对象的参数确定的最大处理能力;或
    所述R是所述终端设备上报的最大处理能力。
  27. 根据权利要求25所述的终端设备,其中,
    至少两个所述X i满足如下关系:
    Figure PCTCN2021074919-appb-100006
    其中,所述N是所述至少两个所述传输对象的数量,N大于或等于2;
    P i为根据所述A i的参数确定的最大处理能力。
  28. 根据权利要求20所述的终端设备,其中,
    所述至少两个所述传输对象中的第i个传输对象A i分配有处理能力G i,所述G i不超过单个所述传输对象的最大处理能力;
    其中,在第三特定时间内,监听所述A i对一个所述传输对象进行调度的SS的处理能力为所述G i
  29. 根据权利要求28所述的终端设备,其中,
    至少两个所述G i满足如下关系:
    Figure PCTCN2021074919-appb-100007
    其中,所述N是所述至少两个所述传输对象的数量,N大于或等于2;
    所述S是根据所述至少两个所述传输对象的参数中的至少一个确定的最大处理能力;或
    所述S是根据被调度的一个所述传输对象的参数确定的最大处理能力。
  30. 根据权利要求28所述的终端设备,其中,
    至少两个所述G i满足如下关系:
    Figure PCTCN2021074919-appb-100008
    其中,所述N是所述至少两个所述传输对象的数量,N大于或等于2;
    所述Q i为根据所述A i的参数确定的最大处理能力。
  31. 根据权利要求28所述的终端设备,其中,在第四特定时间内,针对所述至少两个所述传输对象中的第i个传输对象A i,监听所述A i对一个所述传输对象进行调度的SS的处理能力不超过所述A i的最大处理能力。
  32. 根据权利要求20所述的终端设备,其中,所述监听SS的处理能力与如下至 少之一相关:
    特定下行控制信息DCI格式或大小;特定SS;所述传输对象的参数;配置的所述多个传输对象的数量;控制资源集CORESET的标识。
  33. 根据权利要求22、25、28或31所述的终端设备,其中,第一特定时间、第二特定时间、第三特定时间和第四特定时间的至少之一包括下述之一:
    特定时刻;
    至少一个时隙;
    一个时间间隔;
    监听定时器生效的时间内;
    物理下行控制信道PDCCH监听机会;其中,所述PDCCH监听机会对应的可调度的物理下行共享信道PDSCH或物理上行共享信道PUSCH的最早起始位置相同。
  34. 根据权利要求20所述的终端设备,其中,
    所述调度配置信息用于配置如下至少之一:
    所述多个传输对象配置;监听的所述SS;调度的DCI格式。
  35. 根据权利要求20所述的终端设备,其中,所述终端设备还包括发送模块,用于:发送终端能力,所述终端能力包括以下至少之一:
    是否支持监听至少两个所述传输对象对一个所述传输对象进行调度;
    监听至少两个所述传输对象的最大处理能力;
    可调度的PDSCH或PUSCH的最早起始位置;
    特定时间间隔的长度;
    监听定时器的长度。
  36. 一种网络设备,包括:
    发送模块,用于发送调度配置信息;
    其中,所述调度配置信息用于终端设备监听SS,所述终端设备配置多个传输对象,所述SS包括至少两个所述传输对象对一个所述传输对象进行调度的SS。
  37. 根据权利要求36所述的网络设备,其中,所述多个传输对象至少包括第一传输对象和第二传输对象,监听的所述SS包括如下至少之一:
    所述第一传输对象自调度的第一SS;
    所述第二传输对象调度所述第一传输对象的第二SS;
    所述第二传输对象自调度的第三SS。
  38. 根据权利要求36所述的网络设备,其中,所述网络设备还包括接收模块,用于:接收终端能力,所述终端能力包括以下至少之一:
    是否支持监听至少两个所述传输对象对一个所述传输对象进行调度;
    监听至少两个所述传输对象的最大处理能力;
    可调度的PDSCH或PUSCH的最早起始位置;
    特定时间间隔的长度;
    监听定时器的长度。
  39. 一种终端设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至16中任一项所述的搜索空间的监听方法。
  40. 一种网络设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求17至19中任一项所述的搜索空间的监听方法。
  41. 一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至19中任一项所述的搜索空间的监听方法。
  42. 一种计算机程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1至19中任一项所述的搜索空间的监听方法。
  43. 一种搜索空间的监听装置,包括所述装置被配置成用于执行如权利要求1至19中任一项所述的搜索空间的监听方法。
PCT/CN2021/074919 2020-02-06 2021-02-02 搜索空间的监听方法和设备 WO2021155790A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21750196.4A EP4102913A4 (en) 2020-02-06 2021-02-02 METHOD AND DEVICE FOR MONITORING THE SEARCH AREA
KR1020227030494A KR20220135247A (ko) 2020-02-06 2021-02-02 탐색 공간의 모니터링 방법 및 장비
JP2022548202A JP7408825B2 (ja) 2020-02-06 2021-02-02 サーチスペースのモニタリング方法及び機器
BR112022015527A BR112022015527A2 (pt) 2020-02-06 2021-02-02 Método de monitoramento de espaço de pesquisa e um dispositivo
US17/882,233 US20220408465A1 (en) 2020-02-06 2022-08-05 Search space monitoring method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010082038.3A CN113225751B (zh) 2020-02-06 2020-02-06 搜索空间的监听方法和设备
CN202010082038.3 2020-02-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/882,233 Continuation US20220408465A1 (en) 2020-02-06 2022-08-05 Search space monitoring method and device

Publications (2)

Publication Number Publication Date
WO2021155790A1 true WO2021155790A1 (zh) 2021-08-12
WO2021155790A9 WO2021155790A9 (zh) 2021-09-23

Family

ID=77085627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/074919 WO2021155790A1 (zh) 2020-02-06 2021-02-02 搜索空间的监听方法和设备

Country Status (7)

Country Link
US (1) US20220408465A1 (zh)
EP (1) EP4102913A4 (zh)
JP (1) JP7408825B2 (zh)
KR (1) KR20220135247A (zh)
CN (1) CN113225751B (zh)
BR (1) BR112022015527A2 (zh)
WO (1) WO2021155790A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871423B2 (en) * 2020-02-13 2024-01-09 Intel Corporation Transmission on a PCell scheduled by an SCell PDCCH in a 5G NR network
US11902985B2 (en) * 2020-02-14 2024-02-13 Intel Corporation Default PDSCH beam setting and PDCCH prioritization for multi panel reception
CN115913501A (zh) * 2021-09-30 2023-04-04 维沃软件技术有限公司 联合调度方法和设备
CN117411597A (zh) * 2022-07-04 2024-01-16 北京紫光展锐通信技术有限公司 通信方法与装置、终端设备、网络设备和芯片

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104866A (zh) * 2010-04-30 2011-06-22 电信科学技术研究院 一种pdcch cc搜索空间的确定方法和设备
CN105682243A (zh) * 2016-03-25 2016-06-15 宇龙计算机通信科技(深圳)有限公司 一种调度信令的配置方法、接收方法和相关设备
CN109391971A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种pdcch的搜索空间的配置、监听方法及设备
CN110740514A (zh) * 2018-07-20 2020-01-31 维沃移动通信有限公司 一种监听方法及终端设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8134912B2 (en) * 2008-10-20 2012-03-13 Intel Corporation Apparatus, systems and methods adapted for opportunistic forwarding of uplink short messages in wireless metropolitan area networks
EP2557710A4 (en) * 2010-04-07 2017-07-26 LG Electronics Inc. Pdcch monitoring method and apparatus in a carrier junction system
EP3128801B1 (en) * 2015-08-07 2019-10-02 Panasonic Intellectual Property Corporation of America Self- and cross-carrier scheduling
US20170135127A1 (en) * 2015-11-05 2017-05-11 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
CN105682244B (zh) * 2016-03-25 2018-01-09 宇龙计算机通信科技(深圳)有限公司 一种调度信令的配置方法、接收方法和相关设备
CN110166191B (zh) * 2018-02-11 2021-01-08 维沃移动通信有限公司 一种搜索空间的监听信息的确定方法及装置
CN110324127B (zh) * 2018-03-30 2022-01-25 维沃移动通信有限公司 Pdcch监听候选的分配方法和网络侧设备
CN110611925B (zh) * 2018-06-14 2022-03-18 维沃移动通信有限公司 物理下行控制信道监听参数配置方法、终端及网络侧设备
CN110677911B (zh) * 2018-07-03 2022-05-20 大唐移动通信设备有限公司 一种发送物理下行控制信道的配置信息的方法及装置
CN113316258B (zh) * 2018-07-20 2023-11-07 维沃移动通信有限公司 一种用于监听pdcch的方法、终端及网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102104866A (zh) * 2010-04-30 2011-06-22 电信科学技术研究院 一种pdcch cc搜索空间的确定方法和设备
CN105682243A (zh) * 2016-03-25 2016-06-15 宇龙计算机通信科技(深圳)有限公司 一种调度信令的配置方法、接收方法和相关设备
CN109391971A (zh) * 2017-08-11 2019-02-26 维沃移动通信有限公司 一种pdcch的搜索空间的配置、监听方法及设备
CN110740514A (zh) * 2018-07-20 2020-01-31 维沃移动通信有限公司 一种监听方法及终端设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4102913A4 *
ZTE: "Discussion on Scheduling Combinations for LAA", 3GPP DRAFT; R1-154320 DISCUSSION ON SCHEDULING COMBINATIONS FOR LAA, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Beijing, China; 20150824 - 20150828, 15 August 2015 (2015-08-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP050992033 *

Also Published As

Publication number Publication date
JP7408825B2 (ja) 2024-01-05
JP2023513549A (ja) 2023-03-31
EP4102913A1 (en) 2022-12-14
KR20220135247A (ko) 2022-10-06
EP4102913A4 (en) 2023-08-02
CN113225751A (zh) 2021-08-06
BR112022015527A2 (pt) 2022-09-27
WO2021155790A9 (zh) 2021-09-23
US20220408465A1 (en) 2022-12-22
CN113225751B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
WO2021155790A1 (zh) 搜索空间的监听方法和设备
US10812243B2 (en) Feedback information transmission and reception method and apparatus and communication system
US11012220B2 (en) Allocation of communication resources for control signals in the uplink
CN102265677B (zh) 在第一载波中提供下行链路控制结构以指示在第二个,不同载波中的控制信息
WO2021164729A1 (zh) 一种确定反馈资源的方法和通信设备
EP4099790A1 (en) Serving cell scheduling method, terminal device, and network device
US11147047B2 (en) Uplink transmission method, terminal, and network side device
WO2021164727A1 (zh) 一种传输下行控制信息的方法和通信设备
WO2021238545A1 (zh) 信息传输方法及装置
WO2021213324A1 (zh) 非周期srs的时隙偏移指示方法和设备
EP3952554A1 (en) Signal reception or transmission method and device, and system
US20230045655A1 (en) Maximum pdcch processing capability allocation method, terminal device, and network device
US20220030556A1 (en) Processing method and device
JP6980170B2 (ja) ダウンリンクリソースの集合を決定するための方法とデバイス、およびリソース位置情報を送信するための方法とデバイス
US20220132478A1 (en) Wireless communication method, network device and terminal device
KR102533558B1 (ko) 데이터 송신 방법 및 디바이스
WO2021073446A1 (zh) 时域资源的确定方法和设备
WO2021088795A1 (zh) Harq-ack反馈信息的传输方法和设备
US20230209565A1 (en) Methods and systems for determining downlink control information in wireless networks
US11013018B2 (en) Data multiplexing apparatus and method and communication system
US11108511B2 (en) Carrier scheduling method and apparatus
EP2635081A1 (en) Allocation of communication resources
WO2023206306A1 (zh) 数据接收方法、数据发送方法以及装置
JP5969124B2 (ja) ユーザ装置の半永続スケジューリングのためのアップリンク制御チャネルリソース割り当て
US20230232411A1 (en) Feedback information transmitting method and apparatus and feedback information receiving method and apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750196

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022548202

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022015527

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20227030494

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021750196

Country of ref document: EP

Effective date: 20220906

ENP Entry into the national phase

Ref document number: 112022015527

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220805